ADS1118QDGSRQ1 [TI]

具有 PGA、振荡器、基准电压、温度传感器和 SPI 的汽车类 16 位、860SPS、4 通道 Δ-Σ ADC | DGS | 10 | -40 to 125;
ADS1118QDGSRQ1
型号: ADS1118QDGSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PGA、振荡器、基准电压、温度传感器和 SPI 的汽车类 16 位、860SPS、4 通道 Δ-Σ ADC | DGS | 10 | -40 to 125

温度传感 光电二极管 传感器 温度传感器 振荡器 转换器
文件: 总45页 (文件大小:1679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
ADS1118-Q1 具有内部基准和温度传感器的汽车类、低功耗、兼容 SPI 的  
16 位模数转换器  
1 特性  
3 说明  
1
符合汽车类应用标准  
具有符合 AEC-Q100 的下列结果:  
ADS1118-Q1 是一款精密的低功耗 16 位模数转换器  
(ADC),其具备测量最常见传感器信号所需的全部功  
能。 ADS1118-Q1 集成了可编程增益放大器 (PGA)、  
电压基准、振荡器和高精度温度传感器。 凭借这些功  
能以及 2V 5.5V 的宽电源电压范围,  
温度等级 1-40°C +125°C  
人体放电模式 (HBM) 静电放电 (ESD) 分类等级  
2
组件充电模式 (CDM) ESD 分类等级 C6  
ADS1118-Q1 非常适用于功率及空间受限型传感器测  
量应用。  
宽电源电压范围:2V 5.5V  
低流耗:  
ADS1118-Q1 以高达 860 /(SPS) 的采样数据传  
输速率进行转换。 PGA 的输入范围为 ±256mV ±  
6.144V,支持以高分辨率测量大信号和小信号。 该器  
件通过输入复用器 (MUX) 测量双路差分输入或四路单  
端输入。 高精度温度传感器用于监控系统级温度或对  
热电偶进行冷结点补偿。  
连续模式时:只有 150μA  
单次模式:自动断电  
可编程数据传输速率范围:8SPS 860SPS  
单周期稳定  
内部低漂移电压基准  
内部温度传感器:  
2°C 误差(最大值)  
ADS1118-Q1 可选择以连续转换模式或单次模式运  
行。该器件在单次模式下完成一次转换后便会自动断  
电。 在空闲状态下,单次模式会显著降低流耗。 所有  
数据均通过串行外设接口 (SPI™) 进行传输。  
ADS1118-Q1 的额定工作温度范围 -40°C +125°  
C。  
内部振荡器  
内部可编程增益放大器 (PGA)  
四个单端或两个差分输入  
2 应用  
电池管理系统  
车用传感器  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
热电偶  
ADS1118-Q1  
VSSOP (10)  
3.00mm × 3.00mm  
电阻式温度检测器 (RTD)  
压力和应力计传感器  
电化学气体传感器  
颗粒物传感器  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS740  
 
 
 
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
K 型热电偶测量  
使用集成温度传感器进行冷结点补偿  
3.3 V  
3.3 V  
0.1 F  
AIN0  
VDD  
ADS1118-Q1  
Voltage  
Reference  
AIN1  
SCLK  
Digital Filter  
and  
Interface  
16-bit  
ûꢀ  
ADC  
CS  
PGA  
Mux  
DOUT/DRDY  
DIN  
3.3 V  
AIN2  
AIN3  
Temperature  
Sensor  
Oscillator  
GND  
2
版权 © 2015, Texas Instruments Incorporated  
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
目录  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 20  
9.5 Programming........................................................... 21  
9.6 Register Maps......................................................... 24  
10 Application and Implementation........................ 26  
10.1 Application Information.......................................... 26  
10.2 Typical Application ............................................... 31  
11 Power-Supply Recommendations ..................... 34  
11.1 Power-Supply Sequencing.................................... 34  
11.2 Power-Supply Decoupling..................................... 34  
12 Layout................................................................... 35  
12.1 Layout Guidelines ................................................. 35  
12.2 Layout Example .................................................... 36  
13 器件和文档支持 ..................................................... 37  
13.1 文档支持................................................................ 37  
13.2 社区资源................................................................ 37  
13.3 ....................................................................... 37  
13.4 静电放电警告......................................................... 37  
13.5 Glossary................................................................ 37  
14 机械、封装和可订购信息....................................... 37  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements: Serial Interface...................... 8  
7.7 Switching Characteristics: Serial Interface................ 8  
7.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 14  
8.1 Noise Performance ................................................. 14  
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
9.2 Functional Block Diagram ....................................... 15  
8
9
4 修订历史记录  
Changes from Original (October 2015) to Revision A  
Page  
已从产品预览更改为量产数据” ............................................................................................................................................ 1  
Copyright © 2015, Texas Instruments Incorporated  
3
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
5 Device Comparison Table  
MAXIMUM SAMPLE  
INPUT CHANNELS  
Differential  
(Single-Ended)  
RESOLUTION  
(Bits)  
SPECIAL  
FEATURES  
DEVICE  
RATE  
(SPS)  
PGA  
INTERFACE  
ADS1118-Q1  
ADS1018-Q1  
ADS1115-Q1  
ADS1015-Q1  
16  
12  
16  
12  
860  
3300  
860  
2 (4)  
2 (4)  
2 (4)  
2 (4)  
Yes  
Yes  
Yes  
Yes  
SPI  
SPI  
I2C  
I2C  
Temperature sensor  
Temperature sensor  
Comparator  
3300  
Comparator  
6 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
DIN  
SCLK  
1
2
3
4
5
10 DIN  
DOUT/  
9
8
7
6
CS  
GND  
AIN0  
AIN1  
DRDY  
VDD  
AIN3  
AIN2  
AIN1  
Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
SCLK  
CS  
Digital input  
Digital input  
Supply  
Serial clock input  
2
Chip select; active low. Connect to GND if not used.  
Ground  
3
GND  
4
AIN0  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
Analog input 0. Leave unconnected or tie to VDD if not used.  
Analog input 1. Leave unconnected or tie to VDD if not used.  
Analog input 2. Leave unconnected or tie to VDD if not used.  
Analog input 3. Leave unconnected or tie to VDD if not used.  
5
AIN1  
6
AIN2  
7
AIN3  
8
VDD  
Power supply. Connect a 0.1-µF power supply decoupling capacitor to GND.  
Serial data output combined with data ready; active low  
Serial data input  
9
DOUT/DRDY  
DIN  
Digital output  
Digital input  
10  
4
Copyright © 2015, Texas Instruments Incorporated  
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
5.5  
UNIT  
V
Power-supply voltage  
Analog input voltage  
Digital input voltage  
Input current, continuous  
VDD to GND  
AIN0, AIN1, AIN2, AIN3  
DIN, DOUT/DRDY, SCLK, CS  
Any pin except power supply pins  
Junction, TJ  
GND – 0.3  
GND – 0.3  
–10  
VDD + 0.3  
VDD + 0.3  
10  
V
V
mA  
–40  
150  
Temperature  
°C  
Storage, Tstg  
–60  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VDD  
Power supply  
VDD to GND  
2
5.5  
V
ANALOG INPUTS(1)  
FSR  
Full-scale input voltage(2)  
VIN = V(AINP) - V(AINN)  
See Table 3  
V(AINx)  
Absolute input voltage  
GND  
GND  
–40  
VDD  
VDD  
125  
V
V
DIGITAL INPUTS  
Input voltage  
TEMPERATURE  
TA Operating ambient temperature  
°C  
(1) AINP and AINN denote the selected positive and negative inputs. AINx denotes one of the four available analog inputs.  
(2) This parameter expresses the full-scale range of the ADC scaling. No more than VDD + 0.3 V or 5.5 V (whichever is smaller) must be  
applied to this device.  
7.4 Thermal Information  
ADS1118-Q1  
THERMAL METRIC(1)  
DGS (VSSOP)  
10 PINS  
186.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
51.5  
108.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.7  
ψJB  
106.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
Maximum and minimum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.  
All specifications are at VDD = 3.3 V, data rate = 8 SPS, and FSR = ±2.048 V (unless otherwise noted).  
PARAMETER  
ANALOG INPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FSR = ±6.144 V(1)  
FSR = ±4.096 V(1), FSR = ±2.048 V  
FSR = ±1.024 V  
8
6
Common-mode input impedance  
Differential input impedance  
MΩ  
3
FSR = ±0.512 V, FSR = ±0.256 V  
FSR = ±6.144 V(1)  
FSR = ±4.096 V(1)  
100  
22  
15  
MΩ  
kΩ  
FSR = ±2.048 V  
4.9  
2.4  
710  
FSR = ±1.024 V  
FSR = ±0.512 V, FSR = ±0.256 V  
SYSTEM PERFORMANCE  
Resolution (no missing codes)  
Data rate  
16  
Bits  
DR  
INL  
8, 16, 32, 64, 128, 250, 475, 860  
–10%  
SPS  
Data rate variation  
Output noise  
All data rates  
10%  
See Noise Performance section  
Integral nonlinearity  
DR = 8 SPS, FSR = ±2.048 V(2)  
FSR = ±2.048 V, differential inputs  
FSR = ±2.048 V, single-ended inputs  
FSR = ±2.048 V  
1
LSB  
LSB  
±0.1  
±0.25  
0.002  
0.2  
±2  
Offset error  
Offset drift  
LSB/°C  
LSB/V  
LSB  
Offset power-supply rejection  
Offset channel match  
Gain error(3)  
FSR = ±2.048 V, dc supply variation  
Match between any two inputs  
FSR = ±2.048 V, TA = 25°C  
FSR = ±0.256 V  
0.6  
0.01%  
7
0.15%  
Gain drift(3)(4)  
FSR = ±2.048 V  
FSR = ±6.144 V(1)  
5
40 ppm/°C  
ppm/V  
5
Gain power-supply rejection  
Gain match(3)  
10  
Match between any two gains  
Match between any two inputs  
At DC, FSR = ±0.256 V  
0.01%  
0.01%  
105  
100  
90  
0.1%  
0.1%  
Gain channel match  
At DC, FSR = ±2.048 V  
CMRR Common-mode rejection ratio  
At DC, FSR = ±6.144 V(1)  
fCM = 50 Hz, DR = 860 SPS  
fCM = 60 Hz, DR = 860 SPS  
dB  
105  
105  
TEMPERATURE SENSOR  
Temperature range  
–40  
125  
°C  
Temperature resolution  
0.03125  
0.2  
°C/LSB  
TA = 0°C to 70°C  
TA = –40°C to +125°C  
vs supply  
±1  
±2  
°C  
Accuracy  
0.4  
0.03125  
±0.25  
°C/V  
(1) This parameter expresses the full-scale range of the ADC scaling. No more than VDD + 0.3 V or 5.5 V (whichever is smaller) must be  
applied to this device.  
(2) Best-fit INL; covers 99% of full-scale.  
(3) Includes all errors from onboard PGA and voltage reference.  
(4) Maximum value specified by characterization.  
6
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Electrical Characteristics (continued)  
Maximum and minimum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.  
All specifications are at VDD = 3.3 V, data rate = 8 SPS, and FSR = ±2.048 V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS/OUTPUTS  
VIH  
VIL  
VOH  
VOL  
IH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input leakage, high  
0.7 VDD  
GND  
VDD  
V
V
0.2 VDD  
IOH = 1 mA  
0.8 VDD  
GND  
V
IOL = 1 mA  
VIH = 5.5 V  
VIL = GND  
0.2 VDD  
10  
V
–10  
μA  
μA  
IL  
Input leakage, low  
–10  
10  
POWER SUPPLY  
Power-down, TA = 25°C  
Power-down  
0.5  
2
5
IVDD  
Supply current  
μA  
Operating, TA = 25°C  
Operating  
150  
200  
300  
VDD = 5 V  
0.9  
0.5  
0.3  
PD  
Power dissipation  
VDD = 3.3 V  
mW  
VDD = 2 V  
Copyright © 2015, Texas Instruments Incorporated  
7
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7.6 Timing Requirements: Serial Interface  
over operating ambient temperature range and VDD = 2 V to 5.5 V (unless otherwise noted)  
MIN  
100  
100  
200  
250  
100  
100  
MAX  
UNIT  
ns  
tCSSC  
tSCCS  
tCSH  
Delay time, CS falling edge to first SCLK rising edge(1)  
Delay time, final SCLK falling edge to CS rising edge  
Pulse duration, CS high  
ns  
ns  
tSCLK  
tSPWH  
SCLK period  
ns  
Pulse duration, SCLK high  
ns  
ns  
tSPWL  
Pulse duration, SCLK low(2)  
28  
ms  
ns  
tDIST  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Hold time, SCLK rising edge to DOUT invalid  
50  
50  
0
tDIHD  
tDOHD  
ns  
ns  
(1) CS can be tied low permanently in case the serial bus is not shared with any other device.  
(2) Holding SCLK low longer than 28 ms resets the SPI interface.  
7.7 Switching Characteristics: Serial Interface  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time,  
CS falling edge to DOUT driven  
tCSDOD  
tDOPD  
DOUT load = 20 pF || 100 kto GND  
100  
ns  
Propagation delay time,  
SCLK rising edge to valid new DOUT  
DOUT load = 20 pF || 100 kto GND  
DOUT load = 20 pF || 100 kto GND  
0
50  
ns  
ns  
Propagation delay time,  
CS rising edge to DOUT high impedance  
tCSDOZ  
100  
tCSH  
CS  
tSCLK  
tCSSC  
tSPWH  
tSCCS  
SCLK  
tDIHD  
tSPWL  
tSCSC  
tDIST  
DIN  
tDOHD  
tCSDOD  
tCSDOZ  
Hi-Z  
tDOPD  
Hi-Z  
DOUT  
Figure 1. Serial Interface Timing  
8
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
7.8 Typical Characteristics  
at TA = 25°C, VDD = 3.3 V, and FSR = ±2.048 V (unless otherwise noted)  
4
3
4
VDD = 2.0 V  
VDD = 3.3 V  
VDD = 5.0 V  
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
−1  
−2  
−3  
−4  
−60 −40 −20  
0
20  
40  
60  
80 100 120 140  
-2.048  
-1.024  
0
1.024  
2.048  
Temperature (°C)  
G028  
Input Signal (V)  
DR = 860 SPS, diff Inputs; includes noise, offset, and gain errors  
Figure 3. Data Rate vs Temperature  
Figure 2. Total Error vs Input Signal  
15  
5
4
3
2
1
0
FSR = 0.25ꢀ V  
FSR = 0.512 V  
12.5  
TA = −40°C  
TA = 25°C  
TA = 125°C  
FSR = 2.04ꢁ V  
FSR = ꢀ.144 V  
10  
7.5  
5
−1  
−2  
−3  
−4  
−5  
2.5  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
−2  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
2
Supply Voltage (V)  
Input Signal (V)  
G010  
FSR = ±2.048 V, DR = 8 SPS, VDD = 3.3 V, best fit  
Figure 4. INL vs Supply Voltage  
Figure 5. INL vs Input Signal  
10  
8
5
TA = −40°C  
TA = 25°C  
TA = 125°C  
TA = −40°C  
TA = 25°C  
TA = 125°C  
4
6
3
2
4
2
1
0
0
−2  
−4  
−6  
−8  
−10  
−1  
−2  
−3  
−4  
−5  
−0.5 −0.4 −0.2 −0.1  
0
0.1  
0.2  
0.4  
0.5  
−2  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
2
Input Signal (V)  
Input Signal (V)  
FSR = ±0.512 V, DR = 8 SPS, VDD = 3.3 V, best fit  
FSR = ±2.048 V, DR = 8 SPS, VDD = 5 V, best fit  
Figure 6. INL vs Input Signal  
Figure 7. INL vs Input Signal  
Copyright © 2015, Texas Instruments Incorporated  
9
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 3.3 V, and FSR = ±2.048 V (unless otherwise noted)  
10  
12  
10  
8
TA = −40°C  
TA = 25°C  
TA = 125°C  
VDD = 2.0 V  
VDD = 3.3 V  
VDD = 5.0 V  
8
6
4
2
0
6
−2  
−4  
−6  
−8  
−10  
4
2
0
−0.5 −0.4 −0.2 −0.1  
0
0.1  
0.2  
0.4  
0.5  
−60 −40 −20  
0
20  
40  
60  
80 100 120 140  
Input Signal (V)  
Temperature (°C)  
G015  
FSR = ±0.512 V, DR = 8 SPS, VDD = 5 V, best fit  
FSR = ±2.048 V, DR = 8 SPS, best fit  
Figure 8. INL vs Input Signal  
Figure 9. INL vs Temperature  
60  
16  
AIN0 to GND  
AIN1 to GND  
AIN2 to GND  
AIN3 to GND  
TA = −40°C  
TA = 25°C  
TA = 125°C  
14  
12  
10  
8
40  
20  
0
6
−20  
−40  
−60  
4
2
0
−40  
−20  
0
20  
40  
60  
80  
100  
120  
8
16  
32  
64  
128  
250  
475  
860  
Temperature (°C)  
Data Rate (SPS)  
G004  
FSR = ±2.048 V, best fit  
Figure 11. Single-Ended Offset Voltage vs Temperature  
Figure 10. INL vs Data Rate  
60  
40  
40  
AIN0 to GND  
AIN1 to GND  
AIN2 to GND  
AIN3 to GND  
AIN0 to AIN1  
30  
20  
AIN0 to AIN3  
AIN1 to AIN3  
AIN2 to AIN3  
20  
10  
0
0
−10  
−20  
−30  
−40  
−20  
−40  
−60  
2
2.5  
3
3.5  
4
4.5  
5
−40  
−20  
0
20  
40  
60  
80  
100  
120  
Supply Voltage (V)  
Temperature (°C)  
G005  
G006  
Figure 12. Single-Ended Offset Voltage vs Supply  
Figure 13. Differential Offset Voltage vs Temperature  
10  
Copyright © 2015, Texas Instruments Incorporated  
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 3.3 V, and FSR = ±2.048 V (unless otherwise noted)  
15  
10  
5
40  
AIN0 to AIN1  
AIN0 to AIN3  
AIN1 to AIN3  
AIN2 to AIN3  
30  
20  
10  
0
−10  
−20  
−30  
−40  
0
2
2.5  
3
3.5  
4
4.5  
5
Supply Voltage (V)  
G007  
G046  
Offset Drift (LSB/°C)  
FSR = ±2.048 V, TA = –40°C to +125°C, mux = AIN0 to AIN3,  
540 units from 3 production lots  
Figure 14. Differential Offset Voltage vs Supply  
Figure 15. Offset Drift Histogram  
0.05  
0.04  
0.03  
0.02  
0.01  
0
200  
150  
100  
50  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
FSR = 0.256 ꢀ  
FSR = 0.512 ꢀ  
FSR = 1.024 ꢀ  
FSR = 2.048 ꢀ  
FSR = 4.0ꢁ6 ꢀ  
FSR = 6.144 ꢀ  
0
−40 −20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Offset (µV)  
G000  
FSR = ±2.048 V,  
540 units from 3 production lots  
Figure 17. Gain Error vs Temperature  
Figure 16. Offset Histogram  
0.15  
0.1  
200  
150  
100  
50  
0.05  
0
FSR = ±256 mV  
FSR = ±2.048 V  
-0.05  
-0.1  
-0.15  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Gain Error (%)  
G000  
FSR = ±2.048 V, 540 units from 3 production lots  
Figure 19. Gain Error Histogram  
Figure 18. Gain Error vs Supply  
Copyright © 2015, Texas Instruments Incorporated  
11  
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 3.3 V, and FSR = ±2.048 V (unless otherwise noted)  
1
40  
Average Temperature Error  
Average ± 3 sigma  
Average ± 6 sigma  
0.8  
35  
30  
25  
20  
15  
10  
5
0.6  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
0
−40  
−20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
G023  
Temperature Error (èC)  
TA = –40°C, 48 units from 3 production lots  
Figure 21. Temperature Sensor Error Histogram  
Figure 20. Temperature Sensor Error vs Temperature  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
Temperature Error (èC)  
Temperature Error (èC)  
TA = 0°C, 48 units from 3 production lots  
TA = 25°C, 48 units from 3 production lots  
Figure 22. Temperature Sensor Error Histogram  
Figure 23. Temperature Sensor Error Histogram  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
Temperature Error (èC)  
Temperature Error (èC)  
TA = 70°C, 48 units from 3 production lots  
TA = 125°C, 48 units from 3 production lots  
Figure 24. Temperature Sensor Error Histogram  
Figure 25. Temperature Sensor Error Histogram  
12  
Copyright © 2015, Texas Instruments Incorporated  
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 3.3 V, and FSR = ±2.048 V (unless otherwise noted)  
300  
250  
200  
150  
100  
50  
5
4.5  
4
VDD = 2.0 V  
VDD = 3.3 V  
VDD = 5.0 V  
VDD = 5 V  
3.5  
3
2.5  
2
VDD = 3.3 V  
VDD = 2 V  
1.5  
1
0.5  
0
0
-40 -20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
G003  
Figure 26. Operating Current vs Temperature  
Figure 27. Power-Down Current vs Temperature  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1
10  
100  
1k  
10k  
Input Frequency (Hz)  
DR = 8 SPS  
Figure 28. Digital Filter Frequency Response  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Noise Performance  
Delta-sigma (ΔΣ) analog-to-digital converter (ADC) architecture is based on the principle of oversampling. The  
input signal of a ΔΣ ADC is sampled at a high frequency (modulator frequency), and subsequently filtered and  
decimated in the digital domain to yield a conversion result at the respective output data rate. The ratio between  
modulator frequency and output data rate is called the oversampling ratio (OSR). Increasing the OSR, and thus  
reducing the output data rate, optimizes the noise performance of the ADC. That is, the input-referred noise  
reduces when the output data rate is reduced because more samples of the internal modulator are averaged to  
yield one conversion result. Increasing the gain also reduces the input-referred noise, and is particularly useful  
when measuring low-level signals.  
Table 1 and Table 2 summarize the device noise performance. Data are representative of typical noise  
performance at TA = 25°C with the inputs shorted together externally. Table 1 show the input-referred noise in  
units of μVRMS for the conditions shown. Note that µVPP values are shown in parenthesis. Table 2 shows the  
corresponding data in effective number of bits (ENOB) calculated from μVRMS values using Equation 1. The  
noise-free bits calculated from peak-to-peak noise values using Equation 2 are shown in parenthesis.  
ENOB = ln (FSR / VRMS-Noise) / ln(2)  
(1)  
(2)  
Noise-Free Bits = ln (FSR / VPP-Noise) / ln(2)  
Table 1. Noise in μVRMS (μVPP) at VDD = 3.3 V  
FULL-SCALE RANGE (FSR)  
DATA RATE  
(SPS)  
±6.144 V  
±4.096 V  
±2.048 V  
62.5 (62.5)  
62.5 (62.5)  
62.5 (62.5)  
62.5 (62.5)  
62.5 (62.5)  
62.5 (84.03)  
62.5 (79.08)  
62.5 (118.63)  
±1.024 V  
±0.512 V  
±0.256 V  
7.81 (7.81)  
7.81 (7.81)  
7.81 (7.81)  
7.81 (7.81)  
7.81 (12.35)  
7.81 (18.53)  
7.81 (25.95)  
7.81 (35.83)  
8
187.5 (187.5)  
187.5 (187.5)  
187.5 (187.5)  
187.5 (187.5)  
187.5 (187.5)  
187.5 (252.09)  
187.5 (266.92)  
187.5 (430.06)  
125.0 (125.0)  
125.0 (125.0)  
125.0 (125.0)  
125.0 (125.0)  
125.0 (125.0)  
125.0 (148.28)  
125.0 (227.38)  
125.0 (266.93)  
31.25 (31.25)  
31.25 (31.25)  
31.25 (31.25)  
31.25 (31.25)  
31.25 (31.25)  
31.25 (39.54)  
31.25 (56.84)  
31.25 (64.26)  
15.62 (15.62)  
15.62 (15.62)  
15.62 (15.62)  
15.62 (15.62)  
15.62 (15.62)  
15.62 (16.06)  
15.62 (32.13)  
15.62 (40.78)  
16  
32  
64  
128  
250  
475  
860  
Table 2. ENOB from RMS Noise (Noise-Free Bits from Peak-to-Peak Noise) at VDD = 3.3 V  
FULL-SCALE RANGE (FSR)  
DATA RATE  
(SPS)  
±6.144 V  
16 (16)  
±4.096 V  
16 (16)  
±2.048 V  
16 (16)  
±1.024 V  
16 (16)  
±0.512 V  
16 (16)  
±0.256 V  
16 (16)  
8
16  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
32  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
64  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
128  
250  
475  
860  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (15.33)  
16 (14.75)  
16 (14.26)  
16 (13.8)  
16 (15.57)  
16 (15.49)  
16 (14.8)  
16 (15.75)  
16 (15.13)  
16 (14.9)  
16 (15.57)  
16 (15.66)  
16 (15.07)  
16 (15.66)  
16 (15.13)  
16 (14.95)  
16 (15.96)  
16 (14.95)  
16 (14.61)  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
9 Detailed Description  
9.1 Overview  
The ADS1118-Q1 is a very small, low-power, 16-bit, delta-sigma (ΔΣ) analog-to-digital converter (ADC). The  
ADS1118-Q1 consists of a ΔΣ ADC core with adjustable gain, an internal voltage reference, a clock oscillator,  
and an SPI. This device is also a highly linear and accurate temperature sensor. All of these features are  
intended to reduce required external circuitry and improve performance. The Functional Block Diagram section  
shows the ADS1118-Q1 functional block diagram.  
The ADS1118-Q1 ADC core measures a differential signal, VIN, that is the difference of V(AINP) and V(AINN). The  
converter core consists of a differential, switched-capacitor ΔΣ modulator followed by a digital filter. This  
architecture results in a very strong attenuation in any common-mode signals. Input signals are compared to the  
internal voltage reference. The digital filter receives a high-speed bitstream from the modulator and outputs a  
code proportional to the input voltage.  
The ADS1118-Q1 has two available conversion modes: single-shot and continuous-conversion. In single-shot  
mode, the ADC performs one conversion of the input signal upon request and stores the value to an internal  
conversion register. The device then enters a power-down state. This mode is intended to provide significant  
power savings in systems that require only periodic conversions or when there are long idle periods between  
conversions. In continuous-conversion mode, the ADC automatically begins a conversion of the input signal as  
soon as the previous conversion is completed. The rate of continuous conversion is equal to the programmed  
data rate. Data can be read at any time and always reflect the most recently completed conversion.  
9.2 Functional Block Diagram  
VDD  
Device  
Voltage  
Reference  
Mux  
CS  
AIN0  
SCLK  
Serial  
Peripheral  
Interface  
16-Bit ΔΣ  
ADC  
PGA  
AIN1  
DIN  
DOUT/DRDY  
AIN2  
AIN3  
Temperature  
Sensor  
Oscillator  
GND  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Multiplexer  
The ADS1118-Q1 contains an input multiplexer (mux), as shown in Figure 29. Either four single-ended or two  
differential signals can be measured. Additionally, AIN0, AIN1, and AIN2 can be measured differentially to AIN3.  
The multiplexer is configured by bits MUX[2:0] in the Config register. When single-ended signals are measured,  
the negative input of the ADC is internally connected to GND by a switch within the multiplexer.  
VDD  
Device  
AIN0  
VDD  
GND  
AINP  
AINN  
AIN1  
VDD  
GND  
AIN2  
VDD  
GND  
AIN3  
GND  
GND  
Figure 29. Input Multiplexer  
When measuring single-ended inputs, the device does not output negative codes. These negative codes indicate  
negative differential signals; that is, (V(AINP) – V(AINN)) < 0. Electrostatic discharge (ESD) diodes to VDD and GND  
protect the ADS1118-Q1 inputs. To prevent the ESD diodes from turning on, keep the absolute voltage on any  
input within the range given in Equation 3:  
GND – 0.3 V < V(AINx) < VDD + 0.3 V  
(3)  
If the voltages on the input pins can possibly violate these conditions, use external Schottky diodes and series  
resistors to limit the input current to safe values (see the Absolute Maximum Ratings table).  
Also, overdriving one unused input on the ADS1118-Q1 may affect conversions currently taking place on other  
input pins. If overdriving unused inputs is possible, clamp the signal with external Schottky diodes.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Feature Description (continued)  
9.3.2 Analog Inputs  
The ADS1118-Q1 uses a switched-capacitor input stage where capacitors are continuously charged and then  
discharged to measure the voltage between AINP and AINN. This frequency at which the input signal is sampled  
is called the sampling frequency or the modulator frequency (f(MOD)). The ADS1118-Q1 has a 1 MHz internal  
oscillator which is further divided by a factor of 4 to generate the modulator frequency at 250 kHz. The capacitors  
used in this input stage are small, and to external circuitry, the average loading appears resistive. This structure  
is shown in Figure 30. The resistance is set by the capacitor values and the rate at which they are switched.  
Figure 31 shows the setting of the switches illustrated in Figure 30. During the sampling phase, switches S1 are  
closed. This event charges CA1 to V(AINP), CA2 to V(AINN), and CB to (V(AINP) – V(AINN)). During the discharge phase,  
S1 is first opened and then S2 is closed. Both CA1 and CA2 then discharge to approximately 0.7 V and CB  
discharges to 0 V. This charging draws a very small transient current from the source driving the ADS1118-Q1  
analog inputs. The average value of this current can be used to calculate the effective impedance (Zeff), where  
Zeff = VIN / IAVERAGE  
.
0.7 V  
CA1  
ZCM  
Equivalent  
Circuit  
AINP  
AINN  
0.7 V  
0.7 V  
AINP  
AINN  
S1  
S1  
S2  
S2  
CB  
ZDIFF  
ZCM  
CA2  
f(MOD) = 250 kHz  
0.7 V  
Figure 30. Simplified Analog Input Circuit  
tSAMPLE  
ON  
S1  
OFF  
ON  
S2  
OFF  
Figure 31. S1 and S2 Switch Timing  
Common-mode input impedance is measured by applying a common-mode signal to the shorted AINP and AINN  
inputs and measuring the average current consumed by each pin. The common-mode input impedance changes  
depending on the full-scale range, but is approximately 6 Mfor the default full-scale range. In Figure 30, the  
common-mode input impedance is ZCM  
.
The differential input impedance is measured by applying a differential signal to AINP and AINN inputs where one  
input is held at 0.7 V. The current that flows through the pin connected to 0.7 V is the differential current and  
scales with the full-scale range. In Figure 30, the differential input impedance is ZDIFF  
.
Make sure to consider the typical value of the input impedance. Unless the input source has a low impedance,  
the ADS1118-Q1 input impedance may affect the measurement accuracy. For sources with high output  
impedance, buffering may be necessary. Active buffers introduce noise, and also introduce offset and gain  
errors. Consider all of these factors in high-accuracy applications.  
The clock oscillator frequency drifts slightly with temperature; therefore, the input impedances also drift. For most  
applications, this input impedance drift is negligible, and can be ignored.  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
9.3.3 Full-Scale Range (FSR) and LSB Size  
A programmable gain amplifier (PGA) is implemented in front of the ADS1118-Q1 ΔΣ ADC core. The full-scale  
range is configured by bits PGA[2:0] in the Config register, and can be set to ±6.144 V, ±4.096 V, ±2.048 V,  
±1.024 V, ±0.512 V, or ±0.256 V.  
Table 3 shows the FSR together with the corresponding LSB size. Calculate the LSB size from the full-scale  
voltage by the formula shown in Equation 4. However, make sure that the analog input voltage never exceeds  
the analog input voltage range limit given in the Electrical Characteristics. If VDD greater than 4 V is used, the  
±6.144-V full-scale range allows input voltages to extend up to the supply. Note though that in this case, or  
whenever the supply voltage is less than the full-scale range (for example, VDD = 3.3 V and full-scale range =  
±4.096 V), a full-scale ADC output code cannot be obtained. This inability means that some dynamic range is  
lost.  
LSB = FSR / 216  
(4)  
Table 3. Full-Scale Range and Corresponding LSB Size  
FSR  
LSB SIZE  
187.5 μV  
125 μV  
±6.144 V(1)  
±4.096 V(1)  
±2.048 V  
±1.024 V  
±0.512 V  
±0.256 V  
62.5 μV  
31.25 μV  
15.625 μV  
7.8125 μV  
(1) This parameter expresses the full-scale range of the ADC scaling.  
Do not apply more than VDD + 0.3 V to this device.  
9.3.4 Voltage Reference  
The ADS1118-Q1 has an integrated voltage reference. An external reference cannot be used with this device.  
Errors associated with the initial voltage reference accuracy and the reference drift with temperature are included  
in the gain error and gain drift specifications in the Electrical Characteristics.  
9.3.5 Oscillator  
The ADS1118-Q1 has an integrated oscillator running at 1 MHz. No external clock is required to operate the  
device. Note that the internal oscillator drifts over temperature and time. The output data rate scales  
proportionally with the oscillator frequency.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
9.3.6 Temperature Sensor  
The ADS1118-Q1 offers an integrated precision temperature sensor. To enable the temperature sensor mode,  
set bit TS_MODE = 1 in the Config register. Temperature data are represented as a 14-bit result that is left-  
justified within the 16-bit conversion result. Data are output starting with the most significant byte (MSB). When  
reading the two data bytes, the first 14 bits are used to indicate the temperature measurement result. One 14-bit  
LSB equals 0.03125°C. Negative numbers are represented in binary twos complement format, as shown in  
Table 4.  
Table 4. 14-Bit Temperature Data Format  
TEMPERATURE (°C)  
DIGITAL OUTPUT (BINARY)  
01 0000 0000 0000  
00 1111 1111 1111  
00 1100 1000 0000  
00 1001 0110 0000  
00 0110 0100 0000  
00 0011 0010 0000  
00 0000 0000 1000  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1000  
11 1100 1110 0000  
11 1011 0000 0000  
HEX  
1000  
0FFF  
0C80  
0960  
0640  
0320  
0008  
0001  
0000  
3FF8  
3CE0  
3B00  
128  
127.96875  
100  
75  
50  
25  
0.25  
0.03125  
0
–0.25  
–25  
–40  
9.3.6.1 Converting from Temperature to Digital Codes  
For positive temperatures:  
Twos complement is not performed on positive numbers. Therefore, simply convert the number to binary  
code in a 14-bit, left justified format with the MSB = 0 to denote the positive sign.  
Example: 50°C / (0.03125°C/count) = 1600 = 0640h = 00 0110 0100 0000  
For negative temperatures:  
Generate the twos complement of a negative number by complementing the absolute binary number and  
adding 1. Then, denote the negative sign with the MSB = 1.  
Example: |–25°C| / (0.03125°C/count) = 800 = 0320h = 00 0011 0010 0000  
Twos complement format: 11 1100 1101 1111 + 1 = 11 1100 1110 0000  
9.3.6.2 Converting from Digital Codes to Temperature  
To convert from digital codes to temperature, first check whether the MSB is a 0 or a 1. If the MSB is a 0,  
simply multiply the decimal code by 0.03125°C to obtain the result. If the MSB = 1, subtract 1 from the result  
and complement all of the bits. Then, multiply the result by –0.03125°C.  
Example: The device reads back 0960h: 0960h has an MSB = 0.  
0960h × 0.03125°C = 2400 × 0.03125°C = 75°C  
Example: The device reads back 3CE0h: 3CE0h has an MSB = 1.  
Subtract 1 and complement the result: 3CE0h 0320h  
0320h × (–0.03125°C) = 800 × (–0.03125°C) = –25°C  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Reset and Power-Up  
When the ADS1118-Q1 powers up, the device resets. As part of the reset process, the ADS1118-Q1 sets all bits  
in the Config register to the respective default settings. By default, the ADS1118-Q1 enters a power-down state  
at start-up. The device interface and digital blocks are active, but no data conversions are performed. The initial  
power-down state of the ADS1118-Q1 relieves systems with tight power-supply requirements from encountering  
a surge during power-up.  
9.4.2 Operating Modes  
The ADS1118-Q1 operates in one of two modes: continuous-conversion or single-shot. The MODE bit in the  
Config register selects the respective operating mode.  
9.4.2.1 Single-Shot Mode and Power-Down  
When the MODE bit in the Config register is set to 1, the ADS1118-Q1 enters a power-down state, and operates  
in single-shot mode. This power-down state is the default state for the ADS1118-Q1 when power is first applied.  
Although powered down, the device still responds to commands. The ADS1118-Q1 remains in this power-down  
state until a 1 is written to the single-shot (SS) bit in the Config register. When the SS bit is asserted, the device  
powers up, resets the SS bit to 0, and starts a single conversion. When conversion data are ready for retrieval,  
the device powers down again. Writing a 1 to the SS bit while a conversion is ongoing has no effect. To switch to  
continuous-conversion mode, write a 0 to the MODE bit in the Config register.  
9.4.2.2 Continuous-Conversion Mode  
In continuous-conversion mode (MODE bit set to 0), the ADS1118-Q1 continuously performs conversions. When  
a conversion completes, the ADS1118-Q1 places the result in the Conversion register and immediately begins  
another conversion. To switch to single-shot mode, write a 1 to the MODE bit in the Config register, or reset the  
device.  
9.4.3 Duty Cycling for Low Power  
The noise performance of a ΔΣ ADC generally improves when lowering the output data rate because more  
samples of the internal modulator are averaged to yield one conversion result. In applications where power  
consumption is critical, the improved noise performance at low data rates may not be required. For these  
applications, the ADS1118-Q1 supports duty cycling that can yield significant power savings by periodically  
requesting high data-rate readings at an effectively lower data rate.  
For example, an ADS1118-Q1 in power-down state with a data rate set to 860 SPS can be operated by a  
microcontroller that instructs a single-shot conversion every 125 ms (8 SPS). A conversion at 860 SPS only  
requires approximately 1.2 ms; therefore, the ADS1118-Q1 enters power-down state for the remaining 123.8 ms.  
In this configuration, the ADS1118-Q1 consumes approximately 1/100th the power that is otherwise consumed in  
continuous-conversion mode. The duty cycling rate is completely arbitrary and is defined by the master  
controller. The ADS1118-Q1 offers lower data rates that do not implement duty cycling and also offers improved  
noise performance, if required.  
20  
Copyright © 2015, Texas Instruments Incorporated  
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
9.5 Programming  
9.5.1 Serial Interface  
The SPI-compatible serial interface consists of either four signals (CS, SCLK, DIN, and DOUT/DRDY), or three  
signals (SCLK, DIN, and DOUT/DRDY, with CS tied low). The interface is used to read conversion data, read  
from and write to registers, and control device operation.  
9.5.2 Chip Select (CS)  
The chip select pin (CS) selects the ADS1118-Q1 for SPI communication. This feature is useful when multiple  
devices share the same serial bus. Keep CS low for the duration of the serial communication. When CS is taken  
high, the serial interface is reset, SCLK is ignored, and DOUT/DRDY enters a high-impedance state. In this state,  
DOUT/DRDY cannot provide data-ready indication. In situations where multiple devices are present and  
DOUT/DRDY must be monitored, lower CS periodically. At this point, the DOUT/DRDY pin either immediately  
goes high to indicate that no new data are available, or immediately goes low to indicate that new data are  
present in the Conversion register and are available for transfer. New data can be transferred at any time without  
concern of data corruption. When a transmission starts, the current result is locked into the output shift register  
and does not change until the communication completes. This system avoids any possibility of data corruption.  
9.5.3 Serial Clock (SCLK)  
The serial clock pin (SCLK) features a Schmitt-triggered input and is used to clock data on the DIN and  
DOUT/DRDY pins into and out of the ADS1118-Q1. Even though the input has hysteresis, keep SCLK as clean  
as possible to prevent glitches from accidentally shifting the data. To reset the serial interface, hold SCLK low for  
28 ms, and the next SCLK pulse starts a new communication cycle. Use this time-out feature to recover  
communication when a serial interface transmission is interrupted. When the serial interface is idle, hold SCLK  
low.  
9.5.4 Data Input (DIN)  
The data input pin (DIN) is used along with SCLK to send data to the ADS1118-Q1. The device latches data on  
DIN at the SCLK falling edge. The ADS1118-Q1 never drives the DIN pin.  
9.5.5 Data Output and Data Ready (DOUT/DRDY)  
The data output and data ready pin (DOUT/DRDY) is used with SCLK to read conversion and register data from  
the ADS1118-Q1. Data on DOUT/DRDY are shifted out on the SCLK rising edge. DOUT/DRDY is also used to  
indicate that a conversion is complete and new data are available. This pin transitions low when new data are  
ready for retrieval. DOUT/DRDY is also able to trigger a microcontroller to start reading data from the ADS1118-  
Q1. In continuous-conversion mode, DOUT/DRDY transitions high again 8 µs before the next data ready signal  
(DOUT/DRDY low) if no data are retrieved from the device. This transition is shown in Figure 32. Complete the  
data transfer before DOUT/DRDY returns high.  
CS(1)  
SCLK  
8 µs  
Hi-Z  
DOUT/DRDY  
DIN  
(1) CS can be held low if the ADS1118-Q1 does not share the serial bus with another device. If CS is low, DOUT/DRDY asserts low  
indicating new data are available.  
Figure 32. DOUT/DRDY Behavior Without Data Retrieval in Continuous-Conversion Mode  
When CS is high, DOUT/DRDY is configured by default with a weak internal pullup resistor. This feature reduces  
the risk of DOUT/DRDY floating near midsupply and causing leakage current in the master device. To disable  
this pullup resistor and place the device into a high-impedance state, set the PULL_UP_EN bit to 0 in the Config  
register.  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Programming (continued)  
9.5.6 Data Format  
The ADS1118-Q1 provides 16 bits of data in binary twos complement format. A positive full-scale (+FS) input  
produces an output code of 7FFFh and a negative full-scale (–FS) input produces an output code of 8000h. The  
output clips at these codes for signals that exceed full-scale. Table 5 summarizes the ideal output codes for  
different input signals. Figure 33 shows code transitions versus input voltage.  
Table 5. Input Signal versus Ideal Output Code  
INPUT SIGNAL, VIN  
IDEAL OUTPUT CODE(1)  
(AINP – AINN)  
+FS (215 – 1) / 215  
7FFFh  
0001h  
0
+FS / 215  
0
–FS / 215  
–FS  
FFFFh  
8000h  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
0x7FFF  
0x7FFE  
0x0001  
0x0000  
0xFFFF  
0x8001  
0x8000  
¼
¼
-FS  
-FS  
0
FS  
Input Voltage (AINP - AINN)  
215 - 1  
215 - 1  
FS  
215  
215  
Figure 33. Code Transition Diagram  
9.5.7 Data Retrieval  
Data is written to and read from the ADS1118-Q1 in the same manner for both single-shot and continuous  
conversion modes, without having to issue any commands. The operating mode for the ADS1118-Q1 is selected  
by the MODE bit in the Config register.  
Set the MODE bit to 0 to put the device in continuous-conversion mode. In continuous-conversion mode, the  
device is constantly starting new conversions even when CS is high.  
Set the MODE bit to 1 for single-shot mode. In single-shot mode, a new conversion only starts by writing a 1 to  
the SS bit.  
The conversion data are always buffered, and retain the current data until replaced by new conversion data.  
Therefore, data can be read at any time without concern of data corruption. When DOUT/DRDY asserts low,  
indicating that new conversion data are ready, the conversion data are read by shifting the data out on  
DOUT/DRDY. The MSB of the data (bit 15) on DOUT/DRDY is clocked out on the first SCLK rising edge. At the  
same time that the conversion result is clocked out of DOUT/DRDY, new Config register data are latched on DIN  
on the SCLK falling edge.  
The ADS1118-Q1 also offers the possibility of direct readback of the Config register settings in the same data  
transmission cycle. One complete data transmission cycle consists of either 32 bits (when the Config register  
data readback is used) or 16 bits (only used when the CS line can be controlled and is not permanently tied low).  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
9.5.7.1 32-Bit Data Transmission Cycle  
The data in a 32-bit data transmission cycle consist of four bytes: two bytes for the conversion result, and an  
additional two bytes for the Config register readback. The device always reads the MSB first.  
Write the same Config register setting twice during one transmission cycle as shown in Figure 34. If convenient,  
write the Config register setting once during the first half of the transmission cycle, and then hold the DIN pin  
either low (as shown in Figure 35) or high during the second half of the cycle. If no update to the Config register  
is required, hold the DIN pin either low or high during the entire transmission cycle. The Config register setting  
written in the first two bytes of a 32-bit transmission cycle is read back in the last two bytes of the same cycle.  
CS(1)  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DIN  
Hi-Z  
DATA MSB  
DATA LSB  
CONFIG MSB CONFIG LSB  
Next Data Ready  
CONFIG MSB CONFIG LSB CONFIG MSB CONFIG LSB  
(1) CS can be held low if the ADS1118-Q1 does not share the serial bus with another device. If CS is low, DOUT/DRDY asserts low  
indicating new data are available.  
Figure 34. 32-Bit Data Transmission Cycle With Config Register Readback  
CS(1)  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DIN  
Hi-Z  
DATA MSB  
DATA LSB  
CONFIG MSB CONFIG LSB  
Next Data Ready  
CONFIG MSB CONFIG LSB  
(1) CS can be held low if the ADS1118-Q1 does not share the serial bus with another device. If CS is low, DOUT/DRDY asserts low  
indicating new data are available.  
Figure 35. 32-Bit Data Transmission Cycle: DIN Held Low  
9.5.7.2 16-Bit Data Transmission Cycle  
If Config register data are not required to be read back, the ADS1118-Q1 conversion data can be clocked out in  
a short 16-bit data transmission cycle, as shown in Figure 36. Take CS high after the 16th SCLK cycle to reset  
the SPI interface. The next time CS is taken low, data transmission starts with the currently buffered conversion  
result on the first SCLK rising edge. If DOUT/DRDY is low when data retrieval starts, the conversion buffer is  
already updated with a new result. Otherwise, if DOUT/DRDY is high, the same result from the previous data  
transmission cycle is read.  
CS  
1
9
1
9
SCLK  
DOUT/DRDY  
DIN  
Hi-Z  
DATA MSB  
DATA LSB  
DATA MSB  
DATA LSB  
CONFIG MSB CONFIG LSB  
CONFIG MSB CONFIG LSB  
Figure 36. 16-Bit Data Transmission Cycle  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
 
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
9.6 Register Maps  
The ADS1118-Q1 has two registers that are accessible through the SPI. The Conversion register contains the  
result of the last conversion. The Config register allows the user to change the ADS1118-Q1 operating modes  
and query the status of the devices.  
9.6.1 Conversion Register [reset = 0000h]  
The 16-bit Conversion register contains the result of the last conversion in binary twos complement format.  
Following power up, the Conversion register is cleared to 0, and remains 0 until the first conversion is complete.  
The register format is shown in Figure 37.  
Figure 37. Conversion Register  
15  
D15  
R-0h  
7
14  
D14  
R-0h  
6
13  
D13  
R-0h  
5
12  
D12  
R-0h  
4
11  
D11  
R-0h  
3
10  
D10  
R-0h  
2
9
D9  
8
D8  
R-0h  
1
R-0h  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. Conversion Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
D[15:0]  
R
0000h  
16-bit conversion result  
9.6.2 Config Register [reset= 058Bh]  
The 16-bit Config register can be used to control the ADS1118-Q1 operating mode, input selection, data rate,  
full-scale range, and temperature sensor mode. The register format is shown in Figure 38.  
Figure 38. Config Register  
15  
SS  
14  
13  
MUX[2:0]  
R/W-0h  
5
12  
11  
10  
PGA[2:0]  
R/W-2h  
2
9
1
8
MODE  
R/W-1h  
0
R/W-0h  
7
6
4
3
DR[2:0]  
R/W-4h  
TS_MODE  
R/W-0h  
PULL_UP_EN  
R/W-1h  
NOP[1:0]  
R/W-1h  
Reserved  
R-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Config Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Single-shot conversion start  
This bit is used to start a single conversion. SS can only be written when in  
power-down state and has no effect when a conversion is ongoing.  
15  
SS  
R/W  
0h  
When writing:  
0 = No effect  
1 = Start a single conversion (when in power-down state)  
Always reads back as 0 (default).  
Input multiplexer configuration  
These bits configure the input multiplexer.  
000 = AINP is AIN0 and AINN is AIN1 (default)  
001 = AINP is AIN0 and AINN is AIN3  
010 = AINP is AIN1 and AINN is AIN3  
011 = AINP is AIN2 and AINN is AIN3  
100 = AINP is AIN0 and AINN is GND  
101 = AINP is AIN1 and AINN is GND  
110 = AINP is AIN2 and AINN is GND  
111 = AINP is AIN3 and AINN is GND  
14:12  
MUX[2:0]  
R/W  
0h  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Table 7. Config Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Programmable gain amplifier configuration  
These bits configure the programmable gain amplifier.  
000 = FSR is ±6.144 V(1)  
001 = FSR is ±4.096 V(1)  
010 = FSR is ±2.048 V (default)  
011 = FSR is ±1.024 V  
100 = FSR is ±0.512 V  
101 = FSR is ±0.256 V  
110 = FSR is ±0.256 V  
111 = FSR is ±0.256 V  
11:9  
PGA[2:0]  
R/W  
2h  
Device operating mode  
This bit controls the ADS1118-Q1 operating mode.  
8
MODE  
R/W  
R/W  
1h  
4h  
0 = Continuous-conversion mode  
1 = Power-down and single-shot mode (default)  
Data rate  
These bits control the data-rate setting.  
000 = 8 SPS  
001 = 16 SPS  
010 = 32 SPS  
011 = 64 SPS  
7:5  
DR[2:0]  
100 = 128 SPS (default)  
101 = 250 SPS  
110 = 475 SPS  
111 = 860 SPS  
Temperature sensor mode  
This bit configures the ADC to convert temperature or input signals.  
4
3
TS_MODE  
R/W  
R/W  
0h  
1h  
0 = ADC mode (default)  
1 = Temperature sensor mode  
Pullup enable  
This bit enables a weak internal pullup resistor on the DOUT/DRDY pin only  
when CS is high. When enabled, an internal 400-kΩ resistor connects the bus  
line to supply. When disabled, the DOUT/DRDY pin floats.  
PULL_UP_EN  
0 = Pullup resistor disabled on DOUT/DRDY pin  
1 = Pullup resistor enabled on DOUT/DRDY pin (default)  
No operation  
The NOP[1:0] bits control whether data are written to the Config register or not.  
For data to be written to the Config register, the NOP[1:0] bits must be 01. Any  
other value results in a NOP command. DIN can be held high or low during SCLK  
pulses without data being written to the Config register.  
2:1  
NOP[1:0]  
Reserved  
R/W  
1h  
1h  
00 = Invalid data; do not update the contents of the Config register  
01 = Valid data; update the Config register (default)  
10 = Invalid data; do not update the contents of the Config register  
11 = Invalid data; do not update the contents of the Config register  
Reserved  
0
R
Always write 1h  
Reads back either 0h or 1h  
(1) This parameter expresses the full-scale range of the ADC scaling. Do not apply more than VDD + 0.3 V to this device.  
Copyright © 2015, Texas Instruments Incorporated  
25  
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ADS1118-Q1 is a precision, 16-bit ΔΣ ADC that offers many integrated features to ease the measurement of  
the most common sensor types including various type of temperature and bridge sensors. The following sections  
give example circuits and suggestions for using the ADS1118-Q1 in various situations.  
10.1.1 Serial Interface Connections  
The principle serial interface connections for the ADS1118-Q1 are shown in Figure 39.  
10  
Device  
DIN  
VDD  
1
2
3
4
SCLK  
9
8
7
6
DOUT/DRDY  
VDD  
CS  
GND  
AIN0  
AIN3  
0.1 µF  
AIN2  
Microcontroller or  
Microprocessor  
with SPI Port  
AIN1  
5
50 W  
50 W  
50 W  
50 W  
DOUT  
DIN  
Inputs Selected  
from Configuration  
Register  
CS  
SCLK  
Figure 39. Typical Connections  
Most microcontroller SPI peripherals operate with the ADS1118-Q1. The interface operates in SPI mode 1 where  
CPOL = 0 and CPHA = 1, SCLK idles low, and data are launched or changed only on SCLK rising edges; data  
are latched or read by the master and slave on SCLK falling edges. Details of the SPI communication protocol  
employed by the ADS1118-Q1 can be found in the Timing Requirements: Serial Interface section.  
It is a good practice to place 50-Ω resistors in the series path to each of the digital pins to provide some short-  
circuit protection. Take care to still meet all SPI timing requirements because these additional series resistors  
along with the bus parasitic capacitances present on the digital signal lines slews the signals.  
The fully-differential input of the ADS1118-Q1 is ideal for connecting to differential sources (such as  
thermocouples and thermistors) with a moderately low source impedance. Although the ADS1118-Q1 can read  
fully-differential signals, the device cannot accept negative voltages on either of its inputs because of ESD  
protection diodes on each pin. When an input exceeds supply or drops below ground, these diodes turn on to  
prevent any ESD damage to the device.  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Application Information (continued)  
10.1.2 GPIO Ports for Communication  
Most microcontrollers have programmable input/output (I/O) pins that can be set in software to act as inputs or  
outputs. If an SPI controller is not available, the ADS1118-Q1 can be connected to GPIO pins and the SPI bus  
protocol can be simulated. Using GPIO pins to generate the SPI interface requires only that the pins be  
configured as push or pull inputs or outputs. Furthermore, if the SCLK line is held low for more than 28 ms,  
communication times out. This condition means that the GPIO ports must be capable of providing SCLK pulses  
with no more than 28 ms between pulses.  
10.1.3 Analog Input Filtering  
Analog input filtering serves two purposes: first, to limit the effect of aliasing during the sampling process and  
second, to reduce external noise from being a part of the measurement.  
As with any sampled system, aliasing can occur if proper antialias filtering is not in place. Aliasing occurs when  
frequency components are present in the input signal that are higher than half the sampling frequency of the  
ADC (also known as the Nyquist frequency). These frequency components fold back and show up in the actual  
frequency band of interest below half the sampling frequency. The filter response of the digital filter repeats at  
multiples of the sampling frequency, also known as modulator frequency f(MOD), as shown in Figure 40. Signals or  
noise up to a frequency where the filter response repeats are attenuated to a certain amount by the digital filter  
depending on the filter architecture. Any frequency components present in the input signal around the modulator  
frequency or multiples thereof are not attenuated and alias back into the band of interest, unless attenuated by  
an external analog filter.  
Magnitude  
Sensor  
Signal  
Unwanted  
Signals  
Unwanted  
Signals  
Output  
Data Rate  
f(MOD)/2  
f(MOD)  
Frequency  
Frequency  
Frequency  
Magnitude  
Digital Filter  
Aliasing of  
Unwanted Signals  
Output  
Data Rate  
f(MOD)/2  
f(MOD)  
Magnitude  
External  
Antialiasing Filter  
Roll-Off  
Output  
f(MOD)/2  
f(MOD)  
Data Rate  
Figure 40. Effect of Aliasing  
Copyright © 2015, Texas Instruments Incorporated  
27  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
Many sensor signals are inherently band-limited; for example, the output of a thermocouple has a limited rate of  
change. In this case the sensor signal does not alias back into the pass-band when using a ΔΣ ADC. However,  
any noise pickup along the sensor wiring or the application circuitry can potentially alias into the pass band.  
Power line-cycle frequency and harmonics are one common noise source. External noise can also be generated  
from electromagnetic interference (EMI) or radio frequency interference (RFI) sources, such as nearby motors  
and cellular phones. Another noise source typically exists on the printed-circuit-board (PCB) itself in the form of  
clocks and other digital signals. Analog input filtering helps remove unwanted signals from affecting the  
measurement result.  
A first-order, resistor-capacitor (RC) filter is, in most cases, sufficient to either totally eliminate aliasing, or to  
reduce the effect of aliasing to a level within the noise floor of the sensor. Ideally, any signal beyond f(MOD) / 2 is  
attenuated to a level below the noise floor of the ADC. The digital filter of the ADS1118-Q1 attenuates signals to  
a certain degree, as shown in Figure 28. In addition, noise components are usually smaller in magnitude than the  
actual sensor signal. Therefore, using a first-order RC filter with a cutoff frequency set at the output data rate or  
ten times higher is generally a good starting point for a system design.  
10.1.4 Single-Ended Inputs  
Although the ADS1118-Q1 has two differential inputs, the device can measure four single-ended signals.  
Figure 41 shows a single-ended connection scheme. The ADS1118-Q1 is configured for single-ended  
measurement by configuring the mux to measure each channel with respect to ground. Data are then read out of  
one input based on the selection in the Config register. The single-ended signal can range from 0 V up to  
positive supply or +FS, whichever is lower. Negative voltages cannot be applied to this circuit because the  
ADS1118-Q1 can only accept positive voltages with respect to ground. The ADS1118-Q1 does not loose linearity  
within the input range.  
The ADS1118-Q1 offers a differential input voltage range of ±FS. The single-ended circuit shown in Figure 41,  
however, only uses the positive half of the ADS1118-Q1 FS input voltage range because differentially negative  
inputs are not produced. Because only half of the FS range is used, one bit of resolution is lost. For optimal noise  
performance, use differential configurations whenever possible. Differential configurations maximize the dynamic  
range of the ADC and provide strong attenuation of common-mode noise.  
VDD  
10  
Device  
DIN  
1
2
3
4
SCLK  
9
8
7
6
DOUT/DRDY  
VDD  
CS  
GND  
AIN0  
AIN3  
0.1 µF  
AIN2  
AIN1  
5
Inputs Selected  
from Configuration  
Register  
NOTE: Digital pin connections omitted for clarity.  
Figure 41. Measuring Single-Ended Inputs  
The ADS1118-Q1 also allows AIN3 to serve as a common point for measurements by adjusting the mux  
configuration. AIN0, AIN1, and AIN2 can all be measured with respect to AIN3. In this configuration, the  
ADS1118-Q1 operates with inputs where AIN3 serves as the common point. This ability improves the usable  
range over the single-ended configuration because negative differential voltages are allowed when GND < V(AIN3)  
< VDD; however, common-mode noise attenuation is not offered.  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Application Information (continued)  
10.1.5 Connecting Multiple Devices  
When connecting multiple ADS1118-Q1 devices to a single SPI bus, SCLK, DIN, and DOUT/DRDY can be safely  
shared by using a dedicated chip-select (CS) for each SPI-enabled device. By default, when CS goes high for  
the ADS1118-Q1, DOUT/DRDY is pulled up to VDD by a weak pullup resistor. This feature prevents  
DOUT/DRDY from floating near midrail and causing excess current leakage on a microcontroller input. If the  
PULL_UP_EN bit in the Config register is set to 0, the DOUT/DRDY pin enters a 3-state mode when CS  
transitions high. The ADS1118-Q1 cannot issue a data-ready pulse on DOUT/DRDY when CS is high. To  
evaluate when a new conversion is ready from the ADS1118-Q1 when using multiple devices, the master can  
periodically drop CS to the ADS1118-Q1. When CS goes low, the DOUT/DRDY pin immediately drives either  
high or low. If the DOUT/DRDY line drives low on a low CS, new data are currently available for clocking out at  
any time. If the DOUT/DRDY line drives high, no new data are available and the ADS1118-Q1 returns the last  
read conversion result. Valid data can be retrieved from the ADS1118-Q1 at anytime without concern of data  
corruption. If a new conversion becomes available during data transmission, that conversion is not available for  
readback until a new SPI transmission is initiated.  
Microcontroller or  
Microprocessor  
Device  
10  
DIN  
50 W  
50 W  
50 W  
50 W  
50 W  
SCLK  
DIN  
1
2
3
4
SCLK DOUT/DRDY  
9
8
7
6
VDD  
CS  
GND  
AIN0  
AIN3  
AIN2  
DOUT  
CS  
1
2
AIN1  
5
CS  
10  
Device  
DIN  
1
2
3
4
SCLK DOUT/DRDY  
9
8
7
6
VDD  
CS  
GND  
AIN0  
AIN3  
AIN2  
AIN1  
5
NOTE: Power and input connections omitted for clarity.  
Figure 42. Connecting Multiple ADS1118-Q1s  
Copyright © 2015, Texas Instruments Incorporated  
29  
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
10.1.6 Pseudo Code Example  
The flow chart in Figure 43 shows a pseudo-code sequence with the required steps to set up communication  
between the device and a microcontroller to take subsequent readings from the ADS1118-Q1. As an example,  
the default Config register settings are changed to set up the device for FSR = ±0.512 V, continuous-conversion  
mode, and a 64-SPS data rate.  
INITIALIZE  
DATA CAPTURE  
POWER DOWN  
Power-up; Wait for supplies to settle to  
nominal to ensure power-up reset is complete;  
Wait for 50 µs  
Take CS low  
Wait for DOUT/  
DRDY to transition  
low  
NO  
YES  
Configure microcontroller SPI interface to SPI  
mode 1 (CPOL = 0, CPHA = 1);  
Delay for minimum td(CSSC)  
Take CS low  
Set MODE bit in config register to '1'  
to enter power-down and single-shot  
mode  
If the CS pin is not tied low permanently,  
configure the microcontroller GPIO connected  
to CS as an output;  
Configure the microcontroller GPIO connected  
to the DRDY pin as a falling edge triggered  
interrupt input;  
Delay for minimum td(CSSC)  
Clear CS to high  
Read out conversion result  
and clear CS to high before  
DOUT/DRDY goes low again  
Set CS to the device low;  
Delay for minimum td(CSSC)  
Write the config register to set the device to  
FSR = 0.512 V, continuous conversion  
mode, data rate = 64 SPS  
Clear CS to high to reset the serial interface  
Figure 43. Pseudo-Code Example Flowchart  
30  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
10.2 Typical Application  
Figure 44 shows the basic connections for an independent, two-channel thermocouple measurement system  
when using the internal high-precision temperature sensor for cold-junction compensation. Apart from the  
thermocouples, the only external circuitry required are biasing resistors; first-order, low-pass, antialiasing filters;  
and a power-supply decoupling capacitor.  
3.3 V  
GND  
0.1 F  
3.3 V  
RPU  
CCMA  
0.1 F  
RDIFFA  
500 ꢂ  
1 Mꢂ  
AIN0  
AIN1  
VDD  
ADS1118-Q1  
1 F  
Voltage Reference  
RDIFFB  
500 ꢂ  
RPD  
1 Mꢂ  
CCMB  
0.1 F  
±256-mV FSR  
PGA  
SCLK  
GND  
3.3 V  
RPU  
GND  
GND  
Digital Filter  
and  
Interface  
CS  
16-bit  
ûADC  
Mux  
DOUT/DRDY  
DIN  
CCMA  
0.1 F  
RDIFFA  
500 ꢂ  
1 Mꢂ  
AIN2  
AIN3  
Temperature  
Sensor  
1 F  
Oscillator  
GND  
RDIFFB  
500 ꢂ  
RPD  
1 Mꢂ  
CCMB  
0.1 F  
Figure 44. Two-Channel Thermocouple Measurement System  
10.2.1 Design Requirements  
Table 8 shows the design parameters for this application.  
Table 8. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
VALUE  
3.3 V  
±0.256 V  
Full-scale range  
Update rate  
100 readings per second  
K
Thermocouple type  
Temperature measurement range  
Measurement accuracy at TA = 25°C(1)  
–200°C to +1250°C  
±1.2°C  
(1) With offset calibration, and no gain calibration. Measurement does not account for thermocouple  
inaccuracy.  
10.2.2 Detailed Design Procedure  
The biasing resistors (RPU and RPD) serve two purposes. The first purpose is to set the common-mode voltage of  
the thermocouple to within the specified voltage range of the device. The second purpose is to offer a weak  
pullup and pulldown to detect an open thermocouple lead. When one of the thermocouple leads fails open, the  
positive input is pulled to VDD and the negative input is pulled to GND. The ADC consequently reads a full-scale  
value that is outside the normal measurement range of the thermocouple voltage to indicate this failure condition.  
When choosing the values of the biasing resistors, take care so that the biasing current does not degrade  
measurement accuracy. The biasing current flows through the thermocouple and can cause self-heating and  
additional voltage drops across the thermocouple leads. Typical values for the biasing resistors range from 1 MΩ  
to 50 MΩ.  
Copyright © 2015, Texas Instruments Incorporated  
31  
 
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Although the device digital filter attenuates high-frequency components of noise, provide a first-order, passive RC  
filter at the inputs to further improve performance. The differential RC filter formed by RDIFFA, RDIFFB, and the  
differential capacitor CDIFF offers a cutoff frequency that is calculated using Equation 5. While the digital filter of  
the ADS1118-Q1 strongly attenuates high-frequency components of noise, provide a first-order, passive RC filter  
to further suppress high-frequency noise and avoid aliasing. Care must be taken when choosing the filter resistor  
values because the input currents flowing into and out of the device cause a voltage drop across the resistors.  
This voltage drop shows up as an additional offset error at the ADC inputs. Limit the filter resistor values to below  
1 kΩ for best performance.  
fC = 1 / [2π · (RDIFFA + RDIFFB) · CDIFF  
]
(5)  
Two common-mode filter capacitors (CCMA and CCMB) are also added to offer attenuation of high-frequency,  
common-mode noise components. Differential capacitor CDIFF must be at least an order of magnitude (10x)  
larger than these common-mode capacitors because mismatches in the common-mode capacitors can convert  
common-mode noise into differential noise.  
The highest measurement resolution is achieved when the largest potential input signal is slightly lower than the  
FSR of the ADC. From the design requirement, the maximum thermocouple voltage (VTC) occurs at a  
thermocouple temperature (TTC) of 1250°C. At this temperature, VTC = 50.644 mV, as defined in the tables  
published by the National Institute of Standards and Technology (NIST) using a cold-junction temperature (TCJ)  
of 0°C. A thermocouple produces an output voltage that is proportional to the temperature difference between the  
thermocouple tip and the cold junction. If the cold junction is at a temperature below 0°C, the thermocouple  
produces a voltage larger than 50.644 mV. The isothermal block area is constrained by the operating  
temperature range of the device. Therefore, the isothermal block temperature is limited to –40°C. A K-type  
thermocouple at TTC = 1250°C produces an output voltage of VTC = 50.644 mV – (–1.527 mV) = 52.171 mV  
when referenced to a cold-junction temperature of TCJ = –40°C. The device offers a full-scale range of ±0.256 V  
and that is what is used in this application example.  
The device integrates a high-precision temperature sensor that can be used to measure the temperature of the  
cold junction. The temperature sensor mode is enabled by setting bit TS_MODE = 1 in the Config register. The  
accuracy of the overall temperature sensor depends on how accurately the ADS1118-Q1 can measure the cold  
junction, and hence, careful component placement and PCB layout considerations must be employed for  
designing an accurate thermocouple system. The ADS1118 Evaluation Module provides a good starting point  
and offers an example to achieve good cold-junction compensation performance. The ADS1118 Evaluation  
Module uses the same schematic as shown in Figure 44, except with only one thermocouple channel connected.  
Refer to the application note, Precision Thermocouple Measurement With the ADS1118, SBAA189, for details on  
how to optimize your component placement and layout to achieve good cold-junction compensation performance.  
The calculation procedure to achieve cold-junction compensation can be done in several ways. A typical way is  
to interleave readings between the thermocouple inputs and the temperature sensor. That is, acquire one on-chip  
temperature result, TCJ, for every thermocouple ADC voltage measured, VTC. To account for the cold junction,  
first convert the temperature sensor reading within the ADS1118-Q1 to a voltage (VCJ) that is proportional to the  
thermocouple currently being used. This process is generally accomplished by performing a reverse lookup on  
the table used for the thermocouple voltage-to-temperature conversion. Adding these two voltages yields the  
thermocouple-compensated voltage (VActual), where VActual = VCJ + VTC. VActual is then converted to a temperature  
(TActual) using the same NIST lookup table. A block diagram showing this process is given in Figure 45. Refer to  
the application note, Precision Thermocouple Measurement With the ADS1118, SBAA189, for a detailed  
explanation of this method.  
32  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
Device  
MCU  
VTC  
Thermocouple  
Voltage  
TActual  
TCJ  
VCJ  
VActual  
On-chip  
Temperature  
Result  
T V  
V T  
Figure 45. Software-Flow Block Diagram  
Figure 46 and Figure 47 show the measurement results. The measurements are taken at TA = TCJ = 25°C. A  
system offset calibration is performed at TTC = 25°C that equates to VTC = 0 V when TCJ = 25°C. No gain  
calibration was performed during the measurements. The data in Figure 46 are taken using a precision voltage  
source as the input signal instead of a thermocouple. The solid black line in Figure 47 is the respective  
temperature measurement error and is calculated from the data in Figure 46 using the NIST tables. The solid  
black line in Figure 47 is the measurement error due to the ADC gain and nonlinearity error. The dashed blue  
lines in Figure 47 include the guard band for the temperature sensor inaccuracy (±1°C), in addition to the device  
gain and nonlinearity error. Note that the measurement results in Figure 46 and Figure 47 do not account for the  
thermocouple inaccuracy that must also be considered while designing a thermocouple measurement system.  
10.2.3 Application Curves  
1.5  
1
0.01  
0.005  
0
0.5  
0
-0.5  
-1  
-0.005  
-1.5  
-0.01  
-200  
0
200  
400  
600  
800 1000 1200 1400  
-10  
0
10  
20  
30  
40  
50  
60  
Temperature (°C)  
Thermocouple Voltage (mV)  
Figure 47. Temperature Measurement Error vs TTC  
Figure 46. Voltage Measurement Error vs VTC  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
11 Power-Supply Recommendations  
The device requires a single power supply, VDD, to power both the analog and digital circuitry of the device.  
11.1 Power-Supply Sequencing  
Wait approximately 50 µs after VDD is stabilized before communicating with the device to allow the power-up  
reset process to complete.  
11.2 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve optimum performance. VDD must be decoupled with at  
least a 0.1-µF capacitor, as shown in Figure 48. The 0.1-μF bypass capacitor supplies the momentary bursts of  
extra current required from the supply when the ADS1118-Q1 is converting. Place the bypass capacitor as close  
to the power-supply pin of the device as possible using low-impedance connections. For best performance, use  
multilayer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance  
(ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh  
noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior  
noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections  
to ground planes.  
VDD  
10  
Device  
DIN  
1
2
3
4
SCLK  
9
8
7
6
DOUT/DRDY  
VDD  
CS  
GND  
AIN0  
AIN3  
0.1 µF  
AIN2  
AIN1  
5
Figure 48. Power Supply Decoupling  
34  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
12 Layout  
12.1 Layout Guidelines  
Use best design practices when laying out a printed-circuit-board (PCB) for both analog and digital components.  
This recommendation generally means that the layout separates analog components [such as ADCs, amplifiers,  
references, digital-to-analog converters (DACs), and analog muxes] from digital components [such as  
microcontrollers, complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), radio  
frequency (RF) transceivers, universal serial bus (USB) transceivers, and switching regulators]. An example of  
good component placement is shown in Figure 49. Although Figure 49 provides a good example of component  
placement, the best placement for each application is unique to the geometries, components, and PCB  
fabrication capabilities employed. That is, there is no single layout that is perfect for every design and careful  
consideration must always be used when designing with any analog component.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC Filters  
and  
Interface  
Transceiver  
Device  
Microcontroller  
Connector  
or Antenna  
Amplifiers)  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Figure 49. System Component Placement  
The use of split analog and digital ground planes is not necessary for improved noise performance (although for  
thermal isolation this option is a worthwhile consideration). However, the use of a solid ground plane or ground  
fill in PCB areas with no components is essential for optimum performance. If the system being used employs a  
split digital and analog ground plane, TI generally recommends that the ground planes be connected together as  
close to the device as possible. A two-layer board is possible using common grounds for both analog and digital  
grounds. Additional layers can be added to simplify PCB trace routing. Ground fill may also reduce EMI and RFI  
issues.  
For best system performance, keep digital components, especially RF portions, as far as practically possible  
from analog circuitry in a given system. Additionally, minimize the distance that digital control traces run through  
analog areas and avoid placing these traces near sensitive analog components. Digital return currents usually  
flow through a ground path that is as close to the digital path as possible. If a solid ground connection to a plane  
is not available, these currents may find paths back to the source that interfere with analog performance. The  
implications that layout has on the temperature-sensing functions are much more significant than for ADC  
functions.  
Bypass supply pins to ground with a low-ESR ceramic capacitor. The optimum placement of the bypass  
capacitors is as close as possible to the supply pins. The ground-side connections of the bypass capacitors must  
be low-impedance connections for optimum performance. The supply current flows through the bypass capacitor  
terminal first and then to the supply pin to make the bypassing most effective.  
Analog inputs with differential connections must have a capacitor placed differentially across the inputs. Use  
high-quality differential capacitors. The best ceramic-chip capacitors are C0G (NPO), with stable properties and  
low-noise characteristics. Thermally isolate a copper region around the thermocouple input connections to create  
a thermally-stable cold junction. Obtaining acceptable performance with alternate layout schemes is possible as  
long as the above guidelines are followed.  
Copyright © 2015, Texas Instruments Incorporated  
35  
 
ADS1118-Q1  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
12.2 Layout Example  
SCLK  
CS  
VDD  
1
2
3
4
5
SCLK  
CS  
10  
9
DIN  
DOUT/  
DRDY  
Device  
GND  
AIN0  
AIN1  
8
VDD  
AIN3  
AIN2  
7
AIN3  
AIN2  
AIN0  
AIN1  
6
Figure 50. VSSOP Package  
36  
版权 © 2015, Texas Instruments Incorporated  
ADS1118-Q1  
www.ti.com.cn  
ZHCSEB1A OCTOBER 2015REVISED NOVEMBER 2015  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
《使用 ADS1118 进行精密热电偶测量》SBAA189  
ADS1118EVM 用户指南》SBAU184  
430BOOST-ADS1118 BoosterPack 用户指南》SBAU207  
ADS1118 BoosterpackSLYU013  
《模数转换规范及性能特性术语表》SBAA147  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术规范和  
标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在 e2e.ti.com 中,您  
可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
E2E 精密数据转换器论坛 TI 面向精密数据转换器建立的工程师 (E2E) 社区。 创建该社区旨在促进工程师之间的交  
流和协作。 用户可在该社区中进行实时问答。  
13.3 商标  
E2E is a trademark of Texas Instruments.  
SPI is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
37  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1118QDGSRQ1  
ACTIVE  
VSSOP  
DGS  
10  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
ZFPV  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1118QDGSRQ1  
VSSOP  
DGS  
10  
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGS 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
ADS1118QDGSRQ1  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY