ADS114S06BIPBSR [TI]

适用于低成本应用且具有 PGA 和电压基准的 16 位、4kSPS、6 通道 Δ-Σ ADC | PBS | 32 | -40 to 125;
ADS114S06BIPBSR
型号: ADS114S06BIPBSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于低成本应用且具有 PGA 和电压基准的 16 位、4kSPS、6 通道 Δ-Σ ADC | PBS | 32 | -40 to 125

文件: 总96页 (文件大小:3455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REFN0 REFP0 REFCOM REFOUT  
                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                  
DVDD IOVDD  
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
具有 PGA 和电压基准的 ADS114S0xB 低功耗、低噪声、高集成度、  
6 通道和 12 通道、4kSPS16 Δ-Σ ADC  
1 特性  
3 说明  
1
低功耗:低至 280µA  
ADS114S06B ADS114S08B 均为高精度 16 Δ-Σ  
模数转换器 (ADC),兼具低功耗特性与多种集成 特  
性, 能够降低系统成本并减少小型传感器信号测量 应  
用 中的组件数。  
可编程增益:1 128  
可编程数据速率:2.5SPS 4kSPS  
借助低延迟数字滤波器,在 20SPS 时实现 50Hz  
60Hz 同步抑制  
这些 ADC 均配有数字滤波器,能够在嘈杂的工业环境  
中提供低延迟转换结果和 50Hz 60Hz 噪声抑制。可  
编程增益放大器 (PGA) 具备低噪声特性,并且可提供  
1 128 的增益,能够为电阻桥或热电偶应用放大低  
幅值 信号。此外,这两款器件还集成有一个低漂移  
2.5V 电压基准,减小了印刷电路板 (PCB) 面积。最后  
还有两个可编程的激励电流源 (IDAC),便于提供准确  
的电阻式温度检测器 (RTD) 偏置。  
具有 12 (ADS114S08B) 6 (ADS114S06B)  
独立可选输入的模拟多路复用器  
双匹配可编程传感器激励电流源:10µA 2000µA  
内部基准:2.5V8ppm/°C(典型值)温漂  
内部振荡器:4.096MHz,精度为 2%  
内部温度传感器  
自偏移校准和系统校准  
四个通用 I/O  
输入多路复用器支持适用于 ADS114S08B 12 路输  
入和适用于 ADS114S06B 6 路输入。这些输入能够  
以任意组合形式连接到 ADC,从而提高设计灵活性。  
此外,这两款器件还 具有 传感器烧毁检测、热电偶电  
压偏置、系统监控等功能和四个通用 I/O (GPIO)。  
SPI 兼容的接口  
模拟电源:单极(2.7V 5.25V)或双极 (±2.5V)  
数字电源:2.7V 3.6V  
工作温度:–40°C +125°C  
ADS114S0x 引脚兼容  
这类器件采用无引线 VQFN-32 TQFP-32 封装。  
2 应用  
现场发送器:  
器件信息  
温度、压力、应变、流量  
PLC DCS 模拟输入模块  
温度控制器  
订货编号  
封装(引脚)  
TQFP (32)  
VQFN (32)  
封装尺寸  
5.0mm × 5.0mm  
5.0mm × 5.0mm  
ADS114S0xB  
人工气候室,工业烘箱  
功能方框图  
AVDD  
Burnout  
Detect  
2.5-V  
Reference  
ADS114S06B  
Reference  
Mux  
Excitation  
Current  
Sources  
ADS114S08B  
AINCOM  
AIN0  
Reference  
Detection  
AIN1  
Reference  
Buffers  
AIN2  
VBIAS  
START/SYNC  
RESET  
CS  
AIN3  
AIN4  
Configurable  
Digital  
Filter  
Serial  
Interface  
and  
16-Bit û  
ADC  
Input  
Mux  
PGA  
AIN5  
SCLK  
AIN6 / REFP1  
AIN7 / REFN1  
AIN8 / GPIO0  
AIN9 / GPIO1  
Control  
DIN  
DOUT/DRDY  
DRDY  
System-, Self-  
Calibration  
Power Supplies  
AIN10 / GPIO2  
AIN11 / GPIO3  
Temperature  
Sensor  
4.096-MHz  
Oscillator  
CLK  
ADS114S08B  
Only  
Burnout  
Detect  
AVSS  
DGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS852  
 
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
9.6 Register Map........................................................... 54  
10 Application and Implementation........................ 68  
10.1 Application Information.......................................... 68  
10.2 Typical Application ................................................ 73  
10.3 What To Do and What Not To Do......................... 78  
11 Power Supply Recommendations ..................... 80  
11.1 Power Supplies ..................................................... 80  
11.2 Power-Supply Sequencing.................................... 80  
11.3 Power-On Reset.................................................... 80  
11.4 Power-Supply Decoupling..................................... 80  
12 Layout................................................................... 81  
12.1 Layout Guidelines ................................................. 81  
12.2 Layout Example .................................................... 82  
13 器件和文档支持 ..................................................... 83  
13.1 器件支持................................................................ 83  
13.2 文档支持................................................................ 83  
13.3 相关链接................................................................ 83  
13.4 接收文档更新通知 ................................................. 83  
13.5 社区资源................................................................ 83  
13.6 ....................................................................... 83  
13.7 静电放电警告......................................................... 83  
13.8 Glossary................................................................ 83  
14 机械、封装和可订购信息....................................... 84  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 10  
7.7 Switching Characteristics........................................ 10  
7.8 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 19  
8.1 Noise Performance ................................................. 19  
Detailed Description ............................................ 21  
9.1 Overview ................................................................. 21  
9.2 Functional Block Diagram ....................................... 22  
9.3 Feature Description................................................. 23  
9.4 Device Functional Modes........................................ 42  
9.5 Programming........................................................... 46  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (August 2017) to Revision A  
Page  
已添加 向功能方框图 图像添加了基准探测块 ......................................................................................................................... 1  
Added External Reference Monitor section in Electrical Characteristics table....................................................................... 8  
Added Reference monitor circuit row to IAVDD parameter in Additional Analog Supply Currents Per Function (AVDD =  
3.3 V) section.......................................................................................................................................................................... 9  
已添加 with low reference voltage level detection to Two sets of buffered external reference inputs bullet in  
Overview section .................................................................................................................................................................. 21  
已添加 discussion on how external reference inputs can be monitored in Overview section ............................................. 21  
已添加 reference detection block to Functional Block Diagram image ................................................................................ 22  
已删除 last sentence from Burn-Out Current Sources section............................................................................................. 38  
已更改 Status Register section............................................................................................................................................. 39  
已添加 External Reference Monitor section.......................................................................................................................... 39  
已删除 sentence discussing global chop from Offset Calibration section ........................................................................... 41  
已更改 description for filter reset for clarification.................................................................................................................. 53  
已更改 bit 0 from 0 to FL_REF in register 01h and changed bit 6 from 0 to FL_REF_EN in register 05h in  
Configuration Register Map table......................................................................................................................................... 54  
已更改 bit 0 from 0 to FL_REF and added FL_REF to field descriptions table in Device Status Register.......................... 56  
已更改 bit 6 from 0 to FL_REF_EN and added FL_REF_EN to field descriptions table in Reference Control Register..... 60  
已更改 bit setting description for bits 4 and 5 in Reference Control Register for clarification.............................................. 60  
2
Copyright © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
5 Device Comparison Table  
PRODUCT  
ADS114S08B  
ADS114S06B  
RESOLUTION (Bits)  
NUMBER OF INPUTS  
12 analog inputs  
6 analog inputs  
16  
16  
6 Pin Configuration and Functions  
RHB Package  
32-Pin VQFN  
Top View  
PBS Package  
32-Pin TQFP  
Top View  
AINCOM  
AIN5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
REFCOM  
AINCOM  
AIN5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
REFCOM  
REFOUT  
REFOUT  
AIN4  
GPIO0/AIN8  
GPIO1/AIN9  
GPIO2/AIN10  
GPIO3/AIN11  
RESET  
AIN4  
GPIO0/AIN8  
GPIO1/AIN9  
GPIO2/AIN10  
GPIO3/AIN11  
RESET  
AIN3  
AIN3  
Thermal Pad  
AIN2  
AIN2  
AIN1  
AIN1  
AIN0  
AIN0  
START/SYNC  
CLK  
START/SYNC  
CLK  
Not to scale  
Not to scale  
NOTE: The analog input functions (AIN6–AIN11) are not available on pins 19 to 22, 31, and 32 for the ADS114S06B.  
Copyright © 2017–2020, Texas Instruments Incorporated  
3
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Pin Functions  
PIN  
NO.  
NAME  
AINCOM  
AIN5  
FUNCTION  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital output  
Digital output  
Digital ground  
DESCRIPTION(1)  
1
2
3
4
5
6
7
8
9
Common analog input for single-ended measurements  
Analog input 5  
AIN4  
Analog input 4  
AIN3  
Analog input 3  
AIN2  
Analog input 2  
AIN1  
Analog input 1  
AIN0  
Analog input 0  
START/SYNC  
CS  
Start conversion  
Chip select; active low  
Serial data input  
10  
11  
12  
13  
14  
DIN  
SCLK  
Serial clock input  
DOUT/DRDY  
DRDY  
DGND  
Serial data output combined with data ready; active low  
Data ready; active low  
Digital ground  
Digital I/O power supply. In case IOVDD is not tied to DVDD, connect a 100-nF (or larger) capacitor to  
DGND.  
15  
IOVDD  
Digital supply  
16  
17  
18  
19  
20  
21  
22  
DVDD  
CLK  
Digital supply  
Digital input  
Digital core power supply. Connect a 100-nF (or larger) capacitor to DGND.  
External clock input. Connect to DGND to use the internal oscillator.  
Reset; active low  
General-purpose I/O(2); analog input 11 (ADS114S08B only)  
General-purpose I/O(2); analog input 10 (ADS114S08B only)  
General-purpose I/O(2); analog input 9 (ADS114S08B only)  
General-purpose I/O(2); analog input 8 (ADS114S08B only)  
RESET  
Digital input  
GPIO3/AIN11  
GPIO2/AIN10  
GPIO1/AIN9  
GPIO0/AIN8  
Analog input/output  
Analog input/output  
Analog input/output  
Analog input/output  
Positive voltage reference output. Connect a 1-µF to 47-µF capacitor to REFCOM if the internal  
voltage reference is enabled.  
23  
REFOUT  
Analog output  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Pad  
REFCOM  
NC  
Analog output  
Negative voltage reference output. Connect to AVSS.  
Leave unconnected or connect to AVSS  
AVDD  
Analog supply  
Analog supply  
Analog supply  
Analog input  
Analog input  
Analog input  
Analog input  
Positive analog power supply. Connect a 330-nF (or larger) capacitor to AVSS.  
Negative analog power supply  
AVSS  
AVSS  
Negative analog power supply  
REFN0  
Negative external reference input 0  
REFP0  
Positive external reference input 0  
REFN1/AIN7  
REFP1/AIN6  
Thermal Pad  
Negative external reference input 1; analog input 7 (ADS114S08B only)  
Positive external reference input 1; analog input 6 (ADS114S08B only)  
RHB package only. Thermal power pad. Connect to AVSS.  
(1) See the Unused Inputs and Outputs section for details on how to connect unused pins.  
(2) General-purpose inputs and outputs use logic levels based on the analog supply.  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
MAX  
5.5  
UNIT  
AVDD to AVSS  
AVSS to DGND  
Power-supply voltage  
–2.8  
0.3  
V
DVDD to DGND  
–0.3  
3.9  
IOVDD to DGND  
–0.3  
5.5  
Analog input voltage  
Digital input voltage  
AINx, GPIOx, REFPx, REFNx, REFCOM  
AVSS – 0.3  
AVDD + 0.3  
V
V
CS, SCLK, DIN, DOUT/DRDY, DRDY,  
START, RESET, CLK  
DGND – 0.3  
IOVDD + 0.3  
Continuous, REFN0, REFOUT  
Continuous, all other pins except power-supply pins  
Junction, TJ  
–100  
–10  
100  
10  
Input current  
Temperature  
mA  
°C  
150  
150  
Storage, Tstg  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD to AVSS  
2.7  
–2.625  
1.5  
5.25  
0.05  
5.25  
3.6  
Analog power supply  
AVSS to DGND  
AVDD to DGND  
DVDD to DGND  
IOVDD to DGND  
0
V
Digital core power supply  
Digital IO power supply  
2.7  
V
V
DVDD  
5.25  
ANALOG INPUTS(1)  
PGA bypassed  
AVSS – 0.05  
AVDD + 0.05  
AVSS + 0.15 +  
|VINMAX|·(Gain – 1) / 2  
AVDD – 0.15 –  
|VINMAX|·(Gain –1) / 2  
PGA enabled, gain = 1 to 16  
V(AINx)  
Absolute input voltage(2)  
Differential input voltage  
V
AVSS + 0.15 +  
AVDD – 0.15 –  
15.5·|VINMAX|  
PGA enabled, gain = 32 to 128  
VIN = VAINP – VAINN  
15.5·|VINMAX  
|
VIN  
–VREF / Gain  
VREF / Gain  
V
V
VOLTAGE REFERENCE INPUTS(3)  
Differential reference input  
voltage  
VREF  
VREF = V(REFPx) – V(REFNx)  
0.5  
AVDD – AVSS  
Negative reference buffer disabled  
Negative reference buffer enabled  
Positive reference buffer disabled  
Positive reference buffer enabled  
AVSS – 0.05  
AVSS  
V(REFPx) – 0.5  
V(REFPx) – 0.5  
AVDD + 0.05  
AVDD  
V
V
V
V
Absolute negative reference  
V(REFNx)  
voltage  
V(REFNx) + 0.5  
V(REFNx) + 0.5  
Absolute positive reference  
V(REFPx)  
voltage  
EXTERNAL CLOCK SOURCE(4)  
fCLK  
External clock frequency  
Duty cycle  
2
4.096  
50%  
4.5  
MHz  
40%  
60%  
GENERAL-PURPOSE INPUTS (GPIOs)  
Input voltage  
AVSS – 0.05  
DGND  
AVDD + 0.05  
IOVDD  
V
V
DIGITAL INPUTS (Other than GPIOs)  
Input voltage  
TEMPERATURE RANGE  
TA  
Operating ambient temperature  
–40  
125  
°C  
(1) AINP and AINN denote the positive and negative inputs of the PGA. Any of the available analog inputs (AINx) can be selected as either  
AINP or AINN by the input multiplexer.  
(2) VINMAX denotes the maximum differential input voltage, VIN, that is expected in the application. |VINMAX| can be smaller than VREF / Gain.  
(3) REFPx and REFNx denote one of the two available external differential reference input pairs.  
(4) An external clock is not required when the internal oscillator is used.  
7.4 Thermal Information  
ADS114S06B, ADS114S08B  
THERMAL METRIC  
VQFN (RHB)  
32 PINS  
45.2  
TQFP (PBS)  
32 PINS  
75.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.3  
17.1  
15.8  
28.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
0.4  
ψJB  
15.7  
28.3  
RθJC(bot)  
2.3  
n/a  
6
Copyright © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
7.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, and all data rates (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
PGA bypassed,  
AVSS + 0.1 V V(AINx) AVDD – 0.1 V  
±0.5  
±0.1  
±1  
Absolute input current  
Differential input current  
nA  
PGA enabled, gain 1 to 128,  
–10  
10  
V(AINx)MIN V(AINx) V(AINx)MAX  
PGA bypassed,  
VCM = AVDD / 2, –VREF VIN VREF  
nA/V  
nA  
PGA enabled, gain 1 to 128,  
VCM = AVDD / 2, –VREF / Gain VIN VREF / Gain  
±0.02  
PGA  
1, 2, 4, 8, 16,  
32, 64, 128  
Gain settings  
Startup time  
Enabling the PGA in conversion mode  
190  
µs  
SYSTEM PERFORMANCE  
Resolution (no missing codes)  
16  
Bits  
SPS  
2.5, 5, 10, 16.6,  
20, 50, 60, 100,  
200, 400, 800,  
DR  
INL  
Data rate  
1000, 2000, 4000  
PGA bypassed, VCM = AVDD / 2  
PGA enabled, gain = 1 to 128, VCM = AVDD / 2  
PGA bypassed  
1
Integral nonlinearity (best fit)  
Input offset voltage  
ppmFSR  
2
25  
20  
20 / Gain  
2
PGA enabled, gain = 1 to 8  
PGA enabled, gain = 16 to 128  
VIO  
µV  
On the order of noisePP at the  
set DR and gain  
PGA bypassed, after internal offset calibration  
PGA enabled, gain = 1 to 128, after internal offset  
calibration  
On the order of noisePP at the  
set DR and gain  
PGA bypassed  
10  
Offset drift  
nV/°C  
PGA enabled, gain = 1 to 128  
TA = 25°C, PGA bypassed  
TA = 25°C, PGA enabled, gain = 1 to 128  
PGA bypassed  
15  
0.01%  
0.1%  
0.2%  
Gain error(1)  
0.025%  
0.5  
Gain drift(1)  
ppm/°C  
PGA enabled, gain = 1 to 128  
1
Noise (input-referred)  
See the Noise Performance section  
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 20 SPS  
75  
95  
95  
NMRR Normal-mode rejection ratio(2)  
dB  
dB  
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 20 SPS,  
external fCLK = 4.096 MHz  
At dc  
120  
125  
CMRR Common-mode rejection ratio  
fCM = 50 Hz or 60 Hz (±1 Hz),  
DR = 2.5 SPS, 5 SPS, 10 SPS, 20 SPS  
AVDD at dc  
105  
115  
115  
PSRR Power-supply rejection ratio  
AVDD at 50 Hz or 60 Hz  
DVDD at dc  
dB  
(1) Excluding error of voltage reference.  
(2) See the 50-Hz and 60-Hz Line Cycle Rejection section for more information.  
Copyright © 2017–2020, Texas Instruments Incorporated  
7
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, and all data rates (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE REFERENCE INPUTS  
Reference buffers disabled, external VREF = 2.5 V,  
REFP1/REFN1 inputs  
4
5
µA/V  
nA  
Absolute input current  
Reference buffers enabled, external VREF = 2.5 V,  
REFP1/REFN1 inputs  
INTERNAL VOLTAGE REFERENCE  
VREF  
Output voltage  
Accuracy  
2.5  
±0.01%  
8
V
TA = 25°C  
–0.2%  
0.2%  
Temperature drift  
40 ppm/°C  
AVDD = 2.7 V to 3.3 V, sink and source  
AVDD = 3.3 V to 5.25 V, sink and source  
Sink and source  
–5  
5
Output current  
mA  
10  
–10  
Short-circuit current limit  
70  
85  
100  
mA  
dB  
PSRR Power-supply rejection ratio  
AVDD at dc  
AVDD = 2.7 V to 3.3 V,  
load current = –5 mA to 5 mA  
8
Load regulation  
µV/mA  
AVDD = 3.3 V to 5.25 V,  
load current = –10 mA to 10 mA  
8
Startup time  
Capacitive load stability  
Reference noise  
1-µF capacitor on REFOUT, 0.001% settling  
Capacitor on REFOUT  
5.9  
ms  
µF  
1
47  
f = 0.1 Hz to 10 Hz, 1-µF capacitor on REFOUT  
9
µVPP  
INTERNAL OSCILLATOR  
fCLK  
Frequency  
Accuracy  
4.096  
MHz  
–2%  
2%  
EXCITATION CURRENT SOURCES (IDACS)  
10, 50, 100,  
250, 500, 750,  
1000, 1500, 2000  
Current settings  
µA  
V
10 µA to 750 µA, 0.1% deviation  
AVSS  
AVSS  
–6%  
AVDD – 0.4  
AVDD – 0.6  
6%  
Compliance voltage(3)  
Accuracy (each IDAC)  
1 mA to 2 mA, 0.1% deviation  
TA = 25°C, 10 µA to 2 mA  
±1%  
0.2%  
100  
10  
Current mismatch between  
IDACs  
TA = 25°C, 10 µA to 2 mA  
Temperature drift (each IDAC) 10 µA to 2 mA  
ppm/°C  
ppm/°C  
Temperature drift matching  
10 µA to 2 mA  
between IDACs  
With internal reference already settled. From end of  
WREG command to current flowing out of pin.  
Startup time  
BIAS VOLTAGE  
22  
µs  
VBIAS  
Output voltage  
(AVDD + AVSS) / 2  
350  
V
Output impedance  
Ω
Combined capacitive load on all selected analog  
inputs CLOAD = 1 µF, 0.1% settling  
Startup time  
2.8  
ms  
µA  
BURNOUT CURRENT SOURCES (BOCS)  
Current settings  
0.2, 1, 10  
±8%  
0.2 µA, sinking or sourcing  
1 µA, sinking or sourcing  
10 µA, sinking or sourcing  
Accuracy  
±4%  
±2%  
EXTERNAL REFERENCE MONITOR  
Threshold  
0.3  
V
(3) The IDAC current does not change by more than 0.1% from the nominal value when staying within the specified compliance voltage.  
8
Copyright © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, and all data rates (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE MONITORS  
(AVDD – AVSS) / 4 monitor  
±1%  
±1%  
Accuracy  
DVDD / 4 monitor  
TEMPERATURE SENSOR  
Output voltage  
TA = 25°C  
129  
403  
mV  
Temperature coefficient  
µV/°C  
GENERAL-PURPOSE INPUT/OUTPUTS (GPIOs)  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
AVSS – 0.05  
0.7 AVDD  
AVSS  
0.3 AVDD  
AVDD + 0.05  
0.2 AVDD  
AVDD  
V
V
V
V
VIH  
VOL  
VOH  
IOL = 1 mA  
IOH = 1 mA  
0.8 AVDD  
DIGITAL INPUT/OUTPUTS  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
Input current  
DGND  
0.7 IOVDD  
DGND  
0.3 IOVDD  
IOVDD  
0.2 IOVDD  
IOVDD  
1
V
V
VIH  
VOL  
VOH  
IOL = 1 mA  
V
IOH = 1 mA  
0.8 IOVDD  
–1  
V
DGND VDigital Input IOVDD  
µA  
ANALOG SUPPLY CURRENT (AVDD = 3.3 V, External Reference, Internal Reference Disabled, Reference Buffers Disabled, IDACs Disabled, VBIAS  
Disabled, Internal Oscillator, All Data Rates, VIN = 0 V)  
Power-down mode  
0.1  
70  
Standby mode, PGA bypassed  
Conversion mode, PGA bypassed  
85  
Conversion mode, PGA enabled, gain = 1, 2  
Conversion mode, PGA enabled, gain = 4, 8  
Conversion mode, PGA enabled, gain = 16, 32  
Conversion mode, PGA enabled, gain = 64  
Conversion mode, PGA enabled, gain = 128  
120  
140  
165  
200  
250  
IAVDD  
Analog supply current  
µA  
ADDITIONAL ANALOG SUPPLY CURRENTS PER FUNCTION (AVDD = 3.3 V)  
Internal 2.5-V reference, no external load  
Positive reference buffer  
185  
35  
25  
10  
20  
30  
40  
50  
65  
10  
Negative reference buffer  
VBIAS buffer, no external load  
IDAC overhead, 10 µA to 250 µA  
IAVDD  
Analog supply current  
µA  
IDAC overhead, 500 µA to 750 µA  
IDAC overhead, 1 mA  
IDAC overhead, 1.5 mA  
IDAC overhead, 2 mA  
Reference monitor circuit  
DIGITAL SUPPLY CURRENT (DVDD = IOVDD = 3.3 V, All Data Rates, SPI Not Active)  
Power-down mode, internal oscillator  
0.1  
185  
225  
195  
Standby mode, internal oscillator  
IDVDD  
IIOVDD  
+
Digital supply current  
µA  
Conversion mode, internal oscillator  
Conversion mode, external fCLK = 4.096 MHz  
POWER DISSIPATION (AVDD = DVDD = IOVDD = 3.3 V, Internal Reference Enabled, Reference Buffers Disabled, IDACs Disabled, VBIAS Disabled,  
Internal Oscillator, All Data Rates, VIN = 0 V, SPI Not Active)  
PD  
Power dissipation  
Conversion mode, PGA enabled, gain = 1  
1.75  
mW  
Copyright © 2017–2020, Texas Instruments Incorporated  
9
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
7.6 Timing Requirements  
over operating ambient temperature range, DVDD = 2.7 V to 3.6 V, IOVDD = DVDD to 5.25 V, and  
DOUT/DRDY load = 20 pF || 100 kΩ to DGND (unless otherwise noted)  
MIN  
MAX  
UNIT(1)  
SERIAL INTERFACE  
td(CSSC)  
td(SCCS)  
tw(CSH)  
tc(SC)  
Delay time, first SCLK rising edge after CS falling edge  
Delay time, CS rising edge after final SCLK falling edge  
Pulse duration, CS high  
20  
20  
30  
100  
40  
40  
15  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK period  
tw(SCH)  
tw(SCL)  
tsu(DI)  
Pulse duration, SCLK high  
Pulse duration, SCLK low  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Delay time, between bytes or commands  
th(DI)  
td(CMD)  
RESET PIN  
tw(RSL)  
Pulse duration, RESET low  
4
tCLK  
tCLK  
Delay time, first SCLK rising edge after RESET rising edge (or 7th SCLK  
falling edge of RESET command)  
td(RSSC)  
4096  
START/SYNC PIN  
tw(STH) Pulse duration, START/SYNC high  
tw(STL)  
4
4
tCLK  
tCLK  
Pulse duration, START/SYNC low  
Setup time, START/SYNC falling edge (or 7th SCLK falling edge of STOP  
command) before DRDY falling edge to stop further conversions  
(continuous conversion mode)  
tsu(STDR)  
32  
tCLK  
(1) tCLK = 1 / fCLK  
.
7.7 Switching Characteristics  
over operating ambient temperature range, DVDD = 2.7 V to 3.6 V, IOVDD = DVDD to 5.25 V, and  
DOUT/DRDY load = 20 pF || 100 kΩ to DGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT(1)  
Propagation delay time, CS falling edge to DOUT  
driven  
tp(CSDO)  
tp(SCDO)  
tp(CSDOZ)  
0
25  
ns  
Propagation delay time, SCLK rising edge to valid  
new DOUT  
3
0
30  
25  
ns  
ns  
Propagation delay time, CS rising edge to DOUT high  
impedance  
Propagation delay time, START/SYNC rising edge (or  
first SCLK rising edge of any command or data read)  
to DRDY rising edge  
tp(STDR)  
2
tCLK  
tw(DRH)  
tp(GPIO)  
Pulse duration, DRDY high  
24  
3
tCLK  
ns  
Propagation delay time, last SCLK falling edge of  
WREG command to GPIOx output valid  
100  
SPI timeout per 8 bits(2)  
215  
tCLK  
(1) tCLK = 1 / fCLK  
(2) The SPI interface resets when an entire byte is not sent within the specified timeout time.  
10  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
tw(CSH)  
CS  
SCLK  
DIN  
ttd(CSSC)  
t
ttc(SC)  
t
tw(SCH)  
ttd(SCCS)t  
tsu(DI)  
th(DI)  
tw(SCL)  
NOTE: Single-byte communication is shown. Actual communication can be multiple bytes.  
1. Serial Interface Timing Requirements  
CS  
SCLK  
tp(CSDO)  
tp(SCDO)  
tp(CSDOZ)  
Hi-Z  
Hi-Z  
DOUT/DRDY  
NOTE: Single-byte communication is shown. Actual communication can be multiple bytes.  
2. Serial Interface Switching Characteristics  
tw(RSL)  
RESET  
SCLK  
DIN  
td(RSSC)  
RESET command  
New command  
3. RESET Pin and RESET Command Timing Requirements  
tw(STL)  
START/SYNC  
DRDY  
tw(STH)  
tp(STDR)  
tw(DRH)  
tp(STDR)  
tsu(STDR)  
4. START/SYNC Pin Timing Requirements  
版权 © 2017–2020, Texas Instruments Incorporated  
11  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
SCLK  
DIN  
START command  
STOP command  
tp(STDR)  
tp(STDR)  
DRDY  
tsu(STDR)  
5. START Command Timing Requirements  
SCLK  
DIN  
WREG  
01h  
01h  
01h  
GPIO0 set as output  
GPIO0 set high  
GPIO0 enabled  
Write two registers  
WREG GPIODAT  
GPIO0  
tp(GPIO)  
6. GPIO Switching Characteristics  
12  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
7.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
2000  
1000  
0
2000  
1000  
0
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
-1000  
-2000  
-3000  
-4000  
-1000  
-2000  
-3000  
-4000  
0
0.5  
1
1.5 2  
V(AINx) (V)  
2.5  
3
3.5  
0
0.5  
1
1.5 2  
V(AINx) (V)  
2.5  
3
3.5  
PGA bypassed, DR = 20 SPS, VIN = 0 V  
PGA bypassed, DR = 4 kSPS, VIN = 0 V  
7. Absolute Input Current vs Absolute Input Voltage  
8. Absolute Input Current vs Absolute Input Voltage  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
0
0
-500  
-1000  
-1500  
-2000  
-500  
-1000  
-1500  
-2000  
0
0.5  
1
1.5 2  
V(AINx) (V)  
2.5  
3
3.5  
0
0.5  
1
1.5 2  
V(AINx) (V)  
2.5  
3
3.5  
PGA enabled, gain = 1, DR = 20 SPS, VIN = 0 V  
PGA enabled, gain = 1, DR = 4 kSPS, VIN = 0 V  
9. Absolute Input Current vs Absolute Input Voltage  
10. Absolute Input Current vs Absolute Input Voltage  
2000  
1500  
1000  
500  
2000  
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
1500  
1000  
500  
0
0
-500  
-1000  
-1500  
-2000  
-500  
-1000  
-1500  
-2000  
-2.5 -2 -1.5 -1 -0.5  
0
VIN (V)  
0.5  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
VIN (V)  
0.5  
1
1.5  
2
2.5  
PGA bypassed, DR = 20 SPS, VCM = 1.65 V  
PGA bypassed, DR = 4 kSPS, VCM = 1.65 V  
11. Differential Input Current vs Differential Input Voltage  
12. Differential Input Current vs Differential Input Voltage  
版权 © 2017–2020, Texas Instruments Incorporated  
13  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
200  
150  
100  
50  
400  
300  
200  
100  
0
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
0
-50  
-100  
-200  
-300  
-400  
-100  
-150  
-200  
-2.5 -2 -1.5 -1 -0.5  
0
VIN (V)  
0.5  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
VIN (V)  
0.5  
1
1.5  
2
2.5  
PGA enabled, DR = 20 SPS, VCM = 1.65 V  
PGA enabled, DR = 4 kSPS, VCM = 1.65 V  
13. Differential Input Current vs Differential Input Voltage  
14. Differential Input Current vs Differential Input Voltage  
3
3
2
1
2
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-100 -80 -60 -40 -20  
0
VIN (% of FSR)  
20  
40  
60  
80 100  
-100 -80 -60 -40 -20  
0
VIN (% of FSR)  
20  
40  
60  
80 100  
PGA enabled, gain = 1  
PGA bypassed, gain = 1  
15. INL vs Differential Input Voltage  
16. INL vs Differential Input Voltage  
16  
14  
12  
10  
8
10  
8
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
6
4
6
4
2
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
17. INL vs Temperature  
18. Offset Voltage vs Temperature  
14  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
2.502  
2.501  
2.5  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
2.499  
2.498  
2.497  
PGA disabled  
Gain = 1  
Gain = 4  
Gain = 32  
Gain = 128  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
28 units, TQFP package  
20. Internal Reference Voltage vs Temperature  
19. Gain Error vs Temperature  
2.5002  
2.5001  
2.5  
10  
8
6
4
2
0
2.4999  
2.4998  
2.4997  
-2  
-4  
-6  
-8  
-10  
2.7  
3
3.3  
3.6  
3.9 4.2  
AVDD (V)  
4.5  
4.8  
5.1  
5.4  
Time (1 s/div)  
22. Internal Reference Voltage Noise  
21. Internal Reference Voltage vs AVDD  
250  
200  
150  
100  
50  
4.12  
4.11  
4.1  
4.09  
4.08  
4.07  
4.06  
0
-50  
-25  
0
25 50  
Temperature (C)  
75  
100  
125  
Internal Oscillator Frequency (MHz)  
28 units  
23. Internal Oscillator Frequency Histogram  
24. Internal Oscillator Frequency vs Temperature  
版权 © 2017–2020, Texas Instruments Incorporated  
15  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
0
-1  
-2  
-3  
-4  
-5  
0
-10  
-20  
-30  
-40  
-50  
10 µA  
50 µA  
100 µA  
250 µA  
500 µA  
750 µA  
1 mA  
1.5 mA  
2 mA  
10 µA  
50 µA  
100 µA  
250 µA  
500 µA  
750 µA  
1 mA  
1.5 mA  
2 mA  
2.5  
2.6  
2.7  
2.8  
2.9  
IDAC Output Voltage (V)  
3
3.1  
3.2  
0
0.5  
1
1.5  
2
IDAC Output Voltage (V)  
2.5  
3
3.5  
26. IDAC Accuracy vs Compliance Voltage  
25. IDAC Accuracy vs Compliance Voltage  
3
2
0.3  
0.25  
0.2  
10 mA  
750 mA  
1 mA  
1.5 mA  
2 mA  
50 mA  
100 mA  
250 mA  
500 mA  
1
0
0.15  
0.1  
-1  
-2  
-3  
10 mA  
750 mA  
1 mA  
1.5 mA  
2 mA  
50 mA  
100 mA  
250 mA  
500 mA  
0.05  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
IDAC output voltage = 1.65 V  
27. IDAC Accuracy vs Temperature  
28. IDAC Matching vs Temperature  
180  
160  
140  
120  
100  
80  
0.501  
0.5005  
0.5  
AVDD = 2.7 V  
AVDD = 5.25 V  
0.4995  
0.499  
0.4985  
0.498  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
30. Temperature Sensor Voltage vs Temperature  
29. VBIAS Voltage [(AVDD – AVSS) / 2] vs Temperature  
16  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
3.3  
3.2  
3.1  
3
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40èC  
25èC  
85èC  
125èC  
2.9  
2.8  
2.7  
-40èC  
25èC  
85èC  
125èC  
0
1
2
3
Sourcing Current (mA)  
4
5
6
7
8
0
1
2
3
Sinking Current (mA)  
4
5
6
7
8
AVDD = 3.3 V  
AVDD = 3.3 V  
31. GPIO Pin Output Voltage vs Sourcing Current  
32. GPIO Pin Output Voltage vs Sinking Current  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.3  
-40èC  
25èC  
85èC  
125èC  
3.2  
3.1  
3
2.9  
2.8  
2.7  
-40èC  
25èC  
85èC  
125èC  
0
1
2
3
4
5
Sinking Current (mA)  
6
7
8
0
1
2
3
4
5
Sourcing Current (mA)  
6
7
8
DVDD = 3.3 V  
DVDD = 3.3 V  
34. Digital Pin Output Voltage vs Sinking Current  
33. Digital Pin Output Voltage vs Sourcing Current  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
Standby mode  
PGA bypassed  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 128  
PGA bypassed  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 128  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
2.7  
3
3.3  
3.6  
3.9 4.2  
AVDD (V)  
4.5  
4.8  
5.1  
5.4  
Temperature (èC)  
Standby and conversion mode, external VREF  
Conversion mode, external VREF  
35. Analog Supply Current vs Temperature  
36. Analog Supply Current vs AVDD  
版权 © 2017–2020, Texas Instruments Incorporated  
17  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
260  
240  
220  
200  
180  
160  
140  
120  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
Power-down mode  
37. Analog Supply Current vs Temperature  
38. Internal Reference AVDD Current vs Temperature  
260  
260  
240  
220  
200  
180  
160  
140  
120  
240  
220  
200  
180  
160  
140  
120  
Standby mode  
Conversion mode  
-50  
-25  
0
25  
50  
75 100 125  
2.7  
2.8  
2.9  
3
3.1 3.2  
DVDD (V)  
3.3  
3.4  
3.5  
3.6  
Temperature (èC)  
Standby and conversion mode  
Conversion mode  
40. Digital Supply Current vs DVDD  
39. Digital Supply Current vs Temperature  
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Power-down mode  
41. Digital Supply Current vs Temperature  
18  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
8 Parameter Measurement Information  
8.1 Noise Performance  
Delta-sigma (ΔΣ) analog-to-digital converters (ADCs) are based on the principle of oversampling. The input  
signal of a ΔΣ ADC is sampled at a high frequency (modulator frequency) and subsequently filtered and  
decimated in the digital domain to yield a conversion result at the respective output data rate. The ratio between  
modulator frequency and output data rate is called the oversampling ratio (OSR). By increasing the OSR, and  
thus reducing the output data rate, the noise performance of the ADC can be optimized. In other words, the  
input-referred noise drops when reducing the output data rate because more samples of the internal modulator  
are averaged to yield one conversion result. Increasing the gain also reduces the input-referred noise, which is  
particularly useful when measuring low-level signals.  
1 and 2 summarize the device noise performance. Data are representative of typical noise performance at  
TA = 25°C using the internal 2.5-V reference. Data shown are based on 512 consecutive samples from a single  
device with inputs internally shorted. 1 lists the input-referred root mean square noise in units of μVRMS for the  
conditions shown. Peak-to-peak (µVPP) values are shown in parentheses. 2 lists the corresponding data in  
effective resolution calculated from μVRMS values using 公式 1. Noise-free resolution is calculated from µVPP  
values using 公式 2.  
The input-referred noise (1) only changes marginally when using an external low-noise reference, such as the  
REF5025. To calculate effective resolution and noise-free resolution when using a reference voltage other than  
2.5 V, use 公式 1 and 公式 2:  
Effective Resolution = ln[(2 · VREF / Gain) / VRMS-Noise] / ln(2)  
Noise-Free Resolution= ln[(2 · VREF / Gain) / VPP-Noise] / ln(2)  
(1)  
(2)  
Noise performance with the PGA bypassed are identical to the noise performance of the device with gain = 1.  
1. Noise in μVRMS (μVPP) at AVDD = 3.3 V, AVSS = 0 V,  
PGA Enabled, and Internal 2.5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
1
2
4
8
16  
32  
64  
128  
2.5  
5
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (76.3)  
76.3 (83)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (38.1)  
38.1 (80)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (19.1)  
19.1 (32)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (9.5)  
9.5 (17)  
12 (70)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (4.8)  
4.8 (11)  
6.4 (39)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.4)  
2.4 (2.8)  
2.4 (4.0)  
2.4 (5.1)  
2.4 (6.7)  
3.3 (21)  
1.2 (1.2)  
1.2 (1.2)  
1.2 (1.2)  
1.2 (1.2)  
1.2 (1.2)  
1.2 (1.2)  
1.2 (1.2)  
1.2 (1.4)  
1.2 (1.9)  
1.2 (2.9)  
1.2 (3.8)  
1.2 (4.3)  
1.2 (6.6)  
3.1 (21)  
0.60 (0.60)  
0.60 (0.60)  
0.60 (0.60)  
0.60 (0.60)  
0.60 (0.60)  
0.60 (0.60)  
0.60 (0.90)  
0.60 (1.3)  
0.60 (1.7)  
0.60 (2.3)  
0.60 (3.2)  
0.60 (3.8)  
1.0 (6.5)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
103 (629)  
38.1 (404)  
24 (160)  
2.6 (20)  
版权 © 2017–2020, Texas Instruments Incorporated  
19  
 
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
2. Effective Resolution From RMS Noise (Noise-Free Resolution From Peak-to-Peak Noise)  
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, and Internal 2.5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
1
2
4
8
16  
32  
64  
128  
2.5  
5
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (15.9)  
16 (13.0)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (14.9)  
16 (12.6)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (15.3)  
15.7 (12.9)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (15.2)  
16 (13.1)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (15.8)  
16 (14.8)  
15.6 (13.0)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
10  
16 (16)  
16 (16)  
16 (16)  
16.6  
20  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
50  
16 (16)  
16 (16)  
16 (15.5)  
16 (15.4)  
16 (14.9)  
16 (14.5)  
16 (14.0)  
16 (13.6)  
16 (13.3)  
15.2 (12.6)  
13.6 (10.9)  
60  
16 (16)  
16 (16)  
100  
200  
400  
800  
1000  
2000  
4000  
16 (16)  
16 (15.8)  
16 (15.3)  
16 (14.7)  
16 (14.3)  
16 (14.2)  
16 (13.5)  
14.4 (11.9)  
16 (16)  
16 (15.8)  
16 (15.2)  
16 (14.9)  
16 (14.5)  
15.5 (12.9)  
20  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9 Detailed Description  
9.1 Overview  
The ADS114S06B and ADS114S08B are precision 16-bit, delta-sigma (ΔΣ) analog-to-digital converters (ADCs)  
with an integrated analog front-end (AFE) to simplify precision sensor connections. The ADC provides output  
data rates from 2.5 SPS to 4000 SPS for flexibility in resolution and data rates over a wide range of applications.  
The low-noise and low-drift architecture make these devices suitable for precise measurement of low-voltage  
sensors, such as load cells and temperature sensors.  
The ADS114S0xB incorporates several features that simplify precision sensor measurements. Key integrated  
features include:  
Low-noise, CMOS PGA  
Low-drift, 2.5-V voltage reference  
Two sets of buffered external reference inputs with low reference voltage level detection  
Dual, matched, sensor-excitation current sources (IDACs)  
Internal 4.096-MHz oscillator  
Temperature sensor  
Four general-purpose input/output pins (GPIOs)  
As described in the Functional Block Diagram section, these devices provide 12 (ADS114S08B) or six  
(ADS114S06B) analog inputs that are configurable as either single-ended inputs, differential inputs, or any  
combination of the two. Many of the analog inputs have additional features as programmed by the user. The  
analog inputs can be programmed to enable the following extended features:  
Two sensor excitation current sources: all analog input pins (and REFP1 and REFN1 on the ADS114S06B)  
Sensor biasing voltage (VBIAS): pins AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AINCOM  
Four GPIO pins: AIN8, AIN9, AIN10, AIN11 (ADS114S08B only, the ADS114S06B has dedicated GPIOs)  
Sensor burn-out current sources: analog input pins selected for ADC input  
Following the input multiplexer (MUX), the ADC features a high input-impedance, low-noise, programmable gain  
amplifier (PGA), eliminating the need for an external amplifier. The PGA gain is programmable from 1 to 128 in  
binary steps. The PGA can be bypassed to allow the input range to extend 50 mV below ground or above  
supply.  
An inherently stable ΔΣ modulator measures the ratio of the input voltage to the reference voltage to provide the  
ADC result. The ADC operates with the internal 2.5-V reference, or with up to two external reference inputs. The  
external reference inputs can be continuously monitored for low voltage. The REFOUT pin provides the buffered  
2.5-V internal voltage reference output that can be used to bias external circuitry.  
The digital filter provides settled data with 50-Hz and 60-Hz line-cycle rejection at data rates of 2.5 SPS, 5 SPS,  
10 SPS, and 20 SPS, 50-Hz rejection at data rates of 16.6 SPS and 50 SPS, and 60-Hz rejection at a data rate  
of 60 SPS.  
Two programmable excitation current sources provide bias to resistive sensors [such as resistance temperature  
detectors (RTDs) or thermistors]. The ADC integrates several system monitors for read back, such as  
temperature sensor and supply monitors. Four GPIO pins are available as either dedicated pins (ADS114S06B)  
or combined with analog input pins (ADS114S08B).  
The ADS114S0xB system clock is either provided by the internal low-drift, 4.096-MHz oscillator or an external  
clock source on the CLK input.  
The SPI-compatible serial interface is used to read the conversion data and also to configure and control the  
ADC. The serial interface consists of four signals: CS, SCLK, DIN, and DOUT/DRDY. The dual function  
DOUT/DRDY output indicates when conversion data are ready and also provides the data output. The serial  
interface can be implemented with as little as three connections by tying CS low. Start ADC conversions with  
either the START/SYNC pin or with commands. The ADC can be programmed for a continuous conversion mode  
or to perform single-shot conversions.  
版权 © 2017–2020, Texas Instruments Incorporated  
21  
REFN0 REFP0 REFCOM REFOUT  
                                                                                                                                                                                                                       
                                                                                                                                                                                                                         
                                                                                                                                                                                                                            
                                                                                                                                                                                                                              
DVDD  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Overview (接下页)  
The AVDD analog supply operates with bipolar supplies from ±1.5 V to ±2.625 V or with a unipolar supply from  
2.7 V to 5.25 V. For unipolar-supply operation, use the VBIAS voltage to bias isolated (floating) sensors. The  
digital supplies operate with unipolar supplies only. The DVDD digital power supply operates from 2.7 V to 3.6 V  
and the IOVDD supply operates from DVDD to 5.25 V.  
9.2 Functional Block Diagram  
AVDD  
IOVDD  
Burnout  
Detect  
2.5-V  
Reference  
ADS114S06B  
ADS114S08B  
Reference  
Mux  
Excitation  
Current  
Sources  
AINCOM  
AIN0  
Reference  
Detection  
AIN1  
Reference  
Buffers  
AIN2  
VBIAS  
START/SYNC  
RESET  
CS  
AIN3  
AIN4  
Configurable  
Digital  
Filter  
Serial  
Interface  
and  
16-Bit û  
ADC  
Input  
Mux  
PGA  
AIN5  
SCLK  
AIN6 / REFP1  
AIN7 / REFN1  
AIN8 / GPIO0  
AIN9 / GPIO1  
Control  
DIN  
DOUT/DRDY  
DRDY  
System-, Self-  
Calibration  
Power Supplies  
AIN10 / GPIO2  
AIN11 / GPIO3  
Temperature  
Sensor  
4.096-MHz  
Oscillator  
CLK  
ADS114S08B  
Only  
Burnout  
Detect  
AVSS  
DGND  
22  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.3 Feature Description  
9.3.1 Multiplexer  
The ADS114S0xB contains a flexible input multiplexer; see 42. Select any of the six (ADS114S06B) or 12  
(ADS114S08B) analog inputs as the positive or negative input for the PGA using the MUX_P[3:0] and  
MUX_N[3:0] bits in the input multiplexer register (02h). In addition, AINCOM can be selected as the positive or  
negative PGA input. AINCOM is treated as a regular analog input, as is AINx. Use AINCOM in single-ended  
measurement applications as the common input for the other analog inputs.  
The multiplexer also routes the excitation current sources to drive resistive sensors (bridges, RTDs, and  
thermistors) and can provide bias voltages for unbiased sensors (unbiased thermocouples for example) to analog  
input pins.  
The ADS114S0xB also contains a set of system monitor functions measured through the multiplexer. The inputs  
can be shorted together at mid-supply [(AVDD + AVSS) / 2] to measure and calibrate the input offset of the  
analog front-end and the ADC. The system monitor also includes a temperature sensor that provides a  
measurement of the device temperature. The system monitor can also measure the analog and digital supplies,  
measuring [(AVDD – AVSS) / 4] for the analog supply or DVDD / 4 for the digital supply. Finally, the system  
monitor contains a set of burn-out current sources that pull the inputs to either supply if the sensor has burned  
out and has a high impedance so that the ADC measures a full-scale reading.  
The multiplexer implements a break-before-make circuit. When changing the multiplexer channels using the  
MUX_P[3:0] and MUX_N[3:0] bits, the device first disconnects the PGA inputs from the analog inputs and  
connects them to mid-supply for 2 · tCLK. In the next step, the PGA inputs connect to the selected new analog  
input channels. This break-before-make behavior ensures the ADC always starts from a known state and that the  
analog inputs are not momentarily shorted together.  
Electrostatic discharge (ESD) diodes to AVDD and AVSS protect the inputs. The absolute voltage on any input  
must stay within the range provided by 公式 3 to prevent the ESD diodes from turning on:  
AVSS – 0.3 V < V(AINx) < AVDD + 0.3 V  
(3)  
External Schottky clamp diodes or series resistors may be required to limit the input current to safe values (see  
the Absolute Maximum Ratings table). Overdriving an unselected input on the device can affect conversions  
taking place on other input pins.  
版权 © 2017–2020, Texas Instruments Incorporated  
23  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
AVDD  
IDAC2  
AVDD  
IDAC1  
(1)  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
(AVDD + AVSS) / 2  
AINCOM  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AVDD  
AVDD  
Temperature  
Diode  
(2)  
(AVDD Þ AVSS) (5 / 8)  
(AVDD Þ AVSS) (3 / 8)  
(3)  
DVDD • (4 / 12)  
DVDD • (1 / 12)  
AVDD  
Burn-Out Current Source  
AINP  
To ADC  
PGA  
AINN  
Burn-Out Current Source  
AVSS  
ADS114S08B Only  
(1) AINP and AINN are connected together to (AVDD + AVSS) / 2 for offset measurement.  
(2) Measurement for the analog supply equivalent to (AVDD – AVSS) / 4.  
(3) Measurement for the analog supply equivalent to DVDD / 4.  
42. Analog Input Multiplexer  
24  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Feature Description (接下页)  
9.3.2 Low-Noise Programmable Gain Amplifier  
The ADS114S06B and ADS114S08B feature a low-drift, low-noise, high input impedance programmable gain  
amplifier (PGA). 43 shows a simplified diagram of the PGA. The PGA consists of two chopper-stabilized  
amplifiers (A1 and A2) and a resistor feedback network that sets the gain of the PGA. The PGA input is equipped  
with an electromagnetic interference (EMI) filter and an antialiasing filter on the output.  
250  
+
AINP  
A1  
RF  
16 pF  
2.5 k  
320 pF  
RG  
ADC  
RF  
A2  
2.5 kꢀ  
250 ꢀ  
+
AINN  
16 pF  
43. Simplified PGA Diagram  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128 using the GAIN[2:0] bits in the gain setting register  
(03h). Gain is changed inside the device using a variable resistor, RG. The differential full-scale input voltage  
range (FSR) of the PGA is defined by the gain setting and the reference voltage used, as shown in 公式 4:  
FSR = ±VREF / Gain  
(4)  
3 shows the corresponding full-scale ranges when using the internal 2.5-V reference.  
3. PGA Full-Scale Range  
GAIN SETTING  
FSR  
1
2
±2.5 V  
±1.25 V  
±0.625 V  
±0.313 V  
±0.156 V  
±0.078 V  
±0.039 V  
±0.020 V  
4
8
16  
32  
64  
128  
The PGA must be enabled with the PGA_EN[1:0] bits of the gain setting register (03h). Setting these bits to 00  
powers down and bypasses the PGA. A setting of 01 enables the PGA. The 10 and 11 settings are reserved and  
must not be written to the device.  
With the PGA enabled, gains 64 and 128 are established in the digital domain. When the device is set to 64 or  
128, the PGA is set to a gain of 32, and additional gain is established with digital scaling. The input-referred  
noise does still improve compared to the gain = 32 setting because the PGA is biased with a higher supply  
current to reduce noise.  
版权 © 2017–2020, Texas Instruments Incorporated  
25  
 
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.3.2.1 PGA Input-Voltage Requirements  
As with many amplifiers, the PGA has an absolute input voltage range requirement that cannot be exceeded.  
The maximum and minimum absolute input voltages are limited by the voltage swing capability of the PGA  
output. The specified minimum and maximum absolute input voltages (VAINP and VAINN) depend on the PGA gain,  
the maximum differential input voltage (VINMAX), and the tolerance of the analog power-supply voltages (AVDD  
and AVSS). Use the maximum voltage expected in the application for VINMAX. As shown in 公式 5, the absolute  
positive and negative input voltages must be within the specified range:  
AVSS + 0.15 V + |VINMAX| · (Gain – 1) / 2 < VAINP, VAINN < AVDD – 0.15 V – |VINMAX| · (Gain – 1) / 2  
where  
VAINP, VAINN = absolute input voltage  
VINMAX = VAINP – VAINN = maximum differential input voltage  
(5)  
As mentioned in the previous section, PGA gain settings of 64 and 128 are scaled in the digital domain and are  
not implemented with the amplifier. When using the PGA in gains of 64 and 128, set the gain in 公式 5 to 32 to  
calculate the absolute input voltage range.  
44 graphically shows the relationship between the PGA input to the PGA output. The PGA output voltages  
(VOUTP, VOUTN) depend on the PGA gain and the input voltage magnitudes. For linear operation, the PGA output  
voltages must not exceed AVDD – 0.15 V or AVSS + 0.15 V. The diagram depicts a positive differential input  
voltage that results in a positive differential output voltage.  
PGA Input  
PGA Output  
AVDD  
AVDD œ 0.15 V  
VOUTP = VAINP + VIN (Gain œ 1) / 2  
VAINP  
VIN = VAINP œ VAINN  
VAINN  
VOUTN = VAINN œ VIN (Gain œ 1) / 2  
AVSS + 0.15 V  
AVSS  
44. PGA Input/Output Range  
Download the ADS1x4S0x design calculator from www.ti.com. This calculator can be used to determine the input  
voltage range of the PGA.  
9.3.2.2 Bypassing the PGA  
At a gain of 1, the device can be configured to disable and bypass the low-noise PGA. Disabling the PGA lowers  
the overall power consumption and also removes the restrictions of 公式 5 for the input voltage range. If the PGA  
is bypassed, the ADC absolute input voltage range extends beyond the AVDD and AVSS power supplies,  
allowing input voltages at or below ground. 公式 6 shows the absolute input voltage range when the PGA is  
bypassed:  
AVSS – 0.05 V < VAINP, VAINN < AVDD + 0.05 V  
(6)  
In order to measure single-ended signals that are referenced to AVSS (AINP = VIN, AINN = AVSS), the PGA must  
be bypassed. The PGA is bypassed and powered down by setting the PGA_EN[1:0] bits to 00 in the gain setting  
register (03h).  
For signal sources with high output impedance, external buffering may still be necessary. Active buffers introduce  
noise and also introduce offset and gain errors. Consider all of these factors in high-accuracy applications.  
26  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.3.3 Voltage Reference  
The devices require a reference voltage for operation. The ADS114S0xB offers an integrated low-drift 2.5-V  
reference. For applications that require a different reference voltage value or a ratiometric measurement  
approach, the ADS114S08B offers two differential reference input pairs (REFP0, REFN0 and REFP1, REFN1).  
The differential reference inputs allow freedom in the reference common-mode voltage. REFP0 and REFN0 are  
dedicated reference inputs, whereas REFP1 and REFN1 are shared with inputs AIN6 and AIN7 (respectively) on  
the ADS114S08B. The specified external reference voltage range is 0.5 V to AVDD. The reference voltage is  
shown in 公式 7, where V(REFPx) and V(REFNx) are the absolute positive and absolute negative reference voltages.  
VREF = V(REFPx) – V(REFNx)  
(7)  
The polarity of the reference voltage internal to the ADC must be positive. The magnitude of the reference  
voltage together with the PGA gain establishes the ADC full-scale differential input range as defined by  
FSR = ±VREF / Gain.  
45 shows the block diagram of the reference multiplexer. The ADC reference multiplexer selects between the  
internal reference and two external references (REF0 and REF1). The reference multiplexer is programmed with  
the REFSEL[1:0] bits in the reference control register (05h). By default, the external reference pair REFP0,  
REFN0 is selected.  
REFSEL[1:0] bits of REF register  
00 = REFP0, REFN0  
01 = REFP1, REFN1  
10 = Internal 2.5-V reference  
11 = Reserved  
REFP_BUF bit of REF register  
0 = Enabled  
00  
REFP0  
1 = Disabled  
01  
REFP1  
10  
REFOUT  
VREFP  
Internal  
2.5-V  
Reference  
1 mF(1)  
VREFN  
00  
REFN0  
01  
10  
ADC  
REFN1  
REFN_BUF bit of REF register  
0 = Enabled  
1 = Disabled  
REFCOM  
REFCON[1:0] bits of REF register  
00 = Internal reference off  
01 = Internal reference on;  
off in power-down mode  
10 = Internal reference always on  
11 = Reserved  
(1) The internal reference requires a minimum 1-µF capacitor connected from REFOUT to REFCOM.  
45. Reference Multiplexer Block Diagram  
版权 © 2017–2020, Texas Instruments Incorporated  
27  
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.3.3.1 Internal Reference  
The ADC integrates a precision, low-drift, 2.5-V reference. The internal reference is enabled by setting  
REFCON[1:0] to 10 (reference is always on) or 01 (reference is on, but powers down in power-down mode) in  
the reference control register (05h). By default, the internal voltage reference is powered down. To select the  
internal reference for use with the ADC, set the REFSEL[1:0] bits to 10. The REFOUT pin provides a buffered  
reference output voltage when the internal reference voltage is enabled. The negative reference output is the  
REFCOM pin; see 45. Connect a capacitor in the range of 1 μF to 47 μF between REFOUT and REFCOM.  
Larger capacitor values help filter more noise at the expense of a longer reference start-up time.  
The capacitor is not required if the internal reference is not used. However, the internal reference must be  
powered on if using the IDACs.  
The internal reference requires a start-up time, as shown in 4, that must be accounted for before starting a  
conversion.  
4. Internal Reference Settling Time  
REFOUT CAPACITOR  
SETTLING ERROR  
0.01%  
SETTLING TIME (ms)  
4.5  
5.9  
4.9  
6.3  
5.5  
7.0  
1 µF  
0.001%  
0.01%  
10 µF  
47 µF  
0.001%  
0.01%  
0.001%  
9.3.3.2 External Reference  
The ADS114S0xB provides two external reference inputs selectable through the reference multiplexer. The  
reference inputs are differential with independent positive and negative inputs. REFP0 and REFN0 or REFP1  
and REFN1 can be selected as the ADC reference. REFP1 and REFN1 are shared inputs with analog pins AIN6  
and AIN7 in the ADS114S08B.  
Without buffering, the reference input impedance is approximately 250 kΩ. The reference input current can lead  
to possible errors from either high reference source impedance or through reference input filtering. To reduce the  
input current, use either internal or external reference buffers. In most applications external reference buffering is  
not necessary.  
Connect a bypass capacitor across the external reference input pins if an external reference is used. Follow the  
specified absolute and differential reference voltage requirements.  
9.3.3.3 Reference Buffers  
The device has two individually selectable reference input buffers to lower the reference input current. Use the  
REFP_BUF and REFN_BUF bits in the reference control register (05h) to enable or disable the positive and  
negative reference buffers respectively. These bits are active low. Writing a 1 to REFP_BUF or REFN_BUF  
disables the reference buffers.  
The reference buffers are recommended to be disabled when the internal reference is selected for  
measurements. The positive reference buffer is recommended to be disabled when REFPx is at AVDD and the  
negative reference buffer is recommended to be disabled when REFNx is at AVSS.  
28  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.3.4 Clock Source  
The ADS114S0xB system clock is either provided by the internal low-drift 4.096-MHz oscillator or an external  
clock source on the CLK input. Use the CLK bit within the data rate register (04h) to select the internal  
4.096-MHz oscillator or an external clock source.  
The device defaults to using the internal oscillator. If the device is reset (from either the RESET pin, or the  
RESET command), then the clock source returns to using the internal oscillator.  
9.3.5 Delta-Sigma Modulator  
A delta-sigma (ΔΣ) modulator is used in the devices to convert the analog input voltage into a pulse code  
modulated (PCM) data stream. The modulator runs at a modulator clock frequency of fMOD = fCLK / 16, where fCLK  
is either provided by the internal 4.096-MHz oscillator or the external clock source.  
9.3.6 Digital Filter  
The devices offer digital filter options for decimation of the digital data stream coming from the delta-sigma  
modulator. The implementation of the digital filter is determined by the data rate setting. 46 shows the digital  
filter implementation.  
The low-latency digital filter is a finite impulse response (FIR) filter that provides settled data, given that the  
analog input signal has settled to the final value before the conversion is started. This digital filter implementation  
is especially useful when multiple channels must be scanned in minimal time.  
fCLK = 4.096 MHz  
fCLK / 16  
Low-Latency Filter  
fMOD = 256 kHz  
20, 10, 5, 2.5 SPS  
LL2  
Filter  
SINC1  
Filter  
SINC3  
Filter  
ADC  
400, 200, 100, 60, 50, 16.6 SPS  
4000, 2000, 1000, 800 SPS  
LL1  
Filter  
SINC1  
Filter  
ADC data  
output  
DR[3:0] bits of  
DATARATE Register  
0000 = 2.5 SPS  
0001 = 5 SPS  
1000 = 200 SPS  
1001 = 400 SPS  
1010 = 800 SPS  
1011 = 1000 SPS  
1100 = 2000 SPS  
1101 = 4000 SPS  
1110 = 4000 SPS  
1111 = Reserved  
0010 = 10 SPS  
0011 = 16.6 SPS  
0100 = 20 SPS  
0101 = 50 SPS  
0110 = 60 SPS  
0111 = 100 SPS  
NOTE: LL filter = low-latency filter.  
46. Digital Filter Architecture  
版权 © 2017–2020, Texas Instruments Incorporated  
29  
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
The device requires a set number of modulator clocks to output a single ADC conversion data. This number is  
known as the oversampling ratio (OSR). The OSR of the digital filter is set using the DR[3:0] bits in the data rate  
register. 公式 8 determines the data rate.  
Data Rate = fMOD / OSR  
(8)  
5 shows the relationship between the data rate and oversampling ratio.  
5. ADC Data Rates and Digital Filter Oversampling Ratios  
NOMINAL DATA RATE  
(SPS)(1)  
DATA RATE REGISTER  
DR[3:0]  
OVERSAMPLING  
RATIO(2)  
2.5  
5
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
102400  
51200  
25600  
15360  
12800  
5120  
4264  
2560  
1280  
640  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
320  
256  
128  
64  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. The data rate scales with internal  
oscillator or external clock frequency.  
(2) The oversampling ratio is fMOD divided by the data rate; fMOD = fCLK / 16.  
9.3.6.1 Digital Filter Frequency Response  
The digital filter provides many data rate options for rejecting 50-Hz and 60-Hz line cycle noise. At data rates of  
2.5 SPS, 5 SPS, 10 SPS, and 20 SPS, the filter rejects both 50-Hz and 60-Hz line frequencies. At data rates of  
16.6 SPS and 50 SPS, the filter has a notch at 50 Hz. At a 60-SPS data rate, the filter has a notch at 60 Hz.  
For detailed frequency response plots showing line cycle noise rejection, download the ADS1x4S0x design  
calculator from www.ti.com.  
30  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
47 to 61 illustrate the frequency response of the digital filter for different data rates. 6 lists the bandwidth  
of the digital filter for each data rate.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
0
0
10  
20  
30 40  
Frequency (Hz)  
50  
60  
70  
0
10  
20  
30 40  
Frequency (Hz)  
50  
60  
70  
160  
70  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
47. Digital Filter Frequency Response,  
48. Digital Filter Frequency Response,  
Data Rate = 2.5 SPS  
Data Rate = 5 SPS  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
-80  
-100  
-120  
10  
20  
30  
40  
Frequency (Hz)  
50  
60  
70  
80  
90 100  
0
20  
40  
60  
80  
Frequency (Hz)  
100  
120  
140  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
49. Digital Filter Frequency Response,  
50. Digital Filter Frequency Response,  
Data Rate = 10 SPS  
Data Rate = 16.6 SPS  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
40  
45  
50  
55  
Frequency (Hz)  
60  
65  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
51. Digital Filter Frequency Response,  
52. Digital Filter Frequency Response,  
Data Rate = 20 SPS, Zoomed to 50 Hz and 60 Hz  
Data Rate = 20 SPS  
版权 © 2017–2020, Texas Instruments Incorporated  
31  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
0
50  
100  
150  
200  
Frequency (Hz)  
250  
300  
350  
400  
0
0
0
100  
200  
Frequency (Hz)  
300  
400  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
53. Digital Filter Frequency Response,  
54. Digital Filter Frequency Response,  
Data Rate = 50 SPS  
Data Rate = 60 SPS  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
400  
800 1200  
Frequency (Hz)  
1600  
2000  
0
200  
400 600  
Frequency (Hz)  
800  
1000  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
56. Digital Filter Frequency Response,  
55. Digital Filter Frequency Response,  
Data Rate = 200 SPS  
Data Rate = 100 SPS  
0
-20  
-40  
-60  
-80  
0
-20  
-40  
-60  
-80  
0
500 1000 1500 2000 2500 3000 3500 4000  
Frequency (Hz)  
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (Hz)  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
57. Digital Filter Frequency Response,  
58. Digital Filter Frequency Response,  
Data Rate = 400 SPS  
Data Rate = 800 SPS  
32  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-100  
-80  
0
0
4000  
8000 12000  
Frequency (Hz)  
16000  
20000  
2000  
4000 6000  
Frequency (Hz)  
8000  
10000  
fCLK = 4.096 MHz  
fCLK = 4.096 MHz  
60. Digital Filter Frequency Response,  
59. Digital Filter Frequency Response,  
Data Rate = 2 kSPS  
Data Rate = 1 kSPS  
0
-20  
-40  
-60  
-80  
-100  
0
8000  
16000 24000  
Frequency (Hz)  
32000  
40000  
fCLK = 4.096 MHz  
61. Digital Filter Frequency Response,  
Data Rate = 4 kSPS  
6. Digital Filter Bandwidth  
NOMINAL DATA RATE (SPS)(1)  
–3-dB BANDWIDTH (Hz)(1)  
2.5  
5
1.1  
2.2  
10  
4.7  
16.6  
20  
7.4  
13.2  
22.1  
26.6  
44.4  
89.9  
190  
574  
717  
1434  
2868  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
版权 © 2017–2020, Texas Instruments Incorporated  
33  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
The digital filter notches and output data rate scale proportionally with the clock frequency. For example, a notch  
that appears at 20 Hz when using a 4.096-MHz clock appears at 10 Hz if a 2.048-MHz clock is used. The  
internal oscillator can vary over temperature as specified in the Electrical Characteristics table. The data rate,  
conversion time, and filter notches consequently vary by the same percentage. Consider using an external  
precision clock source if a digital filter notch at a specific frequency with a tighter tolerance is required.  
9.3.6.2 Data Conversion Time  
The amount of time required to receive data from the ADC depends on more than just the nominal data rate of  
the device. The data period also depends on the mode of operation and other configurations of the device. In  
normal operation, the data settles in one data period. However, a small amount of latency exists to set up the  
device, calculate the conversion data from the modulator samples, and other overhead that adds time to the  
conversion. For this reason, the first conversion data takes longer than subsequent data conversions.  
7 shows the conversion times for the digital filter for each ADC data rate and various conversion modes.  
7. Data Conversion Time  
FIRST DATA  
SECOND AND SUBSEQUENT  
CONVERSIONS FOR CONTINUOUS  
CONVERSION MODE  
FOR CONTINUOUS CONVERSION MODE  
NOMINAL  
DATA RATE(1)  
(SPS)  
OR SINGLE-SHOT CONVERSION MODE(2)  
NUMBER OF  
tMOD PERIODS  
NUMBER OF  
tMOD PERIODS  
ms  
ms  
2.5  
5
406.559  
206.559  
106.559  
60.309  
56.559  
20.211  
16.965  
10.211  
5.211  
104079  
52879  
27279  
15439  
14479  
5174  
4343  
2614  
1334  
694  
400  
200  
100  
60  
102400  
51200  
25600  
15360  
12800  
5120  
4264  
2560  
1280  
640  
10  
16.6  
20  
50  
50  
20  
60  
16.66  
10  
100  
200  
400  
800  
1000  
2000  
4000  
5
2.711  
2.5  
1.25  
1
1.461  
374  
320  
1.211  
310  
256  
0.711  
182  
0.5  
0.25  
128  
0.461  
118  
64  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
(2) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START command.  
9.3.6.3 Note on Conversion Time  
Each data period consists of time required for the modulator to sample the analog inputs. However, there is  
additional time required before the samples become an ADC conversion result.  
When a new conversion is started, there is a configuration delay time of 14 · tMOD (where tMOD = 16 · tCLK) that is  
added before the conversion starts. This delay allows for additional settling time for external RC filters on the  
analog inputs and for the antialiasing filter after the PGA. The configuration delay occurs at the start of a new  
conversion after a START command is sent, the START/SYNC pin is taken high, or a WREG command is sent  
to change any configuration register from address 03h to 07h (as described in the WREG section).  
Also, overhead time is needed to convert the modulator samples into an ADC conversion result. This overhead  
time includes any necessary offset or gain compensation after the digital filter accumulates a data result. The first  
conversion when the device is in continuous conversion mode (just as in single-shot conversion mode) includes  
the configuration delay, the modulator sampling time, and the overhead time. The second and subsequent  
conversions are the normal data period (period as given by the inverse of the data rate).  
34  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
62 shows the time sequence for the ADC in both continuous conversion and single-shot conversion modes.  
Single-shot conversion mode  
Conversion  
start(1)  
Data  
ready  
Configuration delay  
Modulator sampling  
ADC overhead  
Sampling for  
first data  
DRDY  
Continuous conversion mode  
Conversion  
start(1)  
First  
data ready  
Second  
data ready  
Third data  
ready  
Sampling for  
first data  
Sampling for  
second data  
Sampling for  
third data  
Continued  
sampling  
DRDY  
(1) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START  
command.  
62. Single-Shot Conversion Mode and Continuous Conversion Mode Sequences  
9.3.6.4 50-Hz and 60-Hz Line Cycle Rejection  
If the ADC connection leads are in close proximity to industrial motors and conductors, coupling of 50-Hz and  
60-Hz power line frequencies can occur. The coupled noise interferes with the signal voltage, and can lead to  
inaccurate or unstable conversions. The digital filter provides enhanced rejection of power-line-coupled noise for  
data rates of 60 SPS and less. Program the filter to tradeoff data rate and conversion latency versus the desired  
level of line cycle rejection. 8 summarizes the ADC 50-Hz and 60-Hz line-cycle rejection based on ±1-Hz and  
±2-Hz tolerance of power-line frequency. The best possible power-line rejection is provided by using an accurate  
ADC clock.  
8. 50-Hz and 60-Hz Line Cycle Rejection  
DIGITAL FILTER LINE CYCLE REJECTION (dB)  
DATA RATE (SPS)(1)  
50 Hz ± 1 Hz  
–113.7  
–111.9  
–111.5  
–33.8  
60 Hz ± 1 Hz  
–95.4  
50 Hz ± 2 Hz  
–97.7  
60 Hz ± 2 Hz  
–92.4  
2.5  
5
–95.4  
–87.6  
–81.8  
10  
–95.4  
–85.7  
–81.0  
16.6  
20  
–20.9  
–27.8  
–20.8  
–95.4  
–95.4  
–75.5  
–80.5  
50  
–33.8  
–15.5  
–27.6  
–15.1  
60  
–13.4  
–35.0  
–12.6  
–29.0  
(1) fCLK = 4.096 MHz.  
版权 © 2017–2020, Texas Instruments Incorporated  
35  
 
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.3.7 Excitation Current Sources (IDACs)  
The ADS114S0xB incorporates two integrated, matched current sources (IDAC1, IDAC2). The current sources  
provide excitation current to resistive temperature devices (RTDs), thermistors, diodes, and other resistive  
sensors that require constant current biasing. The current sources are programmable to output values between  
10 μA to 2000 μA using the IMAG[3:0] bits in the excitation current register 1 (06h). Each current source can be  
connected to any of the analog inputs AINx as well as the REFP1 and REFN1 inputs for the ADS114S06B. Both  
current sources can also be connected to the same pin. The routing of the IDACs is configured by the  
I1MUX[3:0] and I2MUX[3:0] bits in the excitation current register 2 (07h). In three-wire RTD applications, the  
matched current sources can be used to cancel errors caused by sensor lead resistance (see the Typical  
Application section for more details). 63 details the IDAC connection through the input multiplexer.  
I1MUX[3:0] bits of the IDACMUX register.  
IDAC routing to AIN8 œ AIN11 is available  
only on the ADS114S08B.  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
AIN0  
AIN1  
AIN2  
AVDD  
AIN3  
AIN4  
AIN5  
AIN6/REFP1  
AIN7/REFN1  
AIN8  
AIN6 / REFP1  
AIN7 / REFN1  
AIN8  
IDAC1  
Mux  
IDAC1  
AIN9  
ADS114S08B AIN9  
Only  
IMAG[3:0] bits of the IDACMAG register.  
0000 = Off  
0001 = 10 µA  
AIN10  
AIN10  
AIN11  
AIN11  
AINCOM  
0010 = 50 µA  
0011 = 100 µA  
AINCOM  
No Connection 1101-1111  
0100 = 250 µA  
0101 = 500 µA  
0110 = 750 µA  
0111 = 1000 µA  
1000 = 1500 µA  
1001 = 2000 µA  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
AVDD  
AIN6/REFP1  
AIN7/REFN1  
AIN8  
IDAC2  
Mux  
IDAC2  
AIN9  
AIN10  
AIN11  
AINCOM  
No Connection 1101-1111  
I2MUX[3:0] bits of the IDACMUX register.  
IDAC routing to AIN8 œ AIN11 is available  
only on the ADS114S08B.  
63. IDAC Block Diagram  
The internal reference must be enabled for IDAC operation. As with any current source, the IDAC requires  
voltage headroom to the positive supply to operate. This voltage headroom is the compliance voltage. When  
driving resistive sensors and biasing resistors, take care not to exceed the compliance voltage of the IDACs,  
otherwise the specified accuracy of the IDAC current may not be met. For IDAC compliance voltage  
specifications, see the Electrical Characteristics table.  
36  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.3.8 Bias Voltage Generation  
The ADS114S0xB provides an internal bias voltage generator, VBIAS, that is set to (AVDD + AVSS) / 2. The  
bias voltage is internally buffered and can be established on the analog inputs AIN0 to AIN5 and AINCOM using  
the VB_AINx bits in the sensor biasing register (08h). A typical use case for VBIAS is biasing unbiased  
thermocouples to within the common-mode voltage range of the PGA. 64 shows a block diagram of the  
VBIAS voltage generator and connection diagram.  
AVDD  
AIN0  
AIN1  
AIN2  
Input  
Mux  
AIN3  
AIN4  
AIN5  
R
AINCOM  
(AVDD + AVSS) / 2  
R
VB_AINx bits of VBIAS register  
0 = VBIAS not connected to AINx  
1 = VBIAS connected to AINx  
AVSS  
64. VBIAS Block Diagram  
The start-up time of the VBIAS voltage depends on the pin load capacitance. The total capacitance includes any  
capacitance connected from VBIAS to AVDD, AVSS, and ground. 9 lists the VBIAS voltage settling times for  
various external load capacitances. Ensure the VBIAS voltage is fully settled before starting a conversion.  
9. VBIAS Settling Time  
LOAD CAPACITANCE  
SETTLING TIME  
280 µs  
0.1 µF  
1 µF  
2.8 ms  
10 µF  
28 ms  
版权 © 2017–2020, Texas Instruments Incorporated  
37  
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.3.9 System Monitor  
The ADS114S0xB provides a set of system monitor functions. These functions measure the device temperature,  
analog power supply, digital power supply, or use current sources to detect sensor malfunction. System monitor  
functions are enabled through the SYS_MON[2:0] bits of the system control register (09h).  
9.3.9.1 Internal Temperature Sensor  
On-chip diodes provide temperature-sensing capability. Enable the internal temperature sensor by setting  
SYS_MON[2:0] = 010 in the system control register (09h). The temperature sensor outputs a voltage proportional  
to the device temperature as specified in the Electrical Characteristics table.  
When measuring the internal temperature sensor, the analog inputs are disconnected from the ADC and the  
output voltage of the temperature sensor is routed to the ADC for measurement using the selected PGA gain,  
data rate, and voltage reference. If enabled, PGA gain must be limited to 4 for the temperature sensor  
measurement to remain within the allowed absolute input voltage range of the PGA. As a result of the low device  
junction-to-PCB thermal resistance (RθJB), the internal device temperature closely tracks the printed circuit board  
(PCB) temperature.  
9.3.9.2 Power Supply Monitors  
The ADS114S0xB provides a means for monitoring both the analog and digital power supply (AVDD and DVDD).  
The power-supply voltages are divided by a resistor network to reduce the voltages to within the ADC input  
range. The reduced power-supply voltage is routed to the ADC input multiplexer. The analog (VANLMON) and  
digital (VDIGMON) power-supply readings are scaled by 公式 9 and 公式 10, respectively:  
VANLMON = (AVDD – AVSS) / 4  
VDIGMON = (DVDD – DGND) / 4  
(9)  
(10)  
Enable the supply voltage monitors using the SYS_MON[2:0] bits in the system control register (09h). Setting  
SYS_MON[2:0] to 011 measures VANLMON, and setting SYS_MON[2:0] to 100 measures VDIGMON  
.
When the supply voltage monitor is enabled, the analog inputs are disconnected from the ADC and the PGA gain  
is set to 1, regardless of the GAIN[2:0] bit values in the gain setting register (03h). Supply voltage monitor  
measurements can be done with either the PGA enabled or PGA disabled via the PGA_EN[1:0] register. The  
reference voltage must be larger than the power-supply measurements shown in 公式 9 and 公式 10 to obtain  
valid power-supply monitor readings.  
9.3.9.3 Burn-Out Current Sources  
To help detect a possible sensor malfunction, the ADS114S0xB provides selectable current sources to function  
as burn-out current sources (BOCS) using the SYS_MON[2:0] bits in the system control register (09h). Current  
sources are set to values of 0.2 µA, 1 µA, and 10 µA with SYS_MON[2:0] settings of 101, 110, and 111,  
respectively.  
When enabled, one BOCS sources current to the selected positive analog input (AINP) and the other BOCS  
sinks current from the selected negative analog input (AINN). With an open-circuit in a burned out sensor, these  
BOCSs pull the positive input towards AVDD and the negative input towards AVSS, resulting in a full-scale  
reading. A full-scale reading can also indicate that the sensor is overloaded or that the reference voltage is  
absent. A near-zero reading can indicate a shorted sensor. Distinguishing a shorted sensor condition from a  
normal reading can be difficult, especially if an RC filter is used at the inputs. The voltage drop across the  
external filter resistance and the residual resistance of the multiplexer can cause the output to read a value  
higher than zero.  
The ADC readings of a functional sensor can be corrupted when the burn-out current sources are enabled. The  
burn-out current sources are recommended to be disabled when performing the precision measurement, and are  
recommended to be enabled only when testing for sensor fault conditions.  
38  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.3.10 Status Register  
The ADS114S0xB has a one-byte status register (01h) that contains a POR flag to indicate if a start-up or power-  
on reset condition has occurred, a RDY flag to indicate when a device has started up and is ready for  
communication, and a low reference voltage level flag to indicate when the voltage level of the selected external  
reference falls below the specified threshold.  
The status register data field and field descriptions are located in the device status register. The following  
sections describe the various flags that are indicated in the STATUS byte.  
9.3.10.1 POR Flag  
After the power supplies are turned on, the ADC remains in reset until DVDD, IOVDD, and the analog power  
supply (AVDD – AVSS) voltages exceed the respective power-on reset (POR) voltage thresholds. If a POR event  
has occurred, the FL_POR flag (bit 7 of the status register) is set. This flag indicates that a POR event has  
occurred and has not been cleared. This flag is cleared with a user register write to set the bit to 0. The power-on  
reset is described further in the Power-On Reset section.  
9.3.10.2 RDY Flag  
The RDY flag indicates that the device has started up and is ready to receive a configuration change. During a  
reset or POR event, the device is resetting the register map and may not be available. The RDY flag is shown  
with bit 6 of the status register.  
9.3.10.3 External Reference Monitor  
The selected external ADC reference inputs can be continuously monitored for a low reference voltage. The  
reference detection circuit has a threshold of 300 mV. The reference detection circuit measures the differential  
reference voltage and sets a flag latched after each conversion in the STATUS byte if the voltage is below the  
threshold. A reference voltage less than 300 mV can indicate a potential short on the reference inputs or, in case  
of a ratiometric RTD measurement, a broken wire between the RTD and the reference resistor.  
The reference monitor must be enabled with the FL_REF_EN bit in the reference control register (05h). The  
FL_REF flag (bit 0 of the STATUS byte) indicates if the select external reference voltage is lower than 0.3 V. A  
reference monitor fault is latched at each conversion cycle and the FL_REF flag in the status register is updated  
at the falling edge of DRDY.  
9.3.11 General-Purpose Inputs and Outputs (GPIOs)  
The ADS114S06B offers four dedicated general-purpose input and output (GPIO) pins, and the ADS114S08B  
offers four pins (AIN8 to AIN11) that serve a dual purpose as either analog inputs or GPIOs.  
Two registers control the function of the GPIO pins. Use the CON[3:0] bits of the GPIO configuration register  
(11h) to configure a pin as a GPIO pin. The upper four bits (DIR[3:0]) of the GPIO data register (10h) configure  
the GPIO pin as either an input or an output. The lower four bits (DAT[3:0]) of the GPIO data register contain the  
input or output GPIO data. If a GPIO pin is configured as an input, the respective DAT[x] bit reads the status of  
the pin; if a GPIO pin is configured as an output, write the output status to the respective DAT[x] bit. For more  
information about the use of GPIO pins, see the Configuration Registers section.  
65 depicts a diagram of how these functions are combined onto a single pin. When the pin is configured as a  
GPIO, the corresponding logic is powered from AVDD and AVSS. When the devices are operated with bipolar  
analog supplies, the GPIO outputs bipolar voltages. Care must be taken to not load the GPIO pins when used as  
outputs because large currents can cause droop or noise on the analog supplies. GPIO pins use Schmitt  
triggered inputs with hysteresis to make the input more resistance to noise; see the Electrical Characteristics  
table for GPIO thresholds.  
For connections of unused GPIO pins, see the Unused Inputs and Outputs section.  
版权 © 2017–2020, Texas Instruments Incorporated  
39  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
AVDD  
CON[3:0] bits of GPIOCON register  
0 = no connect  
1 = connect  
DAT[3:0] bits of GPIODAT register  
0 = VGPIO is low  
1 = VGPIO is high  
GPIO  
1 of 4  
Write  
0
Read  
GPIO[0]  
GPIO[1]  
GPIO[2]  
0
1
AIN8  
AIN9  
AIN10  
AIN11  
GPIO Read Select  
GPIO[3]  
DIR[7:4] bits of GPIODAT register  
0 = Output  
1 = Input  
GPIO logic is powered from  
AVDD to AVSS  
AVSS  
65. GPIO Block Diagram  
9.3.12 Calibration  
The ADC incorporates offset and gain calibration commands, as well as user-offset and full-scale (gain)  
calibration registers to calibrate the ADC. The ADC calibration registers are 16 bits wide. Use calibration to  
correct internal ADC errors or overall system errors. Calibrate by sending calibration commands to the ADC, or  
by direct user calibration. In user calibration, the user calculates and writes the correction values to the  
calibration registers. The ADC performs self or system-offset calibration, or a system gain calibration. Perform  
offset calibration before system gain calibration. After power-on, wait for the power supplies and reference  
voltage to fully settle before calibrating.  
As shown in 66, the value of the offset calibration register is subtracted from the filter output and then  
multiplied by the full-scale register value divided by 4000h. The data are then clipped to a 16-bit value to provide  
the final output.  
AINP  
C A D  
+
Output Data  
Clipped to 16 bits  
Digital  
Filter  
Final  
Output  
ADC  
AINN  
-
1/4000h  
OFCAL[1:0] registers  
(register addresses = 0Ch, 0Bh)  
> 0000h: negative offset  
= 0000h: no offset  
< 0000h: positive offset  
FSCAL[1:0] registers  
(register addresses = 0Fh, 0Eh)  
< 4000h: Gain > 1  
= 4000h: Gain = 1  
> 4000h: Gain < 1  
66. ADC Calibration Block Diagram  
Calibration commands cannot be used when the device is in standby mode (when the START/SYNC pin is low,  
or when the STOP command is issued).  
40  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.3.12.1 Offset Calibration  
The offset calibration word is 16 bits, consisting of two 8-bit registers, as shown in the two registers starting with  
offset calibration register 1. The offset value is twos complement format with a maximum positive value equal to  
7FFFh, and a maximum negative value equal to 8000h. This value is subtracted from each output reading as an  
offset correction. A register value equal to 0000h has no offset correction. 10 shows example settings of the  
offset register.  
10. Offset Calibration Register Values  
OFC REGISTER VALUE  
OFFSET CALIBRATED OUTPUT CODE(1)  
0001h  
0000h  
FFFFh  
FFFFh  
0000h  
0001h  
(1) Ideal output code with shorted input, excluding ADC noise and offset voltage error.  
The user can select how many samples (1, 4, 8, or 16) to average for self or system offset calibration using the  
CAL_SAMP[1:0] bits in the system control register (09h). Fewer readings shorten the calibration time but also  
provide less accuracy. Averaging more readings takes longer but yields a more accurate calibration result by  
reducing the noise level.  
Two commands can be used to perform offset calibration. SFOCAL is a self offset calibration that internally sets  
the input to mid-scale using the SYS_MON[2:0] = 001 setting and takes a measurement of the offset. SYOCAL is  
a system offset calibration where the user must input a null voltage to calibrate the system offset. After either  
command is issued, the OFC register is updated.  
After an offset calibration is performed, the device starts a new conversion and DRDY falls to indicate a new  
conversion has completed.  
9.3.12.2 Gain Calibration  
The full-scale (gain) calibration word is 16 bits consisting of two 8-bit registers, as shown in the two registers  
starting with gain calibration register 1. The gain calibration value is straight binary, normalized to a unity-gain  
correction factor at a register value equal to 4000h. 11 shows register values for selected gain factors. Do not  
exceed the PGA input range limits during gain calibration.  
11. Gain Calibration Register Values  
FSC REGISTER VALUE  
GAIN FACTOR  
4333h  
4000h  
3CCCh  
1.05  
1.00  
0.95  
All gains of the ADS114S0xB are factory trimmed to meet the gain error specified in the Electrical Characteristics  
table at TA = 25°C. When the gain drift of the devices over temperature is very low, there is typically no need for  
self gain calibration.  
The SYGCAL command initiates a system gain calibration, where the user sets the input to full-scale to remove  
gain error. After the SYGCAL is issued, the FSC register is updated. As with the offset calibration, the  
CAL_SAMP[1:0] bits determine the number of samples used for a gain calibration.  
As with an offset calibration, the device starts a new conversion after a gain calibration and DRDY falls to  
indicate a new conversion has completed.  
版权 © 2017–2020, Texas Instruments Incorporated  
41  
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.4 Device Functional Modes  
The device operates in three different modes: power-down mode, standby mode, and conversion mode. 67  
shows a flow chart of the different operating modes and how the device transitions from one mode to another.  
Power-On Reset or  
Power-down  
RESET pin high or  
Mode(2)  
RESET command?(1)  
No  
Reset device to  
default settings  
WAKEUP  
Command?  
Yes  
Standby  
Mode  
Complete current  
conversion(4)  
No  
START/SYNC  
rising edge or START  
Command?  
Yes  
Yes  
START/SYNC  
pin low or STOP  
Command?  
No  
Conversion  
Mode  
Start new  
conversion  
1 = Single-Shot  
conversion mode  
0 = Continuous  
conversion mode  
Conversion  
mode selection(3)  
(1) Any reset (power-on, command, or pin), immediately resets the device.  
(2) A POWERDOWN command aborts an ongoing conversion and immediately puts the device into power-down mode.  
(3) The conversion mode is selected with the MODE bit in the data rate register.  
(4) The rising edge of the START/SYNC pin or the START command starts a new conversion without completing the  
current conversion.  
67. Operating Flow Chart  
9.4.1 Reset  
The ADS114S0xB is reset in one of three ways:  
Power-on reset  
RESET pin  
RESET command  
When a reset occurs, the configuration registers reset to default values and the device enters standby mode. The  
device then waits for the rising edge of the START/SYNC pin or a START command to enter conversion mode. If  
the device had been using an external clock, the reset sets the device to use the internal oscillator as a default  
configuration. See the Timing Requirements table for reset timing information.  
42  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Device Functional Modes (接下页)  
9.4.1.1 Power-On Reset  
The ADS114S0xB incorporates a power-on reset circuit that holds the device in reset until all supplies reach  
approximately 1.65 V. The power-on reset also ensures that the device starts operating in a known state in case  
a brown-out event occurs, when the supplies have dipped below the minimum operating voltages. When the  
device completes a POR sequence, the FL_POR flag in the status register is set high to indicate that a POR has  
occurred.  
Begin communications with the device 2.2 ms after the power supplies reach minimum operating voltages. The  
only exception is polling the status register for the RDY bit. If the user polls the RDY bit, then use an SCLK rate  
of half the maximum-specified SCLK rate to get a proper reading when the device is making internal  
configurations. This 2.2-ms POR time is required for the internal oscillator to start up and the device to properly  
set internal configurations. After the internal configurations are set, the device sets the RDY bit in the device  
status register (01h). When this bit is set to 0, user configurations can be programmed into the device. 68  
shows the power-on reset timing sequence for the device.  
VPOR  
DVDD, IOVDD  
VPOR  
All supplies reach  
minimum operating voltage  
AVDD - AVSS  
Internal  
Oscillator Startup  
Internal  
Configuration  
Standby  
Mode  
FL_POR bit of  
STATUS register is set to 1  
RDY bit of  
STATUS register is set to 0  
2.2 ms  
If polling for RDY during this period, SCLK  
must be less than half maximum rate  
68. Power-On Reset Timing Sequence  
9.4.1.2 RESET Pin  
Reset the ADC by taking the RESET pin low for a minimum of 4 · tCLK· cycles, and then returning the pin high.  
After the rising edge of the RESET pin, a delay time of td(RSSC) is required before sending the first serial interface  
command or starting a conversion. See the Timing Requirements table for reset timing information.  
9.4.1.3 Reset by Command  
Reset the ADC by using the RESET command (06h or 07h). The command is decoded on the seventh SCLK  
falling edge. After sending the RESET command, a delay time of td(RSSC) is required before sending the first serial  
interface command or starting a conversion. See the Timing Requirements table for reset timing information.  
9.4.2 Power-Down Mode  
Power-down mode is entered by sending the POWERDOWN command. In this mode, all analog and digital  
circuitry is powered down for lowest power consumption regardless of the register settings. Only the internal  
voltage reference can be configured to stay on during power-down mode in case a faster start-up time is  
required. All register values retain the current settings during power-down mode. The configuration registers can  
be read and written in power-down mode. A WAKEUP command must be issued in order to exit power-down  
mode and to enter standby mode.  
When the POWERDOWN command is issued, the device enters power-down mode 2 · tCLK after the seventh  
SCLK falling edge of the command. For lowest power consumption (on DVDD and IOVDD), stop the external  
clock when in power-down mode. TI recommends selecting the internal oscillator before sending the  
POWERDOWN command to avoid issues with the command decoding.  
版权 © 2017–2020, Texas Instruments Incorporated  
43  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Device Functional Modes (接下页)  
To release the device from POWERDOWN, issue the WAKEUP command to enter standby mode. The device  
then waits for the rising edge of the START/SYNC pin or a START command to go into conversion mode.  
When in power-down mode, the device responds to the RREG, RDATA, and WAKEUP commands. The WREG  
and RESET commands can also be sent, but are ignored until a WAKEUP command is sent and the internal  
oscillator resumes operation.  
9.4.3 Standby Mode  
The device powers up in standby mode and automatically enters this mode whenever there is no ongoing  
conversion. When the STOP command is sent (or the START/SYNC pin is taken low) in continuous conversion  
mode, or when a conversion completes in single-shot conversion mode, the device enters standby mode.  
Standby mode offers several different options and features to lower the power consumption:  
The PGA can be powered down by setting PGA_EN[1:0] to 00 in the gain setting register (03h).  
The internal voltage reference can be powered down by setting REFCON[1:0] to 00 in the reference control  
register (05h). This setting also turns off the IDACs.  
The digital filter is held in reset state.  
The clock to the modulator and digital core is gated to decrease dynamic switching losses.  
If powered down in standby mode, the PGA and internal reference can require extra time to power up. Extra  
delay may be required between power up of the PGA or the internal reference, and the start of conversions. In  
particular, the reference power up time is dependent on the capacitance between REFOUT and REFCOM.  
Calibration commands are not decoded when the device is in standby mode.  
9.4.4 Conversion Modes  
The ADS114S0xB offers two conversion modes: continuous conversion and single-shot conversion mode.  
Continuous-conversion mode converts indefinitely until stopped by the user. Single-shot conversion mode  
performs one conversion after the START/SYNC pin is taken high or after the START command is sent. Use the  
MODE bit in the data rate register (04h) to program the conversion mode. 69 shows how the START/SYNC  
pin and the START command are used to control ADC conversions.  
(2)  
(1)  
(2)  
DRDY  
START/SYNC Pin  
SCLK  
START  
Command  
START(3)  
STOP  
DIN  
Conversion Mode  
Standby Mode  
Standby Mode  
(1) DRDY rises at the first SCLK rising edge or the rising edge of the START/SYNC pin.  
(2) START and STOP commands take effect 2 · tCLK after the seventh SCLK falling edge. The conversion starts 2 · tCLK  
after the START/SYNC rising edge.  
(3) To synchronize a conversion, the STOP command must be issued prior to the START command. STOP and START  
commands can be issued without a delay between the commands.  
69. Conversion Start and Stop Timing  
44  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Device Functional Modes (接下页)  
ADC conversions are controlled by the START/SYNC pin or by serial commands. For the device to start  
converting in continuous conversion or single-shot conversion mode, a START command must be sent or the  
START/SYNC pin must be taken high. If using commands to control conversions, keep the START/SYNC pin low  
to avoid possible contentions between the START/SYNC pin and commands.  
Conversions can be synchronized to perform a conversion at a particular time. To synchronize the conversion  
with the START/SYNC pin, take the pin low. The rising edge of the START/SYNC pin starts a new conversion.  
Similarly, a conversion can be synchronized using the START command. If the device is in standby mode, issue  
a START command. If the device is in conversion mode, issue a STOP command followed by a START  
command. The STOP and START commands can be consecutive. A new conversion starts on the seventh  
SCLK falling edge of the START command.  
9.4.4.1 Continuous Conversion Mode  
The device is configured for continuous conversion mode by setting the MODE bit to 0 in the data rate register  
(04h). A START command must be sent or the START/SYNC pin must be taken high for the device to start  
converting continuously. When controlling the device with commands, hold the START/SYNC pin low. Taking the  
START/SYNC pin low or sending the STOP command stops the device from converting after the currently  
ongoing conversion completes, indicated by the falling edge of DRDY. The device enters standby mode  
thereafter.  
For information on the exact timing of continuous conversion mode data, see 7.  
9.4.4.2 Single-Shot Conversion Mode  
The device is configured for single-shot conversion mode by setting the MODE bit to 1 in the data rate register  
(04h). A START command must be sent or the START/SYNC pin must be taken high for the device to start a  
single conversion. After the conversion completes, the device enters standby mode again. To start a new  
conversion, the START command must be sent again or the START/SYNC pin must be taken low and then high  
again.  
For information on the exact timing of single-shot conversion mode data, see 7.  
版权 © 2017–2020, Texas Instruments Incorporated  
45  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.5 Programming  
9.5.1 Serial Interface  
The ADC has an SPI-compatible, bidirectional serial interface that is used to read the conversion data as well as  
to configure and control the ADC. Only SPI mode 1 (CPOL = 0, CPHA = 1) is supported. The serial interface  
consists of five control lines: CS, SCLK, DIN, DOUT/DRDY, and DRDY but can be used with only four or even  
three control signals. If the ADS114S08B or ADS114S06B is the only device connected to the SPI bus, then the  
CS input can be tied low so that only SCLK, DIN, and DOUT/DRDY are required to communicate with the device.  
9.5.1.1 Chip Select (CS)  
The CS pin is an active low input that enables the ADC serial interface for communication and is useful when  
multiple devices share the same serial bus. CS must be low during the entire data transaction. When CS is high,  
the serial interface is reset, SCLK input activity is ignored (blocking input commands), and the DOUT/DRDY  
output enters a high-impedance state. ADC conversions are not affected by the state of CS. In situations where  
multiple devices are present on the bus, the dedicated DRDY pin can provide an uninterrupted monitor of the  
conversion status and is not affected by CS. If the serial bus is not shared with another peripheral, CS can be  
tied to DGND to permanently enable the ADC interface and DOUT/DRDY can be used to indicate conversion  
status. These changes reduce the serial interface from five I/Os to three I/Os.  
9.5.1.2 Serial Clock (SCLK)  
The serial interface clock is a noise-filtered, Schmidt-triggered input used to clock data into and out of the ADC.  
Input data to the ADC are latched on the falling SCLK edge and output data from the ADC are updated on the  
rising SCLK edge. Return SCLK low after the data sequence is complete. Even though the SCLK input has  
hysteresis, keep SCLK as clean as possible to prevent unintentional SCLK transitions. Avoid ringing and voltage  
overshoot on the SCLK input. Place a series termination resistor at the SCLK drive pin to help reduce ringing.  
9.5.1.3 Serial Data Input (DIN)  
The serial data input pin (DIN) is used with SCLK to send data (commands and register data) to the device. The  
device latches data on DIN on the SCLK falling edge. The device never drives the DIN pin. During data  
readback, when no command is intended, keep DIN low.  
9.5.1.4 Serial Data Output and Data Ready (DOUT/DRDY)  
The DOUT/DRDY pin is a dual-function output. The pin functions as the digital data output and the ADC data-  
ready indication.  
First, this pin is used with SCLK to read conversion and register data from the device. Conversion or register  
data are shifted out on DOUT/DRDY on the SCLK rising edge. DOUT/DRDY goes to a high-impedance state  
when CS is high.  
Second, the DOUT/DRDY pin indicates availability of new conversion data. DOUT/DRDY transitions low at the  
same time that the DRDY pin goes low to indicate new conversion data are available. Both signals can be used  
to detect if new data are ready. However, because DOUT/DRDY is disabled when CS is high, use the dedicated  
DRDY pin when monitoring conversions on multiple devices on the SPI bus.  
46  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Programming (接下页)  
9.5.1.5 Data Ready (DRDY)  
The DRDY pin is an output that transitions low to indicate when conversion data are ready for retrieval. Initially,  
DRDY is high at power-on. When converting, the state of DRDY depends on whether the conversion data are  
retrieved or not. In continuous conversion mode after DRDY goes low, DRDY is driven high on the first SCLK  
rising edge. If data are not read, DRDY remains low and then pulses high 24 · tCLK before the next DRDY falling  
edge. The data must be retrieved before the next DRDY update, otherwise the data are overwritten by new data  
and any previous data are lost. 70 shows the DRDY operation without data retrieval. 71 shows the DRDY  
operation with data retrieval after each conversion completes.  
DRDY  
START/SYNC Pin  
SCLK  
START  
Command  
DIN  
START  
(1) DRDY returns high with the rising edge of the first SCLK after a data ready indication.  
70. DRDY Operation Without Data Retrieval  
DRDY  
START/SYNC  
SCLK  
START  
Command  
START(3)  
RDATA  
RDATA  
DIN  
Don‘t  
Care  
Don‘t  
Care  
DOUT/DRDY  
Conversion  
Data 1  
Conversion  
Data 2  
(1) DRDY returns high with the rising edge of the first SCLK after a data ready indication.  
71. DRDY Operation With Data Retrieval  
9.5.1.6 Timeout  
The ADS114S0xB offers a serial interface timeout feature that is used to recover communication when a serial  
interface transmission is interrupted. This feature is especially useful in applications where CS is permanently  
tied low and is not used to frame a communication sequence. The SPI interface resets when no valid 8 bits are  
received within 215 · tCLK. The timeout feature is enabled by setting the TIMEOUT bit to 1 in the system control  
register (09h).  
版权 © 2017–2020, Texas Instruments Incorporated  
47  
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Programming (接下页)  
9.5.2 Data Format  
The devices provide 16 bits of data in binary twos complement format. 公式 11 calculates the size of one code  
(LSB).  
1 LSB = (2 · VREF / Gain) / 216 = +FS / 215  
(11)  
A positive full-scale input [VIN (+FS – 1 LSB) = (VREF / Gain – 1 LSB)] produces an output code of 7FFFh and a  
negative full-scale input (VIN –FS = –VREF / Gain) produces an output code of 8000h. The output clips at these  
codes for signals that exceed full-scale.  
12 summarizes the ideal output codes for different input signals.  
12. Ideal Output Code vs Input Signal  
INPUT SIGNAL,  
VIN = VAINP – VAINN  
FS (215 – 1) / 215  
FS / 215  
IDEAL OUTPUT CODE(1)  
7FFFh  
0001h  
0000h  
FFFFh  
8000h  
0
–FS / 215  
–FS  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
72 shows the mapping of the analog input signal to the output codes.  
7FFFh  
7FFEh  
0001h  
0000h  
FFFFh  
8001h  
8000h  
¼
¼
-FS  
-FS  
0
FS  
Input Voltage (VIN  
)
215 - 1  
215 - 1  
FS  
215  
215  
72. Code Transition Diagram  
48  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.5.3 Commands  
Commands are used to control the ADC, access the configuration registers, and retrieve data. Many of the  
commands are stand-alone (that is, single-byte). The register write and register read commands, however, are  
multibyte, consisting of two command bytes plus the register data byte or bytes. 13 lists the commands.  
13. Command Definitions  
FIRST  
COMMAND BYTE  
SECOND  
COMMAND BYTE  
COMMAND  
DESCRIPTION  
Control Commands  
NOP  
No operation  
0000 0000 (00h)  
WAKEUP  
Wake-up from power-down mode  
Enter power-down mode  
Reset the device  
0000 001x (02h, 03h)(1)  
0000 010x (04h, 05h)(1)  
0000 011x (06h, 07h)(1)  
0000 100x (08h, 09h)(1)  
0000 101x (0Ah, 0Bh)(1)  
POWERDOWN  
RESET  
START  
Start conversions  
STOP  
Stop conversions  
Calibration Commands  
SYOCAL  
System offset calibration  
System gain calibration  
Self offset calibration  
0001 0110 (16h)  
0001 0111 (17h)  
0001 1001 (19h)  
SYGCAL  
SFOCAL  
Data Read Command  
RDATA  
Read data  
0001 001x (12h / 13h)(1)  
Register Read and Write Commands  
RREG  
WREG  
Read nnnnn registers starting at address rrrrr  
Write nnnnn registers starting at address rrrrr  
001r rrrr(2)  
010r rrrr(2)  
000n nnnn(3)  
000n nnnn(3)  
(1) x = don't care.  
(2) r rrrr = starting register address.  
(3) n nnnn = number of registers to read or write – 1.  
Commands can be sent at any time, either during a conversion or when conversions are stopped. However, if  
register read or write commands are in progress when conversion data are ready, the ADC blocks loading of  
conversion data to the output shift register. The CS input pin can be taken high between commands; or held low  
between consecutive commands. CS must stay low for the entire command sequence. Complete the command,  
or terminate the command before completion by taking CS high. Only send commands listed in 13.  
9.5.3.1 NOP  
NOP is a no-operation command. The NOP command is used to clock out data without clocking in a command.  
9.5.3.2 WAKEUP  
Issue the WAKEUP command to exit power-down mode and to place the device into standby mode.  
When running off the external clock, the external clock must be running before sending the WAKEUP command,  
otherwise the command is not decoded.  
版权 © 2017–2020, Texas Instruments Incorporated  
49  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.5.3.3 POWERDOWN  
Sending the POWERDOWN command aborts a currently ongoing conversion and puts the device into power-  
down mode. The device goes into power-down mode 2 · tCLK after the seventh SCLK falling edge of the  
command.  
For lowest power consumption on DVDD and IOVDD, stop the external clock when in power-down mode. The  
device does not gate the external clock. When running off the external clock, provide at a minimum two  
additional tCLKs after the POWERDOWN command is issued, otherwise the device does not enter power-down  
mode. Alternatively, select the internal oscillator before sending the POWERDOWN command to avoid any  
issues with decoding of the POWERDOWN and WAKEUP commands.  
During power-down mode, the only commands that are available are RREG, RDATA, and WAKEUP.  
9.5.3.4 RESET  
The RESET command resets the digital filter and sets all configuration register values to default settings. A  
RESET command also puts the device into standby mode. When in standby mode, the device waits for a rising  
edge on the START/SYNC pin or a START command to resume conversions. After sending the RESET  
command, a delay time of td(RSSC) is required before sending the first serial interface command or starting a  
conversion. See the Timing Requirements table for reset timing information.  
If the device had been using an external clock, the reset sets the device to use the internal oscillator as a default  
configuration.  
9.5.3.5 START  
When the device is configured for continuous conversion mode, issue the START command for the device to  
start converting. Every time a conversion completes, the device automatically starts a new conversion until the  
STOP command is sent.  
In single-shot conversion mode, the START command is used to start a single conversion. After the conversion  
completes, the device enters standby mode.  
Tie the START/SYNC pin low when the device is controlled through the START and STOP commands. The  
START command is not decoded if the START/SYNC pin is high. If the device is already in conversion mode, the  
START command has no effect.  
9.5.3.6 STOP  
The STOP command is used in continuous conversion mode to stop the device from converting. The current  
conversion is allowed to complete. After DRDY transitions low, the device enters standby mode. The STOP  
command has no effect in single-shot conversion mode.  
Hold the START/SYNC pin low when the device is controlled through START and STOP commands.  
9.5.3.7 SYOCAL  
The SYOCAL command initiates a system offset calibration. For a system offset calibration, the inputs must be  
externally shorted to a voltage within the input range, ideally near the mid-supply voltage of (AVDD + AVSS) / 2.  
The OFC registers are updated when the command completes. Calibration commands must be issued in  
conversion mode.  
9.5.3.8 SYGCAL  
The SYGCAL command initiates the system gain calibration. For a system gain calibration, the input must be  
externally set to full-scale. The FSC registers are updated after this operation. Calibration commands must be  
issued in conversion mode.  
9.5.3.9 SFOCAL  
The SFOCAL command initiates a self offset calibration. The device internally shorts the inputs to mid-supply  
and performs the calibration. The OFC registers are updated after this operation. Calibration commands must be  
issued in conversion mode.  
50  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.5.3.10 RDATA  
Read conversion data from the device with the RDATA command at any time. 73 shows the read data  
sequence. The MSB of the conversion data is output on the first SCLK rising edge after the command. An  
RDATA command must be sent for each read operation. The ADC does not respond to commands until the read  
operation is complete, or terminated by taking CS high. New data indicated by the DRDY and DOUT/DRDY will  
not corrupt a read of conversion data with RDATA.  
After all bytes are read, the data-byte sequence is repeated by continuing SCLK.  
(1)  
CS  
9
1
17  
SCLK  
DIN  
RDATA  
HI-Z  
DOUT/DRDY  
(2)  
Don‘t Care  
Data 1  
Data 2  
ADC Data Bytes  
(1) CS can be tied low. If CS is low, DOUT/DRDY asserts low with DRDY.  
(2) DOUT/DRDY is driven low with DRDY. If a read operation occurs after the DRDY falling edge, then DOUT/DRDY can  
be high or low.  
73. Read Data Sequence  
9.5.3.11 RREG  
Use the RREG command to read the device register data. Read the register data one register at a time, or read  
a block of register data. The starting register address can be any register in the register map. The RREG  
command consists of two bytes. The first byte specifies the starting register address: 001r rrrr, where r rrrr is the  
starting register address. The second command byte is the number of registers to read (minus 1): 000n nnnn,  
where n nnnn is the number of registers to read minus 1.  
After the read command is sent, the ADC responds with one or more register data bytes, most significant bit  
(MSB) first. If the byte count exceeds the last register address, the ADC begins to output zero data. During the  
register read operation, any conversion data that becomes available is not loaded to the output shift register to  
avoid data contention. However, the conversion data can be retrieved later by the RDATA command. After the  
register read command has started, further commands are blocked until one of the following conditions are met:  
The read operation is completed  
The read operation is terminated by taking CS high  
The read operation is terminated by a serial interface timeout  
The ADC is reset by toggling the RESET pin  
版权 © 2017–2020, Texas Instruments Incorporated  
51  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
74 shows a two-register read operation example. As shown, the commands required to read data from two  
registers starting at register REF (address = 05h) are: command byte 1 = 25h and command byte 2 = 01h. Keep  
DIN low after the two command bytes are sent.  
(1)  
CS  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DON‘T CARE  
DON‘T CARE  
REG DATA 1  
REG DATA 2  
DIN  
0010 0101  
0000 0001  
(1) CS can be set high or kept low between commands. If kept low, the command must be completed.  
74. Read Register Sequence  
9.5.3.12 WREG  
Use the WREG command to write the device register data. The register data are written one register at a time or  
as a block of register data. The starting register address is any register in the register map.  
The WREG command consists of two bytes. The first byte specifies the starting register address: 010r rrrr, where  
r rrrr is the starting register address The second command byte is the number of registers to write (minus 1):  
000n nnnn, where n nnnn is the number of registers to write minus 1. The following byte (or bytes) is the register  
data, most significant bit (MSB) first. If the byte count exceeds the last register address, the ADC ignores the  
data. After the register write command has started, further commands are blocked until one of the following  
conditions are met:  
The write operation is completed  
The write operation is terminated by taking CS high  
The write operation is terminated by a serial interface timeout  
The ADC is reset by toggling the RESET pin  
75 shows a two-register write operation example. As shown, the required commands to write data to two  
registers starting at register REF (address = 05h) are: command byte 1 = 45h and command byte 2 = 01h.  
(1)  
CS  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DIN  
DON‘T CARE  
DON‘T CARE  
DON‘T CARE  
DON‘T CARE  
0100 0101  
0000 0001  
REG DATA 1  
REG DATA 2  
(1) CS can be set high or kept low between commands. If kept low, the command must be completed.  
75. Write Register Sequence  
52  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Writing new data to certain configuration registers resets the digital filter. Resetting the digital filter clears the  
output shift register and if a conversion is in progress, a new conversion starts. Writing to the following registers  
triggers a new conversion:  
Channel configuration register (02h)  
Gain setting register (03h)  
Data rate register (04h)  
Reference control register (05h), bits [5:0]  
Excitation current register 1 (06h), bits [3:0]  
Excitation current register 2 (07h)  
System control register (09h), bits [7:5]  
When the device is configured with WREG, the first data ready indication occurs after the new conversion  
completes with the configuration settings. The previous conversion data are cleared at restart; therefore read the  
previous data before the register write operation. Again, a WREG to these registers only starts a new conversion  
if a conversion is in progress. If the device is in standby mode, the device sets the configuration according to the  
WREG data, but does not start a conversion until the START/SYNC pin is taken high or a START command is  
issued.  
9.5.4 Interfacing with Multiple Devices  
When connecting multiple devices to a single SPI bus, SCLK, DIN, and DOUT/DRDY can be safely shared by  
using a dedicated chip-select (CS) line for each SPI-enabled device. When CS transitions high for the respective  
device, DOUT/DRDY enters a tri-state mode. Therefore, DOUT/DRDY cannot be used to indicate when new data  
are available if CS is high. Only the dedicated DRDY pin indicates that new data are available because the  
DRDY pin is actively driven even when CS is high.  
In some cases, the DRDY pin cannot be interfaced to the microcontroller. This scenario can occur if there are  
insufficient GPIO channels available on the microcontroller or if the serial interface must be galvanically isolated  
and thus the amount of channels must be limited. In order to evaluate when a new conversion of one of the  
devices is ready, the microcontroller can periodically drop CS to the respective device and poll the state of the  
DOUT/DRDY pin.  
When CS goes low, the DOUT/DRDY pin immediately drives either high or low. If the DOUT/DRDY line drives  
low, new data are available. If the DOUT/DRDY line drives high, no new data are available. This procedure  
requires that DOUT/DRDY is forced high after reading each conversion result and before taking CS high. To  
make sure DOUT/DRDY is taken high, send a RREG command to read a register where the least significant bit  
(LSB) is 1.  
版权 © 2017–2020, Texas Instruments Incorporated  
53  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6 Register Map  
9.6.1 Configuration Registers  
The ADS114S0xB register map consists of 18, 8-bit registers. These registers are used to configure and control  
the device to the desired mode of operation. Access the registers through the serial interface by using the RREG  
and WREG register commands. As shown in the Default column of 14, the registers default to the initial  
settings after power-on or reset.  
Data can be written as a block to multiple registers using a single WREG command. If data are written as a  
block, the data of certain registers take effect immediately when data are shifted in. Writing new data to certain  
registers results in a restart of conversions that are in progress. The registers that result in a conversion restart  
are discussed in the WREG section.  
14. Configuration Register Map  
ADDR REGISTER  
DEFAULT  
xxh  
BIT 7  
BIT 6  
BIT 5  
RESERVED  
0
BIT 4  
BIT 3  
BIT 2  
BIT 1  
DEV_ID[2:0]  
0
BIT 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
ID  
STATUS  
INPMUX  
PGA  
80h  
01h  
00h  
14h  
10h  
00h  
FFh  
00h  
10h  
00h  
00h  
00h  
00h  
00h  
40h  
00h  
00h  
FL_POR  
RDY  
0
0
0
FL_REF  
MUXP[3:0]  
MUXN[3:0]  
GAIN[2:0]  
DR[3:0]  
0
0
0
0
0
0
MODE  
REFP_BUF  
0
PGA_EN[1:0]  
DATARATE  
REF  
CLK  
FL_REF_EN  
0
1
REFN_BUF  
0
REFSEL[1:0]  
REFCON[1:0]  
IDACMAG  
IDACMUX  
VBIAS  
IMAG[3:0]  
I2MUX[3:0]  
I1MUX[3:0]  
0
VB_AINC  
VB_AIN5  
VB_AIN4  
VB_AIN3  
VB_AIN2  
TIMEOUT  
VB_AIN1  
0
VB_AIN0  
0
SYS  
SYS_MON[2:0]  
CAL_SAMP[1:0]  
RESERVED  
OFCAL0  
OFCAL1  
RESERVED  
FSCAL0  
FSCAL1  
GPIODAT  
GPIOCON  
RESERVED  
OFC[7:0]  
OFC[15:8]  
RESERVED  
FSC[7:0]  
FSC[15:8]  
DIR[3:0]  
DAT[3:0]  
CON[3:0]  
0
0
0
0
54  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2 Register Descriptions  
15 lists the access codes for the ADS114S0xB registers.  
15. ADS114S0xB Access Type Codes  
Access Type  
Code  
R
Description  
R
Read  
R-W  
W
R/W  
W
Read or Write  
Write  
-n  
Value after reset or the default value  
9.6.2.1 Device ID Register (address = 00h) [reset = xxh]  
76. Device ID (ID) Register  
7
6
5
4
3
2
1
0
RESERVED  
R-xxh  
DEV_ID[2:0]  
R-xh  
16. Device ID (ID) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
RESERVED  
R
xxh  
Reserved  
Values are subject to change without notice  
Device identifier  
2:0  
DEV_ID[2:0]  
R
xh  
Identifies the model of the device.  
000 : Reserved  
001 : Reserved  
010 : Reserved  
011 : Reserved  
100 : ADS114S08B (12 channels, 16 bits)  
101 : ADS114S06B (6 channels, 16 bits)  
110 : Reserved  
111 : Reserved  
版权 © 2017–2020, Texas Instruments Incorporated  
55  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6.2.2 Device Status Register (address = 01h) [reset = 80h]  
77. Device Status (STATUS) Register  
7
6
5
0
4
0
3
0
2
0
1
0
0
FL_POR  
R/W-1h  
RDY  
R-0h  
FL_REF  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
17. Device Status (STATUS) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
POR flag  
7
FL_POR  
R/W  
1h  
Indicates a power-on reset (POR) event has occurred.  
0 : Register has been cleared and no POR event has occurred  
1 : POR event occurred and has not been cleared. Flag must be cleared by  
user register write (default).  
6
RDY  
R
0h  
Device ready flag  
Indicates the device has started up and is ready for communication.  
0 : ADC ready for communication (default)  
1 : ADC not ready  
5:1  
0
RESERVED  
FL_REF  
R
R
00h  
0h  
Reserved  
Always write 00h  
External reference voltage monitor flag  
Indicates the selected external reference voltage is lower than 0.3 V. Can  
be used to indicate  
a
missing external reference voltage.  
The reference monitor is enabled with the FL_REF_EN bit in the reference  
control register (05h).  
0 : Differential reference voltage 0.3 V (default)  
1 : Differential reference voltage < 0.3 V  
56  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2.3 Input Multiplexer Register (address = 02h) [reset = 01h]  
78. Input Multiplexer (INPMUX) Register  
7
6
5
4
3
2
1
0
MUXP[3:0]  
R/W-0h  
MUXN[3:0]  
R/W-1h  
18. Input Multiplexer (INPMUX) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MUXP[3:0]  
R/W  
0h  
Positive ADC input selection  
Selects the ADC positive input channel.  
0000 : AIN0 (default)  
0001 : AIN1  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
0110 : AIN6 (ADS114S08B only)  
0111 : AIN7 (ADS114S08B only)  
1000 : AIN8 (ADS114S08B only)  
1001 : AIN9 (ADS114S08B only)  
1010 : AIN10 (ADS114S08B only)  
1011 : AIN11 (ADS114S08B only)  
1100 : AINCOM  
1101 : Reserved  
1110 : Reserved  
1111 : Reserved  
3:0  
MUXN[3:0]  
R/W  
1h  
Negative ADC input selection  
Selects the ADC negative input channel.  
0000 : AIN0  
0001 : AIN1 (default)  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
0110 : AIN6 (ADS114S08B only)  
0111 : AIN7 (ADS114S08B only)  
1000 : AIN8 (ADS114S08B only)  
1001 : AIN9 (ADS114S08B only)  
1010 : AIN10 (ADS114S08B only)  
1011 : AIN11 (ADS114S08B only)  
1100 : AINCOM  
1101 : Reserved  
1110 : Reserved  
1111 : Reserved  
版权 © 2017–2020, Texas Instruments Incorporated  
57  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6.2.4 Gain Setting Register (address = 03h) [reset = 00h]  
79. Gain Setting (PGA) Register  
7
0
6
0
5
0
4
3
2
1
0
PGA_EN[1:0]  
R/W-0h  
GAIN[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
19. Gain Setting (PGA) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
RESERVED  
R/W  
0h  
Reserved  
Always write 0h  
PGA enable  
4:3  
2:0  
PGA_EN[1:0]  
R/W  
R/W  
0h  
Enables or bypasses the PGA.  
00 : PGA is powered down and bypassed. Enables single-ended  
measurements with unipolar supply (Set gain = 1(1)) (default)  
01 : PGA enabled (gain = 1 to 128)  
10 : Reserved  
11 : Reserved  
GAIN[2:0]  
0h  
PGA gain selection  
Configures the PGA gain.  
000 : 1 (default)  
001 : 2  
010 : 4  
011 : 8  
100 : 16  
101 : 32  
110 : 64  
111 : 128  
(1) When bypassing the PGA, the user must also set GAIN[2:0] to 000.  
58  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2.5 Data Rate Register (address = 04h) [reset = 14h]  
80. Data Rate (DATARATE) Register  
7
0
6
5
4
1
3
2
1
0
CLK  
MODE  
R/W-0h  
DR[3:0]  
R/W-4h  
R/W-0h  
R/W-0h  
R/W-1h  
20. Data Rate (DATARATE) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0h  
Reserved  
Always write 0h  
Clock source selection  
6
5
CLK  
R/W  
R/W  
0h  
0h  
Configures the clock source to use either the internal oscillator or an  
external clock.  
0 : Internal 4.096-MHz oscillator (default)  
1 : External clock  
MODE  
Conversion mode selection  
Configures the ADC for either continuous conversion or single-shot  
conversion mode.  
0 : Continuous conversion mode (default)  
1 : Single-shot conversion mode  
4
RESERVED  
DR[3:0]  
R/W  
R/W  
1h  
4h  
Reserved  
Always write 1h  
3:0  
Data rate selection  
Configures the output data rate(1)  
0000 : 2.5 SPS  
.
0001 : 5 SPS  
0010 : 10 SPS  
0011 : 16.6 SPS  
0100 : 20 SPS (default)  
0101 : 50SPS  
0110 : 60 SPS  
0111 : 100 SPS  
1000 : 200 SPS  
1001 : 400 SPS  
1010 : 800 SPS  
1011 : 1000 SPS  
1100 : 2000 SPS  
1101 : 4000 SPS  
1110 : 4000 SPS  
1111 : Reserved  
(1) Data rates of 60 Hz or less can offer line-cycle rejection; see the 50-Hz and 60-Hz Line Cycle Rejection section for more information.  
版权 © 2017–2020, Texas Instruments Incorporated  
59  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6.2.6 Reference Control Register (address = 05h) [reset = 10h]  
81. Reference Control (REF) Register  
7
0
6
5
4
3
2
1
0
FL_REF_EN  
R/W-0h  
REFP_BUF  
R/W-0h  
REFN_BUF  
R/W-1h  
REFSEL[1:0]  
R/W-0h  
REFCON[1:0]  
R/W-0h  
R/W-0h  
21. Reference Control (REF) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0h  
Reserved  
Always write 0h  
6
5
FL_REF_EN  
REFP_BUF  
R/W  
R/W  
0h  
0h  
External reference monitor enable  
Enables the external reference monitor.  
0 : Disabled (default)  
1 : Enabled  
Positive reference buffer bypass  
Disables the positive reference buffer. Recommended when V(REFPx) is  
close to AVDD.  
0 : Positive reference buffer enabled (default)  
1 : Positive reference buffer bypassed  
4
REFN_BUF  
R/W  
R/W  
1h  
0h  
Negative reference buffer bypass  
Disables the negative reference buffer. Recommended when V(REFNx) is  
close to AVSS.  
0 : Negative reference buffer enabled  
1 : Negative reference buffer bypassed (default)  
3:2  
REFSEL[1:0]  
Reference input selection  
Selects the reference input source for the ADC.  
00 : REFP0, REFN0 (default)  
01 : REFP1, REFN1  
10 : Internal 2.5-V reference(1)  
11 : Reserved  
1:0  
REFCON[1:0]  
R/W  
0h  
Internal voltage reference configuration(2)  
Configures the behavior of the internal voltage reference.  
00 : Internal reference off (default)  
01 : Internal reference on, but powers down in power-down mode  
10 : Internal reference is always on, even in power-down mode  
11 : Reserved  
(1) Disable the reference buffers when the internal reference is selected for measurements.  
(2) The internal voltage reference must be turned on to use the IDACs.  
60  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2.7 Excitation Current Register 1 (address = 06h) [reset = 00h]  
82. Excitation Current Register 1 (IDACMAG)  
7
0
6
0
5
0
4
0
3
2
1
0
IMAG[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
22. Excitation Current Register 1 (IDACMAG) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
RESERVED  
R/W  
0h  
Reserved  
Always write 0h  
IDAC magnitude selection  
3:0  
IMAG[3:0]  
R/W  
0h  
Selects the value of the excitation current sources. Sets IDAC1 and IDAC2  
to the same value.  
0000 : Off (default)  
0001 : 10 µA  
0010 : 50 µA  
0011 : 100 µA  
0100 : 250 µA  
0101 : 500 µA  
0110 : 750 µA  
0111 : 1000 µA  
1000 : 1500 µA  
1001 : 2000 µA  
1010–1111 : Off  
版权 © 2017–2020, Texas Instruments Incorporated  
61  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6.2.8 Excitation Current Register 2 (address = 07h) [reset = FFh]  
83. Excitation Current Register 2 (IDACMUX)  
7
6
5
4
3
2
1
0
I2MUX[3:0]  
R/W-Fh  
I1MUX[3:0]  
R/W-Fh  
23. Excitation Current Register 2 (IDACMUX) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
I2MUX[3:0]  
R/W  
Fh  
IDAC2 output channel selection  
Selects the output channel for IDAC2.  
0000 : AIN0  
0001 : AIN1  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
0110 : AIN6 (ADS114S08B), REFP1 (ADS114S06B)  
0111 : AIN7 (ADS114S08B), REFN1 (ADS114S06B)  
1000 : AIN8 (ADS114S08B only)  
1001 : AIN9 (ADS114S08B only)  
1010 : AIN10 (ADS114S08B only)  
1011 : AIN11 (ADS114S08B only)  
1100 : AINCOM  
1101–1111 : Disconnected (default)  
3:0  
I1MUX[3:0]  
R/W  
Fh  
IDAC1 output channel selection  
Selects the output channel for IDAC1.  
0000 : AIN0  
0001 : AIN1  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
0110 : AIN6 (ADS114S08B only), REFP1 (ADS114S06B)  
0111 : AIN7 (ADS114S08B only), REFN1 (ADS114S06B)  
1000 : AIN8 (ADS114S08B only)  
1001 : AIN9 (ADS114S08B only)  
1010 : AIN10 (ADS114S08B only)  
1011 : AIN11 (ADS114S08B only)  
1100 : AINCOM  
1101–1111 : Disconnected (default)  
62  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2.9 Sensor Biasing Register (address = 08h) [reset = 00h]  
84. Sensor Biasing (VBIAS) Register  
7
0
6
5
4
3
2
1
0
VB_AINC  
R/W-0h  
VB_AIN5  
R/W-0h  
VB_AIN4  
R/W-0h  
VB_AIN3  
R/W-0h  
VB_AIN2  
R/W-0h  
VB_AIN1  
R/W-0h  
VB_AIN0  
R/W-0h  
R/W-0h  
24. Sensor Biasing (VBIAS) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0h  
Reserved  
Always write 0h  
6
5
4
3
2
1
0
VB_AINC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
AINCOM VBIAS selection(1)  
Enables VBIAS on the AINCOM pin.  
0 : VBIAS disconnected from AINCOM (default)  
1 : VBIAS connected to AINCOM  
AIN5 VBIAS selection(1)  
VB_AIN5  
VB_AIN4  
VB_AIN3  
VB_AIN2  
VB_AIN1  
VB_AIN0  
Enables VBIAS on the AIN5 pin.  
0 : VBIAS disconnected from AIN5 (default)  
1 : VBIAS connected to AIN5  
AIN4 VBIAS selection(1)  
Enables VBIAS on the AIN4 pin.  
0 : VBIAS disconnected from AIN4 (default)  
1 : VBIAS connected to AIN4  
AIN3 VBIAS selection(1)  
Enables VBIAS on the AIN3 pin.  
0 : VBIAS disconnected from AIN3 (default)  
1 : VBIAS connected to AIN3  
AIN2 VBIAS selection(1)  
Enables VBIAS on the AIN2 pin.  
0 : VBIAS disconnected from AIN2 (default)  
1 : VBIAS connected to AIN2  
AIN1 VBIAS selection(1)  
Enables VBIAS on the AIN1 pin.  
0 : VBIAS disconnected from AIN1 (default)  
1 : VBIAS connected to AIN1  
AIN0 VBIAS selection(1)  
Enables VBIAS on the AIN0 pin.  
0 : VBIAS disconnected from AIN0 (default)  
1 : VBIAS connected to AIN0  
(1) The bias voltage can be selected for multiple analog inputs at the same time.  
版权 © 2017–2020, Texas Instruments Incorporated  
63  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6.2.10 System Control Register (address = 09h) [reset = 10h]  
85. System Control (SYS) Register  
7
6
5
4
3
2
1
0
0
0
SYS_MON[2:0]  
R/W-0h  
CAL_SAMP[1:0]  
R/W-2h  
TIMEOUT  
R/W-0h  
R/W-0h  
R/W-0h  
25. System Control (SYS) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
SYS_MON[2:0]  
R/W  
0h  
System monitor configuration(1)  
Enables a set of system monitor measurements using the ADC.  
000 : Disabled (default)  
001 : PGA inputs shorted to (AVDD + AVSS) / 2 and disconnected from  
AINx and the multiplexer; gain set by user  
010 : Internal temperature sensor measurement; PGA must be enabled  
(PGA_EN[1:0] = 01); gain set by user(2)  
011 : (AVDD – AVSS) / 4 measurement; gain set to 1(3)  
100 : DVDD / 4 measurement; gain set to 1(3)  
101 : Burn-out current sources enabled, 0.2-µA setting  
110 : Burn-out current sources enabled, 1-µA setting  
111 : Burn-out current sources enabled, 10-µA setting  
4:3  
CAL_SAMP[1:0]  
R/W  
2h  
Calibration sample size selection  
Configures the number of samples averaged for self and system offset and  
system gain calibration.  
00 : 1 sample  
01 : 4 samples  
10 : 8 samples (default)  
11 : 16 samples  
2
TIMEOUT  
R/W  
R/W  
0h  
0h  
SPI timeout enable  
Enables the SPI timeout function.  
0 : Disabled (default)  
1 : Enabled  
1:0  
RESERVED  
Reserved  
Always write 0h  
(1) With system monitor functions enabled, the AINx multiplexer switches are open for the (AVDD + AVSS) / 2 measurement, the  
temperature sensor, and the supply monitors.  
(2) When using the internal temperature sensor, gain must be 4 or less to keep the measurement within the PGA input voltage range.  
(3) The PGA gain is automatically set to 1 when the supply monitors are enabled, regardless of the setting in GAIN[2:0].  
64  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2.11 Reserved Register (address = 0Ah) [reset = 00h]  
86. Reserved Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00h  
26. Reserved Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:0  
RESERVED  
R
00h  
Always write 00h  
9.6.2.12 Offset Calibration Register 1 (address = 0Bh) [reset = 00h]  
87. Offset Calibration Register 1 (OFCAL0)  
7
6
5
4
3
2
1
0
OFC[7:0]  
R/W-00h  
27. Offset Calibration Register 1 (OFCAL0) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
OFC[7:0]  
R/W  
00h  
Bits [7:0] of the offset calibration value.  
9.6.2.13 Offset Calibration Register 2 (address = 0Ch) [reset = 00h]  
88. Offset Calibration Register 2 (OFCAL1)  
7
6
5
4
3
2
1
0
OFC[15:8]  
R/W-00h  
28. Offset Calibration Register 2 (OFCAL1) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
OFC[15:8]  
R/W  
00h  
Bits [15:8] of the offset calibration value.  
版权 © 2017–2020, Texas Instruments Incorporated  
65  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.6.2.14 Reserved Register (address = 0Dh) [reset = 00h]  
89. Reserved Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00h  
29. Reserved Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:0  
RESERVED  
R
00h  
Always write 00h  
9.6.2.15 Gain Calibration Register 1 (address = 0Eh) [reset = 00h]  
90. Gain Calibration Register 1 (FSCAL0)  
7
6
5
4
3
2
1
0
FSC[7:0]  
R/W-00h  
30. Gain Calibration Register 1 (FSCAL0) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
FSC[7:0]  
R/W  
00h  
Bits [7:0] of the gain calibration value.  
9.6.2.16 Gain Calibration Register 2 (address = 0Fh) [reset = 40h]  
91. Gain Calibration Register 2 (FSCAL1)  
7
6
5
4
3
2
1
0
FSC[15:8]  
R/W-40h  
31. Gain Calibration Register 2 (FSCAL1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
FSC[15:8]  
R/W  
40h  
Bits [15:8] of the gain calibration value.  
66  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
9.6.2.17 GPIO Data Register (address = 10h) [reset = 00h]  
92. GPIO Data (GPIODAT) Register  
7
6
5
4
3
2
1
0
DIR[3:0]  
R/W-0h  
DAT[3:0]  
R/W-0h  
32. GPIO Data (GPIODAT) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
DIR[3:0]  
R/W  
0h  
GPIO direction  
Configures the selected GPIO as an input or output.  
0 : GPIO[x] configured as output (default)  
1 : GPIO[x] configured as input  
3:0  
DAT[3:0]  
R/W  
0h  
GPIO data  
Contains the data of the GPIO inputs or outputs.  
0 : GPIO[x] is low (default)  
1 : GPIO[x] is high  
9.6.2.18 GPIO Configuration Register (address = 11h) [reset = 00h]  
93. GPIO Configuration Register  
7
0
6
0
5
0
4
0
3
2
1
0
CON[3:0]  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-0h  
33. GPIO Configuration (GPIOCON) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
RESERVED  
R
0h  
Reserved  
Always write 0h  
GPIO pin configuration  
3:0  
CON[3:0]  
R/W  
0h  
Configures the GPIO[x] pin as an analog input or GPIO. CON[x]  
corresponds to the GPIO[x] pin.  
0 : GPIO[x] configured as analog input (default)(1)  
1 : GPIO[x] configured as GPIO  
(1) On the ADS114S06B, the GPIO pins default as disabled. Set the CON[3:0] bits to enable the respective GPIO pins.  
版权 © 2017–2020, Texas Instruments Incorporated  
67  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ADS114S06B and ADS114S08B are precision, 16-bit, ΔΣ ADCs that offer many integrated features to  
simplify the measurement of the most common sensor types (including various types of temperature, flow, and  
bridge sensors). Primary considerations when designing an application with the ADS114S0xB include analog  
input filtering, establishing an appropriate reference, and setting the absolute input voltage for the internal PGA.  
Connecting and configuring the serial interface appropriately is another concern. These considerations are  
discussed in the following sections.  
10.1.1 Serial Interface Connections  
94 shows the principle serial interface connections for the ADS114S0xB.  
1 mF  
24  
23  
22  
21  
20  
19  
18  
17  
3.3 V  
47  
47 ꢀ  
47 ꢀ  
47 ꢀ  
GPIO  
NC 25  
DVDD  
IOVDD  
DGND  
DRDY  
16  
15  
14  
13  
12  
11  
10  
9
5 V  
26  
27  
28  
AVDD  
GPIO/IRQ  
MISO  
0.1 mF  
330 nF  
AVSS  
AVSS  
SCLK  
Microcontroller  
with SPI  
47 ꢀ  
47 ꢀ  
47 ꢀ  
REFN0 29  
REFP0 30  
DOUT/DRDY  
SCLK  
MOSI  
GPIO  
REFN1/AIN7 31  
REFP1/AIN6 32  
DIN  
GPIO  
DVDD  
DVSS  
3.3 V  
CS  
1
2
3
4
5
6
7
8
0.1 mF  
94. Serial Interface Connections  
Most microcontroller SPI peripherals can interface with the ADS114S0xB. The interface operates in SPI mode 1  
where CPOL = 0 and CPHA = 1. In SPI mode 1, SCLK idles low and data are launched or changed only on  
SCLK rising edges; data are latched or read by the master and slave on SCLK falling edges. Details of the SPI  
communication protocol employed by the devices are found in the Serial Interface section.  
Place 47-Ω resistors in series with all digital input and output pins (CS, SCLK, DIN, DOUT/DRDY, and DRDY).  
This resistance smooths sharp transitions, suppresses overshoot, and offers some overvoltage protection. Care  
must be taken to meet all SPI timing requirements because the additional resistors interact with the bus  
capacitances present on the digital signal lines.  
68  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Application Information (接下页)  
10.1.2 Analog Input Filtering  
Analog input filtering serves two purposes: first, to limit the effect of aliasing during the sampling process and  
second, to reduce external noise from being a part of the measurement.  
As with any sampled system, aliasing can occur if proper antialias filtering is not in place. Aliasing occurs when  
frequency components are present in the input signal that are higher than half the sampling frequency of the  
ADC (also known as the Nyquist frequency). These frequency components are folded back and show up in the  
actual frequency band of interest below half the sampling frequency. Inside a ΔΣ ADC, the input signal is  
oversampled at the modulator frequency, fMOD and not at the output data rate. 95 shows that the filter  
response of the digital filter repeats at multiples of fMOD. Signals or noise up to a frequency where the filter  
response repeats are attenuated to a certain amount by the digital filter depending on the filter architecture. Any  
frequency components present in the input signal around the modulator frequency or multiples thereof are not  
attenuated and alias back into the band of interest, unless attenuated by an external analog filter.  
Magnitude  
Sensor  
Signal  
Unwanted  
Signals  
Unwanted  
Signals  
Output  
Data Rate  
fMOD/2  
fMOD  
Frequency  
Frequency  
Frequency  
Magnitude  
Digital Filter  
Aliasing of  
Unwanted Signals  
Output  
Data Rate  
fMOD/2  
fMOD  
Magnitude  
External  
Antialiasing Filter  
Roll-Off  
Output  
Data Rate  
fMOD/2  
fMOD  
95. Effect of Aliasing  
版权 © 2017–2020, Texas Instruments Incorporated  
69  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Application Information (接下页)  
Many sensor signals are inherently band limited; for example, the output of a thermocouple has a limited rate of  
change. In this case, the sensor signal does not alias back into the pass band when using a ΔΣ ADC. However,  
any noise pick-up along the sensor wiring or the application circuitry can potentially alias into the pass band.  
Power line-cycle frequency and harmonics are one common noise source. External noise can also be generated  
from electromagnetic interference (EMI) or radio frequency interference (RFI) sources, such as nearby motors  
and cellular phones. Another noise source typically exists on the printed circuit board (PCB) itself in the form of  
clocks and other digital signals. Analog input filtering helps remove unwanted signals from affecting the  
measurement result.  
A first-order resistor-capacitor (RC) filter is (in most cases) sufficient to either eliminate aliasing, or to reduce the  
effect of aliasing to a level below the noise floor of the sensor. Ideally, any signal beyond fMOD / 2 is attenuated to  
a level below the noise floor of the ADC. The digital filter of the ADS114S0xB attenuates signals to a certain  
degree, as illustrated in the filter response plots in the Digital Filter section. In addition, noise components are  
usually smaller in magnitude than the actual sensor signal. Therefore, using a first-order RC filter with a cutoff  
frequency set at the output data rate or 10 times higher is generally a good starting point for a system design.  
Internal to the device, prior to the PGA inputs, is an EMI filter; see 43. The cutoff frequency of this filter is  
approximately 40 MHz and helps reject high-frequency interference.  
10.1.3 External Reference and Ratiometric Measurements  
The full-scale range of the ADS114S0xB is defined by the reference voltage and the PGA gain  
(FSR = ±VREF / Gain). An external reference can be used instead of the integrated 2.5-V reference to adapt the  
FSR to the specific system needs. An external reference must be used if VIN > 2.5 V. For example, an external  
5-V reference and an AVDD = 5 V are required in order to measure a single-ended signal that can swing  
between 0 V and 5 V.  
The reference inputs of the device also allow the implementation of ratiometric measurements. In a ratiometric  
measurement, the same excitation source that is used to excite the sensor is also used to establish the reference  
for the ADC. As an example, a simple form of a ratiometric measurement uses the same current source to excite  
both the resistive sensor element (such as an RTD) and another resistive reference element that is in series with  
the element being measured. The voltage that develops across the reference element is used as the reference  
source for the ADC. Because current noise and drift are common to both the sensor measurement and the  
reference, these components cancel out in the ADC transfer function. The output code is only a ratio of the  
sensor element and the value of the reference resistor. The value of the excitation current source itself is not part  
of the ADC transfer function.  
The example in the Typical Application section describes a system that uses a ratiometric measurement. One  
excitation current source is used to drive a reference resistor and an RTD. The ADC measurement represents a  
ratiometric measurement between the RTD value and a known reference resistor value.  
10.1.4 Establishing a Proper Input Voltage  
The ADS114S0xB can be used to measure various types of input signal configurations: single-ended, pseudo-  
differential, and fully-differential signals (which can be either unipolar or bipolar). However, configuring the device  
properly for the respective signal type is important.  
Signals where the negative analog input is fixed and referenced to analog ground (VAINN = 0 V) are commonly  
called single-ended signals. The input voltage of a single-ended signal consequently varies between 0 V and VIN.  
If the PGA is disabled and bypassed, the input voltage of the ADS114S0xB can be as low as 50 mV below AVSS  
and as large as 50 mV above AVDD. Therefore, set the PGA_EN bits to 10 in the gain setting register (03h) to  
measure single-ended signals when a unipolar analog supply is used (AVSS = 0 V). Only a gain of 1 is possible  
in this configuration. Measuring a 0-mA to 20-mA or 4-mA to 20-mA signal across a load resistor of 100 Ω  
referenced to GND is a typical example. The ADS114S0xB can directly measure the signal across the load  
resistor using a unipolar supply, the internal 2.5-V reference, and gain = 1 when the PGA is bypassed.  
If gain is needed to measure a single-ended signal, the PGA must be enabled. In this case, a bipolar supply is  
required for the ADS114S0xB to meet the input voltage requirement of the PGA. Signals where the negative  
analog input (AINN) is fixed at a voltage other the 0 V are referred to as pseudo-differential signals. The input  
voltage of a pseudo-differential signal varies between VAINN and VAINN + VIN.  
70  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
Application Information (接下页)  
Fully-differential signals in contrast are defined as signals having a constant common-mode voltage where the  
positive and negative analog inputs swing 180° out-of-phase but have the same amplitude.  
The ADS114S0xB can measure pseudo-differential and fully-differential signals both with the PGA enabled or  
bypassed. However, the PGA must be enabled in order to measure any input with a gain greater than 1. The  
input voltage must meet the input and output voltage restrictions of the PGA, as explained in the PGA Input-  
Voltage Requirements section when the PGA is enabled. Setting the input voltage at or near (AVSS + AVDD) / 2  
in most cases satisfies the PGA input voltage requirements.  
Signals where both the positive and negative inputs are always 0 V are called unipolar signals. These signals  
can in general be measured with the ADS114S0xB using a unipolar analog supply (AVSS = 0 V). As mentioned  
previously, the PGA must be bypassed in order to measure single-ended, unipolar signals when using a unipolar  
supply.  
A signal is called bipolar when either the positive or negative input can swing below 0 V. A bipolar analog supply  
(such as AVDD = 2.5 V, AVSS = –2.5 V) is required in order to measure bipolar signals with the ADS114S0xB. A  
typical application task is measuring a single-ended, bipolar, ±10-V signal where AINN is fixed at 0 V and AINP  
swings between –10 V and 10 V. The ADS114S0xB cannot directly measure this signal because the 10-V signal  
exceeds the analog power-supply limits. However, one possible solution is to use a bipolar analog supply (AVDD  
= 2.5 V, AVSS = –2.5 V), gain = 1, and a resistor divider in front of the ADS114S0xB. The resistor divider must  
divide the voltage down to ±2.5 V to be able to measure the voltage using the internal 2.5-V reference.  
10.1.5 Unused Inputs and Outputs  
To minimize leakage currents on the analog inputs, leave unused analog and reference inputs floating, or  
connect the inputs to mid-supply or to AVDD. Connecting unused analog or reference inputs to AVSS is possible  
as well, but can yield higher leakage currents than the previously mentioned options. REFN0 is an exception;  
leave the REFN0 pin floating when not in use or tie the pin to AVSS.  
GPIO pins operate on levels based on the analog supply. Do not float GPIO pins that are configured as digital  
inputs. Tie unused GPIO pins that are configured as digital inputs to the appropriate levels, AVDD or AVSS,  
including when in power-down mode. Tie unused GPIO output pins to AVSS through a pulldown resistor and set  
the output to 0 in the GPIO data register. For unused GPIO pins on the ADS114S06B, leave the GPIOCON  
register set to the default register values and connect these GPIO pins in the same manner as for an unused  
analog input.  
Do not float unused digital inputs; excessive power-supply leakage current can result. Tie all unused digital  
inputs to the appropriate levels, IOVDD or DGND, even when in power-down mode. Connections for unused  
digital inputs are listed below.  
Tie the CS pin to DGND if CS is not used  
Tie the CLK pin to DGND if the internal oscillator is used  
Tie the START/SYNC pin to DGND to control conversions by commands  
Tie the RESET pin to IOVDD if the RESET pin is not used  
If the DRDY output is not used, leave the DRDY pin unconnected or tie the DRDY pin to IOVDD using a weak  
pullup resistor  
版权 © 2017–2020, Texas Instruments Incorporated  
71  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Application Information (接下页)  
10.1.6 Pseudo Code Example  
The following list shows a pseudo code sequence with the required steps to set up the device and the  
microcontroller that interfaces to the ADC in order to take subsequent readings from the ADS114S0xB in  
continuous conversion mode. The dedicated DRDY pin is used to indicate availability of new conversion data.  
Power-up so that all supplies reach minimum operating levels;  
Delay for a minimum of 2.2 ms to allow power supplies to settle and power-up reset to complete;  
Configure the SPI interface of the microcontroller to SPI mode 1 (CPOL = 0, CPHA =1);  
If the CS pin is not tied low permanently, configure the microcontroller GPIO connected to CS as an  
output;  
Configure the microcontroller GPIO connected to the DRDY pin as a falling edge triggered interrupt  
input;  
Set CS to the device low;  
Delay for a minimum of td(CSSC)  
Send the RESET command (06h) to make sure the device is properly reset after power-up; //Optional  
Delay for a minimum of 4096 · tCLK  
;
;
Read the status register using the RREG command to check that the RDY bit is 0; //Optional  
Clear the FL_POR flag by writing 00h to the status register; //Optional  
Write the respective register configuration with the WREG command;  
For verification, read back all configuration registers with the RREG command;  
Send the START command (08h) to start converting in continuous conversion mode;  
Delay for a minimum of td(SCCS)  
;
Clear CS to high (resets the serial interface);  
Loop  
{
Wait for DRDY to transition low;  
Take CS low;  
Delay for a minimum of td(CSSC)  
;
Send the RDATA command;  
Send 16 SCLK rising edges to read out conversion data on DOUT/DRDY;  
Delay for a minimum of td(SCCS)  
;
Clear CS to high;  
}
Take CS low;  
Delay for a minimum of td(CSSC)  
Send the STOP command (0Ah) to stop conversions and put the device in standby mode;  
;
Delay for a minimum of td(SCCS)  
;
Clear CS to high;  
72  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
10.2 Typical Application  
96 shows a fault-protected, filtered, 3-wire RTD application circuit with hardware-based, lead-wire  
compensation. Two IDAC current sources provide the lead-wire compensation. One IDAC current source  
(IDAC1) provides excitation to the RTD element. The ADC reference voltage (pins AIN6 and AIN7) is derived  
from the voltage across resistor RREF sourcing the same IDAC1 current, providing ratiometric cancellation of  
current-source drift. The other current source (IDAC2) has the same current setting, providing cancellation of  
lead-wire resistance by generating a voltage drop across lead-wire resistance RLEAD2 equal to the voltage drop of  
RLEAD1. Because the RRTD voltage is measured differentially at ADC pins AIN1 and AIN2, the voltages across the  
lead wire resistance cancel. Resistor RBIAS level-shifts the RTD signal to within the ADC specified input range.  
The current sources are provided by two additional pins (AIN5 and AIN3) that connect to the RTD through  
blocking diodes. The additional pins are used to route the RTD excitation currents around the input filter  
resistors, avoiding the voltage drop otherwise caused by the filter resistors RF1 and RF4. The diodes protect the  
ADC inputs in the event of a miswired connection. The input filter resistors limit the input fault currents flowing  
into the ADC.  
5 V  
3.3 V  
0.1 mF  
330 nF  
AVDD  
DVDD  
IOVDD  
AVDD  
IDAC1  
IIDAC1  
AIN5  
(IDAC1)  
500 A  
ADS114S08B  
CCM4  
RF4  
AIN6  
REFOUT  
1 mF  
(REFP1)  
Reference  
Mux  
2.5-V  
Reference  
RREF  
CDIF2  
RF3  
AIN7  
(REFN1)  
REFCOM  
CCM3  
Reference  
Buffers  
3-Wire RTD  
RLEAD1  
CCM2  
START/SYNC  
RESET  
CS  
RF2  
AIN1  
(AINP)  
Serial  
Digital  
Filter  
Input  
Mux  
16-Bit  
ûADC  
CDIF1  
PGA  
RRTD  
Interface  
and  
Control  
DIN  
RLEAD2  
RF1  
AIN2  
DOUT/DRDY  
SCLK  
(AINN)  
CCM1  
DRDY  
AVDD  
IDAC2  
IIDAC2  
AIN3  
4.096-MHz  
Oscillator  
(IDAC2)  
CLK  
500 A  
AVSS  
DGND  
RLEAD3  
IIDAC1 + IIDAC2  
RBIAS  
96. 3-Wire RTD Application  
10.2.1 Design Requirements  
34 shows the design requirements of the 3-wire RTD application.  
34. Design Requirements  
DESIGN PARAMETER  
ADC supply voltage  
RTD sensor type  
VALUE  
4.75 V (minimum)  
3-wire Pt100  
20 Ω to 400 Ω  
0 Ω to 10 Ω  
1 mW  
RTD resistance range  
RTD lead resistance range  
RTD self heating  
Accuracy(1)  
±0.1 Ω  
(1) TA = 25°C. After offset and full-scale calibration.  
版权 © 2017–2020, Texas Instruments Incorporated  
73  
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
The key considerations in the design of a 3-wire RTD circuit are the accuracy, the lead wire compensation, and  
the sensor self-heating. As the design values of 35 show, several values of excitation currents are available.  
The resolution is expressed in units of noise-free resolution (NFR). Noise-free resolution is resolution with no  
code flicker. The selection of excitation currents trades off resolution against sensor self-heating. In general,  
measurement resolution improves with increasing excitation current. Increasing the excitation current beyond  
1000 µA results in no further improvement in resolution for this example circuit. The design procedure is based  
on a 500-µA excitation current, because this level of current results in very low sensor self-heating (0.4 mW).  
35. RTD Circuit Design Parameters  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
IIDAC  
(µA)  
NFR  
(Bits)  
PRTD  
(mW)  
VRTD  
(V)  
Gain  
(V/V)  
VREFMIN  
(V)  
VREF  
(V)  
RREF  
(kΩ)  
VAINNLIM  
(V)  
VAINPLIM  
(V)  
RBIAS  
(kΩ)  
VRTDN  
(V)  
VRTDP  
(V)  
VIDAC1  
(V)  
50  
16.8  
17.8  
18.8  
19.1  
18.9  
19.3  
19.1  
18.3  
0.001  
0.004  
0.025  
0.100  
0.225  
0.400  
0.900  
1.600  
0.02  
0.04  
0.10  
0.20  
0.30  
0.40  
0.60  
0.80  
32  
32  
16  
8
0.64  
1.28  
1.60  
1.60  
1.20  
1.60  
1.20  
0.80  
0.70  
1.41  
1.76  
1.76  
1.32  
1.76  
1.32  
0.90  
18  
0.6  
0.9  
1.1  
1.0  
0.8  
0.9  
0.6  
0.3  
4.1  
3.8  
3.7  
3.8  
4.0  
3.9  
4.2  
4.5  
7.10  
5.10  
2.30  
1.10  
0.57  
0.50  
0.23  
0.10  
0.7  
1.0  
1.2  
1.1  
0.9  
1.0  
0.7  
0.4  
0.7  
1.1  
1.3  
1.3  
1.2  
1.4  
1.3  
1.2  
1.9  
2.8  
3.3  
3.4  
2.8  
3.5  
3.0  
2.4  
100  
14.1  
7.04  
3.52  
1.76  
1.76  
0.88  
0.45  
250  
500  
750  
4
1000  
1500  
2000  
4
2
1
(1) VREFMIN is the minimum reference voltage required by the design.  
(2) VREF is the design target reference voltage allowing for 10% overrange.  
(3) VAINNLIM is the absolute minimum input voltage required by the ADC.  
(4) VAINPLIM is the absolute maximum input voltage required by the ADC.  
(5) VRTDN is the design target negative input voltage.  
(6) VRTDP is the design target positive input voltage.  
(7) VIDAC1 is the design target IDAC1 loop voltage.  
Initially, RLEAD1 and RLEAD2 are considered to be 0 Ω. Route the IDAC1 current through the external reference  
resistor, RREF. IDAC1 generates the ADC reference voltage, VREF, across the reference resistor. 公式 12 defines  
this voltage:  
VREF = IIDAC1 · RREF  
(12)  
Route the second current (IDAC2) to the second RTD lead.  
Program the IDAC value by using the IDACMAG register; however, only the IDAC1 current flows through the  
reference resistor and RTD. The IDAC1 current excites the RTD to produce a voltage proportional to the RTD  
resistance. 公式 13 defines the RTD voltage:  
VRTD = RRTD · IIDAC1  
(13)  
As shown in 公式 14 through 公式 16, the ADC amplifies the RTD signal voltage (VRTD) and measures the  
resulting voltage against the reference voltage to produce a proportional digital output code.  
Code VRTD · Gain / VREF  
(14)  
(15)  
(16)  
Code (RRTD · IIDAC1) · Gain / (IIDAC1 · RREF  
)
Code (RRTD · Gain) / RREF  
As shown in 公式 16, the RTD measurement depends on the value of the RTD, the PGA gain, and the reference  
resistor RREF, but not on the IDAC1 value. Therefore, the absolute accuracy and temperature drift of the  
excitation current does not matter.  
The second excitation current (IDAC2) provides a second voltage drop across the second RTD lead resistance,  
RLEAD2. The second voltage drop compensates the voltage drop caused by IDAC1 and RLEAD1. The leads of a 3-  
wire RTD typically have the same length; therefore, the lead resistance is typically identical. The differential  
voltage (VIN) across ADC inputs AIN8 and AIN9 is shown in 公式 17, with lead resistance taken into account  
(RLEADx 0):  
VIN = IIDAC1 · (RRTD + RLEAD1) – IIDAC2 · RLEAD2  
(17)  
The expression for VIN reduces to 公式 18 if RLEAD1 = RLEAD2 and IIDAC1 = IIDAC2  
:
VIN = IIDAC1 · RRTD  
(18)  
74  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
 
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
In other words, the measurement error resulting from the voltage drop across the RTD lead resistance is  
compensated as long as the lead resistance values and the IDAC values are matched.  
Using 公式 13, the value of RTD resistance (400 Ω, maximum) and the excitation current (500 µA) yields an RTD  
voltage of VRTD = 500 µA · 400 Ω = 0.2 V. Use the maximum gain of 8 in order to limit the corresponding loop  
voltage of IDAC1. Gain = 8 requires a minimum reference voltage VREFMIN = 0.2 V · 8 = 1.6 V. To provide margin  
for the ADC operating range, increase the target reference voltage by 10% (VREF = 1.6 V · 1.1 = 1.76 V). 公式 19  
shows how to calculate the value of the reference resistor:  
RREF = VREF / IIDAC1 = 1.76 V / 500 µA = 3.52 kΩ  
(19)  
For this example application, 3.5 kΩ is chosen for RREF. For best results, use a precision reference resistor RREF  
with a low temperature drift (< 10 ppm/°C). Any change in RREF is reflected in the measurement as a gain error.  
The next step in the design is determining the value of the RBIAS resistor, in order to level shift the RTD voltage to  
meet the ADC absolute input-voltage specification. Calculate the minimum absolute voltage (VAINNLIM), as shown  
in 公式 20, to determine the required level-shift voltage:  
AVSS + 0.15 + VRTDMAX · (Gain – 1) / 2 VAINNLIM  
where  
VRTDMAX = maximum differential RTD voltage = 0.2 V  
Gain = 8  
AVSS = 0 V  
(20)  
The result of the equation requires a minimum absolute input voltage (VRTDN) > 0.85 V. Therefore, the RTD  
voltage must be level shifted by a minimum of 0.85 V. To meet this requirement, a target level-shift value of 1 V  
is chosen to provide extra margin. 公式 21 calculates the value of RBIAS  
:
RBIAS= VAINN / (IIDAC1+ IIDAC2) = 1 V / ( 2 · 500 µA) = 1 kΩ  
(21)  
Verify that the positive RTD voltage (VRTDP) is less than the maximum absolute input voltage (VAINPLIM), as shown  
in 公式 22. after the level-shift voltage is determined:  
VAINPLIM AVDD – 0.15 – VRTDMAX · (Gain – 1) / 2  
where  
VRTDMAX = maximum differential RTD voltage = 0.2 V  
Gain = 8  
AVDD = 4.75 V (minimum)  
(22)  
(23)  
Solving 公式 22 results in a required VRTDP of less than 3.9 V. 公式 23 calculates the VRTDP input voltage:  
VAINP = VRTDN + IIDAC1 · (RRTD + RLEAD1) = 1 V + 500 µA · (400 Ω + 10 Ω) = 1.2 V  
Because 1.2 V is less than the 3.9-V maximum input voltage limit, the absolute positive and negative RTD  
voltages are within the ADC specified input range.  
The next step in the design is to verify that the IDACs have enough voltage headroom (compliance voltage) to  
operate. The loop voltage of the excitation current must be less than the supply voltage minus the specified IDAC  
compliance voltage. Calculate the voltage drop developed across each IDAC current path to AVSS. In this circuit,  
IDAC1 has the largest voltage drop developed across its current path. The IDAC1 calculation is sufficient to  
satisfy IDAC2 because the IDAC2 voltage drop is always less than IDAC1 voltage drop. 公式 24 shows the sum  
of voltages in the IDAC1 loop:  
VIDAC1 = [(IIDAC1 + IIDAC2) · (RLEAD3 + RBIAS)] + [IIDAC1 · (RRTD + RLEAD1 + RREF)] + VD  
where  
VD = external blocking diode voltage  
(24)  
公式 24 results in a loop voltage of VIDAC1 = 3.0 V. The worst-case current source compliance voltage is:  
(AVDD – 0.4 V) = (4.75 V – 0.4 V) = 4.35 V. The VIDAC1 loop voltage is less than the specified current source  
compliance voltage (3.0 V < 4.35 V).  
版权 © 2017–2020, Texas Instruments Incorporated  
75  
 
 
 
 
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Many applications benefit from using an analog filter at the inputs to remove noise and interference from the  
signal. Filter components are placed on the ADC inputs (RF1, RF2, CDIF1, CCM1, and CCM2), as well as on the  
reference inputs (RF3, RF4, CDIF2, CCM3, and CCM4). The filters remove both differential and common-mode noise.  
The application shows a differential input noise filter formed by RF1, RF2 and CDIF1, with additional differential  
mode capacitance provided by the common-mode filter capacitors, CCM1 and CCM2. 公式 25 calculates the  
differential –3-dB cutoff frequency:  
fDIF = 1 / [2π · (RF1 + RF2) · (CDIF1 + CCM1|| CCM2)]  
(25)  
The common-mode noise filter is formed by components RF1, RF2, CCM1, and CCM2. 公式 26 calculates the  
common-mode signal –3-dB cutoff frequency:  
fCM = 1 / (2π · RF1 · CCM1) = 1 / (2π · RF2 · CCM2  
)
(26)  
Mismatches in the common-mode filter components convert common-mode noise into differential noise. To  
reduce the effect of mismatch, use a differential mode filter with a corner frequency that is at least 10 times lower  
than the common-mode filter corner frequency. The low-frequency differential filter removes the common-mode  
converted noise. The filter resistors (RFx) also serve as current-limiting resistors. These resistors limit the current  
into the analog inputs (AINx) of the device to safe levels when an overvoltage occurs on the inputs.  
Filter resistors lead to an offset voltage error because of the dc input current leakage flowing into and out of the  
device. Remove this voltage error by system offset calibration. Resistor values that are too large generate  
excess thermal noise and degrade the overall noise performance. The recommended range of the filter resistor  
values is 100 Ω to 10 kΩ. The properties of the capacitors are important because the capacitors are connected to  
the signal; use high-quality C0G ceramics or film-type capacitors.  
For consistent noise performance across the full range of RTD measurements, match the corner frequencies of  
the input and reference filter. See the RTD Ratiometric Measurements and Filtering Using the ADS1148 and  
ADS1248 Application Report for detailed information on matching the input and reference filter.  
10.2.2.1 Register Settings  
36 shows the register settings for this design.  
36. Register Settings  
REGISTER  
02h  
NAME  
INPMUX  
PGA  
SETTING  
12h  
DESCRIPTION  
Select AINP = AIN1 and AINN = AIN2  
03h  
0Bh  
PGA enabled, PGA Gain = 8  
04h  
DATARATE  
14h  
Continuous conversion mode, 20-SPS data rate  
Positive and negative reference buffers enabled, REFP1 and  
REFN1 reference inputs selected, internal reference always on  
05h  
REF  
06h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
IDACMAG  
IDACMUX  
VBIAS  
05h  
35h  
00h  
10h  
xxh  
xxh  
xxh  
xxh  
xxh  
xxh  
00h  
00h  
IDAC magnitude set to 500 µA  
IDAC2 set to AIN3, IDAC1 set to AIN5  
SYS  
OFCAL0(1)  
OFCAL1  
OFCAL2  
FSCAL0(1)  
FSCAL1  
FSCAL2  
GPIODAT  
GPIOCON  
(1) A two-point offset and gain calibration removes errors from the RREF tolerance. The results are used for the OFC and FSC registers.  
76  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
10.2.3 Application Curves  
To test the accuracy of the acquisition circuit, a series of calibrated high-precision discrete resistors are used as  
an input to the system. Measurements are taken at TA = 25°C. 97 displays the resistance measurement over  
an input span from 20 Ω to 400 Ω. Any offset error is generally attributed to the offset of the ADC, and the gain  
error can be attributed to the accuracy of the RREF resistor and the ADC. The RREF value is also calibrated to  
reduce the gain error contribution.  
Precision temperature measurement applications are typically calibrated to remove the effects of gain and offset  
errors that generally dominate the total system error. The simplest calibration method is a linear, or two-point  
calibration that applies an equal and opposite gain and offset term to cancel the measured system gain and  
offset error. In this particular tested application, the gain and offset error was very small, and did not require  
additional calibration other than the self offset and gain calibration provided by the device. 98 shows the  
resulting measured resistance error.  
The results in 98 are converted to temperature accuracy by dividing the results by the RTD sensitivity (α) at  
the measured resistance. Over the full resistance input range, the maximum total measured error is ±0.0190 Ω.  
公式 27 uses the measured resistance error and the RTD sensitivity at 0°C to calculate the measured  
temperature accuracy.  
Error (°C) = Error (Ω) / α@0°C = ±0.0190 Ω / 0.39083 Ω / °C = ±0.049°C  
(27)  
99 displays the calculated temperature accuracy of the circuit assuming a linear RTD resistance to  
temperature response. This figure does not include any linearity compensation of the RTD, but 99 does  
remove offset and gain error, which can be calibrated with the OFC and FSC registers.  
0.03  
0.02  
0.01  
0
35000  
30000  
25000  
20000  
15000  
10000  
5000  
0
-0.01  
-0.02  
-0.03  
0
50  
100 150 200 250 300 350 400 450  
Resistance (W)  
0
50  
100 150 200 250 300 350 400 450  
Resistance (W)  
97. ADC Output Code vs Equivalent RTD Resistance  
98. Measured Resistance Error vs Equivalent RTD  
Resistance  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
0
50  
100 150 200 250 300 350 400 450  
Resistance (W)  
99. Equivalent Temperature Error vs Equivalent RTD Resistance  
版权 © 2017–2020, Texas Instruments Incorporated  
77  
 
 
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10.3 What To Do and What Not To Do  
Do partition the analog, digital, and power-supply circuitry into separate sections on the PCB.  
Do use a single ground plane for analog and digital grounds.  
Do place the analog components close to the ADC pins using short, direct connections.  
Do keep the SCLK pin free of glitches and noise.  
Do verify that the analog input voltages are within the specified PGA input voltage range under all input  
conditions.  
Do float unused analog input pins to minimize input leakage current on all other analog inputs. Connecting  
unused pins to AVDD is the next best option.  
Do provide current limiting to the analog inputs in case overvoltage faults occur.  
Do use a low-dropout linear regulator (LDO) to reduce ripple voltage generated by switch-mode power  
supplies. Reducing ripple is especially important for AVDD where the supply noise can affect the  
performance.  
Don't cross analog and digital signals.  
Don't allow the analog and digital power supply voltages to exceed 5.5 V under any condition, including  
during power-up and power-down.  
78  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
What To Do and What Not To Do (接下页)  
100 shows the do's and don'ts of the ADC circuit connections.  
INCORRECT  
CORRECT  
5 V  
5 V  
AVDD  
AVDD  
Device  
Device  
AINP  
AINP  
AINN  
16-bit  
16-bit  
PGA  
PGA  
ûADC  
ûADC  
AINN  
AVSS  
AVSS  
0 V  
0 V  
0 V  
0 V  
Single-ended input, PGA enabled  
Single-ended input, PGA bypassed  
CORRECT  
CORRECT  
5 V  
2.5 V  
AVDD  
AVDD  
Device  
Device  
AINP  
AINN  
AINP  
AINN  
16-bit  
16-bit  
PGA  
PGA  
PGA enabled  
2.5 V  
ûADC  
ûADC  
AVSS  
AVSS  
0 V  
-2.5 V  
0 V  
Single-ended input, PGA enabled  
Single-ended input, PGA enabled  
3.3 V  
5 V  
5 V  
3.3 V  
INCORRECT  
INCORRECT  
AVDD  
PGA  
DVDD  
AVDD  
PGA  
DVDD  
16-bit  
Device  
Device  
16-bit  
ûADC  
ûADC  
AVSS  
DGND  
AVSS  
DGND  
Inductive supply or ground connections  
AGND/DGND isolation  
CORRECT  
3.3 V  
3.3 V  
5 V  
2.5 V  
CORRECT  
AVDD  
PGA  
DVDD  
16-bit  
AVDD  
DVDD  
Device  
Device  
16-bit  
PGA  
ûADC  
ûADC  
AVSS  
DGND  
AVSS  
-2.5 V  
DGND  
Low impedance AGND/DGND connection  
Low impedance AGND/DGND connection  
100. Do's and Don'ts Circuit Connections  
版权 © 2017–2020, Texas Instruments Incorporated  
79  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The ADS114S0xB requires three power supplies: analog (AVDD, AVSS), digital core (DVDD, DGND), and digital  
I/O (IOVDD, DGND). The analog power supply can be bipolar (for example, AVDD = 2.5 V, AVSS = –2.5 V) or  
unipolar (for example, AVDD = 3.3 V, AVSS = 0 V) and is independent of the digital power supplies. DVDD is  
used to power the digital circuits of the devices. IOVDD sets the digital I/O levels (with the exception of the GPIO  
levels that are set by the analog supply of AVDD and AVSS). IOVDD must be equal to or larger than DVDD.  
11.2 Power-Supply Sequencing  
AVDD and DVDD may be powered up in any order. However, IOVDD is recommended to be powered up before  
or at the same time as DVDD. If DVDD comes up before IOVDD, a reset of the device using the RESET pin or  
the RESET command may be required.  
11.3 Power-On Reset  
An internal POR is released after all three supplies exceed approximately 1.65 V. Each supply has an individual  
POR circuit. A brownout condition on any of the three supplies triggers a reset of the complete device.  
11.4 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve best performance. AVDD must be decoupled with at least  
a 330-nF capacitor to AVSS. DVDD and IOVDD (when not connected to DVDD) must be decoupled with at least  
a 0.1-μF capacitor to DGND. 101 and 102 show typical power-supply decoupling examples for unipolar and  
bipolar analog supplies, respectively. Place the bypass capacitors as close to the power-supply pins of the  
device as possible using low-impedance connections. Use multi-layer ceramic chip capacitors (MLCCs) that offer  
low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling  
purposes. To reduce inductance on the supply pins, avoid the use of vias for connecting the capacitors to the  
supply pins. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to  
ground planes. Connect analog and digital grounds together as close to the device as possible.  
1 mF  
1 mF  
œ2.5 V  
24  
23  
22  
21  
20  
19  
18  
17  
24  
23  
22  
21  
20  
19  
18  
17  
3.3 V  
3.3 V  
NC 25  
DVDD  
IOVDD  
DGND  
16  
15  
14  
13  
12  
11  
10  
9
NC 25  
DVDD  
IOVDD  
DGND  
16  
15  
14  
13  
12  
11  
10  
9
+2.5 V  
5 V  
26  
AVDD  
26  
27  
28  
AVDD  
0.1 mF  
0.1 mF  
330 nF  
330 nF  
27  
28  
AVSS  
AVSS  
AVSS  
AVSS  
DRDY  
DRDY  
œ2.5 V  
REFN0 29  
REFP0 30  
DOUT/DRDY  
SCLK  
REFN0 29  
REFP0 30  
DOUT/DRDY  
SCLK  
REFN1/AIN7 31  
REFP1/AIN6 32  
DIN  
REFN1/AIN7 31  
REFP1/AIN6 32  
DIN  
CS  
CS  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
102. Bipolar Analog Power Supply  
101. Unipolar Analog Power Supply  
80  
版权 © 2017–2020, Texas Instruments Incorporated  
 
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
12 Layout  
12.1 Layout Guidelines  
Employing best design practices is recommended when laying out a printed-circuit board (PCB) for both analog  
and digital components. This recommendation generally means that the layout separates analog components  
[such as ADCs, amplifiers, references, digital-to-analog converters (DACs), and analog MUXs] from digital  
components [such as microcontrollers, complex programmable logic devices (CPLDs), field-programmable gate  
arrays (FPGAs), radio frequency (RF) transceivers, universal serial bus (USB) transceivers, and switching  
regulators]. 103 shows an example of good component placement. Although 103 provides a good example  
of component placement, the best placement for each application is unique to the geometries, components, and  
PCB fabrication capabilities employed. That is, there is no single layout that is perfect for every design and  
careful consideration must always be used when designing with any analog component.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC Filters  
and  
Interface  
Transceiver  
Device  
Microcontroller  
Connector  
or Antenna  
Amplifiers)  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
103. System Component Placement  
The following basic recommendations for layout of the ADS114S0xB help achieve the best possible performance  
of the ADC. A good design can be ruined with a bad circuit layout.  
Separate analog and digital signals. To start, partition the board into analog and digital sections where the  
layout permits. Route digital lines away from analog lines. This prevents digital noise from coupling back into  
analog signals.  
The ground plane can be split into an analog plane (AGND) and digital plane (DGND), but this splitting is not  
necessary. Place digital signals over the digital plane, and analog signals over the analog plane. As a final  
step in the layout, the split between the analog and digital grounds must be connected to together at the  
ADC.  
Fill void areas on signal layers with ground fill.  
Provide good ground return paths. Signal return currents will flow on the path of least impedance. If the  
ground plane is cut or has other traces that block the current from flowing right next to the signal trace,  
another path must be found to return to the source and complete the circuit. If forced into a larger path, the  
chance that the signal radiates increases. Sensitive signals are more susceptible to EMI interference.  
Use bypass capacitors on supplies to reduce high-frequency noise. Do not place vias between bypass  
capacitors and the active device. Placing the bypass capacitors on the same layer as close to the active  
device yields the best results.  
Consider the resistance and inductance of the routing. Often, traces for the inputs have resistances that react  
with the input bias current and cause an added error voltage. Reducing the loop area enclosed by the source  
signal and the return current reduces the inductance in the path. Reducing the inductance reduces the EMI  
pickup and reduces the high-frequency impedance at the input of the device.  
Watch for parasitic thermocouples in the layout. Dissimilar metals going from each analog input to the sensor  
can create a parasitic themocouple that can add an offset to the measurement. Differential inputs must be  
matched for both the inputs going to the measurement source.  
Analog inputs with differential connections must have a capacitor placed differentially across the inputs. Best  
input combinations for differential measurements use adjacent analog input lines (such as AIN0, AIN1 and  
AIN2, AIN3). The differential capacitors must be of high quality. The best ceramic chip capacitors are C0G  
(NPO) that have stable properties and low noise characteristics.  
版权 © 2017–2020, Texas Instruments Incorporated  
81  
 
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
12.2 Layout Example  
Reference  
input  
Differential  
input or  
Reference  
input  
Internal plane connected to GND  
(DGND = AVSS)  
Via connection to power plane  
AIN5  
Differential  
input  
AIN8  
Differential  
input  
AIN4  
AIN9  
1: AINCOM  
2: AIN5  
24: REFCOM  
23: REFOUT  
AIN3  
22: GPIO0/  
AIN8  
3: AIN4  
Differential  
input  
21: GPIO1/  
AIN9  
4: AIN3  
20: GPIO2/  
AIN10  
5: AIN2  
AIN2  
19: GPIO3/  
AIN11  
6: AIN1  
AIN10  
7: AIN0  
18: RESET  
17: CLK  
Differential  
input  
8: START  
AIN11  
AIN1  
Differential  
input  
AIN0  
Digital  
connections  
104. ADS114S0xB Layout Example  
82  
版权 © 2017–2020, Texas Instruments Incorporated  
ADS114S06B, ADS114S08B  
www.ti.com.cn  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
德州仪器 (TI)ADS1x4S0x 设计计算器》  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《具有 PGA 和电压基准的 ADS114S0x 低功耗、低噪声、高集成度、6 通道和 12 通道 4kSPS  
16 Δ-Σ ADC数据表  
德州仪器 (TI)REF50xx 低噪声、极低漂移、精密电压基准》 数据表  
德州仪器 (TI)《使用 ADS1148 ADS1248 进行 RTD 比例测量和滤波》 应用报告  
德州仪器 (TI)3 线 RTD 测量系统参考设计(-200°C 850°C)》 参考指南  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
37. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
ADS114S06B  
ADS114S08B  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.5 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017–2020, Texas Instruments Incorporated  
83  
ADS114S06B, ADS114S08B  
ZHCSGS4A AUGUST 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
84  
版权 © 2017–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS114S06BIPBS  
ADS114S06BIPBSR  
ADS114S06BIRHBR  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
VQFN  
PBS  
PBS  
RHB  
32  
32  
32  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
114S06B  
Samples  
Samples  
Samples  
1000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
114S06B  
ADS  
114S06B  
ADS114S06BIRHBT  
ACTIVE  
VQFN  
RHB  
32  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
ADS  
114S06B  
Samples  
ADS114S08BIPBS  
ADS114S08BIPBSR  
ADS114S08BIRHBR  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
VQFN  
PBS  
PBS  
RHB  
32  
32  
32  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
114S08B  
Samples  
Samples  
Samples  
1000 RoHS & Green  
3000 RoHS & Green  
114S08B  
ADS  
114S08B  
ADS114S08BIRHBT  
ACTIVE  
VQFN  
RHB  
32  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
ADS  
114S08B  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2022  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS114S06BIPBSR  
ADS114S06BIRHBR  
ADS114S06BIRHBT  
ADS114S08BIPBSR  
ADS114S08BIRHBR  
ADS114S08BIRHBT  
TQFP  
VQFN  
VQFN  
TQFP  
VQFN  
VQFN  
PBS  
RHB  
RHB  
PBS  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
1000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
7.2  
5.3  
5.3  
7.2  
5.3  
5.3  
7.2  
5.3  
5.3  
7.2  
5.3  
5.3  
1.5  
1.1  
1.1  
1.5  
1.1  
1.1  
12.0  
8.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
8.0  
1000  
3000  
250  
12.0  
8.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS114S06BIPBSR  
ADS114S06BIRHBR  
ADS114S06BIRHBT  
ADS114S08BIPBSR  
ADS114S08BIRHBR  
ADS114S08BIRHBT  
TQFP  
VQFN  
VQFN  
TQFP  
VQFN  
VQFN  
PBS  
RHB  
RHB  
PBS  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
1000  
3000  
250  
350.0  
346.0  
210.0  
350.0  
346.0  
210.0  
350.0  
346.0  
185.0  
350.0  
346.0  
185.0  
43.0  
33.0  
35.0  
43.0  
33.0  
35.0  
1000  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS114S06BIPBS  
ADS114S08BIPBS  
PBS  
PBS  
TQFP  
TQFP  
32  
32  
250  
250  
10 X 25  
10 X 25  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
A
5.1  
4.9  
B
5.1  
4.9  
PIN 1 INDEX AREA  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
ꢀꢀꢀꢁꢂꢃ“ꢄꢂꢃ  
9
16  
28X 0.5  
8
17  
SYMM  
33  
2X  
3.5  
1
24  
0.3  
0.2  
32X  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
0.05  
C A B  
C
0.5  
0.3  
32X  
4223725/A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.8)  
2.1)  
(
32  
25  
32X (0.6)  
32X (0.25)  
1
24  
28X (0.5)  
33  
SYMM  
(4.8)  
2X  
(0.8)  
ꢅ‘ꢄꢂꢁꢆ  
VIA TYP  
8
17  
(R0.05) TYP  
9
16  
2X (0.8)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED  
METAL  
OPENING  
EXPOSED  
METAL UNDER  
SOLDER MASK  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223725/A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.8)  
4X ( 0.94)  
32  
25  
32X (0.6)  
32X (0.25)  
1
24  
28X (0.5)  
33  
SYMM  
(4.8)  
2X  
(0.57)  
METAL  
TYP  
8
17  
(R0.05) TYP  
9
16  
2X (0.57)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4223725/A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY