ADS1235-Q1 [TI]

具有 PGA 和交流激励的汽车类 24 位、7.2kSPS、3 通道差动输入、Δ-Σ ADC;
ADS1235-Q1
型号: ADS1235-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PGA 和交流激励的汽车类 24 位、7.2kSPS、3 通道差动输入、Δ-Σ ADC

文件: 总75页 (文件大小:1945K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
适用于桥式传感器的 ADS1235-Q1 汽车类精密、3 通道、差动输入、  
7200SPS 24 位  
Δ-Σ ADC  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
温度等级 1–40°C +125°CTA  
24 位高精度 ADC:  
ADS1235-Q1 是一款具有集成式可编程增益放大器  
(PGA) 的精密 7200SPS Δ-Σ (ΔΣ) 模数转换器  
(ADC)。此器件还包括诊断 特性 ,如 PGA 超范围和  
基准监控器。该 ADC 可为高度精密的设备(包括称重  
秤、应变计和电阻式压力传感器)提供高准确度的零温  
漂转换数据。  
120,000 无噪声计数  
10mV 输入、10SPS)  
温漂:1nV/°C  
增益漂移:0.5ppm/°C  
ADC 具有信号和基准多路复用器,可支持三个差动  
信号输入和两个基准输入。该 ADC 还包括可提供 1、  
64 128 的增益的低噪声 PGA。该 ADC 还包括 24  
ΔΣ 调制器和可编程数字滤波器。  
三路差动输入或五路单端输入  
两路基准输入  
宽输入电压范围:±7mV ±5V  
低噪声 PGA 增益:164 128  
数据速率:2.5SPS 7200SPS  
交流或直流电桥激励选项  
可实现零漂移运行的斩波模式  
同步 50Hz 60Hz 抑制模式  
单周期稳定模式  
PGA 的高阻抗输入 (1GΩ) 可减小由传感器负载导致的  
测量误差。  
ADC 支持交流电桥激励,可消除由传感器布线导致  
的温漂误差。该 ADC 会提供用于交流激励运行的时钟  
控制信号。  
缺少基准输入监控器  
灵活的数字滤波器可针对单周期稳定转换进行编程,而  
信号超范围监控器  
且能够同时提供 50Hz 60Hz 线路周期抑制。  
温度传感器  
ADS1235-Q1 采用 5mm × 5mm VQFN 封装,额定温  
度范围为 –40°C +125°C。  
循环冗余校验 (CRC)  
5V ±2.5V 电源  
器件信息(1)  
2 应用  
器件型号  
封装  
VQFN (32)  
封装尺寸(标称值)  
车载称重系统 (OBW)  
ADS1235-Q1  
5.0mm × 5.0mm  
称重秤和应变仪数字转换器  
动态称重系统  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
压力测量  
框图  
ADC 转换噪声  
3 V œ 5 V (D)  
5 V (A)  
10009.65  
10 SPS  
REFP0  
REFN0  
Ref  
Mux  
Internal  
Oscillator  
Clock  
Mux  
VIN = 10 mV  
VN = 0.084 mV P-P  
CLKIN  
10009.6  
ADS1235-Q1  
Ref  
Monitor  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
START  
RESET  
PWDN  
CS  
10009.55  
10009.5  
10009.45  
10009.4  
10009.35  
Input  
Mux  
Temp  
Sensor  
Buf  
Serial  
Interface  
and  
Control  
DIN  
24-Bit  
ûADC  
Digital  
Filter  
PGA  
DOUT/DRDY  
SCLK  
GPIO  
AC-Exc  
PGA  
Monitor  
DRDY  
(D)  
(A)  
0
10  
20  
30  
Time (s)  
40  
50  
60  
D109  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS970  
 
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
目录  
8.5 Programming........................................................... 39  
8.6 Register Map........................................................... 48  
Application and Implementation ........................ 59  
9.1 Application Information............................................ 59  
9.2 Typical Application .................................................. 63  
9.3 Initialization Setup................................................... 65  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 8  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 12  
Parameter Measurement Information ................ 17  
7.1 Noise Performance ................................................. 17  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 32  
9
10 Power Supply Recommendations ..................... 66  
10.1 Power-Supply Decoupling..................................... 66  
10.2 Analog Power-Supply Clamp ................................ 66  
10.3 Power-Supply Sequencing.................................... 66  
11 Layout................................................................... 67  
11.1 Layout Guidelines ................................................. 67  
11.2 Layout Example .................................................... 67  
12 器件和文档支持 ..................................................... 68  
12.1 文档支持................................................................ 68  
12.2 接收文档更新通知 ................................................. 68  
12.3 社区资源................................................................ 68  
12.4 ....................................................................... 68  
12.5 静电放电警告......................................................... 68  
12.6 Glossary................................................................ 68  
13 机械、封装和可订购信息....................................... 68  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 10 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
5 Pin Configuration and Functions  
RHM Package  
VQFN-32  
Top View  
NC  
CAPP  
CAPN  
AVDD  
AVSS  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NC  
NC  
NC  
NC  
Thermal Pad  
NC  
NC  
PWDN  
RESET  
CLKIN  
DVDD  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
NC  
No connection; float or connect to AVSS  
2
CAPP  
CAPN  
AVDD  
AVSS  
NC  
Analog output  
Analog output  
Analog  
PGA output P; connect a 4.7-nF C0G dielectric capacitor across CAPP and CAPN  
PGA output N; connect a 4.7-nF C0G dielectric capacitor across CAPP and CAPN  
Positive analog power supply  
3
4
5
Analog  
Negative analog power supply  
6
No connection - solder the pin for mechanical support, float or connect to DGND  
Power down, active low  
7
PWDN  
RESET  
START  
CS  
Digital input  
Digital input  
Digital input  
Digital input  
Digital Input  
Digital Input  
Digital output  
Digital output  
Analog output  
Digital  
8
Reset, active low  
9
Start conversion control, active high  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19-24  
Serial interface chip select, active low  
SCLK  
DIN  
Serial interface shift clock  
Serial interface data input  
DRDY  
Data ready indicator, active low  
DOUT/DRDY  
BYPASS  
DGND  
Dual function serial interface data output and active-low data ready indicator  
Internal subregulator bypass; connect a 1-µF capacitor to DGND  
Digital ground  
DVDD  
Digital  
Digital power supply  
CLKIN  
Digital input  
1) Internal oscillator: connect to DGND, 2) External clock: connect clock input  
No connection - solder the pin for mechanical support, float or connect to DGND  
NC  
Copyright © 2019, Texas Instruments Incorporated  
3
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
25  
26  
27  
28  
29  
30  
31  
32  
NAME  
AIN5  
Analog input  
Analog input  
Analog input 5  
Analog input 4  
AIN4  
AIN3  
Analog input/output Analog input 3, GPIO3, ACX2  
Analog input/output Analog input 2, GPIO2, ACX1  
AIN2  
AIN1  
Analog input/output Analog input 1, GPIO1, ACX2, Reference input 1 negative  
Analog input/output Analog input 0, GPIO0, ACX1, Reference input 1 positive  
Analog input/output Reference input 0 negative  
AIN0  
REFN0  
REFP0  
Thermal Pad  
Analog input/output Reference input 0 positive  
Exposed thermal pad - solder the pad for mechanical support; connect to AVSS.  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–0.3  
–3  
MAX UNIT  
AVDD to AVSS  
7
Power supply voltage  
AVSS to DGND  
0.3  
7
V
DVDD to DGND  
–0.3  
Analog input voltage  
Digital input voltage  
Input Current  
AINx, REFP0, REFN0  
AVSS – 0.3 AVDD + 0.3  
DGND – 0.3 DVDD + 0.3  
V
V
CS, SCLK, DIN, DOUT/DRDY, DRDY, START, RESET, PWDN, CLKIN  
Continuous, all pins except power-supply pins(2)  
–10  
10  
150  
150  
mA  
°C  
°C  
Junction, TJ  
Storage, Tstg  
Temperature  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input and output pins are diode-clamped to the internal power supplies. Limit the input current to 10 mA in the event the analog input  
voltage exceeds AVDD + 0.3 V or AVSS – 0.3 V, or if the digital input voltage exceeds DVDD + 0.3 V or DGND – 0.3 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Corner pins  
±750  
±500  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD classification level C4B  
All other non-corner pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
POWER SUPPLY  
AVDD to AVSS  
4.75  
–2.6  
2.7  
5
5.25  
V
Analog power supply  
AVSS to DGND  
DVDD to DGND  
0
Digital power supply  
5.25  
V
ANALOG INPUTS  
PGA mode  
See 公式 3  
V(AINx)  
VIN  
Absolute input voltage  
Differential input voltage  
V
V
PGA bypassed  
VIN = VAINP – VAINN  
AVSS – 0.1  
AVDD + 0.1  
(1)  
±VREF / Gain  
See  
VOLTAGE REFERENCE INPUTS  
VREF  
Differential reference voltage  
Negative reference voltage  
Positive reference voltage  
VREF = V(REFPx) – V(REFNx)  
0.9  
AVSS – 0.05  
V(REFNx) + 0.9  
AVDD – AVSS  
V(REFPx) – 0.9  
AVDD + 0.05  
V
V
V
V(REFNx)  
V(REFPx)  
EXTERNAL CLOCK  
fCLK  
Frequency  
Duty cycle  
1
7.3728  
8
MHz  
40%  
60%  
GENERAL-PURPOSE INPUTS/OUTPUTS (GPIOs)  
Input voltage  
AVSS  
DGND  
–40  
AVDD  
DVDD  
125  
V
V
DIGITAL INPUTS (other than GPIOs)  
Input voltage  
TEMPERATURE  
TA  
Operating ambient temperature  
°C  
(1) In PGA mode, the maximum differential input voltage is ±(AVDD – AVSS – 0.6 V) / Gain, when operating with  
VREF AVDD – AVSS – 0.6 V  
6.4 Thermal Information  
ADS1235-Q1  
RHM (VQFN)  
THERMAL METRIC(1)  
UNIT  
32 PINS  
29.2  
17.6  
9.8  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.7  
RθJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications at AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, fCLK = 7.3728 MHz, PGA mode, gain = 1, and data  
rate = 20 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
PGA mode, V(AINx) = 2.5 V  
PGA bypass  
4
200  
0.01  
±0.1  
±1  
12  
Absolute input current  
nA  
Absolute input current drift  
nA/°C  
PGA mode, VIN = 39 mV  
PGA mode, VIN = 2.5 V  
PGA and chop modes, VIN = 2.5 V(1)  
–8  
8
Differential input current  
nA  
±5  
PGA bypass, VIN = 2.5 V  
±40  
0.05  
1
Differential input current drift  
Differential input impedance  
Crosstalk  
nA/°C  
GΩ  
PGA mode  
PGA bypass  
50  
MΩ  
0.1  
µV/V  
PGA  
Gain settings  
1, 64, 128  
60  
V/V  
kHz  
Antialias filter frequency  
CCAPP, CAPN = 4.7 nF  
Low threshold  
AVSS + 0.2  
AVDD – 0.2  
Output voltage monitor  
V
High threshold  
PERFORMANCE  
Resolution  
No missing codes  
Gain = 64 and 128  
24  
Bits  
nV/Hz  
SPS  
Equivalent input noise density  
Data rate  
8
DR  
INL  
2.5  
7200  
Noise performance  
Integral non-linearity  
See 1  
±2  
Gain = 1, 64 and 128  
–10  
–355  
–10  
10  
355  
10  
ppmFSR  
TA = 25°C, gain = 1  
±50  
TA = 25°C, gain = 64 and 128  
TA = 25°C, gain = 1, chop mode  
±1.5  
±0.2  
µV  
–0.6  
0.6  
VOS  
Offset voltage  
TA = 25°C, gain = 64 and 128, chop  
mode  
–0.06  
±0.005  
0.06  
After calibration  
Gain = 1  
On the level of noise  
150  
15  
1
350  
75  
Offset voltage drift  
Gain error  
Gain = 64 and 128  
Gain = 1, 64, and 128, chop mode  
TA = 25°C  
nV/°C  
5
–0.6%  
±0.05%  
0.6%  
GE  
After calibration  
on the level of noise  
Gain drift  
Normal-mode rejection ratio(2)  
0.5  
See 5  
130  
4
ppm/°C  
NMRR  
CMRR  
Data rate = 20 SPS  
Data rate = 400 SPS  
AVDD and AVSS  
DVDD  
Common-mode rejection ratio(3)  
Power-supply rejection ratio(4)  
dB  
dB  
105  
115  
100  
120  
85  
95  
PSRR  
INTERNAL OSCILLATOR  
fCLK  
Frequency  
Accuracy  
7.3728  
±0.5%  
MHz  
–2%  
2%  
(1) Chop-mode input current scales with data rate. See 27 for chop mode input current at 20 SPS and 1200 SPS.  
(2) Normal-mode rejection ratio performance depends on the digital filter configuration.  
(3) Common-mode rejection ratio is specified at fIN = 60 Hz.  
(4) Power-supply rejection ratio specified at dc.  
6
Copyright © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications at AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, fCLK = 7.3728 MHz, PGA mode, gain = 1, and data  
rate = 20 SPS (unless otherwise noted)  
PARAMETER  
VOLTAGE REFERENCE INPUTS  
Reference input current  
Input current vs voltage  
Input current drift  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
500  
100  
0.1  
5
nA  
nA/V  
nA//V/°C  
MΩ  
Input impedance  
Differential  
Low voltage monitor  
Threshold low  
0.4  
0.6  
V
TEMPERATURE SENSOR  
Sensor voltage  
TA = 25°C  
122.4  
420  
mV  
Temperature coefficient  
µV/°C  
GENERAL-PURPOSE INPUTS/OUTPUTS (GPIOs)(5)  
VOL  
VOH  
VIL  
Low-level output voltage  
High-level output voltage  
Low-level input voltage  
High-level input voltage  
Input hysteresis  
IOL = –1 mA  
IOH = 1 mA  
0.2 · AVDD  
0.3 · AVDD  
V
V
V
V
V
0.8 · AVDD  
0.7 · AVDD  
VIH  
0.5  
DIGITAL INPUTS/OUTPUTS (Other Than GPIOs)  
IOL = –1 mA  
IOL = –8 mA  
IOH = 1 mA  
IOH = 8 mA  
0.2 · DVDD  
VOL  
Low-level output voltage  
High-level output voltage  
V
V
0.2 · DVDD  
0.8 · DVDD  
VOH  
0.75 · DVDD  
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
Input hysteresis  
0.3 · DVDD  
V
V
0.7 · DVDD  
–10  
0.1  
V
Input leakage  
VIH or VIL  
10  
µA  
POWER SUPPLY  
PGA bypass  
2.7  
4.3  
2
4.5  
6.5  
8
mA  
IAVDD  
IAVSS  
Analog supply current  
PGA mode, gain = 64 and 128  
Power-down mode  
µA  
mA  
µA  
0.4  
30  
23  
0.1  
0.7  
75  
35  
0.3  
IDVDD  
Digital supply current  
Power dissipation  
Power-down mode(6)  
PGA mode, gain = 64 and 128  
Power-down mode  
PD  
mW  
(5) GPIO voltage with respect to AVSS.  
(6) CLKIN input stopped.  
Copyright © 2019, Texas Instruments Incorporated  
7
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
6.6 Timing Requirements  
over operating ambient temperature range, DVDD = 2.7 V to 5.25 V, and DOUT/DRDY load: 20 pF || 100 kΩ to DGND  
(unless otherwise noted)  
MIN  
MAX  
UNIT  
SERIAL INTERFACE  
td(CSSC)  
tsu(DI)  
th(DI)  
Delay time, first SCLK rising edge after CS falling edge(1)  
50  
25  
25  
97  
ns  
ns  
ns  
ns  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
SCLK period(2)  
tc(SC)  
106  
tw(SCH),  
tw(SCL)  
Pulse duration, SCLK high or low  
40  
ns  
td(SCCS)  
tw(CSH)  
td(SCIR)  
RESET  
tw(RSTL)  
Delay time, last SCLK falling edge before CS rising edge  
Pulse duration, CS high to reset interface  
50  
25  
ns  
ns  
Delay time, SCLK high or low to force interface auto-reset  
65540  
1/fCLK  
Pulse duration, RESET low  
4
1/fCLK  
CONVERSION CONTROL  
tw(STH) Pulse duration, START high  
tw(STL)  
4
4
1/fCLK  
1/fCLK  
Pulse duration, START low  
Setup time, START low or STOP command after DRDY low to stop next  
conversion (Continuous-conversion mode)  
tsu(DRST)  
th(DRSP)  
100  
1/fCLK  
1/fCLK  
Hold time, START low or STOP command after DRDY low to continue next  
conversion (Continuous-conversion mode)  
150  
(1) CS can be tied low.  
(2) Serial interface time-out mode: minimum SCLK frequency = 1 kHz. Otherwise, no minimum SCLK frequency.  
8
Copyright © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
6.7 Switching Characteristics  
over operating ambient temperature range, DVDD = 2.7 V to 5.25 V, and DOUT/DRDY load: 20 pF || 100 kΩ to DGND  
(unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
SERIAL INTERFACE  
tw(DRH)  
Pulse duration, DRDY high  
16  
0
1/fCLK  
ns  
Propagation delay time, CS falling edge to DOUT/DRDY  
driven  
tp(CSDO)  
50  
40  
Propagation delay time, SCLK rising edge to valid  
DOUT/DRDY  
tp(SCDO1)  
th(SCDO1)  
th(SCDO2)  
tp(SCDO2)  
ns  
ns  
ns  
ns  
ns  
Hold time, SCLK rising edge to invalid data on  
DOUT/DRDY  
0
Hold time, last SCLK falling edge of operation to invalid  
data on DOUT/DRDY  
15  
Propagation delay time, last SCLK falling edge to valid  
data ready function on DOUT/DRDY  
110  
50  
Propagation delay time, CS rising edge to DOUT/DRDY  
high impedance  
tp(CSDOZ)  
RESET  
tp(RSCN)  
Propagation delay time, RESET rising edge or RESET  
command to start of conversion  
512  
512  
2
1/fCLK  
1/fCLK  
1/fCLK  
Propagation delay time, power-on threshold voltage to  
ADC communication  
tp(PRCM)  
tp(CMCN)  
216  
Propagation delay time, ADC communication to  
conversion start  
AC EXCITATION  
td(ACX)  
Delay time, phase-to-phase blanking period  
ACX period  
8
1/fCLK  
tSTDR  
tc(ACX)  
CONVERSION CONTROL  
Propagation delay time, START high or START command  
tp(STDR)  
2
1/fCLK  
to DRDY high  
tw(CSH)  
CS  
td(CSSC)  
tc(SC)  
td(SCCS)  
tw(SCH)  
SCLK  
tw(SCL)  
th(DI)  
tsu(DI)  
DIN  
1. Serial Interface Timing Requirements  
版权 © 2019, Texas Instruments Incorporated  
9
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
tw(DRH)  
DRDY  
CS  
SCLK  
tp(SCDO2)  
tp(CSDO)  
tp(SCDO1)  
DATA  
th(SCDO1)  
tp(CSDOZ)  
(1)  
(1)  
DRDY  
DRDY  
DOUT/DRDY  
th(SCDO2)  
(1) Before the first SCLK rising edge and after the last SCLK falling edge of a command, the function of DOUT/DRDY is data ready.  
2. Serial Interface Switching Characteristics  
Serial Interface  
Auto-Reset  
td(SCIR)  
Next byte transaction  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SCLK  
3. Serial Interface Auto-Reset Characteristics  
tw(STH)  
START  
tw(STL)  
Serial  
Command  
START  
STOP  
tsu(DRST)  
STOP  
tp(STDR)  
DRDY  
th(DRSP)  
4. Conversion Control Timing Requirements  
10  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
DVDD  
1 V (typ)  
1 V (typ)  
VBYPASS  
AVDD - AVSS  
3.5 V (typ)  
All supplies reach thresholds  
DRDY  
Begin ADC Communication  
DOUT/DRDY  
tp(PRCM)  
tp(CMCN)  
Conversion  
Status  
Start of 1st Conversion  
5. Power-Up Characteristics  
tw(RSTL)  
RESET  
Reset  
Command  
tp(RSCN)  
Reset  
Conversion  
Status  
Start  
6. RESET pin and RESET Command Timing Requirements  
tc(ACX)  
td(ACX)  
td(ACX)  
ACX1  
ACX1  
ACX2  
ACX2  
7. AC-Excitation Switching Characteristics  
DVDD  
½ DVDD  
DGND  
50%  
td, th, tp, tw,tc  
8. Timing Voltage-Level Reference  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, data rate = 20 SPS, fCLK = 7.3728 MHz and gain = 128  
(unless otherwise noted)  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
0
PGA Bypass  
Gain = 1  
Gain = 64 and 128  
PGA Bypass  
Gain = 1  
Gain = 64 and 128  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
After calibration, shorted input  
Chop mode, after calibration, shorted input  
9. Offset Voltage vs Temperature  
10. Offset Voltage vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 1  
Gain = 64 and 128  
Gain = 1  
Gain = 64 and 128  
D012  
D011  
Input-Referred Offset Drift (nV/èC)  
Input-Referred Offset Drift (nV/èC)  
Shorted input, 30 units  
Chop mode, shorted input, 30 units  
11. Offset Voltage Drift Distribution  
12. Offset Voltage Drift Distribution  
40  
35  
30  
25  
20  
15  
10  
5
200  
150  
100  
50  
Gain = 1  
Gain = 64 and 128  
PGA Bypass  
Gain = 1  
Gain = 64  
Gain = 128  
0
0
-50  
-100  
-5  
-10  
0.5  
1
1.5  
2
2.5 3  
VREF(V)  
3.5  
4
4.5  
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D001  
D014  
After calibration  
13. Offset Voltage vs Reference Voltage  
After calibration  
14. Gain Error vs Temperature  
12  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, data rate = 20 SPS, fCLK = 7.3728 MHz and gain = 128  
(unless otherwise noted)  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
Gain = 1, 400 SPS  
Gain = 1  
Gain = 64  
Gain = 128  
Gain = 1, 7200 SPS  
Gain = 128, 400 SPS  
Gain = 128, 7200 SPS  
-10  
-20  
-30  
-40  
0.5  
1
1.5  
2
2.5 3  
VREF (V)  
3.5  
4
4.5  
5
Gain Drift (ppm/èC)  
D013  
D002  
After calibration  
16. Gain vs Reference Voltage  
30 units  
15. Gain Drift Distribution  
9
8
7
6
5
4
3
2
1
0
0.35  
0.3  
Gain = 1  
Gain = 64  
Gain = 128  
Gain = 1  
Gain = 64  
Gain = 128  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D004  
DE0x0c3e  
7200 SPS, Sinc1 mode  
20 SPS, Sinc4 mode  
18. Noise vs Temperature  
17. Noise vs Temperature  
100  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 1, 400 SPS  
Gain = 128, 400 SPS  
Gain = 1, 7200 SPS  
Gain = 128, 7200 SPS  
1
0.1  
0.01  
0.5  
1
1.5  
2
2.5 3  
VREF(V)  
3.5  
4
4.5  
5
D006  
D029  
Conversion Data (mV)  
20 SPS, Gain = 128, 256 data points, shorted inputs  
19. Noise vs Reference Voltage  
20. Conversion Data Histogram  
版权 © 2019, Texas Instruments Incorporated  
13  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, data rate = 20 SPS, fCLK = 7.3728 MHz and gain = 128  
(unless otherwise noted)  
10  
2000  
1800  
1600  
1400  
1200  
1000  
800  
Gain = 1  
Gain = 64  
Gain = 128  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
600  
400  
200  
0
-100 -80 -60 -40 -20  
0
Full Scale Range (%VIN  
20  
40  
)
60  
80 100  
D031  
D033  
Conversion Data (mV)  
7200 SPS, Gain = 128, 8192 data points, shorted inputs  
22. Integral Non-Linearity vs VIN  
21. Conversion Data Histogram  
60  
50  
40  
30  
20  
10  
0
10  
Gain = 1  
Gain = 64  
Gain = 128  
Gain = 1  
Gain = 64  
Gain = 128  
8
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Integral Non-Linearity (ppmFSR  
)
D015  
D007  
30 Units  
24. Integral Non-Linearity Distribution  
23. Integral Non-Linearity vs Temperature  
10  
2
Gain = 1  
Gain = 64  
Gain = 128  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
1.5  
1
8
6
4
2
0
0.5  
0
-0.5  
-1  
-1.5  
-2  
2
2.5  
3
3.5  
VREF (V)  
4
4.5  
5
-20  
-15  
-10  
-5  
Differential Input Voltage (mV)  
0
5
10  
15  
20  
D008  
D110  
Gain = 128  
25. Integral Non-Linearity vs Reference Voltage  
26. Differential Input Current  
14  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, data rate = 20 SPS, fCLK = 7.3728 MHz and gain = 128  
(unless otherwise noted)  
80  
1.5  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
60  
1
40  
0.5  
0
20  
0
-20  
-40  
-60  
-80  
-0.5  
-1  
TA = -40èC, 1200 SPS  
TA = 25èC, 1200 SPS  
TA = 85èC, 1200 SPS  
TA = 125èC, 1200 SPS  
TA = -40èC, 20 SPS  
TA = 25èC, 20 SPS  
TA = 85èC, 20 SPS  
TA = 125èC, 20 SPS  
-1.5  
-5  
-4  
-3  
-2  
-1  
0
1
2
Differential Input Voltage (V)  
3
4
5
-20  
-15  
-10  
-5  
0
5
Differential Input Voltage (mV)  
10  
15  
20  
D111  
D112  
PGA Bypass (gain = 1)  
Chop Mode, Gain = 128  
28. Differential Input Current  
27. Differential Input Current  
18  
15  
12  
9
15  
TA = -40èC  
TA = -40èC  
12.5  
10  
TA = 25èC  
TA = 85èC  
TA = 125èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
7.5  
5
6
3
2.5  
0
0
-3  
-6  
-9  
-12  
-15  
-2.5  
-5  
-7.5  
-10  
-12.5  
0
0.5  
1
1.5  
2
2.5  
3
Absolute Input Voltage (V)  
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
Absolute Input Voltage (V)  
3.5  
4
4.5  
5
D114  
D113  
Chop Mode, Gain = 128  
Gain = 128  
30. Absolute Input Current  
29. Absolute Input Current  
350  
300  
250  
200  
150  
100  
50  
40  
30  
20  
10  
0
IREFN, TA = -40èC  
IREFN, TA = 25èC  
IREFN, TA = 85èC  
IREFN, TA = 125èC  
IREFP, TA = -40èC  
IREFP, TA = 25èC  
IREFP, TA = 85èC  
IREFP, TA = 125èC  
REFP  
0
REFN  
-50  
0.5  
1
1.5  
2
2.5  
3
3.5  
Differential Reference Voltage (V)  
4
4.5  
5
D024  
D017  
Temperature Sensor Voltage (mV)  
VREFN = AVSS  
30 units  
31. Reference Input Current vs Reference Voltage  
32. Temperature Sensor Voltage Histogram  
版权 © 2019, Texas Instruments Incorporated  
15  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 5 V, data rate = 20 SPS, fCLK = 7.3728 MHz and gain = 128  
(unless otherwise noted)  
1
0.5  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.5  
-1  
-1.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D016  
D027  
30 units  
30 units  
33. Internal Oscillator Frequency vs Temperature  
34. Reference Low Monitor Threshold vs Temperature  
0.3  
0.25  
0.2  
5
4.95  
4.9  
4.85  
4.8  
0.15  
0.1  
0.05  
0
4.75  
4.7  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D026  
D025  
30 units  
30 units  
35. PGA Low Monitor Threshold vs Temperature  
36. PGA High Monitor Threshold vs Temperature  
130  
125  
120  
115  
110  
105  
100  
95  
7
6
5
4
3
2
1
0
IAVDD, IAVSS (Gain = 1, PGA mode)  
IAVDD, IAVSS (Gain = 64, 128)  
IDVDD  
90  
CMRR  
PSRR AVDD, AVSS  
PSRR DVDD  
85  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D034  
D018  
37. CMRR and PSRR vs Temperature  
38. Operating Current vs Temperature  
16  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
7 Parameter Measurement Information  
7.1 Noise Performance  
The ADS1235-Q1 noise performance depends on the ADC configuration: data rate, PGA gain, digital filter  
configuration, and chop mode. The combination of the parameters affect noise performance. Two significant  
factors affecting noise performance are data rate and PGA gain. Since the profile of noise is predominantly white  
(flat vs frequency), decreasing the data rate proportionally decreases bandwidth and therefore, decreases total  
noise. Since the noise of the PGA is lower than that of the modulator, increasing the gain decreases overall  
conversion noise when treated as an input-referred quantity. Noise performance also depends on the digital filter  
and chop mode. As the order of the digital filter increases, the noise bandwidth correspondingly decreases  
resulting in decreased noise. Further, as a result of two-point data averaging performed in chop mode, noise  
decreases by 2 compared to normal operation.  
1 shows noise performance in units of μVRMS (RMS = root mean square) and in units of effective resolution  
(bits) under the conditions listed. The values in parenthesis are peak-to-peak values (µV) and noise free  
resolution (bits). Noise-free resolution is the resolution of the ADC with no code flicker. The noise-free resolution  
data are calculated based on the peak-to-peak noise data.  
The effective resolution data listed in the tables are calculated using 公式 1:  
Effective Resolution or Noise-Free Resolution = ln (FSR / en) / ln (2)  
where  
FSR = full scale range = 2 · VREF / Gain (See Recommended Operating Conditions for limitations of FSR)  
en = Input referred voltage noise (RMS value to calculate effective resolution, p-p value to calculate noise-free  
resolution)  
(1)  
The data shown in the noise performance table represent typical ADC performance at TA = 25°C. The noise-  
performance data are the standard deviation and peak-to-peak computations of the ADC data. The noise data  
are acquired with inputs shorted, based on consecutive ADC readings for a period of ten seconds or 8192 data  
points, whichever occurs first. Because of the statistical nature of noise, repeated noise measurements may yield  
higher or lower noise performance results.  
1. Noise in µVRMS (µVPP) and Effective Resolution (Noise-Free Resolution)  
at TA = 25°C and VREF = 5 V  
NOISE, µVRMS (µVPP  
)
EFFECTIVE RESOLUTION (Bits), [NOISE-FREE  
RESOLUTION (Bits)]  
DATA RATE  
FILTER  
GAIN = 1  
0.21 (0.6)  
0.12 (0.3)  
0.15 (0.3)  
0.15 (0.3)  
0.15 (0.3)  
0.29 (0.89)  
0.15 (0.3)  
0.17 (0.6)  
0.12 (0.6)  
0.088 (0.3)  
0.36 (1.5)  
0.28 (0.89)  
0.26 (0.89)  
0.26 (0.6)  
0.24 (0.6)  
0.41 (1.8)  
0.32 (1.5)  
0.3 (1.2)  
GAIN = 64  
0.008 (0.028)  
0.009 (0.037)  
0.007 (0.023)  
0.007 (0.023)  
0.005 (0.019)  
0.013 (0.051)  
0.015 (0.051)  
0.012 (0.047)  
0.011 (0.047)  
0.007 (0.028)  
0.022 (0.11)  
0.015 (0.065)  
0.015 (0.061)  
0.014 (0.065)  
0.013 (0.056)  
0.025 (0.12)  
0.018 (0.089)  
0.017 (0.079)  
0.015 (0.084)  
GAIN = 128  
0.011 (0.042)  
0.008 (0.033)  
0.006 (0.021)  
0.005 (0.014)  
0.006 (0.019)  
0.013 (0.051)  
0.01 (0.044)  
0.009 (0.035)  
0.008 (0.037)  
0.007 (0.03)  
0.02 (0.096)  
0.016 (0.082)  
0.013 (0.065)  
0.011 (0.047)  
0.01 (0.042)  
0.022 (0.12)  
0.018 (0.096)  
0.018 (0.091)  
0.014 (0.072)  
GAIN = 1  
24 (23.8)  
24 (24)  
GAIN = 64  
24 (22.4)  
GAIN = 128  
22.7 (20.8)  
23.2 (21.2)  
23.7 (21.8)  
24 (22.4)  
2.5 SPS  
2.5 SPS  
2.5 SPS  
2.5 SPS  
2.5 SPS  
5 SPS  
FIR  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
24 (22)  
24 (24)  
24 (22.7)  
24 (24)  
24 (22.7)  
24 (24)  
24 (23)  
23.7 (22)  
24 (23.2)  
24 (24)  
23.6 (21.5)  
23.4 (21.5)  
23.7 (21.7)  
23.7 (21.7)  
24 (22.4)  
22.5 (20.5)  
22.9 (20.8)  
23 (21.1)  
5 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
5 SPS  
24 (23.8)  
24 (23.8)  
24 (24)  
5 SPS  
23.1 (21)  
5 SPS  
23.3 (21.3)  
21.9 (19.6)  
22.2 (19.9)  
22.5 (20.2)  
22.7 (20.7)  
22.9 (20.8)  
21.8 (19.4)  
22 (19.6)  
10 SPS  
10 SPS  
10 SPS  
10 SPS  
10 SPS  
16.6 SPS  
16.6 SPS  
16.6 SPS  
16.6 SPS  
24 (22.5)  
24 (23.2)  
24 (23.2)  
24 (23.8)  
24 (23.8)  
24 (22.2)  
24 (22.5)  
24 (22.8)  
24 (22.8)  
22.8 (20.5)  
23.3 (21.2)  
23.3 (21.3)  
23.4 (21.2)  
23.6 (21.4)  
22.6 (20.3)  
23 (20.8)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
23.1 (20.9)  
23.3 (20.8)  
22.1 (19.7)  
22.4 (20)  
0.23 (1.2)  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Noise Performance (接下页)  
1. Noise in µVRMS (µVPP) and Effective Resolution (Noise-Free Resolution)  
at TA = 25°C and VREF = 5 V (接下页)  
NOISE, µVRMS (µVPP  
)
EFFECTIVE RESOLUTION (Bits), [NOISE-FREE  
RESOLUTION (Bits)]  
DATA RATE  
FILTER  
GAIN = 1  
0.51 (2.1)  
0.44 (2.1)  
0.36 (1.2)  
0.32 (1.5)  
0.3 (1.2)  
0.63 (3.6)  
0.57 (3)  
0.53 (2.4)  
0.49 (2.4)  
0.71 (3.9)  
0.6 (3.3)  
0.56 (3)  
0.53 (2.7)  
0.8 (4.8)  
0.68 (4.2)  
0.67 (4.2)  
0.62 (3.6)  
1.4 (11)  
1.2 (8.3)  
1.1 (7.7)  
1 (7.7)  
GAIN = 64  
0.032 (0.16)  
0.025 (0.13)  
0.02 (0.12)  
0.017 (0.089)  
0.017 (0.084)  
0.04 (0.25)  
0.033 (0.21)  
0.03 (0.19)  
0.028 (0.15)  
0.043 (0.27)  
0.036 (0.24)  
0.032 (0.19)  
0.031 (0.19)  
0.056 (0.34)  
0.047 (0.29)  
0.042 (0.28)  
0.039 (0.24)  
0.11 (0.81)  
0.09 (0.64)  
0.082 (0.61)  
0.076 (0.59)  
0.18 (1.3)  
GAIN = 128  
0.029 (0.16)  
0.026 (0.13)  
0.02 (0.1)  
GAIN = 1  
24 (22)  
GAIN = 64  
22.2 (19.9)  
22.6 (20.2)  
22.9 (20.4)  
23.1 (20.8)  
23.1 (20.8)  
21.9 (19.2)  
22.2 (19.5)  
22.3 (19.7)  
22.4 (20)  
GAIN = 128  
21.3 (18.9)  
21.5 (19.2)  
21.9 (19.5)  
22 (19.6)  
20 SPS  
20 SPS  
FIR  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
24 (22)  
20 SPS  
24 (22.8)  
20 SPS  
0.018 (0.096)  
0.018 (0.1)  
0.038 (0.23)  
0.032 (0.18)  
0.03 (0.17)  
0.026 (0.16)  
0.042 (0.26)  
0.034 (0.21)  
0.03 (0.17)  
0.03 (0.18)  
0.054 (0.35)  
0.043 (0.3)  
0.041 (0.27)  
0.039 (0.27)  
0.11 (0.75)  
0.086 (0.6)  
0.078 (0.56)  
0.072 (0.53)  
0.18 (1.4)  
24 (22.5)  
20 SPS  
24 (22.8)  
22.1 (19.6)  
21 (18.4)  
50 SPS  
23.7 (21.2)  
23.9 (21.5)  
24 (21.8)  
50 SPS  
21.2 (18.7)  
21.3 (18.8)  
21.5 (18.9)  
20.8 (18.2)  
21.1 (18.5)  
21.3 (18.8)  
21.3 (18.7)  
20.5 (17.8)  
20.8 (18)  
50 SPS  
50 SPS  
24 (21.8)  
60 SPS  
23.6 (21.1)  
23.8 (21.4)  
23.9 (21.5)  
24 (21.6)  
21.8 (19.1)  
22.1 (19.3)  
22.2 (19.6)  
22.3 (19.7)  
21.4 (18.8)  
21.7 (19)  
60 SPS  
60 SPS  
60 SPS  
100 SPS  
100 SPS  
100 SPS  
100 SPS  
400 SPS  
400 SPS  
400 SPS  
400 SPS  
1200 SPS  
1200 SPS  
1200 SPS  
1200 SPS  
2400 SPS  
2400 SPS  
2400 SPS  
2400 SPS  
4800 SPS  
4800 SPS  
4800 SPS  
4800 SPS  
7200 SPS  
7200 SPS  
7200 SPS  
7200 SPS  
23.4 (20.8)  
23.6 (21)  
23.6 (21)  
21.8 (19.1)  
21.9 (19.3)  
20.4 (17.5)  
20.7 (17.9)  
20.9 (18)  
20.9 (18.1)  
20.9 (18.2)  
19.5 (16.7)  
19.8 (17)  
23.8 (21.2)  
22.6 (19.6)  
22.8 (20)  
22.9 (20.1)  
23 (20.1)  
19.9 (17.1)  
20 (17.2)  
21 (18)  
2.3 (17)  
2 (14)  
21.9 (19)  
19.7 (16.9)  
20 (17)  
18.8 (15.7)  
19 (16.1)  
0.15 (1.2)  
0.15 (1.1)  
22.1 (19.3)  
22.2 (19.4)  
22.3 (19.4)  
21.4 (18.4)  
21.6 (18.7)  
21.7 (18.9)  
21.8 (18.9)  
20.9 (17.9)  
21.1 (18.1)  
21.2 (18.3)  
21.3 (18.3)  
20.7 (17.7)  
20.8 (17.9)  
20.9 (18)  
1.8 (13)  
1.7 (13)  
3.2 (26)  
2.7 (20)  
2.5 (18)  
2.3 (18)  
4.4 (35)  
3.9 (30)  
3.6 (27)  
3.4 (27)  
5.2 (42)  
4.7 (37)  
4.5 (35)  
4.2 (36)  
0.14 (1)  
0.13 (1)  
20.1 (17.2)  
20.2 (17.2)  
19.2 (16.2)  
19.5 (16.5)  
19.6 (16.7)  
19.7 (16.7)  
18.8 (15.9)  
19 (16.1)  
19.2 (16.2)  
19.2 (16.3)  
18.3 (15.4)  
18.5 (15.6)  
18.6 (15.8)  
18.8 (15.8)  
17.9 (15)  
0.13 (1)  
0.13 (0.94)  
0.24 (1.8)  
0.25 (2)  
0.22 (1.7)  
0.21 (1.5)  
0.2 (1.4)  
0.19 (1.4)  
0.18 (1.5)  
0.18 (1.4)  
0.34 (2.5)  
0.32 (2.4)  
0.3 (2.3)  
0.29 (2.4)  
18 (15)  
0.28 (2)  
0.26 (2)  
19.1 (16.3)  
19.2 (16.3)  
18.6 (15.7)  
18.7 (15.8)  
18.8 (15.9)  
18.9 (16)  
18.2 (15.2)  
18.2 (15.3)  
17.7 (14.7)  
17.8 (14.9)  
17.9 (15)  
0.26 (1.9)  
0.25 (1.9)  
0.38 (2.9)  
0.37 (3)  
0.36 (2.8)  
0.34 (2.5)  
0.34 (2.5)  
0.32 (2.4)  
0.32 (2.5)  
0.31 (2.3)  
21 (17.9)  
18 (15.1)  
18  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8 Detailed Description  
8.1 Overview  
The ADS1235-Q1 is a three differential-input, precision 24-bit, ΔΣ ADC with a low-noise PGA and programmable  
digital filter. The low-noise, low-drift architecture of the PGA makes the ADC suitable for precision measurement  
of low signal level sensors, such as strain-gauge bridges and resistive pressure transducers. The ADC provides  
optional chop and ac-bridge excitation modes to eliminate offset drift error.  
Key features of the ADC are:  
1-GΩ input impedance, low-noise PGA  
High-resolution 24-bit ΔΣ ADC  
Four GPIO with ac-bridge excitation control output  
Internal oscillator  
Voltage reference monitor  
Signal overrange monitor  
Temperature sensor  
CRC communication error detection  
The analog inputs (AINx) connect to the input multiplexer (MUX). The ADC supports three differential or five  
single-ended input measurement configurations. A second voltage reference input and AC-bridge excitation drive  
outputs (GPIO) are multiplexed with the analog input pins.  
The programmable gain amplifier (PGA) follows the input multiplexer. The gain is programmable to 1, 64 or 128.  
The PGA bypass option connects the analog inputs directly to the precharge buffered modulator, extending the  
input voltage range to the voltage of the power supplies. The PGA output connects to pins CAPP and CAPN.  
The ADC antialias filter is provided at the PGA output with an external capacitor. A monitor is used for detection  
of PGA overrange conditions.  
The delta-sigma modulator measures the differential input voltage relative to the reference voltage to produce the  
24-bit conversion result. The differential input range of the ADC is ±VREF / Gain.  
The digital filter averages and decimates the modulator output data to yield the final, down-sampled conversion  
result. The sinc filter is programmable (sinc1 through sinc4) allowing optimization of conversion time, conversion  
noise and line-cycle rejection. The finite impulse response (FIR) filter mode provides single-cycle settled data  
with simultaneous rejection of 50-Hz and 60-Hz at data rates of 20 SPS or less.  
Two reference voltage input pairs are provided. The primary reference input pair (REFP0/REFN0) is available as  
standalone input pins. A second reference input pair (REFP1/REFN1) is multiplexed with analog inputs AIN0 and  
AIN1. A monitor is used for detection of low or missing reference voltage.  
The ADC provides four GPIO control lines. The GPIOs are used for input and output of general-purpose logic  
signals, as well as providing output drive signals for ac-excited bridges. The GPIOs and ac-bridge excitation drive  
outputs are multiplexed to the analog inputs.  
The internal temperature sensor voltage is read by the ADC through the analog input multiplexer.  
The SPI-compatible serial interface is used to read the conversion data and also to configure and control the  
ADC. Data communication errors are detected by CRC. The serial interface consists of four signals: CS, SCLK,  
DIN and DOUT/DRDY. The dual function DOUT/DRDY provides data output and also the data ready signal. The  
ADC serial interface can be implemented with as little as three pins by tying CS low.  
The ADC clock is either internal or external. The ADC detects the mode of clock operation automatically. The  
clock frequency is 7.3728 MHz.  
Data conversions are controlled by the START pin or by the START command. The ADC is programmable for  
continuous or one-shot conversions. The DRDY or DOUT/DRDY pin provides the conversion-data ready signal.  
When taken low, the RESET pin resets the ADC. The ADC is powered down by the PWDN pin or is powered  
down in software mode.  
The ADC operates in either bipolar analog supply configuration (±2.5 V), or in single 5-V supply configuration.  
The digital power supply range is 2.7 V to 5 V. The BYPASS pin is the internal subregulator output used for the  
ADC digital core.  
版权 © 2019, Texas Instruments Incorporated  
19  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.2 Functional Block Diagram  
AVDD  
DVDD  
BYPASS  
2-V Core  
Voltage  
LDO  
REFP0  
REFN0  
Ref  
Mux  
I/O Voltage  
START  
RESET  
PWDN  
DRDY  
Control  
Ref  
Monitor  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
Temp  
Sensor  
Input  
Mux  
Buf  
CS  
DIN  
Serial  
Interface  
24-Bit  
ûADC  
Digital  
Filter  
PGA  
SCLK  
GPIO  
AC-EXC  
DOUT/DRDY  
Internal  
Oscillator  
Clock  
Mux  
PGA  
Monitor  
CLKIN  
CAPN  
AVSS  
CAPP  
DGND  
20  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.3 Feature Description  
The following sections describe the functional blocks of the ADC.  
8.3.1 Analog Inputs  
39 shows the analog input circuit consisting of ESD-protection diodes, the input multiplexer and the PGA. The  
ADS1235-Q1 has six analog inputs to support three differential-input measurement channels. In addition, there  
are two internal (system) measurements, and an option to disconnect all inputs.  
ESD Diodes  
Positive Input Multiplexer  
AVDD  
MUXP[3:0] bits 7:4 of INPMUX  
(register address = 11h)  
- and -  
0000  
Negative Input Multiplexer  
Reserved  
Reserved  
0001  
0010  
0011  
MUXN[3:0] bits 3:0 of INPMUX  
(register address = 11h)  
Reserved  
AIN0  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN1  
AIN2  
AIN3  
0100  
0101  
0110  
0111  
1000  
+
AIN4  
AIN5  
ADC  
PGA  
-
1001  
1010  
Reserved  
Reserved  
Temperature Sensor  
Reserved  
1011  
1100  
1101  
1110  
1111  
Reserved  
All Open  
AVSS  
VCOM: (AVDD + AVSS) / 2  
ESD Diodes  
39. Analog Input Block Diagram  
8.3.1.1 ESD Diodes  
ESD diodes are incorporated to protect the ADC inputs from possible ESD events occurring during the  
manufacturing process and during PCB assembly when manufactured in an ESD-controlled environment. For  
system-level ESD protection, consider the use of external ESD protection devices for pins that are exposed to  
ESD, including the analog inputs.  
If either input is driven below AVSS – 0.3 V, or above AVDD + 0.3 V, the internal protection diodes may conduct.  
If these conditions are possible, use external clamp diodes, series resistors, or both to limit the input current to  
the specified maximum value.  
8.3.1.2 Input Multiplexer  
The input multiplexer selects the signal for measurement. The multiplexer consists of independently  
programmable positive and negative sections. See 39 for multiplexer register settings. The multiplexers select  
any input as positive and any input as negative for connection to the PGA. For example, to select AIN5 and AIN4  
as a differential input with (+) and (-) polarity, program the INPMUX register to the value of 87h.  
When the multiplexer is changed, a break-before-make sequence is performed in order to reduce charge  
injection into the next measurement channel. Be aware that over-driving unused channels beyond the power  
supplies can effect conversions taking place on active channels. See the Input Overload section for more  
information.  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
8.3.1.3 Temperature Sensor  
The ADC has an internal temperature sensor. The temperature sensor is comprised of two internal diodes with  
one diode having 80 times the current density of the other. The difference in current density of the diodes yields  
a differential output voltage that is proportional to absolute temperature. The temperature sensor reading is  
converted by the ADC. See 39 for register settings to select the temperature sensor for measurement.  
公式 2 shows how to convert the temperature sensor reading to degrees Celsius (˚C):  
Temperature (°C) = [(Temperature Reading (µV) – 122,400) / 420 µV/°C] + 25°C  
(2)  
Measure the temperature sensor with PGA on, gain = 1 and ac-bridge excitation mode disabled. As a result of  
the low package-to-PCB thermal resistance, the internal temperature closely tracks the PCB temperature.  
8.3.1.4 Inputs Open  
This configuration opens the inputs to the PGA. Use this configuration to disconnect the PGA from the sensor.  
With all inputs disconnected, the conversion data are invalid due to the floating input condition. See 39 for the  
register setting value to open all inputs.  
8.3.1.5 Internal VCOM Connection  
This configuration connects the PGA inputs to the internal VCOM voltage as defined: (AVDD + AVSS) / 2. Use this  
connection to short the inputs to measure the ADC noise performance and offset voltage, or to short the inputs  
for offset calibration. See 39 for register settings for the internal VCOM connection.  
8.3.1.6 Alternate Functions  
The analog input pins have multiplexed alternate functions. The alternate functions are the second reference  
input and GPIO to provide the ac-bridge excitation drive signals. The functions are enabled by programming the  
associated function registers. The analog inputs retain measurement capability if the alternate functions are  
programmed. 2 summarizes the alternate functions multiplexed to the analog input pins.  
2. Analog Input Alternate Functions  
ANALOG INPUTS  
REFERENCE INPUTS  
REFP1  
GPIO/AC-BRIDGE EXCITATION (2-wire mode)  
GPIO/AC-BRIDGE EXCITATION (4-wire mode)  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
GPIO0/ACX1  
GPIO1/ACX2  
GPIO0/ACX1  
GPIO1/ACX2  
GPIO2/ACX1  
GPIO3/ACX2  
REFN1  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.3.2 PGA  
The PGA is a low-noise, CMOS differential-input, differential-output amplifier. The PGA extends the dynamic  
range of the ADC, important when used with low-level output sensors. Gain is controlled by the GAIN[2:0]  
register bits as shown in 40. In PGA bypass mode, the input voltage range extends to the analog supplies.  
The PGA is powered down in bypass mode.  
BYPASS bit 7 of PGA  
(register address = 10h)  
0: PGA active (shown)  
1: PGA bypass  
280  
350 Ω  
VAINP  
+
A1  
œ
8 pF  
CAPP  
GAIN[2:0] bits 2:0 of PGA  
(register address = 10h)  
12 pF  
Positive  
Monitor  
000: 1  
4.7 nF  
C0G  
001: reserved  
010: reserved  
011: reserved  
100: reserved  
101: reserved  
110: 64  
ADC  
12 pF  
Negative  
Monitor  
12 pF  
111:128  
œ
A2  
CAPN  
350 Ω  
280 Ω  
VAINN  
+
8 pF  
40. PGA Block Diagram  
The PGA consists of two chopper-stabilized amplifiers (A1 and A2), and a resistor network that determines the  
PGA gain. The resistor network is precision-matched, providing low drift performance. The PGA has internal  
noise filters to reduce sensitivity to electromagnetic-interference (EMI). The PGA output is monitored to provide  
indication of a possible PGA overload condition.  
Pins CAPP and CAPN are the PGA positive and negative outputs, respectively. Connect an external 4.7-nF  
capacitor (type C0G) as shown in 40. The capacitor filters the sample pulses caused by the modulator, and  
with the internal resistors the antialias filter is provided. Place the capacitor as close as possible to the pins using  
short, direct traces. Avoid running clock traces or other digital traces close to these pins.  
8.3.2.1 Input Voltage Range  
The input voltage range is determined by the magnitude of the reference voltage and ADC gain. As shown in 图  
19, conversion voltage noise is constant over the specified reference voltage range. 3 shows the differential  
input voltage range verses gain for VREF = 5 V.  
3. Input Voltage Range  
GAIN[2:0] BITS  
GAIN  
1
FULL-SCALE DIFFERENTIAL INPUT VOLTAGE RANGE(1)  
000  
110  
111  
±5.000 V  
±0.078 V  
±0.039 V  
64  
128  
(1) VREF = 5 V. Input voltage range scales with VREF. For gain = 1 and PGA mode, the input voltage range  
is limited by evaluation of 公式 3.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
As with many amplifiers, the PGA has an input voltage range specification that must not be exceeded in order to  
maintain linear operation. The input range is specified as an absolute voltage (signal plus common mode  
voltage) at both positive and negative inputs. As specified in 公式 3, the maximum and minimum absolute input  
voltage depends on gain, the expected maximum differential voltage, and the minimum value of the analog  
power supply voltage.  
AVSS + 0.3 V + VIN · (Gain – 1) / 2 · < VAINP and VAINN < AVDD – 0.3 V – VIN · (Gain – 1) / 2  
where  
VAINP, VAINN = absolute input voltage  
VIN = VAINP – VAINN, maximum differential input voltage  
Gain (for gains = 64 and 128, use 32 for calculation)  
AVDD = minimum AVDD voltage  
AVSS = maximum AVSS voltage  
(3)  
The relationship of the PGA input to the PGA output is shown graphically in 41. The PGA output voltages  
(VOUTP, VOUTN) depend on the respective absolute input voltage, the differential input voltage, and the PGA gain.  
To maintain the PGA within the linear operating range, the PGA output voltages must be restricted within  
AVDD – 0.3 V and AVSS + 0.3 V. The diagram depicts a positive differential input voltage that results in a  
positive differential output voltage.  
PGA Input  
PGA Output  
AVDD  
AVDD œ 0.3 V  
VOUTP = VAINP + VIN (Gain œ 1) / 2  
VAINP  
VIN = VAINP ‡ VAINN  
VAINN  
VOUTN = VAINN œ VIN (Gain œ 1) / 2  
AVSS + 0.3 V  
AVSS  
41. PGA Input/Output Range  
8.3.2.2 PGA Bypass Mode  
Bypass the PGA to extend the input voltage range to the analog power supply voltages. In bypass mode, the  
PGA is bypassed and the analog inputs are connected directly to the precharge buffers of the modulator, thereby  
extending the input voltage range. Be aware of the increased input current in bypass mode. See the Electrical  
Characteristics for the input current specification.  
8.3.3 PGA Voltage Monitor  
The PGA has internal monitors to alarm of possible overrange conditions. Overrange conditions are possible if  
the signal voltage is over-driven, the common-mode voltage is out of range or if too much gain is used for the  
normal range of input signal. When overranged, the PGA output nodes are in saturation resulting in invalid  
conversion data. The high alarm bit asserts high (PGAH_ALM) If either the positive or negative PGA output is  
greater than AVDD – 0.2 V. Similarly, the low alarm bit asserts high (PGAL_ALM) if either positive or negative  
PGA output is less than AVSS + 0.2 V. The status of the alarm bits are read in the STATUS byte. The alarm bits  
are read-only and automatically reset at the start of the next conversion cycle after the overrange condition is  
cleared. The PGA voltage monitor diagram and threshold values are shown in 42 and 43.  
24  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
AVDD œ 0.2 V  
œ
PGAH_ALM Condition  
+
PGAH_ALM  
AVDD  
œ
AVDD œ 0.2 V  
STATUS Byte  
PGA Output  
P
+
P or N  
P or N  
PGA  
N
6
5
3
7
4
2
1
0
œ
+
AVSS + 0.2 V  
AVSS  
PGAL_ALM  
œ
+
AVSS + 0.2 V  
PGAL_ALM Condition  
42. PGA Voltage Monitor Diagram  
43. PGA Monitor Thresholds  
The PGA voltage monitors are fast-responding voltage comparators. Comparator operation is disabled during  
multiplexer changes to minimize triggering of false alarms. However, it is possible the alarms can trigger on other  
transient overload conditions that may occur after gain changes, sensor connection changes, and so on.  
8.3.4 Reference Voltage  
The ADC requires a reference voltage for operation. The ADC allows two external inputs and the internal analog  
power supply as reference options. The reference voltage is selected by independent positive and negative  
multiplexers. The default reference is the 5-V analog power supply (AVDD – AVSS). 44 shows the block  
diagram of the reference multiplexer.  
RMUXP[1:0] bits 3:2 of REF  
(register address = 06h)  
00  
01  
10  
11  
Reserved  
AVDD  
REFP0  
VREFP  
AIN0 (REFP1)  
Ref Monitor  
BUF  
00  
01  
10  
11  
Reserved  
VREFN  
AVSS  
ADC  
REFN0  
AIN1 (REFN1)  
RMUXN[1:0] bits 1:0 of REF  
(register address = 06h)  
44. Reference Input Block Diagram  
Program the RMUXP[1:0] and RMUXN[1:0] bits of the REF register to select the positive and negative reference  
voltages, respectively. The positive reference selections are AVDD, REFP0 and AIN0 (REFP1). The negative  
reference input selections are internal AVSS, REFN0, AIN1 (REFN1). The reference low-voltage monitor is  
located after the reference multiplexer. See the Reference Monitor section for more information.  
8.3.4.1 External Reference  
Use the external reference by applying the reference voltage to the designated reference input pins. The  
reference input pins are differential with positive and negative inputs. Program the reference multiplexer bits  
RMUXP[1:0] and RMUXN[1:0] to select the respective reference voltage for operation. For example, to select  
REFP0 and REFN0 as the reference voltage, program the REF register to the value of 0Ah. Follow the specified  
absolute and differential reference voltage operating conditions, as specified in the Recommended Operating  
Conditions.  
Be aware of the reference input current when reference impedances are present, such as by the use of a resistor  
divider. Consider the effect of the resistance to system accuracy. Connect a capacitor across the reference input  
pins to filter noise. When R-C filters are used, match the time constants of the input signal filter to the reference  
voltage filter to maintain constant conversion noise over the signal operating range.  
版权 © 2019, Texas Instruments Incorporated  
25  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.3.4.2 AVDD – AVSS Reference (Default)  
A third reference option is the 5-V analog power supply (AVDD – AVSS). Select this reference option by  
programming the REF register to 05h. For 6-wire strain-gauge bridge applications that use excitation-sense  
connections, or for ac-bridge excitation operation, connect the excitation sense lines to the reference input pins  
and program the ADC for external reference operation.  
8.3.4.3 Reference Monitor  
The ADC incorporates an internal low-voltage monitor of the reference voltage. As shown in 45 and 46, the  
REFL_ALM bit of the STATUS byte asserts if the reference voltage (VREF = VREFP – VREFN) falls below 0.4 V. The  
alarm is read-only and resets at the next conversion after the low reference condition is no longer present.  
Use the reference monitor to detect a missing or failed reference voltage. To implement detection of a missing  
reference, use a 100-kΩ resistor across the reference inputs. If either reference input is disconnected, the  
resistor biases the differential reference input toward 0 V so that the reference monitor detects the disconnected  
reference.  
Differential  
Reference Voltage  
STATUS Byte  
0.4 V, Typical  
6
5
3
7
4
2
1
0
REFP0  
+
REFL_ALM  
Ref  
Mux  
External  
Reference  
+
_
_
+
100 k  
REFN0  
_
Reference Low Condition  
0.4 V  
45. Reference Monitor  
8.3.5 General-Purpose Input/Outputs (GPIOs)  
46. Reference Monitor Threshold  
The ADC includes four GPIO pins, GPIO0 through GPIO3. The GPIOs are digital inputs/outputs that are  
referenced to analog AVDD and AVSS. The GPIOs are read and written by the GPIO_DAT bits of the MODE3  
register. The GPIOs are multiplexed with analog inputs AIN0 to AIN3. As shown in 47, the GPIOs are  
configured through a series of programming registers. Bits GPIO_CON[3:0] connect the GPIOs to the associated  
pin (1 = connect). Bits GPIO_DIR program the direction of the GPIOs; (0 = output, 1 = input). The input voltage  
threshold is the voltage value between AVDD and AVSS. Bits GPIO_DAT[3:0] are the data values for the GPIOs.  
Observe that if a GPIO pin is programmed as an output, the value read is the value previously written to the  
register data, not the actual voltage at the pin.  
The GPIOs also provide the ac-bridge excitation drive signals. AC-bridge excitation mode overrides the GPIO  
register data values. See the AC-Bridge Excitation Mode section for details.  
AVDD  
Write  
AC-Bridge Excitation Mode  
CHOP[1:0] bits 6:5 of MODE1  
(register address = 03h)  
GPIO_CON[3:0] bits 7:4 of MODE2  
(register address = 04h)  
GPIO_DAT[3:0] bits 3:0 of MODE3  
(register address = 05h)  
00: Normal mode (default)  
01: Chop mode  
10: 2-wire AC-bridge excitation mode  
11: 4-wire AC-bridge excitation mode  
Write  
0: GPIO not connected (default)  
1: GPIO connected  
0: VGPIO low (default)  
1: VGPIO high  
0
Read  
GPIO0  
AIN0  
AIN1  
AIN2  
1
GPIO1  
GPIO2  
GPIO3  
GPIO_DIR[3:0] bits 3:0 of MODE2  
(register address = 04h)  
+
MUX  
Read Select  
AIN3  
œ
0: GPIO is output (default)  
1: GPIO is input  
AVDD + AVSS  
2
AVSS  
47. GPIO Block Diagram  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.3.6 Modulator  
The modulator is an inherently stable, fourth-order, 2 + 2 pipelined ΔΣ modulator. The modulator samples the  
analog input voltage at a high sample rate (fMOD = fCLK / 8) and converts the analog input to a ones-density bit-  
stream with the density given by the ratio of the input signal to the reference voltage. The modulator shapes the  
noise of the converter to high frequency, where the noise is removed by the digital filter.  
8.3.7 Digital Filter  
The ADC operates on the principle of oversampling. Oversampling is defined as the ratio of the sample rate of  
the modulator to that of the ADC output data rate. Oversampling improves ADC noise by digital bandwidth  
limiting (low-pass filtering) of the data.  
The digital filter receives the modulator output data and produces a high-resolution conversion result. The digital  
filter low-pass filters and decimates the modulator data (data rate reduction), yielding the final data output. By  
adjusting the type of filtering, tradeoffs are made between resolution, data throughput and line-cycle rejection.  
The digital filter has two selectable modes: sin (x) / x (sinc) mode and finite impulse response (FIR) mode (see  
48). The sinc mode provides data rates of 2.5 SPS through 7200 SPS with variable sinc orders of 1 through 4.  
The FIR filter provides simultaneous rejection of 50-Hz and 60-Hz frequencies with data rates of 2.5 SPS through  
20 SPS while providing single-cycle settled conversions.  
Sinc Filter Section  
fCLK / 8  
7200 SPS to 2.5 SPS  
Modulator  
Sinc5 Filter  
SincN Filter  
FIR Filter Section  
Filter  
Mux  
To Offset/Gain  
Calibration  
20 SPS  
FIR  
Averager  
10 SPS  
5 SPS  
2.5 SPS  
DR[3:0] bits 7:3 of MODE0  
(register address = 02h)  
FILTER[2:0] bits 2:0 of MODE0  
(register address = 02h)  
(
= Data rate reduction)  
000: sinc1  
001: sinc2  
010: sinc3  
011: sinc4  
100: FIR mode  
0000: 2.5 SPS  
0001: 5 SPS  
0010: 10 SPS  
0011: 16.6 SPS  
0100: 20 SPS  
0101: 50 SPS  
0110: 60 SPS  
0111: 100 SPS  
1000: 400 SPS  
1001: 1200 SPS  
1010: 2400 SPS  
1011: 4800 SPS  
1100: 7200 SPS  
48. Digital Filter Block Diagram  
8.3.7.1 Sinc Filter  
The sinc filter is comprised of two stages: a fixed-decimation sinc5 filter, followed by a variable-decimation,  
variable-order sinc filter. The first stage filters and down-samples the input data from the modulator to produce an  
intermediate data rate of 14400 SPS. The second stage receives the intermediate data to provide final output  
data rates of 7200 SPS through 2.5 SPS. The second stage has programmable orders of sinc.  
The data rate is programmed by the DR[3:0] bits of the MODE0 register. The filter mode is programmed by the  
FILTER[2:0] bits of the MODE0 register (see 48).  
版权 © 2019, Texas Instruments Incorporated  
27  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.3.7.1.1 Sinc Filter Frequency Response  
The overall frequency response of the sinc filter is low pass. The filter reduces signal and noise beginning at the  
-3-dB bandwidth. Changing the data rate and filter order changes the filter bandwidth together with the rate of  
frequency roll-off. See the Filter Bandwidth section for the bandwidth of the filter settings.  
49 shows the frequency response of the sinc filter at 2400 SPS for various orders of the sinc filter. The peaks  
and nulls are characteristic of the sinc filter response. The frequency response nulls occur at f (Hz) = N · fDATA  
,
where N = 1, 2, 3 and so on. At the null frequencies, the filter has zero gain. The response nulls are  
superimposed with the larger nulls beginning at 14400 Hz. The larger nulls are produced by the first stage. The  
frequency response is similar to that of data rates 2.5 SPS through 7200 SPS. 50 shows the frequency  
response nulls for 10 SPS.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
20 25  
Frequency (kHz)  
30  
35  
40  
45  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (Hz)  
D003  
D004  
49. Sinc Frequency Response (2400 SPS)  
50. Sinc Frequency Response (10 SPS)  
51 and 52 show the frequency response of data rates 50 SPS and 60 SPS, respectively. Increase the  
attenuation at 50 Hz or 60 Hz and harmonics by increasing the order of the sinc filter, as shown in the figures.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Frequency (Hz)  
0
60 120 180 240 300 360 420 480 540 600  
Frequency (Hz)  
D005  
D006  
51. Sinc Frequency Response (50 SPS)  
52. Sinc Frequency Response (60 SPS)  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
53 and 54 show the detailed frequency response at 50 SPS and 60 SPS, respectively.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
45  
46  
47  
48  
49  
Frequency (Hz)  
50  
51  
52  
53  
54  
55  
55  
56  
57  
58  
59  
Frequency (Hz)  
60  
61  
62  
63  
64  
65  
D009  
D010  
53. Detail Sinc Frequency Response (50 SPS)  
54. Detail Sinc Frequency Response (60 SPS)  
8.3.7.2 FIR Filter  
The finite impulse response (FIR) filter is a coefficient based filter that provides an overall low-pass filter  
response. The filter provides simultaneous attenuation of 50 Hz and 60 Hz and harmonics at data rates of 2.5  
SPS through 20 SPS. The conversion latency time of the FIR filter data rates is single-cycle. As shown in 48,  
the FIR filter receives pre-filtered data from the sinc filter. The FIR filter decimates the data to yield the output  
data rates of 20 SPS. A variable averager (sinc1) provides data rates of 10 SPS, 5 SPS, and 2.5 SPS. 4 lists  
the bandwidth of the data rates in FIR filter mode.  
8.3.7.2.1 FIR Filter Frequency Response  
55 and 56 show the FIR filter attenuation at 50 Hz and 60 Hz provided by a series of response nulls placed  
close to these frequencies. The response nulls are repeated at harmonics of 50 Hz and 60 Hz.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
40  
45  
50  
55  
Frequency (Hz)  
60  
65  
70  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
D012  
D011  
56. FIR Frequency Response Detail (20 SPS)  
55. FIR Frequency Response (20 SPS)  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
57 is the FIR filter response at 10 SPS. As a result of the variable averager used to produce rates of 10 SPS  
and lower, new frequency nulls are superimposed to the response. The first null appears at the data rate. At 10  
SPS, additional nulls occur at frequencies folded around multiples of 20 Hz.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
D013  
57. FIR Frequency Response (10 SPS)  
8.3.7.3 Filter Bandwidth  
The bandwidth of the digital filter depends on the data rate, filter type and order. Be aware that the bandwidth of  
the entire system is the combined response of the digital filter, the antialias filter and the use of external analog  
filters. 4 lists the bandwidth of the digital filter versus data rate and filter mode.  
4. Filter Bandwidth  
-3-dB BANDWIDTH (Hz)  
DATA RATE (SPS)  
FIR  
1.2  
2.4  
4.7  
SINC1  
1.10  
2.23  
4.43  
7.38  
8.85  
22.1  
26.6  
44.3  
177  
SINC2  
0.80  
1.60  
3.20  
5.33  
6.38  
16.0  
19.1  
31.9  
128  
SINC3  
0.65  
1.33  
2.62  
4.37  
5.25  
13.1  
15.7  
26.2  
105  
SINC4  
0.58  
1.15  
2.28  
3.80  
4.63  
11.4  
13.7  
22.8  
91.0  
273  
2.5  
5
10  
16.6  
20  
13  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
525  
381  
314  
1015  
1798  
2310  
751  
623  
544  
1421  
1972  
1214  
1750  
1077  
1590  
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.3.7.4 50-Hz and 60-Hz Normal Mode Rejection  
To reduce 50-Hz and 60-Hz noise interference, configure the data rate and filter to reject noise at 50 Hz and 60  
Hz. 5 summarizes the 50-Hz and 60-Hz noise rejection versus data rate and filter mode. The table values are  
based on 2% and 6% tolerance of signal frequency to ADC clock frequency. For the sinc filter, increase noise  
rejection by increasing the order of the filter. Common-mode noise is also rejected at these frequencies.  
5. 50-Hz and 60-Hz Normal Mode Rejection  
DIGITAL FILTER RESPONSE (dB)  
DATA RATE (SPS)  
FILTER TYPE  
FIR  
50 Hz ±2%  
–113  
–36  
60 Hz ±2%  
–99  
50 Hz ±6%  
–88  
–40  
–80  
–120  
–160  
–77  
–30  
–60  
–90  
–120  
–73  
–25  
–50  
–75  
–100  
–24  
–48  
–72  
–96  
–66  
–18  
–36  
–54  
–72  
–24  
–48  
–72  
–96  
–12  
–24  
–36  
–48  
60 Hz ±6%  
–80  
–37  
–74  
–111  
–148  
–76  
–30  
–60  
–90  
–120  
–68  
–25  
–50  
–75  
–100  
–21  
–42  
–63  
–84  
–66  
–24  
–48  
–72  
–96  
–15  
–30  
–45  
–60  
–24  
–48  
–72  
–96  
2.5  
2.5  
2.5  
2.5  
2.5  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–37  
–72  
–74  
–108  
–144  
–111  
–34  
–111  
–148  
–95  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–34  
5
–68  
–68  
5
–102  
–136  
–111  
–34  
–102  
–136  
–94  
5
10  
10  
10  
10  
10  
16.6  
16.6  
16.6  
16.6  
20  
20  
20  
20  
20  
50  
50  
50  
50  
60  
60  
60  
60  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–34  
–68  
–68  
–102  
–136  
–34  
–102  
–136  
–21  
–68  
–42  
–102  
–136  
–95  
–63  
–84  
–94  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
–18  
–34  
–36  
–68  
–54  
–102  
–136  
–15  
–72  
–34  
–68  
–30  
–102  
–136  
–13  
–45  
–60  
–34  
–27  
–68  
–40  
–102  
–136  
–53  
版权 © 2019, Texas Instruments Incorporated  
31  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Conversion Control  
Conversions are controlled by either the START pin or by the START command. If using commands to control  
conversions, keep the START pin low to avoid contentions between pin and commands. Commands take affect  
on the 16th falling SCLK edge (CRC mode disabled) or on the 32nd falling SCLK edge (CRC mode enabled).  
See 4 for conversion-control timing details.  
The ADC provides two conversion modes: continuous and pulse. The continuous-conversion mode performs  
conversions indefinitely until stopped by the user. Pulse-conversion mode performs one conversion and then  
stops. The conversion mode is programmed by the CONVRT bit (bit 4 of register MODE0).  
8.4.1.1 Continuous-Conversion Mode  
This conversion mode performs continuous conversions until stopped by the user. To start conversions, take the  
START pin high or send the START command. DRDY is driven high at the time the conversion is initiated. DRDY  
is driven low when the conversion data are ready. Conversion data are available to read at that time.  
Conversions are stopped by taking the START pin low or by sending the STOP command. When conversions  
are stopped, the conversion in progress runs to completion. To restart a conversion that is in progress, toggle the  
START pin low-then-high or send a new START command.  
8.4.1.2 Pulse-Conversion Mode  
In pulse-conversion mode, the ADC performs one conversion when START is taken high or when the START  
command is sent. When the conversion completes, further conversions stop. The DRDY output is driven high to  
indicate the conversion is in progress, and is driven low when the conversion data are ready. Conversion data  
are available to read at that time. To restart a conversion in progress, toggle the START pin low-then-high or  
send a new START command. Driving START low or sending the STOP command does not interrupt the current  
conversion.  
8.4.1.3 Conversion Latency  
The digital filter averages data from the modulator in order to produce the conversion result. The stages of the  
digital filter must have settled data in order to provide fully-settled output data. The order and the decimation ratio  
of the digital filter determine the amount of data averaged, and in turn, affect the latency of the conversion data.  
The FIR and sinc1 filter modes are zero latency because the ADC provides the conversion result in one  
conversion cycle. Latency time is an important consideration for the data throughput rate in multiplexed  
applications.  
6 lists the conversion latency values of the ADC. Conversion latency is defined as the time from the start of  
the first conversion, by taking the START pin high or sending the START command, to the time when fully settled  
conversion data are ready. If the input signal is settled, then the ADC provides fully settled data. The conversion  
latency values listed in the table are with the start-conversion delay parameter = 50 µs, and include the overhead  
time needed to process the data. After the first conversion completes (in continuous conversion mode), the  
period of the following conversions are equal to 1/fDATA. The first conversion latency in chop and ac-excitation  
modes are twice the values listed in the table. Also when operating in these modes, the period of following  
conversions are equal to the values listed in the table.  
32  
版权 © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
Device Functional Modes (接下页)  
6. Conversion Latency  
CONVERSION LATENCY - t(STDR)(1) (ms)  
DATA RATE  
(SPS)  
FIR  
402.2  
202.2  
102.2  
SINC1  
400.4  
200.4  
100.4  
60.43  
50.43  
20.43  
17.09  
10.43  
2.925  
1.258  
0.841  
0.633  
0.564  
SINC2  
800.4  
400.4  
200.4  
120.4  
100.4  
40.43  
33.76  
20.43  
5.425  
2.091  
1.258  
0.841  
0.702  
SINC3  
1,200  
600.4  
300.4  
180.4  
150.4  
60.43  
50.43  
30.43  
7.925  
2.925  
1.675  
1.050  
0.841  
SINC4  
1,600  
800.4  
400.4  
240.4  
200.4  
80.43  
67.09  
40.43  
10.43  
3.758  
2.091  
1.258  
0.980  
2.5  
5
10  
16.6  
20  
52.23  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
(1) Chop mode off, conversion-start delay = 50 µs (DELAY[3:0] = 0001)  
If the input signal changes while free-running conversions, the conversion data are a mix of old and new data, as  
shown in 58. After an input change, the number of conversion periods required for fully settled data are  
determined by dividing the conversion latency by the period of the data rate, plus add one conversion period to  
the result. In chop and ac-bridge excitation modes, use twice the latency values listed in the table.  
Old VIN  
New VIN  
VIN = VAINP - VAINN  
Fully settled  
new data  
Mix of old data  
and new data  
Old data  
DRDY pin  
58. Input Change During Conversions  
8.4.1.4 Start-Conversion Delay  
Some applications require a delay at the start of a conversion in order to allow settling time for the PGA antialias  
filter or to allow time after input and configuration changes. The ADC provides a user programmable delay time  
that delays the start of a new conversion. The default value is 50 μs. 50 μs allows for settling of the antialiasing  
filter placed at the PGA output. Use additional delay time as needed to provide settling time for external  
components. The delay time increases the conversion latency values listed in 6. As an alternative to the  
programmable start-conversion delay, manually delay the start of conversion after input and configuration  
changes.  
Start-conversion delay is an important consideration for operation in ac-bridge excitation mode. In this mode, the  
reference inputs to the bridge, and therefore, the bridge output signals are reversed for each conversion. As a  
result, time delay is required to allow for settling of external filter components after the bridge voltage is reversed.  
As a general guideline, set the start-conversion delay parameter to a minimum of 15 times the R-C time constant  
of the signal input and reference input filters.  
版权 © 2019, Texas Instruments Incorporated  
33  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.4.2 Chop Mode  
The PGA and modulator are chopper-stabilized at high frequency in order to reduce offset voltage, offset voltage  
drift and 1/f noise. The offset and noise artifacts are modulated to a high frequency by the chop operation, which  
are removed by the digital filter. Although chopper stabilization is designed to remove all offset, a small offset  
voltage may remain. The optional global chop mode removes the remaining offset errors, providing near zero  
offset voltage drift performance.  
Chop mode alternates the signal polarity between consecutive conversions in order to remove offset. The ADC  
subtracts consecutive, alternate-polarity conversions to yield the final conversion data. The result of subtraction  
removes the offset.  
CHOP[1:0] bits 6:5 of MODE1  
(register address = 03h)  
00: Normal mode  
01: Chop mode  
10: 2-wire AC-bridge excitation mode  
Chop Switch  
11: 4-wire AC-bridge excitation mode  
VOFS  
AIN0  
VAINP  
-
+
Digital  
Filter  
Full-Scale  
Cal  
Input  
MUX  
Chop  
Control  
C
A D  
Offset  
Cal  
Conversion  
Output  
ADC  
PGA  
VAINN  
AIN5  
59. ADC Chop Mode  
As shown in 59, the internal chop switch reverses the signal after the input multiplexer. VOFS models the  
internal offset voltage. The operational sequence of chop mode is as follows:  
Conversion C1: VAINP – VAINN – VOFS First conversion withheld after start  
Conversion C2: VAINN – VAINP – VOFS Output 1 = (C1 – C2) / 2 = VAINP – VAINN  
Conversion C3: VAINP – VAINN – VOFS Output 2 =-(C3 – C2) / 2 = VAINP – VAINN  
The sequence repeats for all conversions. Because of the required settling time to alternate the internal polarity,  
the effective data rate in chop mode operation is reduced. The chop mode data rate is proportional to the order  
of the sinc filter. Referring to 6, the new data rate is equal to 1 / latency values; and be aware the chop mode  
first conversion latency is 2 × latency values. As a consequence of the internal data subtraction, two data points  
are effectively averaged together. Averaging of data reduces noise by 2. Divide the noise data values shown in  
1 by 2 to derive the chop mode noise performance data. The null frequencies of the digital filter are not  
changed in chop-mode operation. However, new null frequencies appear at multiples of fDATA / 2 as a result of  
averaging.  
8.4.3 AC-Bridge Excitation Mode  
Resistive bridge sensors are excited by dc or ac voltages; or by dc or ac currents. DC voltage excitation is the  
most common type of excitation. AC excitation reverses the polarity of the excitation voltage by the use of  
external switching components. Similar in concept to chop mode, the result of the voltage reversal removes  
offset voltage in the connections leading from the bridge to the ADC inputs. This also includes the offset voltage  
of the ADC itself. The ADC provides the signals necessary to drive the external switching components in order to  
reverse the bridge voltage.  
The timing of the drive signals is synchronized to the ADC conversion phase. During one conversion phase, the  
voltage polarity is normal. For the alternate conversion phase, the voltage polarity is reversed. The ADC  
compensates the reversed polarity conversion by internal reversing the reference voltage. The ADC subtracts the  
data corresponding to the normal and reverse phases in order to remove offset voltage from the input.  
The ADC output drive signals are non-overlapping in order to avoid bridge cross-conduction that can otherwise  
occur during excitation voltage reversal. The switch rate of the ac-excitation drive signals are performed at the  
data rate to avoid unnecessary fast switching. See 7 for output drive timing.  
34  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
7 shows the ac-bridge excitation drive signals and the associated GPIO pins. Program the ac-bridge excitation  
mode using the CHOP[1:0] bits in register MODE1. AC-bridge excitation can be programmed for two-wire or four-  
wire drive mode. For two-wire operation, two drive signals are provided on the GPIOs. If needed, use two  
external inverters to derive four signals to drive discrete transistors. The GPIO drive levels are referred to the 5-V  
analog supply. Be aware that the ac-bridge excitation mode changes the nominal data rate, depending on the  
order of the sinc filter. See the Chop Mode section for details of the effective data rate.  
7. AC-Bridge Excitation Drive Pins  
DEVICE PIN  
AIN0  
GPIO  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
2-WIRE MODE (CHOP[1:0] = 10)  
4-WIRE MODE (CHOP[1:0] = 11)  
ACX1  
ACX2  
ACX1  
ACX2  
ACX1  
ACX2  
AIN1  
AIN2  
AIN3  
8.4.4 ADC Clock Mode  
Operate the ADC with an external clock or with the internal oscillator. The clock frequency is 7.3728 MHz. For  
external clock operation, apply the clock signal to CLKIN. For internal-clock operation, connect CLKIN to DGND.  
The internal oscillator begins operation immediately at power-up. The ADC automatically selects the clock mode  
of operation. Read the clock mode bit in the STATUS register to determine the clock mode.  
8.4.5 Power-Down Mode  
The ADC has two power-down modes: hardware and software. In both power-down modes, the digital outputs  
remain driven. The digital inputs must be maintained at VIH or VIL levels (do not float the digital inputs). The  
internal low-dropout regulator remains on, drawing 25 µA (typical) from DVDD.  
8.4.5.1 Hardware Power-Down  
Take the PWDN pin low to engage hardware power-down mode. Except for the internal LDO, all ADC functions  
are disabled. To exit hardware power-down mode (wake-up) take the PWDN pin high. The register values are  
not reset at wake-up.  
8.4.5.2 Software Power-Down  
Set the PWDN bit (bit 7 of register MODE3) to engage software power-down mode. Similar to the operation of  
hardware power-down mode, software mode powers down the internal functions except in this case the serial  
interface. Exit the software power-down mode by clearing the PWDN bit. The register values are not reset.  
8.4.6 Reset  
The ADC is reset in three ways: at power-on, by the RESET pin, and by the RESET command. When reset, the  
serial interface, conversion-control logic, digital filter, and register values are reset. The RESET bit of the  
STATUS byte is set to indicate a device reset has occurred by any of the three reset methods. Clear the bit to  
detect the next device reset. If the START pin is high after reset, the ADC begins conversions.  
8.4.6.1 Power-on Reset  
At power-on, after the supply voltages cross the reset-voltage thresholds, the ADC is reset and 216 fCLK cycles  
later the ADC is ready for communication. Until this time, DRDY is held low. DRDY is driven high to indicate  
when the ADC is ready for communication. If the START pin is high, the conversion cycle starts 512 / fCLK cycles  
after DRDY asserts high. 5 shows the power-on reset behavior.  
8.4.6.2 Reset by Pin  
Reset the ADC by taking the RESET pin low and then returning the pin high. After reset, the conversion starts  
512 / fCLK cycles later. See 6 for RESET timing.  
版权 © 2019, Texas Instruments Incorporated  
35  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.4.6.3 Reset by Command  
Reset the ADC by the RESET command. Toggle CS high to make sure the serial interface resets before sending  
the command. For applications that tie CS low, see the Serial Interface Auto-Reset section for information on  
how to reset the serial interface. After reset, the conversion starts 512 / fCLK cycles later. See 6 for timing  
details.  
8.4.7 Calibration  
The ADC incorporates calibration registers and associated commands to calibrate offset and full-scale errors.  
Calibrate by using calibration commands, or calibrate by writing to the calibration registers directly (user  
calibration). To calibrate by command, send the offset or full-scale calibration commands. To user calibrate, write  
values to the calibration registers based on calculations of the conversion data. Perform offset calibration before  
full-scale calibration.  
8.4.7.1 Offset and Full-Scale Calibration  
Use the offset and full-scale (gain) registers to correct offset or full-scale errors, respectively. As shown in 60,  
the offset calibration register is subtracted from the output data before multiplication by the full-scale register,  
which is divided by 400000h. After the calibration operation, the final output data are clipped to 24 bits.  
VAINP  
C A D  
+
Output Data  
Clipped to 24 bits  
Digital  
Filter  
Final  
Output  
ADC  
VAINN  
-
1/400000h  
OFCAL[2:0] registers  
(register addresses = 07h, 08h, 09h)  
FSCAL[2:0] registers  
(register addresses = 0Ah, 0Bh, 0Ch)  
60. Calibration Block Diagram  
公式 4 shows the internal calibration.  
Final Output Data = (Filter Output - OFCAL[2:0]) · FSCAL[2:0] / 400000h  
(4)  
8.4.7.1.1 Offset Calibration Registers  
The offset calibration word is 24 bits, consisting of three 8-bit registers, as listed in 8. The offset value is  
subtracted from the conversion result. The offset value is in two's complement format with a maximum positive  
value equal to 7FFFFFh, and a maximum negative value equal to 800000h. A register value equal to 000000h  
has no offset correction. Although the offset calibration register provides a wide range of possible offset values,  
the input signal after calibration cannot exceed ±106% of the pre-calibrated range; otherwise, the ADC is  
overranged. 9 lists example values of the offset register.  
8. Offset Calibration Registers  
BYTE  
REGISTER  
OFCAL0  
OFCAL1  
OFCAL2  
ORDER  
ADDRESS  
07h  
BIT ORDER  
LSB  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
08h  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
09h  
B23 (MSB)  
B17  
B16  
9. Offset Calibration Register Values  
OFCAL[2:0] REGISTER VALUE  
IDEAL OUTPUT VALUE(1)  
000001h  
000000h  
FFFFFFh  
FFFFFFh  
000000h  
000001h  
(1) Output value with no offset error  
36  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.4.7.1.2 Full-Scale Calibration Registers  
The full-scale calibration word is 24 bits consisting of three 8-bit registers, as listed in 10. The full-scale  
calibration value is in straight-binary format, normalized to a unity-gain factor at a value of 400000h. 11 lists  
register values for selected gain factors. Gain errors greater than unity are corrected by using full-scale values  
less than 400000h. Although the full-scale register provides a wide range of possible values, the input signal after  
calibration must not exceed ±106% of the precalibrated input range; otherwise, the ADC is overranged.  
10. Full-Scale Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
FSCAL0  
FSCAL1  
FSCAL2  
LSB  
0Ah  
0Bh  
0Ch  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
B23 (MSB)  
B17  
B16  
11. Full-Scale Calibration Register Values  
FSCAL[2:0] REGISTER VALUE  
GAIN FACTOR  
433333h  
400000h  
1.05  
1.00  
0.95  
3CCCCCh  
8.4.7.2 Offset Self-Calibration (SFOCAL)  
The offset self-calibration command corrects offset errors internal to the ADC. When the offset self-calibration  
command is sent, the ADC disconnects the external inputs, shorts the inputs to the PGA, and then averages 16  
conversion results to compute the calibration value. Averaging the data reduces conversion noise to improve  
calibration accuracy. When calibration is complete, the ADC restores the user input and performs one conversion  
using the new calibration value.  
8.4.7.3 Offset System-Calibration (SYOCAL)  
The offset system-calibration command corrects system offset errors. For this type of calibration, the user shorts  
the inputs to either the ADC or to the system. When the command is sent, the ADC averages 16 conversion  
results to compute the calibration value. Averaging the data reduces conversion noise to improve calibration  
accuracy. When calibration is complete, the ADC performs one conversion using the new calibration value.  
8.4.7.4 Full-Scale Calibration (GANCAL)  
The full-scale calibration command corrects gain error. To calibrate, apply a positive full-scale calibration voltage  
to the ADC, wait for the signal to settle, and then send the calibration command. The ADC averages 16  
conversion results to compute the calibration value. Averaging the data reduces conversion noise to improve  
calibration accuracy. The ADC computes the full-scale calibration value so that the calibration voltage is scaled  
to positive full scale output code. When calibration is complete, the ADC performs one new conversion using the  
new calibration value.  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
 
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.4.7.5 Calibration Command Procedure  
Use the following procedure to calibrate using commands. The register-lock mode must be UNLOCK for all  
calibration commands. After power-on, make sure the reference voltage has stabilized before calibrating.  
Perform offset calibration before full-scale calibration.  
1. Configure the ADC as required.  
2. Apply the appropriate calibration signal (zero or full-scale)  
3. Take the START pin high or send the START command to start conversions. DRDY is driven high.  
4. Before the conversion cycle completes, send the calibration command. Keep CS low otherwise the command  
is cancelled. Send no other commands during the calibration period.  
5. Calibration time depends on the data rate and digital filter mode. See 12. DRDY asserts low when  
calibration is complete. The offset or full-scale calibration registers are updated with new values. At  
calibration completion, new conversion data are ready using the new calibration value.  
12. Calibration Time (ms)  
(1)  
FILTER MODE  
DATA RATE  
(SPS)  
2.5  
FIR  
6805  
3405  
1705  
SINC1  
6801  
SINC2  
7601  
SINC3  
8401  
4201  
2101  
1261  
1051  
420.9  
350.9  
210.9  
53.36  
18.36  
9.605  
5.230  
3.772  
SINC4  
9201  
4601  
2301  
1381  
1151  
460.9  
384.2  
230.9  
58.36  
20.02  
10.44  
5.647  
4.050  
5
3401  
3801  
10  
1701  
1901  
16.6  
20  
1021  
1141  
854.5  
850.9  
340.9  
284.2  
170.9  
43.36  
15.02  
7.938  
4.397  
3.216  
951.0  
380.9  
317.5  
190.9  
48.36  
16.69  
8.772  
4.813  
3.494  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
(1) Nominal clock frequency. Chop and AC-Excitation modes disabled.  
8.4.7.6 User Calibration Procedure  
To user calibrate, apply the calibration voltage, acquire conversion data, and compute the calibration value. The  
computed value is written to the corresponding calibration registers. Before starting calibration, preset the offset  
and full-scale registers to 000000h and 400000h, respectively.  
To offset calibrate, short the ADC inputs (or inputs to the system) and average n number of the conversion  
results. Averaging conversion data reduces noise to improve calibration accuracy. Write the averaged value of  
the conversion data to the offset registers.  
To gain calibrate using a full scale calibration voltage, temporarily reduce the full scale register 95% to avoid  
output clipped codes (set FSCAL[2:0] to 3CCCCCh). Acquire n number of conversions and average the  
conversions to reduce noise to improve calibration accuracy. Compute the full-scale calibration value as shown  
in 公式 5:  
Full-Scale Calibration Value = Expected Code / Actual Code · 400000h  
where  
Expected code = 799998h using full scale calibration signal and 95% scale factor  
(5)  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.5 Programming  
8.5.1 Serial Interface  
The serial interface is SPI-compatible and is used to read conversion data, configure registers, and control the  
ADC. The serial interface consists of four control lines: CS, SCLK, DIN, and DOUT/DRDY. Most microcontroller  
SPI peripherals can operate with the ADC. The interface operates in SPI mode 1, where CPOL = 0 and CPHA =  
1. In SPI mode 1, SCLK idles low and data are updated or changed on SCLK rising edges; data are latched or  
read on SCLK falling edges. Timing details of the SPI protocol are found in 1 and 2.  
8.5.1.1 Chip Select (CS)  
CS is an active-low input that selects the serial interface for communication. CS must be low during the entire  
data transaction. When CS is taken high, the serial interface resets, SCLK input activity is ignored (blocking  
commands), and DOUT/DRDY enters the high-impedance state. The operation of DRDY is not effected by CS. If  
the ADC is a single device connected to the serial bus, CS can be tied low in order to reduce the serial interface  
to three lines.  
8.5.1.2 Serial Clock (SCLK)  
SCLK is the serial clock input that shifts data into and out of the ADC. Output data are updated on the rising  
edge of SCLK and input data are latched on the falling edge of SCLK. Return SCLK low after the data operation  
is completed. SCLK is a Schmidt-triggered input designed to improve noise immunity. Even though SCLK is  
noise resistant, keep SCLK as noise-free as possible to avoid unintentional SCLK transitions. Avoid ringing and  
overshoot on the SCLK input. Place a series termination resistor close to the SCLK drive pin to reduce ringing.  
8.5.1.3 Data Input (DIN)  
DIN is the serial data input to the ADC. DIN is used to input commands and register data to the ADC. Data are  
latched on the falling edge of SCLK.  
8.5.1.4 Data Output/Data Ready (DOUT/DRDY)  
The DOUT/DRDY pin is a dual-function output. The functions of this pin are data output and data ready. The  
functionality changes automatically based on whether a read data operation is in progress. During a read data  
operation, the functionality is data output. After the read operation is complete, the functionality changes to data  
ready.  
In data output mode, data are updated on the SCLK rising edge, therefore the host latches the data on the falling  
edge of SCLK. In data-ready mode, the pin functions the same as DRDY (if CS is low) by asserting low when  
data are ready. Therefore, monitor either DOUT/DRDY or DRDY to determine when data are ready. When CS is  
high, the DOUT/DRDY pin is in the high-impedance mode (tri-state).  
8.5.1.5 Serial Interface Auto-Reset  
The serial interface is reset by taking CS high. Applications that tie CS low do not have the ability to reset the  
serial interface by CS. If a false SCLK occurs (for example, caused by a noise pulse or clocking glitch), the serial  
interface may inadvertently advance one or more bit positions, resulting in loss of synchronization to the host. If  
loss of synchronization occurs, the ADC interface does not respond correctly until the interface is reset.  
For applications that tie CS low, the serial interface auto-reset feature recovers the interface in the event that an  
unintentional SCLK glitch occurs. When the first SCLK low-to-high transition occurs (either caused by a glitch or  
by normal SCLK activity), seven SCLK transitions must occur within 65536 fCLK cycles (8.9 ms) to complete the  
byte transaction, otherwise the serial interface resets. After reset, the interface is ready to begin the next byte  
transaction. If the byte transaction is completed within the 65536 fCLK cycles, the serial interface does not reset.  
The cycle of SCLK detection re-starts at the next rising edge of SCLK. The serial interface is reset by holding  
SCLK low for a minimum 65536 fCLK cycles.  
The auto-reset function is enabled by the SPITIM bit (default is off). See 3 for timing details.  
版权 © 2019, Texas Instruments Incorporated  
39  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Programming (接下页)  
8.5.2 Data Ready (DRDY)  
DRDY is an output that asserts low when conversion data are ready. After power-up, DRDY also indicates when  
the ADC is ready for communication. The operation of DRDY depends on the conversion mode (continuous or  
pulse) and whether the conversion data are retrieved or not. 61 shows DRDY operation with and without data  
retrieval in the two modes of conversion.  
DRDY - with data retrieval  
(Continuous-conversion mode)  
DRDY œ w/o data retrieval  
(Continuous-conversion mode)  
DRDY œ w or w/o data retreival  
(Pulse-conversion mode)  
START  
Command  
START  
STOP  
START  
STOP  
61. DRDY Operation  
8.5.2.1 DRDY in Continuous-Conversion Mode  
In continuous-conversion mode, DRDY is driven high when conversions are started and is driven low when  
conversion data are ready. During data readback, DRDY returns high at the end of the read operation. If the  
conversion data are not read, DRDY pulses high 16 fCLK cycles prior to the next falling edge.  
To read conversion data before the next conversion is ready, send the complete read-data command 16 fCLK  
cycles before the next DRDY falling edge. If the readback command is sent less than 16 fCLK cycles before the  
DRDY falling edge, either old or new conversion data are provided, depending on the timing of when the  
command is sent. In the case that old conversion data are provided, DRDY driven low is delayed until after the  
read data operation is completed. In this case, the DRDY bit of the STATUS byte is cleared to indicate the same  
data have been read. If new conversion data are provided, DRDY transitions low at the normal period of the data  
rate. In this case, the DRDY bit of the STATUS byte is set to indicate that new data have been read. To make  
sure new data are read back, wait until DRDY asserts low before starting the data read operation.  
8.5.2.2 DRDY in Pulse-Conversion Mode  
DRDY is driven high at conversion start and is driven low when the conversion data are ready. During the data  
read operation DRDY remains low until a new conversion is started.  
8.5.2.3 Data Ready by Software Polling  
Use software polling of data ready in lieu of hardware polling of DRDY or DOUT/DRDY. To software poll, read  
the STATUS register and poll the DRDY bit. In order to not skip conversion data in continuous conversion mode,  
poll the bit at least as often as the period of the data rate. If the DRDY bit is set, then conversion data are new  
since the previous data read operation. If the bit is cleared, conversion data are not new since the previous data  
read operation. In this case, the previous conversion data are returned.  
8.5.3 Conversion Data  
Conversion data are read by the RDATA command. To read data, take CS low and issue the read data  
command. The data field response consists of the optional STATUS byte, three data bytes, and the optional  
CRC byte. The CRC is computed over the combination of status byte and conversion data bytes. See the  
RDATA Command for details to read conversion data.  
40  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
Programming (接下页)  
8.5.3.1 Status byte (STATUS)  
The status byte contains information on the operating state of the ADC. The STATUS byte is included with the  
conversion data by enabling bit STATENB of register MODE3. Optionally, read the STATUS register to directly  
determine status information without the need to read conversion data. See 67 for details.  
8.5.3.2 Conversion Data Format  
The conversion data are 24 bits, in two's-complement format to represent positive and negative values. The data  
output begins with the most significant bit (sign bit) first. The data are scaled so that VIN = 0 V results in an  
uncalibrated code value of 000000h; positive full scale equals 7FFFFFh and negative full scale equals 800000h;  
see 13 for the uncalibrated code values. The data are clipped to 7FFFFFh (positive full scale) and 800000h  
(negative full scale) during positive and negative signal overdrive, respectively.  
13. ADC Conversion Data Codes  
(1)  
DESCRIPTION  
Positive Full Scale  
1 LSB  
INPUT SIGNAL (V)  
VREF / Gain · (223 - 1) / 223  
24-BIT CONVERSION DATA  
7FFFFFh  
VREF / (Gain · 223  
)
000001h  
Zero scale  
0
000000h  
-1 LSB  
–VREF / (Gain · 223  
–VREF / Gain  
)
FFFFFFh  
Negative Full Scale  
800000h  
(1) Ideal (calibrated) conversion data  
8.5.4 CRC  
Cyclic redundancy check (CRC) is an error checking code that detects communication errors to and from the  
host. CRC is the division remainder of the data payload bytes by a fixed polynomial. The data payload is 1, 2, 3  
or 4 bytes depending on the data operation. The CRC mode is optional and is enabled by the CRCENB bit. See  
33 to program the CRC mode.  
The user computes the CRC corresponding to the two command bytes and appends the CRC to the command  
string (3rd byte). A 4th, zero-value byte completes the command field. The ADC repeats the CRC calculation and  
compares the calculation to the received CRC. If the user and repeated CRC values match, the command  
executes and the ADC responds by transmitting the repeated CRC during the 4th byte of the command. If the  
operation is conversion data or register data read, the ADC responds with a 2nd CRC that is computed over the  
requested data payload bytes. The response data payload is 1, 3, or 4 bytes depending on the data operation.  
If the user and repeated CRC values do not match, the command does not execute and the ADC responds with  
an inverted CRC for the actual received command bytes. The inverted CRC is intended to signal the host of the  
failed operation. The user terminates transmission of the command bytes to match the action of ADC termination.  
The CRCERR bit is set in the STATUS register when a CRC error is detected. The ADC is ready to accept the  
next command after a CRC error occurs at the end of the 4th byte.  
The CRC data byte is the 8-bit remainder of the bitwise exclusive-OR (XOR) operation of the argument by a  
CRC polynomial. The CRC polynomial is based on the CRC-8-ATM (HEC): X8 + X2 + X1 + 1. The nine binary  
polynomial coefficients are: 100000111. The CRC calculation is preset with "1" data values.  
The CRC mnemonics apply to the following command sections.  
• CRC-2: Input CRC of command bytes 1 and 2. Except for WREG command, the value of byte 2 is arbitrary  
• Out CRC-1: Output CRC of one register data byte  
• Out CRC-2: Output CRC of two command bytes, inverted value if input CRC error detected  
• Out CRC-3: Output CRC of three conversion data bytes  
• Out CRC-4: Output CRC of three conversion data bytes plus STATUS byte  
• Echo Byte 1: Echo of received input byte 1  
• Echo Byte 2: Echo of received input byte 2  
版权 © 2019, Texas Instruments Incorporated  
41  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.5.5 Commands  
Commands read conversion data, control the ADC, and read and write register data. See 14 for the list of  
commands. Send only the commands that are listed in 14. The ADC executes commands at completion of the  
2nd byte (no CRC verification) or at completion of the 4th byte (with CRC verification). Follow the two byte or four  
byte format according to the CRC mode. Except for register write commands, the value of the second command  
byte is arbitrary but the value is included in the CRC calculation (total of two-byte CRC). If a CRC error is  
detected, the ADC does not execute the command. Taking CS high before the command is completed results in  
termination of the command. When CS is taken low, the communication frame is reset to begin a new command.  
14. Command Byte Summary  
BYTE 3  
(CRC Mode Only)  
BYTE 4  
(CRC Mode only)  
MNEMONIC  
DESCRIPTION  
BYTE 1  
BYTE 2  
Control Commands  
NOP  
No operation  
00h  
06h  
08h  
0Ah  
Arbitrary  
Arbitrary  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
CRC-2  
CRC-2  
00h  
00h  
00h  
00h  
RESET  
START  
STOP  
Reset  
Start conversion  
Stop conversion  
Read Data Command  
RDATA  
Read conversion data  
12h  
Arbitrary  
CRC-2  
00h  
Calibration Commands  
SYOCAL  
GANCAL  
SFOCAL  
System offset calibration  
16h  
17h  
19h  
Arbitrary  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
CRC-2  
00h  
00h  
00h  
Gain calibration  
Self offset calibration  
Register Commands  
RREG  
WREG  
Read register data  
Write register data  
20h + rrh(1)  
40h + rrh(1)  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
Register data  
Protection Commands  
LOCK  
Register lock  
Register unlock  
F2h  
F5h  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
UNLOCK  
(1) rrh = 5-bit register address.  
8.5.5.1 NOP Command  
This command is no operation. Use the NOP command to validate the CRC response byte and error detection  
without affecting normal operation. 15 shows the NOP command byte sequence.  
15. NOP Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
00h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
00h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
8.5.5.2 RESET Command  
The RESET command resets ADC operation and resets the registers to default values. See the Reset by  
Command section for details. 16 shows the RESET command byte sequence.  
16. RESET Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
42  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
16. RESET Command (接下页)  
DIRECTION  
BYTE 1  
06h  
BYTE 2  
Arbitrary  
BYTE 3  
BYTE 4  
DIN  
DOUT/DRDY  
FFh  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
06h  
FFh  
CRC-2  
00H  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
8.5.5.3 START Command  
This command starts conversions. See the Conversion Control section for details. 17 shows the START  
command byte sequence.  
17. START Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
08h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
08h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
8.5.5.4 STOP Command  
This command stops conversions. See the Conversion Control section for details. 18 shows the STOP  
command byte sequence.  
18. STOP Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
0Ah  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
0Ah  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
8.5.5.5 RDATA Command  
This command reads conversion data. Because the data are buffered, the data can be read at any time during  
the conversion phase. If data are read near the completion of the next conversion, old or new conversion data  
are returned. See the Data Ready (DRDY) section for details.  
The response of conversion data varies in length from 3 to 5 bytes depending if the STATUS byte and CRC  
bytes are included. See the Conversion Data Format section for the numeric data format. See 19, 62  
(minimum configuration) and 63 (maximum configuration) for operation of the RDATA command.  
版权 © 2019, Texas Instruments Incorporated  
43  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
BYTE 9  
19. RDATA Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
No CRC mode  
BYTE 6  
BYTE 7  
BYTE 8  
DIN  
12h  
FFh  
Arbitrary  
00h  
00h  
00h  
00h  
(1)  
DOUT/DRDY  
Echo byte 1  
STATUS  
MSB data  
MID data  
LSB data  
CRC mode  
DIN  
12h  
FFh  
Arbitrary  
CRC-2  
00h  
00h  
00h  
00h  
00h  
00h  
Out CRC-3 or  
Out CRC-4  
(1)  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
STATUS  
MSB data  
MID data  
LSB data  
(1) Optional STATUS byte  
(1)  
CS  
1
9
17  
25  
33  
SCLK  
DIN  
12h  
Arbitrary  
00h  
00h  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
MSB data  
MID data  
LSB data  
(1) CS can be tied low  
62. Conversion Data Read Operation (STATUS Byte and CRC Mode Disabled)  
(1)  
CS  
41  
49  
57  
65  
1
9
17  
25  
33  
SCLK  
DIN  
12h  
FFh  
Arbitrary  
00h  
00h  
CRC-2  
00h  
00h  
00h  
00h  
MSB data  
MID data  
LSB DATA  
Out CRC-4  
Echo byte 1  
Echo byte 2  
Out CRC-2  
STATUS  
DOUT/DRDY  
A. CS can be tied low  
63. Conversion Data Read Operation (STATUS Byte and CRC Mode Enabled)  
8.5.5.6 SYOCAL Command  
This command is used for system offset calibration. See the Offset System-Calibration (SYOCAL) section for  
details. 20 shows the SYOCAL command byte sequence.  
20. SYOCAL Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
16h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
16h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte 2  
Out CRC-2  
44  
版权 © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.5.5.7 GANCAL Command  
This command is for gain calibration. See the Calibration section for details. Full-Scale Calibration (GANCAL)  
shows the GANCAL command byte sequence.  
21. GANCAL Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
17h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
17h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte 2  
Out CRC-2  
8.5.5.8 SFOCAL Command  
This command is used for self offset calibration. See the Offset Self-Calibration (SFOCAL) section for details. 表  
22 shows the SFOCAL command byte sequence.  
22. SFOCAL Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
19h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
19h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte 2  
Out CRC-2  
8.5.5.9 RREG Command  
Use the RREG command to read register data. The register data are read one byte at a time by issuing the  
RREG command for each operation. Add the register address (rrh) to the base opcode (20h) to construct the  
command byte (20h + rrh). 23 shows the command byte sequence. The ADC responds with the register data  
byte, most significant bit first. The response to registers outside the valid address range is 00h. 64 shows an  
example of the register read operation. The Out CRC-1 byte is the CRC calculated for the register data byte.  
23. RREG Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
No CRC mode  
00h  
BYTE 4  
BYTE 5  
BYTE 6  
DIN  
20h + rrh(1)  
FFh  
Arbitrary  
DOUT/DRDY  
Echo byte 1  
Register data  
CRC mode  
CRC-2  
DIN  
20h + rrh  
FFh  
Arbitrary  
00h  
00h  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
Register data  
Out CRC-1  
(1) rrh = 5-bit register address  
版权 © 2019, Texas Instruments Incorporated  
45  
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
(1)  
CS  
1
9
17  
25  
33  
41  
SCLK  
DIN  
22h  
Arbitrary  
CRC-2  
00h  
00h  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
Reg data  
Out CRC-1  
(1) CS can be tied low  
64. Register Read Operation (address = 02h, CRC Mode Enabled)  
8.5.5.10 WREG Command  
Use the WREG command to write register data. The register data are written one byte at a time by issuing the  
WREG command for each operation. Add the register address (rrh) to the base opcode (40h) to construct the  
command byte (40h + rrh). 24 shows the command byte sequence. 65 shows an example of the WREG  
operation. Be aware that writing to certain registers results in conversion restart. 27 lists the registers that  
restart an ongoing conversion when written to. Do not write to registers outside the address range.  
24. WREG Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Register data  
Echo byte 1  
CRC mode  
Register data  
Echo byte 1  
DIN  
40h + rrh(1)  
FFh  
DOUT/DRDY  
DIN  
40h + rrh  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 2  
Out CRC-2  
(1) rrh = 5-bit register address.  
(1)  
CS  
1
9
17  
25  
SCLK  
DIN  
42h  
FFh  
Reg Data  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
A. CS can be tied low  
65. Register Write Operation (address = 02h, CRC Mode Enabled)  
46  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.5.5.11 LOCK Command  
The LOCK command locks-out write access to the registers including the calibration registers that are changed  
by calibration commands. The default mode is UNLOCK. Read access is allowed in LOCK mode. 25 shows  
the LOCK command byte sequence.  
25. LOCK Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
F2h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
F2h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte2  
out CRC-2  
8.5.5.12 UNLOCK Command  
The UNLOCK command allows register write access, including access to the contents of the calibration registers  
that can be changed by the calibration commands. 26 shows the UNLOCK command byte sequence.  
26. UNLOCK Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
Arbitrary  
DIN  
F5h  
FFh  
DOUT/DRDY  
Echo byte 1  
CRC mode  
Arbitrary  
DIN  
F5h  
FFh  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte2  
Out CRC-2  
版权 © 2019, Texas Instruments Incorporated  
47  
 
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.6 Register Map  
The register map consists of 18, one-byte registers. Collectively, the registers are used to configure the ADC to  
the desired operating mode. Access the registers by using the RREG and WREG (read-register and write-  
register) commands. Register data are accessed one register byte at a time for each command operation. At  
power-on or device reset, the registers are reset to the default values, as shown in the Default column of 27.  
Writing new data to certain registers causes the ADC conversion in progress to restart. The affected registers are  
listed in the Restart column in 27.  
Register-write access is enabled or disabled by the UNLOCK and LOCK commands, respectively. The default  
mode is register UNLOCK. See the LOCK Command section for more details.  
27. Register Map Summary  
(rrh)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
REGISTER  
ID  
DEFAULT  
Cxh  
01h  
RESTART  
BIT 7  
BIT 6  
DEV_ID[3:0]  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REV_ID[3:0]  
STATUS  
MODE0  
MODE1  
MODE2  
MODE3  
REF  
LOCK  
CRCERR  
PGAL_ALM  
PGAH_ALM REFL_ALM  
DRDY  
CLOCK  
RESET  
24h  
Yes  
Yes  
0
0
DR[3:0]  
FILTER[2:0]  
01h  
CHOP[1:0]  
GPIO_CON[3:0]  
STATENB CRCENB  
0 0  
CONVRT  
DELAY[3:0]  
00h  
GPIO_DIR[3:0]  
GPIO_DAT[3:0]  
00h  
PWDN  
0
SPITIM  
0
05h  
Yes  
RMUXP[1:0]  
RMUXN[1:0]  
OFCAL0  
OFCAL1  
OFCAL2  
FSCAL0  
FSCAL1  
FSCAL2  
RESERVED  
RESERVED  
RESERVED  
PGA  
00h  
OFC[7:0]  
00h  
OFC[15:8]  
OFC[23:16]  
FSC[7:0]  
FSC[15:8]  
FSC[23:16]  
FFh  
00h  
00h  
00h  
40h  
FFh  
00h  
00h  
00h  
00h  
00h  
Yes  
Yes  
BYPASS  
0
0
0
0
GAIN[2:0]  
MUXN[3:0]  
INPMUX  
FFh  
MUXP[3:0]  
8.6.1 Device Identification (ID) Register (address = 00h) [reset = Cxh]  
66. ID Register  
7
6
5
4
3
2
1
0
DEV_ID[3:0]  
REV_ID[3:0]  
NOTE: Reset values are device dependent  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
28. ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Device ID  
1100  
7:4  
DEV_ID[3:0]  
R
Ch  
3:0  
REV_ID[3:0]  
R
xh  
Revision ID  
Note: Revision ID can change without notification  
48  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.6.2 Device Status (STATUS) Register (address = 01h) [reset = 01h]  
67. STATUS Register  
7
6
5
4
3
2
1
0
LOCK  
R-0h  
CRCERR  
R/W-0h  
PGAL_ALM  
R-0h  
PGAH_ALM  
R-0h  
REFL_ALM  
R-0h  
DRDY  
R-0h  
CLOCK  
R-xh  
RESET  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
29. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LOCK  
R
0h  
Register Lock Status  
Indicates register lock status. Register writes are locked by the  
LOCK command and unlocked by the UNLOCK command.  
0: Register write not locked (default)  
1: Register write locked  
CRC Error  
6
5
CRCERR  
R/W  
0h  
0h  
Indicates that a CRC error is detected by the ADC. The CRC  
error bit remains set until cleared by the user.  
0: No CRC error  
1: CRC error  
PGAL_ALM  
R
PGA Low Alarm  
Indicates PGA output voltage is below the low limit. The alarm  
resets at the start of conversion cycles.  
0: No Alarm  
1: Alarm  
4
3
PGAH_ALM  
REFL_ALM  
R
R
0h  
0h  
PGA High Alarm  
Indicates PGA output voltage is above the high limit. The alarm  
resets at the start of conversion cycles.  
0: No Alarm  
1: Alarm  
Reference Low Alarm  
Indicates reference voltage is below the low limit. The alarm  
resets at the start of conversion cycles.  
0: No Alarm  
1: Alarm  
2
1
DRDY  
R
R
0h  
xh  
Data Ready  
Indicates conversion data ready.  
0: Conversion data not new since the previous read operation  
1: Conversion data new since the previous read operation  
Clock  
CLOCK  
Indicates internal or external clock mode. The ADC automatically  
selects the clock source.  
0: ADC clock is internal  
1: ADC clock is external  
0
RESET  
R/W  
1h  
Reset  
Indicates ADC reset. Clear the bit to detect next device reset.  
0: No reset  
1: Reset (default)  
版权 © 2019, Texas Instruments Incorporated  
49  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.6.3 Mode 0 (MODE0) Register (address = 02h) [reset = 24h]  
68. MODE0 Register  
7
0
6
5
4
3
2
1
0
DR[3:0]  
R/W-4h  
FILTER[2:0]  
R/W-4h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
30. MODE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
0
R/W  
0h  
Reserved  
Always write 0  
6:3  
DR[3:0]  
R/W  
4h  
Data Rate  
Select the ADC data rate.  
0000: 2.5 SPS  
0001: 5 SPS  
0010: 10 SPS  
0011: 16.6 SPS  
0100: 20 SPS (default)  
0101: 50 SPS  
0110: 60 SPS  
0111: 100 SPS  
1000: 400 SPS  
1001: 1200 SPS  
1010: 2400 SPS  
1011: 4800 SPS  
1100: 7200 SPS  
1101 - 1111: Reserved  
2:0  
FILTER[2:0]  
R/W  
4h  
Digital Filter  
Select the digital filter mode.  
000: sinc1  
001: sinc2  
010: sinc3  
011: sinc4  
100: FIR (default)  
101 - 111: Reserved  
50  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.6.4 Mode 1 (MODE1) Register (address = 03h) [reset = 01h]  
69. MODE1 Register  
7
0
6
5
4
3
2
1
0
CHOP[1:0]  
R/W-0h  
CONVRT  
R/W-0h  
DELAY[3:0]  
R/W-1h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
31. MODE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
0
R/W  
0h  
Reserved  
Always write 0  
6:5  
CHOP[1:0]  
R/W  
0h  
Chop and AC-Bridge Excitation Modes  
Select the Chop and ac-bridge excitation modes.  
00: Normal mode (default)  
01: Chop mode  
10: 2-wire ac-bridge excitation mode  
11: 4-wire ac-bridge excitation mode  
ADC Conversion Mode  
4
CONVRT  
R/W  
R/W  
0h  
1h  
Select the ADC conversion mode.  
0: Continuous conversions (default)  
1: Pulse (one shot) conversion  
3:0  
DELAY[3:0]  
Conversion Start Delay  
Program the time delay at conversion start. Delay values are  
with fCLK = 7.3728 MHz.  
0000: 0 µs  
0001: 50 µs (default)  
0010: 59 µs  
0011: 67 µs  
0100: 85 µs  
0101: 119 µs  
0110: 189 µs  
0111: 328 µs  
1000: 605 µs  
1001: 1.16 ms  
1010: 2.27 ms  
1011: 4.49 ms  
1100: 8.93 ms  
1101: 17.8 ms  
1110, 1111: Reserved  
版权 © 2019, Texas Instruments Incorporated  
51  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.6.5 Mode 2 (MODE2) Register (address = 04h) [reset = 00h]  
70. MODE2 Register  
7
6
5
4
3
2
1
0
GPIO_CON[3:0]  
R/W-0h  
GPIO_DIR[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
32. MODE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO_CON[3]  
R/W  
0h  
GPIO3 Pin Connection  
Connect GPIO3 to analog input AIN3.  
0: GPIO3 not connected to AIN3 (default)  
1: GPIO3 connected to AIN3  
6
5
4
3
2
1
0
GPIO_CON[2]  
GPIO_CON[1]  
GPIO_CON[0]  
GPIO_DIR[3]  
GPIO_DIR[2]  
GPIO_DIR[1]  
GPIO_DIR[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO2 Pin Connection  
Connect GPIO2 to analog input AIN2.  
0: GPIO2 not connected to AIN2 (default)  
1: GPIO2 connected to AIN2  
GPIO1 Pin Connection  
Connect GPIO1 to analog input AIN1.  
0: GPIO1 not connected to AIN1 (default)  
1: GPIO1 connected to AIN1  
GPIO0 Pin Connection  
Connect GPIO0 to analog input AIN0  
0: GPIO0 not connected to AIN0 (default)  
1: GPIO0 connected to AIN0  
GPIO3 Pin Direction  
Configure GPIO3 as a GPIO input or GPIO output on AIN3.  
0: GPIO3 is an output (default)  
1: GPIO3 is an input  
GPIO2 Pin Direction  
Configure GPIO2 as a GPIO input or GPIO output on AIN2.  
0: GPIO2 is an output (default)  
1: GPIO2 is an input  
GPIO1 Pin Direction  
Configure GPIO1 as a GPIO input or GPIO output on AIN1.  
0: GPIO1 is an output (default)  
1: GPIO1 is an input  
GPIO0 Pin Direction  
Configure GPIO0 as a GPIO input or GPIO output on AIN0.  
0: GPIO0 is an output (default)  
1: GPIO0 is an input  
52  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.6.6 Mode 3 (MODE3) Register (address = 05h) [reset = 00h]  
71. MODE3 Register  
7
6
5
4
3
2
1
0
PWDN  
R/W-0h  
STATENB  
R/W-0h  
CRCENB  
R/W-0h  
SPITIM  
R/W-0h  
GPIO_DAT[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
33. MODE3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWDN  
R/W  
0h  
Software Power-down Mode  
Enable the software power-down mode.  
0: Normal mode (default)  
1: Software power-down mode  
STATUS Byte  
6
5
STATENB  
CRCENB  
R/W  
R/W  
0h  
0h  
Enable the Status byte in the conversion data read operation.  
0: No Status byte (default)  
1: Status byte enabled  
CRC Data Verification  
Enable the CRC data verification.  
0: No CRC (default)  
1: CRC enabled  
4
3
2
1
0
SPITIM  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
SPI Auto-Reset Function  
Enable the SPI auto-reset function.  
0: SPI auto-reset disabled (default)  
1: SPI auto-reset enabled  
GPIO_DAT[3]  
GPIO_DAT[2]  
GPIO_DAT[1]  
GPIO_DAT[0]  
GPIO3 Data  
Read or write the GPIO3 data on AIN3.  
0: GPIO3 is low (default)  
1: GPIO3 is high  
GPIO2 Data  
Read or write the GPIO2 data on AIN2.  
0: GPIO2 is low (default)  
1: GPIO2 is high  
GPIO1 Data  
Read or write the GPIO1 data on AIN1.  
0: GPIO1 is low (default)  
1: GPIO1 is high  
GPIO0 Data  
Read or write the GPIO1 data on AIN0.  
0: GPIO0 is low (default)  
1: GPIO0 is high  
版权 © 2019, Texas Instruments Incorporated  
53  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.6.7 Reference Configuration (REF) Register (address = 06h) [reset = 05h]  
72. REF Register  
7
0
6
0
5
0
4
0
3
2
1
0
RMUXP[1:0]  
R/W-1h  
RMUXN[1:0]  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
34. REF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
0
R/W  
0h  
Reserved  
Always write 0h  
3:2  
1:0  
RMUXP[1:0]  
RMUXN[1:0]  
R/W  
R/W  
1h  
1h  
Reference Positive Input  
Select the positive reference input.  
00: Reserved  
01: AVDD (default)  
10: REFP0  
11: AIN0 (REFP1)  
Reference Negative Input  
Select the negative reference input.  
00: Reserved  
01: AVSS (default)  
10: REFN0  
11: AIN1 (REFN1)  
54  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.6.8 Offset Calibration (OFCALx) Registers (address = 07h, 08h, 09h) [reset = 00h, 00h, 00h]  
73. OFCAL0, OFCAL1, OFCAL2 Registers  
7
6
5
4
3
2
1
9
0
8
OFC[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
OFC[15:8]  
R/W-00h  
17  
16  
OFC[23:16]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
35. OFCAL0, OFCAL1, OFCAL2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
23:0  
OFC[23:0]  
R/W  
000000h  
Offset Calibration  
These three registers are the 24-bit offset calibration word. The  
offset calibration is two's complement format. The ADC subtracts  
the offset value from the conversion result before the full-scale  
operation.  
8.6.9 Full-Scale Calibration (FSCALx) Registers (address = 0Ah, 0Bh, 0Ch) [reset = 00h, 00h, 40h]  
74. FSCAL0, FSCAL1, FSCAL2 Registers  
7
6
5
4
3
2
1
9
0
8
FSC[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
FSC[15:8]  
R/W-00h  
17  
16  
FSC[23:16]  
R/W-40h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
36. FSCAL0, FSCAL1, FSCAL2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
23:0  
FSC[23:0]  
R/W  
400000h  
Full-Scale Calibration  
These three registers are the 24-bit full scale calibration word.  
The full-scale calibration is straight binary format. The ADC  
divides the register value by 400000h then multiplies the result  
with the conversion data. The scaling operation occurs after the  
offset operation.  
版权 © 2019, Texas Instruments Incorporated  
55  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.6.10 Reserved (RESERVED) Register (address = 0Dh) [reset = FFh]  
75. RESERVED Register  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
37. RESERVED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
0
R
FFh  
Reserved  
These bits are read only and always return 0  
8.6.11 Reserved (RESERVED) Register (address = 0Eh) [reset = 00h]  
76. RESERVED Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
38. RESERVED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
0
R
0h  
Reserved  
These bits are read only and always return 0  
8.6.12 Reserved (RESERVED) Register (address = 0Fh) [reset = 00h]  
77. RESERVED Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
39. RESERVED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
0
R
0h  
Reserved  
These bits are read only and always return 0  
56  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
8.6.13 PGA Configuration (PGA) Register (address = 10h) [reset = 00h]  
78. PGA Register  
7
6
0
5
0
4
0
3
0
2
1
0
BYPASS  
R/W-0h  
GAIN[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
40. PGA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BYPASS  
R/W  
0h  
PGA Bypass Mode  
Select the PGA mode.  
0: PGA mode (default)  
1: PGA bypass  
Reserved  
6:3  
2:0  
0
R/W  
R/W  
0h  
0h  
Always write 0  
Gain  
GAIN[2:0]  
Select the gain.  
000: 1 (default)  
001 - 101: Reserved  
110: 64  
111: 128  
版权 © 2019, Texas Instruments Incorporated  
57  
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
8.6.14 Input Multiplexer (INPMUX) Register (address = 11h) [reset = FFh]  
79. INPMUX Register  
7
6
5
4
3
2
1
0
MUXP[3:0]  
R/W-Fh  
MUXN[3:0]  
R/W-Fh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
41. INPMUX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MUXP[3:0]  
R/W  
Fh  
Positive Input Multiplexer  
Select the positive multiplexer input.  
0000 - 0010: Reserved  
0011: AIN0  
0100: AIN1  
0101: AIN2  
0110: AIN3  
0111: AIN4  
1000: AIN5  
1001, 1010: Reserved  
1011: Internal temperature sensor positive  
1100, 1101: Reserved  
1110: PGA P input open  
1111: Internal connection to VCOM (default)  
3:0  
MUXN[3:0]  
R/W  
Fh  
Negative Input Multiplexer  
Select the negative multiplexer input.  
0000 - 0010: Reserved  
0011: AIN0  
0100: AIN1  
0101: AIN2  
0110: AIN3  
0111: AIN4  
1000: AIN5  
1001, 1010: Reserved  
1011: Internal temperature sensor negative  
1100, 1101: Reserved  
1110: PGA N Input open  
1111: Internal connection to VCOM (default)  
58  
版权 © 2019, Texas Instruments Incorporated  
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Input Range  
The input voltage must be maintained within the specified input range for linear ADC operation otherwise the  
conversion data is invalid. Use 公式 3 to verify the input voltage of the PGA is within specification. The input  
requirement can also be verified by measuring the PGA output voltages (pins CAPP and CAPN) with a voltmeter  
under the conditions of maximum expected input signal, ADC gain, and worst case (low) power-supply voltage.  
Check that voltages measured on the pins are within the range: AVSS + 0.3 V < V(CAPP) and V(CAPN) < AVDD –  
0.3 V.  
9.1.2 Input Overload  
Observe the input overvoltage precautions as outlined in the ESD Diodes section. If an overvoltage condition  
occurs on an unused channel, the overvoltage channel may crosstalk to the measurement channel. One solution  
is to externally clamp the inputs with low-forward voltage diodes as shown in 80. The external diodes divert  
the overvoltage current around the ADC inputs to the power supply and ground. Be aware of the reverse leakage  
current of the Schottky diodes that may lead to measurement errors.  
IFAULT  
5 V  
Schottky  
Diode  
AVDD  
RLIM  
AINx  
ADC  
AVSS œ 0.3 V > VCLAMP > AVDD + 0.3 V  
Schottky  
Diode  
AVSS  
IFAULT  
80. External Diode Clamps  
版权 © 2019, Texas Instruments Incorporated  
59  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Application Information (接下页)  
9.1.3 Unused Inputs and Outputs  
Analog Inputs  
To minimize input leakage of the measurement channel, tie unused inputs to mid-supply voltage (AVDD +  
AVSS) / 2 or to AVDD.  
Digital I/O  
Not all the digital I/Os may be needed to operate the ADC. Be sure not to float both used and unused digital  
inputs, including during power-down mode. The following is a summary of the optional digital I/Os connection:  
CS: Tie CS low to permanently enable the serial interface.  
CLKIN: Tie CLKIN to DGND to permanently operate the ADC with the internal oscillator.  
START: Tie START to DGND to control conversions by command. Tie START to DVDD to permanently  
free-run conversions (Continuous-conversion mode only)  
RESET: Tie RESET to DVDD if not using hardware reset. The ADC is reset at power-on. The ADC is also  
reset by the RESET command.  
PWDN: Tie PWDN to DVDD if not using the hardware power-down mode. The ADC can be powered down  
by software.  
DRDY: The functionality of the DRDY output is also provided by the dual-mode DOUT/DRDY pin. The  
DOUT/DRDY output is active when CS is low. Data ready is also determined by software polling. Because  
the conversion data are buffered, data can be read at any time without the need to synchronize to data  
ready.  
9.1.4 Multiplexed 2-Bridge Input Example  
81 shows an example of a multiplexed, two-bridge system. The figure is a simplified diagram and excludes  
input filter components. The bridges are connected with independent excitation sense lines leading from each  
bridge to the ADC for accurate reference voltage tracking. Adjust the time delay parameter of the ADC as  
necessary to provide delay for settling time that is required after changing the ADC input multiplexer for each  
bridge measurement.  
5 V  
AVDD  
ADS1235-Q1  
5 V  
REFP0  
SEN1 +  
(REFP0)  
AIN4  
AIN5  
SIG1 +  
SIG1 -  
(AINP)  
(AINN)  
REFN0  
SEN1 -  
(REFN0)  
5 V  
AIN0  
SEN2 +  
(REFP1)  
AIN2  
AIN3  
SIG2 +  
SIG2 -  
(AINP)  
(AINN)  
AIN1  
SEN2 -  
(REFN1)  
AVSS  
81. Multiplexed 2-Bridge Application  
60  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
Application Information (接下页)  
9.1.5 AC-Bridge Excitation Example  
82 shows an ac-excited bridge measurement system in the 4-wire, GPIO-control mode. Signal and reference-  
input filter components are omitted for clarity. The transistors switch the polarity of the excitation voltage provided  
to the bridge by the drive signals from the ADC GPIO drivers via the spare analog input pins. The timing of the  
drive signals are synchronized to the ADC conversions. The drive signals are non-overlapping in order to avoid  
commutation errors that can occur during the switching phase. The resistors located at the gates of each  
transistor maintain the transistors off at power-on, while the ADC drive signals are initialized by the host after  
system power up. See 7 for timing of the drive signals.  
5 V  
AVDD  
5 V  
ADS1235-Q1  
100 kΩ  
AIN0  
(ACX1)  
AIN3  
(ACX2)  
100 kΩ  
REFP0  
SEN +  
AIN4  
AIN5  
SIG +  
SIG -  
(AINP)  
(AINN)  
REFN0  
SEN -  
5 V  
100 kΩ  
AIN1  
AIN2  
(ACX2)  
(ACX1)  
100 kΩ  
AVSS  
82. AC-Bridge Excitation Application  
The recommended configuration sequence for ac-bridge excitation mode follows:  
1. Stop conversions by taking the START pin low, or by control of conversions in software mode; send the  
STOP command  
2. Program the signal and reference input multiplexers, gain, data rata, filter mode and other configurations as  
needed  
3. Program the 2-wire or 4-wire ac-bridge excitation mode. 2-wire mode requires complementary output  
switching devices  
4. Program the GPIO internal connection to the analog input pins  
5. Program the GPIO as outputs to enable drive signals at the analog input pins. The bridge output drive  
signals appear on the GPIO pins.  
Start the conversions. Adjust the time delay parameter as necessary to provide sufficient bridge switch delay.  
The delay is based on the time constant of the input and reference filters.  
版权 © 2019, Texas Instruments Incorporated  
61  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
Application Information (接下页)  
9.1.6 Serial Interface and Digital Connections  
83 shows an example of the digital connections between the host µC and ADC. Not all I/O connections are  
necessary for basic ADC operation; see the Unused Inputs and Outputs section. Impedance-matching resistors  
in series with the I/O PCB traces help reduce overshoot and ringing, and are particularly helpful over long trace  
runs.  
ADC  
Optional  
Clock  
Source  
47  
CLKIN  
Host µC  
47 ꢀ  
47 ꢀ  
PWDN  
RESET  
Port Pin  
Port Pin  
Port Pin  
47 ꢀ  
47 ꢀ  
47 ꢀ  
47 ꢀ  
START  
CS  
Port Pin  
(CS)  
SCLK  
DIN  
SCLK  
MOSI  
MISO  
IRQ;  
DOUT  
/DRDY  
47 ꢀ  
47 ꢀ  
DRDY  
83. Serial Interface and Digital I/O Connections  
62  
版权 © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
9.2 Typical Application  
84 shows an application of the ADS1235-Q1 with a bridge circuit. The excitation voltage provided to the  
bridge is the ADC power supply voltage (5 V). Due to the low input-referred noise of the ADS1235-Q1, in many  
applications there is no need for an additional gain amplifier. The excitation voltage sense lines are connected to  
the reference inputs of the ADC with a noise filter. This configuration provides ratiometric operation that cancels  
noise and drift of the excitation voltage.  
The input signal and reference voltage paths are filtered with equal-value components to remove high frequency  
noise from affecting the measurement.  
5 V  
Exc +  
1 µ F  
0.1 µF  
10 µ F  
1 µ F  
1 nF  
BYPASS  
AVDD  
DVDD  
100  
100 ꢀ  
REFP0  
ADS1235-Q1  
REFN0  
Ref  
Mux  
10 nF  
100 kꢀ  
START  
Sen +  
RESET  
PWDN  
DRDY  
1 nF  
AIN0  
AIN1  
AIN2  
Control  
Ref  
Monitor  
Temp  
Sensor  
5 V  
Input  
Mux  
Buf  
1 kꢀ  
AIN3  
AIN4  
CS  
Sen -  
Sig +  
DIN  
AIN5  
Serial  
Interface  
24-Bit  
ûADC  
Digital  
Filter  
1 nF  
PGA  
SCLK  
100 ꢀ  
100 ꢀ  
DOUT/DRDY  
Internal  
Oscillator  
Clock  
Mux  
CLKIN  
PGA  
Monitor  
10 nF  
Sig -  
CAPN  
AVSS  
DGND  
CAPP  
1 nF  
Exc -  
10 nF  
(C0G)  
84. Bridge Input Application  
9.2.1 Design Requirements  
The ADC can be configured to provide tradeoffs between conversion noise, sample rate and conversion settling  
time. 42 summarizes the design performance goals. 43 summarizes the design parameters.  
1 kΩ fixed-value precision resistors simulate the bridge circuit. One of the four resistor values is unbalanced  
(1.008 kΩ) in order to generate a 10 mV output signal to simulate a full scale output with 2 mV/V bridge gauge  
factor when used with 5 V excitation.  
42. Design Goals  
DESIGN GOAL  
Noise free resolution (counts)  
Sample rate  
VALUE  
> 100,000 counts  
10 SPS  
Settling time  
200 ms  
43. Design Parameters  
DESIGN PARAMETER  
Bridge resistance  
DESIGN VALUE  
1 kΩ  
Bridge excitation voltage  
Bridge gauge factor  
Bridge full scale signal  
5 V  
2 mV/V  
10 mV  
版权 © 2019, Texas Instruments Incorporated  
63  
 
 
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
A key consideration in the design of a bridge transducer for weigh applications is noise-free resolution. Noise-  
free resolution is defined by the ratio of full scale signal to the conversion noise of the ADC. Other considerations  
are data throughput rate and input signal settling time.  
1 shows the ADC conversion noise expressed as an input-referred quantity. The table shows various tradeoffs  
among gain, sample rate and sinc filter in order to optimize noise for a given design. For this example, the  
configuration of the ADC that yields the lowest noise while achieving the sample rate and settling time  
requirement is gain = 128, 10 SPS, filter order = sinc 1 and by using the chop mode. Use of the chop mode has  
the additional advantage of eliminating offset drift from the ADC.  
Configuring the ADC for 10 SPS, the sinc4 filter order and disabling chop mode yields approximately the same  
noise performance compared to the target configuration (shown above) but do not satisfy the settling time  
requirement of 200 ms. The sinc4 filter order settles in four conversion periods, or 400 ms.  
Noise-free counts are improved by increasing the signal output from the bridge. Increasing the signal output is  
possible by the use of a bridge with a higher gauge-factor, or by increasing the excitation voltage. Operation with  
an excitation voltage above 5 V requires voltage division of the bridge sense voltage before it is input to the ADC  
reference pins.  
External filter components filter the signal and reference inputs of the ADC. The filters remove both differential  
and common-mode high-frequency noise. Component value mismatch in the common-mode filter converts  
common-mode noise into differential noise. To minimize the effect of the mismatch, the differential filter capacitor  
values (10 nF) are 10x higher value than the common-mode capacitors (1 nF). Increase the capacitor values to  
provides additional noise filtering. Maintain the resistors at low values to minimize thermal noise. For consistent  
noise performance, match the corner frequencies of the input and reference filters. More information is found in  
the RTD Ratiometric Measurements and Filtering Using the ADS1148 and ADS1248 Family of Devices  
Application Report.  
9.2.3 Application Curves  
85 and 86 show the conversion data that was acquired over a 60 second interval. 60 seconds of data  
provides evaluation of noise performance under actual conditions. The acquired conversion data is taken with a  
full-scale signal (10 mV) to show the noise cancelling effects of the ADC provided by ratiometric operation. 85  
and 86 show conversion data in normal mode and in chop mode operation, respectively. In normal mode, the  
approximate noise free resolution is 100,000 counts. In chop mode, approximate noise free resolution is 120,000  
counts. Chop mode provides the additional advantage of zero offset drift, but requires an additional conversion  
period for fully settled data after an input step change occurs (200 ms total).  
10007.75  
10007.7  
10007.65  
10007.6  
10007.55  
10007.5  
10007.45  
10009.65  
10009.6  
10009.55  
10009.5  
10009.45  
10009.4  
10009.35  
Normal Mode  
VN = 0.019 mV RMS  
VN = 0.107 mV P-P  
Chop mode  
VN = 0.014 mV RMS  
VN = 0.084 mV P-P  
0
10  
20  
30  
Time (s)  
40  
50  
60  
0
10  
20  
30  
Time (s)  
40  
50  
60  
D107  
D108  
85. Conversion Data (Normal Mode)  
86. Conversion Data (Chop Mode)  
64  
版权 © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
9.3 Initialization Setup  
87 shows a general configuration and measurement procedure.  
Apply Power  
Set RESET and PWDN High  
/* These pins must be high for operation  
Y
External clock?  
N
Apply clock to XTAL1  
/* ADC automatically detects external clock  
(external clock can be applied at power-on)  
Wait 216 clock cycles  
/* The ADC is internally held in reset for 216 clocks after power-on  
Y
/* If START pin is high, conversions are free-running  
If START pin is low, conversions are stopped  
START High?  
DRDY pulses at 20 Hz  
Set START low  
N
/* For simplicity, stop conversions before register configuration  
/* Readings are suspended until Write Register command completes  
DRDY not pulsing  
Issue Write Register  
command to configure the  
ADC  
Issue Read Register  
command to verify registers  
/* Readings are suspended until Read Register command completes  
Set START pin  
or START command  
/* Start or re-start new ADC conversion  
N
Hardware DRDY?  
Read STATUS byte  
Y
N
DRDY bit = 1 ?  
N
/* Wait for new data  
DRDY low ?  
Y
Y
Read Data  
N
Change ADC  
Settings ?  
Y
87. ADC Configuration and Measurement Procedure  
版权 © 2019, Texas Instruments Incorporated  
65  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The ADC requires an analog power supply (AVDD, AVSS) and digital power supply (DVDD). The analog power  
supply can be bipolar (AVDD = +2.5 V and AVSS = –2.5 V) or unipolar (AVDD = 5 V and AVSS = DGND). The  
digital supply range is 2.7 V to 5.25 V. DVDD powers the ADC core by use of an internal regulator. DVDD also  
sets the digital I/O voltage. Keep in mind that the GPIO I/O voltages are AVDD and AVSS. Voltage ripple  
produced by switch-mode power supplies may interfere with the ADC conversions. Use low-dropout regulators  
(LDOs) to reduce voltage ripple caused by switch-mode power supplies.  
10.1 Power-Supply Decoupling  
Good power-supply decoupling is important in order to achieve rated performance. Power supplies must be  
decoupled close to the power supply pins using short, direct connections to ground. For the analog supply, place  
0.1-µF and 10-µF capacitors between AVDD and AVSS. Connect a 1-µF capacitor from DVDD to the ground  
plane. Connect a 1-µF capacitor from BYPASS to the ground plane.  
10.2 Analog Power-Supply Clamp  
It is important to evaluate circumstances when an input signal is present with the ADC, both powered and  
unpowered. When the input signal exceeds the power-supply voltage, it is possible to backdrive the analog  
power-supply voltage with the input signal through a conduction path of the internal ESD diodes. Backdriving the  
ADC power supply can also occur when the power-supply is on. The backdriven current path is illustrated in 图  
88. Depending on how the power supply responds during a backdriven condition, it is possible to exceed the  
maximum rated ADC supply voltage. The ADC voltage must not be exceeded at all times. One solution is to  
clamp the analog supply to safe voltage using an external zener diode.  
ADC supply On or Off  
IFAULT  
+V  
+5 V Reg  
AVDD  
RLIMIT  
ESD Diode  
AINx  
Optional  
6-V Zener Diode  
+
œ
ADC  
Input Voltage  
AINx  
IFAULT  
ESD Diode  
IFAULT  
AVSS  
88. Analog Power-Supply Clamp  
10.3 Power-Supply Sequencing  
The power supplies can be sequenced in any order, but do not allow the analog or digital inputs to exceed the  
respective analog or digital power-supply voltage without external limits of the possible input fault currents.  
66  
版权 © 2019, Texas Instruments Incorporated  
 
ADS1235-Q1  
www.ti.com.cn  
ZHCSKD9 OCTOBER 2019  
11 Layout  
Good layout practices are crucial to realize the full-performance of the ADC. Poor grounding can quickly degrade  
the noise performance. The following layout guidelines help provide the best results.  
11.1 Layout Guidelines  
For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal traces  
on this layer. However, depending on restrictions imposed by specific end equipment, a dedicated ground plane  
may not be practical. If ground plane separation is necessary, make a direct connection of the planes at the  
ADC. Do not connect individual ground planes at multiple locations because this configuration creates ground  
loops.  
Route digital traces away from the CAPP and CAPN pins and away from all analog inputs and associated  
components in order to minimize interference.  
Avoid long traces on DOUT/DRDY, because high capacitance on this pin can lead to increased ADC noise  
levels. Use a series resistor or a buffer if long traces are used.  
C0G capacitors are preferred for the analog input filters. Evaluate other types of capacitors carefully for input  
filtering use. Use a C0G-type capacitor for the CAPP to CAPN capacitor. Use X7R-type capacitors for the power  
supply decoupling capacitors. High-K type capacitors (Y5V) are not recommended. Place the capacitors as close  
as possible to the device pins using short, direct traces. For optimum performance, use low-impedance  
connections on the ground-side connections of the bypass capacitors.  
When applying an external clock, be sure the clock is free of overshoot and glitches. A source-termination  
resistor placed at the clock buffer helps control reflections and overshoot. Glitches present on the clock signal  
can lead to increased noise and possible mis-operation.  
11.2 Layout Example  
89 is an example layout of the ADS1235-Q1, requiring a minimum of three PCB layers. The example circuit is  
shown with single supply operation (AVSS = DGND). In this example, the inner layer is dedicated to the ground  
plane and the outer layers are used for signal and power traces. If a four-layer PCB is used, dedicate the  
additional inner layer as the power plane. In this example, the ADC is oriented in such a way to minimize  
crossover of the analog and digital signal traces.  
DVDD  
Supply  
ADC Clock Options:  
Option 1: To enable INTERNAL  
oscillator, tie CLKIN to  
GND  
1 µF  
Option 2: Connect EXTERNAL  
clock source to CLKIN  
10 nF  
1 µF  
AIN5 25  
(Differential Input Pair)  
AIN4 26  
16 DGND  
15 BYPASS  
14  
13  
DOUT/DRDY  
DRDY  
AIN3 27  
ADS1235-Q1  
(Differential Input Pair)  
AIN2 28  
47  
47 ꢀ  
47 ꢀ  
47 ꢀ  
10 nF  
AIN1 29  
12 DIN  
(Differential Input Pair)  
Connect thermal pad to  
AVSS  
AIN0 30  
11 SCLK  
CS  
REFN0 31  
10  
9
(Reference Input)  
REFP0 32  
START  
Additional  
analog  
compenents  
To  
MCU  
10 nF  
4.7 nF  
1 µF  
C0G  
AVDD  
Supply  
10 nF  
10 µF  
For Bipolar Supply,  
AVSS = -2.5 V  
(0805 shown)  
(0603 shown)  
(9-mil traces shown)  
89. ADS1235-Q1 Layout Example  
版权 © 2019, Texas Instruments Incorporated  
67  
 
ADS1235-Q1  
ZHCSKD9 OCTOBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)ADS1261 ADS1235 评估模块》用户指南  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
68  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1235QWRHMRQ1  
ACTIVE  
VQFN  
RHM  
32  
3000 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
-40 to 125  
ADS  
1235Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Aug-2022  
OTHER QUALIFIED VERSIONS OF ADS1235-Q1 :  
Catalog : ADS1235  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
RHM0032A  
VQFNP - 0.9 mm max height  
SCALE 3.000  
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
0.05  
0.00  
(0.09)  
PIN 1 ID  
5.1  
4.9  
DETAIL A  
DETAIL  
SCALE 20.000  
A
TYPICAL  
(
4.75)  
(0.15)  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
(0.2)  
SEE DETAIL A  
3.7 0.1  
SYMM  
SEE DETAIL B  
4X (45 X 0.6)  
9
16  
8
17  
EXPOSED  
THERMAL PAD  
SYMM  
33  
4X  
3.5  
1
24  
28X 0.5  
0.30  
0.18  
32X  
25  
PIN 1 ID  
(OPTIONAL)  
32  
0.1  
C B A  
C
0.5  
32X  
0.05  
0.3  
4219073/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHM0032A  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
4X (1.26)  
4X (0.97)  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
4X  
(0.97)  
33  
SYMM  
4X  
(4.8)  
(1.26)  
28X (0.5)  
17  
8
(
0.2) VIA  
TYP  
9
16  
SYMM  
(4.8)  
(R0.05)  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219073/A 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHM0032A  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(1.26 TYP)  
32  
25  
32X (0.6)  
33  
1
24  
32X (0.25)  
(1.26)  
TYP  
SYMM  
(4.8)  
28X (0.5)  
17  
8
METAL  
TYP  
9
16  
(R0.05)  
TYP  
4X ( 1.06)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:18X  
4219073/A 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY