ADS1204 [TI]

FOUR 1-BIT, 10MHZ, 2ND-ORDER, DELTA-SIGMA MODULATORS; 四个1位, 10MHZ , 2阶Δ-Σ调制器
ADS1204
型号: ADS1204
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FOUR 1-BIT, 10MHZ, 2ND-ORDER, DELTA-SIGMA MODULATORS
四个1位, 10MHZ , 2阶Δ-Σ调制器

文件: 总21页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢉ ꢄꢊ ꢋꢌ ꢍꢉ ꢎꢏ ꢐꢅ ꢑꢃ ꢐ ꢒꢃꢉ  
ꢓ ꢒ ꢔꢈ ꢕ ꢅ ꢖꢇ ꢗꢘ ꢕ ꢋ ꢁꢐꢂꢔ ꢕ ꢈꢁ ꢃꢙ  
FEATURES  
DESCRIPTION  
D
D
D
16-Bit Resolution  
The ADS1204 is a four-channel, high-performance device,  
with four delta-sigma (∆Σ) modulators with 100dB dynamic  
range, operating from a single +5V supply. The differential  
inputs are ideal for direct connection to transducers in an  
industrial environment. With the appropriate digital filter  
and modulator rate, the device can be used to achieve  
16-bit analog-to-digital (A/D) conversion with no missing  
code. Effective resolution of 12 bits can be obtained with  
a digital filter data rate of 160kHz at a modulator rate of  
10MHz. The ADS1204 is designed for use in medium- to  
high-resolution measurement applications including  
current measurements, smart transmitters, industrial  
process control, weight scales, chromatography, and  
portable instrumentation. It is available in a QFN-32 (5x5)  
package.  
14-Bit Linearity  
Resolution/Speed Trade-Off:  
10-Bit Effective Resolution with 10µs Signal  
Delay (12-Bit with 19µs)  
D
D
D
D
D
D
D
D
2.5V Input Range at 2.5V  
Internal Reference Voltage: 2%  
Gain Error: 0.5%  
Four Independent Delta-Sigma Modulators  
Four Input Reference Buffers  
Onboard 20MHz Oscillator  
Selectable Internal or External Clock  
Operating Temperature Range:  
−40°C to +85°C  
QFN-32 (5x5) Package  
AVDD  
BVDD  
D
OUT A  
OUT B  
OUT C  
OUT D  
CH A+  
2ndOrder  
APPLICATIONS  
Output  
Interface  
Circuit  
∆Σ  
Modulator  
CH A  
D
D
D
D
D
D
D
D
Motor Control  
Current Measurement  
Industrial Process Control  
Instrumentation  
REFIN A  
CLKOUT  
CH B+  
2ndOrder  
∆Σ  
Modulator  
CH B  
Smart Transmitters  
Portable Instruments  
Weight Scales  
REFIN B  
Divider  
CH C+  
2ndOrder  
Pressure Transducers  
∆Σ  
Modulator  
CH C  
CLKIN  
Clock  
Select  
REFIN C  
CLKSEL  
CH D+  
2ndOrder  
∆Σ  
Modulator  
CH D  
Out EN  
RC  
Oscillator  
20MHz  
REFIN D  
REFOUT  
Reference  
Voltage  
2.5V  
AGND  
BGND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢜꢝ ꢑ ꢓꢞ ꢟ ꢠꢡ ꢑꢢ ꢓ ꢚꢠꢚ ꢇꢏ ꢣꢁ ꢃ ꢘꢕ ꢈꢇꢁꢏ ꢇꢙ ꢤꢂ ꢃ ꢃ ꢒꢏꢈ ꢕꢙ ꢁꢣ ꢥꢂꢦ ꢔꢇꢤ ꢕꢈꢇ ꢁꢏ ꢐꢕ ꢈꢒꢧ ꢜꢃ ꢁꢐꢂ ꢤꢈꢙ  
ꢤ ꢁꢏ ꢣꢁꢃ ꢘ ꢈꢁ ꢙ ꢥꢒ ꢤ ꢇ ꢣꢇ ꢤ ꢕ ꢈꢇ ꢁꢏꢙ ꢥ ꢒꢃ ꢈꢨꢒ ꢈꢒ ꢃ ꢘꢙ ꢁꢣ ꢠꢒꢩ ꢕꢙ ꢡꢏꢙ ꢈꢃ ꢂꢘ ꢒꢏꢈ ꢙ ꢙꢈ ꢕꢏꢐ ꢕꢃ ꢐ ꢪ ꢕꢃ ꢃ ꢕ ꢏꢈꢫꢧ  
ꢜꢃ ꢁ ꢐꢂꢤ ꢈ ꢇꢁ ꢏ ꢥꢃ ꢁ ꢤ ꢒ ꢙ ꢙ ꢇꢏ ꢗ ꢐꢁ ꢒ ꢙ ꢏꢁꢈ ꢏꢒ ꢤꢒ ꢙꢙ ꢕꢃ ꢇꢔ ꢫ ꢇꢏꢤ ꢔꢂꢐ ꢒ ꢈꢒ ꢙꢈꢇ ꢏꢗ ꢁꢣ ꢕꢔ ꢔ ꢥꢕ ꢃ ꢕꢘ ꢒꢈꢒ ꢃ ꢙꢧ  
Copyright 2003−2004, Texas Instruments Incorporated  
www.ti.com  
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION  
MAXIMUM  
INTEGRAL  
LINEARITY  
ERROR  
MAXIMUM  
GAIN  
ERROR (%)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
(1)  
(LSB)  
ADS1204IRHBT  
ADS1204IRHBR  
Tape and Reel, 250  
Tape and Reel, 3000  
ADS1204  
3
0.5  
QFN-32  
RHB  
−40°C to +85°C  
ADS1204I  
(1)  
For the most current specification and package information, refer to our web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
ADS1204  
−0.3 to 6  
−0.3 to 6  
UNIT  
V
Supply Voltage, AV  
Supply Voltage, BV  
to AGND  
to BGND  
DD  
DD  
V
Analog Input Voltage with Respect to AGND  
Reference Input Voltage with Respect to AGND  
Digital Input Voltage with Respect to BGND  
Ground Voltage Difference, AGND to BGND  
AGND − 0.3 to AV  
AGND − 0.3 to AV  
+ 0.3  
V
V
DD  
+ 0.3  
+ 0.3  
DD  
BGND − 0.3 to BV  
V
DD  
0.3  
−0.3 to 6  
10  
V
Voltage Differences, BV  
DD  
to AGND  
V
Input Current to Any Pin Except Supply  
mA  
Power Dissipation  
See Dissipation Rating Table  
−40 to +150  
Operating Virtual Junction Temperature Range, T  
°C  
°C  
°C  
°C  
J
Operating Free-Air Temperature Range, T  
−40 to +85  
A
Storage Temperature Range, T  
STG  
Lead Temperature (1.6mm or 1/16from case for 10s)  
−65 to +150  
260  
(1)  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
MIN  
4.75  
2.7  
4.5  
0.5  
0
NOM  
MAX  
5.25  
3.6  
UNIT  
V
Supply Voltage, AV  
to AGND  
to BGND  
5
DD  
DD  
Low-Voltage Levels  
5V Logic Levels  
V
Supply Voltage, BV  
5
5.5  
V
Reference Input Voltage  
Operating Common-Mode Signal  
Analog Inputs  
2.5  
2.6  
V
AV  
DD  
REFIN  
V
+IN − (−IN)  
0
V
(1)  
External Clock  
16  
20  
24  
MHz  
°C  
Operating Junction Temperature Range, T  
−40  
105  
J
(1)  
With reduced accuracy, clock can go from 1MHz up to 32MHz; see Typical Characteristic curves.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
(1)  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
QFN-32 (5x5)  
2725mW  
27.25mW/°C  
1499mW  
1090mW  
(1)  
This is the inverse of the traditional junction-to-ambient thermal resistance (R  
informational purposes only.  
). Thermal resistances are not production tested and are for  
qJA  
2
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
ELECTRICAL CHARACTERISTICS  
Over recommended operating free-air temperature range at −40°C to +85°C, AV  
= 5V, BV = 3V, CH x+ = 0.5V to 4.5V, CH x− = 2.5V,  
DD  
DD  
3
REFIN = REFOUT = internal +2.5V, CLKIN = 20MHz, and 16-bit Sinc filter with decimation by 256, unless otherwise noted.  
ADS1204I  
(1)  
TYP  
MIN  
MAX  
UNITS  
PARAMETER  
Resolution  
TEST CONDITIONS  
16  
Bits  
DC Accuracy  
1
3
LSB  
(2)  
Integral linearity error  
INL  
0.001  
0.005 % FSR  
LSB  
0.009 % FSR  
6
Integral linearity match  
(3)  
DNL  
Differential nonlinearity  
Input offset error  
1
3
2
8
LSB  
mV  
V
OS  
−1.4  
Input offset error match  
Input offset error drift  
mV  
TCV  
OS  
2
0.08  
0.185  
2
µV/°C  
(4)  
Gain error  
G
Referenced to V  
0.5 % FSR  
0.5 % FSR  
ppm/°C  
ERR  
REF  
Gain error match  
TCG  
ERR  
Gain error drift  
PSRR  
Power-supply rejection ratio  
4.75V < AV  
DD  
< 5.25V  
78  
dB  
Analog Input  
FSR  
Full-scale differential range  
Specified differential range  
Maximum operating input range  
Input capacitance  
(CH x+) − (CH x−); CH x− = 2.5V  
(CH x+) − (CH x−); CH x− = 2.5V  
2.5  
2
V
V
(3)  
0
AV  
V
DD  
Common-mode  
CLK turned off  
3
pF  
nA  
kΩ  
pF  
dB  
dB  
MHz  
Input leakage current  
1
Differential input resistance  
Differential input capacitance  
100  
2.5  
100  
110  
50  
At DC  
CMRR  
BW  
Common-mode rejection ratio  
Bandwidth  
V
IN  
=
1.25V at 40kHz  
PP  
FS sine wave, −3dB  
Sampling Dynamics  
Internal clock frequency  
CLKSEL = 1  
CLKSEL = 0  
8
1
10  
20  
12  
24  
MHz  
MHz  
CLKIN  
AC Accuracy  
THD  
External clock frequency  
Total harmonic distortion  
Spurious-free dynamic range  
Signal-to-noise ratio  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
=
=
=
=
=
2V  
PP  
2V  
PP  
2V  
PP  
2V  
PP  
2V  
PP  
at 5kHz  
at 5kHz  
at 5kHz  
at 5kHz  
at 50kHz  
−96  
100  
89  
−88  
dB  
dB  
dB  
dB  
dB  
Bits  
SFDR  
92  
86  
85  
SNR  
SINAD  
Signal-to-noise + distortion  
89  
(3)  
Channel-to-channel isolation  
Effective number of bits  
85  
ENOB  
(1)  
14  
14.5  
All typical values are at T = +25°C.  
A
(2)  
Integral nonlinearity is defined as the maximum deviation of the line through the end points of the specified input range of the transfer curve  
for CH x+ = −2V to +2V at 2.5V, expressed either as the number of LSBs or as a percent of measured input range (4V).  
Ensured by design.  
(3)  
(4)  
(5)  
(6)  
Maximum values, including temperature drift, are ensured over the full specified temperature range.  
Applicable for 5.0V nominal supply: BV  
Applicable for 3.0V nominal supply: BV  
(min) = 4.5V and BV  
(min) = 2.7V and BV  
(max) = 5.5V.  
(max) = 3.6V.  
DD  
DD  
DD  
DD  
3
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
ELECTRICAL CHARACTERISTICS (continued)  
Over recommended operating free-air temperature range at −40°C to +85°C, AV  
= 5V, BV  
DD  
= 3V, CH x+ = 0.5V to 4.5V, CH x− = 2.5V,  
DD  
3
REFIN = REFOUT = internal +2.5V, CLKIN = 20MHz, and 16-bit Sinc filter with decimation by 256, unless otherwise noted.  
ADS1204I  
(1)  
TYP  
MIN  
MAX  
UNITS  
PARAMETER  
TEST CONDITIONS  
−40°C to +85°C  
f = 0.1Hz to 10Hz, C = 10µF  
Voltage Reference Output  
V
Reference voltage output  
2.450  
2.5  
20  
2.550  
V
ppm/°C  
µVrms  
µVrms  
dB  
OUT  
dV  
/dT Output voltage temperature drift  
OUT  
10  
L
Output voltage noise  
f =10Hz to 10kHz, C = 10µF  
12  
L
PSRR  
Power-supply rejection ratio  
Output current  
60  
I
I
10  
µA  
OUT  
SC  
Short-circuit current  
Turn-on settling time  
0.5  
100  
mA  
to 0.1% at C = 0  
µs  
L
Voltage Reference Input  
V
IN  
Reference voltage input  
0.5  
2.5  
100  
5
2.6  
1
V
Reference input resistance  
Reference input capacitance  
MΩ  
pF  
µA  
Reference input current  
(5)  
Digital Inputs  
Logic family  
CMOS with Schmitt Trigger  
0.7×BV BV +0.3  
V
IH  
V
IL  
High-level input voltage  
Low-level input voltage  
Input current  
V
V
DD DD  
−0.3  
0.3×BV  
DD  
50  
I
V = BV  
I DD  
or GND  
nA  
pF  
IN  
C
Input capacitance  
5
I
(5)  
Digital Outputs  
Logic family  
CMOS  
V
V
High-level output voltage  
Low-level output voltage  
Output capacitance  
Load capacitance  
Data format  
BV  
BV  
= 4.5V, I  
= 4.5V, I  
= −100µA  
= +100µA  
4.44  
V
V
OH  
OL  
DD  
DD  
OH  
OL  
0.5  
30  
C
5
pF  
pF  
O
L
C
Bit Stream  
(1)  
(2)  
All typical values are at T = +25°C.  
A
Integral nonlinearity is defined as the maximum deviation of the line through the end points of the specified input range of the transfer curve  
for CH x+ = −2V to +2V at 2.5V, expressed either as the number of LSBs or as a percent of measured input range (4V).  
Ensured by design.  
Maximum values, including temperature drift, are ensured over the full specified temperature range.  
Applicable for 5.0V nominal supply: BV  
Applicable for 3.0V nominal supply: BV  
(3)  
(4)  
(5)  
(6)  
(min) = 4.5V and BV  
(min) = 2.7V and BV  
(max) = 5.5V.  
(max) = 3.6V.  
DD  
DD  
DD  
DD  
4
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
ELECTRICAL CHARACTERISTICS (continued)  
Over recommended operating free-air temperature range at −40°C to +85°C, AV  
= 5V, BV = 3V, CH x+ = 0.5V to 4.5V, CH x− = 2.5V,  
DD  
DD  
3
REFIN = REFOUT = internal +2.5V, CLKIN = 20MHz, and 16-bit Sinc filter with decimation by 256, unless otherwise noted.  
ADS1204I  
(1)  
TYP  
MIN  
MAX  
UNITS  
PARAMETER  
Digital Inputs  
TEST CONDITIONS  
(6)  
Logic family  
LVCMOS  
V
V
High-level input Voltage  
Low-level input voltage  
Input current  
BV  
BV  
= 3.6V  
2
BV +0.3  
DD  
V
V
IH  
IL  
DD  
DD  
= 2.7V  
or GND  
−0.3  
0.8  
I
IN  
V = BV  
I DD  
50  
nA  
pF  
C
Input capacitance  
5
I
(6)  
Digital Outputs  
Logic family  
LVCMOS  
V
V
High-level output voltage  
Low-level output voltage  
Output capacitance  
Load capacitance  
Data format  
BV  
BV  
= 2.7V, I  
= 2.7V, I  
= −100µA  
= +100µA  
BV −0.2  
DD  
V
V
OH  
DD  
DD  
OH  
OL  
0.2  
30  
OL  
C
C
5
pF  
pF  
O
L
Bit Stream  
Power Supply  
AV  
DD  
Analog supply voltage  
4.5  
2.7  
4.5  
5.5  
3.6  
5.5  
30  
V
Low-voltage levels  
5V logic levels  
CLKSEL = 1  
V
BV  
DD  
Buffer I/O supply voltage  
V
22.5  
22.4  
mA  
mA  
mA  
mA  
mW  
mW  
AI  
DD  
Analog operating supply current  
Buffer I/O operating supply current  
Power dissipation  
CLKSEL = 0  
29  
BV  
BV  
= 3V, CLKOUT = 10MHz  
= 5V, CLKOUT = 10MHz  
4
DD  
BI  
DD  
4
DD  
CLKSEL = 0  
CLKSEL = 1  
122  
145  
150  
112.5  
(1)  
(2)  
All typical values are at T = +25°C.  
A
Integral nonlinearity is defined as the maximum deviation of the line through the end points of the specified input range of the transfer curve  
for CH x+ = −2V to +2V at 2.5V, expressed either as the number of LSBs or as a percent of measured input range (4V).  
Ensured by design.  
Maximum values, including temperature drift, are ensured over the full specified temperature range.  
Applicable for 5.0V nominal supply: BV  
Applicable for 3.0V nominal supply: BV  
(3)  
(4)  
(5)  
(6)  
(min) = 4.5V and BV  
(min) = 2.7V and BV  
(max) = 5.5V.  
(max) = 3.6V.  
DD  
DD  
DD  
DD  
EQUIVALENT INPUT CIRCUIT  
BVDD  
AVDD  
C(SAMPLE)  
1pF  
RON  
650  
AIN  
DIN  
Diode TurnOn Voltage: 0.35V  
AGND  
Equivalent Analog Input Circuit  
BGND  
Equivalent Digital Input Circuit  
5
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
PIN ASSIGNMENTS  
QFN PACKAGE  
(TOP VIEW)  
1
24  
23  
22  
CH A+  
OUT A  
OUT B  
OUT C  
2
3
4
5
6
7
8
CH A  
CH B+  
CH B  
21 OUT D  
20  
19 BGND  
ADS1204  
CH C  
CLKOUT  
CH C+  
18  
17  
CH D  
BVDD  
CH D+  
CLKIN  
Terminal Functions  
TERMINAL  
TERMINAL  
NAME  
NAME  
NO. I/O  
DESCRIPTION  
NO. I/O  
DESCRIPTION  
CH A+  
CH A−  
CH B+  
CH B−  
CH C−  
CH C+  
CH D−  
CH D+  
REFIN D  
1
2
3
4
5
6
7
8
9
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
Analog input of channel A: noninverting input  
CLKIN  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
I
External clock input  
Analog input of channel A: inverting input  
Analog input of channel B: noninverting input  
Analog input of channel B: inverting input  
Analog input of channel C: inverting input  
Analog input of channel C: noninverting input  
Analog input of channel D: inverting input  
Analog input of channel D: noninverting input  
BV  
DD  
P
Digital interface power supply; from 2.7V to 5.5V  
Interface ground  
BGND  
CLKOUT  
OUT D  
OUT C  
OUT B  
OUT A  
NC  
O
O
O
O
O
System clock output  
Bit stream from channel D modulator  
Bit stream from channel C modulator  
Bit stream from channel B modulator  
Bit stream from channel A modulator  
No connection; this pin is left unconnected  
Analog ground  
Reference voltage input of channel D:  
pin for external reference voltage  
AGND  
REFIN C  
10  
AI  
Reference voltage input of channel C:  
pin for external reference voltage  
AV  
DD  
P
Analog power supply; nominal 5V  
REFOUT  
AO Reference voltage output: output pin of the  
internal reference source; nominal 2.5V  
AGND  
11  
12  
13  
14  
15  
16  
Analog ground  
AV  
DD  
P
P
I
Analog power supply; nominal 5V  
No connection; this pin is left unconnected  
Analog power supply; nominal 5V  
Analog ground  
AV  
DD  
29  
30  
31  
P
Analog power supply; nominal 5V  
Analog ground  
NC  
AV  
AGND  
DD  
REFIN B  
AI  
AI  
Reference voltage input of channel B:  
pin for external reference voltage  
AGND  
CLKSEL  
Clock select between internal clock (CLKSEL = 1)  
or external clock (CLKSEL = 0)  
REFIN A  
32  
Reference voltage input of channel A:  
pin for external reference voltage  
:
NOTE AI = Analog Input; AO = Analog Output; I = Input; O = Output; P = Power Supply.  
6
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION  
tC1  
CLKIN  
tW1  
tD1  
tD2  
tC2  
CLKOUT  
OUT x  
tW2  
tD3  
tD4  
Figure 1. ADS1204 Timing Diagram  
TIMING REQUIREMENTS: 5.0V  
over recommended operating free-air temperature range at −40°C to +85°C, AV  
= 5V, and BV = 5V, unless otherwise noted.  
DD  
DD  
PARAMETER  
MIN  
41.6  
10  
MAX UNIT  
t
t
t
CLKIN period  
1000  
− 10  
125  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C1  
W1  
C2  
CLKIN high time  
t
C1  
CLKOUT period using internal oscillator (CLKSEL = 1)  
CLKOUT period using external clock (CLKSEL = 0)  
CLKOUT high time  
83  
2 × t  
C1  
t
t
t
t
t
(t /2) − 5 (t /2) + 5  
C2 C2  
W2  
D1  
D2  
D3  
D4  
CLKOUT rising edge delay after CLKIN rising edge  
CLKOUT falling edge delay after CLKIN rising edge  
Data valid delay after rising edge of CLKOUT (CLKSEL = 1)  
Data valid delay after rising edge of CLKOUT (CLKSEL = 0)  
0
0
10  
10  
(t /4) − 8 (t /4) + 8  
C2 C2  
t
− 3  
t
+ 7  
W1  
W1  
:
NOTE Applicablefor 5.0V nominal supply: BV  
DD  
(min) = 4.5V and BV (max) = 5.5V. All input signals are specified with t = t = 5ns (10% to  
DD R F  
90% of BV ) and timed from a voltage level of (V + V )/2. See timing diagram.  
DD  
IL  
IH  
TIMING REQUIREMENTS: 3.0V  
over recommended operating free-air temperature range at −40°C to +85°C, AV  
= 5V, and BV = 3V, unless otherwise noted.  
DD  
DD  
PARAMETER  
MIN  
41.6  
10  
MAX UNIT  
t
t
t
CLKIN period  
1000  
− 10  
125  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C1  
W1  
C2  
CLKIN high time  
t
C1  
CLKOUT period using internal oscillator (CLKSEL = 1)  
CLKOUT period using external clock (CLKSEL = 0)  
CLKOUT high time  
83  
2 × t  
C1  
t
t
t
t
t
(t /2) − 5 (t /2) + 5  
C2 C2  
W2  
D1  
D2  
D3  
D4  
CLKOUT rising edge delay after CLKIN rising edge  
CLKOUT falling edge delay after CLKIN rising edge  
Data valid delay after rising edge of CLKOUT (CLKSEL = 1)  
Data valid delay after rising edge of CLKOUT (CLKSEL = 0)  
0
0
10  
10  
(t /4) − 8 (t /4) + 8  
C2 C2  
t
− 3  
t
+ 7  
W1  
W1  
:
NOTE Applicablefor 3.0V nominal supply: BV  
DD  
(min) = 2.7V and BV (max) = 3.6V. All input signals are specified with t = t = 5ns (10% to  
DD R F  
90% of BV ) and timed from a voltage level of (V + V )/2. See timing diagram.  
DD IL IH  
7
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
TYPICAL CHARACTERISTICS  
3
= 5V, BV = 3V, CH x+ = +0.5V to +4.5V, CH x− = +2.5V, REFIN = external, CLKSEL = 0, and 16-bit Sinc filter, with OSR = 256, unless  
DD  
AV  
DD  
otherwise noted.  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
(CLKIN = 20MHz)  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
(CLKIN = 32MHz)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
_
40 C  
_
+85 C  
_
+85 C  
_
+25 C  
_
40 C  
_
+25 C  
0.5  
1.0  
1.5  
0.5  
1.0  
1.5  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
Differential Input Voltage (V)  
Differential Input Voltage (V)  
INTEGRAL LINEARITY MATCH OF CHANNELS  
vs INPUT SIGNAL  
INTEGRAL LINEARITY vs TEMPERATURE  
0.4  
0.3  
0.2  
0.1  
0
0.00061  
0.00046  
0.00031  
0.00015  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
0.0023  
0.0018  
0.0014  
0.0009  
0.0005  
0
CLKIN = 32MHz  
CLKIN = 20MHz  
CLKIN = 20MHz  
0.1  
0.2  
0.3  
0.00015  
0.00031  
0.00046  
CLKIN = 32MHz  
0.4  
0.00061  
0.5 1.0 1.5 2.0 2.5  
2.5 2.0 1.5 1.0 0.5  
0
40  
20  
0
20  
40  
60  
80  
100  
Differential Input Voltage (V)  
Temperature (_C)  
OFFSET vs TEMPERATURE  
OFFSET MATCH vs TEMPERATURE  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
0.45  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.36  
0.35  
CLKIN = 20MHz  
CLKIN = 32MHz  
CLKIN = 20MHz  
CLKIN = 32MHz  
20  
40  
20  
0
20  
40  
60  
80  
100  
40  
0
20  
40  
60  
80  
100  
_
_
Temperature ( C)  
Temperature ( C)  
8
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
3
= 5V, BV = 3V, CH x+ = +0.5V to +4.5V, CH x− = +2.5V, REFIN = external, CLKSEL = 0, and 16-bit Sinc filter, with OSR = 256, unless  
DD  
AV  
DD  
otherwise noted.  
OFFSET vs POWER SUPPLY  
REFERENCE VOLTAGE vs TEMPERATURE  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
2.530  
2.528  
2.526  
2.524  
2.522  
2.520  
2.518  
2.516  
2.514  
2.512  
2.510  
CLKIN = 20MHz  
CLKIN = 32MHz  
20  
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
Power Supply (V)  
40  
0
20  
40  
60  
80  
100  
_
Temperature ( C)  
GAIN vs TEMPERATURE  
GAIN MATCH vs TEMPERATURE  
0.5  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
0.4  
0.3  
0.2  
0.1  
0
CLKIN = 32MHz  
CLKIN = 32MHz  
CLKIN = 20MHz  
CLKIN = 20MHz  
20  
40  
20  
0
20  
40  
60  
80  
100  
40  
0
20  
40  
60  
80  
100  
_
_
Temperature ( C)  
Temperature ( C)  
SIGNAL−TO−NOISE RATIO  
vs TEMPERATURE  
SIGNAL−TO−NOISE + DISTORTION  
vs TEMPERATURE  
89.5  
89.4  
89.3  
89.2  
89.1  
89.0  
88.9  
88.8  
88.7  
88.6  
88.5  
89.2  
89.0  
88.8  
88.6  
88.4  
88.2  
88.0  
87.8  
87.6  
CLKIN = 32MHz  
CLKIN = 32MHz  
CLKIN = 20MHz  
CLKIN = 20MHz  
20  
40  
20  
0
20  
40  
60  
80  
100  
40  
0
20  
40  
60  
80  
100  
_
_
Temperature ( C)  
Temperature ( C)  
9
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
3
= 5V, BV = 3V, CH x+ = +0.5V to +4.5V, CH x− = +2.5V, REFIN = external, CLKSEL = 0, and 16-bit Sinc filter, with OSR = 256, unless  
DD  
AV  
DD  
otherwise noted.  
SPURIOUS FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION vs TEMPERATURE  
(CLKIN = 20MHz)  
SPURIOUS FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION vs TEMPERATURE  
(CLKIN = 32MHz)  
105  
103  
101  
99  
105  
103  
101  
99  
105  
103  
101  
99  
105  
103  
101  
99  
SFDR  
SFDR  
THD  
97  
97  
97  
97  
95  
95  
95  
95  
THD  
93  
93  
93  
93  
91  
91  
91  
91  
89  
89  
89  
89  
4VPP  
5kHz  
4VPP  
5kHz  
87  
87  
87  
87  
85  
85  
85  
85  
20  
40  
20  
0
20  
40  
60  
80  
100  
40  
0
20  
40  
60  
80  
100  
_
_
Temperature ( C)  
Temperature ( C)  
SPURIOUS FREE DYNAMIC RANGE AND  
SPURIOUS FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY  
(CLKIN = 20MHz)  
TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY  
(CLKIN = 32MHz)  
120  
110  
100  
90  
120  
110  
100  
90  
120  
110  
100  
90  
120  
110  
100  
90  
SFDR  
SFDR  
THD  
THD  
80  
80  
80  
80  
70  
70  
70  
70  
OSR = 256  
Sinc3 Filter  
OSR = 256  
Sinc3 Filter  
60  
60  
60  
60  
1
10  
100  
1
10  
100  
Frequency (kHz)  
Frequency (kHz)  
FREQUENCY SPECTRUM  
FREQUENCY SPECTRUM  
(4096 point FFT fIN = 1kHz, 4VPP  
)
(4096 point FFT fIN = 5kHz, 4VPP  
)
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
0
2
4
6
8
10  
12  
14  
16  
18 19  
0
2
4
6
8
10  
12  
14  
16  
18 19  
Frequency (kHz)  
Frequency (kHz)  
10  
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
3
= 3V, CH x+ = +0.5V to +4.5V, CH x− = +2.5V, REFIN = external, CLKSEL = 0, and 16-bit Sinc filter, with OSR = 256, unless  
DD  
AV  
DD  
= 5V, BV  
otherwise noted.  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
POWER−SUPPLY CURRENT  
vs TEMPERATURE  
18  
16  
14  
12  
10  
8
110  
98  
86  
74  
62  
50  
38  
26  
30  
27  
24  
21  
18  
15  
Sinc3 Filter  
CLKSEL = 0, CLKIN = 32MHz  
Sinc2 Filter  
CLKSEL = 0, CLKIN = 20MHz  
CLKSEL = 1  
6
4
20  
10  
100  
1k  
10k  
40  
0
20  
40  
60  
80  
100  
_
Decimation Ratio (OSR)  
Temperature ( C)  
COMMON−MODE REJECTION RATIO  
vs FREQUENCY  
POWER−SUPPLY REJECTION RATIO  
vs FREQUENCY  
110  
105  
100  
95  
110  
100  
90  
90  
85  
80  
80  
70  
75  
70  
60  
65  
60  
1
50  
10  
100  
0.1  
1
10  
100  
Input Frequency (kHz)  
Frequency of Power Supply (kHz)  
CLOCK FREQUENCY vs TEMPERATURE  
CLOCK FREQUENCY vs POWER SUPPLY  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
20  
40  
0
20  
40  
60  
80  
100  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
_
Temperature ( C)  
Power Supply (V)  
11  
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
An application-specific integrated circuit (ASIC), or  
field-programmable gate array (FPGA) could be used to  
implement the digital filter. Figure 2 and Figure 3 show  
typical application circuits with the ADS1204 connected to  
an FPGA.  
GENERAL DESCRIPTION  
The ADS1204 is a four-channel, 2nd-order, CMOS device  
with four delta-sigma modulators, designed for medium- to  
high-resolution A/D signal conversions from DC to 39kHz  
(filter response −3dB) if an oversampling ratio (OSR) of 64  
is chosen. The output of the converter (OUTX) provides a  
stream of digital ones and zeros. The time average of this  
serial output is proportional to the analog input voltage.  
The overall performance (that is, speed and accuracy)  
depends on the selection of an appropriate OSR and filter  
type. A higher OSR produces greater output accuracy  
while operating at a lower refresh rate. Alternatively, a  
lower OSR produces lower output accuracy, but operates  
at a higher refresh rate. This system allows flexibility with  
the digital filter design and is capable of A/D conversion  
results that have a dynamic range exceeding 100dB with  
an OSR = 256.  
The modulator shifts the quantization noise to high  
frequencies. A low-pass digital filter should be used at the  
output of the delta-sigma modulator. The filter serves two  
functions. First, it filters out high-frequency noise. Second,  
the filter converts the 1-bit data stream at a high sampling  
rate into a higher-bit data word at a lower rate (decimation).  
2 kΩ  
AVDD  
BVDD  
+5V  
5k  
5V  
27Ω  
OUT A  
OUT B  
OUT C  
OUT D  
0.1µF  
5kΩ  
OPA4350  
CH A+  
2ndOrder  
Output  
Interface  
Circuit  
0.1nF  
∆Σ  
Modulator  
CH A  
2kΩ  
FPGA  
or  
ASIC  
REFIN A  
CLKOUT  
+3V  
2k  
CH B+  
2ndOrder  
∆Σ Modulator  
BVDD  
CH B−  
0.1µF  
+5V  
BGND  
5kΩ  
5V  
27  
REFIN B  
µ
0.1  
5k  
F
OPA4350  
Divider  
0.1nF  
CH C+  
2ndOrder  
2k  
∆Σ Modulator  
CH C−  
+3V  
CLKIN  
Clock  
REFIN C  
Select  
2k  
CLKSEL  
+5V  
CH D+  
+5V  
2ndOrder  
AVDD  
AVDD  
AVDD  
AVDD  
5k  
∆Σ  
Modulator  
CH D  
+5V  
Out EN  
0.1µF  
5V  
27Ω  
µ
0.1  
F
OPA4350  
RC  
Oscillator  
20MHz  
+5V  
REFIN D  
REFOUT  
µ
0.1  
F
0.1nF  
5kΩ  
2kΩ  
Reference  
Voltage  
2.5V  
+5V  
µ
0.1  
F
µ
0.1  
F
AGND AGND AGND AGND  
2kΩ  
0.1µF  
+5V  
5k  
5V  
27  
µ
0.1  
F
OPA4350  
+5V  
0.1nF  
2k  
5k  
OPA336  
µ
0.1  
F
Figure 2. Single-Ended Connection Diagram for the ADS1204 Delta-Sigma Modulator  
12  
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
+5V  
27  
OPA4354  
R1  
IN+  
0.1nF  
0.1nF  
0.1nF  
0.1nF  
R2  
+5V  
27  
OPA4354  
R1  
IN−  
R2  
AVDD  
BVDD  
+5V  
27Ω  
OUT A  
CH A+  
OPA4354  
R1  
2ndOrder  
OUT B  
OUT C  
Output  
Interface  
Circuit  
IN+  
∆Σ  
Modulator  
CH A  
R2  
FPGA  
or  
ASIC  
OUT D  
REFIN A  
CLKOUT  
+5V  
+3V  
CH B+  
2ndOrder  
BVDD  
27  
∆Σ  
Modulator  
CH B  
µ
F
OPA4354  
0.1  
R1  
BGND  
IN−  
REFIN B  
R2  
Divider  
CH C+  
2ndOrder  
+5V  
∆Σ  
Modulator  
CH C  
27Ω  
+3V  
CLKIN  
OPA4354  
Clock  
R1  
REFIN C  
Select  
IN+  
CLKSEL  
R2  
+5V  
CH D+  
2ndOrder  
AVDD  
AVDD  
AVDD  
AVDD  
∆Σ Modulator  
CH D−  
+5V  
Out EN  
0.1µF  
+5V  
RC  
Oscillator  
20MHz  
+5V  
REFIN D  
REFOUT  
µ
0.1 F  
27  
OPA4354  
R1  
Reference  
Voltage  
2.5V  
+5V  
IN−  
µ
F
0.1  
R2  
µ
0.1 F  
AGND AGND AGND AGND  
+5V  
µ
0.1  
F
27  
OPA4354  
R1  
IN+  
R2  
+5V  
27  
OPA4354  
+5V  
R1  
IN  
R2  
OPA336  
µ
0.1  
F
Figure 3. Differential Connection Diagram for the ADS1204 Delta-Sigma Modulator  
13  
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
on the desired system performance. There are two  
restrictions on the analog input signals, CH x+ and CH x−.  
If the input voltage exceeds the range (GND – 0.3V) to  
(VDD + 0.3V), the input current must be limited to 10mA  
because the input protection diodes on the front end of the  
converter will begin to turn on. In addition, the linearity and  
the noise performance of the device is ensured only when  
the differential analog voltage resides within 2V (with  
VREF as a midpoint); however, the FSR input voltage is  
2.5V.  
THEORY OF OPERATION  
The differential analog input of the ADS1204 is  
implemented with a switched-capacitor circuit. This circuit  
implements a 2nd-order modulator stage, which digitizes  
the analog input signal into a 1-bit output stream. The clock  
source can be internal as well as external. Different  
frequencies for this clock allow for a variety of solutions  
and signal bandwidths. Every analog input signal is  
continuously sampled by the modulator and compared to  
a reference voltage that is applied to the REFINx pin. A  
digital stream, which accurately represents the analog  
input voltage over time, appears at the output of the  
corresponding converter.  
Modulator  
The ADS1204 can be operated in two modes. When  
CKLSEL = 1, the four modulators operate using the internal  
clock, which is fixed at 20MHz. When CKLSEL = 0, the  
modulators operate using an external clock . In both modes,  
the clock is divided by two internally and functions as the  
modulator clock. The frequency of the external clock can vary  
from 1MHz to 32MHz to adjust for the clock requirements of  
the application.  
ANALOG INPUT STAGE  
Analog Input  
The topology of the analog inputs of ADS1204 is based on  
fully differential switched−capacitor architecture. This  
input stage provides the mechanism to achieve low  
system noise, high common-mode rejection (100dB), and  
excellent power-supply rejection.  
The modulator topology is fundamentally a 2nd-order,  
switched-capacitor, delta-sigma modulator, such as the one  
conceptualized in Figure 5. The analog input voltage and the  
output of the 1-bit digital-to-analog converter (DAC) are  
differentiated, providing analog voltages at X2 and X3. The  
voltages at X2 and X3 are presented to their individual  
integrators. The output of these integrators progresses in a  
negative or positive direction. When the value of the signal  
at X4 equals the comparator reference voltage, the output of  
the comparator switches from negative to positive, or positive  
to negative, depending on its original state. When the output  
value of the comparator switches from high to low or vice  
versa, the 1-bit DAC responds on the next clock pulse by  
changing its analog output voltage at X6, causing the  
integrators to progress in the opposite direction. The  
feedback of the modulator to the front end of the integrators  
forces the value of the integrator output to track the average  
of the input.  
The input impedance of the analog input is dependent on  
the modulator clock frequency (fCLK), which is also the  
sampling frequency of the modulator. Figure 4 shows the  
basic input structure of one channel of the ADS1204. The  
relationship between the input impedance of the ADS1204  
and the modulator clock frequency is:  
100kW  
MODń10MHz  
ZIN  
+
f
(1)  
The input impedance becomes a consideration in designs  
where the source impedance of the input signal is high.  
This high impedance may cause degradation in gain,  
linearity, and THD. The importance of this effect depends  
650  
High  
Impedance  
AIN+  
> 1G  
1.2pF  
1.2pF  
0.4pF  
0.4pF  
VCM  
Switching Frequency = CLK  
650  
High  
Impedance  
AIN  
> 1G  
Figure 4. Input Impedance of the ADS1204  
14  
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
fCLK  
X2  
X3  
X4  
X(t)  
fS  
Integrator 1  
Integrator 2  
DATA  
VREF  
Comparator  
X6  
D/A Converter  
Figure 5. Block Diagram of the 2nd-Order Modulator  
connection is realized between the delta-sigma modulator  
DIGITAL OUTPUT  
and an ASIC or FPGA (each with an implemented filter),  
the two standard signals per modulator (CLKOUT and  
OUTx) are provided from the modulator. The output clock  
signal is equal for all four modulators. If CLKSEL = 1,  
CLKIN must always be set either high or low.  
A differential input signal of 0V will ideally produce a  
stream of ones and zeros that are high 50% of the time and  
low 50% of the time. A differential input of +2V produces  
a stream of ones and zeros that are high 80% of the time.  
A differential input of –2V produces a stream of ones and  
zeros that are high 20% of the time. The input voltage  
versus the output modulator signal is shown in Figure 6.  
MODES OF OPERATION  
The system clock of the ADS1204 is 20MHz by default.  
The system clock can be provided either from the internal  
20MHz RC oscillator or from an external clock source. For  
this purpose, the CLKIN pin is provided; it is controlled by  
the mode setting, CLKSEL.  
DIGITAL INTERFACE  
INTRODUCTION  
The analog signal connected to the input of the  
delta-sigma modulator is converted using the clock signal  
applied to the modulator. The result of the conversion, or  
modulation, is generated and sent to the OUTx pin from the  
delta-sigma modulator. In most applications where a direct  
The system clock is divided by two for the modulator clock.  
Therefore, the default clock frequency of the modulator is  
10MHz. With a possible external clock range of 1MHz to  
32MHz, the modulator operates between 500kHz and  
16MHz.  
Modulator Output  
+FS (Analog Input)  
FS (Analog Input)  
Analog Input  
Figure 6. Analog Input vs Modulator Output of the ADS1204  
15  
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
FILTER USAGE  
0
10  
20  
30  
40  
50  
60  
70  
80  
OSR = 32  
fDATA = 10MHz/32 = 312.5kHz  
The modulator generates only a bitstream, which does  
not output a digital word like an A/D converter. In order  
to output a digital word equivalent to the analog input  
voltage, the bitstream must be processed by a digital  
filter.  
3dB: 81.9kHz  
A very simple filter, built with minimal effort and  
hardware, is the Sinc filter:  
3
3
1 * z−OSR  
H(z) + ǒ 1 * z−1  
Ǔ
(2)  
0
200  
400  
600  
800 1000 1200 1400 1600  
This filter provides the best output performance at the  
lowest hardware size (for example, a count of digital  
gates). For oversampling ratios in the range of 16 to  
256, this is a good choice. All the characterizations in  
Frequency (kHz)  
3
Figure 7. Frequency Response of Sinc Filter  
3
the data sheet are also done using a Sinc filter with an  
oversampling ratio of OSR = 256 and an output word  
width of 16 bits.  
30k  
OSR = 32  
FSR = 32768  
ENOB = 9.9 Bits  
3
25k  
In a Sinc filter response (shown in Figure 7 and  
Figure 8), the location of the first notch occurs at the  
Settling Time =  
20k  
×
µ
1/fDATA = 9.6 s  
3
frequency of output data rate f  
= f  
/OSR. The  
DATA  
CLK  
–3dB point is located at half the Nyquist frequency or  
/4. For some applications, it may be necessary to  
use another filter type for better frequency response.  
15k  
10k  
5k  
f
DATA  
This performance can be improved, for example, by a  
cascaded filter structure. The first decimation stage can  
3
be a Sinc filter with a low OSR and the second stage  
0
0
5
10  
15  
20  
25  
30  
35  
40  
a high-order filter.  
Number of Output Clocks  
For more information, see application note SBAA094,  
Combining the ADS1202 with an FPGA Digital Filter for  
Current Measurement in Motor Control Applications,  
available for download at www.ti.com.  
3
Figure 8. Pulse Response of Sinc Filter  
(f = 10MHz)  
MOD  
16  
ꢚ ꢓꢖ ꢄꢎ ꢊꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
The effective number of bits (ENOB) can be used to  
compare the performance of ADCs and delta-sigma  
modulators. Figure 9 shows the ENOB of the ADS1204  
with different filter types. In this data sheet, the ENOB  
is calculated from the SNR:  
data clocks. The data clock is equal to the modulator  
clock divided by the OSR. For overcurrent protection,  
3
filter types other than Sinc might be a better choice. A  
2
simple example is a Sinc filter. Figure 10 compares the  
settling time of different filter types. The Sincfast is a  
2
modified Sinc filter:  
SNR = 1.76dB + 6.02dB × ENOB  
(3)  
2
1 * z−OSR  
ǒ
−2 OSRǓ  
H(z) + ǒ 1 * z−1  
Ǔ
1 ) z  
(4)  
16  
10  
9
8
7
6
5
4
3
2
1
0
Sinc3  
Sinc3  
14  
12  
10  
8
Sincfast  
Sinc2  
Sinc2  
Sinc  
6
Sinc  
Sincfast  
4
2
0
1
10  
100  
1000  
0
2
4
6
8
10  
OSR  
µ
Settling Time ( s)  
Figure 9. Measured ENOB vs OSR  
Figure 10. Measured ENOB vs Settling Time  
In motor control applications, a very fast response time  
for overcurrent detection is required. There is a  
constraint between 1µs and 5µs with 3 bits to 7 bits  
resolution. The time for full settling is dependent on the  
For more information, see application note SBAA094,  
Combining the ADS1202 with an FPGA Digital Filter for  
Current Measurement in Motor Control Applications,  
available for download at www.ti.com.  
3
filter order. Therefore, the full settling of the Sinc filter  
2
needs three data clocks and the Sinc filter needs two  
17  
ꢚꢓ ꢖꢄ ꢎ ꢊ ꢛ  
www.ti.com  
SBAS301A − OCTOBER 2003 − REVISED JUNE 2004  
For multiple converters, connect the two ground planes as  
close as possible to one central location for all of the  
converters. In some cases, experimentation may be  
required to find the best point to connect the two planes  
together.  
LAYOUT CONSIDERATIONS  
POWER SUPPLIES  
An applied external digital filter rejects high-frequency  
noise. PSRR and CMRR improve at higher frequencies  
because the digital filter suppresses high-frequency noise.  
DECOUPLING  
Good decoupling practices must be used for the ADS1204  
and for all components in the design. All decoupling  
capacitors, specifically the 0.1µF ceramic capacitors,  
must be placed as close as possible to the pin being  
decoupled. A 1µF and 10µF capacitor, in parallel with the  
0.1µF ceramic capacitor, can be used to decouple AVDD  
to AGND as well as BVDD to BGND. At least one 0.1µF  
ceramic capacitor must be used to decouple every AVDD  
to AGND and BVDD to BGND, as well as for the digital  
supply on each digital component.  
However, the suppression of the filter is not infinite, so  
high-frequency noise still influences the conversion result.  
Inputs to the ADS1204, such as CH x+, CH x−, and CLKIN,  
should not be present before the power supply is on.  
Violating this condition could cause latch-up. If these  
signals are present before the supply is on, series resistors  
should be used to limit the input current to a maximum of  
10mA. Experimentation may be the best way to determine  
the appropriate connection between the ADS1204 and  
different power supplies.  
The digital supply sets the I/O voltage for the interface and  
can be set within a range of 2.7V to 5.5V.  
GROUNDING  
In cases where both the analog and digital I/O supplies  
share the same supply source, an RC filter of 10and  
0.1µF can be used to help reduce the noise in the analog  
supply.  
Analog and digital sections of the design must be carefully  
and cleanly partitioned. Each section should have its own  
ground plane with no overlap between them. Do not join  
the ground planes; instead, connect the two with a  
moderate signal trace underneath the converter. However,  
for different applications with DSPs and switching power  
supplies, this process might be different.  
18  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jun-2004  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
ADS1204IRHBR  
ADS1204IRHBT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

ADS1204IRHBR

FOUR 1-BIT, 10MHZ, 2ND-ORDER, DELTA-SIGMA MODULATORS
TI

ADS1204IRHBRG4

4-CH 16-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32
TI

ADS1204IRHBT

FOUR 1-BIT, 10MHZ, 2ND-ORDER, DELTA-SIGMA MODULATORS
TI

ADS1204IRHBTG4

Four Delta-Sigma Modulators, 10MHz CLK, 0-5V Input, 16-Bit Resolution 32-VQFN -40 to 105
TI

ADS1204_14

Four 1-Bit, 10MHz, 2nd-Order Delta-Sigma Modulators
TI

ADS1205

TWO 1-BIT, 10MHz, 2nd-ORDER DELTA-SIGMA MODULATORS
TI

ADS1205IRGER

TWO 1-BIT, 10MHz, 2nd-ORDER DELTA-SIGMA MODULATORS
TI

ADS1205IRGERG4

TWO 1-BIT, 10MHz, 2nd-ORDER DELTA-SIGMA MODULATORS
TI

ADS1205IRGET

TWO 1-BIT, 10MHz, 2nd-ORDER DELTA-SIGMA MODULATORS
TI

ADS1205IRGETG4

TWO 1-BIT, 10MHz, 2nd-ORDER DELTA-SIGMA MODULATORS
TI

ADS1205_14

Two 1-Bit, 10MHz, 2nd-Order Delta-Sigma Modulators
TI

ADS1205_15

Two 1-Bit, 10MHz,2nd-Order Delta-sigma Modulators
TI