ADC3660IRSBR [TI]

双路、16 位、0.5MSPS 至 65MSPS、低噪声、超低功耗模数转换器 (ADC) | RSB | 40 | -40 to 105;
ADC3660IRSBR
型号: ADC3660IRSBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、16 位、0.5MSPS 至 65MSPS、低噪声、超低功耗模数转换器 (ADC) | RSB | 40 | -40 to 105

转换器 模数转换器
文件: 总82页 (文件大小:4796K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC3660  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
ADC3660 16 位、0.5 65 MSPS、低噪声、低功率双通ADC  
1 特性  
3 说明  
• 双通道  
ADC3660 件是一款低噪声、超低功耗、16 、  
65MSPS 双通道高速模数转换器 (ADC)。该器件可实  
现低功耗噪声频谱密度为 –159dBFS/Hz还具有出  
色的线性度和动态范围。ADC3660 可实现出色的直流  
精度以及中频采样支持因此是各种应用的出色选择。  
ADC 65MSPS 下的功耗仅为每通道 71mW功  
耗随采样率减小而迅速降低。在旁路模式高  
31MSPS您可以在 1 2 个时钟周期后获取输  
出数据。  
16 65MSPS ADC最大输出速= 31Msps)  
• 本底噪声-159dBFS/Hz  
• 超低功耗65MSPS 时为每通71mW  
16 无丢码  
INL±2LSBDNL±0.2LSB  
• 基准外部或内部  
• 输入带宽900MHz (3dB)  
• 工业温度范围-40°C +105°C  
• 片上数字下变频器  
ADC3660 使用串行 CMOS (SCMOS) 接口输出数据,  
可更大限度减少数字互连的次数。该器件提供双通道、  
单通道和半通道选项。串行 CMOS 口支持高达  
250Mbps 输出速率当于在复杂抽取后大约  
15MSPS双线到大约 3.75MSPS0.5 线的输出  
速率。因此ADC3660 可以使用内部抽取滤波器在  
“过采样和抽取”模式下运行从而改进动态范围并省  
去外部抗混叠滤波器。  
2 倍、4 倍、8 倍、16 倍、32 倍抽取率  
32 NCO  
• 串CMOS 接口  
1.8V 单电源  
• 小尺寸: 40 WQFN (5mm × 5mm) 封装  
• 频谱性(fIN = 5MHz):  
SNR81.9dBFS  
SFDR88dBc HD2HD3  
SFDR102dBFS 最严重毛刺  
该器件采用 40 引脚 WQFN 封装5mm × 5mm),支  
40 +105C 的工业级工作温度范围。  
2 应用  
器件信息  
器件型(1)  
ADC3660  
封装尺寸标称值)  
数据采(DAQ)  
电机诊断和监控  
电能质量分析仪  
电源品质测定器  
声纳  
封装  
WQFN (40)  
5.00 × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
0
AIN = -1 dBFS  
SNR = 89.0 dBFS  
SFDR = 106 dBc  
雷达  
国防无线电  
无线通信  
实验室和现场仪表  
光谱仪  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
1
Input Frequency (MHz)  
2
ADC3  
FS = 65MSPSFin = 1MHz16 倍抽取实时  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASA01  
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
Table of Contents  
8.3 Feature Description...................................................22  
8.4 Device Functional Modes..........................................45  
8.5 Programming............................................................ 47  
8.6 Register Maps...........................................................49  
9 Application and Implementation..................................66  
9.1 Typical Application.................................................... 66  
9.2 Initialization Set Up................................................... 69  
10 Power Supply Recommendations..............................70  
11 Layout...........................................................................72  
11.1 Layout Guidelines................................................... 72  
11.2 Layout Example...................................................... 72  
12 Device and Documentation Support..........................73  
12.1 支持资源..................................................................73  
12.2 Trademarks.............................................................73  
12.3 Electrostatic Discharge Caution..............................73  
12.4 术语表..................................................................... 73  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics - Power Consumption.........6  
6.6 Electrical Characteristics - DC Specifications.............7  
6.7 Electrical Characteristics - AC Specifications............. 8  
6.8 Timing Requirements................................................10  
6.9 Typical Characteristics..............................................12  
7 Parameter Measurement Information..........................19  
8 Detailed Description......................................................21  
8.1 Overview...................................................................21  
8.2 Functional Block Diagram.........................................21  
Information.................................................................... 73  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2020) to Revision B (March 2022)  
Page  
Changed the output clock jitter unit from ps to ps pk-pk in the Timing Requirements......................................10  
Changed the ADC latency CMOS 2-wire NOM value from 1 to 2 and 1/2-wire NOM value from 2 to 1.......... 10  
Changed 8-3 ............................................................................................................................................... 22  
Added GND symbol to REFGND pin for all voltage reference option diagrams...............................................27  
Added the Output Bit Mapper section...............................................................................................................40  
Added default power up configuration summary 8-11 .................................................................................47  
Updated power-up initialization diagram 9-4 with the correct indexing .......................................................69  
Changes from Revision * (September 2020) to Revision A (October 2020)  
Page  
Added Updated characterization data for tCD and tDV ......................................................................................10  
Added condition to resynch during operation to the SYNC section..................................................................35  
added wait condition of 200000 clock cycles....................................................................................................69  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
5 Pin Configuration and Functions  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PDN/SYNC  
VREF  
IOVDD  
NC  
3
REFGND  
REFBUF  
AVDD  
CLKP  
DB5  
4
DB6  
5
IOGND  
DCLK  
DA6  
6
7
CLKM  
8
VCM  
DA5  
9
RESET  
SDIO  
NC  
GND PAD (backside)  
10  
IOVDD  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
5-1. RSB Package, 40-Pin WQFN  
(Top View)  
5-1. Pin Descriptions  
PIN  
I/O  
Description  
Name  
No.  
INPUT/REFERENCE  
AINP  
AINM  
BINP  
BINM  
VCM  
VREF  
12  
13  
39  
38  
8
I
I
Positive analog input, channel A  
Negative analog input, channel A  
Positive analog input, channel B  
Negative analog input, channel B  
I
I
O
I
Common-mode voltage output for the analog inputs, 0.95 V  
External voltage reference input, 1.6 V  
2
1.2V external voltage reference input for use with internal reference buffer. Internal 100 kΩ  
pull-up resistor to AVDD. This pin is also used to configure default operating conditions.  
REFBUF  
4
3
I
I
REFGND  
CLOCK  
Reference ground input, 0 V  
CLKP  
6
7
I
I
Positive differential sampling clock input for the ADC  
Negative differential sampling clock input for the ADC  
CLKM  
CONFIGURATION  
Power down/Synchronization input. This pin can be configured via the SPI interface. Active  
high. This pin has an internal 21 kΩpull-down resistor.  
PDN/SYNC  
1
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
5-1. Pin Descriptions (continued)  
PIN  
I/O  
Description  
Name  
RESET  
SEN  
No.  
9
I
I
Hardware reset. Active high. This pin has an internal 21 kΩpull-down resistor.  
16  
35  
10  
Serial interface enable. Active low. This pin has an internal 21 kΩpull-up resistor to AVDD.  
Serial interface clock input. This pin has an internal 21 kΩpull-down resistor.  
SCLK  
SDIO  
I
I/O  
Serial interface data input and output. This pin has an internal 21 kΩpull-down resistor.  
17,19,20,22,  
29,31,32,34  
NC  
-
Do not connect  
DIGITAL INTERFACE  
DA6  
24  
O
O
O
O
O
I
CMOS data output.  
CMOS data output  
DA5  
23  
18  
27  
28  
33  
25  
FCLK  
CMOS frame clock output  
CMOS data output.  
CMOS data output  
DB6  
DB5  
DCLKIN  
DCLK  
CMOS bit clock input  
CMOS bit clock output  
O
POWER SUPPLY  
AVDD  
5,15,36  
I
I
Analog 1.8V power supply  
Ground, 0V  
11,14,37,40,  
PowerPad  
GND  
IOVDD  
IOGND  
21,30  
26  
I
I
1.8V power supply for digital interface  
Ground, 0V for digital interface  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
2.1  
UNIT  
V
Supply voltage range, AVDD, IOVDD  
Supply voltage range, GND, IOGND, REFGND  
AINP/M, BINP/M, CLKP/M  
Voltage applied to  
VREF, REFBUF  
input pins  
0.3  
V
2.1  
2.1  
V
PDN/SYNC, RESET, SCLK, SEN, SDIO, DCLKIN  
2.1  
Junction temperature, TJ  
Storage temperature, Tstg  
105  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.75  
1.75  
40  
NOM  
1.8  
MAX  
1.85  
UNIT  
AVDD(1)  
V
V
Supply voltage range  
IOVDD(1)  
1.8  
1.85  
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
105  
°C  
°C  
105(2)  
(1) Measured to GND.  
(2) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADC3660  
 
 
 
 
 
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.4 Thermal Information  
ADC3660  
RSB (QFN)  
40 Pins  
30.7  
THERMAL METRIC(1)  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.4  
10.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
10.5  
ΨJB  
RΘJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics - Power Consumption  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, 5 pF  
output load, and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FS = 65 MSPS  
IAVDD  
Analog supply current  
I/O supply current(1)  
Power dissipation(1)  
FS = 65 MSPS, External reference  
8x real decimation, 2-wire CMOS  
External reference  
64  
15  
78  
20  
mA  
IIOVDD  
PDIS  
142  
14  
178  
mW  
mA  
mA  
mA  
mA  
16x real decimation, 1-wire CMOS  
32x real decimation, 1-wire CMOS  
32x real decimation, 1/2-wire CMOS  
8x complex decimation, 2-wire CMOS  
12  
13  
19  
I/O supply current(1)  
16x complex decimation, 1-wire  
CMOS  
IIOVDD  
17  
15  
16  
32x complex decimation, 1-wire  
CMOS  
mA  
32x complex decimation, 1/2-wire  
CMOS  
MISCELLANEOUS  
Internal reference, additional analog  
3
0.3  
0.7  
5
supply current  
Internal reference buffer, additional  
analog supply current  
IAVDD  
Enabled via SPI  
mA  
Single ended clock input, reduces  
analog supply current by  
Default mask settings, internal  
reference  
Power consumption in global power  
down mode  
PDIS  
mW  
Default mask settings, external  
reference  
9
(1) Measured with a 1 MHz input frequency full-scale sine wave at specified sample rate, with ~ 5 pF loading on each CMOS output pin.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.6 Electrical Characteristics - DC Specifications  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
No missing codes  
PSRR  
16  
bits  
dB  
FIN = 1 MHz  
50  
± 0.2  
± 2  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
FIN = 5 MHz  
FIN = 5 MHz  
-0.5  
-4.5  
+1  
+4.5  
130  
LSB  
INL(1)  
LSB  
VOS_ERR  
VOS_DRIFT  
GAINERR  
GAINDRIFT  
GAINERR  
GAINDRIFT  
-130  
2
LSB  
Offset drift over temperature  
Gain error  
-3.5  
0
LSB/ºC  
%FSR  
ppm/ºC  
%FSR  
ppm/ºC  
LSB  
External 1.6V Reference  
External 1.6V Reference  
Internal Reference  
Gain drift over temperature  
Gain error  
10.3  
2.4  
Gain drift over temperature  
Internal Reference  
108.8  
1.5  
Transition Noise  
ADC ANALOG INPUT (AINP/M, BINP/M)  
FS  
Input full scale  
Differential  
3.2  
0.95  
8
Vpp  
V
VCM  
RIN  
Input common model voltage  
Differential input resistance  
Differential input Capacitance  
Output common mode voltage  
Analog Input Bandwidth (-3dB)  
0.9  
1.0  
FIN = 100 kHz  
FIN = 100 kHz  
kΩ  
pF  
CIN  
7
VOCM  
BW  
0.95  
900  
V
MHz  
INTERNAL VOLTAGE REFERENCE  
VREF Internal reference voltage  
1.6  
8
V
VREF Output Impedance  
Ω
REFERENCE INPUT BUFFER (REFBUF)  
External reference voltage  
1.2  
V
EXTERNAL VOLTAGE REFERENCE (VREF)  
VREF  
External voltage reference  
1.6  
0.3  
5.3  
V
Input Current  
mA  
kΩ  
Input impedance  
CLOCK INPUT (CLKP/M)  
Input clock frequency  
0.5  
40  
65  
MHz  
Vpp  
V
VID  
VCM  
RIN  
CIN  
Differential input voltage  
Input common mode voltage  
1
0.9  
5
3.6  
Single ended input resistance to common mode.  
Single ended input capacitance  
kΩ  
pF  
1.5  
50  
Clock duty cycle  
60  
%
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.6 Electrical Characteristics - DC Specifications (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, PDN, SCLK, SEN, SDIO)  
VIH  
VIL  
IIH  
IIL  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Input capacitance  
1.4  
V
0.4  
V
90  
-90  
1.5  
150  
uA  
uA  
pF  
-150  
CI  
DIGITAL OUTPUT (SDOUT)  
IOVDD  
0.1  
VOH  
VOL  
High level output voltage  
Low level output voltage  
ILOAD = -400 uA  
IOVDD  
V
V
ILOAD = 400 uA  
0.1  
DIGITAL SCMOS OUTPUTS (DA5/6, DB5/6)  
Output data rate  
250  
MHz  
V
per CMOS output pin  
ILOAD = 400 uA  
DCLKIN  
IOVDD  
0.1  
VOH  
VOL  
VIH  
VIL  
High level output voltage  
Low level output voltage  
High level input voltage  
Low level input voltage  
IOVDD  
IOVDD  
0.1  
0.1  
V
IOVDD  
0.1  
V
V
(1) Performance data shown is prior to decimation filtering. With DDC enabled, performance improves by the decimation filtering process.  
6.7 Electrical Characteristics - AC Specifications  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
fIN = 1.1 MHz, AIN = -20 dBFS  
fIN = 1.1 MHz  
MIN  
TYP  
-159  
82.0  
81.9  
81.2  
79.9  
77.6  
74.6  
88.3  
89.2  
89.3  
88.7  
86.5  
84.3  
MAX  
UNIT  
NSD  
Noise Spectral Density  
dBFS/Hz  
fIN = 5 MHz  
77.5  
fIN = 10 MHz  
SNR(1)  
Signal to noise ratio  
dBFS  
fIN = 20 MHz  
fIN = 40 MHz  
fIN = 64 MHz  
fIN = 1.1 MHz, fNCO = 2.5 MHz  
fIN = 5 MHz, fNCO = 5 MHz  
fIN = 10 MHz, fNCO = 10 MHz  
fIN = 20 MHz, fNCO = 20 MHz  
fIN = 40 MHz, fNCO = 40 MHz  
fIN = 64 MHz, fNCO = 62.6 MHz  
Signal to noise ratio, complex  
decimation by 16  
SNR  
dBFS  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, and  
1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
80.0  
80.9  
80.8  
78.1  
76.2  
73.6  
13.3  
13.3  
13.2  
13.0  
12.6  
12.1  
83  
MAX  
UNIT  
fIN = 1.1 MHz  
fIN = 5 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 40 MHz  
fIN = 64 MHz  
fIN = 1.1 MHz  
fIN = 5 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 40 MHz  
fIN = 64 MHz  
fIN = 1.1 MHz  
fIN = 5 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 40 MHz  
fIN = 64 MHz  
fIN = 1.1 MHz  
fIN = 5 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 40 MHz  
fIN = 64 MHz  
fIN = 1.1 MHz  
fIN = 5 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 40 MHz  
fIN = 64 MHz  
76.2  
SINAD(1)  
ENOB(1)  
THD(1)  
Signal to noise and distortion ratio  
dBFS  
12.6  
Effective number of bits  
bit  
81  
87  
90  
Total Harmonic Distortion (First five  
harmonics)  
dBc  
82  
81  
80  
84  
83  
88  
94  
dBc  
dBc  
Spur free dynamic range including  
second and third harmonic  
SFDR(1)  
85  
83  
84  
101  
102  
99  
91  
Spur free dynamic range (excluding  
HD2 and HD3)  
Non HD2,3(1)  
dBFS  
95  
93  
87  
f1 = 3 MHz, f2 = 4 MHz, AIN = -7 dBFS/  
tone  
88  
90  
IMD3  
Two tone inter-modulation distortion  
dBc  
f1 = 10 MHz, f2 = 12 MHz, AIN = -7  
dBFS/tone  
(1) Performance data shown is prior to decimation filtering. With DDC enabled, performance improves by the decimation filtering process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.8 Timing Requirements  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, 5 pF  
output load, and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN NOM MAX  
UNIT  
ADC TIMING SPECIFICATIONS  
tAD  
tA  
Aperture Delay  
Aperture Jitter  
Jitter on DCLKIN  
0.85  
180  
ns  
fs  
square wave clock with fast edges  
tJ  
± 50 ps pk-pk  
Sampling  
Clock  
Period  
tACQ  
Signal acquisition period, Default  
Signal conversion period  
referenced to sampling clock falling edge  
referenced to sampling clock falling edge  
-TS/4  
tCONV  
10  
14.6  
14.0  
1.7  
ns  
us  
Bandgap reference enabled, single ended  
clock  
Bandgap reference enabled, differential clock  
Time to valid data after coming out of power  
down. Internal reference.  
Bandgap reference disabled, single ended  
clock  
ms  
us  
Bandgap reference disabled, differential clock  
2.1  
Wake up  
time  
Bandgap reference enabled, single ended  
clock  
14.6  
14.0  
1.8  
Bandgap reference enabled, differential clock  
Time to valid data after coming out of power  
down. External 1.6V reference.  
Bandgap reference disabled, single ended  
clock  
ms  
ps  
Bandgap reference disabled, differential clock  
1.7  
tS,SYNC  
tH,SYNC  
Setup time for SYNC input signal  
Hold time for SYNC input signal  
500  
600  
Referenced to sampling clock rising edge  
Serialized CMOS: 2-wire  
Serialized CMOS: 1-wire  
Serialized CMOS: 1/2-wire  
2
1
ADC  
clock  
cycles  
ADC  
Latency  
Signal input to data output  
1
Real decimation by 2  
21  
22  
23  
Output  
clock  
cycles  
Add.  
Latency  
Complex decimation by 2  
Real or complex decimation by 4, 8, 16, 32  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.8 Timing Requirements (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = 40°C to  
TMAX = 105°C, ADC sampling rate = 65 MSPS, 50% clock duty cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, 5 pF  
output load, and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN NOM MAX  
UNIT  
INTERFACE TIMING  
Delay between sampling clock falling edge to  
DCLKIN falling edge < 2.5ns.  
TDCLK = DCLK period  
tCDCLK = Sampling clock falling edge to  
DCLKIN falling edge  
2 +  
3 +  
4 +  
TDCLK TDCLK TDCLK  
+
+
+
tCDCLK tCDCLK tCDCLK  
Propagation delay: sampling clock falling  
edge to DCLK rising edge  
tPD  
ns  
Delay between sampling clock falling edge to  
DCLKIN falling edge >= 2.5ns.  
TDCLK = DCLK period  
tCDCLK = Sampling clock falling edge to  
DCLKIN falling edge  
2 +  
3 +  
4 +  
tCDCLK tCDCLK tCDCLK  
Fout = 10 MSPS, DA/B5,6 = 80 MBPS  
Fout = 20 MSPS, DA/B5,6 = 160 MBPS  
Fout = 30 MSPS, DA/B5,6 = 240 MBPS  
Fout = 5 MSPS, DA/B6 = 80 MBPS  
Fout = 10 MSPS, DA/B6 = 160 MBPS  
Fout = 15 MSPS, DA/B6 = 240 MBPS  
-0.24  
-0.29  
-0.28  
-0.22  
-0.27  
-0.52  
0.10  
0.10  
0.09  
0.11  
0.11  
0.08  
DCLK rising edge to output data delay  
2-wire serial CMOS  
tCD  
ns  
DCLK rising edge to output data delay  
1-wire serial CMOS  
DCLK rising edge to output data delay  
1/2-wire serial CMOS  
Fout = 5 MSPS, DA6 = 160 MBPS  
-0.24  
0.1  
Fout = 10 MSPS, DA/B5,6 = 80 MBPS  
Fout = 20 MSPS, DA/B5,6 = 160 MBPS  
Fout = 30 MSPS, DA/B5,6 = 240 MBPS  
Fout = 5 MSPS, DA/B6 = 80 MBPS  
Fout = 10 MSPS, DA/B6 = 160 MBPS  
Fout = 15 MSPS, DA/B6 = 240 MBPS  
Fout = 5 MSPS, DA6 = 160 MBPS  
12.19 12.36  
Data valid, 2-wire serial CMOS  
5.93  
3.91  
6.1  
4.07  
tDV  
12.21 12.39  
ns  
Data valid, 1-wire serial CMOS  
Data valid, 1/2-wire serial CMOS  
5.95  
3.83  
5.36  
6.10  
4.08  
6.13  
SERIAL PROGRAMMING INTERFACE (SCLK, SEN, SDIO) - Input  
fCLK,SCLK Serial clock frequency  
20  
MHz  
ns  
tS,SEN  
tH,SEN  
tS,SDIO  
tH,SDIO  
SEN falling edge to SCLK rising edge  
SCLK rising edge to SEN rising edge  
SDIO setup time from rising edge of SCLK  
SDIO hold time from rising edge of SCLK  
10  
9
17  
9
SERIAL PROGRAMMING INTERFACE (SDIO) - Output  
Delay from falling edge of 16th SCLK cycle during read operation for SDIO transition from  
tri-state to valid data  
tOZD  
3.9  
10.8  
ns  
tODZ  
tOD  
Delay from SEN rising edge for SDIO transition from valid data to tri-state  
Delay from falling edge of 16th SCLK cycle during read operation to SDIO valid  
3.4  
3.9  
14  
10.8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
6.9 Typical Characteristics  
Typical values at TA = 25 °C, ADC sampling rate = 65 MSPS, AIN = 1 dBFS differential input, 50% clock duty  
cycle, AVDD = IOVDD = 1.8 V, external 1.6 V reference, 5 pF output load, unless otherwise noted.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
10  
20  
Input Frequency (MHz)  
30  
0
10  
20  
Input Frequency (MHz)  
30  
D01_  
D02_  
DECIMATION BYPASS1  
AIN = 20 dBFS, DECIMATION BYPASS1  
6-1. Single Tone FFT at FIN = 1.1 MHz  
6-2. Single Tone FFT at FIN = 1.1 MHz  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
10  
20  
Input Frequency (MHz)  
30  
0
10  
20  
Input Frequency (MHz)  
30  
D03_  
D004  
DECIMATION BYPASS1  
DECIMATION BYPASS1  
6-4. Single Tone FFT at FIN = 40 MHz  
6-3. Single Tone FFT at FIN = 10 MHz  
1
Decimation bypass mode is for full Nyquist zone illustration only.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
-140  
-140  
0
10  
20  
Input Frequency (MHz)  
30  
0
10  
20  
Input Frequency (MHz)  
30  
D005  
D006  
AIN = -7 dBFS/tone, DECIMATION BYPASS1  
AIN = -20 dBFS/tone, DECIMATION BYPASS1  
6-5. Two Tone FFT at FIN = 3,4 MHz  
6-6. Two Tone FFT at FIN = 3,4 MHz  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
1
Input Frequency (MHz)  
2
0
10  
20  
Input Frequency (MHz)  
30  
D08_  
D007  
AIN = -7 dBFS/tone, DECIMATION BYPASS1  
Decimation by 16, real  
6-8. Single Tone FFT at FIN = 1 MHz  
6-7. Two Tone FFT at FIN = 10,12 MHz  
0
85  
83  
81  
79  
77  
75  
110  
105  
100  
95  
SNR, ext REF  
SFDR, ext REF  
Non HD23, ext REF  
SNR, int REF  
SFDR, int REF  
Non HD23, int REF  
-20  
-40  
-60  
-80  
90  
-100  
-120  
85  
73  
0
80  
60 65  
-140  
-1.05625  
10  
20  
30  
40  
Input Frequency (MHz)  
50  
0
Input Frequency (MHz)  
1.05625  
D14_  
D09_  
DECIMATION BYPASS1  
Decimation by 32, complex. NCO = 10.1 MHz  
6-10. AC Performance vs Input Frequency  
6-9. Single Tone FFT at FIN = 10 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
13.2  
13  
83.5  
83  
120  
105  
90  
Ext REF  
Int REF  
SNR  
SFDR  
Non HD23  
12.8  
12.6  
12.4  
12.2  
12  
82.5  
82  
75  
81.5  
81  
60  
45  
80.5  
30  
11.8  
80  
-80  
15  
0
0
10  
20  
30 40  
Input Frequency (MHz)  
50  
60  
70  
-70  
-60  
-50  
-40  
-30  
Input Amplitude (dBFS)  
-20  
-10  
D15_  
D18_  
DECIMATION BYPASS1  
FIN = 5 MHz, DECIMATION BYPASS1  
6-11. ENOB vs Input Frequency  
6-12. AC Performance vs Input Amplitude  
83  
82.5  
82  
110  
83  
82.5  
82  
105  
100  
95  
SNR (dBFS)  
SFDR (dBc)  
Non HD23 (dBc)  
SNR (dBFS), FIN = 5 MHz  
SFDR (dBc), FIN = 5 MHz  
SNR (dBFS), FIN = 10 MHz  
SFDR (dBc), FIN = 10 MHz  
105  
100  
95  
81.5  
81  
81.5  
81  
90  
90  
85  
80.5  
85  
80  
80  
80.5  
80  
10 15 20 25 30 35 40 45 50 55 60 65  
ADC Sampling Rate FS (MSPS)  
0
0.5  
1
1.5  
2
Clock Amplitude (Vpp)  
2.5  
3
D20_  
D21_  
FIN = 5 MHz, DECIMATION BYPASS1  
DECIMATION BYPASS1  
6-13. AC Performance vs Sampling Rate  
6-14. AC Performance vs Clock Amplitude  
84  
82  
80  
78  
100  
83  
82.5  
82  
105  
100  
95  
SNR  
SFDR  
SNR  
SINAD  
SFDR  
Non HD23  
95  
81.5  
81  
90  
90  
85  
85  
80.5  
80  
35  
40  
45  
50 55  
Clock Duty Cycle (%)  
60  
65  
70  
1.7  
1.75  
1.8  
AVDD (V)  
1.85  
1.9  
D35_  
D28_  
FIN = 5 MHz, DECIMATION BYPASS1  
FIN = 5 MHz, DECIMATION BYPASS1  
6-15. AC Performance vs Clock Duty cycle  
6-16. AC Performance vs AVDD  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
13.5  
83  
82.5  
82  
110  
65 MSPS  
25 MSPS  
SNR, -40èC  
SNR, 25èC  
SNR, 105èC  
SFDR, -40èC  
SFDR, 25èC  
SFDR, 105èC  
105  
100  
95  
13.25  
81.5  
81  
90  
80.5  
85  
13  
1.7  
80  
0.9  
80  
1.75  
1.8  
AVDD (V)  
1.85  
1.9  
0.925  
0.95  
VCM (V)  
0.975  
1
D30_  
D33_  
FIN = 5 MHz, DECIMATION BYPASS1  
FIN = 5 MHz, DECIMATION BYPASS1  
6-17. ENOB vs AVDD  
6-18. AC Performance vs VCM vs Temperature  
30  
20  
10  
3
Ext REF  
Int REF  
26.7%  
25.5%  
2
1
13.4%  
12.7%  
0
9.8%  
-1  
-2  
-3  
7.5%  
1.9%  
1.1%  
0.8%  
0.6%  
0
32765  
32767  
32769 32771  
Output Code  
32773  
32775  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D44_  
D038  
DECIMATION BYPASS1  
FIN = 5 MHz, DECIMATION BYPASS1  
6-19. DC Offset Histogramm  
6-20. INL vs Code  
0
0.5  
Ext Ref  
Int Ref  
-20  
-40  
0.25  
-60  
0
-80  
-100  
-120  
-140  
-0.25  
-0.5  
0
5
Input Frequency (MHz)  
10  
12.5  
D10_  
0
16384  
32768  
Code  
49152  
65536  
FS = 25 MSPS, DECIMATION BYPASS1  
D040  
FIN = 5 MHz, DECIMATION BYPASS1  
6-22. Single Tone FFT at FIN = 1.1 MHz  
6-21. DNL vs Code  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5
Input Frequency (MHz)  
10  
12.5  
0
5
Input Frequency (MHz)  
10  
12.5  
D11_  
D12_  
FS = 25 MSPS, DECIMATION BYPASS1  
FS = 25 MSPS, AIN = 20 dBFS, DECIMATION BYPASS1  
6-24. Single Tone FFT at FIN = 10 MHz  
6-23. Single Tone FFT at FIN = 1.1 MHz  
0
86  
85  
84  
83  
82  
81  
80  
110  
105  
100  
95  
SNR  
SFDR  
Non HD2,3  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
90  
85  
0
1
Input Frequency (MHz)  
1.5625  
80  
20  
0
5
10  
Input Frequency (MHz)  
15  
D13_  
FS = 25 MSPS, Decimation by 8, real  
D16_  
FS = 25 MSPS, DECIMATION BYPASS1  
6-25. Single Tone FFT at FIN = 1 MHz  
6-26. AC Performance vs Input Frequency  
13.5  
83.5  
120  
100  
80  
SNR  
SFDR  
Non HD23  
83  
13.25  
82.5  
82  
60  
13  
81.5  
81  
40  
12.75  
20  
0
5
10  
Input Frequency (MHz)  
15  
20  
-80  
-70  
-60  
-50  
-40  
-30  
Input Amplitude (dBFS)  
-20  
-10  
0
D17_  
D19_  
FS = 25 MSPS, DECIMATION BYPASS1  
FS = 25 MSPS, FIN = 5 MHz, DECIMATION BYPASS1  
6-27. ENOB vs Input Frequency  
6-28. AC Performance vs Input Amplitude  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
84.5  
83.5  
82.5  
81.5  
80.5  
79.5  
78.5  
115  
110  
105  
100  
95  
84  
83.5  
83  
110  
SNR, FIN = 5 MHz  
SFDR, FIN = 5 MHz  
SNR, FIN = 10 MHz  
SFDR, FIN = 10 MHz  
SNR  
SINAD  
SFDR  
Non HD23  
105  
100  
95  
82.5  
82  
90  
90  
85  
77.5  
0
80  
81.5  
85  
1.9  
0.5  
1
Clock Amplitude (Vpp)  
1.5  
2
2.5  
3
1.7  
1.75  
1.8  
AVDD (V)  
1.85  
D22_  
D29_  
FS = 25 MSPS, FIN = 5 MHz, DECIMATION BYPASS1  
FS = 25 MSPS, FIN = 5 MHz, DECIMATION BYPASS1  
6-29. AC Performance vs Clock Amplitude  
6-30. AC Performance vs AVDD  
83.5  
110  
105  
100  
95  
3
2
SNR (dBFS), -40èC  
SNR (dBFS), 25èC  
SNR (dBFS), 105èC  
SFDR (dBc), -40èC  
SFDR (dBc), 25èC  
SFDR (dBc), 105èC  
Ext REF  
Int REF  
83  
82.5  
82  
1
0
81.5  
81  
90  
-1  
-2  
85  
80.5  
80  
-3  
0
0.9  
0.925  
0.95  
VCM (V)  
0.975  
1
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D34_  
D039  
FS = 25 MSPS, FIN = 5 MHz, DECIMATION BYPASS1  
FS = 25 MSPS, FIN = 5 MHz, DECIMATION BYPASS1  
6-31. AC Performance vs VCM vs Temperature  
6-32. INL vs Code  
0.5  
110  
105  
100  
95  
ChA Victim  
ChB Victim  
Ext REF  
Int REF  
0.25  
0
90  
-0.25  
-0.5  
85  
80  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Input Frequency (MHz)  
0
16384  
32768  
Code  
49152  
65536  
D37_  
D041  
Aggressor at -1 dBFS  
FS = 25 MSPS, FIN = 5 MHz, DECIMATION BYPASS1  
6-34. Isolation vs Input Frequency  
6-33. DNL vs Code  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
55  
50  
45  
40  
35  
30  
70  
60  
50  
40  
30  
20  
IAVDD  
IIOVDD, 2-wire  
IIOVDD, 1-wire  
IIOVDD, 1/2-wire  
15  
10  
5
0
0.05 0.1  
1
10  
100  
5
10 15 20 25 30 35 40 45 50 55 60 65  
Sampling Rate FS (MSPS)  
Frequency of Signal on AVDD (MHz)  
FIN = 5 MHz, 50 mVpp signal on AVDD  
6-35. PSRR vs Frequency  
D42_  
D046  
FIN = 1 MHz, 32x complex decimation, 16-bit resolution  
6-36. Current vs Sampling Rate  
25  
16  
14  
12  
10  
8
Bypass  
/4 real  
/8 real  
/32 real  
/2 real  
CL = 5 pF  
CL = 10 pF  
CL = 15 pF  
CL = 22 pF  
/4 complex  
/8 complex  
/32 complex  
20  
15  
10  
5
6
4
0
2
5
10 15 20 25 30 35 40 45 50 55 60 65  
Sampling Rate (MSPS)  
5
10 15 20 25 30 35 40 45 50 55 60 65  
Sampling Rate (MSPS)  
D47_  
D48_  
FIN = 1 MHz, 16-bit resolution, 2-w  
FIN = 1 MHz, 32x complex decimation, 16-bit resolution, 2-w  
6-37. IIOVDD Current vs Decimation  
6-38. IIOVDD Current vs Load Capacitance  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
7 Parameter Measurement Information  
Sample N  
Sample N+1  
Input Signal  
tAD  
tPD  
Sampling  
Clock  
tACQ  
tConv  
tCDCLK  
DCLKIN  
DCLK  
TDCLK  
tCD  
FCLK  
tDV  
DA5/DB5  
(MSB)  
D15 D13 D11 D9  
D7 D5 D3 D1 D15 D13 D11 D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DA6/DB6  
D14 D12 D10 D8  
(LSB)  
D6 D4 D2 D0 D14 D12 D10 D8  
Sample N-2  
Sample N-1  
7-1. Timing diagram: 2-wire SCMOS (changed from 18-bit to 16-bit output after power up)  
Sample N  
Sample N+1  
Input Signal  
tAD  
tPD  
Sampling  
Clock  
tACQ  
tConv  
tCDCLK  
DCLKIN  
DCLK  
FCLK  
TDCLK  
tCD  
tDV  
DA6  
DB6  
D2  
D1  
D0 D15 D14 D13 D12 D11 D10 D9 D8  
D0 D15 D14 D13 D12 D11 D10 D9 D8  
D7  
D7  
D6  
D6  
D5 D4  
D5 D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
D2  
D1  
Sample N-2  
Sample N-1  
7-2. Timing diagram: 1-wire SCMOS (changed from 18-bit to 16-bit output after power up)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
Sample N  
Sample N+1  
Input Signal  
tAD  
tPD  
Sampling  
Clock  
tACQ  
tCDCLK  
tConv  
DCLKIN  
DCLK  
FCLK  
tCD  
TDCLK  
tDV  
Channel A  
Channel B  
D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
DA6  
Sample N-2  
Sample N-1  
7-3. Timing diagram: 1/2-wire SCMOS (changed from 18-bit to 16-bit output after power up)  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8 Detailed Description  
8.1 Overview  
The ADC3660 is a low noise, ultra-low power 16-bit high-speed dual channel ADC family supporting sampling  
rates up to 65Msps. It offers excellent DC precision together with IF sampling support which makes it ideally  
suited for a wide range of applications. The ADC3660 is equipped with an internal reference option but it also  
supports the use of an external, high precision 1.6V voltage reference or an external 1.2V reference which is  
buffered and gained up internally.  
An optional programmable digital down converter enables external anti-alias filter relaxation as well as output  
data rate reduction. The digital filter provides a 32-bit programmable NCO and supports both real or complex  
decimation.  
备注  
The ADC3660 uses a serial CMOS (SCMOS) interface to output the data which minimizes the number  
of digital interconnects. The device supports a two-lane (2-wire), a one-lane (1-wire) and a half lane  
(1/2-wire) interface option. The serialized CMOS interface supports output rates up to 250Mbps which  
translates to the following maximum output rates:  
Decimation Bypass Mode: ~ 31 Msps (2-wire) to ~ 8 Msps (0.5-wire)  
Complex Decimation: ~ 15 Msps (2-wire) to ~4 Msps (0.5-wire)  
Real Decimation: ~ 30 Msps (2-wire) to ~ 8 Msps (0.5-wire)  
Hence the ADC3660 can be operated in 'oversampling and decimating' mode using the internal decimation filter  
in order to improve the dynamic range and relax external anti-aliasing filter.  
The ADC3660 includes a digital output formatter which supports output resolutions from 14 to 20-bit.  
The device features and control options can be set up either through pin configurations or via SPI register writes.  
8.2 Functional Block Diagram  
REFBUF  
1.2 V REF  
Digital Downconverter  
NCO  
VREF  
Crosspoint  
Switch  
ADC  
16bit  
N
AIN  
DCLKIN  
DCLK  
FCLK  
0.95 V  
VCM  
Dig I/F  
SCMOS  
DA5/6  
DB5/6  
NCO  
ADC  
16bit  
N
BIN  
CLK  
Control  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADC3660  
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3 Feature Description  
8.3.1 Analog Input  
The analog inputs of ADC3660 are intended to be driven differentially. Both AC coupling and DC coupling of the  
analog inputs is supported. The analog inputs are designed for an input common mode voltage of 0.95 V which  
must be provided externally on each input pin. DC-coupled input signals must have a common mode voltage that  
meets the device input common mode voltage range.  
The equivalent input network diagram is shown in 8-1. All four sampling switches, on-resistance shown in red,  
are in same position (open or closed) simultaneously.  
AVDD  
Sampling Switch  
0.32 pF  
1  
125 ꢀ  
2 nH  
xINP/  
xINM  
24 ꢀ  
1.4 pF  
0.15 pF  
0.6 pF  
GND  
0.6 pF  
GND  
GND  
GND  
GND  
6.4 pF  
7 ꢀ  
GND  
5 ꢀ  
0.7 pF  
1.6 pF  
GND  
GND  
GND  
8-1. Equivalent Input Network  
8.3.1.1 Analog Input Bandwidth  
8-2 shows the analog full power input bandwidth of the ADC3660 with a 50 Ω differential termination. The -3  
dB bandwidth is approximately 900 MHz and the useful input bandwidth with good AC performance is  
approximately 120 MHz.  
The equivalent differential input resistance RIN and input capacitance CIN vs frequency are shown in 8-3.  
0
-1  
-2  
-3  
-4  
-5  
-6  
10  
100  
Input Frequency (MHz)  
1000  
ADC3  
8-3. Equivant RIN, CIN vs Input Frequency  
8-2. ADC Analog Input Bandwidth Response  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.1.2 Analog Front End Design  
The ADC3660 is an unbuffered ADC and thus a passive kick-back filter is recommended to absorb the glitch  
from the sampling operation. Depending on if the input is driven by a balun or a differential amplifier with low  
output impedance, a termination network may be needed. Additionally a passive DC bias circuit is needed in AC-  
coupled applications which can be combined with the termination network.  
8.3.1.2.1 Sampling Glitch Filter Design  
The front end sampling glitch filter is designed to optimize the SNR and HD3 performance of the ADC. The filter  
performance is dependent on input frequency and therefore the following filter designs are recommended for  
different input frequency ranges as shown in 8-4 and 8-5 (assuming 50 Ωsource impedance).  
33  
10 ꢀ  
180nH  
100 pF  
Termination  
33 ꢀ  
180nH  
10 ꢀ  
8-4. Sampling glitch filter for input frequencies from DC to 30 MHz  
33  
10 ꢀ  
100pF  
120nH  
82 pF  
150nH  
Termination  
33 ꢀ  
10 ꢀ  
100pF  
120nH  
8-5. Sampling glitch filter for input frequencies from 30 to 70 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADC3660  
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.1.2.2 Analog Input Termination and DC Bias  
Depending on the input drive circuitry, a termination network and/or DC biasing needs to be provided.  
8.3.1.2.2.1 AC-Coupling  
The ADC3660 requires external DC bias using the common mode output voltage (VCM) of the ADC together  
with the termination network as shown in 8-6. The termination is located within the glitch filter network. When  
using a balun on the input, the termination impedance has to be adjusted to account for the turns ratio of the  
transformer. When using an amplifier, the termination impedance can be adjusted to optimize the amplifier  
performance.  
Glitch Filter  
Termination  
33  
1 uF  
10 ꢀ  
180nH  
25 ꢀ  
100 pF  
VCM  
0.1 F  
25 ꢀ  
33 ꢀ  
1 uF  
VCM  
180nH  
10 ꢀ  
8-6. AC-Coupling: termination network provides DC bias (glitch filter example for DC - 30 MHz)  
8.3.1.2.2.2 DC-Coupling  
In DC coupled applications the DC bias needs to be provided from the fully differential amplifier (FDA) using  
VCM output of the ADC as shown in 8-7. The glitch filter in this case is located between the anti-alias filter  
and the ADC. No termination may be needed if amplifier is located close to the ADC or if the termination is part  
of the anti-alias filter.  
Glitch Filter  
33  
10 ꢀ  
180nH  
100 pF  
AAF (Anti  
Alias Filter)  
33 ꢀ  
VCM  
180nH  
10 ꢀ  
8-7. DC-Coupling: DC bias provided by FDA (glitch filter example for DC - 30 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.1.3 Auto-Zero Feature  
The ADC3660 includes an internal auto-zero front end amplifier circuit which improves the 1/f flicker noise. This  
auto-zero feature can be enabled using SPI register writes (register 0x11, D0).  
0
-20  
-80  
-100  
-120  
-140  
-160  
Auto-zero DIS  
Auto-zero EN  
Auto-zero EN  
Auto-zero DIS  
-40  
-60  
-80  
-100  
-120  
-140  
0
5
Input Frequency (MHz)  
10  
12.5  
0.005  
0.1  
1
10  
Input Frequency (kHz)  
100  
1000  
adc3  
adc3  
8-8. FFT at 25 MSPS with input frequency of 5  
MHz (auto-zero feature enable vs disable, 4M point  
FFT)  
8-9. FFT at 25 MSPS with input frequency of 5  
MHz (auto-zero feature enable vs disable, 4M point  
FFT)  
0
-80  
AZ DIS  
AZ EN  
Auto-zero DIS  
Auto-zero EN  
-20  
-100  
-120  
-140  
-160  
-40  
-60  
-80  
-100  
-120  
-140  
0
10  
20  
Input Frequency (MHz)  
30  
0.01  
0.1  
1
10  
Input Frequency (MHz)  
100  
1000  
adc3  
adc3  
8-10. FFT at 65 MSPS with input frequency of 5  
MHz (auto-zero feature enable vs disable, 4M point  
FFT)  
8-11. FFT at 65 MSPS with input frequency of 5  
MHz (auto-zero feature enabled vs disabled, 4M  
point FFT)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.2 Clock Input  
In order to maximize the ADC SNR performance, the external sampling clock should be low jitter and differential  
signaling with a high slew rate. This is especially important in IF sampling applications. For less jitter sensitive  
applications, the ADC3660 provides the option to operate with single ended signaling which saves additional  
power consumption.  
8.3.2.1 Single Ended vs Differential Clock Input  
The ADC3660 can be operated using a differential or a single ended clock input where the single ended clock  
consumes less power consumption. However clock amplitude impacts the ADC aperture jitter and consequently  
the SNR. For maximum SNR performance, a large clock signal with fast slew rates needs to be provided.  
Differential Clock Input: The clock input can be AC coupled externally. The ADC3660 provides internal  
biasing for that use case.  
ingle Ended Clock Input: This mode needs to be configured using SPI register (0x0E, D2 and D0) or with the  
REFBUF pin. In this mode there is no internal clock biasing and thus the clock input needs to be DC coupled  
around a 0.9V center. The unused input needs to be AC coupled to ground.  
1.8V  
CLKP  
CLKP  
0.9V  
0V  
+
-
5kO  
VCM  
0.9V  
5kO  
CLKM  
CLKM  
8-12. External and internal connection using differential (left) and single ended (right) clock input  
8.3.2.2 Signal Acquisition Time Adjust  
The ADC3660 includes a register (DLL PDN (0x11, D2) which increases the signal acquisition time window for  
clock rates below 40 MSPS from 25% to 50% of the clock period. Increasing the sampling time provides a longer  
time for the driving amplifier to settle out the signal which can improve the SNR performance of the system.  
When powering down the DLL, the acquisition time will track the clock duty cycle (50% is recommended).  
8-1. Acquisition time vs DLL PDN setting  
SAMPLING CLOCK FS (MSPS)  
DLL PDN (0x11, D2)  
ACQUISITION TIME (tACQ)  
65  
0
1
TS / 4  
TS / 2  
40  
TS: Sampling clock period  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.3 Voltage Reference  
The ADC3660 provides three different options for supplying the voltage reference to the ADC. An external 1.6V  
reference can be directly connected to the VREF input; a voltage 1.2V reference can be connected to the  
REFBUF input using the internal gain buffer or the internal 1.2V reference can be enabled to generate a 1.6V  
reference voltage. For best performance, the reference noise should be filtered by connecting a 10 uF and a 0.1  
uF ceramic bypass capacitor to the VREF pin. The internal reference circuitry of the ADC3660 is shown in 图  
8-13.  
备注  
The voltage reference mode can be selected using SPI register writes or by using the REFBUF pin  
(default) as a control pin (8.5.1). If the REFBUF pin is not used for configuration, the REFBUF pin  
should be connected to AVDD (even though the REFBUF pin has a weak internal pullup to AVDD) and  
the voltage reference option has to be selected using the SPI interface.  
AINP  
AINM  
0.95V  
VCM  
VREF  
(1.6V)  
x1.33  
REFBUF  
(1.2V)  
VREF1.2  
REFGND  
8-13. Different voltage reference options for ADC3660  
8.3.3.1 Internal voltage reference  
The 1.6V reference for the ADC can be generated internal using the on-chip 1.2V bandgap reference along with  
the internal gain buffer. A 10 uF and a 0.1 uF ceramic bypass capacitor (CVREF) should be connected between  
the VREF and REFGND pins as close to the pins as possible.  
xINP  
xINM  
0.95V  
VCM  
VREF  
(1.6V)  
x1.33  
CVREF  
REFBUF  
(1.6V)  
VREF1.2  
REFGND  
8-14. Internal reference  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.3.2 External voltage reference (VREF)  
For highest accuracy and lowest temperature drift, the VREF input can be directly connected to an external 1.6V  
reference. A 10 uF and a 0.1 uF ceramic bypass capacitor (CVREF) should connected between the VREF and  
REFGND pins and placed as close to the pins as possible is recommended. The load current from the external  
reference is about 1mA.  
Note: The internal reference is also used for other functions inside the device, therefore the reference amplifier  
should only be powered down in power down state but not during normal operation.  
xINP  
xINM  
0.95V  
VCM  
VREF  
(1.6V)  
Reference  
1.6V  
REFBUF  
(1.2V)  
x1.33  
CVREF  
VREF1.2  
REFGND  
8-15. External 1.6V reference  
8.3.3.3 External voltage reference with internal buffer (REFBUF)  
The ADC3660 is equipped with an on-chip reference buffer that also includes gain to generate the 1.6V  
reference voltage from an external 1.2V reference. A 10 uF and a 0.1 uF ceramic bypass capacitor (CVREF  
)
between the VREF and REFGND pins and a 10 uF and a 0.1 uF ceramic bypass capacitor between the  
REFBUF and REFGND pins are recommended. Both capacitors should be placed as close to the pins as  
possible. The load current from the external reference is less than 100uA.  
xINP  
xINM  
0.95V  
VCM  
VREF  
(1.6V)  
x1.33  
REFBUF  
(1.2V)  
Reference  
1.2V  
VREF1.2  
CREFBUF  
CVREF  
REFGND  
8-16. External 1.2V reference using internal reference buffer  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.4 Digital Down Converter  
The ADC3660 includes an optional on-chip digital down conversion (DDC) decimation filter that can be enabled  
via SPI register setting. It supports complex decimation by 2, 4, 8, 16 and 32 using a digital mixer and a 32-bit  
numerically controlled oscillator (NCO) as shown in 8-17. Furthermore it supports a mode with real decimation  
where the complex mixer is bypassed (NCO should be set to 0 for lowest power consumption) and the digital  
filter acts as a low pass filter.  
Internally the decimation filter calculations are performed with a 20-bit resolution in order to avoid any SNR  
degradation due to quantization noise limitation. The output formatter truncates to the selected resolution prior to  
outputting the data on the digital interface.  
NCO  
32bit  
Filter  
I
Q
I
Q
Digital  
Interface  
N
ADC  
SYNC  
8-17. Internal Digital Decimation Filter  
8.3.4.1 DDC MUX  
The ADC3660 contains a MUX in front of the digital decimation filters which allows ADC ChA to be connected to  
DDC ChB and vice versa.  
Digital Downconverter  
NCO  
DDC MUX  
N
ADC  
NCO  
N
ADC  
8-18. DDC MUX  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.4.2 Digital Filter Operation  
The complex decimation operation is illustrated with an example in 8-19. First the input signal (and the  
negative image) are frequency shifted by the NCO frequency as shown on the left. Next a digital filter is applied  
(centered around 0 Hz) and the output data rate is decimated - in this example the output data rate FS,OUT = FS/8  
with a Nyquist zone of FS/16. During the complex mixing the spectrum (signal and noise) is split into real and  
complex parts and thus the amplitude is reduced by 6-dB. In order to compensate this loss, there is a 6-dB  
digital gain option in the decimation filter block that can be enabled via SPI write.  
Input Signal  
(Alias)  
Shifted Input  
Signal (Alias)  
-FIN + FNCO  
Shifted Input Signal  
Negative Image  
Input Signal  
Negative Image  
Decimation  
by 8  
FIN + FNCO  
0
0
-FS/16  
FS/16  
FS/2  
-FS/2  
-FS/2  
FS/2  
FNCO  
NCO Tuning Range  
8-19. Complex decimation illustration  
The real decimation operation is illustrated with an example in 8-20. There is no frequency shift happening  
and only the real portion of the complex digital filter is exercised. The output data rate is decimated - a  
decimation of 8 would result in an output data rate FS,OUT = FS/8 with a Nyquist zone of FS/16.  
During the real mixing the spectrum (signal and noise) amplitude is reduced by 3-dB. In order to compensate this  
loss, there is a 3-dB digital gain option in the decimation filter block that can be enabled via SPI write.  
Input Signal  
Decimation by  
32  
Decimation by  
16  
Decimation by 2  
Decimation by 4  
Decimation by 8  
FS/2  
FS/16  
FS/8  
FS/4  
FS/32  
FS/64  
8-20. Real decimation illustration  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.4.2.1 FS/4 Mixing with Real Output  
In this mode, the output after complex decimation gets mixed with FS/4 (FS = output data rate in this case).  
Instead of a complex output with the input signal centered around 0 Hz, the output is transmitted as a real output  
at twice the data rate and the signal is centered around FS/4 (Fout/4) as illustrated in 8-21.  
In this example, complex decimation by 8 is used. The output data is transmitted as a real output with an output  
rate of Fout = FS'/4 (FS' = ADC sampling rate). The input signal is now centered around FS/4 (Fout/4) or FS'/16.  
FIN  
FNCO  
- FIN + FNCO  
-FIN + FNCO + FS/4  
/8  
FS/4 mix  
Fout/4 mix  
Complex  
Decimation /8  
0
0
FS‘/2  
FS/16  
FS‘/2  
FS/8  
0
FS/2  
8-21. FS/4 Mixing with real output  
8.3.4.3 Numerically Controlled Oscillator (NCO) and Digital Mixer  
The decimation block is equipped with a 32-bit NCO and a digital mixer to fine tune the frequency placement  
prior to the digital filtering. The oscillator generates a complex exponential sequence of:  
ejωn (default) or ejωn  
(1)  
where: frequency (ω) is specified as a signed number by the 32-bit register setting  
The complex exponential sequence is multiplied with the real input from the ADC to mix the desired carrier to a  
frequency equal to fIN + fNCO. The NCO frequency can be tuned from FS/2 to +FS/2 and is processed as a  
signed, 2s complement number. After programming a new NCO frequency, the mixer restart register bits (0x26,  
D4/D1) or SYNC pin has to be toggled for the new frequency to get active. Additionally the ADC3660 provides  
the option via SPI to invert the mixer phase. The NCO frequency setting is set by the 32-bit register value given  
and calculated as:  
NCO frequency = 0 to + FS/2: NCO = fNCO × 232 / FS  
NCO frequency = -FS/2 to 0: NCO = (fNCO + FS) × 232 / FS  
where:  
NCO = NCO register setting (decimal value)  
fNCO = Desired NCO frequency (MHz)  
FS = ADC sampling rate (MSPS)  
The NCO programming is further illustrated with this example:  
ADC sampling rate FS = 65 MSPS  
Input signal fIN = 10 MHz  
Desired output frequency fOUT = 0 MHz  
For this example there are actually four ways to program the NCO and achieve the desired output frequency as  
shown in 8-2.  
8-2. NCO value calculations example  
Alias or negative image  
fIN = 10 MHz  
fNCO  
NCO Value  
660764199  
3634203097  
Mixer Phase  
Frequency translation for fOUT  
fNCO = 10 MHz  
fNCO = 10 MHz  
fOUT = fIN + fNCO = 10 MHz +10 MHz = 0 MHz  
fOUT = fIN + fNCO = 10 MHz + (10 MHz) = 0 MHz  
as is  
fIN = 10 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-2. NCO value calculations example (continued)  
Alias or negative image  
fNCO  
NCO Value  
Mixer Phase  
Frequency translation for fOUT  
fIN = 10 MHz  
fNCO = 10 MHz  
660764199  
fOUT = fIN fNCO = 10 MHz 10 MHz = 0 MHz  
inverted  
fOUT = fIN fNCO = 10 MHz (10 MHz) = 0  
3634203097  
fIN = 10 MHz  
fNCO = 10 MHz  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.4.4 Decimation Filter  
The ADC3660 supports complex decimation by 2, 4, 8, 16 and 32 with a pass-band bandwidth of ~ 80% and a  
stopband rejection of at least 85dB. 8-3 gives an overview of the pass-band bandwidth of the different  
decimation settings with respect to ADC sampling rate FS. Note that the maximum output rate limits can't be  
exceeded and the ADC sampling rate may need to adjusted. In real decimation mode the output bandwidth is  
half of the complex bandwidth.  
8-3. Decimation Filter Summary and Maximum Available Output Bandwidth  
REAL/COMPLEX  
DECIMATION  
DECIMATION  
SETTING N  
OUTPUT  
BANDWIDTH  
OUTPUT RATE  
(FS = 65 MSPS)  
OUTPUT BANDWIDTH  
(FS = 65 MSPS)  
OUTPUT RATE  
2
4
FS / 2 complex  
FS / 4 complex  
FS / 8 complex  
FS / 16 complex  
FS / 32 complex  
FS / 2 real  
0.8 × FS / 2  
0.8 × FS / 4  
0.8 × FS / 8  
0.8 × FS / 16  
0.8 × FS / 32  
0.4 × FS / 2  
0.4 × FS / 4  
0.4 × FS / 8  
0.4 × FS / 16  
0.4 × FS / 32  
32.5 MSPS complex  
16.25 MSPS complex  
8.125 MSPS complex  
4.0625 MSPS complex  
2.03125 MSPS complex  
32.5 MSPS  
26 MHz  
13 MHz  
Complex  
8
6.5 MHz  
16  
32  
2
3.25 MHz  
1.625 MHz  
13 MHz  
4
FS / 4 real  
16.25 MSPS  
6.5 MHz  
Real  
8
FS / 8 real  
8.125 MSPS  
3.25 MHz  
1.625 MHz  
0.8125 MHz  
16  
32  
FS / 16 real  
4.0625 MSPS  
FS / 32 real  
2.03125 MSPS  
The decimation filter responses normalized tot he ADC sampling clock frequency FS are illustrated in 8-23 to  
8-32. They are interpreted as follows:  
Each figure contains the filter pass-band, transition band(s) and alias or stop-band(s) as shown in 8-22. The  
x-axis shows the offset frequency (after the NCO frequency shift) normalized to the ADC sampling rate FS.  
For example, in the divide-by-4 complex setup, the output data rate is FS / 4 complex with a Nyquist zone of FS /  
8 or 0.125 × FS. The transition band (colored in blue) is centered around 0.125 × FS and the alias transition band  
is centered at 0.375 × FS. The stop-bands (colored in red), which alias on top of the pass-band, are centered at  
0.25 × FS and 0.5 × FS. The stop-band attenuation is greater than 85 dB.  
0
Passband  
Transition Band  
-20  
Alias Band  
Attn Spec  
Filter  
-40  
-60  
Transition  
Bands  
Bands that alias on top  
of signal band  
Pass Band  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (Fs)  
8-22. Interpretation of the Decimation Filter Plots  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
0
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
Passband  
Passband  
Transition Band  
Alias Band  
Attn Spec  
Transition Band  
Alias Band  
Attn Spec  
-20  
-40  
-60  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.1  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.025 0.05 0.075  
0.1  
0.125 0.15 0.175  
0.2  
0.225 0.25  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-23. Decimation by 2 complex frequency  
8-24. Decimation by 2 complex passband ripple  
response  
response  
0
0
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
Attn Spec  
-0.01  
-0.02  
-20  
-40  
Attn Spec  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.1  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-25. Decimation by 4complex frequency  
8-26. Decimation by 4 complex passband ripple  
response  
response  
0
-0.08  
Passband  
Transition Band  
Alias Band  
Passband  
-0.081  
-0.082  
-0.083  
-0.084  
-0.085  
-0.086  
-0.087  
-0.088  
-0.089  
-0.09  
Transition Band  
Alias Band  
Attn Spec  
-20  
-40  
Attn Spec  
-60  
-0.091  
-0.092  
-0.093  
-0.094  
-0.095  
-0.096  
-0.097  
-0.098  
-0.099  
-0.1  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.006 0.012 0.018 0.024 0.03 0.036 0.042 0.048 0.054 0.06  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-27. Decimation by 8 complex frequency  
8-28. Decimation by 8 complex passband ripple  
response  
response  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
0
-0.1  
-0.11  
-0.12  
-0.13  
-0.14  
-0.15  
-0.16  
-0.17  
-0.18  
-0.19  
-0.2  
Passband  
Passband  
Transition Band  
Alias Band  
Attn Spec  
Transition Band  
Alias Band  
Attn Spec  
-20  
-40  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-29. Decimation by 16 complex frequency  
8-30. Decimation by 16 complex passband  
response  
ripple response  
0
-0.2  
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
Attn Spec  
-0.205  
-0.21  
-20  
-40  
Attn Spec  
-0.215  
-0.22  
-60  
-0.225  
-0.23  
-80  
-0.235  
-0.24  
-100  
-120  
-0.245  
-0.25  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
Decb  
Decb  
8-31. Decimation by 32 complex frequency  
8-32. Decimation by 32 complex passband  
response  
ripple response  
8.3.4.5 SYNC  
The PDN/SYNC pin can be used to synchronize multiple devices using an external SYNC signal. The PDN/  
SYNC pin can be configured via SPI (SYNC EN bit) from power down to synchronization functionality and is  
latched in by the rising edge of the sampling clock as shown in 8-33.  
CLK  
tS,SYNC  
tH,SYNC  
SYNC  
8-33. External SYNC timing diagram  
The synchronization signal is only required when using the decimation filter - either using the SPI SYNC register  
or the PDN/SYNC pin. It resets internal clock dividers used in the decimation filter and aligns the internal clocks  
as well as I and Q data within the same sample. If no SYNC signal is given, the internal clock dividers is not be  
synchronized, which can lead to a fractional delay across different devices. The SYNC signal also resets the  
NCO phase and loads the new NCO frequency (same as the MIXER RESTART bit).  
When trying to resynchronize during operation, the SYNC toggle should occur at 64*K clock cycles, where K is  
an integer. This ensures phase continuity of the clock divider.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADC3660  
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.4.6 Output Formatting with Decimation  
When using decimation, the output data is formatted as shown in 8-34 (complex decimation) and 8-35 (real  
decimation). The interface data rates for 2-, 1- and 1/2-wire for complex output for different decimation settings  
are shown in 8-4.  
FCLK  
AI  
AI  
AI  
D15 D13 D11  
AI  
D9  
AI  
D7  
AI  
D5  
AI  
D3  
AI  
D1  
AQ AQ  
D13 D11  
AQ  
D9  
AQ  
D7  
AQ  
D5  
AQ  
D3  
AQ  
D1  
AQ  
D15  
DA5  
DA6  
DB5  
AI AI  
D14 D12 D10  
AI  
AI  
D8  
AI  
D6  
AI  
D4  
AI  
D2  
AI  
D0  
AQ AQ  
D12 D10  
AQ  
D8  
AQ  
D6  
AQ  
D4  
AQ  
D2  
AQ  
D0  
AQ  
D14  
BI BI  
D15 D13 D11  
BI  
BI  
D9  
BI  
D7  
BI  
D5  
BI  
D3  
BI  
D1  
BQ BQ  
D13 D11  
BQ  
D9  
BQ  
D7  
BQ  
D5  
BQ  
D3  
BQ  
D1  
BQ  
D15  
2-Wire  
8x Serialization  
BI  
BI  
BI  
D14 D12 D10  
BI  
D8  
BI  
D6  
BI  
D4  
BI  
D2  
BI  
D0  
BQ BQ  
D12 D10  
BQ  
D8  
BQ  
D6  
BQ  
D4  
BQ  
D2  
BQ  
D0  
BQ  
D14  
DB6  
DCLK  
FCLK  
1-Wire  
16x Serialization  
DA6  
DB6  
AI <15:0>  
BI <15:0>  
AQ <15:0>  
BQ <15:0>  
DCLK  
FCLK  
DA6  
1/2-Wire  
(32x Serialization)  
AI <15:0>  
BI <15:0>  
AQ <15:0>  
BQ <15:0>  
DCLK  
8-34. Output Data Format in Complex Decimation  
8-4 illustrates the output interface data rate along with the corresponding DCLK/DCLKIN and FCLK  
frequencies based on output resolution (R), number of SCMOS lanes (L) and complex decimation setting (N).  
Furthermore the table shows an actual lane rate example for the 2-, 1- and 1/2-wire interface, 16-bit output  
resolution and complex decimation by 16.  
8-4. Serial CMOS Lane Rate Examples with Complex Decimation  
DECIMATION  
SETTING  
ADC SAMPLING  
RATE  
OUTPUT  
RESOLUTION  
# of WIRES  
FCLK  
DCLKIN, DCLK  
DA/B5,6  
N
FS  
R
L
2
FS / N  
[DA/B5,6] / 2  
32.5 MHz  
65 MHz  
FS x 2 x R / L / N  
65 MHz  
65 MSPS  
62.5 MSPS  
4..0625 MHz  
3.90625 MHz  
16  
16  
1
130 MHz  
1/2  
125 MHz  
250 MHz  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
FCLK  
DA5  
DA6  
DB5  
DB6  
DCLK  
A0  
A0  
A0  
A0  
D9  
A0  
D7  
A0  
D5  
A0  
D3  
A0  
D1  
A1  
A1  
A1  
D11  
A1  
D9  
A1  
D7  
A1  
D5  
A1  
D3  
A1  
D1  
D15 D13 D11  
D15 D13  
A0 A0  
D14 D12 D10  
A0  
A0  
D8  
A0  
D6  
A0  
D4  
A0  
D2  
A0  
D0  
A1 A1  
D14 D12 D10  
A1  
A1  
D8  
A1  
D6  
A1  
D4  
A1  
D2  
A1  
D0  
B0  
B0  
B0  
B0  
D9  
B0  
D7  
B0  
D5  
B0  
D3  
B0  
D1  
B1  
B1  
B1  
D11  
B1  
D9  
B1  
D7  
B1  
D5  
B1  
D3  
B1  
D1  
D15 D13 D11  
D15 D13  
2-Wire  
8x Serialization  
B0  
B0  
B0  
B0  
D8  
B0  
D6  
B0  
D4  
B0  
D2  
B0  
D0  
B1  
B1  
B1  
B1  
D8  
B1  
D6  
B1  
D4  
B1  
D2  
B1  
D0  
D14 D12 D10  
D14 D12 D10  
FCLK  
1-Wire  
16x Serialization  
DA6  
DB6  
A0 <15:8>  
B0 <15:8>  
A1 <7:0>  
B1 <7:0>  
DCLK  
FCLK  
DA6  
1/2-Wire  
(32x Serialization)  
A0 <15:0>  
B0 <15:0>  
DCLK  
8-35. Output Data Format in Real Decimation  
8-5 illustrates the output interface data rate along with the corresponding DCLK/DCLKIN and FCLK  
frequencies based on output resolution (R), number of SCMOS lanes (L) and real decimation setting (M).  
Furthermore the table shows an actual lane rate example for the 2-, 1- and 1/2-wire interface, 16-bit output  
resolution and real decimation by 16.  
8-5. Serial CMOS Lane Rate Examples with Real Decimation  
DECIMATION  
SETTING  
ADC SAMPLING  
RATE  
OUTPUT  
RESOLUTION  
# of WIRES  
FCLK  
DCLKIN, DCLK  
DA/B5,6  
FS / M / 2 (L = 2)  
FS / M (L = 1, 1/2)  
M
FS  
R
L
[DA/B5,6] / 2  
FS x R / L / M  
2
1
2.03125 MHz  
16.25 MHz  
32.5 MHz  
65 MHz  
32.5 MHz  
65 MHz  
16  
65 MSPS  
16  
4.0625 MHz  
1/2  
130 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.5 Digital Interface  
The serial CMOS interface supports the data output with 2-wire, 1-wire and 1/2-wire operation. The actual data  
output rate depends on the output resolution and number of lanes used.  
The ADC3660 requires an external serial clock input (DCLKIN), which is used to transmit the data out of the  
ADC along with the data clock (DCLK). The phase relationship between DCLKIN and the sampling clock is  
irrelevant but both clocks need to be frequency locked. The serial CMOS interface is configured using SPI  
register writes.  
8.3.5.1 SDR Output Clocking  
The ADC3660 provides a SDR output clocking option which is enabled using the SPI interface. By default the  
data is output on rising and falling edge of DCLK. In SDR clocking mode, DCLKIN has to be twice as fast as the  
default DCLKIN so that the output data are clocked out only on DCLK rising edge. This SDR clock option is  
available in all output modes including decimation.  
Internally DCLKIN is divided by 2 for data processing and this operation can add 1 extra clock cycle latency to  
the ADC latency.  
Latency (2 clock cycles)  
Sample N+1  
Sample N+2  
Sample N  
Sample N+3  
Sample N+6  
Sample N+4  
Sample N+5  
tAD  
tPD  
Continous  
Clock  
DCLKIN  
DCLKIN  
SDR  
DCLK  
DCLK  
SDR  
tCD  
FCLK  
DA/B5  
(MSB)  
DA/B6  
(LSB)  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
8-36. SDR Output Clocking  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.5.2 Output Data Format  
The output data can be configured to two's complement (default) or offset binary formatting using SPI register  
writes (register 0x8F and 0x92). 8-6 provides an overview for minimum and maximum output codes for the  
two formatting options. The actual output resolution is set by the output bit mapper.  
8-6. Overview of minimum and maximum output codes vs output resolution for different formatting  
Two's Complement (default)  
Offset Binary  
RESOLUTION (BIT)  
14  
16  
18  
20  
14  
16  
18  
20  
VIN,MAX  
0
0x1FFF  
0x7FFF  
0x1FFFF  
0x7FFFF  
0x3FFF  
0x2000  
0xFFFF  
0x8000  
0x3FFFF  
0x20000  
0xFFFFF  
0x80000  
0x0000  
0x2000  
0x00000  
VIN,MIN  
0x8000  
0x20000  
0x80000  
0x0000  
0x00000  
8.3.5.3 Output Formatter  
The digital output interface utilizes a flexible output bit mapper as shown in 8-37. The bit mapper takes the 16-  
bit output directly from the ADC or from digital filter block and reformats it to a resolution of 14,16,18 or 20-bit.  
The output serialization factor gets adjusted accordingly for 2-, 1- and 1/2-wire interface mode. The maximum  
output data rate can not be exceeded independently of output resolution and serialization factor.  
备注  
After power up the bit mapper output defaults to 18-bit and manually has to be programmed to 16-bit.  
See 8.3.5.5 for instructions.  
For 14-bit the LSBs simply get truncated during the reformatting. With 18 and 20-bit output, bypass or  
decimation mode has 0s for the two LSBs while only the digital averaging mode utilizes the full 20-bit output.  
DIG  
I/F  
Output  
Formatter  
14/16/18/  
20-bit  
NCO  
TEST  
Output  
Bit Mapper  
PATTERN  
N
8-37. Interface output bit mapper  
8-7 provides an overview for the resulting serialization factor depending on output resolution and output  
modes. Note that the DCLKIN frequency needs to be adjusted accordingly as well. Changing the output  
resolution to 18-bit, 2-wire mode for example would result in DCLKIN = FS * 4.5 instead of * 4.  
8-7. Serialization factor vs output resolution for different output modes  
OUTPUT RESOLUTION  
Interface  
SERIALIZATION  
FCLK  
FS/2  
FS  
DCLKIN  
FS* 3.5  
FS* 7  
DCLK  
FS* 3.5  
FS* 7  
DA/B5,6  
FS* 7  
2-Wire  
7x  
14-bit  
1-Wire  
14x  
28x  
8x  
FS* 14  
FS* 28  
FS* 8  
1/2-Wire  
2-Wire  
FS  
FS* 14  
FS* 4  
FS* 14  
FS* 4  
FS/2  
FS  
16-bit  
18-bit (default)  
20-bit  
1-Wire  
16x  
32x  
9x  
FS* 8  
FS* 8  
FS* 16  
FS* 32  
FS* 9  
1/2-Wire  
2-Wire  
FS  
FS* 16  
FS* 4.5  
FS* 9  
FS* 16  
FS* 4.5  
FS* 9  
FS/2  
FS  
1-Wire  
18x  
36x  
10x  
20x  
40x  
FS* 18  
FS* 36  
FS* 10  
FS* 20  
FS* 40  
1/2-Wire  
2-Wire  
FS  
FS* 18  
FS* 5  
FS* 18  
FS* 5  
FS/2  
FS  
1-Wire  
FS* 10  
FS* 20  
FS* 10  
FS* 20  
1/2-Wire  
FS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADC3660  
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
The programming sequence to change the output interface and/or resolution from default settings is shown in 节  
8.3.5.5.  
8.3.5.4 Output Bit Mapper  
The output bit mapper allows to change the output bit order for any selected interface mode.  
DIG  
I/F  
Output  
Formatter  
14/16/18/  
20-bit  
NCO  
TEST  
Output  
Bit Mapper  
PATTERN  
N
8-38. Output Bit Mapper  
It is a two step process to change the output bit mapping and assemble the output data bus:  
1. Both channel A and B can have up to 20-bit output. Each output bit of either channel has a unique identifier  
bit as shown in the 8-8. The MSB starts with bit D19 depending on output resolution chosen the LSB  
would be D6 (14-bit) to D0 (20-bit). The previous sampleis only needed in 2-w mode.  
2. The bit mapper is then used to assemble the output sample. The following sections detail how to remap the  
serial output format.  
8-8. Unique identifier of each data bit  
Bit  
Channel A  
Channel B  
Previous sample (2w only)  
Current sample  
0x6D  
0x6C  
0x67  
Previous sample (2w only)  
Current sample  
0x69  
D19 (MSB)  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
0x2D  
0x2C  
0x27  
0x26  
0x25  
0x24  
0x1F  
0x1E  
0x1D  
0x1C  
0x17  
0x16  
0x15  
0x14  
0x0F  
0x0E  
0x0D  
0x0C  
0x07  
0x06  
0x29  
0x28  
0x23  
0x22  
0x21  
0x20  
0x1B  
0x1A  
0x19  
0x18  
0x13  
0x12  
0x11  
0x10  
0x0B  
0x0A  
0x09  
0x08  
0x03  
0x02  
0x68  
0x63  
0x66  
0x62  
0x65  
0x61  
0x64  
0x60  
0x5F  
0x5B  
0x5A  
0x59  
0x5E  
0x5D  
0x5C  
0x57  
0x58  
0x53  
D8  
0x56  
0x52  
D7  
0x55  
0x51  
D6  
0x54  
0x50  
D5  
0x4F  
0x4B  
0x4A  
0x49  
D4  
0x4E  
0x4D  
0x4C  
0x47  
D3  
D2  
0x48  
D1  
0x43  
D0 (LSB)  
0x46  
0x42  
In the serial output mode, a data bit (with unique identifier) needs to be assigned to each location within the  
serial output stream. There are a total of 40 addresses available per channel. Channel A spans from address  
0x39 to 0x60 and channel B from address 0x61 to 0x88. When using complex decimation, the output bit mapper  
is applied to both the Iand the Qsample.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
2-wire mode: in this mode both the current and the previous sample have to be used in the address space as  
shown in 8-39. Note: there are unused addresses between samples for resolution less than 20-bit (grey back  
ground), which can be skipped if not used.  
14-bit  
16-bit 18-bit 20-bit  
14-bit  
16-bit 18-bit 20-bit  
DA5  
DA6  
0x60 0x5F 0x5E 0x5D 0x5C 0x5B 0x5A 0x59 0x58 0x57 0x56 0x55 0x54 0x53 0x52 0x51 0x50 0x4F 0x4E 0x4D  
0x4C 0x4B 0x4A 0x49 0x48 0x47 0x46 0x45 0x44 0x43 0x42 0x41 0x40 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39  
0x88 0x87 0x86 0x85 0x84 0x83 0x82 0x81 0x80 0x7F 0x7E 0x7D 0x7C 0x7B 0x7A 0x79 0x78 0x77 0x76 0x75  
0x74 0x73 0x72 0x71 0x70 0x6F 0x6E 0x6D 0x6C 0x6B 0x6A 0x69 0x68 0x67 0x66 0x65 0x64 0x63 0x62 0x61  
DB5  
DB6  
Previous Sample  
Current Sample  
8-39. 2-wire output bit mapper  
In the following example (8-40), the 16-bit 2-wire serial output is reordered to where lane DA5/DB5 carries the  
8 MSB and lane DA6/DB6 carries 8 LSBs.  
Previous Sample  
Current Sample  
D19A  
(0x60  
0x2D)  
D18A  
(0x5F  
0x2C)  
D17A  
(0x5E  
0x27)  
D16A  
(0x5D  
0x26)  
D15A  
(0x5C  
0x25)  
D14A  
(0x5B  
0x24)  
D13A  
(0x5A  
0x1F)  
D12A  
(0x59  
0x1E)  
D19A  
(0x56  
0x6D)  
D18A  
(0x55  
0x6C)  
D17A  
(0x54  
0x67)  
D16A  
(0x53  
0x66)  
D15A  
(0x52  
0x65)  
D14A  
(0x51  
0x64)  
D13A  
(0x50  
0x5F)  
D12A  
(0x4F  
0x5E)  
DA5  
DA6  
D11A  
(0x4C  
0x1D)  
D10A  
(0x4B  
0x1C)  
D9A  
(0x4A  
0x17)  
D8A  
(0x49  
0x16)  
D7A  
(0x48  
0x15)  
D6A  
(0x47  
0x14)  
D5A  
(0x46  
0x0F)  
D4A  
(0x45  
0x0E)  
D11A  
(0x42  
0x5D)  
D10A  
(0x41  
0x5C)  
D9A  
(0x40  
0x57)  
D8A  
(0x39  
0x56)  
D7A  
(0x38  
0x55)  
D6A  
(0x37  
0x54)  
D5A  
(0x36  
0x4F)  
D4A  
(0x35  
0x4E)  
D19B  
(0x88  
0x29)  
D18B  
(0x87  
0x28)  
D17B  
(0x86  
0x23)  
D16B  
(0x85  
0x22)  
D15B  
(0x84  
0x21)  
D14B  
(0x83  
0x20)  
D13B  
(0x82  
0x1B)  
D12B  
(0x81  
0x1A)  
D19B  
(0x7E  
0x69)  
D18B  
(0x7D  
0x68)  
D17B  
(0x7C  
0x63)  
D16B  
(0x7B  
0x62)  
D15B  
(0x7A  
0x61)  
D14B  
(0x79  
0x60)  
D13B  
(0x78  
0x5B)  
D12B  
(0x77  
0x5A)  
DB5  
DB6  
D11B  
(0x74  
0x19)  
D10B  
(0x73  
0x18)  
D9B  
(0x72  
0x13)  
D8B  
(0x71  
0x12)  
D7B  
(0x70  
0x11)  
D6B  
(0x6F  
0x10)  
D5B  
(0x6E  
0x0B)  
D4B  
(0x6D  
0x0A)  
D11B  
(0x6A  
0x59)  
D10B  
(0x69  
0x58)  
D9B  
(0x68  
0x53)  
D8B  
(0x67  
0x52)  
D7B  
(0x66  
0x51)  
D6B  
(0x65  
0x50)  
D5B  
(0x64  
0x4B)  
D4B  
(0x63  
0x4A)  
8-40. Example: 2-wire output mapping  
1-wire mode: Only the currentsample needs to programmed in the address space. If desired, it can be  
duplicated on DA5/DB5 as well (using addresses shown in 8-41 in order to have a redundant output. Lane  
DA5/DB5 needs to be powered up in that case.  
14-bit  
16-bit  
18-bit  
20-bit  
DA6  
(default)  
0x4C 0x4B 0x4A 0x49 0x48 0x47 0x46 0x45 0x44 0x43 0x42 0x41 0x40 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39  
0x60 0x5F 0x5E 0x5D 0x5C 0x5B 0x5A 0x59 0x58 0x57 0x56 0x55 0x54 0x53 0x52 0x51 0x50 0x4F 0x4E 0x4D  
DA5  
DB6  
(default)  
0x74 0x73 0x72 0x71 0x70 0x6F 0x6E 0x6D 0x6C 0x6B 0x6A 0x69 0x68 0x67 0x66 0x65 0x64 0x63 0x62 0x61  
0x88 0x87 0x86 0x85 0x84 0x83 0x82 0x81 0x80 0x7F 0x7E 0x7D 0x7C 0x7B 0x7A 0x79 0x78 0x77 0x76 0x75  
DB5  
8-41. 1-wire output bit mapping  
½-wire mode: The output is only on lane DA6 and the sample order is programmed into the 40 addresses of  
chA (from 0x39 to 0x60). It covers 2 samples (one for chA, one for chB) as shown in 8-42.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADC3660  
 
 
 
ADC3660  
www.ti.com.cn  
18-bit 20-bit  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
14-bit  
16-bit  
16-bit  
18-bit  
20-bit  
14-bit  
...  
...  
DA6  
0x4C 0x4B  
0x40 0x3F 0x3E 0x3D 0x3C 0x3B 0x3A 0x39 0x60 0x5F  
0x54 0x53 0x52 0x51 0x50 0x4F 0x4E 0x4D  
8-42. 1/2-wire output bit mapping  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.5.5 Output Interface/Mode Configuration  
The following sequence summarizes all the relevant registers for changing the output interface and/or enabling  
the decimation filter. Steps 1 and 2 must come first since the E-Fuse load reset the SPI writes, the remaining  
steps can come in any order.  
8-9. Configuration steps for changing interface or decimation  
STEP  
FEATURE  
ADDRESS  
DESCRIPTION  
Select the output interface bit mapping depending on resolution and output interface.  
Output Resolution  
14-bit, 18-bit  
2-wire  
0x2B  
0x4B  
1-wire  
1/2-wire  
0x8D  
1
0x07  
0x6C  
16-bit, 20-bit  
Load the output interface bit mapping using the E-fuse loader (0x13, D0). Program register 0x13 to 0x01, wait ~  
1ms so that bit mapping is loaded properly followed by 0x13 0x00  
2
0x13  
3
4
0x0A/B/C  
0x18  
When changing the output interface bit mapper (0x07), the CMOS output buffer register has to be configured again.  
When changing the output interface bit mapper (0x07), the DCLKIN EN bit (D4) has to be set again.  
Configure the FCLK frequency based on bypass/decimation and number of lanes used.  
FCLK SRC  
(D7)  
FCLK DIV  
(D4)  
TOG FCLK  
(D0)  
Bypass/Dec  
SCMOS  
2-wire  
1-wire  
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
Bypass/ Real  
Decimation  
5
0x19  
1/2-wire  
2-wire  
Complex Decimation  
1-wire  
Output  
Interface  
1/2-wire  
6
7
0x1B  
0x1F  
Select the output interface resolution using the bit mapper (D5-D3).  
When changing the output interface bit mapper (0x07), the DCLKIN EN bit (D6) and DCLK OB EN (D4) have to be  
set again.  
Select the FCLK pattern for decimation for proper duty cycle output of the frame clock.  
Output Resolution  
14-bit  
2-wire  
1-wire  
1/2-wire  
0xFE000  
0xFF000  
0xFF800  
0xFFC00  
16-bit  
Real Decimation  
use default  
0x20  
0x21  
0x22  
18-bit  
8
20-bit  
use default  
14-bit  
16-bit  
Complex Decimation  
0xFFFFF  
0xFFFFF  
18-bit  
20-bit  
0x39..0x60 Change output bit mapping for chA and chB if desired. This works also with the default interface selection.  
0x61..0x88  
9
10  
11  
0x24  
0x25  
Enable the decimation filter  
Configure the decimation filter  
0x2A/B/C/D  
0x31/2/3/4  
12  
Program the NCO frequency for complex decimation (can be skipped for real decimation)  
Configure the complex output data stream (set both bits to 0 for real decimation)  
Decimation  
Filter  
SCMOS  
2-wire  
OP-Order (D4)  
Q-Delay (D3)  
0x27  
0x2E  
13  
14  
1
0
1
0
1
1
1-wire  
1/2-wire  
0x26  
Set the mixer gain and toggle the mixer reset bit to update the NCO frequency.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.3.5.5.1 Configuration Example  
The following is a step by step programming example to configure the ADC3660 to complex decimation by 8 with  
1-wire SCMOS and 16-bit output.  
1. 0x07 (address) 0x6C (load bit mapper configuration for 16-bit output with 1-wire SCMOS)  
2. 0x13 0x01, wait 1 ms, 0x13 0x00 (load e-fuse)  
3. 0x0A 0xFF, 0x0B 0xEE, 0x0C 0xFD (configure CMOS output buffer)  
4. 0x18 0x10 (DCLKIN EN)  
5. 0x19 0x82 (configure FCLK)  
6. 0x1B 0x08 (select 16-bit output resolution)  
7. 0x1F 0x50 (DCLKIN EN and DCLK OB EN)  
8. 0x20 0xFF, 0x21 0xFF, 0x22 0x0F (configure FCLK pattern)  
9. 0x24 0x06 (enable decimation filter)  
10. 0x25 0x30 (configure complex decimation by 8)  
11. 0x2A/B/C/D and 0x31/32/33/34 (program NCO frequency)  
12. 0x27/0x2E 0x08 (configure Q-delay register bit)  
13. 0x26 0xAA, 0x26 0x88 (set digital mixer gain to 6-dB and toggle the mixer update)  
8.3.6 Test Pattern  
In order to enable in-circuit testing of the digital interface, the following test patterns are supported and enabled  
via SPI register writes (0x14/0x15/0x16). The test pattern generator is located after the decimation filter as  
shown in 8-43. In decimation mode (real and complex), the test patterns replace the output data from the  
DDC - however channel A controls the test patterns for both channels.  
DIG  
I/F  
Output  
Formatter  
14/16/18/  
20-bit  
NCO  
TEST  
Output  
Bit Mapper  
PATTERN  
N
8-43. Test Pattern Generator  
RAMP Pattern: The step size needs to be configured in the CUSTOM PAT register according to the native  
resolution of the ADC. When selecting a higher output resolution then the additional LSBs will still be 0 in  
RAMP pattern mode.  
00001: 18-bit output resolution  
00100: 16-bit output resolution  
10000: 14-bit output resolution  
Custom Pattern: Configured in the CUSTOM PAT register  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.4 Device Functional Modes  
8.4.1 Normal Operation  
In normal operating mode, the ADC full-scale input gets converted to a digital output with 16-bit resolution.  
8.4.2 Power Down Options  
A global power down mode can be enabled via SPI as well as using the power down pin (PDN/SYNC). There is  
an internal pull-down 21kΩ resistor on the PDN/SYNC input pin and the pin is active high - so the pin needs to  
be pulled high externally to enter global power down mode.  
The SPI register map provides the capability to enable/disable individual blocks directly or via PDN pin mask in  
order to trade off power consumption vs wake up time as shown in 8-10.  
REFBUF  
1.2V REF  
Digital Downconverter  
NCO  
VREF  
AIN  
Crosspoint  
Switch  
N
ADC  
NCO  
Dig I/F  
N
BIN  
CLK  
ADC  
8-44. Power Down Configurations  
8-10. Overview of Power Down Options  
PDN  
via SPI  
Mask for  
Global PDN  
Feature -  
Default  
Power  
Impact  
Wake-up  
time  
Function/ Register  
ADC  
Comment  
Both ADC channels are included in  
Global PDN automatically  
Yes  
Yes  
Yes  
-
Enabled  
Enabled  
Should only be powered down in power  
down state.  
Reference gain amplifier  
Internal 1.2V reference  
~ 0.4 mA  
~3 us  
Internal/external reference selection is  
available through SPI and REFBUF pin.  
External ref  
~ 1-3.5 mA  
~3 ms  
Yes  
Single ended clock input saves ~ 1mA  
compared to differential.  
Some programmability is available  
through the REFBUF pin.  
Differential  
clock  
Clock buffer  
Yes  
~ 1 mA  
varies  
n/a  
Depending on output interface mode,  
unused output drivers can be powered  
down for maximum power savings  
Output interface drivers  
Decimation filter  
Yes  
Yes  
-
-
Enabled  
Disabled  
n/a  
n/a  
see electrical  
table  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.4.3 Digital Channel Averaging  
The ADC3660 includes a digital channel averaging feature which enables improvement of the ADC dynamic  
range (see 8-45). The same input signal is given to both ADC inputs externally and the output of the two  
ADCs is averaged internally. By averaging, uncorrelated noise (e.g. ADC thermal noise) improves 3-dB while  
correlated noise (e.g. jitter in the clock path, reference noise) is unaffected. Therefore the averaging gives close  
to 3-dB improvement at low input frequencies but less at high input frequencies where clock jitter dominates the  
SNR.  
The output from the digital averaging block is given out on the digital outputs of channel A or alternatively can be  
routed to the digital decimation filters using the digital mux.  
NCO  
MUX  
N
ADC  
AVG  
NCO  
N
ADC  
External  
Internal  
8-45. Digital Channel Averaging Diagram  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.5 Programming  
The device is primarily configured and controlled using the serial programming interface (SPI) however it can  
operate in a default configuration without requiring the SPI interface. Furthermore the power down function as  
well as internal/external reference configuration is possible via pin control (PDN/SYNC and REFBUF pin).  
备注  
The power down command (via PIN or SPI) only goes in effect with the ADC sampling clock present.  
After initial power up, the default operating configuration for each device is shown in 8-11.  
8-11. Default device configuration after power up  
FEATURE  
Signal Input  
Auto-zero  
ADC3660  
Differential  
Disabled  
Clock Input  
Reference  
Decimation  
Interface  
Differential  
External  
DDC bypass  
2-wire  
Output Format  
2s complement  
8.5.1 Configuration using PINs only  
The ADC voltage reference can be selected using the REFBUF pin. Even though there is an internal 100 kΩ  
pull-up resistor to AVDD, the REFBUF pin should be set to a voltage externally and not left floating.  
8-12. REFBUF voltage levels control voltage reference selection  
REFBUF VOLTAGE  
> 1.7 V (Default)  
1.2 V (1.15-1.25V)  
0.5 - 0.7V  
VOLTAGE REFERENCE OPTION  
CLOCKING OPTION  
Differential clock input  
Differential clock input  
Differential clock input  
Single ended clock input  
External reference  
External 1.2V input on REFBUF pin using internal gain buffer  
Internal reference  
< 0.1V  
Internal reference  
8.5.2 Configuration using the SPI interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock) and SDIO (serial interface data input/output) pins. Serially shifting  
bits into the device is enabled when SEN is low. Serial data input are latched at every SCLK rising edge when  
SEN is active (low). The serial data are loaded into the register at every 24th SCLK rising edge when SEN is low.  
When the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples  
of 24-bit words within a single active SEN pulse. The interface can function with SCLK frequencies from 12 MHz  
down to very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.  
8.5.2.1 Register Write  
The internal registers can be programmed following these steps:  
1. Drive the SEN pin low  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address) and bits A[14:12] in address field to 0.  
3. Initiate a serial interface cycle by specifying the address of the register (A[11:0]) whose content is written and  
4. Write the 8-bit data that are latched in on the SCLK rising edges  
8-46 shows the timing requirements for the serial register write operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADC3660  
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
Register Address <11:0>  
A7 A6 A5 A4  
Register Data <7:0>  
R/W  
SDIO  
0
0
0
0
A11 A10  
A9  
A8  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tH,SDIO  
tSCLK  
tS,SDIO  
SCLK  
SEN  
tS,SEN  
tH,SEN  
RESET  
8-46. Serial Register Write Timing Diagram  
8.5.2.2 Register Read  
The device includes a mode where the contents of the internal registers can be read back using the SDIO pin.  
This readback mode can be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:  
1. Drive the SEN pin low  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers. Set A[14:12] in address  
field to 0.  
3. Initiate a serial interface cycle specifying the address of the register (A[11:0]) whose content must be read  
4. The device outputs the contents (D[7:0]) of the selected register on the SDIO pin  
5. The external controller can latch the contents at the SCLK falling edge  
Register Address <11:0>  
A7 A6 A5 A4  
Register Data <7:0>  
D5 D4 D3 D2  
R/W  
1
tOZD  
A0  
tOD  
SDIO  
0
0
0
A11 A10  
A9  
A8  
A3  
A2  
A1  
D7  
D6  
D1  
D0  
SCLK  
SEN  
tODZ  
8-47. Serial Register Read Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.6 Register Maps  
8-13. Register Map Summary  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0]  
0x00  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
D1  
0
D0  
0
0
0
0
RESET  
0x07  
OP IF MAPPER  
0
OP IF EN  
OP IF SEL  
PDN  
REFAMP  
PDN  
GLOBAL  
0x08  
0
0
PDN CLKBUF  
0
PDN A  
PDN B  
0x0A  
0x0B  
0x0C  
CMOS OB DIS [7:0]  
CMOS OB DIS [15:8]  
CMOS OB DIS [23:16]  
MASK  
CLKBUF  
MASK  
REFAMP  
MASK BG  
DIS  
0x0D  
0x0E  
0
0
0
0
0
SYNC PIN  
EN  
SPI SYNC SPI SYNC EN  
0
REF CTRL  
REF SEL  
SE CLK EN  
0x11  
0x13  
0x14  
0x15  
0x16  
0x18  
0x19  
0x1B  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x24  
0x25  
0x26  
0
0
0
0
SE A  
0
SE B  
0
0
0
DLL PDN  
0
0
0
AZ EN  
E-FUSE LD  
CUSTOM PAT [7:0]  
CUSTOM PAT [15:8]  
TEST PAT B  
TEST PAT A  
CUSTOM PAT [17:16]  
0
0
0
0
DCLKIN EN  
FCLK DIV  
0
0
0
0
0
0
0
0
0
FCLK SRC  
MAPPER EN  
0
0
20B EN  
0
FCLK EN  
TOG FCLK  
BIT MAPPER RES  
0
0
0
0
0
0
CMOS DCLK DEL  
0
LOW DR EN DCLKIN EN  
0
DCLK OB EN  
2X DCLK  
FCLK PAT [7:0]  
FCLK PAT [15:8]  
0
0
0
0
0
FCLK PAT [19:16]  
0
CH AVG EN  
DECIMATION  
MIX RES A  
DDC MUX  
DIG BYP  
0
DDC EN  
0
0
DDC MUX EN  
REAL OUT  
MIX PHASE  
FS/4 MIX B  
MIX GAIN A  
FS/4 MIX A  
MIX GAIN B  
MIX RES B  
FS/4 MIX PH  
A
0x27  
0
0
0
0
0
OP ORDER A  
Q-DEL A  
0
0
0x2A  
0x2B  
0x2C  
0x2D  
NCO A [7:0]  
NCO A [15:8]  
NCO A [23:16]  
NCO A [31:24]  
FS/4 MIX PH  
B
0x2E  
0
OP ORDER B  
Q-DEL B  
0
0
0x31  
0x32  
NCO B [7:0]  
NCO B [15:8]  
0x33  
NCO B [23:16]  
0x34  
NCO B [31:24]  
0x39..0x60  
0x61..0x88  
0x8F  
OUTPUT BIT MAPPER CHA  
OUTPUT BIT MAPPER CHB  
0
0
0
0
0
0
0
0
0
0
0
0
FORMAT A  
FORMAT B  
0
0
0x92  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8.6.1 Detailed Register Description  
8-48. Register 0x00  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
RESET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-14. Register 0x00 Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
0
0
Must write 0  
RESET  
This bit resets all internal registers to the default values and self  
clears to 0.  
8-49. Register 0x07  
7
6
5
4
3
2
1
0
OP IF MAPPER  
R/W-0  
0
OP IF EN  
R/W-0  
OP IF SEL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-15. Register 0x07 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
OP IF MAPPER  
R/W  
000  
Output interface mapper. This register contains the proper  
output interface bit mapping for the different interfaces. The  
interface bit mapping is internally loaded from e-fuses and also  
requires a fuse load command to go into effect (0x13, D0).  
Register 0x07 along with the E-Fuse Load (0x13, D0) needs to  
be loaded first in the programming sequence since the E-Fuse  
load resets the SPI writes.  
After initial reset the default output interface variant is loaded  
automatically from fuse internally. However when reading back  
this register reads 000 until a value is written using SPI.  
001: 2-wire, 18 and 14-bit  
010: 2-wire, 20 and 16-bit  
011: 1-wire  
100: 0.5-wire  
others: not used  
4
3
0
R/W  
R/W  
0
0
Must write 0  
OP IF EN  
Enables changing the default output interface mode (D2-  
D0).When changing the output interface mode, the registers  
0x0A/0B/0C, 0x18, 0x19 and 0x1F have to written as well.  
2-0  
OP IF SEL  
R/W  
000  
Selection of the output interface mode. OP IF EN (D3) needs to  
be enabled also.  
After initial reset the default output interface is loaded  
automatically from fuse internally. However when reading back  
this register reads 000 until a value is written using SPI.  
011: 2-wire  
100: 1-wire  
101: 0.5-wire  
others: not used  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-50. Register 0x08  
7
0
6
0
5
4
3
2
1
0
PDN CLKBUF PDN REFAMP  
R/W-0 R/W-0  
0
PDN A  
R/W-0  
PDN B  
R/W-0  
PDN GLOBAL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-16. Register 0x08 Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
PDN CLKBUF  
Powers down sampling clock buffer  
0: Clock buffer enabled  
1: Clock buffer powered down  
4
PDN REFAMP  
R/W  
0
Powers down internal reference gain amplifier  
0: REFAMP enabled  
1: REFAMP powered down  
3
2
0
R/W  
R/W  
0
0
Must write 0  
PDN A  
Powers down ADC channel A  
0: ADC channel A enabled  
1: ADC channel A powered down  
1
0
PDN B  
R/W  
R/W  
0
0
Powers down ADC channel B  
0: ADC channel B enabled  
1: ADC channel B powered down  
PDN GLOBAL  
Global power down via SPI  
0: Global power disabled  
1: Global power down enabled. Power down mask (register  
0x0D) determines which internal blocks are powered down.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-51. Register 0x0A/B/C  
7
6
5
4
3
2
1
0
CMOS OB DIS [23:0]  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-17. Register 0x0A/B/C Field Descriptions  
Bit  
Field  
CMOS OB DIS [23:0]  
Type  
Reset  
Description  
7:0  
R/W  
0
These register bits power down the individual CMOS output  
buffers. See 8-18 for the actual bit to pin mapping. Unused  
pins can be powered down (ie set to 1) for maximum power  
savings. Even though unused outputs don't toggle there is still a  
small amount of static power (< 1mA) that can be saved by  
disabling the output buffers.When changing the output interface  
mode (0x07) these registers have to be written again.  
There is a separate control to enable the DCLKIN buffer in  
register 0x1F (D6) and 0x18 (D4). DCLK output buffer is  
powered down using register 0x1F (D4).  
0: Output buffer enabled  
1: Output buffer powered down  
8-18. Output buffer enable bit mapping vs output interface mode  
ADDRESS (HEX)  
BIT  
PIN NAME  
SCMOS 2-w  
SCMOS 1-w  
SCMOS 1/2-w  
D7  
DB5  
DB5  
-
-
D6/D5/D4  
D3  
-
-
-
-
0x0A  
DCLKIN  
-
DCLKIN  
DCLKIN  
DCLKIN  
D2/D1/D0  
-
0x7F  
-
-
0xFF  
-
-
0xFF  
-
Register setting  
D7/D6/D5  
D4  
-
FCLK  
FCLK  
-
FCLK  
-
FCLK  
-
0x0B  
0x0C  
D3/D2/D1  
D0  
-
DB6  
DB6  
0xEE  
-
DB6  
0xEE  
-
-
0xEF  
-
Register setting  
D7/D6/D5/D4/D3/D2  
-
D1  
D0  
DA6  
DA5  
DA6  
DA5  
0xFC  
DA6  
-
DA6  
-
Register setting  
0xFD  
0xFD  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-52. Register 0x0D (PDN GLOBAL MASK)  
7
0
6
0
5
4
3
2
1
0
0
0
0
MASK CLKBUF MASK REFAMP MASK BG DIS  
R/W-0 R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-19. Register 0x0D Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
MASK CLKBUF  
MASK REFAMP  
MASK BG DIS  
Global power down mask control for sampling clock input buffer.  
0: Clock buffer will get powered down when global power down  
is exercised.  
1: Clock buffer will NOT get powered down when global power  
down is exercised.  
2
1
R/W  
R/W  
0
0
Global power down mask control for reference amplifier.  
0: Reference amplifier will get powered down when global power  
down is exercised.  
1: Reference amplifier will NOT get powered down when global  
power down is exercised.  
Global power down mask control for internal 1.2V bandgap  
voltage reference. Setting this bit reduces power consumption in  
global power down mode but increases the wake up time. See  
the power down option overview.  
0: Internal 1.2V bandgap voltage reference will NOT get  
powered down when global power down is exercised.  
1: Internal 1.2V bandgap voltage reference will get powered  
down when global power down is exercised.  
0
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-53. Register 0x0E  
7
6
5
4
3
2
1
0
SYNC PIN EN  
R/W-0  
SPI SYNC  
R/W-0  
SPI SYNC EN  
R/W-0  
0
REF CTL  
R/W-0  
REF SEL  
SE CLK EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-20. Register 0x0E Field Descriptions  
Bit  
Field  
SYNC PIN EN  
Type  
Reset  
Description  
7
R/W  
0
This bit controls the functionality of the SYNC/PDN pin.  
0: SYNC/PDN pin exercises global power down mode when pin  
is pulled high.  
1: SYNC/PDN pin issues the SYNC command when pin is  
pulled high.  
6
5
SPI SYNC  
R/W  
R/W  
0
0
Toggling this bit issues the SYNC command using the SPI  
register write. SYNC using SPI must be enabled as well (D5).  
This bit doesn't self reset to 0.  
0: Normal operation  
1: SYNC command issued.  
SPI SYNC EN  
This bit enables synchronization using SPI instead of the  
SYNC/PDN pin.  
0: Synchronization using SPI register bit disabled.  
1: Synchronization using SPI register bit enabled.  
4
3
0
R/W  
R/W  
0
0
Must write 0  
REF CTL  
This bit determines if the REFBUF pin controls the voltage  
reference selection or the SPI register (D2-D1).  
0: The REFBUF pin selects the voltage reference option.  
1: Voltage reference is selected using SPI (D2-D1) and single  
ended clock using D0.  
2-1  
REF SEL  
R/W  
R/W  
00  
Selects of the voltage reference option. REF CTRL (D3) must be  
set to 1.  
00: Internal reference  
01: External voltage reference (1.2V) using internal reference  
buffer (REFBUF)  
10: External voltage reference  
11: not used  
0
SE CLK EN  
0
Selects single ended clock input and powers down the  
differential sampling clock input buffer. REF CRTL (D3) must be  
set to 1.  
0: Differential clock input  
1: Single ended clock input  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-54. Register 0x11  
7
0
6
0
5
4
3
2
1
0
0
SE A  
R/W-0  
SE B  
R/W-0  
0
DLL PDN  
R/W-0  
AZ EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-21. Register 0x11 Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
SE A  
This bit enables single ended analog input, channel A  
0: Differential input  
1: Single ended input  
4
SE B  
R/W  
0
This bit enables single ended analog input, channel B  
0: Differential input  
1: Single ended input  
3
2
0
R/W  
R/W  
0
0
Must write 0  
DLL PDN  
This register powers down the internal DLL, which is used to  
adjust the sampling time. This register must only be enabled  
when operating at sampling rates below 40 MSPS. When DLL  
PDN bit is enabled the sampling time is directly dependent on  
sampling clock duty cycle (with a 50/50 duty cycle the sampling  
time is TS/2).  
0: Sampling time is TS/ 4  
1: Sampling time is TS/2 (only for sampling rates below 40  
MSPS).  
1
0
0
R/W  
R/W  
0
0
Must write 0  
AZ EN  
This bit enables the internal auto-zero circuitry.  
0: Auto-zero disabled  
1: Auto-zero enabled  
8-55. Register 0x13  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
E-FUSE LD  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-22. Register 0x13 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
0
0
0
Must write 0  
E-FUSE LD  
This register bit loads the internal bit mapping for different  
interfaces. After setting the interface in register 0x07, this E-  
FUSE LOAD bit needs to be set to 1 and reset to 0 for loading to  
go into effect. Register 0x07 along with the E-Fuse Load (0x13,  
D0) needs to be loaded first in the programming sequence since  
the E-Fuse load resets the SPI writes.  
0: E-FUSE LOAD set  
1: E-FUSE LOAD reset  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-56. Register 0x14/15/16  
7
6
5
4
3
2
1
0
CUSTOM PAT [7:0]  
CUSTOM PAT [15:8]  
TEST PAT B  
R/W-0  
TEST PAT A  
R/W-0  
CUSTOM PAT [17:16]  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-23. Register 0x14/15/16 Field Descriptions  
Bit  
Field  
CUSTOM PAT [17:0]  
Type  
Reset  
Description  
7-0  
R/W  
00000000 This register is used for two purposes:  
It sets the constant custom pattern starting from MSB  
It sets the RAMP pattern increment step size.  
00001: Ramp pattern for 18-bit ADC  
00100: Ramp pattern for 16-bit ADC  
10000: Ramp pattern for 14-bit ADC  
7-5  
TEST PAT B  
R/W  
000  
Enables test pattern output mode for channel B (NOTE: The test  
pattern is set prior to the bit mapper and is based on native  
resolution of the ADC starting from the MSB). These work in  
either output format.  
000: Normal output mode (test pattern output disabled)  
010: Ramp pattern: need to set proper increment using  
CUSTOM PAT register  
011: Constant Pattern using CUSTOM PAT [17:0] in register  
0x14/15/16.  
others: not used  
4-2  
TEST PAT A  
R/W  
000  
Enables test pattern output mode for channel A (NOTE: The test  
pattern is set prior to the bit mapper and is based on native  
resolution of the ADC starting from the MSB). These work in  
either output format.  
000: Normal output mode (test pattern output disabled)  
010: Ramp pattern: need to set proper increment using  
CUSTOM PAT register  
011: Constant Pattern using CUSTOM PAT [17:0] in register  
0x14/15/16.  
others: not used  
8-57. Register 0x18  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
DCLKIN EN  
R/W-0  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-24. Register 0x18 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
0
0
1
Must write 0  
DCLKIN EN  
This bit enables the DCLKIN clock input buffer for serial CMOS  
modes. Also DCLKIN EN (0x1F, D6) needs to be set as  
well.When changing the otuput interface mode (0x07) this  
register has to be written again.  
0: DCLKIN buffer powered down.  
1: DCLKIN buffer enabled.  
3-0  
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-58. Register 0x19  
7
6
0
5
0
4
3
2
0
1
0
FCLK SRC  
R/W-0  
FCLK DIV  
R/W-0  
0
FCLK EN  
R/W-0  
TOG FCLK  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-25. Register 0x19 Field Descriptions  
Bit  
Field  
FCLK SRC  
Type  
Reset  
Description  
7
R/W  
0
User has to select if FCLK signal comes from ADC or from DDC  
block. Here real decimation is treated same as bypass mode  
0: FCLK generated from ADC. FCLK SRC set to 0 for DDC  
bypass, real decimation mode and 1/2-w complex decimation  
mode.  
1: FCLK generated from DDC block. In complex decimation  
mode only this bit needs to be set for 2-w and 1-w output  
interface mode but NOT for 1/2-w mode.  
6-5  
4
0
R/W  
R/W  
0
0
Must write 0  
FCLK DIV  
This bit needs to be set to 1 for 2-w output mode in bypass  
mode only (non decimation).  
0: All output interface modes except 2-w bypass mode..  
1: 2-w output interface mode.  
3-2  
1
0
R/W  
R/W  
0
1
Must write 0  
FCLK EN  
This bit enables FCLK output.  
0: FCLK output disabled.  
When changing the output interface mode (0x07) this register  
has to be written again. 1: FCLK output enabled.  
0
TOG FCLK  
R/W  
0
This bit adjusts the FCLK signal appropriately for 1/2-wire mode  
where FCLK is stretched to cover channel A and channel B.  
This bit ONLY needs to be set in 1/2-wire mode with complex  
decimation mode.  
0: all other modes.  
1: FCLK for 1/2-wire complex decimation mode.  
8-26. Configuration of FCLK SRC and FCLK DIV Register Bits vs Serial Interface  
BYPASS/DECIMATION  
SERIAL INTERFACE  
FCLK SRC  
FCLK DIV  
TOG FCLK  
2-wire  
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
Decimation Bypass/ Real Decimation  
Complex Decimation  
1-wire  
1/2-wire  
2-wire  
1-wire  
1/2-wire  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-59. Register 0x1B  
7
6
5
4
3
2
0
1
0
0
0
MAPPER EN  
R/W-0  
20B EN  
R/W-0  
BIT MAPPER RES  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-27. Register 0x1B Field Descriptions  
Bit  
Field  
MAPPER EN  
Type  
Reset  
Description  
7
R/W  
0
This bit enables changing the resolution of the output (including  
output serialization factor) in bypass mode only. This bit is not  
needed for 20-bit resolution.  
0: Output bit mapper disabled.  
1: Output bit mapper enabled.  
6
20B EN  
R/W  
R/W  
0
This bit enables 20-bit output resolution which can be useful for  
very high decimation settings so that quantization noise doesn't  
impact the ADC performance.  
0: 20-bit output resolution disabled.  
1: 20-bit output resolution enabled.  
5-3  
BIT MAPPER RES  
000  
Sets the output resolution using the bit mapper. MAPPER EN bit  
(D6) needs to be enabled when operating in bypass mode..  
000: 18 bit  
001: 16 bit  
010: 14 bit  
all others, n/a  
2-0  
0
R/W  
0
Must write 0  
8-28. Register Settings for Output Bit Mapper vs Operating Mode  
BYPASS/DECIMATION  
Decimation Bypass  
Real Decimation  
OUTPUT RESOLUTION  
MAPPER EN (D7)  
BIT MAPPER RES (D5-D3)  
Resolution Change  
1
0
0
000: 18-bit  
001: 16-bit  
010: 14-bit  
Resolution Change (default 18-bit)  
Complex Decimation  
8-60. Register 0x1E  
7
0
6
0
5
4
3
2
0
1
0
0
0
CMOS DCLK DEL  
R/W-0 R/W-0  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-29. Register 0x1E Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
0
0
Must write 0  
CMOS DCLK DEL  
00  
These bits adjust the output timing of CMOS DCLK output.  
00: no delay  
01: DCLK advanced by 50 ps  
10: DCLK delayed by 50 ps  
11: DCLK delayed by 100 ps  
3-0  
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-61. Register 0x1F  
7
6
5
0
4
3
2
0
1
0
0
0
LOW DR EN  
R/W-0  
DCLKIN EN  
R/W-0  
DCLK OB EN  
R/W-0  
2X DCLK  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-30. Register 0x1F Field Descriptions  
Bit  
Field  
LOW DR EN  
Type  
Reset  
Description  
7
R/W  
0
This bit impacts the output drive strength of the CMOS output  
buffers. This bit can be enabled at slow speeds in order to save  
power consumption but it will degrade the rise and fall times.  
0: Low drive strength disabled.  
1: Low drive strength enabled.  
6
DCLKIN EN  
R/W  
1
This bit enables the DCLKIN clock input buffer for serial CMOS  
modes. DCLKIN EN (0x18, D4) needs to be set as well.  
When changing the output interface mode this register has to be  
written again.  
0: DCLKIN buffer powered down.  
1: DCLKIN buffer enabled.  
5
4
0
R/W  
R/W  
0
1
Must write 0  
DCLK OB EN  
This bit enables DCLK output buffer. When changing the output  
interface mode (0x07) this register has to be written again.  
0: DCLK output buffer powered down.  
1: DCLK output buffer enabled.  
3
2X DCLK  
R/W  
0
0
This bit enables SDR output clocking with serial CMOS mode.  
When this mode is enabled, DCLKIN required is twice as fast  
and data is output only on rising edge of DCLK.  
0: Data output on DCLK rising and falling edge.  
1: 2x DCLK mode enabled.  
2-0  
0
R/W  
Must write 0  
8-62. Register 0x20/21/22  
7
0
6
5
4
3
2
1
0
FCLK PAT [7:0]  
FCLK PAT [15:8]  
0
0
0
FCLK PAT [19:16]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-31. Register 0x20/21/22 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
FCLK PAT [19:0]  
R/W  
0xFFC00  
These bits can adjust the duty cycle of the FCLK. In decimation  
bypass mode the FCLK pattern gets adjusted automatically for  
the different output resolutions. 8-32 shows the proper FCLK  
pattern values for 1-wire and 1/2-wire in real/complex  
decimation.  
8-32. FCLK Pattern for different resolution based on interface  
DECIMATION  
OUTPUT RESOLUTION  
2-WIRE  
1-WIRE  
0xFE000  
0xFF000  
0xFF800  
0xFFC00  
0xFFFFF  
0xFFFFF  
0xFFFFF  
0xFFFFF  
1/2-WIRE  
14-bit  
16-bit  
18-bit  
20-bit  
14-bit  
16-bit  
18-bit  
20-bit  
REAL DECIMATION  
Use Default  
Use Default  
0xFFFFF  
0xFFFFF  
0xFFFFF  
0xFFFFF  
COMPLEX  
DECIMATION  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-63. Register 0x24  
7
0
6
0
5
4
3
2
1
0
0
CH AVG EN  
R/W-0  
DDC MUX  
DIG BYP  
R/W-0  
DDC EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-33. Register 0x24 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
0
0
0
Must write 0  
CH AVG EN  
Averages the output of ADC channel A and channel B together.  
The DDC MUX has to be enabled and set to '11'. The  
decimation filter needs to be enabled and set to bypass (fullrate  
output) or decimation and DIG BYP set to 1.  
0: Channel averaging feature disabled  
1: Output of channel A and channel B are averaged: (A+B)/2.  
4-3  
DDC MUX  
R/W  
R/W  
0
0
Configures DDC MUX in front of the decimation filter.  
00: ADC channel A connected to DDC A; ADC Channel B  
connected to DDC B  
01: ADC channel A connected to DDC A and DDC B.  
10: ADC channel B connected to DDC A and DDC B.  
11: Output of ADC averaging block (see CH AVG EN) given to  
DDC A and DDC B.  
2
DIG BYP  
This bit needs to be set to enable digital features block which  
includes decimation.  
0: Digital feature block bypassed - lowest latency  
1: Data path includes digital features  
1
0
DDC EN  
0
R/W  
R/W  
0
0
Enables internal decimation filter for both channels  
0: DDC disabled.  
1: DDC enabled.  
Must write 0  
To output  
interface  
DDC  
N
N
CH  
Average  
DECIMATION  
DIG BYP  
DDC  
DDC MUX  
To output  
interface  
8-64. Register control for digital features  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-65. Register 0x25  
7
6
5
4
3
2
0
1
0
0
DDC MUX EN  
R/W-0  
DECIMATION  
R/W-0  
REAL OUT  
R/W-0  
MIX PHASE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-34. Register 0x25 Field Descriptions  
Bit  
Field  
DDC MUX EN  
Type  
Reset  
Description  
7
R/W  
0
Enables the digital mux between ADCs and decimation filters.  
This bit is required for DDC mux settings in register 0x24 (D4,  
D3) to go into effect.  
0: DDC mux disabled  
1: DDC mux enabled  
6-4  
DECIMATION  
R/W  
000  
Complex decimation setting. This applies to both channels.  
000: Bypass mode (no decimation)  
001: Decimation by 2  
010: Decimation by 4  
011: Decimation by 8  
100: Decimation by 16  
101: Decimation by 32  
others: not used  
3
REAL OUT  
R/W  
0
This bit selects real output decimation. This mode applies to  
both channels. In this mode, the decimation filter is a low pass  
filter and no complex mixing is performed to reduce power  
consumption. For maximum power savings the NCO in this case  
should be set to 0.  
0: Complex decimation  
1: Real decimation  
2-1  
0
0
R/W  
R/W  
0
0
Must write 0  
MIX PHASE  
This bit used to invert the NCO phase  
0: NCO phase as is.  
1: NCO phase inverted.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-66. Register 0x26  
7
6
5
4
3
2
1
0
MIX GAIN A  
MIX RES A  
R/W-0  
FS/4 MIX A  
R/W-0  
MIX GAIN B  
MIX RES B  
R/W-0  
FS/4 MIX B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-35. Register 0x26 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
MIX GAIN A  
R/W  
00  
This bit applies a 0, 3 or 6-dB digital gain to the output of digital  
mixer to compensate for the mixing loss for channel A.  
00: no digital gain added  
01: 3-dB digital gain added  
10: 6-dB digital gain added  
11: not used  
5
4
MIX RES A  
FS/4 MIX A  
R/W  
R/W  
0
0
Toggling this bit resets the NCO phase of channel A and loads  
the new NCO frequency. This bit does not self reset.  
Enables complex mixing with FS/4 for DDC A.  
0: FS/4 mixing disabled.  
1: FS/4 mixing enabled.  
3-2  
MIX GAIN B  
R/W  
00  
This bit applies a 0, 3 or 6-dB digital gain to the output of digital  
mixer to compensate for the mixing loss for channel B.  
00: no digital gain added  
01: 3-dB digital gain added  
10: 6-dB digital gain added  
11: not used  
1
0
MIX RES B  
FS/4 MIX B  
R/W  
R/W  
0
0
Toggling this bit resets the NCO phase of channel B and loads  
the new NCO frequency. This bit does not self reset.  
Enables complex mixing with FS/4 for DDC B.  
0: FS/4 mixing disabled.  
1: FS/4 mixing enabled.  
8-67. Register 0x27  
7
0
6
0
5
0
4
3
2
1
0
0
0
OP ORDER A  
R/W-0  
Q-DEL A  
R/W-0  
FS/4 MIX PH A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-36. Register 0x27 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
0
0
0
Must write 0  
OP ORDER A  
Swaps the I and Q output order for channel A. See 8-37 for  
recommended settings. Only used with complex decimation. Set  
to 0 with real decimation.  
0: Output order is I[n], Q[n]  
1: Output order is swapped: Q[n], I[n]  
3
Q-DEL A  
R/W  
0
This delays the Q-sample output of channel A by one. See 表  
8-37 for recommended settings. Only used with complex  
decimation. Set to 0 with real decimation.  
0: Output order is I[n], Q[n]  
1: Q-sample is delayed by 1 sample: I[n], Q[n+1], I[n+1], Q[n+2]  
2
FS/4 MIX PH A  
0
R/W  
R/W  
0
0
Inverts the mixer phase for channel A when using FS/4 mixer  
0: Mixer phase is non-inverted  
1: Mixer phase is inverted  
1-0  
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-37. OP-ORDER and Q-DELAY Register Settings for Complex Decimation  
SCMOS INTERFACE  
OP-ORDER  
Q-DELAY  
2-wire  
1-wire  
1
0
1
0
1
1
1/2-wire  
8-68. Register 0x2A/B/C/D  
7
6
5
4
3
2
1
0
NCO A [7:0]  
NCO A [15:8]  
NCO A [23:16]  
NCO A [31:24]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-38. Register 0x2A/2B/2C/2D Field Descriptions  
Bit  
7-0  
Field  
NCO A [31:0]  
Type  
Reset  
Description  
R/W  
0
Sets the 32 bit NCO value for decimation filter channel A. The  
NCO value is fNCO× 232/FS  
In real decimation mode these registers are automatically set to  
0.  
8-69. Register 0x2E  
7
0
6
5
0
4
3
2
1
0
0
0
0
OP ORDER B  
R/W-0  
Q-DEL B  
R/W-0  
FS/4 MIX PH B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-39. Register 0x2E Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
0
0
0
Must write 0  
OP ORDER B  
Swaps the I and Q output order for channel B. See 8-37 for  
recommended settings. Only used with complex decimation. Set  
to 0 with real decimation.  
0: Output order is I[n], Q[n]  
1: Output order is swapped: Q[n], I[n]  
3
Q-DEL B  
R/W  
0
This delays the Q-sample output of channel B by one. See 表  
8-37 for recommended settings. Only used with complex  
decimation. Set to 0 with real decimation.  
0: Output order is I[n], Q[n]  
1: Q-sample is delayed by 1 sample: I[n], Q[n+1], I[n+1], Q[n+2]  
2
FS/4 MIX PH B  
0
R/W  
R/W  
0
0
Inverts the mixer phase for channel B when using FS/4 mixer  
0: Mixer phase is non-inverted  
1: Mixer phase is inverted  
1-0  
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-70. Register 0x31/32/33/34  
7
6
5
4
3
2
1
0
NCO B [7:0]  
NCO B [15:8]  
NCO B [23:16]  
NCO B [31:24]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-40. Register 0x31/32/33/34 Field Descriptions  
Bit  
7-0  
Field  
NCO B [31:0]  
Type  
Reset  
Description  
R/W  
0
Sets the 32 bit NCO value for decimation filter channel B. The  
NCO value is fNCO× 232/FS  
In real decimation mode these registers are automatically set to  
0.  
8-71. Register 0x39..0x60  
7
6
5
4
3
2
1
0
OUTPUT BIT MAPPER CHA  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-41. Register 0x39..0x60 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
OUTPUT BIT MAPPER CHA  
R/W  
0
These registers are used to reorder the output data bus. See the  
8.3.5.4 on how to program it.  
8-72. Register 0x61..0x88  
7
6
5
4
3
2
1
0
OUTPUT BIT MAPPER CHB  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-42. Register 0x61..0x88 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
OUTPUT BIT MAPPER CHB  
R/W  
0
These registers are used to reorder the output data bus. See the  
8.3.5.4 on how to program it.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
8-73. Register 0x8F  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-43. Register 0x8F Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
FORMAT A  
This bit sets the output data format for channel A. Digital bypass  
register bit (0x24, D2) needs to be enabled as well.  
0: 2s complement  
1: Offset binary  
0
0
R/W  
0
Must write 0  
8-74. Register 0x92  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
8-44. Register 0x92 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
0
0
0
Must write 0  
FORMAT B  
This bit sets the output data format for channel B. Digital bypass  
register bit (0x24, D2) needs to be enabled as well.  
0: 2s complement  
1: Offset binary  
0
0
R/W  
0
Must write 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Typical Application  
A sonar receiver is a typical frequency domain application for the ADC3660 and its front end circuitry is very  
similar to several other systems such as software defined radio (SDR), spectrum analyzer, radar or  
communications. Some applications require frequency coverage including DC or near DC (such as, sonar), so it  
is included in this example.  
9-1. Typical configuration for a spectrum analyzer with DC support  
9.1.1 Design Requirements  
Frequency domain applications cover a wide range of frequencies from low input frequencies at or near DC in  
the 1st Nyquist zone to undersampling in higher Nyquist zones. If very low input frequency is supported then the  
input has to be DC coupled and the ADC driven by a fully differential amplifier (FDA). If low frequency support is  
not needed then AC coupling and use of a balun may be more suitable.  
The internal reference is used since DC precision is not needed. However the ADC AC performance is highly  
dependent on the quality of the external clock source. If in-band interferers can be present then the ADC SFDR  
performance will be a key care about as well. A higher ADC sampling rate is desirable in order to relax the  
external anti-aliasing filter an internal decimation filter can be used to reduce the digital output rate afterwards.  
9-1. Design key care-abouts  
FEATURE  
DESCRIPTION  
Signal Bandwidth  
Input Driver  
DC to 2 MHz  
Single ended to differential signal conversion and DC coupling  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
9-1. Design key care-abouts (continued)  
FEATURE  
DESCRIPTION  
Clock Source  
External clock with low jitter  
When designing the amplifier/filter driving circuit, the ADC input full-scale voltage needs to be taken into  
consideration. For example, the ADC3660 input full-scale is 3.2Vpp. When factoring in ~ 1 dB for insertion loss  
of the filter, then the amplifier needs to deliver close to 3.6Vpp. The amplifier distortion performance will degrade  
with a larger output swing and considering the ADC common mode input voltage the amplifier may not be able to  
deliver the full swing. The ADC3660 provides an output common mode voltage of 0.95V and the THS4551 for  
example can only swing all the way to its negative supply. A unipolar 3.3 V amplifier power supply will thus limit  
the maximum voltage swing to ~ 3.8Vpp. If a larger output swing is required (ie larger filter insertion loss) then a  
negative supply for the amplifier is needed in order to eliminate that limitation. Additionally input voltage  
protection diodes may be needed to protect the ADC from over-voltage events.  
9-2. Output voltage swing of THS4541 vs power supply  
DEVICE  
MIN OUTPUT VOLTAGE  
MAX SWING WITH 3.3 V/ 0 V SUPPLY  
THS4551  
VS-  
3.8 Vpp  
9.1.2 Detailed Design Procedure  
9.1.2.1 Input Signal Path  
Depending on desired input signal frequency range the THS4551 and THS4541 provide very good low power  
options to drive the ADC inputs. 9-3 provides a comparison between the THS4551 and THS4541 and the  
power consumption vs usable frequency trade off.  
9-3. Fully Differential Amplifier Options  
DEVICE  
THS4561  
THS4551  
THS4541  
CURRENT (IQ) PER CHANNEL  
USABLE FREQUENCY RANGE  
0.8 mA  
1.4 mA  
10 mA  
< 3 MHz  
< 10 MHz  
< 70 MHz  
The low pass filter design (topology, filter order) is driven by the application itself. However, when designing the  
low pass filter, the optimum load impedance for the amplifier should be taken into consideration as well. Between  
the low pass filter and the ADC input the sampling glitch filter needs to added as well as shown in 8.3.1.2.1. In  
this example the DC - 30 MHz glitch filter is selected.  
9.1.2.2 Sampling Clock  
Applications operating with low input frequencies (such as DC to 2 MHz) typically are less sensitive to  
performance degradation due to clock jitter. The internal ADC aperture jitter improves with faster rise and fall  
times (i.e. square wave vs sine wave). 9-4 provides an overview of the estimated SNR performance of the  
ADC3660 based on different amounts of jitter of the external clock source. The SNR is estimated based on  
ADC3660 thermal noise of 82 dBFS and input signal at -1dBFS in decimation bypass mode.  
9-4. ADC SNR performance across vs input frequency for different amounts of external clock jitter  
INPUT FREQUENCY  
TJ,EXT = 100 fs  
TJ,EXT = 250 fs  
TJ,EXT = 500 fs  
TJ,EXT = 1 ps  
1 MHz  
82.0  
82.0  
82.0  
82.0  
82.0  
81.9  
82.0  
82.0  
81.8  
82.0  
2 MHz  
81.9  
5 MHz  
81.5  
Termination of the clock input should be considered for long clock traces.  
9.1.2.3 Voltage Reference  
The ADC3660 is configured to internal reference operation by applying 0.6 V to the REFBUF pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
9.1.3 Application Curves  
The following FFT plots show the performance of THS4541 driving the ADC3660 operated at 65 MSPS with a  
full-scale input at -1 dBFS. The first FFT spectrum below shows the performance with a single tone input at FIN  
1 MHz and decimation by 16 (real).  
=
The second FFT spectrum shows the a single tone input at FIN = 5 MHz and complex decimation by 16 where  
the NCO is programmed to 4.5 MHz.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
0.5  
1
Input Frequency (MHz)  
1.5  
2
-2.5  
-2  
-1.5  
-1  
-0.5  
0
0.5  
Input Frequency (MHz)  
1
1.5  
2
2.5  
ADC3  
ADC3  
Decimation by 16, real  
Decimation by 16, complex, NCO = 4.5 MHz  
9-2. Single Tone FFT at FIN = 1 MHz  
9-3. Single Tone FFT at FIN = 5 MHz  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADC3660  
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
9.2 Initialization Set Up  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in 9-4.  
1. Apply AVDD and IOVDD (no specific sequence required). After AVDD is applied the internal bandgap  
reference will power up and settle out in ~ 2ms.  
2. Configure REFBUF pin (pull high or low even if configured via SPI later on) and apply the sampling clock.  
3. Apply hardware reset. After hardware reset is released, the default registers are loaded from internal fuses  
and the internal power up capacitor calibration is initiated. The calibration takes approximately 200000 clock  
cycles.  
4. Begin programming using SPI interface.  
t2  
AVDD  
IOVDD  
t1  
REFBUF  
Ext VREF  
CLK  
t4  
t3  
RESET  
SEN  
9-4. Initialization of Serial Registers after Power up  
9-5. Power-up Timing  
MIN  
TYP  
MAX  
UNIT  
t1  
t2  
t3  
t4  
Power-on delay: delay from power up to logic level of REFBUF pin  
Delay from REFBUF pin logic level to RESET rising edge  
RESET pulse width  
2
100  
ms  
ns  
us  
1
Delay from RESET disable to SEN active  
~ 200000  
clock cycles  
9.2.1 Register Initialization During Operation  
If required, the serial interface registers can be cleared and reset to default settings during operation either:  
through a hardware reset or  
by applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 0x00)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
After hardware or software reset the wait time is also ~ 200000 clock cycles before the SPI registers can be  
programmed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADC3660  
 
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
10 Power Supply Recommendations  
The ADC3660 requires two different power-supplies. The AVDD rail provides power for the internal analog  
circuits and the ADC itself while the IOVDD rail powers the digital interface and the internal digital circuits like  
decimation filter or output interface mapper. Power sequencing is not required.  
The AVDD power supply must be low noise in order to achieve data sheet performance. In applications  
operating near DC, the 1/f noise contribution of the power supply needs to be considered as well. The ADC is  
designed for very good PSRR which aides with the power supply filter design.  
55  
50  
45  
40  
35  
30  
0.05 0.1  
1
10  
Frequency of Signal on AVDD (MHz)  
100  
D42_  
10-1. Power supply rejection ratio (PSRR) vs frequency  
There are two recommended power-supply architectures:  
1. Step down using high-efficiency switching converters, followed by a second stage of regulation using a low  
noise LDO to provide switching noise reduction and improved voltage accuracy.  
2. Directly step down the final ADC supply voltage using high-efficiency switching converters. This approach  
provides the best efficiency, but care must be taken to ensure switching noise is minimized to prevent  
degraded ADC performance.  
TI WEBENCH Power Designer can be used to select and design the individual power-supply elements needed:  
see the WEBENCH Power Designer  
Recommended switching regulators for the first stage include the TPS62821, and similar devices.  
Recommended low dropout (LDO) linear regulators include the TPS7A4701, TPS7A90, LP5901, and similar  
devices.  
For the switch regulator only approach, the ripple filter must be designed with a notch frequency that aligns with  
the switching ripple frequency of the DC/DC converter. Note the switching frequency reported from WEBENCH  
and design the EMI filter and capacitor combination to have the notch frequency centered as needed. 10-2  
and 10-3 illustrate the two approaches.  
AVDD and IOVDD supply voltages should not be shared in order to prevent digital switching noise from coupling  
into the analog signal chain.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
FB  
FB  
2.1V  
1.8V  
DC/DC  
Regulator  
5V-12V  
LDO  
AVDD  
10uF 10uF 0.1uF  
47uF  
47uF  
GND  
GND  
GND  
FB  
IOVDD  
10uF 10uF 0.1uF  
FB = Ferrite bead filter  
GND  
10-2. Example: LDO Linear Regulator Approach  
EMI FILTER  
FB  
1.8V  
DC/DC  
Regulator  
5V-12V  
AVDD  
10uF 10uF 10uF  
10uF 10uF 0.1uF  
GND  
GND  
FB  
IOVDD  
10uF 10uF 0.1uF  
GND  
Ripple filter notch frequency to match switching frequency of the DC/DC regulator  
FB = Ferrite bead filter  
10-3. Example Switcher-Only Approach  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADC3660  
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
11 Layout  
11.1 Layout Guidelines  
There are several critical signals which require specific care during board design:  
1. Analog input and clock signals  
Traces should be as short as possible and vias should be avoided where possible to minimize impedance  
discontinuities.  
Traces should be routed using loosely coupled 100-Ωdifferential traces.  
Differential trace lengths should be matched as close as possible to minimize phase imbalance and HD2  
degradation.  
2. Digital output interface  
A 20 ohm series isolation resistor should be used on each CMOS output and placed close the digital  
output. This isolation resistor limits the output current into the capacitive load and thus minimizes the  
switching noise inside the ADC. When driving longer distances a buffer should be used. The resistor  
value should be optimized for the desired output data rate.  
3. Voltage reference  
The bypass capacitor should be placed as close to the device pins as possible and connected between  
VREF and REFGND on top layer avoiding vias.  
Depending on configuration an additional bypass capacitor between REFBUF and REFGND may be  
recommended and should also be placed as close to pins as possible on top layer.  
4. Power and ground connections  
Provide low resistance connection paths to all power and ground pins.  
Use power and ground planes instead of traces.  
Avoid narrow, isolated paths which increase the connection resistance.  
Use a signal/ground/power circuit board stackup to maximize coupling between the ground and power  
plane.  
11.2 Layout Example  
The following screen shot shows the top layer of the ADC364x/ADC3660 EVM.  
Signal and clock inputs are routed as differential signals on the top layer avoiding vias.  
Serial CMOS output interface lanes with isolation resistor and digital buffer.  
Bypass caps are close to the VREF pin on the top layer avoiding vias.  
CMOS output lines with  
isolation resistor and buffer  
close by  
Bypass caps on VREF close  
to the pins  
Clock routing  
without vias  
Analog inputs on  
top layer (no vias)  
11-1. Layout example: top layer of ADC3660 EVM  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADC3660  
 
 
 
ADC3660  
www.ti.com.cn  
ZHCSM31B SEPTEMBER 2020 REVISED MARCH 2022  
12 Device and Documentation Support  
12.1 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.2 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADC3660  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC3660IRSBR  
ADC3660IRSBT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
AZ3660  
AZ3660  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC3660IRSBR  
WQFN  
RSB  
40  
3000  
330.0  
12.4  
5.3  
5.3  
1.5  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RSB 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ADC3660IRSBR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSB0040E  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
(0.2) TYP  
EXPOSED  
11  
20  
THERMAL PAD  
36X 0.4  
10  
21  
2X  
41  
SYMM  
3.6  
3.15 0.1  
1
30  
0.25  
0.15  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.5  
0.3  
0.05  
40X  
4219096/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.15)  
SYMM  
40  
31  
40X (0.6)  
40X (0.2)  
1
30  
36X (0.4)  
41  
SYMM  
(4.8)  
(1.325)  
(
0.2) TYP  
VIA  
10  
21  
(R0.05)  
TYP  
11  
20  
(1.325)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219096/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.785)  
4X ( 1.37)  
40  
31  
40X (0.6)  
1
30  
40X (0.2)  
36X (0.4)  
SYMM  
(0.785)  
(4.8)  
41  
(R0.05) TYP  
10  
21  
METAL  
TYP  
20  
11  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219096/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY