ADC34J45IRGZR [TI]

四通道、14 位、160MSPS 模数转换器 (ADC) | RGZ | 48 | -40 to 85;
ADC34J45IRGZR
型号: ADC34J45IRGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、14 位、160MSPS 模数转换器 (ADC) | RGZ | 48 | -40 to 85

转换器 模数转换器
文件: 总91页 (文件大小:7456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
ADC34J4x 具有 JESD204B 接口的四通道 14 50MSPS 160MSPS  
模数转换器  
1 特性  
3 说明  
1
四通道  
ADC34J4x 是一款高线性度、超低功耗、四通道、14  
位、50MSPS 160MSPS 模数转换器 (ADC)。 此类  
器件专门设计用于支持具有宽动态范围需求且要求苛刻  
的高输入频率信号。 当 SYSREF 输入实现整个系统同  
步时,时钟输入分频器将给予系统时钟架构设计更高的  
灵活性。 ADC34J4x 系列支持串行电流模式逻辑  
(CML) JESD204B 接口,从而减少接口线路的数  
量,实现高系统集成度。 JESD204B 接口是串行接  
口,仅通过一个差分对即可串行输出每个 ADC 的数  
据。 内部锁相环 (PLL) 会将传入的 ADC 采样时钟乘  
20,以获得串行输出各通道的 14 位数据时所使用  
的位时钟。 ADC34J4x 器件支持子类 1,接口速率高  
3.2Gbps。  
14 位分辨率  
1.8V 单电源  
支持 1 分频、2 分频和 4 分频的灵活输入时钟缓冲  
fIN = 70 MHz 时,信噪比 (SNR) = 72dBFS,无杂  
散动态范围 (SFDR) = 86dBc  
超低功耗:  
160MSPS 时为每通道 203mW  
通道隔离:105dB  
内部抖动  
JESD204B 串口:  
支持子类 012  
器件信息(1)  
支持每个 ADC 一条通道(高达 160MSPS)  
器件型号  
ADC34J4x  
封装  
VQFN (48)  
封装尺寸(标称值)  
支持多芯片同步  
7.00mm x 7.00mm  
12 位版本器件引脚到引脚兼容  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
封装:超薄四方扁平无引线 (VQFN)-48 (7mm x  
7mm)  
启用抖动功能时的快速傅立叶变换 (FFT)  
fS = 160MSPSfIN = 10MHzSNR =  
72.5dBFSSFDR = 88dBc)  
2 应用  
多载波、多模式蜂窝基站  
0
雷达和智能天线阵列  
炮弹制导  
±20  
±40  
电机控制反馈  
网络和矢量分析器  
通信测试设备  
±60  
±80  
无损检测  
±100  
±120  
微波接收器  
软件定义无线电 (SDR)  
正交和分集无线电接收器  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
C001  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBAS664  
 
 
 
 
 
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
目录  
7.19 Typical Characteristics: Common Plots ................ 43  
7.20 Typical Characteristics: Contour Plots.................. 44  
Parameter Measurement Information ................ 46  
8.1 Timing Diagrams..................................................... 46  
Detailed Description ............................................ 48  
9.1 Overview ................................................................. 48  
9.2 Functional Block Diagram ....................................... 48  
9.3 Feature Description................................................. 49  
9.4 Device Functional Modes........................................ 56  
9.5 Programming........................................................... 57  
9.6 Register Map........................................................... 61  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 Handling Ratings....................................................... 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Summary of Special Mode Registers........................ 6  
7.5 Thermal Information.................................................. 6  
7.6 Electrical Characteristics: ADC34J44, ADC34J45.... 7  
7.7 Electrical Characteristics: ADC34J42, ADC34J43 ... 7  
7.8 Electrical Characteristics: General............................ 8  
7.9 AC Performance: ADC34J45 .................................... 9  
7.10 AC Performance: ADC34J44 ................................ 11  
7.11 AC Performance: ADC34J43 ................................ 13  
7.12 AC Performance: ADC34J42 ............................... 15  
7.13 Digital Characteristics ........................................... 17  
7.14 Timing Characteristics........................................... 18  
7.15 Typical Characteristics: ADC34J45 ...................... 19  
7.16 Typical Characteristics: ADC34J44 ...................... 25  
7.17 Typical Characteristics: ADC34J43 ...................... 31  
7.18 Typical Characteristics: ADC34J42 ...................... 37  
8
9
10 Application and Implementation........................ 77  
10.1 Application Information.......................................... 77  
10.2 Typical Applications .............................................. 77  
11 Power-Supply Recommendations ..................... 80  
12 Layout................................................................... 81  
12.1 Layout Guidelines ................................................. 81  
12.2 Layout Example .................................................... 81  
13 器件和文档支持 ..................................................... 82  
13.1 相关链接................................................................ 82  
13.2 ....................................................................... 82  
13.3 静电放电警告......................................................... 82  
13.4 术语表 ................................................................... 82  
14 机械封装和可订购信息 .......................................... 82  
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (August 2014) to Revision B  
Page  
文档状态从混合状态更改为生产数据 ...................................................................................................................................... 1  
已将 ADC43J2ADC43J3 ADC43J4 的状态更改为生产数........................................................................................... 1  
Changes from Original (May 2014) to Revision A  
Page  
文档状态从产品预览更改为混合状态:ADC34J45 发布为生产数....................................................................................... 1  
更改了产品预览数据表 ........................................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
5 Device Comparison Table  
RESOLUTION  
INTERFACE  
(Bits)  
25 MSPS  
ADC3421  
ADC3441  
50 MSPS  
ADC3422  
ADC3442  
ADC34J22  
ADC34J42  
80 MSPS  
ADC3423  
ADC3443  
ADC34J23  
ADC34J43  
125 MSPS  
ADC3424  
ADC3444  
ADC34J24  
ADC34J44  
160 MSPS  
12  
Serial LVDS  
14  
12  
ADC34J25  
ADC34J45  
JESD204B  
14  
6 Pin Configuration and Functions  
RGZ Package  
VQFN-48  
(Top View)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
OVRB  
OVRA  
DVDD  
AVDD  
AVDD  
INAM  
INAP  
OVRC  
OVRD  
DVDD  
PDN  
3
4
5
AVDD  
INDM  
INDP  
6
GND Pad  
(Back Side)  
7
8
AVDD  
AVDD  
INBP  
AVDD  
AVDD  
INCP  
9
10  
11  
12  
INBM  
AVDD  
INCM  
AVDD  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Copyright © 2014, Texas Instruments Incorporated  
3
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
4, 5, 8, 9, 12, 17,  
20, 25, 28, 29, 32,  
39, 46  
AVDD  
I
Analog 1.8-V power supply  
CLKM  
CLKP  
DAM  
18  
I
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative serial JESD204B output for channel A  
Positive serial JESD204B output for channel A  
Negative serial JESD204B output for channel B  
Positive serial JESD204B output for channel B  
Negative serial JESD204B output for channel C  
Positive serial JESD204B output for channel C  
Negative serial JESD204B output for channel D  
Positive serial JESD204B output for channel D  
Digital 1.8-V power supply  
19  
48  
O
O
O
O
O
O
O
O
I
DAP  
47  
DBM  
45  
DBP  
44  
DCM  
41  
DCP  
40  
DDM  
38  
DDP  
37  
DVDD  
GND  
3, 34  
PowerPAD™  
I
Ground, 0 V  
INAM  
INAP  
INBM  
INBP  
INCM  
INCP  
INDM  
INDP  
OVRA  
OVRB  
OVRC  
OVRD  
PDN  
6
I
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
Negative differential analog input for channel C  
Positive differential analog input for channel C  
Negative differential analog input for channel D  
Positive differential analog input for channel D  
Overrange indicator for channel A  
7
I
11  
10  
26  
27  
31  
30  
2
I
I
I
I
I
I
O
O
O
O
I
1
Overrange indicator for channel B  
36  
35  
33  
21  
13  
14  
16  
Overrange indicator for channel C  
Overrange indicator for channel D  
Power-down control. This pin has an internal 150-kΩ pull-down resistor.  
RESET  
SCLK  
SDATA  
SDOUT  
I
Hardware reset; active high. This pin has an internal 150-kΩ, pull-down resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data output  
I
I
O
Serial interface enable. Active low.  
This pin has an internal 150-kΩ pull-up resistor to AVDD.  
SEN  
15  
I
SYNCM~  
SYNCP~  
SYSREFM  
SYSREFP  
VCM  
42  
43  
23  
22  
24  
I
I
Negative JESD204B synch input  
Positive JESD204B synch input  
I
Negative external SYSREF input  
I
Positive external SYSREF input  
O
Common-mode voltage output for the analog inputs  
4
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
MAX  
2.1  
UNIT  
V
Supply voltage range, AVDD  
Supply voltage range, DVDD  
2.1  
V
Minimum  
(AVDD + 0.3, 2.1)  
INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM  
CLKP, CLKM(2)  
–0.3  
–0.3  
–0.3  
V
V
V
Minimum  
(AVDD + 0.3, 2.1)  
Voltage applied to input  
pins:  
Minimum  
(AVDD + 0.3, 2.1)  
SYSREFP, SYSREFM, SYNCP~, SYNCM~  
SCLK, SEN, SDATA, RESET, PDN  
Operating free-air, TA  
–0.3  
–40  
3.6  
85  
V
°C  
°C  
Temperature range  
Operating junction, TJ  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKM is less than |0.3 V|).  
This configuration prevents the ESD protection diodes at the clock input pins from turning on.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
–65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
V(ESD)  
2
kV  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage range  
Digital supply voltage range  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
ANALOG INPUT  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VPP  
VPP  
V
VID  
VIC  
Differential input voltage  
Input common-mode voltage  
VCM ± 0.025  
CLOCK INPUT  
Input clock frequency  
Sampling clock frequency  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
15  
160(2)  
MSPS  
0.2  
1.5  
1.6  
V
V
V
Input clock amplitude (differential)  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
DIGITAL OUTPUTS  
Maximum external load capacitance  
from each output pin to GND  
CLOAD  
RLOAD  
3.3  
50  
pF  
Single-ended load resistance  
Ω
(1) After power-up, to reset the device for the first time, only use the RESET pin; see the Register Initialization section.  
(2) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 640 MSPS.  
Copyright © 2014, Texas Instruments Incorporated  
5
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
7.4 Summary of Special Mode Registers  
Table 1 lists the location, value, and functions of special mode registers in the device.  
Table 1. Special Modes Summary  
MODE  
LOCATION  
01h [7:6], 134h[5,3]  
01h [5:4], 434h[5,3]  
01h [3:2], 534h[5,3]  
01h [1:0], 234h[5,3]  
06h[4:2]  
VALUE AND FUNCTION  
DIS DITH CHA  
Creates a noise floor cleaner and improves SFDR; see the  
Internal Dither Algorithm section.  
0000 = Dither disabled  
DIS DITH CHB  
Dither mode  
DIS DITH CHC  
1111 = Dither enabled  
DIS DITH CHD  
SPECIAL MODE 1 CHA  
SPECIAL MODE 1 CHB  
SPECIAL MODE 1 CHC  
SPECIAL MODE 1 CHD  
SPECIAL MODE 2 CHA  
SPECIAL MODE 2 CHB  
SPECIAL MODE 2 CHC  
SPECIAL MODE 2 CHD  
Use for better HD3.  
000 = Default after reset  
010 = Use for frequency < 120 MHz  
111 = Use for frequency > 120 MHz  
07h[4:2]  
Special mode 1  
Special mode 2  
08h[4:2]  
09h[4:2]  
122h[1:0]  
Helps improve HD2.  
00 = Default after reset  
11 = Improves HD2  
422h[1:0]  
522h[1:0]  
222h[1:0]  
7.5 Thermal Information  
ADC34J4x  
THERMAL METRIC(1)  
RGZ (VQFN)  
UNIT  
48 PINS  
25.7  
18.9  
3.0  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2014, Texas Instruments Incorporated  
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.6 Electrical Characteristics: ADC34J44, ADC34J45  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, maximum sampling rate, 50% clock  
duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J44  
TYP  
ADC34J45  
TYP  
PARAMETER  
MIN  
MAX  
125  
14  
MIN  
MAX  
160  
14  
UNIT  
MSPS  
Bits  
mA  
ADC clock frequency  
Resolution  
1.8-V analog supply (AVDD) current  
1.8-V digital supply current  
Total power dissipation  
318  
79  
354  
97  
490  
150  
1010  
mA  
715  
22  
812  
22  
mW  
mW  
µs  
Global power-down dissipation  
Wake-up time from global power-down  
Standby power-down dissipation  
Wake-up time from standby power-down  
85  
85  
100  
300  
177  
35  
185  
35  
mW  
µs  
7.7 Electrical Characteristics: ADC34J42, ADC34J43  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, maximum sampling rate, 50% clock  
duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J42  
TYP  
ADC34J43  
TYP  
PARAMETER  
MIN  
MAX  
50  
MIN  
MAX  
80  
UNIT  
MSPS  
Bits  
mA  
ADC clock frequency  
Resolution  
14  
14  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
233  
39  
269  
56  
mA  
491  
22  
584  
22  
mW  
mW  
µs  
Global power-down dissipation  
Wake-up time from global power-down  
Standby power-down dissipation  
Wake-up time from standby power-down  
85  
85  
155  
35  
166  
35  
mW  
µs  
Copyright © 2014, Texas Instruments Incorporated  
7
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
7.8 Electrical Characteristics: General  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, maximum sampling rate, 50% clock  
duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential input full-scale  
Input resistance  
2.0  
6.5  
5.2  
VPP  
kΩ  
pF  
ri  
Differential at dc  
ci  
Input capacitance  
Differential at dc  
VCM common-mode voltage  
output  
VOC(VCM)  
0.95  
V
VCM output current capability  
Input common-mode current  
10  
mA  
Per analog input pin  
1.5  
µA/MSPS  
50-Ω differential source driving 50-Ω  
termination across INP and INM  
Analog input bandwidth (3 dB)  
450  
MHz  
DC ACCURACY  
EO  
Offset error  
–20  
–3  
20  
3
mV  
%FS  
Gain error as a result of internal  
reference inaccuracy alone  
EG(REF)  
EG(CHAN) Gain error of channel alone  
±1  
%FS  
Temperature coefficient of  
EG(CHAN)  
α(EGCHAN)  
–0.017  
Δ%FS/C  
CHANNEL-TO-CHANNEL ISOLATION  
Near channel  
fIN = 10 MHz  
105  
105  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Far channel  
Near channel  
fIN = 100 MHz  
Far channel  
105  
94  
Near channel  
fIN = 200 MHz  
Crosstalk(1)  
Far channel  
105  
93  
Near channel  
fIN = 230 MHz  
Far channel  
105  
85  
Near channel  
fIN = 300 MHz  
Far channel  
105  
(1) Crosstalk is measured with a –1-dBFS input signal on the aggressor channel and no input on the victim channel.  
8
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.9 AC Performance: ADC34J45  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 160 MSPS,  
50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J45 (fS = 160 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
72.4  
71.6  
72.7  
72  
70.4  
SNR  
Signal-to-noise ratio  
70.9  
71.3  
70.4  
69.5  
–151.7  
–151  
–150.3  
–149.4  
–148.5  
72.4  
71.6  
71.1  
70  
dBFS  
69.9  
68.8  
–151.4  
–149.5 –150.6  
–149.9  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
–148.9  
–147.8  
72.1  
69.6  
11.3  
81  
71.2  
70.7  
69.5  
68.4  
11.8  
11.7  
11.6  
11.3  
11.1  
88  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
69  
11.8  
11.7  
11.6  
11.3  
11.1  
86  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
86  
85  
Spurious-free dynamic range  
Second harmonic distortion  
86  
86  
dBc  
83  
83  
80  
80  
–91  
–94  
–93  
–83  
–80  
–88  
–86  
–86  
–92  
–85  
98  
–93  
–92  
–91  
–83  
–80  
–86  
–85  
–86  
–87  
–82  
95  
81  
dBc  
81  
HD3  
Non  
Third harmonic distortion  
dBc  
87  
98  
94  
Spurious-free dynamic range  
96  
93  
dBc  
HD2, HD3 (excluding HD2, HD3)  
92  
91  
92  
90  
Copyright © 2014, Texas Instruments Incorporated  
9
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
AC Performance: ADC34J45 (continued)  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 160 MSPS,  
50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J45 (fS = 160 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
–84  
–86  
–84  
–82  
–78  
MAX  
MIN  
TYP  
–84  
–83  
–84  
–80  
–77  
MAX  
UNIT  
fIN = 70 MHz  
76.5  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
93  
88  
93  
88  
Third-order intermodulation  
distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
10  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.10 AC Performance: ADC34J44  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 125 MSPS,  
50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J44 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
72.5  
72.1  
72.9  
72.5  
72.3  
71.4  
70.6  
–151.9  
–151.5  
–151.3  
–150.4  
–149.6  
72.8  
72.4  
72.1  
70.9  
70.1  
11.9  
11.8  
11.7  
11.5  
11.2  
93  
70.8  
SNR  
Signal-to-noise ratio  
71.8  
dBFS  
70.6  
69.8  
–151.5  
–148.8 –151.1  
–150.8  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
–149.6  
–148.8  
72.4  
68.6  
11.1  
81  
72.1  
71.7  
70.4  
69.4  
11.9  
11.7  
11.7  
11.4  
11.1  
93  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
94  
91  
Spurious-free dynamic range  
Second harmonic distortion  
92  
92  
dBc  
83  
83  
81  
80  
–93  
–94  
–92  
–83  
–81  
–95  
–94  
–95  
–88  
–90  
99  
–93  
81  
–94  
–92  
dBc  
–83  
–80  
–94  
83  
–91  
HD3  
Non  
Third harmonic distortion  
–93  
dBc  
–85  
–90  
96  
87  
98  
95  
Spurious-free dynamic range  
98  
95  
dBc  
HD2, HD3 (excluding HD2, HD3)  
97  
92  
96  
93  
Copyright © 2014, Texas Instruments Incorporated  
11  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
AC Performance: ADC34J44 (continued)  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 125 MSPS,  
50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J44 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
–89  
–89  
–88  
–82  
–80  
MAX  
MIN  
TYP  
–87  
–87  
–86  
–80  
–79  
MAX  
UNIT  
fIN = 70 MHz  
76.5  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
92  
90  
92  
90  
Third-order intermodulation  
distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
12  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.11 AC Performance: ADC34J43  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 80 MSPS, 50%  
clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J43 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
72.3  
72  
72.8  
72.4  
72.1  
71.3  
70.5  
–151.8  
–151.4  
–151.1  
–150.3  
–149.5  
72.6  
72.2  
71.9  
70.9  
69.9  
11.8  
11.9  
11.7  
11.4  
11.2  
94  
70.7  
–146.8  
68.6  
11.1  
82  
SNR  
Signal-to-noise ratio  
71.7  
70.9  
70.1  
–151.3  
–151  
–150.7  
–149.9  
–149.1  
72.3  
71.9  
71.6  
70.6  
69.6  
11.8  
11.8  
11.7  
11.4  
11.2  
94  
dBFS  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN= 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
94  
94  
Spurious-free dynamic range  
Second harmonic distortion  
89  
91  
dBc  
83  
83  
80  
81  
–94  
–94  
–91  
–83  
–80  
–99  
–99  
–99  
–99  
–99  
98  
–94  
82  
–94  
–91  
dBc  
–83  
–81  
–94  
83  
–95  
HD3  
Non  
Third harmonic distortion  
–89  
dBc  
–90  
–83  
92  
87  
98  
92  
Spurious-free dynamic range  
97  
92  
dBc  
HD2, HD3 (excluding HD2, HD3)  
95  
91  
94  
91  
Copyright © 2014, Texas Instruments Incorporated  
13  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
AC Performance: ADC34J43 (continued)  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 80 MSPS, 50%  
clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J43 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
–91  
–91  
–87  
–82  
–78  
MAX  
MIN  
TYP  
–86  
–86  
–84  
–81  
–78  
MAX  
UNIT  
fIN = 70 MHz  
76.5  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
94  
89  
94  
89  
Third-order intermodulation  
distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
14  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.12 AC Performance: ADC34J42  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 50 MSPS, 50%  
clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J42 (fS = 50 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
70.7  
72.4  
72  
72.8  
72.4  
72.2  
71.3  
70.1  
–151.8  
–151.4  
–151.2  
–150.3  
–149.1  
72.6  
72.2  
71.9  
70.9  
69.5  
11.9  
11.7  
11.8  
11.4  
11.1  
92  
SNR  
Signal-to-noise ratio  
71.9  
71  
dBFS  
69.9  
–145.9 –151.4  
–151  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
–150.9  
dBFS/Hz  
dBFS  
Bits  
–150  
–148.9  
68.6  
11.1  
82  
72.2  
71.9  
71.7  
70.7  
69.4  
11.8  
11.7  
11.7  
11.4  
11.1  
93  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
93  
92  
Spurious-free dynamic range  
Second harmonic distortion  
90  
89  
dBc  
83  
83  
80  
80  
82  
–93  
–93  
–90  
–83  
–80  
–94  
–94  
–91  
–91  
–84  
98  
–92  
–96  
–90  
dBc  
–83  
–80  
83  
–93  
–92  
HD3  
Non  
Third harmonic distortion  
–89  
dBc  
–90  
–83  
87  
92  
98  
92  
Spurious-free dynamic range  
96  
92  
dBc  
HD2, HD3 (excluding HD2, HD3)  
96  
91  
96  
91  
Copyright © 2014, Texas Instruments Incorporated  
15  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
AC Performance: ADC34J42 (continued)  
Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 50 MSPS, 50%  
clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
ADC34J42 (fS = 50 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
76.5  
TYP  
–91  
–89  
–86  
–82  
–78  
MAX  
MIN  
TYP  
–85  
–85  
–84  
–81  
–78  
MAX  
UNIT  
fIN = 70 MHz  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
93  
86  
93  
86  
Third-order intermodulation  
distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
16  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.13 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD = DVDD = 1.8 V and –1-dBFS differential input, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDATA, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.8-V and 3.3-V logic levels  
1.2  
V
All digital inputs support 1.8-V and 3.3-V logic levels  
0.4  
V
SEN  
0
10  
10  
0
µA  
µA  
µA  
µA  
IIH  
High-level input current  
Low-level input current  
RESET, SCLK, SDATA, PDN  
SEN  
IIL  
RESET, SCLK, SDATA, PDN  
DIGITAL INPUTS (SYNCP~, SYNCM~, SYSREFP, SYSREFM)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
0.5  
V
V
Common-mode voltage for SYNC~  
and SYSREF  
V(CM_DIG)  
0.9  
V
DIGITAL OUTPUTS (SDOUT, OVRA, OVRB, OVRC, OVRD)  
DVDD –  
0.1  
VOH  
High-level output voltage  
DVDD  
V
V
VOL  
Low-level output voltage  
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(2)  
VOH  
VOL  
VOD  
VOC  
High-level output voltage  
Low-level output voltage  
Output differential voltage  
Output common-mode voltage  
DVDD  
DVDD – 0.4  
0.4  
V
V
V
V
DVDD – 0.2  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) RESET, SCLK, SDATA, and PDN pins have 150-kΩ (typical) internal pull-down resistor to ground, while SEN pin has 150-kΩ (typical)  
pull-up resistor to AVDD.  
(2) 50-Ω, single-ended external termination to 1.8 V.  
Copyright © 2014, Texas Instruments Incorporated  
17  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
7.14 Timing Characteristics  
Typical values are at 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum and  
maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C. See Figure 143.  
PARAMETER  
SAMPLE TIMING CHARACTERISTICS  
Aperture delay  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.85  
1.25  
±70  
1.65  
ns  
ps  
Between four channels on the same device  
Aperture delay matching  
Between two devices at the same temperature and supply  
voltage  
±150  
ps  
Aperture jitter  
Wake-up time  
200  
35  
fS rms  
µs  
Time to valid data after coming out of STANDBY mode  
Time to valid data after coming out of global power-down  
Referenced to input clock rising edge  
100  
300  
85  
µs  
tSU_SYNC~  
tH_SYNC~  
tSU_SYSREF  
tH_SYSREF  
Setup time for SYNC~  
Hold time for SYNC~  
Setup time for SYSREF  
Hold time for SYSREF  
1
100  
1
ns  
Referenced to input clock rising edge  
ps  
Referenced to input clock rising edge  
ns  
Referenced to input clock rising edge  
100  
ps  
CML OUTPUT TIMING CHARACTERISTICS  
Unit interval  
312.5  
1667  
3.2  
ps  
Serial output data rate  
Gbps  
P-PUI  
Total jitter  
3.125 Gbps (20x mode, fS = 156.25 MSPS)  
0.3  
Rise and fall times measured from 20% to 80%,  
differential output waveform,  
600 Mbps bit rate 3.125 Gbps  
Data rise time,  
data fall time  
tR, tF  
105  
ps  
Table 2. Latency in Different Modes(1)(2)  
MODE  
PARAMETER  
LATENCY (N Cycles)  
TYPICAL DATA DELAY (tD, ns)  
0.29 × tS + 3  
0.5 × tS + 2  
ADC latency  
17  
9
Normal OVR latency  
20x  
Fast OVR latency  
7
0.5 × tS + 2  
From SYNC~ falling edge to CGS phase(3)  
From SYNC~ rising edge to ILA sequence(4)  
ADC latency  
15  
17  
16  
9
0.3 × tS + 4  
0.3 × tS + 4  
0.85 × tS + 3.9  
0.5 × tS + 2  
Normal OVR latency  
40x  
Fast OVR latency  
7
0.5 × tS + 2  
From SYNC~ falling edge to CGS phase(3)  
From SYNC~ rising edge to ILA sequence(4)  
14  
12  
0.9 × tS + 4  
0.9 × tS + 4  
(1) Overall latency = latency + tD.  
(2) tS is the time period of the ADC conversion clock.  
(3) Latency is specified for subclass 2. In subclass 0, the SYNC~ falling edge to CGS phase latency is 16 clock cycles in 10x mode and 15  
clock cycles in 20x mode.  
(4) Latency is specified for subclass 2. In subclass 0, the SYNC~ rising edge to ILA sequence latency is 11 clock cycles in 10x mode and  
11 clock cycles in 20x mode.  
18  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.15 Typical Characteristics: ADC34J45  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C001  
C002  
fS = 160 MSPS, SNR = 72.5 dBFS, fIN = 10 MHz, SFDR = 88 dBc  
fS = 160 MSPS, SNR = 72.7 dBFS, fIN = 10 MHz, SFDR = 85 dBc  
Figure 1. FFT for 10-MHz Input signal, Dither On  
Figure 2. FFT for 10-MHz Input signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C003  
C004  
fS = 160 MSPS, SNR = 71.4 dBFS, fIN = 70 MHz, SFDR = 86 dBc  
fS = 160 MSPS, SNR = 71.8 dBFS, fIN = 70 MHz, SFDR = 85 dBc  
Figure 3. FFT for 70-MHz Input Signal, Dither On  
Figure 4. FFT for 70-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C005  
C006  
fS = 160 MSPS, SNR = 69.7 dBFS, fIN = 170 MHz,  
SFDR = 83 dBc  
fS = 160 MSPS, SNR = 70.4 dBFS, fIN = 70 MHz, SFDR = 81 dBc  
Figure 5. FFT for 170-MHz Input Signal, Dither On  
Figure 6. FFT for 170-MHz Input Signal, Dither Off  
Copyright © 2014, Texas Instruments Incorporated  
19  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C007  
C008  
fS = 160 MSPS, SNR = 68.2 dBFS, fIN = 270 MHz,  
SFDR = 76 dBc  
fS = 160 MSPS, SNR = 68.8 dBFS, fIN = 270 MHz,  
SFDR = 75 dBc  
Figure 7. FFT for 270-MHz Input Signal, Dither On  
Figure 8. FFT for 270-MHz Input Signal, Dither Off  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C009  
C010  
fS = 160 MSPS, SNR = 63.3 dBFS, fIN = 450 MHz,  
SFDR = 64 dBc  
fS = 160 MSPS, SNR = 63.4 dBFS, fIN = 450 MHz,  
SFDR = 63 dBc  
Figure 9. FFT for 450-MHz Input Signal, Dither On  
Figure 10. FFT for 450-MHz Input Signal, Dither Off  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C011  
C012  
fS = 160 MSPS, IMD = 92 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 99 dBFS  
fS = 160 MSPS, IMD = 99 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 102 dBFS  
Figure 11. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 12. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
20  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C013  
C014  
fS = 160 MSPS, IMD = 87 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 90 dBFS  
fS = 160 MSPS, IMD = 100 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 102 dBFS  
Figure 13. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 14. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-90  
±80  
±85  
-95  
±90  
-100  
-105  
-110  
±95  
±100  
±105  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
C015  
C016  
fS = 160 MSPS, fIN1 = 46 MHz, fIN2 = 50 MHz  
fS = 160 MSPS, fIN1 = 185 MHz, fIN2 = 190 MHz  
Figure 15. IMD vs Input Amplitude (46 MHz and 50 MHz)  
Figure 16. IMD vs Input Amplitude (185 MHz and 190 MHz)  
95  
74  
Dither_EN  
Dither_EN  
Dither_DIS  
90  
85  
80  
75  
70  
65  
Dither_DIS  
72  
70  
68  
66  
64  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
c018  
0
50  
100  
150  
200  
250  
300  
350  
400  
Input Frequency (MHz)  
C017  
Figure 18. SFDR vs Input Frequency  
Figure 17. SNR vs Input Frequency  
Copyright © 2014, Texas Instruments Incorporated  
21  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.  
78  
76  
74  
72  
70  
68  
66  
64  
62  
115  
110  
105  
100  
95  
10 MHz  
70 MHz  
10 MHz  
70 MHz  
100 MHz  
230 MHz  
400 MHz  
170 MHz  
270 MHz  
100 MHz  
270 MHz  
230MHz  
170 MHz  
400 MHz  
90  
85  
80  
75  
70  
65  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
C019  
C020  
Figure 19. SNR vs Digital Gain and Input Frequency  
Figure 20. SFDR vs Digital Gain and Input Frequency  
74  
73.5  
73  
130  
120  
110  
100  
90  
75  
110  
100  
90  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
74.5  
74  
72.5  
72  
73.5  
73  
80  
70  
71.5  
71  
80  
70  
72.5  
72  
60  
70.5  
70  
60  
50  
50  
71.5  
71  
40  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
69.5  
69  
40  
30  
30  
68.5  
20  
70.5  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
0
±70  
±60  
±50  
±40  
±30  
±20  
±10  
Amplitude (dBFS)  
C022  
Amplitude (dBFS)  
C021  
Figure 22. Performance Across Input Amplitude (170 MHz)  
Figure 21. Performance Across Input Amplitude (30 MHz)  
73.2  
94  
92  
90  
88  
86  
84  
82  
70  
69.8  
69.6  
69.4  
69.2  
69  
86  
84  
82  
80  
78  
76  
SNR(dBFS)  
SFDR(dBc)  
SNR(dBFS)  
SFDR(dBc)  
73  
72.8  
72.6  
72.4  
72.2  
72  
71.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V))  
C023  
Input Common-Mode Voltage (V))  
C024  
Figure 23. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 24. Performance vs Input Common-Mode Voltage  
(170 MHz)  
22  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.  
92  
90  
88  
86  
84  
82  
80  
78  
73  
72  
71  
70  
69  
68  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
10  
35  
60  
85  
10  
35  
60  
85  
±40  
±15  
±40  
±15  
Temperature (oC)  
Temperature (oC)  
C025  
C026  
Figure 25. SFDR vs AVDD Supply and Temperature  
Figure 26. SNR vs AVDD Supply and Temperature  
71  
70.5  
70  
88  
87  
86  
85  
84  
83  
82  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
69.5  
69  
68.5  
68  
10  
35  
60  
85  
10  
35  
60  
85  
±40  
±15  
±40  
±15  
Temperature (oC)  
Temperature (oC)  
C027  
C028  
Figure 27. SFDR vs DVDD Supply and Temperature  
Figure 28. SNR vs DVDD Supply and Temperature  
75  
91  
90  
89  
88  
87  
86  
85  
78  
87  
SNR  
SNR  
SFDR  
SFDR  
86  
76  
74  
72  
70  
68  
66  
64  
74  
85  
84  
83  
82  
81  
80  
73  
72  
71  
70  
69  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
Differential Clock Amplitudes (Vpp)  
Differential Clock Amplitudes (Vpp)  
C029  
C030  
Figure 29. Performance vs Clock Amplitude (40 MHz)  
Figure 30. Performance vs Clock Amplitude (150 MHz)  
Copyright © 2014, Texas Instruments Incorporated  
23  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.  
74  
73.5  
73  
95  
94  
93  
92  
91  
90  
72.5  
92  
91  
90  
89  
88  
87  
86  
SNR  
SNR  
SFDR  
SFDR  
72  
71.5  
71  
72.5  
72  
70.5  
70  
71.5  
69.5  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
Input Clock Duty Cycle (%)  
C031  
Input Clock Duty Cycle (%)  
C032  
Figure 31. Performance vs Clock Duty Cycle (40 MHz)  
Figure 32. Performance vs Clock Duty Cycle (150 MHz)  
35  
28.89  
30  
25  
24.95  
18.33  
20  
14.93  
15  
10  
5.41  
1.45  
0.2  
4.73  
5
0
0.97  
0.11  
0
0.01  
0.01  
0
0
Output Code (LSB)  
C033  
RMS noise = 1.3 LSBs  
Figure 33. Idle Channel Histogram  
24  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.16 Typical Characteristics: ADC34J44  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C001  
C002  
fS = 125 MSPS, SNR = 72.6 dBFS, fIN = 10 MHz, SFDR = 94 dBc  
fS = 125 MSPS, SNR = 73.1 dBFS, fIN = 10 MHz, SFDR = 88 dBc  
Figure 34. FFT for 10-MHz Input Signal, Dither On  
Figure 35. FFT for 10-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C003  
C004  
fS = 125 MSPS, SNR = 72.2 dBFS, fIN = 70 MHz, SFDR = 95 dBc  
fS = 125 MSPS, SNR = 72.7 dBFS, fIN = 70 MHz, SFDR = 89 dBc  
Figure 36. FFT for 70-MHz Input Signal, Dither On  
Figure 37. FFT for 70-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C005  
C006  
fS = 125 MSPS, SNR = 70.5 dBFS, fIN = 170 MHz,  
SFDR = 87 dBc  
fS = 125 MSPS, SNR = 71.4 dBFS, fIN = 70 MHz,  
SFDR = 86 dBc  
Figure 38. FFT for 170-MHz Input Signal, Dither On  
Figure 39. FFT for 170-MHz Input Signal, Dither Off  
Copyright © 2014, Texas Instruments Incorporated  
25  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C007  
C008  
fS = 125 MSPS, SNR = 69.6 dBFS, fIN = 270 MHz,  
SFDR = 80 dBc  
fS = 125 MSPS, SNR = 70.3 dBFS, fIN = 270 MHz,  
SFDR = 79 dBc  
Figure 40. FFT for 270-MHz Input Signal, Dither On  
Figure 41. FFT for 270-MHz Input Signal, Dither Off  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C009  
C010  
fS = 125 MSPS, SNR = 65.8 dBFS, fIN = 450 MHz,  
SFDR = 68 dBc  
fS = 125 MSPS, SNR = 66.5 dBFS, fIN = 450 MHz,  
SFDR = 67 dBc  
Figure 42. FFT for 450-MHz Input Signal, Dither On  
Figure 43. FFT for 450-MHz Input Signal, Dither Off  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C011  
C012  
fS = 125 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 97 dBFS  
fS = 125 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 106 dBFS  
Figure 44. FFT for Two-Tone Input Signal  
(–7dBFS at 46 MHz and 50 MHz)  
Figure 45. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
26  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
C013  
C014  
fS = 125 MSPS, IMD = 88 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 190 dBFS  
fS = 125 MSPS, IMD = 99 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 104 dBFS  
Figure 46. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 47. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
±85  
±90  
±85  
±90  
±95  
±95  
±100  
±105  
±110  
±100  
±105  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
C015  
C016  
Figure 48. IMD vs Input Amplitude (46 MHz and 50 MHz)  
Figure 49. IMD vs Input Amplitude (185 MHz and 190 MHz)  
73  
95  
Dither_EN  
Dither_EN  
90  
85  
80  
75  
70  
65  
60  
Dither_DIS  
Dither_DIS  
72  
71  
70  
69  
68  
67  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
C017  
C018  
Figure 50. SNR vs Input Frequency  
Figure 51. SFDR vs Input Frequency  
Copyright © 2014, Texas Instruments Incorporated  
27  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
115  
110  
105  
100  
95  
10 MHz  
70 MHz  
170 MHz  
270 MHz  
10 MHz  
70 MHz  
170 MHz  
270 MHz  
100 MHz  
230 MHz  
400 MHz  
100 MHz  
230 MHz  
400 MHz  
90  
85  
80  
75  
70  
65  
60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
C019  
C020  
Figure 52. SNR vs Digital Gain and Input Frequency  
Figure 53. SFDR vs Digital Gain and Input Frequency  
75.5  
75  
130  
120  
110  
100  
90  
75  
74.5  
74  
130  
120  
110  
100  
90  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74.5  
74  
73.5  
73  
73.5  
73  
72.5  
72  
80  
80  
70  
72.5  
72  
70  
71.5  
71  
60  
60  
50  
71.5  
71  
50  
70.5  
70  
40  
40  
30  
70.5  
30  
69.5  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
±70  
±60  
±50  
±40  
±30  
±20  
±10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
C021  
C022  
Figure 54. Performance Across Input Amplitude (30 MHz)  
Figure 55. Performance Across Input Amplitude (170 MHz)  
73.2  
96  
94  
92  
90  
88  
86  
71  
70.8  
70.6  
70.4  
70.2  
70  
86  
85  
84  
83  
82  
81  
80  
SNR  
SNR  
SFDR  
SFDR  
73  
72.8  
72.6  
72.4  
72.2  
69.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
C023  
C024  
Figure 56. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 57. Performance vs Input Common-Mode Voltage  
(170 MHz)  
28  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
89  
88  
87  
86  
85  
84  
83  
82  
72  
71.5  
71  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
70.5  
70  
69.5  
69  
±40  
±15  
10  
35  
60  
85  
±40  
±15  
10  
35  
60  
85  
Temperature (oC)  
Temperature (oC)  
C025  
C026  
Figure 58. SFDR vs AVDD Supply and Temperature  
Figure 59. SNR vs AVDD Supply and Temperature  
71.5  
71  
88  
87  
86  
85  
84  
83  
82  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
70.5  
70  
69.5  
69  
±40  
±15  
10  
35  
60  
85  
±40  
±15  
10  
35  
60  
85  
Temperature (oC)  
Temperature (oC)  
C027  
C028  
Figure 60. SFDR vs DVDD Supply and Temperature  
Figure 61. SNR vs DVDD Supply and Temperature  
75  
100  
95  
90  
85  
80  
75  
70  
85  
95  
SNR  
SNR  
SFDR  
SFDR  
90  
74  
80  
75  
70  
65  
60  
73  
72  
71  
70  
69  
85  
80  
75  
70  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
Differential Clock Amplitudes (Vpp)  
Differential Clock Amplitudes (Vpp)  
C029  
C030  
Figure 62. Performance vs Clock Amplitude (40 MHz)  
Figure 63. Performance vs Clock Amplitude (150 MHz)  
Copyright © 2014, Texas Instruments Incorporated  
29  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
74.5  
105  
100  
95  
72.5  
95  
90  
85  
80  
75  
70  
SNR  
SNR  
SFDR  
SFDR  
74  
72  
73.5  
73  
71.5  
71  
90  
72.5  
72  
85  
70.5  
70  
80  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
C031  
C032  
Figure 64. Performance vs Clock Duty Cycle (40 MHz)  
Figure 65. Performance vs Clock Duty Cycle (150 MHz)  
40  
34.53  
30  
16.81  
15.06  
10.92  
20  
16.24  
10  
2.86  
1.76  
1.14  
0.03  
0.56  
0.08  
0.02  
0
0
0
0
Output Code (LSB)  
C035  
RMS noise = 1.4 LSBs  
Figure 66. Idle Channel Histogram  
30  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.17 Typical Characteristics: ADC34J43  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
C001  
C002  
fS = 80 MSPS, SNR = 72.4 dBFS, fIN = 10 MHz, SFDR = 96 dBc  
fS = 80 MSPS, SNR = 73 dBFS, fIN = 10 MHz, SFDR = 90 dBc  
Figure 67. FFT for 10-MHz Input Signal, Dither On  
Figure 68. FFT for 10-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
C003  
C004  
fS = 80 MSPS, SNR = 72 dBFS, fIN = 70 MHz, SFDR = 95 dBc  
fS = 80 MSPS, SNR = 72.5 dBFS, fIN = 70 MHz, SFDR = 89 dBc  
Figure 69. FFT for 70-MHz Input Signal, Dither On  
Figure 70. FFT for 70-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
C005  
C006  
fS = 80 MSPS, SNR = 70.7 dBFS, fIN = 170 MHz, SFDR = 93 dBc  
fS = 80 MSPS, SNR = 71.4 dBFS, fIN = 10 MHz, SFDR = 90 dBc  
Figure 71. FFT for 170-MHz Input Signal, Dither On  
Figure 72. FFT for 170-MHz Input Signal, Dither Off  
Copyright © 2014, Texas Instruments Incorporated  
31  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
C007  
C008  
fS = 80 MSPS, SNR = 69.5 dBFS, fIN = 270 MHz, SFDR = 76 dBc  
fS = 80 MSPS, SNR = 69.8 dBFS, fIN = 270 MHz, SFDR = 75 dBc  
Figure 73. FFT for 270-MHz Input Signal, Dither On  
Figure 74. FFT for 270-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
C009  
C010  
fS = 80 MSPS, SNR = 63.2 dBFS, fIN = 450 MHz, SFDR = 67 dBc  
fS = 80 MSPS, SNR = 64.1 dBFS, fIN = 450 MHz, SFDR = 67 dBc  
Figure 75. FFT for 450-MHz Input Signal, Dither On  
Figure 76. FFT for 450-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
C012  
Frequency (MHz)  
C011  
fS = 80 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 106 dBFS  
fS = 80 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 98 dBFS  
Figure 78. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Figure 77. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
32  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
C013  
C014  
fS = 80 MSPS, IMD = 88 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 94 dBFS  
fS = 80 MSPS, IMD = 99 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 102 dBFS  
Figure 79. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 80. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
±85  
±90  
±80  
±85  
±90  
±95  
±95  
±100  
±105  
±110  
±100  
±105  
±110  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
C015  
C016  
Figure 81. IMD vs Input Amplitude (46 MHz and 50 MHz)  
Figure 82. IMD vs Input Amplitude (185 MHz and 190 MHz)  
73  
100  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
95  
90  
85  
80  
75  
70  
65  
72  
71  
70  
69  
68  
67  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
C017  
C018  
Figure 83. SNR vs Input Frequency  
Figure 84. SFDR vs Input Frequency  
Copyright © 2014, Texas Instruments Incorporated  
33  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
74  
72  
70  
68  
66  
64  
115  
105  
95  
10 MHz  
70 MHz  
170 MHz  
270 MHz  
10 MHz  
70 MHz  
100 MHz  
230 MHz  
400 MHz  
100 MHz  
230 MHz  
400 MHz  
170 MHz  
270 MHz  
85  
75  
65  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
C019  
C020  
Figure 85. SNR vs Digital Gain and Input Frequency  
Figure 86. SFDR vs Digital Gain and Input Frequency  
75.5  
75  
130  
120  
110  
100  
90  
75.5  
140  
130  
120  
110  
100  
90  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
75  
74.5  
74  
74.5  
74  
73.5  
73  
73.5  
73  
80  
72.5  
72  
80  
72.5  
72  
70  
70  
60  
71.5  
71  
60  
71.5  
71  
50  
50  
40  
70.5  
70  
40  
70.5  
30  
30  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
C021  
C022  
Figure 87. Performance Across Input Amplitude (30 MHz)  
Figure 88. Performance Across Input Amplitude (170 MHz)  
73.5  
73.25  
73  
98  
96  
94  
92  
90  
88  
86  
84  
71  
70.75  
70.5  
86  
85  
84  
83  
82  
81  
80  
SNR  
SNR  
SFDR  
SFDR  
72.75  
72.5  
72.25  
72  
70.25  
70  
69.75  
69.5  
71.75  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
C023  
Input Common-Mode Voltage (V)  
C024  
Figure 89. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 90. Performance vs Input Common-Mode Voltage  
(170 MHz)  
34  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
73.5  
72.5  
71.5  
70.5  
69.5  
68.5  
90  
89  
88  
87  
86  
85  
84  
83  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
±40  
±15  
10  
35  
60  
85  
10  
35  
60  
85  
±40  
±15  
Temperature (oC)  
Temperature (oC)  
C026  
C025  
Figure 92. SNR vs AVDD Supply and Temperature  
Figure 91. SFDR vs AVDD Supply and Temperature  
90  
89  
88  
87  
86  
85  
84  
83  
72  
71.5  
71  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
70.5  
70  
69.5  
69  
±40  
±15  
10  
35  
60  
85  
±40  
±15  
10  
35  
60  
85  
Temperature (oC)  
Temperature (oC)  
C027  
C028  
Figure 93. SFDR vs DVDD Supply and Temperature  
Figure 94. SNR vs DVDD Supply and Temperature  
75  
95  
77  
100  
95  
90  
85  
80  
75  
70  
SNR  
SFDR  
73  
71  
69  
67  
65  
63  
61  
59  
90  
85  
80  
75  
70  
65  
60  
55  
75  
73  
71  
69  
67  
65  
SNR  
SFDR  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
Differential Clock Amplitudes (Vpp)  
Differential Clock Amplitudes (Vpp)  
C029  
C030  
Figure 95. Performance vs Clock Amplitude (40 MHz)  
Figure 96. Performance vs Clock Amplitude (150 MHz)  
Copyright © 2014, Texas Instruments Incorporated  
35  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
74  
73.5  
73  
110  
105  
100  
95  
72  
71.5  
71  
100  
95  
90  
85  
80  
75  
SNR  
SNR  
SFDR  
SFDR  
72.5  
72  
70.5  
70  
90  
71.5  
85  
69.5  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
C031  
C032  
Figure 97. Performance vs Clock Duty Cycle (40 MHz)  
Figure 98. Performance vs Clock Duty Cycle (150 MHz)  
36  
31.43  
30  
20.48  
21.53  
24  
18  
11.74  
12  
6.34  
0.79  
4.89  
6
2.34  
0.03  
0.17  
0
0.25  
0.01  
0
0
Output Code (LSB)  
C033  
RMS noise = 1.4 LSBs  
Figure 99. Idle Channel Histogram  
36  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.18 Typical Characteristics: ADC34J42  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
C001  
C002  
fS = 50 MSPS, SNR = 72.3 dBFS, fIN = 10 MHz, SFDR = 95 dBc  
fS = 50 MSPS, SNR = 72.9 dBFS, fIN = 10 MHz, SFDR = 89 dBc  
Figure 100. FFT for 10-MHz Input Signal, Dither On  
Figure 101. FFT for 10-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
C003  
C004  
fS = 50 MSPS, SNR = 71.8 dBFS, fIN = 70 MHz, SFDR = 93 dBc  
fS = 50 MSPS, SNR = 72.3 dBFS, fIN = 70 MHz, SFDR = 87 dBc  
Figure 102. FFT for 70-MHz Input Signal, Dither On  
Figure 103. FFT for 70-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
C005  
C006  
fS = 50 MSPS, SNR = 70.8 dBFS, fIN = 170 MHz, SFDR = 87 dBc  
fS = 50 MSPS, SNR = 71.2 dBFS, fIN = 170 MHz, SFDR = 86 dBc  
Figure 104. FFT for 170-MHz Input Signal, Dither On  
Figure 105. FFT for 170-MHz Input Signal, Dither Off  
Copyright © 2014, Texas Instruments Incorporated  
37  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
C007  
C008  
fS = 50 MSPS, SNR = 69.5 dBFS, fIN = 270 MHz, SFDR = 76 dBc  
fS = 50 MSPS, SNR = 69.6 dBFS, fIN = 270 MHz, SFDR = 76 dBc  
Figure 106. FFT for 270-MHz Input Signal, Dither On  
Figure 107. FFT for 270-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
C009  
C010  
fS = 50 MSPS, SNR = 66.3 dBFS, fIN = 450 MHz, SFDR = 63 dBc  
fS = 50 MSPS, SNR = 66.9 dBFS, fIN = 450 MHz, SFDR = 63 dBc  
Figure 108. FFT for 450-MHz Input Signal, Dither On  
Figure 109. FFT for 450-MHz Input Signal, Dither Off  
0
0
±20  
±40  
±20  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
C012  
Frequency (MHz)  
C011  
fS = 50 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 106 dBFs  
fS = 50 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz,  
SFDR = 96 dBFS  
Figure 111. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Figure 110. FFT for Two-Tone Input Signal  
(–7dBFS at 46 MHz and 50 MHz)  
38  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
±20  
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
C013  
C014  
fS = 50 MSPS, IMD = 86 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 92 dBFS  
fS = 50 MSPS, IMD = 99 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz,  
SFDR = 102 dBFs  
Figure 112. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 113. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
±85  
±90  
±80  
±85  
±90  
±95  
±95  
±100  
±105  
±110  
±100  
±105  
±110  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
±35  
±31  
±27  
±23  
±19  
±15  
±11  
±7  
Each Tone Amplitude (dBFS)  
C015  
Each Tone Amplitude (dBFS)  
C016  
Figure 114. IMD vs Input Amplitude (46 MHz and 50 MHz)  
Figure 115. IMD vs Input Amplitude (185 MHz and 190 MHz)  
73  
100  
Dither_EN  
Dither_EN  
Dither_DIS  
95  
72  
Dither_DIS  
90  
85  
80  
75  
70  
65  
71  
70  
69  
68  
67  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
C017  
C018  
Figure 116. SNR vs Input Frequency  
Figure 117. SFDR vs Input Frequency  
Copyright © 2014, Texas Instruments Incorporated  
39  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
120  
110  
100  
90  
10 MHz  
70 MHz  
170 MHz  
270 MHz  
10 MHz  
70 MHz  
100 MHz  
230 MHz  
400 MHz  
100 MHz  
230 MHz  
400 MHz  
170 MHz  
270 MHz  
80  
70  
60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
C019  
C020  
Figure 118. SNR vs Digital Gain and Input Frequency  
Figure 119. SFDR vs Digital Gain and Input Frequency  
76  
75.5  
75  
130  
120  
110  
100  
90  
75.5  
130  
120  
110  
100  
90  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
SNR(dBFS)  
SFDR(dBc)  
SFDR(dBFS)  
75  
74.5  
74  
74.5  
74  
73.5  
73  
80  
73.5  
73  
80  
72.5  
72  
70  
70  
60  
72.5  
72  
60  
71.5  
71  
50  
50  
40  
71.5  
71  
40  
70.5  
70  
30  
30  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
C021  
C022  
Figure 120. Performance Across Input Amplitude (30 MHz)  
Figure 121. Performance Across Input amplitude (170 MHz)  
73.25  
97  
96  
95  
94  
93  
92  
72  
71.5  
71  
87  
86  
85  
84  
83  
82  
81  
SNR  
SNR  
SFDR  
SFDR  
73  
72.75  
72.5  
72.25  
72  
70.5  
70  
69.5  
69  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V))  
Input Common-Mode Voltage (V))  
C023  
C024  
Figure 122. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 123. Performance vs Input Common-Mode Voltage  
(170 MHz)  
40  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: ADC34J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
101  
100  
99  
73.5  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
AVDD = 1.7  
AVDD = 1.8  
AVDD = 1.9  
AVDD = 1.75  
AVDD = 1.85  
73  
72.5  
72  
98  
97  
71.5  
71  
96  
95  
±40  
±15  
10  
35  
60  
85  
±40  
±15  
10  
35  
60  
85  
Temperature (oC)  
Temperature (oC)  
C025  
C026  
Figure 124. SFDR vs AVDD Supply and Temperature  
Figure 125. SNR vs AVDD Supply and Temperature  
100  
99  
98  
97  
96  
95  
73  
72.75  
72.5  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
DVDD = 1.7  
DVDD = 1.8  
DVDD = 1.9  
DVDD = 1.75  
DVDD = 1.85  
72.25  
72  
71.75  
71.5  
±40  
±15  
10  
35  
60  
85  
±40  
±15  
10  
35  
60  
85  
Temperature (oC)  
Temperature (oC)  
C027  
C028  
Figure 126. SFDR vs DVDD Supply and Temperature  
Figure 127. SNR vs DVDD Supply and Temperature  
80  
105  
100  
95  
80  
90  
85  
80  
75  
70  
65  
SNR  
SFDR  
78  
75  
75  
73  
70  
68  
65  
70  
65  
60  
55  
90  
85  
80  
SNR  
SFDR  
75  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
Differential Clock Amplitudes (Vpp)  
Differential Clock Amplitudes (Vpp)  
C029  
C030  
Figure 128. Performance vs Clock Amplitude (40 MHz)  
Figure 129. Performance vs Clock Amplitude (150 MHz)  
Copyright © 2014, Texas Instruments Incorporated  
41  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics: ADC34J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
72  
71.5  
71  
100  
95  
90  
85  
80  
75  
73.5  
105  
100  
95  
SNR  
SNR  
SFDR  
SFDR  
73  
72.5  
72  
90  
70.5  
70  
71.5  
71  
85  
80  
69.5  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
C031  
C032  
Figure 130. Performance vs Clock Duty Cycle (40 MHz)  
Figure 131. Performance vs Clock Duty Cycle (150 MHz)  
35  
29.26  
30  
25  
20  
15  
23.35  
21.22  
10.84  
9.94  
10  
5
2.96  
1.68  
0.4  
0.02  
0.03  
0.3  
0
0
0
0
Output Code (LSB)  
RMS noise = 1.3 LSBs  
C033  
Figure 132. Idle Channel Histogram  
42  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
7.19 Typical Characteristics: Common Plots  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
±20  
±35  
±40  
±45  
±50  
±55  
±60  
±65  
Input Frequency = 30MHz  
50-mVPP Signal Superimposed on VCM  
±40  
±60  
±80  
±100  
±120  
0
30  
60  
90  
120 150 180 210 240 270 300  
0
16  
32  
48  
64  
80  
Common-Mode Test Signal Frequency (MHz))  
C041  
Frequency (MHz)  
C040  
fS = 160 MSPS, fCM = 10 MHz, 50 mVPP, fIN = 30 MHz, Amplitude  
(fIN + fCM ) = –98 dBFS, Amplitude (fIN – fCM ) = –91 dBFS  
Figure 134. CMRR vs Test Signal Frequency  
Figure 133. CMRR FFT  
0
±25  
±30  
±35  
±40  
±45  
±50  
±55  
±60  
Input Frequency = 30MHz  
50-mVPP Signal Superimposed on AVDD  
±20  
±40  
±60  
±80  
±100  
±120  
0
30  
60  
90  
120 150 180 210 240 270 300  
0
16  
32  
48  
64  
80  
Test Signal Frequency On Supply (MHz)  
C043  
Frequency (MHz)  
C042  
fS = 160 MSPS, fPSRR = 5 MHz, 50 mVPP, fIN = 30 MHz, Amplitude  
(fIN + fPSRR ) = –65 dBFS, Amplitude (fIN – fPSRR ) = –67 dBFS  
Figure 136. PSRR vs Test Signal Frequency  
Figure 135. PSRR FFT for AVDD Supply  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
AVDD_POWER  
AVDD_POWER  
DVDD_POWER  
TOTAL_POWER  
DVDD_POWER  
0.8  
TOTAL_POWER  
0.6  
0.4  
0.2  
0.0  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
C048  
C049  
Figure 137. Power vs Sampling Frequency 20x Mode  
Figure 138. Power vs Sampling Frequency 40x Mode  
Copyright © 2014, Texas Instruments Incorporated  
43  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
7.20 Typical Characteristics: Contour Plots  
Typical values are at TA= 25°C, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP  
full-scale, and 32k-point FFT, unless otherwise noted.  
160  
90  
75  
80  
70  
85  
140  
120  
100  
80  
90  
85  
75  
80  
70  
90  
60  
85  
80  
75  
70  
90  
50  
100  
150  
200  
250  
300  
350  
400  
90  
Input Frequency, MHz  
70  
75  
80  
85  
Figure 139. Spurious-Free Dynamic Range (SFDR) for 0-dB Gain  
160  
68  
84  
76  
80  
84  
88  
72  
140  
120  
100  
80  
80  
76  
84  
88  
72  
60  
72  
88  
80  
76  
84  
50  
100  
150  
200  
250  
300  
350  
400  
450  
88  
Input Frequency, MHz  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
Figure 140. Spurious-Free Dynamic Range (SFDR) for 6-dB Gain  
44  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Characteristics: Contour Plots (continued)  
160  
66  
71.5  
71  
70.5  
72  
67  
68  
70  
140  
120  
100  
80  
69  
72.5  
70.5  
71.5  
68  
71  
72  
70  
69  
72.5  
60  
70.5  
71.5  
68  
69  
70  
71  
72  
50  
100  
150  
200  
250  
300  
350  
400  
Input Frequency, MHz  
66  
67  
68  
69  
70  
71  
72  
Figure 141. Signal-to-Noise Ratio (SNR) for 0-dB Gain  
160  
63.2  
63.8  
64.4  
66.2  
65.4  
66.6  
65  
140  
120  
100  
80  
65.8  
65.4  
66.2  
65  
66.6  
65.8  
64.  
65.8  
60  
65.4  
66.6  
65  
66.2  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
62.5  
63  
63.5  
64  
64.5  
65  
65.5  
66  
66.5  
Figure 142. Signal-to-Noise Ratio (SNR) for 6-dB Gain  
Copyright © 2014, Texas Instruments Incorporated  
45  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Timing Diagrams  
N + Latency + 2  
N + 4  
N + 3  
N + Latency + 1  
N + Latency  
N + 2  
Sample  
N
N + 1  
tA  
CLKP  
CLKM  
Input  
Clock  
ADC Latency(1)  
tD  
DxP, DxM(2)  
N - Latency-1  
N + Latency  
N - Latency+1 N - Latency+2 N - Latency+3  
N - 1  
N
N + 1  
N + 1  
(1) Overall latency = ADC latency + tD.  
(2) x = A for channel A and B for channel B.  
Figure 143. ADC Latency  
CLKINP  
Input  
Clock  
CLKINM  
tSU_SYNC~  
tH_SYNC~  
SYNC~  
tD  
SYNC~ Asserted Latency  
CGS Phase  
DxP, DxM(1)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
K28.5  
(1) x = A for channel A and B for channel B.  
Figure 144. SYNC~ Latency in CGS Phase (Two-Lane Mode)  
CLKINP  
CLKINM  
Input  
Clock  
tSU_SYNC~  
tH_SYNC~  
SYNC~  
tD  
SYNC~ Deasserted Latency  
ILA Sequence  
DxP, DxM(1)  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.0  
K28.0  
(1) x = A for channel A and B for channel B.  
Figure 145. SYNC~ Latency in ILAS Phase (Two-Lane Mode)  
46  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Timing Diagrams (continued)  
Sample N  
tSU_SYSREF  
tH_SYSREF  
CLKIN  
SYSREF  
Figure 146. SYSREF Timing (Subclass 1)  
Sample N  
tSU_SYNC~  
tH_SYNC~  
CLKIN  
SYNC~  
Figure 147. SYNC~ Timing (Subclass 2)  
Copyright © 2014, Texas Instruments Incorporated  
47  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ADC34J4x are a high-linearity, ultra-low power, quad-channel, 14-bit, 50-MSPS to 160-MSPS, analog-to-  
digital converter (ADC) family. The devices are designed specifically to support demanding, high input frequency  
signals with large dynamic range requirements. A clock input divider allows more flexibility for system clock  
architecture design while the SYSREF input enables complete system synchronization. The devices support a  
JESD204B interface in order to reduce the number of interface lines, thus allowing for high system integration  
density. The JESD204B interface is a serial interface, where the data of each ADC are serialized and output over  
only one differential pair. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling clock by 20  
to derive the bit clock which is used to serialize the 14-bit data from each channel. The devices support subclass  
1 with interface speeds up to 3.2 Gbps.  
9.2 Functional Block Diagram  
DAP,  
DAM  
Digital  
Encoder and  
JESD204B  
INAP,  
INAM  
14-Bit  
ADC  
OVRA  
DBP,  
DBM  
Digital  
Encoder and  
JESD204B  
INBP,  
INBM  
14-Bit  
ADC  
OVRB  
CLKP,  
CLKM  
Divide  
by 1,2,4  
PLL  
SYNCP,  
SYNCM  
SYSREFP,  
SYSREFM  
DCP,  
DCM  
Digital  
Encoder and  
JESD204B  
INCP,  
INCM  
14-Bit  
ADC  
OVRC  
DDP,  
DDM  
Digital  
Encoder and  
JESD204B  
INDP,  
INDM  
14-Bit  
ADC  
OVRD  
Common  
Mode  
VCM  
Configuration Registers  
48  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
9.3 Feature Description  
9.3.1 Analog Inputs  
The ADC34J4x analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must  
swing symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input  
swing. The input sampling circuit has a 3-dB bandwidth that extends up to 450 MHz (50-Ω source driving 50-Ω  
termination between INP and INM).  
9.3.2 Clock Input  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to 1.4 V  
using internal 5-kΩ resistors. The self-bias clock inputs of the ADC34J4x can be driven by the transformer-  
coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in  
Figure 148, Figure 149, and Figure 150. See Figure 151 for details regarding the internal clock buffer.  
0.1 mF  
0.1 mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
CLKM  
Device  
0.1 mF  
Zo  
CLKM  
NOTE: RT = termination resistor, if necessary.  
Device  
Figure 148. Differential Sine-Wave Clock Driving  
Circuit  
Figure 149. LVDS Clock Driving Circuit  
0.1 mF  
Zo  
CLKP  
150 W  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
Zo  
CLKM  
Device  
150 W  
Figure 150. LVPECL Clock Driving Circuit  
Copyright © 2014, Texas Instruments Incorporated  
49  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Clock Buffer  
LPKG  
2 nH  
20 W  
CLKP  
CBOND  
CEQ  
CEQ  
5 kW  
1 pF  
RESR  
100 W  
1.4 V  
LPKG  
2 nH  
5 kW  
20 W  
CLKM  
CBOND  
1 pF  
RESR  
100 W  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 151. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in Figure 152. However, for best performance the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 mF  
CMOS  
Clock Input  
CLKP  
0.1 mF  
CLKM  
Device  
Figure 152. Single-Ended Clock Driving Circuit  
9.3.2.1 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors, as shown in Equation 1. Quantization  
noise is typically not noticeable in pipeline converters and is 86 dB for a 14-bit ADC. Thermal noise limits SNR at  
low input frequencies while the clock jitter sets SNR for higher input frequencies.  
2
2
2
SNRQuantizatoin  
SNR  
SNR  
Jitter  
Noise  
§
·
¸
Thermal Noise  
§
·
¸
§
·
¸
¨
20  
20  
20  
¨
¨
SNRADC[dBc]   20˜log 10  
 10  
 10  
¨
©
¸
¹
¨
©
¸
¨
©
¸
¹
¹
(1)  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated with Equation 2:  
SNRJitter[dBc]   20˜log(2S ˜ fin ˜TJitter )  
The total clock jitter (TJitter) has two components: the internal aperture jitter (200 fs for the device) which is set by  
the noise of the clock input buffer and the external clock. TJitter can be calculated with Equation 3:  
2
TJitter   (TJitter,Ext.Clock _ Input )2 (TAperture_ ADC  
)
(3)  
50  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input while a faster clock slew rate improves the ADC aperture jitter. The devices have a  
thermal noise of 73 dBFS and internal aperture jitter of 200 fs. The SNR, depending on amount of external jitter  
for different input frequencies, is shown in Figure 153.  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Ext Clock Jitter  
35 fs  
50 fs  
100 fs  
150 fs  
200 fs  
10  
100  
1000  
Input Frequency (MHz)  
D036  
Figure 153. SNR vs Frequency vs Jitter  
9.3.2.2 Input Clock Divider  
The devices are equipped with an internal divider on the clock input. The divider allows operation with a faster  
input clock, thus simplifying the system clock distribution design. The clock divider can be bypassed (divide-by-1)  
for operation with a 160-MHz clock while the divide-by-2 option supports a maximum input clock of 320 MHz and  
the divide-by-4 option provides a maximum input clock frequency of 640 MHz.  
9.3.3 Power-Down Control  
The power-down functions of the ADC34J4x can be controlled either through the parallel control pin (PDN) or  
through an SPI register setting (see register Figure 181, register 15h). The PDN pin can also be configured via  
SPI to a global power-down or standby functionality, as shown in Table 3.  
Table 3. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
118  
Copyright © 2014, Texas Instruments Incorporated  
51  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9.3.4 Internal Dither Algorithm  
The ADC34J4x uses an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the  
dither algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither  
algorithm can be turned off by using the DIS DITH CHx registers bits. Figure 154 and Figure 155 show the effect  
of using dither algorithms.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
C003  
C004  
fS = 160 MSPS, SNR = 71.4 dBFS, fIN = 70 MHz,  
SFDR = 86 dBc  
fS = 160 MSPS, SNR = 71.8 dBFS, fIN = 70 MHz,  
SFDR = 85 dBc  
Figure 154. FFT with Dither On  
Figure 155. FFT with Dither Off  
9.3.5 JESD204B Interface  
The ADC34J4x support device subclass 0, 1, and 2 with a maximum output data rate of 3.2 Gbps for each serial  
transmitter, as shown in Figure 156. The data of each ADC are serialized by 20x using an internal PLL and then  
transmitted out on one differential pair each. An external SYSREF (subclass 1) or SYNC (subclass 2) signal is  
used to align all internal clock phases and the local multiframe clock to a specific sampling clock edge. This  
process allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty.  
SYSREF SYNC  
JESD204B  
DA  
INA  
INB  
DB  
DC  
JESD  
204B  
INC  
IND  
DD  
Sample  
Clock  
Figure 156. JESD204B Interface  
52  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
The JESD204B transmitter block consists of the transport layer, the data scrambler, and the link layer, as shown  
in Figure 157. The transport layer maps the ADC output data into the selected JESD204B frame data format and  
manages if the ADC output data or test patterns are being transmitted. The link layer performs the 8b/10b data  
encoding as well as the synchronization and initial lane alignment using the SYNC input signal. Optionally data  
from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b, 10b  
Encoding  
DA  
DB  
DC  
DD  
Scrambler  
1+x14+x15  
Comma Characters  
Initial Lane Alignment  
Test Patterns  
SYNC  
Figure 157. JESD204B Block  
9.3.5.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started by the receiving device by asserting the SYNC signal. When a logic  
high is detected on the SYNC input pins, the ADC34J4x starts transmitting comma (K28.5) characters to  
establish code group synchronization. When synchronization is complete, the receiving device de-asserts the  
SYNC signal and the ADC34J4x starts the initial lane alignment sequence with the next local multiframe clock  
boundary. The ADC34J4x transmits four multiframes, each containing K frames (K is SPI programmable). Each  
multiframe contains the frame start and end symbols; the second multiframe also contains the JESD204 link  
configuration data.  
9.3.5.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADC34J4x  
supports a clock output, an encoded, and a PRBS (215 – 1) pattern. These patterns can be enabled via SPI  
register writes and are located in address 2Ah (bits 7:6).  
9.3.5.3 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link,  
M is the number of converters per device,  
F is the number of octets per frame clock period, and  
S is the number of samples per frame.  
Table 4 lists the available JESD204B format and valid range for the ADC34J4x. The ranges are limited by the  
SERDES line rate and the maximum ADC sample frequency.  
Table 4. LMFS Values and Interface Rate  
MINIMUM ADC  
SAMPLING RATE  
(MSPS)  
MAXIMUM ADC  
SAMPLING RATE  
(Msps)  
MINIMUM  
fSERDES (Mbps)  
MAXIMUM  
fSERDES (GSPS)  
L
4
2
M
4
F
2
4
S
1
1
MODE  
20x (default)  
40x  
15  
10  
300  
400  
160  
80  
3.2  
3.2  
4
Copyright © 2014, Texas Instruments Incorporated  
53  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
The detailed frame assembly for quad-channel mode is shown in Figure 158. The frame assembly configuration  
can be changed from 20x (default) to 40x by setting the registers listed in Table 5.  
Figure 158. JESD Frame Assembly  
Table 5. Configuring 40x Mode  
ADDRESS  
2Bh  
DATA  
01h  
30h  
03h  
54  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
9.3.5.4 Digital Outputs  
The ADC34J4x JESD204B transmitter uses differential CML output drivers. The CML output current is  
programmable from 5 mA to 20 mA using SPI register settings. The output driver expects to drive a differential  
100-load impedance; place the termination resistors as close to the receiver inputs as possible to avoid  
unwanted reflections and signal distortion. Because the JESD204B employs 8b, 10b encoding, the output data  
stream is dc-balanced and ac-coupling can be used avoiding the need to match up common-mode voltages  
between transmitter and receivers. Connect the termination resistors to the termination voltage as shown in  
Figure 159.  
Vterm  
Rt = ZO  
Rt = ZO  
Transmission Line, Zo  
0.1 PF  
DAP, DBP  
DAM, DBM  
Receiver  
0.1 PF  
Figure 159. CML Output Connections  
Figure 160 shows the data eye measurements of the device JESD204B transmitter against the JESD204B  
transmitter mask at 3.125 Gbps (156.25 MSPS, 20x mode).  
300  
150  
0
-150  
-300  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
Time (ps)  
Figure 160. Eye Diagram: 3.125 Gbps  
Copyright © 2014, Texas Instruments Incorporated  
55  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Digital Gain  
The input full-scale amplitude can be selected between 1 VPP to 2 VPP (default is 2 VPP) by choosing the  
appropriate digital gain setting via an SPI register write. Digital gain provides an option to trade-off SNR for  
SFDR performance. A larger input full-scale increases SNR performance (2 VPP recommended for maximum  
SNR) while reduced input swing typically results in better SFDR performance. Table 6 lists the available digital  
gain settings.  
Table 6. Digital Gain vs Full-Scale Amplitude  
DIGITAL GAIN (dB)  
MAX INPUT VOLTAGE (VPP)  
0
0.5  
1
2.0  
1.89  
1.78  
1.68  
1.59  
1.50  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
9.4.2 Overrange Indication  
The ADC34J4x provides two different overrange indications. The normal OVR (default) is triggered if the final 14-  
bit data output exceeds the maximum code value. The fast OVR is triggered if the input voltage exceeds the  
programmable overrange threshold and is presented after just nine clock cycles, thus enabling a quicker reaction  
to an overrange event. By default, the normal overrange indication is output on the OVRx pins (where x is A, B,  
C, or D). The fast OVR indication can be presented on the overrange pins by using the EN FOVR register bit.  
56  
Copyright © 2014, Texas Instruments Incorporated  
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
9.5 Programming  
The ADC34J4x can be configured using a serial programming interface, as described in this section.  
9.5.1 Serial Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are  
ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can  
function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50%  
SCLK duty cycle.  
9.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns); see Figure 161. If required, the serial  
interface registers can be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.1.1.1 Serial Register Write  
The device internal register can be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
Copyright © 2014, Texas Instruments Incorporated  
57  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Programming (continued)  
Figure 161 and Table 7 show the timing requirements for the serial register write operation.  
Register Address [13:0>]  
A13 A12 A11 A1  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 161. Serial Register Write Timing Diagram  
Table 7. Serial Interface Timing(1)  
PARAMETER  
MIN  
> dc  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
20  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, and AVDD = DVDD = 1.8 V, unless otherwise  
noted.  
9.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin.  
This readback mode may be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. Given below is the procedure to read contents of serial registers:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller can latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
58  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. Figure 162 shows a timing diagram of the serial register read operation. Data appear on  
the SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in Figure 163.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data: GRQ¶WꢀFDUH  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
Figure 162. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 163. SDOUT Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
59  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9.5.2 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in Figure 164 and Table 8.  
Power  
Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 164. Initialization of Serial Registers after Power-Up  
Table 8. Power-Up Timing  
PARAMETER  
Power-on delay  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
Delay from power up to active  
high RESET pulse  
t1  
t2  
t3  
1
Reset pulse width  
Register write delay  
Active high RESET pulse width  
10  
1000  
Delay from RESET disable to  
SEN active  
100  
ns  
If required, the serial interface registers can be cleared during operation either:  
1. Through hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.3 Start-Up Sequence  
After power-up, the sequence described in Table 9 can be used to set up the ADC34J4x for basic operation.  
Table 9. Start-Up Settings  
STEP  
DESCRIPTION  
REGISTER ADDRESS AND DATA  
Supply all supply voltages. There is no required power supply sequence for  
AVDD and DVDD  
1
2
3
4
Pulse hardware reset (low to high to low) on pin 24  
Optionally, configure the LMFS of the JESD204B interface in 40x mode,  
LMFS = 2441 (default is 20x mode, LMFS = 4421)  
Address 2Bh, data 01h  
Address 30h, data 03h  
Pulse SYNC~ from high to low to transmit data from k28.5 sync mode  
60  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
9.6 Register Map  
Table 10. Serial Register Map  
REGISTER  
ADDRESS  
REGISTER DATA  
A[13:0] (Hex)  
7
6
5
4
3
2
1
0
01  
02  
03  
04  
05  
DIS DITH CHA  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHA GAIN EN  
CHB GAIN EN  
CHC GAIN EN  
CHD GAIN EN  
0
0
0
0
TEST PATTERN  
EN  
06  
0
0
0
SPECIAL MODE1 CHA  
RESET  
07  
08  
0
0
0
0
0
0
SPECIAL MODE1 CHB  
SPECIAL MODE1 CHC  
EN FOVR  
0
0
0
ALIGN TEST  
PATTERN  
09  
0
0
0
SPECIAL MODE1 CHD  
DATA FORMAT  
0A  
0B  
0C  
0D  
0E  
0F  
15  
27  
CHA TEST PATTERN  
CHC TEST PATTERN  
CHA DIGITAL GAIN  
CHC DIGITAL GAIN  
CHB TEST PATTERN  
CHD TEST PATTERN  
CHB DIGITAL GAIN  
CHD DIGITAL GAIN  
CUSTOM PATTERN (13:6)  
CUSTOM PATTERN (5:0)  
CHC PDN CHD PDN  
0
0
CHA PDN  
CHB PDN  
STANDBY  
0
GLOBAL PDN  
0
0
PDN PIN DISABLE  
0
CLK DIV  
0
0
0
TRP LAYER  
TESTMODE EN  
TXMIT LINKDATA  
DIS  
2A  
SERDES TEST PATTERN  
IDLE SYNC  
FLIP ADC DATA  
LANE ALIGN  
FRAME ALIGN  
2B  
0
0
0
0
0
0
0
0
0
0
0
CTRL K  
0
CTRL F  
0
2F  
30  
31  
34  
SCR (SCR EN)  
OCTETS PER FRAME  
0
0
0
0
FRAMES PER MULTI FRAME  
0
SUBCLASSV  
0
0
0
0
0
0
0
OPTION SYNC  
REG  
3A  
3B  
3C  
SYNC REQ  
OUTPUT CURRENT SEL  
LINK LAYER  
RPAT  
LINK LAYER TESTMODE SEL[2:0]  
PULSE DET MODES  
LMFC COUNT INIT  
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
Copyright © 2014, Texas Instruments Incorporated  
61  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Register Map (continued)  
Table 10. Serial Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
A[13:0] (Hex)  
7
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
5
4
0
0
0
0
0
0
0
0
3
2
0
0
0
0
0
0
0
0
1
0
0
0
0
0
SPECIAL  
MODE2 CHA [1:0]  
122  
134  
222  
234  
422  
434  
522  
534  
0
0
DIS DITH CHA  
DIS DITH CHA  
0
0
0
0
SPECIAL  
MODE2 CHD [1:0]  
0
0
DIS DITH CHD  
DIS DITH CHD  
SPECIAL  
MODE2 CHB [1:0]  
0
0
DIS DITH CHB  
0
DIS DITH CHB  
0
SPECIAL  
MODE2 CHC [1:0]  
DIS DITH CHC  
DIS DITH CHC  
62  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
9.6.1 Serial Register Description  
Figure 165. Register 01h  
7
6
5
4
3
2
1
0
DIS DITH CHA  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
Table 11. Register 01h Description  
Name  
Description  
Bits 7:6  
Bits 5:4  
Bits 3:2  
Bits 1:0  
DIS DITH CHA  
00 = Default  
11 = Dither is disabled, high SNR mode is selected for channel A. In this mode, SNR typically improves  
by 0.5 dB at 70 MHz. Ensure that register 134 (bits 5 and 3) are also set to 11.  
DIS DITH CHB  
00 = Default  
11 = Dither is disabled, high SNR mode is selected for channel B. In this mode, SNR typically improves  
by 0.5 dB at 70 MHz. Ensure that register 434 (bits 5 and 3) are also set to 11.  
DIS DITH CHC  
00 = Default  
11 = Dither is disabled, high SNR mode is selected for channel C. In this mode, SNR typically improves  
by 0.5 dB at 70 MHz. Ensure that register 534 (bits 5 and 3) are also set to 11.  
DIS DITH CHD  
00 = Default  
11 = Dither is disabled, high SNR mode is selected for channel D. In this mode, SNR typically improves  
by 0.5 dB at 70 MHz. Ensure that register 234 (bits 5 and 3) are also set to 11.  
Figure 166. Register 02h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
CHA GAIN EN  
Table 12. Register 02h Description  
Name  
Description  
Bits 7:2  
Bit 1  
Must write 0  
CHA GAIN EN  
Enable digital gain control for channel A.  
0 = Default  
1 = Digital gain for channel A can be programmed with the CHA DIGITAL GAIN bits.  
Bit 0  
Must write 0  
Figure 167. Register 03h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
CHB GAIN EN  
Table 13. Register 03h Description  
Name  
Description  
Bits 7:2  
Bit 1  
Must be 0  
CHB GAIN EN:  
Enable digital gain control for channel B.  
0 = Default  
1 = Digital gain for channel B can be programmed with the CHB DIGITAL GAIN bits.  
Bit 0  
Must write 0  
Copyright © 2014, Texas Instruments Incorporated  
63  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 168. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CHC GAIN EN  
Table 14. Register 04h Description  
Name  
Description  
Bits 7:2  
Bit 1  
Must write 0  
CHC GAIN EN  
Enable digital gain control for channel C.  
0 = Default  
1 = Digital gain for channel C can be programmed with the CHC DIGITAL GAIN bits.  
Bit 0  
Must write 0  
Figure 169. Register 05h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
CHD GAIN EN  
Table 15. Register 05h Description  
Name  
Description  
Bits 7:2  
Bit 1  
Must write 0  
CHD GAIN EN:  
Enable digital gain control for channel D  
0 = Default  
1 = Digital gain for channel D can be programmed with the CHD DIGITAL GAIN bits.  
Bit 0  
Must write 0  
Figure 170. Register 06h  
7
6
0
5
0
4
3
2
1
0
TEST  
PATTERN EN  
0
SPECIAL MODE1 CHA  
RESET  
Table 16. Register 06h Description  
Name  
Description  
Bits 7:5  
Bits 4:2  
Must write 0  
SPECIAL MODE1 CHA  
010 = For frequencies < 120 MHz  
111 = For frequencies > 120 MHz  
Bit 1  
Bit 0  
TEST PATTERN EN  
This bit enables test pattern selection for the digital outputs.  
0 = Normal operation  
1 = Test pattern output enabled  
RESET: Software reset applied  
This bit resets all internal registers to the default values and self-clears to 0.  
64  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Figure 171. Register 07h  
7
0
6
0
5
0
4
3
2
1
0
0
SPECIAL MODE1 CHB  
EN FOVR  
Table 17. Register 07h Description  
Name  
Description  
Bits 7:5  
Bits 4:2  
Must write 0  
SPECIAL MODE1 CHB  
010 = For frequencies < 120 MHz  
111 = For frequencies > 120 MHz  
Bit 1  
Bit 0  
EN FOVR  
0 = Normal OVR on OVRx pins  
1 = Enable fast OVR on OVRx pins  
Must write 0  
Figure 172. Register 08h  
7
0
6
0
5
0
4
3
2
1
0
0
0
SPECIAL MODE1 CHC  
Table 18. Register 08h Description  
Name  
Description  
Bits 7:5  
Bits 4:2  
Must write 0  
SPECIAL MODE1 CHC  
010 = For frequencies < 120 MHz  
111 = For frequencies > 120 MHz  
Bits 1:0  
Must write 0  
Copyright © 2014, Texas Instruments Incorporated  
65  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 173. Register 09h  
7
0
6
0
5
0
4
3
2
1
0
ALIGN TEST  
PATTERN  
DATA  
FORMAT  
SPECIAL MODE1 CHD  
Table 19. Register 09h Description  
Name  
Description  
Bits 7:5  
Bits 4:2  
Must write 0  
SPECIAL MODE1 CHD  
010 = For frequencies < 120 MHz  
111 = For frequencies > 120 MHz  
Bit 1  
Bit 0  
ALIGN TEST PATTERN  
This bit aligns test patterns across the outputs of four channels.  
0 = Test patterns of four channels are free running.  
1 = Test patterns of four channels are aligned.  
DATA FORMAT: Digital output data format  
0 = Twos complement  
1 = Offset binary  
Figure 174. Register 0Ah  
7
6
5
4
3
2
1
0
CHA TEST PATTERN  
CHB TEST PATTERN  
Table 20. Register 0Ah Description  
Name  
Description  
Bits 7:4  
CHA TEST PATTERN  
These bits control the test pattern for channel A after the TEST PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and 01010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from code 0 to 16383.  
0101 = Custom pattern: output data are the same as programmed by the CUSTOM PATTERN register  
bits.  
0110 = Deskew pattern: data are 3AAAh.  
1000 = PRBS pattern: data are a sequence of pseudo random numbers.  
1001 = 8-point sine wave: data are a repetitive sequence of the following eight numbers that form a  
sine-wave: 0, 2399, 8192, 13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
Bits 3:0  
CHB TEST PATTERN  
These bits control the test pattern for channel B after the TEST PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and 01010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from code 0 to 16383.  
0101= Custom pattern: output data are the same as programmed by the CUSTOM PATTERN register  
bits.  
0110 = Deskew pattern: data are 3AAAh.  
1000 = PRBS pattern: data are a sequence of pseudo random numbers.  
1001 = 8-point sine wave: data are a repetitive sequence of the following eight numbers that form a  
sine-wave: 0, 2399, 8192, 13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
66  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Figure 175. Register 0Bh  
7
6
5
4
3
2
1
0
CHC TEST PATTERN  
CHD TEST PATTERN  
Table 21. Register 0Bh Description  
Name  
Description  
Bits 7:4  
CHC TEST PATTERN  
These bits control the test pattern for channel C after the TEST PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and 01010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from code 0 to 16383.  
0101= Custom pattern: output data are the same as programmed by the CUSTOM PATTERN register  
bits.  
0110 = Deskew pattern: data are 3AAAh.  
1000 = PRBS pattern: data are a sequence of pseudo random numbers.  
1001 = 8-point sine wave: data are a repetitive sequence of the following eight numbers that form a  
sine-wave: 0, 2399, 8192, 13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
Bits 3:0  
CHD TEST PATTERN  
These bits control the test pattern for channel D after the TEST PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and 01010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from code 0 to 16383.  
0101= Custom pattern: output data are the same as programmed by the CUSTOM PATTERN register  
bits.  
0110 = Deskew pattern: data are 3AAAh.  
1000 = PRBS pattern: data are a sequence of pseudo random numbers.  
1001 = 8-point sine wave: data are a repetitive sequence of the following eight numbers that form a  
sine-wave: 0, 2399, 8192, 13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
Copyright © 2014, Texas Instruments Incorporated  
67  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 176. Register 0Ch  
7
6
5
4
3
2
1
0
CHA TEST PATTERN  
CHB TEST PATTERN  
Table 22. Register 0Ch Description  
Name  
Description  
Bits 7:4  
CHA TEST PATTERN  
In address 0Ch, these bits control the test pattern for channel A after the CHA GAIN EN bit is set. See  
Table 23 for register settings.  
Bits 3:0  
CHB TEST PATTERN  
In address 0Ch, these bits control the test pattern for channel B after the CHB GAIN EN bit is set. See  
Table 23 for register settings.  
Table 23. Channel Digital Gain  
REGISTER VALUE  
0000  
DIGITAL GAIN (dB)  
MAXIMUM INPUT VOLTAGE (VPP)  
0
0.5  
1
2.0  
0001  
1.89  
1.78  
1.68  
1.59  
1.50  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
0010  
0011  
1.5  
2
0100  
0101  
2.5  
3
0110  
0111  
3.5  
4
1000  
1001  
4.5  
5
1010  
1011  
5.5  
6
1100  
Figure 177. Register 0Dh  
7
6
5
4
3
2
1
0
CHC TEST PATTERN  
CHD TEST PATTERN  
Table 24. Register 0Dh Description  
Name  
Description  
Bits 7:4  
CHC TEST PATTERN  
In address 0Dh, these bits control the test pattern for channel C after the CHC GAIN EN bit is set. See  
Table 23 for register settings.  
Bits 3:0  
CHD TEST PATTERN  
In address 0Dh, these bits control the test pattern for channel D after the CHD GAIN EN bit is set. See  
Table 23 for register settings.  
Figure 178. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN (13:6)  
Table 25. Register 0Eh Description  
Name  
Description  
Bits 7:0  
CUSTOM PATTERN (13:6)  
These bits set the 14-bit custom pattern (13:6) for all channels.  
68  
Copyright © 2014, Texas Instruments Incorporated  
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Figure 179. Register 0Fh  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN (5:0)  
Table 26. Register 0Fh Description  
Name  
Description  
Bits 7:2  
CUSTOM PATTERN (5:0)  
These bits set the 14-bit custom pattern (5:0) for all channels.  
Bits 1:0  
Must write 0  
Figure 180. Register 13h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
LOW SPEED MODE  
0
Table 27. Register 13h Description  
Name  
Bit 7  
Description  
LOW SPEED MODE  
Use this bit for sampling frequencies < 25 MSPS.  
0 = Normal operation  
1 = Low-speed mode enabled  
Bits 6:0  
Must write 0  
Copyright © 2014, Texas Instruments Incorporated  
69  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 181. Register 15h  
7
6
5
4
3
2
1
0
0
CONFIG PDN  
PIN  
CHA PDN  
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
GLOBAL PDN  
Table 28. Register 15h Description  
Name  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
CHA PDN: Power-down channel A  
0 = Normal operation  
1 = Power-down channel A  
CHB PDN: Power-down channel B  
0 = Normal operation  
1 = Power-down channel B  
CHC PDN: Power-down channel C  
0 = Normal operation  
1 = Power-down channel C  
CHD PDN: Power-down channel D  
0 = Normal operation  
1 = Power-down channel D  
STANDBY  
This bit places the ADCs of all four channels into standby.  
0 = Normal operation  
1 = Standby  
Bit 2  
GLOBAL PDN  
Places device in global power down.  
0 = Normal operation  
1 = Global power-down  
Bit 1  
Bit 0  
Must write 0  
CONFIG PDN PIN  
This bit configures the PDN pin as either global power-down or standby pin.  
0 = Logic high voltage on the PDN pin sends places the into global power-down.  
1 = Logic high voltage on the PDN pin places the device into standby.  
Figure 182. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CLK DIV  
Table 29. Register 27h Description  
Name  
Description  
Bits 7:6  
CLK DIV: Internal clock divider for the input sampling clock  
00 = Clock divider bypassed  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
Bits 5:0  
Must write 0  
70  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Figure 183. Register 2Ah  
7
6
5
4
3
2
1
0
TX LINK  
FRAME ALIGN CONFIG DATA  
DIS  
TESTMODE  
EN  
FLIP ADC  
DATA  
SERDES TEST PATTERN  
IDLE SYNC  
LANE ALIGN  
Table 30. Register 2Ah Description  
Name  
Bits 7:6  
Description  
SERDES TEST PATTERN:  
These bits set the test patterns in the transport layer of the JESD204B interface.  
00 = Normal operation  
01 = Outputs clock pattern (output is 10101010)  
10 = Encoded pattern (output is 1111111100000000)  
11 = Output is 215 – 1  
Bit 5  
IDLE SYNC  
This bit generates the long transport layer test pattern mode according to 5.1.6.3 clause of JESD204B  
specification.  
0 = Test mode disabled  
1 = Test mode enabled  
Bit 4  
Bit 3  
Bit 2  
TESTMODE EN  
This bit sets the output pattern when SYNC is high.  
0 = Sync code is k28.5 (0xBCBC)  
1 = Sync code is 0xBC50  
FLIP ADC DATA  
This bit sets the output pattern when SYNC is high.  
0 = Normal operation  
1 = Output data order is reversed: MSB – LSB  
LANE ALIGN  
This bit inserts a lane alignment character (K28.3) for the receiver to align to the lane boundary per  
section 5.3.3.5 of the JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
Bit 1  
Bit 0  
FRAME ALIGN  
This bit inserts a frame alignment character (K28.7) for the receiver to align to the frame boundary per  
section 5.3.3.4 of the JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
TX LINK CONFIG DATA DIS  
This bit disables the initial link alignment (ILA) sequence when SYNC is de-asserted.  
0 = Normal operation  
1 = ILA disabled  
Figure 184. Register 2Bh  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
CTRL K  
CTRL F  
Table 31. Register 2Bh Description  
Name  
Description  
Bits 7:2  
Bit 1  
Must write 0  
CTRL K: Enable bit for number of frames per multiframe  
0 = Default is 9 frames (20x mode) per multiframe  
1 = Frames per multiframe can be set in register 31h  
Bit 0  
CTRL F: Enable bit for number of octets per frame  
0 = 20x mode using one lane per ADC (default is F = 2)  
1 = Octets per frame can be specified in register 30h  
Copyright © 2014, Texas Instruments Incorporated  
71  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 185. Register 2Fh  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
SCRAMBLE EN  
Table 32. Register 2Fh Description  
Name  
Bit 7  
Description  
SCRAMBLE EN  
This bit scrambles the enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
Bits 6:0  
Must write 0  
Figure 186. Register 30h  
7
6
5
4
3
2
1
0
OCTETS PER FRAME  
Table 33. Register 30h Description  
Name  
Description  
Bits 7:0  
OCTETS PER FRAME  
These bits set the number of octets per frame (F).  
00000000 = 20x serialization: two octets per frame  
00000011 = 40x serialization: four octets per frame  
Figure 187. Register 31h  
7
6
0
5
0
4
3
2
FRAMES PER MULTI FRAME  
1
0
0
Table 34. Register 31h Description  
Name  
Description  
Bits 7:5  
Bits 4:0  
Must write 0  
FRAMES PER MULT IFRAME  
These bits set the number of frames per multiframe.  
After reset, the default settings for frames per multiframe are:  
20x mode: K = 8 (for each mode, do not set K to a lower value).  
Figure 188. Register 34h  
7
6
5
4
0
3
0
2
0
1
0
0
0
SUBCLASS  
Table 35. Register 34h Description  
Name  
Description  
Bits 7:5  
SUBCLASS  
These bits set the JESD204B subclass.  
000 = Subclass 0 (backward compatibility with JESD204A)  
001 = Subclass 1 (deterministic latency using SYSREF signal)  
010 = Subclass 2 (deterministic latency using SYNC detection)  
Bits 4:0  
Must write 0  
Figure 189. Register 3Ah  
7
6
5
0
4
0
3
2
1
0
0
SYNC REQ  
SYNC REQ EN  
OUTPUT CURRENT SEL  
72  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Table 36. Register 3Ah Description  
Name  
Bit 7  
Description  
SYNC REQ  
This bit generates a synchronization request only when the SYNC REQ EN register bit is set.  
0 = Normal operation  
1 = Generates sync request  
Bit 6  
SYNC REQ EN  
0 = Sync request is made with the SYNCP~, SYNCM~ pins  
1 = Sync request is made with the SYNC REQ register bit  
Bits 5:4  
Bits 3:1  
Must write 0  
OUTPUT CURRENT SEL: JESD output buffer current selection  
Program current (mA)  
000 =16  
001 = 12  
010 = 8  
011 = 4  
100 = 32  
101 = 28  
110 = 24  
111 = 20  
Bit 0  
Must write 0  
Figure 190. Register 3Bh  
7
6
5
4
3
0
2
1
0
LINK LAYER  
RPAT  
LINK LAYER TESTMODE  
PULSE DET MODES  
Table 37. Register 3Bh Description  
Name  
Description  
Bits 7:5  
LINK LAYER TESTMODE  
These bits generate a pattern according to clause 5.3.3.8.2 of the JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high frequency jitter pattern)  
010 = K28.5 (mixed frequency jitter pattern)  
011 = Repeat initial lane alignment (generates K28.5 character and repeat lane alignment sequences  
continuously)  
100 = 12 octet RPAT jitter pattern  
Bit 4  
LINK LAYER RPAT  
This bit changes the running disparity in the modified RPAT pattern test mode (only when link layer test  
mode = 100).  
0 = normal operation  
1 = changes disparity  
Bit 3  
Must write 0  
Bits 2:0  
PULSE DET MODES  
These bits select different detection modes for SYSREF (subclass 1) and SYNC (subclass2).  
Table 38. PULSE DET MODES Register Settings  
D2  
D1  
D0  
0
FUNCTIONALITY  
Allow all pulses to reset input clock dividers  
0
1
Don’t care  
Don’t care  
0
Do not allow reset of analog clock dividers  
Don’t care  
0 to 1 transition  
1
Allow one pulse immediately after the 0 to1 transition to reset the divider  
Copyright © 2014, Texas Instruments Incorporated  
73  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 191. Register 3Ch  
7
6
5
4
3
2
1
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
RELEASE ILANE SEQ  
Table 39. Register 3Ch Description  
Name  
Bit 7  
Description  
FORCE LMFC COUNT: Force LMFC count  
0 = Normal operation  
1 = Enables using different starting values for the LMFC counter  
Bits 6:2  
Bits 1:0  
LMFC COUNT INIT  
If SYSREF is transmitted to the digital block, the LMFC count resets to 0 and K28.5 stops transmitting  
when the LMFC count reaches 31. The initial value that the LMFC count resets to can be set using  
LMFC COUNT INIT. In this manner, the Rx can be synchronized early because the Rx receives the  
LANE ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT register bit must be enabled.  
RELEASE ILANE SEQ  
These bits delay the lane alignment sequence generation by 0, 1, 2, or 3 multiframes after the code  
group synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
Figure 192. Register 122h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SPECIAL  
MODE2 CHA [1:0]  
Table 40. Register 122h Description  
Name  
Description  
Bits 7:2  
Bit 1:0  
Must write 0  
SPECIAL MODE2 CHA [1:0]  
Always write 1 for better HD2 performance.  
Figure 193. Register 134h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
DIS DITH CHA  
Table 41. Register 134h Description  
Name  
Bits 7:6  
Bit 5  
Description  
Must write 0  
DIS DITH CHA  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bit 4  
Bit 3  
Must write 0  
DIS DITH CHA  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bits 2:0  
Must write 0  
74  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Figure 194. Register 222h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SPECIAL  
MODE2 CHD [1:0]  
Table 42. Register 222h Description  
Name  
Description  
Bits 7:2  
Bit 1:0  
Must write 0  
SPECIAL MODE2 CHD [1:0]  
Always write 1 for better HD2 performance.  
Figure 195. Register 234h  
7
0
6
0
5
4
0
3
2
0
1
0
0
DIS DITH CHD  
DIS DITH CHD  
0
Table 43. Register 234h Description  
Name  
Bits 7:6  
Bit 5  
Description  
Must write 0  
DIS DITH CHD  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel D. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bit 4  
Bit 3  
Must write 0  
DIS DITH CHD  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel D. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bits 2:0  
Must write 0  
Figure 196. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SPECIAL  
MODE2 CHB [1:0]  
Table 44. Register 422h Description  
Name  
Description  
Bits 7:2  
Bit 1:0  
Must write 0  
SPECIAL MODE2 CHB [1:0]  
Always write 1 for better HD2 performance.  
Copyright © 2014, Texas Instruments Incorporated  
75  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Figure 197. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHB  
DIS DITH CHB  
Table 45. Register 434h Description  
Name  
Description  
Bits 7:6  
Bit 5  
Must write 0  
DIS DITH CHB  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bit 4  
Bit 3  
Must write 0  
DIS DITH CHB  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bits 2:0  
Must write 0  
Figure 198. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SPECIAL  
MODE2 CHC [1:0]  
Table 46. Register 522h Description  
Name  
Description  
Bits 7:2  
Bit 1:0  
Must write 0  
SPECIAL MODE2 CHC [1:0]  
Always write 1 for better HD2 performance.  
Figure 199. Register 534h  
7
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHC  
DIS DITH CHC  
0
Table 47. Register 534h Description  
Name  
Description  
Bits 7:6  
Bit 5  
Must write 0  
DIS DITH CHC  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel C. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bit 4  
Bit 3  
Must write 0  
DIS DITH CHC  
00 = Default  
11 = Dither is disabled and high SNR mode is selected for channel C. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz. Ensure that register 01h (bits 3:2) are also set to 11.  
Bits 2:0  
Must write 0  
76  
Copyright © 2014, Texas Instruments Incorporated  
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. While designing the dc driving circuits, the ADC input impedance must be considered. Figure 200 and  
Figure 201 show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D025  
Figure 200. Differential Input Resistance, RIN  
Figure 201. Differential Input Capacitance, CIN  
10.2 Typical Applications  
10.2.1 Driving Circuit Design: Low Input Frequencies  
39 nH  
0.1uF  
INP  
0.1uF  
50 Ÿ  
50 Ÿ  
25 Ÿ  
25 Ÿ  
0.1uF  
22 pF  
50 Ÿ  
50 Ÿ  
INM  
1:1  
1:1  
0.1uF  
39 nH  
VCM  
Device  
Figure 202. Driving Circuit for Low Input Frequencies  
Copyright © 2014, Texas Instruments Incorporated  
77  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
10.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin can be kept to damp out ringing caused by package parasitics. The drive circuit may  
have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched  
impedance to the source.  
10.2.1.2 Detailed Design Procedure  
A typical application using two back-to-back coupled transformers is shown in Figure 202. The circuit is optimized  
for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used. With the  
series inductor (39 nH), this combination helps absorb the sampling glitches.  
10.2.1.3 Application Curve  
Figure 203 shows the performance obtained by using the circuit in Figure 202.  
0
±20  
±40  
±60  
±80  
±100  
±120  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
C001  
fS = 160 MSPS, SNR = 72.3 dBFS, fIN = 10 MHz, SFDR = 87 dBc  
Figure 203. Performance FFT at 10 MHz (Low Input Frequency)  
78  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
Typical Applications (continued)  
10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 PF  
10 Ÿꢀ  
INP  
0.1 PF  
15 Ÿꢀ  
25 Ÿꢀ  
0.1 PF  
56 nH  
10 pF  
25 Ÿꢀ  
15 Ÿꢀ  
10 Ÿꢀ  
INM  
1:1  
1:1  
0.1 PF  
VCM  
Device  
Figure 204. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
10.2.2.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize  
performance, as shown in Figure 204.  
10.2.2.3 Application Curve  
Figure 205 shows the performance obtained by using the circuit shown in Figure 204.  
0
±20  
±40  
±60  
±80  
±100  
±120  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
C005  
fS = 160 MSPS, SNR = 69.7 dBFS, fIN = 170 MHz,  
SFDR = 83 dBc  
Figure 205. Performance FFT at 170 MHz (Mid Input Frequency)  
Copyright © 2014, Texas Instruments Incorporated  
79  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1uF  
10 Ÿ  
0.1uF  
INP  
25 Ÿ  
0.1uF  
25 Ÿ  
INM  
1:1  
1:1  
10 Ÿ  
0.1uF  
VCM  
Device  
Figure 206. Driving Circuit for High Input Frequencies (fIN > 230 MHz)  
10.2.3.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω can be used as shown in Figure 206.  
10.2.3.3 Application Curve  
Figure 207 shows the performance obtained by using the circuit shown in Figure 206.  
0
±20  
±40  
±60  
±80  
±100  
±120  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
C009  
fS = 160 MSPS, SNR = 63.4 dBFS, fIN = 450 MHz,  
SFDR = 63 dBc  
Figure 207. Performance FFT at 450 MHz (High Input Frequency)  
11 Power-Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD can power up in any order.  
80  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
www.ti.com.cn  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
12 Layout  
12.1 Layout Guidelines  
The ADC34J4x EVM layout can be used as a reference layout to obtain the best performance. A layout diagram  
of the EVM top layer is provided in Figure 208. Some important points to remember while laying out the board  
are:  
1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the  
package level. To minimize crosstalk onboard, the analog input traces exit the pin out in opposite directions,  
as shown in the reference layout of Figure 208 as much as possible.  
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 208  
as much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, do not keep the  
digital output traces parallel to the analog input traces because this configuration may result in coupling from  
digital outputs to analog inputs and degrade performance. Design all digital output traces to the receiver  
[such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] to be  
matched in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A  
separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
12.2 Layout Example  
ADC3xJxx  
Analog  
Input  
Routing  
Sampling  
Clock  
Routing  
Digital  
Output  
Routing  
Clock  
Distribution IC  
Figure 208. Typical Layout of the ADC34J4x Board  
版权 © 2014, Texas Instruments Incorporated  
81  
 
ADC34J42, ADC34J43, ADC34J44, ADC34J45  
ZHCSCR5B MAY 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
13 器件和文档支持  
13.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
48. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ADC34J42  
ADC34J43  
ADC34J44  
ADC34J45  
13.2 商标  
PowerPAD is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
13.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
82  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC34J42IRGZR  
ADC34J42IRGZT  
ADC34J43IRGZR  
ADC34J43IRGZT  
ADC34J44IRGZR  
ADC34J44IRGZT  
ADC34J45IRGZR  
ADC34J45IRGZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
AZ34J42  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
AZ34J42  
AZ34J43  
AZ34J43  
AZ34J44  
AZ34J44  
AZ34J45  
AZ34J45  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC34J42IRGZR  
ADC34J43IRGZR  
ADC34J44IRGZR  
ADC34J45IRGZR  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC34J42IRGZR  
ADC34J43IRGZR  
ADC34J44IRGZR  
ADC34J45IRGZR  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
2500  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY