ADS125H02IRHBR [TI]

具有 ±20V 输入、PGA、IDAC、GPIO 和基准电压的 24 位、40kSPS、2 通道 Δ-Σ ADC | RHB | 32 | -40 to 125;
ADS125H02IRHBR
型号: ADS125H02IRHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 ±20V 输入、PGA、IDAC、GPIO 和基准电压的 24 位、40kSPS、2 通道 Δ-Σ ADC | RHB | 32 | -40 to 125

文件: 总90页 (文件大小:3429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
具有 PGA 和电压基准的 ADS125H02 ±20V 输入、双通道、40kSPS24  
Δ-Σ ADC  
1 特性  
3 说明  
1
±20V 输入、24 Δ-Σ ADC  
ADS125H02 是一款 ±20V 输入、24 位、Δ-Σ 模数转  
换器 (ADC)。该 ADC 配备 低噪声可编程增益放大器  
(PGA)、内部基准电压、时钟振荡器和信号或基准电压  
超范围监控器。  
可编程数据速率:2.5SPS 40000SPS  
高压高阻抗 PGA:  
差分输入范围:高达 ±20V  
可编程增益:0.125 128  
共模输入电压:高达 ±15.5V  
输入阻抗:1GΩ(最小值)  
与分立的解决方案相比,该产品将一个宽输入电压范  
围、±18V PGA ADC 集成到单个封装中,可将电路  
板面积减小最多 50%。  
高性能 ADC:  
具有 0.125 128 的可编程增益(相当于 ±20V 至  
±20mV 的等效输入范围),因而无需外部衰减器或外  
部增益级。1GΩ 的最低输入阻抗可减小由传感器负载  
导致的误差。而且,由于具备低噪声和低漂移性能,因  
而能直接连接桥、电阻式温度检测器 (RTD) 和热电偶  
传感器。  
输入噪声:45nVRMS (20SPS)  
CMRR105dB  
50Hz60Hz 下的常规模式抑制:95dB  
温漂:5nV/°C  
增益漂移:1ppm/°C  
积分非线性 (INL)2ppm  
数字滤波器可减弱数据速率 50SPS 60SPS 时的  
50Hz 60Hz 线路周期噪声,以减小测量误差。滤波  
器还可提供无延迟转换数据,从而在通道定序期间实现  
高数据吞吐量。  
集成 特性 和诊断功能:  
2.5V 基准:3ppm/°C 漂移  
时钟振荡器:2.5% 误差(最大值)  
激励电流源  
GPIO 可驱动外部多路复用器  
信号和基准电压监控器  
循环冗余校验 (CRC)  
ADS125H02 采用 5mm × 5mm VQFN 封装,额定工  
作温度范围为 –40°C +125°C。  
器件信息(1)  
电源:  
器件型号  
ADS125H02  
封装  
VQFN (32)  
封装尺寸(标称值)  
AVDD4.75V 5.25V  
5.00mm × 5.00mm  
DVDD2.7V 5.25V  
HVDD±5V ±18V  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
工作温度:–40°C +125°C  
5mm × 5mm VQFN 封装  
功能方框图  
15 V  
5 V (A)  
REFP0 REFN0  
REFOUT  
5 V (D)  
2 应用  
2.5-V  
Ref  
ADS125H02  
PLC 模拟输入模块:  
REFP1/GPIO0  
REFN1/GPIO1  
GPIO2  
GPIO  
(5 V)  
START  
RESET  
DRDY  
Ref  
MUX  
电压(例如 ±10V 0V 5V)  
电流(例如 4mA 20mA,具有分流器)  
温度(例如 RTD、热电偶)  
Control  
GPIO3  
IDAC1  
IDAC2  
5 V  
BUF  
Monitor  
CS1  
CS2  
Serial  
Interface  
(CRC)  
AIN0  
AIN1  
DIN  
测试和测量:  
24-Bit  
ûADC  
Digital  
Filter  
Input  
MUX  
DOUT/DRDY  
SCLK  
AINCOM  
PGA  
Supply  
Read  
高共模电压输入  
电池测试  
Monitor  
Temp  
Sensor  
Internal  
Oscillator  
Clock  
Mux  
CLKIN  
高侧电流测量  
-15 V  
(A)  
(D)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS790  
 
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
目录  
9.5 Programming........................................................... 45  
9.6 Register Map........................................................... 53  
10 Application and Implementation........................ 68  
10.1 Application Information.......................................... 68  
10.2 Typical Applications .............................................. 69  
10.3 Initialization Setup................................................. 73  
11 Power Supply Recommendations ..................... 74  
11.1 Power-Supply Decoupling..................................... 74  
11.2 Analog Power-Supply Clamp ................................ 74  
11.3 Power-Supply Sequencing.................................... 74  
11.4 5-V to ±15-V DC-DC Converter ............................ 74  
12 Layout................................................................... 75  
12.1 Layout Guidelines ................................................. 75  
12.2 Layout Example .................................................... 76  
13 器件和文档支持 ..................................................... 77  
13.1 文档支持................................................................ 77  
13.2 接收文档更新通知 ................................................. 77  
13.3 社区资源................................................................ 77  
13.4 ....................................................................... 77  
13.5 静电放电警告......................................................... 77  
13.6 Glossary................................................................ 77  
14 机械、封装和可订购信息....................................... 78  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements................................................ 9  
7.7 Switching Characteristics........................................ 10  
7.8 Typical Characteristics............................................ 12  
Parameter Measurement Information ................ 20  
8.1 Noise Performance ................................................. 20  
Detailed Description ............................................ 24  
9.1 Overview ................................................................. 24  
9.2 Functional Block Diagram ....................................... 25  
9.3 Feature Description................................................. 26  
9.4 Device Functional Modes........................................ 39  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (April 2019) to Revision C  
Page  
已删除 从文档中删除了 ADS125H01...................................................................................................................................... 1  
Changed Device Comparison Table....................................................................................................................................... 3  
Added Effective resolution parameter to Electrical Characteristics table............................................................................... 7  
已添加 Offset Voltage Long-Term Drift curves to Typical Characteristics ........................................................................... 15  
已添加 Gain Long-Term Drift curves to Typical Characteristics .......................................................................................... 16  
已添加 Internal Reference Voltage Long-Term Drift curve to Typical Characteristics ......................................................... 17  
已添加 Oscillator Frequency Long-Term Drift curve to Typical Characteristics ................................................................... 19  
已更改 Noise Performance section....................................................................................................................................... 20  
已添加 effective resolution and noise-free resolution data in Noise Performance .............................................................. 23  
已更改 sinc1, sinc3, sinc4, and sinc5 values and footnote in Conversion Latency Time table............................................ 40  
已更改 start-conversion delay value from 0 µs to 50 µs in the Start-Conversion Delay section.......................................... 40  
已更改 sinc mode values in Calibration Time table.............................................................................................................. 44  
已更改 address 00h default value from xxh to 6xh in Register Map Summary table........................................................... 53  
已更改 reset value from xxh to 6xh in Device Identification (ID) Register............................................................................ 54  
Changes from Revision A (January 2019) to Revision B  
Page  
已更改 将 ADS125H02 的状态从预告信息更改成了生产数据............................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
5 Device Comparison Table  
PART  
NUMBER  
SINGLE-ENDED, DIFFERENTIAL  
CHANNELS  
INTERNAL  
REFERENCE  
SENSOR CURRENT  
SOURCES  
TEMPERATURE  
SENSOR  
GPIOs  
ADS125H01  
ADS125H02  
1, 1  
2, 1  
No  
0
4
0
2
No  
Yes  
Yes  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RHB Package: ADS125H02  
32-Pin VQFN  
Top View  
REFP0  
CAPP  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
IDAC1  
IDAC2  
NC  
CAPN  
AVDD  
NC  
Thermal  
pad  
AGND  
HV_AVDD  
HV_AVSS  
CLKIN  
DVDD  
REFOUT  
RESET  
START  
Not to scale  
Pin Functions  
NO.  
NAME  
REFP0  
CAPP  
I/O  
Analog input  
DESCRIPTION  
1
Reference input 0 positive  
2
Analog output PGA output P; connect a 1-nF C0G dielectric capacitor from CAPP to CAPN  
Analog output PGA output N; connect a 1-nF C0G dielectric capacitor from CAPP to CAPN  
3
CAPN  
4
AVDD  
Analog  
Analog  
Low-voltage analog power supply (5 V)  
5
AGND  
REFOUT  
RESET  
START  
CS2  
Analog ground; connect to the ADC ground plane  
6
Analog output 2.5-V reference output; connect a 10-µF capacitor to AGND  
7
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital output  
Digital output  
Reset; active low  
8
Conversion start, active high  
9
Serial interface chip select 2 to select the PGA for communication  
Serial interface chip select 1 to select the ADC for communication  
Serial interface shift clock  
10  
11  
12  
13  
14  
15  
16  
17  
18  
CS1  
SCLK  
DIN  
Serial interface data input  
DRDY  
Data-ready indicator; active low  
DOUT/DRDY  
BYPASS  
DGND  
DVDD  
Serial interface data output and data-ready indicator (active low)  
Analog output 2-V subregulator output; connect a 1-µF capacitor to DGND  
Digital  
Digital  
Digital ground; connect to the ADC ground plane  
Digital power supply (3 V to 5 V)  
CLKIN  
Digital input  
External clock input. Connect to DGND for internal oscillator operation.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Pin Functions (continued)  
NO.  
19  
NAME  
HV_AVSS  
HV_AVDD  
NC  
I/O  
Analog  
Analog  
DESCRIPTION  
High-voltage negative analog power supply  
High-voltage positive analog power supply  
20  
21, 22  
23  
No connection; electrically float or tie to AGND  
IDAC2  
IDAC1  
AINCOM  
AIN0  
Analog output Current source 2 output  
Analog output Current source 1 output  
24  
25  
Analog input  
Analog input  
Analog input  
Analog input common (single-ended common input)  
26  
Analog input 0  
Analog input 1  
27  
AIN1  
Digital  
input/output  
28  
29  
30  
GPIO3  
GPIO2  
General-purpose input/output 3  
Digital  
input/output  
General-purpose input/output 2  
Analog, digital  
input/output  
REFN1/GPIO1  
Reference input 1 negative and general-purpose input/output 1  
Analog, digital  
input/output  
31  
REFP1/GPIO0  
REFN0  
Reference input 1 positive and general-purpose input/output 0  
Reference input 0 negative  
32  
Analog input  
Exposed thermal pad; connect to DGND; see the recommended PCB land pattern at the  
end of the document.  
Thermal pad  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–0.3  
MAX  
UNIT  
HV_AVDD to HV_AVSS  
HV_AVSS to AGND  
38  
–19  
0.3  
Power-supply voltage  
Analog input voltage  
AVDD to AGND  
–0.3  
6
V
DVDD to DGND  
–0.3  
6
0.1  
AGND to DGND  
–0.1  
AIN0, AIN1, AINCOM  
GPIO[3:0], REFP[1:0], REFN[1:0], IDAC[2:1]  
HV_AVSS – 0.3  
AGND – 0.3  
HV_AVDD + 0.3  
AVDD + 0.3  
V
CS1, CS2, SCLK, DIN, START, RESET, CLKIN,  
DRDY, DOUT/DRDY  
Digital input voltage  
Input current  
DGND – 0.3  
–10  
DVDD + 0.3  
V
(2)  
Continuous  
10  
150  
150  
mA  
Junction, TJ  
Storage, Tstg  
Temperature  
°C  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input and output pins are diode-clamped to the internal power supplies. Limit the input current to 10 mA in the event the analog input  
voltage exceeds HV_AVDD + 0.3 V or HV_AVSS – 0.3 V, or if the reference input, GPIO, or IDAC voltage exceeds AVDD + 0.3 V or  
AGND – 0.3 V, or if the digital input voltage exceeds DVDD + 0.3 V or DGND – 0.3 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
POWER SUPPLY  
HV_AVDD to HV_AVSS  
10  
–18  
5
36  
High-voltage analog power supplies HV_AVSS to AGND  
HV_AVDD to AGND(1)  
0
36  
V
Low-voltage analog power supply  
Digital power supply  
AVDD to AGND  
DVDD to DGND  
4.75  
2.7  
5
5.25  
5.25  
V
V
SIGNAL INPUTS  
V(AINX) Absolute input voltage  
See the PGA Operating Range section  
V
V
VIN  
Differential input voltage range(2)  
VIN = VAINP – VAINN  
–20  
±VREF / Gain  
20  
VOLTAGE REFERENCE INPUTS  
VREF  
Reference voltage input  
VREF = V(REFPx) – V(REFNx)  
0.9  
AGND – 0.05  
V(REFNx) + 0.9  
AVDD  
V(REFPx) – 0.9  
AVDD + 0.05  
V
V
V
V(REFNx) Negative reference voltage  
V(REFPx) Positive reference voltage  
GENERAL-PURPOSE INPUT/OUTPUTS (GPIOs)  
Input voltage  
AGND  
DGND  
AVDD  
DVDD  
V
V
DIGITAL INPUTS (Other Than GPIOs)  
Input voltage  
EXTERNAL CLOCK  
Data rate < 40000 SPS  
Data rate = 40000 SPS  
1
1
7.3728  
10.24  
8
10.75  
60%  
f(CLK)  
Frequency  
Duty cycle  
MHz  
°C  
40%  
TEMPERATURE RANGE  
TA Operating ambient temperature  
(1) HV_AVDD can be connected to AVDD if AVDD 5 V.  
–45  
125  
(2) The full differential input voltage range is limited under certain conditions. See the PGA Operating Range section for details.  
7.4 Thermal Information  
ADS125H02  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
35.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
19.0  
15.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
15.7  
RθJC(bot)  
8.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
7.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz,  
data rate = 20 SPS, and gain = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Absolute input current  
V(AINx) = 0 V, TA 105°C  
–15  
±0.5  
20  
15  
nA  
pA/°C  
nA  
Absolute input current drift  
VIN = 2.5 V  
VIN = 2.5 V, auto-zero mode(1)  
±0.1  
±2  
Differential input current  
nA/V  
pA/°C  
GΩ  
Differential input current drift  
Differential input impedance  
Crosstalk  
VIN = 2.5 V  
10  
1
20  
0.1  
µV/V  
PGA  
Gain  
0.125, 0.1875, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,128  
230  
V/V  
kHz  
Antialias filter frequency  
PERFORMANCE  
Resolution  
No missing codes  
24  
Bits  
Data rate  
2.5  
40000  
SPS  
en  
Noise performance  
Effective resolution  
See 1 and 2  
See 52 and 53  
Gain = 0.125 to 32  
Gain = 64, 128  
2
4
10  
12  
INL  
VOS  
Integral nonlinearity  
Offset voltage(2)  
ppmFSR  
µV  
TA = 25°C  
–30 – 300 / Gain ±10 + 100 / Gain 30 + 300 / Gain  
TA = 25°C, auto-zero mode  
Gain = 0.125 to 8  
Gain = 16 to 128  
Auto-zero mode  
TA = 25°C, all gains  
All gains  
–0.5 – 0.5 / Gain  
±0.5 / Gain 0.5 + 0.5 / Gain  
150 / Gain  
10  
700 / Gain  
50  
Offset voltage drift  
nV/°C  
5 / Gain  
±0.1%  
1
GE  
Gain error(2)  
–0.7%  
0.7%  
4
Gain drift  
Normal-mode rejection ratio(3)  
ppm/°C  
dB  
NMRR  
CMRR  
See 7  
Data rate = 20 SPS  
Data rate = 400 SPS  
HV_AVDD, HV_AVSS  
AVDD  
130  
105  
2
Common-mode rejection ratio(4)  
90  
20  
60  
30  
PSRR  
Power-supply rejection ratio(5)  
20  
5
µV/V  
DVDD  
VOLTAGE REFERENCE INPUTS  
Absolute input current  
±250  
15  
nA  
nA/V  
nA/°C  
MΩ  
Input current vs reference voltage  
Input current drift  
Input impedance  
0.2  
30  
Differential  
(1) Auto-zero mode input current is proportional to the data rate.  
(2) Offset and gain errors are reduced to the level of noise by calibration.  
(3) Normal-mode rejection ratio performance is dependent on the digital filter configuration.  
(4) Common-mode rejection ratio is specified at 60 Hz.  
(5) Power-supply rejection ratio is specified at dc.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz,  
data rate = 20 SPS, and gain = 1 (unless otherwise noted)  
PARAMETER  
INTERNAL VOLTAGE REFERENCE(6)  
Voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.5  
±0.1%  
3
V
Initial error  
TA = 25°C  
–0.2%  
0.2%  
10  
TA = 0°C to 85°C  
Temperature drift  
ppm/°C  
ppm  
TA = –40°C to 125°C  
First 0°C to 105°C cycle  
Second 0°C to 105°C cycle  
7
20  
70  
Thermal hysteresis  
25  
Output current  
Load regulation  
–10  
10  
mA  
µV/mA  
ms  
20  
Start-up time  
Settling to ±0.001% final value  
TA = 25°C  
100  
TEMPERATURE SENSOR  
Voltage  
120  
390  
mV  
Temperature coefficient  
EXCITATION CURRENT SOURCES (IDACS)  
Currents  
µV/°C  
50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000  
µA  
V
Compliance range  
All currents  
AGND  
–6%  
AVDD – 1.1  
6%  
Absolute error  
All currents  
±0.7%  
±0.1%  
±1%  
100  
Equal values  
Unequal values  
Absolute  
–1.5%  
1.5%  
Relative error  
Temperature drift  
ppm/°C  
Equal values, I 750 µA  
5
25  
PGA MONITORS(7)  
Input and output low threshold  
Input and output high threshold  
REFERENCE MONITOR  
Low voltage threshold  
HV_AVSS + 2  
HV_AVDD – 2  
V
V
0.4  
0.6  
V
INTERNAL OSCILLATOR  
Data rate < 40000 SPS  
Data rate = 40000 SPS  
–2.5%  
–3.5%  
±0.5%  
±0.5%  
2.5%  
3.5%  
Accuracy  
GENERAL-PURPOSE INPUTS/OUTPUTS (GPIOs)  
VOH  
VOL  
VIH  
VIL  
High-level output voltage  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
Input hysteresis  
IOH = 1 mA  
IOL = –1 mA  
0.8 × AVDD  
0.7 × AVDD  
V
V
V
V
V
0.2 × AVDD  
AVDD  
0.3 × AVDD  
0.5  
(6) Voltage reference specifications apply after the device is soldered on the PCB using the recommended PCB layout pattern and using  
the reflow profile per JEDEC standard J-STD-020D1.  
(7) See the PGA Monitor section for details.  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz,  
data rate = 20 SPS, and gain = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS/OUTPUTS (OTHER THAN GPIOs)  
IOH = 1 mA  
0.8 × DVDD  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
IOH = 8 mA  
IOL = –1 mA  
IOL = –8 mA  
0.75 × DVDD  
0.2 × DVDD  
0.2 × DVDD  
VOL  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Input hysteresis  
0.7 × DVDD  
–10  
DVDD  
V
V
0.3 × DVDD  
0.1  
1.1  
V
Input leakage  
10  
µA  
POWER SUPPLY  
IHV_AVDD  
IHV_AVSS  
HV_AVDD, HV_AVSS supply current  
1.8  
4.6  
mA  
mA  
AVDD supply current  
2.8  
Voltage reference enabled  
When data rate = 40000 SPS  
Current sources enabled  
Internal oscillator active  
Data rate = 40000 SPS  
0.2  
IAVDD  
mA  
µA  
Additional AVDD supply current  
0.8  
As programmed  
0.5  
0.7  
49  
0.7  
1
IDVDD  
PD  
DVDD supply current  
Power dissipation  
mA  
mW  
79  
7.6 Timing Requirements  
over operating the ambient temperature range and DVDD = 2.7 V to 5.25 V (unless otherwise noted)  
MIN  
MAX  
UNIT  
SERIAL INTERFACE  
td(CSSC)  
tsu(DI)  
th(DI)  
Delay time, first SCLK rising edge after CS1 or CS2 falling edge  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
SCLK period  
50  
25  
25  
97  
ns  
ns  
ns  
ns  
tc(SC)  
tw(SCH),  
tw(SCL)  
Pulse duration, SCLK high or low  
40  
ns  
td(SCCS)  
tw(CSH)  
RESET  
tw(RSTL)  
Delay time, last SCLK falling edge before CS1 or CS2 rising edge  
Pulse duration, CS1 or CS2 high to reset interface  
50  
25  
ns  
ns  
Pulse duration, RESET low  
4
1 / fCLK  
CONVERSION CONTROL  
tw(STH) Pulse duration, START high  
tw(STL)  
4
4
1 / fCLK  
1 / fCLK  
Pulse duration, START low  
Setup time, START low or STOP command before DRDY falling edge to stop  
the next conversion (continuous mode)  
tsu(STDR)  
th(DRSP)  
100  
1 / fCLK  
1 / fCLK  
Hold time, START low or STOP command after DRDY falling edge to  
continue the next conversion (continuous mode)  
150  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
7.7 Switching Characteristics  
over operating the ambient temperature range and DVDD = 2.7 V to 5.25 V, and DOUT/DRDY load = 20 pF || 100 kΩ to  
DGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
SERIAL INTERFACE  
tw(DRH)  
Pulse duration, DRDY high  
16  
0
1 / fCLK  
ns  
Propagation delay time, CS1 or CS2 falling edge to DOUT/DRDY  
driven  
tp(CSDO)  
50  
40  
tp(SCDO1) Propagation delay time, SCLK rising edge to valid DOUT/DRDY  
th(SCDO1) Hold time, SCLK rising edge to invalid DOUT/DRDY  
ns  
ns  
0
Hold time, last SCLK falling edge to invalid DOUT/DRDY data  
output function  
th(SCDO2)  
15  
ns  
ns  
ns  
Propagation delay time, last SCLK falling edge to DOUT/DRDY  
data-ready function  
tp(SCDO2)  
110  
50  
Propagation delay time, CS1 or CS2 rising edge to DOUT/DRDY  
high impedance  
tp(CSDOZ)  
RESET  
Propagation delay time, RESET rising edge or RESET command  
to conversion start  
tp(RSCN)  
512  
512  
1 / fCLK  
Propagation delay time, power-on threshold voltage to ADC  
communication  
tp(PRCM)  
216  
1 / fCLK  
1 / fCLK  
tp(CMCN)  
CONVERSION CONTROL  
Propagation delay time, START pin high or START command to  
Propagation delay time, ADC communication to conversion start  
tp(STDR)  
2
1 / fCLK  
DRDY high  
tw(CSH)  
CS1  
CS2  
td(CSSC)  
td(SCCS)  
tc(SC)  
tw(SCH)  
SCLK  
DIN  
tw(SCL)  
tsu(DI)  
th(DI)  
1. Serial Interface Timing Requirements  
tw(DRH)  
DRDY  
CS1  
CS2  
SCLK  
tp(SCDO2)  
DOUT  
tp(CSDO)  
tp(SCDO1)  
tp(CSDOZ)  
(1)  
DRDY  
th(SCDO2)  
DOUT  
DOUT  
DOUT  
DOUT  
DRDY  
DOUT  
DOUT/DRDY  
th(SCDO1)  
(1) DRDY is the data-ready function in the interval between CS1 low and the first SCLK rising edge, and in the interval  
between the last SCLK falling edge of the command to CS1 high. DOUT is the data output function during the data  
read operation.  
2. Serial Interface Switching Characteristics  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
tw(STH)  
START  
tw(STL)  
Serial  
Command  
START  
STOP  
tsu(DRST)  
STOP  
tp(STDR)  
DRDY  
th(DRSP)  
3. Conversion Control Timing Requirements  
DVDD  
1 V (typ)  
1 V (typ)  
VBYPASS  
AVDD - AVSS  
3.5 V (typ)  
All supplies reach thresholds  
DRDY  
Begin ADC Communication  
DOUT/DRDY  
tp(PRCM)  
tp(CMCN)  
Conversion  
Status  
Start of 1st Conversion  
4. Power-Up Characteristics  
tw(RSTL)  
RESET  
Reset  
Command  
tp(RSCN)  
Reset  
Conversion  
Status  
Start  
5. RESET Pin and Reset Command Timing Requirements  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
7.8 Typical Characteristics  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
-1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D042  
D043  
V(AINx) = 0 V  
VIN = 2.5 V  
6. Absolute Analog Input Current vs Temperature  
7. Differential Analog Input Current vs Temperature  
15000  
300  
12500  
10000  
7500  
5000  
2500  
0
250  
200  
150  
100  
50  
0
D019  
Conversion Data (mV)  
D018  
Conversion Data (mV)  
Gain = 0.1875, data rate = 1200 SPS, sinc1 filter, calibrated offset,  
en = 13.6 µVRMS  
Gain = 1, data rate = 40000 SPS, calibrated offset,  
en = 37 µVRMS  
8. Noise Histogram  
9. Noise Histogram  
3.5  
3
150  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 2  
125  
100  
75  
50  
25  
0
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
D020  
Temperature (èC)  
D024  
Conversion Data (mV)  
Gain = 0.125 to 2, data rate = 20 SPS  
Gain = 32, data rate = 20 SPS, FIR filter, calibrated offset,  
en = 0.076 µVRMS  
11. Noise vs Temperature  
10. Noise Histogram  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
500  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
300  
200  
40000 SPS  
7200 SPS  
400 SPS  
20 SPS  
100  
50  
30  
20  
10  
5
3
2
1
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0.5  
1
1.5  
2
Reference Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
Temperature (èC)  
D025  
D015  
Gain = 4 to 128, data rate = 20 SPS  
Gain = 0.125  
12. Noise vs Temperature  
13. Noise vs Reference Voltage  
100  
70  
5
40000 SPS  
7200 SPS  
400 SPS  
20 SPS  
3
2
50  
30  
20  
1
0.7  
0.5  
10  
7
0.3  
0.2  
5
3
2
0.1  
0.07  
0.05  
1
0.7  
0.5  
40000 SPS  
7200 SPS  
400 SPS  
20 SPS  
0.03  
0.02  
0.5  
1
1.5  
2
Reference Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
0.5  
1
1.5  
2
Reference Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
D016  
D017  
Gain = 1  
Gain = 16  
14. Noise vs Reference Voltage  
15. Noise vs Reference Voltage  
4
3
5
4
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-100 -80 -60 -40 -20  
0
20  
Input Signal (% of Range)  
40  
60  
80 100  
-100 -80 -60 -40 -20  
0
20  
Input Signal (% of Range)  
40  
60  
80 100  
D026  
D027  
16. Nonlinearity vs Input Signal  
17. Nonlinearity vs Input Signal  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
24  
22  
20  
18  
16  
14  
12  
10  
8
10  
Gain = 0.125  
Gain = 1  
Gain = 32  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 2  
8
6
4
6
2
4
2
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Integral Non-Linearity (ppm  
)
D023  
D021  
FSR  
18. Integral Nonlinearity Distribution  
19. Integral Nonlinearity vs Temperature  
10  
8
10  
8
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 2  
6
6
4
4
2
2
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1
1.5  
2
2.5  
Reference Voltage (V)  
3
3.5  
4
4.5  
5
Temperature (èC)  
D022  
D009  
Input range limited to: ±4 V / Gain when VREF > 4 V  
20. Integral Nonlinearity vs Temperature  
21. Integral Nonlinearity vs Reference Voltage  
15  
8
7
6
5
4
3
2
1
0
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
12.5  
10  
7.5  
5
2.5  
0
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
Offset Drift (mV/èC)  
D010  
D035  
Input range limited to: ±4 V / Gain when VREF > 4 V  
22. Integral Nonlinearity vs Reference Voltage  
Gain = 0.125  
23. Offset Voltage Drift Distribution  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
8
7
6
5
4
3
2
1
0
10  
8
6
4
2
0
D036  
D037  
Offset Drift (mV/èC)  
Offset Drift (mV/èC)  
Gain = 1  
Gain = 32  
24. Offset Voltage Drift Distribution  
25. Offset Voltage Drift Distribution  
40  
35  
30  
25  
20  
15  
10  
5
30  
20  
Gain = 0.125  
Gain = 1  
Gain = 32  
10  
0
-10  
-20  
-30  
0
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
Offset Drift (nV/èC)  
D039  
D052  
Auto-zero mode  
32 units, gain = 0.1875, after calibration  
26. Offset Voltage Drift Distribution  
27. Offset Voltage Long-Term Drift  
1.5  
1
10  
8
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 2  
6
4
0.5  
0
2
0
-2  
-4  
-6  
-8  
-10  
-0.5  
-1  
-1.5  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
D053  
D013  
32 units, gain = 32, after calibration  
Gain = 0.125 to 2, after calibration  
29. Offset Voltage vs Reference Voltage  
28. Offset Voltage Long-Term Drift  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
8
7
6
5
4
3
2
1
0
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 0.125  
Gain = 1  
Gain = 32  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
D040  
D014  
Gain Error (%)  
Gain = 4 to 128, after calibration  
30. Offset Voltage vs Reference Voltage  
31. Gain Error Distribution  
16  
14  
12  
10  
8
0.35  
0.3  
Gain = 0.125  
Gain = 1  
Gain = 32  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 2  
0.25  
0.2  
6
4
0.15  
2
0
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Gain Drift (ppm/èC)  
D038  
D028  
Gain = 0.125 to 2  
33. Gain Error vs Temperature  
32. Gain Drift Distribution  
0.35  
0.3  
30  
20  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
10  
0.25  
0.2  
0
-10  
-20  
-30  
0.15  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
Temperature (èC)  
D029  
D050  
Gain = 4 to 128  
32 units, gain = 0.1875, after calibration  
34. Gain Error vs Temperature  
35. Gain Long-Term Drift  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
40  
0.3  
0.2  
0.1  
0
30  
20  
10  
0
-10  
-20  
-30  
-40  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
-0.1  
-0.2  
-0.3  
Gain = 2  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
D051  
D011  
32 units, gain = 32, after calibration  
Measurement input range limited to: ±4 V / Gain when VREF > 4 V  
36. Gain Long-Term Drift  
37. Gain Error vs Reference Voltage  
0.3  
0.2  
0.1  
0
12  
10  
8
6
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
-0.1  
-0.2  
-0.3  
4
2
0
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
Reference Drift (ppm/èC)  
D012  
D034  
Measurement input range limited to: ±4 V / Gain when VREF > 4 V  
TA = –40°C to +125°C  
38. Gain Error vs Reference Voltage  
39. Internal Reference Voltage Drift Distribution  
2.5  
80  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
60  
40  
20  
0
-20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
Temperature (èC)  
D006  
D048  
32 units, normalized data  
40. Internal Reference Voltage vs Temperature  
41. Internal Reference Voltage Long-Term Drift  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
350  
300  
250  
200  
150  
100  
50  
140  
130  
120  
110  
100  
90  
IREFN, TA = -40èC  
IREFN, TA = 25èC  
IREFN, TA = 85èC  
IREFN, TA = 125èC  
IREFP, TA = -40èC  
IREFP, TA = 25èC  
IREFP, TA = 85èC  
IREFP, TA = 125èC  
Gain = 0.125, 20 SPS  
Gain = 1, 20 SPS  
Gain = 0.125, 1200 SPS  
Gain = 1, 1200 SPS  
REFP  
80  
0
REFN  
-50  
70  
0.5  
1
1.5  
2
Differential Reference Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
1
10  
100  
1000 10000  
Frequency (Hz)  
100000 1000000  
D024  
D030  
42. Reference Input Current vs Reference Voltage  
43. Common-Mode Rejection Ratio vs Frequency  
10  
260  
9
8
7
6
5
4
3
2
1
0
250  
240  
230  
220  
210  
200  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0
0.5  
1
1.5  
2
2.5  
3
IDAC Voltage (V)  
3.5  
4
4.5  
5
D041  
Temperature Sensor Reading (èC)  
D019  
IDAC = 250 µA  
TA = 25°C  
45. IDAC Current vs IDAC Voltage  
44. Temperature Sensor Reading Distribution  
1
0.2  
0.15  
0.1  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0.5  
0
0.05  
0
-0.5  
-1  
-0.05  
-0.1  
-0.15  
-0.2  
-1.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
0.5  
1
1.5  
2
2.5  
3
IDAC Voltage (V)  
3.5  
4
4.5  
5
Temperature (èC)  
D033  
D023  
IDAC = 250 µA  
46. IDAC Match Error vs IDAC Voltage  
47. Oscillator Frequency Error vs Temperature  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, HV_AVDD = 15 V, HV_AVSS = –15 V, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, data rate  
= 20 SPS, and gain = 1 (unless otherwise noted)  
300  
200  
100  
0
110  
105  
100  
95  
Gain = 0.125, 20 SPS  
Gain = 1, 20 SPS  
Gain = 0.125, 1200 SPS  
Gain = 1, 1200 SPS  
90  
85  
-100  
-200  
-300  
80  
75  
70  
65  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
1
10  
100  
1000 10000  
Frequency (Hz)  
100000 1000000  
D049  
D031  
HV_AVDD and HV_AVSS  
32 units, normalized data  
49. PSRR vs Frequency  
48. Oscillator Frequency Long-Term Drift  
150  
140  
130  
120  
110  
100  
90  
5
4
3
2
1
0
AVDD, Gain = 0.125, 20 SPS  
AVDD, Gain = 1, 20 SPS  
AVDD, Gain = 0.125, 1200 SPS  
AVDD, Gain = 1, 1200 SPS  
DVDD, Gain = 1, 20 SPS  
IAVDD (20 SPS)  
IAVDD (40000 SPS)  
IHV_AVDD  
IHV_AVSS  
IDVDD  
80  
70  
1
10  
100  
1000 10000  
Frequency (Hz)  
100000 1000000  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D032  
D008  
AVDD and DVDD  
50. PSRR vs Frequency  
All gains  
51. Operating Current vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Noise Performance  
Noise performance depends on the device configuration: data rate, input gain, digital filter mode, and auto-zero  
mode. Two significant factors affecting noise performance are data rate and input gain. Decreasing the data rate  
lowers the noise because the bandwidth is reduced over the fixed noise profile of the ADC. Increasing the gain  
reduces noise (when noise is treated as an input-referred quantity) because the noise of the PGA is lower than  
that of the ADC. Noise performance also depends on the digital filter and auto-zero mode. As the digital filter  
order increases, the bandwidth decreases, which results in lower noise. As a result of two-point data averaging in  
auto-zero mode, noise performance improves by 2 compared to the normal operating mode.  
1 lists the noise data of gain equal to 0.125 to 2 (corresponding input ranges of ±20 V to ±1.25 V) as input-  
referred values. 2 lists the noise data of gain equal to 4 to 128 (corresponding input ranges of ±625 mV to  
±19.5 mV). The noise data are in units of µVRMS (RMS = root mean square) under the conditions listed. Values in  
parenthesis are peak-to-peak (µVpp).  
The noise data represent typical ADC performance at TA = 25°C, 2.5-V reference voltage, and auto-zero mode  
disabled. The noise data are the standard deviation and peak-to-peak computations of the ADC data. The data  
are acquired with inputs shorted, based on consecutive ADC readings for a period of ten seconds or 8192 data  
points, whichever occurs first. Because of the statistical nature of noise, repeated measurements may yield  
higher or lower noise results. Similarly, longer periods of data acquisition may result in higher peak-to-peak noise  
results.  
1. Typical Noise (en) in µVRMS and (µVPP), Gain = 0.125 to 2, VREF = 2.5 V  
DATA  
RATE  
(SPS)  
GAIN (Full-Scale Range)  
FILTER MODE  
0.125 (±20 V)  
0.1875 (±13.3 V)  
0.25 (±10 V)  
0.5 (±5 V)  
1 (±2.5 V)  
2 (±1.25 V)  
2.5  
2.5  
2.5  
2.5  
2.5  
5
FIR  
1.3 (4.8)  
1.1 (4.2)  
0.89 (3.6)  
0.6 (2.4)  
0.68 (2)  
0.67 (2)  
0.64 (2)  
1.2 (4.8)  
0.98 (3.6)  
0.91 (4)  
0.83 (3.2)  
0.75 (3.2)  
1.6 (7.9)  
1.4 (6.8)  
1.2 (5.6)  
1.1 (5.2)  
0.99 (4.4)  
1.7 (8.7)  
1.5 (7.5)  
1.4 (7.2)  
1.3 (6.4)  
2.1 (11)  
1.9 (9.5)  
1.5 (7.2)  
1.6 (8.3)  
1.3 (6.8)  
2.9 (17)  
2.3 (12)  
2.2 (13)  
0.69 (2.1)  
0.57 (2.4)  
0.44 (1.8)  
0.49 (1.5)  
0.48 (1.2)  
0.93 (4.2)  
0.77 (3.6)  
0.68 (2.4)  
0.62 (2.4)  
0.54 (2.1)  
1.2 (5.7)  
1.1 (5.4)  
0.9 (4.5)  
0.89 (4.2)  
0.79 (3.6)  
1.4 (6.6)  
1.1 (5.7)  
1.1 (5.1)  
0.97 (4.8)  
1.8 (8.6)  
1.5 (7.5)  
1.3 (6)  
0.49 (1.9)  
0.39 (1.5)  
0.32 (1)  
0.37 (1.5)  
0.29 (1)  
0.17 (0.67)  
0.15 (0.63)  
0.12 (0.52)  
0.11 (0.41)  
0.11 (0.41)  
0.24 (1.2)  
0.2 (0.93)  
0.18 (0.82)  
0.16 (0.75)  
0.14 (0.56)  
0.34 (1.7)  
0.3 (1.5)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
1
(3.6)  
0.26 (0.97)  
0.24 (0.89)  
0.26 (0.97)  
0.45 (2)  
1.1 (3)  
0.98 (3.6)  
1.7 (6.6)  
1.5 (6.6)  
1.3 (4.8)  
1.2 (4.8)  
1.2 (3.6)  
2.4 (11)  
1.9 (9.5)  
1.7 (8.9)  
1.5 (6.6)  
1.5 (6.6)  
2.6 (11)  
2.1 (10)  
1.9 (9.5)  
1.8 (7.7)  
0.32 (1)  
0.3 (1)  
0.57 (2.5)  
0.53 (2.2)  
0.44 (1.8)  
0.39 (1.6)  
0.38 (1.5)  
0.82 (4.3)  
0.7 (3.4)  
0.56 (2.7)  
0.54 (2.7)  
0.49 (2.4)  
0.87 (4.5)  
0.78 (3.7)  
0.72 (3.6)  
0.65 (3.1)  
1.1 (5.2)  
0.97 (5.5)  
0.83 (4.2)  
0.77 (4)  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
0.4 (1.9)  
5
0.35 (1.6)  
0.3 (1.3)  
5
5
0.27 (1.2)  
0.69 (3.3)  
0.55 (2.7)  
0.47 (2.3)  
0.46 (2.5)  
0.39 (1.9)  
0.72 (3.5)  
0.62 (3.2)  
0.54 (2.5)  
0.48 (2.5)  
0.89 (4.8)  
0.76 (4.2)  
0.69 (3.7)  
0.64 (3.1)  
0.56 (2.7)  
1.2 (7.5)  
10  
10  
10  
10  
10  
16.6  
16.6  
16.6  
16.6  
20  
20  
20  
20  
20  
50  
50  
50  
50  
60  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
0.24 (1.2)  
0.24 (1.1)  
0.2 (1)  
0.37 (2)  
0.32 (1.6)  
0.27 (1.3)  
0.24 (1.2)  
0.46 (2.6)  
0.43 (2.3)  
0.35 (1.8)  
0.31 (1.6)  
0.28 (1.4)  
0.64 (3.7)  
0.54 (3.1)  
0.49 (3)  
3
(15)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
2.7 (13)  
2.2 (11)  
2.1 (10)  
1.2 (5.4)  
1.1 (4.8)  
2.3 (14)  
2
(9.5)  
0.65 (3.1)  
1.5 (7.7)  
1.3 (7)  
4.1 (24)  
3.2 (18)  
3.3 (18)  
3.1 (17)  
4.5 (27)  
1.9 (11)  
1.1 (5.8)  
1.8 (9.2)  
1.6 (8.3)  
2.4 (13)  
1.2 (6.7)  
0.93 (5.3)  
0.87 (4.7)  
1.4 (8.3)  
2
(11)  
1
(5.8)  
0.43 (2.4)  
0.69 (3.8)  
3.1 (17)  
1.6 (9.2)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Noise Performance (接下页)  
1. Typical Noise (en) in µVRMS and (µVPP), Gain = 0.125 to 2, VREF = 2.5 V (接下页)  
DATA  
RATE  
(SPS)  
GAIN (Full-Scale Range)  
FILTER MODE  
0.125 (±20 V)  
0.1875 (±13.3 V)  
0.25 (±10 V)  
0.5 (±5 V)  
1 (±2.5 V)  
2 (±1.25 V)  
60  
60  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
3.8 (23)  
3.4 (19)  
3.3 (18)  
5.6 (34)  
4.9 (30)  
4.4 (26)  
4.1 (24)  
12 (74)  
9.3 (60)  
8.6 (54)  
2.6 (14)  
2.3 (13)  
2.1 (12)  
4.1 (23)  
3.4 (21)  
3.1 (18)  
2.9 (17)  
8.1 (55)  
6.7 (44)  
6.2 (39)  
5.6 (37)  
14 (98)  
2.1 (11)  
1.8 (9.2)  
1.9 (9.8)  
3.3 (20)  
2.7 (16)  
2.5 (14)  
2.3 (14)  
6.4 (43)  
5.3 (32)  
4.9 (32)  
4.5 (30)  
11 (75)  
1.4 (7.3)  
1.3 (6.9)  
1.2 (6.6)  
2.1 (12)  
1.8 (11)  
1.7 (10)  
1.5 (8.5)  
4.3 (27)  
3.5 (23)  
3.2 (20)  
1.2 (5.9)  
0.57 (3.1)  
0.54 (3.1)  
0.52 (2.8)  
0.91 (5.7)  
0.75 (4.4)  
0.69 (4.2)  
0.63 (4)  
1.8 (11)  
1.5 (10)  
1.4 (9.1)  
1.3 (8.3)  
3.1 (20)  
2.6 (18)  
2.4 (16)  
2.2 (15)  
4.2 (30)  
3.6 (26)  
3.3 (23)  
3.1 (22)  
5.6 (42)  
1
(5.4)  
60  
0.95 (5.2)  
1.8 (9.7)  
1.5 (8.7)  
1.3 (8.2)  
1.3 (7.7)  
3.6 (25)  
2.9 (19)  
2.7 (17)  
2.5 (16)  
100  
100  
100  
100  
400  
400  
400  
400  
8
(52)  
3 (20)  
1200  
1200  
1200  
1200  
2400  
2400  
2400  
2400  
4800  
4800  
4800  
4800  
7200  
7200  
7200  
7200  
14400  
19200  
25600  
40000  
20 (140)  
17 (110)  
15 (100)  
14 (95)  
7.3 (48)  
6.1 (41)  
5.6 (37)  
5.2 (37)  
10 (72)  
8.7 (62)  
7.9 (59)  
7.3 (53)  
14 (110)  
12 (88)  
11 (83)  
11 (81)  
16 (120)  
14 (100)  
13 (100)  
13 (95)  
18 (140)  
23 (180)  
42 (350)  
65 (530)  
6
5
(40)  
(33)  
12 (78)  
9.2 (62)  
8.4 (56)  
7.8 (51)  
15 (110)  
13 (97)  
11 (72)  
4.6 (31)  
4.3 (29)  
8.3 (60)  
9.9 (68)  
19 (140)  
16 (120)  
15 (110)  
14 (100)  
26 (200)  
23 (170)  
21 (150)  
20 (150)  
31 (230)  
28 (210)  
26 (200)  
25 (180)  
36 (290)  
50 (390)  
100 (870)  
160 (1300)  
27 (200)  
23 (180)  
21 (160)  
20 (140)  
37 (270)  
33 (250)  
31 (230)  
29 (220)  
44 (330)  
39 (300)  
37 (280)  
35 (260)  
53 (430)  
72 (560)  
150 (1300)  
250 (2000)  
7
(53)  
6.5 (50)  
(43)  
12 (94)  
11 (78)  
6
21 (160)  
18 (140)  
17 (130)  
16 (120)  
24 (180)  
22 (170)  
21 (160)  
20 (150)  
29 (220)  
39 (320)  
79 (640)  
120 (1000)  
11 (83)  
9.8 (73)  
5
(40)  
9
(65)  
4.7 (36)  
4.4 (33)  
6.5 (48)  
5.9 (46)  
5.5 (41)  
5.3 (41)  
7.4 (58)  
8.8 (71)  
13 (110)  
19 (150)  
8.5 (63)  
13 (98)  
12 (90)  
11 (82)  
10 (81)  
14 (120)  
17 (130)  
26 (220)  
37 (310)  
2. Typical Noise (en) in µVRMS and (µVPP), Gain = 4 to 128, VREF = 2.5 V  
DATA  
RATE  
(SPS)  
GAIN (Full-Scale Range)  
FILTER MODE  
4 (±625 mV)  
8 (±312 mV)  
16 (±156 mV)  
32 (±78.1 mV)  
64 (±39.1 mV)  
128 (±19.5 mV)  
2.5  
2.5  
2.5  
2.5  
2.5  
5
FIR  
0.082 (0.35)  
0.088 (0.35)  
0.059 (0.24)  
0.06 (0.24)  
0.054 (0.19)  
0.12 (0.52)  
0.11 (0.48)  
0.093 (0.43)  
0.081 (0.41)  
0.066 (0.3)  
0.19 (1)  
0.051 (0.2)  
0.05 (0.19)  
0.037 (0.14)  
0.034 (0.13)  
0.034 (0.13)  
0.071 (0.33)  
0.061 (0.28)  
0.048 (0.21)  
0.044 (0.2)  
0.043 (0.2)  
0.099 (0.51)  
0.086 (0.46)  
0.068 (0.36)  
0.032 (0.14)  
0.024 (0.089)  
0.021 (0.084)  
0.019 (0.075)  
0.019 (0.075)  
0.046 (0.21)  
0.038 (0.18)  
0.029 (0.14)  
0.03 (0.13)  
0.027 (0.11)  
0.024 (0.089)  
0.018 (0.072)  
0.017 (0.07)  
0.016 (0.065)  
0.038 (0.19)  
0.029 (0.14)  
0.024 (0.11)  
0.023 (0.1)  
0.027 (0.1)  
0.029 (0.12)  
0.024 (0.1)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
0.023 (0.098)  
0.017 (0.076)  
0.016 (0.073)  
0.015 (0.062)  
0.039 (0.17)  
0.029 (0.15)  
0.026 (0.12)  
0.022 (0.1)  
0.019 (0.076)  
0.018 (0.075)  
0.016 (0.069)  
0.037 (0.18)  
0.029 (0.13)  
0.023 (0.1)  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
5
5
0.022 (0.11)  
0.021 (0.096)  
0.054 (0.3)  
5
0.027 (0.13)  
0.064 (0.36)  
0.054 (0.3)  
0.022 (0.093)  
0.053 (0.29)  
0.045 (0.22)  
0.037 (0.2)  
0.022 (0.11)  
0.051 (0.3)  
10  
10  
10  
Sinc1  
Sinc2  
0.16 (0.82)  
0.12 (0.56)  
0.043 (0.21)  
0.034 (0.18)  
0.044 (0.23)  
0.033 (0.18)  
0.044 (0.23)  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
128 (±19.5 mV)  
2. Typical Noise (en) in µVRMS and (µVPP), Gain = 4 to 128, VREF = 2.5 V (接下页)  
DATA  
RATE  
(SPS)  
GAIN (Full-Scale Range)  
FILTER MODE  
4 (±625 mV)  
8 (±312 mV)  
16 (±156 mV)  
32 (±78.1 mV)  
64 (±39.1 mV)  
10  
10  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
0.11 (0.52)  
0.096 (0.45)  
0.19 (1)  
0.066 (0.31)  
0.059 (0.31)  
0.11 (0.56)  
0.086 (0.4)  
0.084 (0.41)  
0.076 (0.39)  
0.14 (0.72)  
0.12 (0.58)  
0.1 (0.57)  
0.089 (0.48)  
0.083 (0.41)  
0.19 (1.1)  
0.15 (0.84)  
0.14 (0.75)  
0.13 (0.76)  
0.21 (1.2)  
0.17 (0.93)  
0.15 (0.79)  
0.14 (0.89)  
0.27 (1.5)  
0.22 (1.4)  
0.2 (1.2)  
0.042 (0.21)  
0.039 (0.2)  
0.075 (0.38)  
0.054 (0.27)  
0.053 (0.27)  
0.053 (0.29)  
0.088 (0.45)  
0.079 (0.41)  
0.062 (0.34)  
0.063 (0.32)  
0.056 (0.29)  
0.12 (0.69)  
0.099 (0.56)  
0.093 (0.51)  
0.087 (0.47)  
0.14 (0.79)  
0.11 (0.66)  
0.097 (0.53)  
0.092 (0.5)  
0.17 (1)  
0.032 (0.17)  
0.032 (0.17)  
0.054 (0.3)  
0.044 (0.22)  
0.041 (0.22)  
0.042 (0.24)  
0.072 (0.38)  
0.064 (0.32)  
0.049 (0.25)  
0.046 (0.22)  
0.045 (0.23)  
0.097 (0.52)  
0.075 (0.43)  
0.074 (0.41)  
0.066 (0.37)  
0.11 (0.57)  
0.085 (0.47)  
0.078 (0.43)  
0.075 (0.46)  
0.14 (0.81)  
0.11 (0.63)  
0.1 (0.63)  
0.094 (0.57)  
0.27 (1.8)  
0.22 (1.4)  
0.2 (1.3)  
0.032 (0.16)  
0.031 (0.16)  
0.055 (0.29)  
0.049 (0.24)  
0.04 (0.22)  
0.04 (0.21)  
0.071 (0.37)  
0.061 (0.32)  
0.049 (0.26)  
0.045 (0.21)  
0.042 (0.22)  
0.096 (0.57)  
0.077 (0.43)  
0.07 (0.38)  
0.065 (0.35)  
0.1 (0.59)  
0.084 (0.49)  
0.078 (0.43)  
0.076 (0.4)  
0.14 (0.88)  
0.11 (0.69)  
0.1 (0.61)  
0.092 (0.56)  
0.27 (1.7)  
0.22 (1.4)  
0.2 (1.3)  
0.032 (0.16)  
0.03 (0.15)  
0.056 (0.31)  
0.046 (0.24)  
0.041 (0.2)  
0.036 (0.17)  
0.074 (0.37)  
0.06 (0.34)  
0.047 (0.29)  
0.045 (0.23)  
0.046 (0.24)  
0.098 (0.58)  
0.076 (0.46)  
0.071 (0.37)  
0.065 (0.37)  
0.1 (0.6)  
16.6  
16.6  
16.6  
16.6  
20  
0.16 (0.89)  
0.15 (0.73)  
0.13 (0.67)  
0.24 (1.2)  
0.22 (1.1)  
0.18 (1)  
20  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
20  
20  
0.16 (0.89)  
0.15 (0.82)  
0.35 (2.1)  
0.28 (1.6)  
0.25 (1.5)  
0.23 (1.4)  
0.38 (2.2)  
0.3 (1.7)  
0.27 (1.6)  
0.27 (1.6)  
0.49 (2.8)  
0.39 (2.3)  
0.35 (2.1)  
0.32 (2)  
20  
50  
50  
50  
50  
60  
60  
0.083 (0.49)  
0.076 (0.42)  
0.073 (0.4)  
0.13 (0.81)  
0.11 (0.66)  
0.1 (0.69)  
0.093 (0.57)  
0.27 (1.8)  
0.22 (1.4)  
0.2 (1.3)  
60  
60  
100  
100  
100  
100  
400  
400  
400  
400  
1200  
1200  
1200  
1200  
2400  
2400  
2400  
2400  
4800  
4800  
4800  
4800  
7200  
7200  
7200  
7200  
14400  
19200  
25600  
40000  
0.14 (0.87)  
0.13 (0.75)  
0.13 (0.73)  
0.34 (2.1)  
0.29 (1.8)  
0.26 (1.6)  
0.24 (1.6)  
0.59 (4.1)  
0.49 (3.2)  
0.45 (3.1)  
0.41 (2.7)  
0.81 (5.8)  
0.68 (5)  
0.18 (1.2)  
0.53 (3.5)  
0.44 (3.1)  
0.4 (2.6)  
0.94 (6)  
0.78 (5.2)  
0.72 (4.6)  
0.67 (4.2)  
1.6 (12)  
0.37 (2.4)  
0.91 (6.3)  
0.76 (5.2)  
0.69 (4.7)  
0.64 (4.3)  
1.2 (8.9)  
0.19 (1.2)  
0.46 (3.1)  
0.39 (2.6)  
0.35 (2.4)  
0.33 (2.3)  
0.64 (4.5)  
0.54 (3.9)  
0.49 (3.5)  
0.46 (3.5)  
0.83 (6.2)  
0.75 (5.6)  
0.69 (5)  
0.19 (1.2)  
0.45 (3.1)  
0.38 (2.6)  
0.35 (2.4)  
0.32 (2.2)  
0.62 (4.5)  
0.54 (3.9)  
0.48 (3.4)  
0.46 (3.4)  
0.83 (6.2)  
0.74 (5.4)  
0.68 (5.2)  
0.65 (4.9)  
0.94 (6.9)  
0.86 (6.5)  
0.82 (6.2)  
0.78 (6)  
0.19 (1.1)  
0.45 (3.1)  
0.38 (2.6)  
0.35 (2.2)  
0.32 (2.3)  
0.62 (4.6)  
0.54 (4)  
1.3 (9.3)  
1.2 (8.2)  
1.2 (7.6)  
2.2 (17)  
1.9 (14)  
1.1 (7.7)  
1.7 (14)  
0.97 (7.1)  
0.91 (6.7)  
1.6 (13)  
0.62 (4.4)  
0.59 (4.1)  
1.1 (7.8)  
0.49 (3.5)  
0.46 (3.4)  
0.82 (6.1)  
0.73 (5.5)  
0.69 (5.5)  
0.64 (4.9)  
0.94 (7.1)  
0.86 (6.4)  
0.82 (6.4)  
0.78 (5.8)  
1.6 (12)  
3
(23)  
2.6 (20)  
2.4 (19)  
2.3 (17)  
3.3 (25)  
3.1 (24)  
2.9 (22)  
2.8 (21)  
3.8 (29)  
4.6 (36)  
6.7 (56)  
9.6 (80)  
1.5 (12)  
0.95 (7.2)  
0.89 (6.4)  
0.82 (6.2)  
1.2 (9)  
1.4 (10)  
1.3 (9.8)  
0.64 (5)  
1.9 (15)  
0.95 (7)  
1.7 (13)  
1.1 (8.7)  
0.87 (6.6)  
0.83 (6.1)  
0.79 (5.8)  
1.1 (8.4)  
1.6 (12)  
1.1 (7.9)  
1.6 (12)  
1 (7.7)  
2.1 (17)  
1.4 (11)  
1.6 (13)  
2.1 (17)  
2.9 (23)  
1.1 (8.1)  
1 (8.4)  
2.5 (20)  
1.2 (9.6)  
1.2 (9.3)  
1.2 (9.5)  
1.4 (12)  
1.8 (15)  
3.6 (29)  
1.5 (13)  
1.4 (12)  
5
(43)  
2
(16)  
1.8 (15)  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
ADC noise performance can also be expressed as effective resolution and noise-free resolution (bits). The  
resolution in bits are computed from the measured noise data. Effective resolution is computed from the RMS  
value of the measured noise data. Noise-free resolution is computed from the peak-to-peak value of the  
measured noise data, and is therefore the resolution with no code flicker. 公式 1 is used to compute effective  
resolution (bits) and noise-free resolution (bits) based on the noise values listed in 1 and 2.  
Effective Resolution or Noise-Free Resolution (Bits) = 3.32 log (FSR / en)  
where:  
FSR = Full-scale range = 2 VREF / Gain  
en = Input-referred noise (RMS value for effective resolution, peak-to-peak value for noise-free resolution) (1)  
For example, with a full-scale range = ±13.3 V, data rate = 20 SPS, and filter mode = FIR, the RMS noise value  
(from 1) is 2.1 µV. The effective resolution is: 3.32 log (26.6 V / 2.1 µV) = 23.6 bits.  
52 and 53 show effective resolution (bits) using 公式 1. 54 and 55 show the noise-free resolution  
(bits) using 公式 1. The data are based on 2.5-V reference operation and the sinc3 filter mode. Effective  
resolution and noise-free resolution (bits) are improved by increasing the reference voltage (up to 5 V).  
24  
23  
22  
21  
20  
19  
18  
17  
16  
24  
22  
20  
18  
16  
14  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 2  
1
10  
100 1000  
Data Rate (SPS)  
10000 50000  
1
10  
100 1000  
Data Rate (SPS)  
10000 50000  
D044  
D045  
VREF = 2.5 V, sinc3 filter mode  
VREF = 2.5 V, sinc3 filter mode  
52. Effective Resolution, Gain = 0.125 to 2  
53. Effective Resolution, Gain = 4 to 128  
24  
22  
20  
18  
16  
14  
12  
24  
22  
20  
18  
16  
14  
12  
10  
Gain = 0.125  
Gain = 0.1875  
Gain = 0.25  
Gain = 0.5  
Gain = 1  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 2  
1
10  
100 1000  
Data Rate (SPS)  
10000 50000  
1
10  
100 1000  
Data Rate (SPS)  
10000 50000  
D046  
D047  
VREF = 2.5 V, sinc3 filter mode  
54. Noise-Free Resolution, Gain = 0.125 to 2  
VREF = 2.5 V, sinc3 filter mode  
55. Noise-Free Resolution, Gain = 4 to 128  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ADS125H02 is a ±20-V signal input, 24-bit, 40-kSPS, delta-sigma (ΔΣ) analog-to-digital converter. The  
device features gain from 0.125 to 128 that program the input voltage range from ±20 V to ±20 mV (VREF  
=
2.5 V). The inputs are configurable as one differential input or two single-ended inputs. The device includes a  
low-noise, low-drift PGA with high input impedance, signal monitors to detect overload conditions, and a voltage  
reference. A temperature sensor is provided to monitor the surrounding temperature.  
The ADC provides a compact one-chip measurement solution for a wide range of input voltages, including typical  
current and voltage inputs to industrial programmable logic controllers (PLCs), such as ±10-V and 4-mA to 20-  
mA transmitters (using an external shunt resistor). The ADC provides the resolution necessary to interface  
directly to low-level sensors such as strain-gauge sensors, thermocouples, and resistance temperature detectors  
(RTDs). Four general-purpose, input/output (GPIO) pins expand the number of measurement channels with the  
use of an external multiplexer. Two current sources (IDAC1 and IDAC2) are provided for RTD biasing.  
In summary, the ADC features:  
12 selectable gains for input ranges from ±20 mV to ±20 V (differential)  
1-GΩ input impedance PGA  
2.5-V voltage reference  
Internal or external reference operation  
Internal or external clock operation  
PGA, voltage reference, and power-supply monitors  
Temperature sensor  
SPI-compatible serial interface with CRC error check  
Two IDACs  
Four GPIOs  
Analog inputs (AIN0, AIN1, AINCOM) connect to the input multiplexer (MUX) to select the ADC input channel.  
The ADC supports one differential or two single-ended input measurement configurations.  
The programmable gain amplifier (PGA) follows the input multiplexer. The PGA is a high input impedance,  
complementary metal oxide semiconductor (CMOS), differential-input and differential-output amplifier. The PGA  
has gain and attenuation modes to match the signal amplitude requirements. In attenuation mode, the PGA  
reduces the input voltage to the range of the ADC. In gain mode, the input voltage is amplified to the range of the  
ADC. The PGA output connects to the CAPP and CAPN pins. The ADC antialias filter is provided by the  
combination of the internal PGA output resistors and the external capacitor connected to these pins.  
The input channel multiplexer and the PGA are powered by the high-voltage power-supply pins (HV_AVDD and  
HV_AVSS).  
The operating state of the PGA are monitored for signal out-of-range conditions. Status bits in the status register  
indicate the possible PGA out-of-range conditions.  
The ΔΣ modulator measures the input voltage relative to the reference voltage to produce a 24-bit conversion  
result. The input range of the ADC is ±VREF / Gain, where gain is programable in binary steps from 0.125 to 128.  
The ADC reference voltage is either internal (2.5 V) or external. The REFOUT pin is the internal reference  
voltage output (with respect to the AGND pin). The reference is monitored for out-of-range conditions and the  
status is reflected in the conversion data STATUS byte. The device provides two pairs of voltage reference input  
pins (REFP0, REFN0 and REFP1, REFN1).  
The digital filter both averages and reduces the data rate of the modulator output to provide the output  
conversion result. The sinc filter mode of the digital filter provides programmable orders (sinc1 through sinc5)  
that allow optimization of conversion latency, conversion noise, and line-cycle rejection. The finite impulse  
response (FIR) filter mode provides no-latency conversion data with simultaneous rejection of 50-Hz and 60-Hz  
interference for data rates of 20 SPS or less.  
User-programmable offset and gain calibration registers correct the conversion data to provide the final  
conversion result.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Overview (接下页)  
The SPI-compatible serial interface is used to read the conversion data and for ADC configuration and control.  
Integrity of SPI I/O communication is validated by CRC error checking. The serial interface consists of the  
following signals: CS1, CS2, SCLK, DIN, and DOUT/DRDY (see the Chip-Select Pins (CS1 and CS2) section for  
details). The dual-function DOUT/DRDY pin combines the functions of the serial data output and data-ready  
indication into one pin. DRDY is the data-ready output signal.  
The device includes two current sources (IDAC1, IDAC2). The IDACs are powered by the 5-V AVDD power  
supply. The IDACs provide excitation current to RTDs or other sensors that require constant-current excitation.  
The device provides four GPIO pins to control an external signal multiplexer and for general-purpose I/O of 0-V  
to 5-V logic signals.  
The ADC has an internal temperature sensor to monitor the surrounding temperature. The high-voltage power  
supply is available for readback by the ADC for user diagnostics.  
Clock operation is either controlled by the internal oscillator or by an external clock source. The external clock is  
automatically detected by the ADC. The nominal clock frequency is 7.3728 MHz (10.24 MHz for data rates equal  
to 40 kSPS).  
ADC conversions are controlled by the START pin or by the START command. Conversions are programmable  
for either continuous mode (gated by START) or one-shot (pulse) conversions.  
The ADC auto-resets at power-on, or is manually reset by the RESET input or by the RESET command.  
The HV_AVDD and HV_AVSS power supplies allow either bipolar or unipolar configuration (bipolar: ±5 V to  
±18 V, unipolar: 10 V to 36 V). The digital I/Os are powered by DVDD (3-V to 5-V range). An internal 2-V  
subregulator powers the ADC digital core for the DVDD supply. An external bypass capacitor is required at the  
subregulator output (BYPASS pin).  
9.2 Functional Block Diagram  
HV_AVDD  
REFP0/N0  
REFOUT  
AVDD  
BYPASS  
2.5-V  
Ref  
2-V  
Digital Core  
DVDD  
LDO  
REFP1/GPIO0  
REFN1/GPIO1  
GPIO2  
GPIO  
Ref  
MUX  
START  
GPIO3  
Control  
RESET  
DRDY  
IDAC1  
IDAC2  
AVDD  
Ref  
Monitor  
BUF  
AIN0  
AIN1  
CS1  
Serial  
CS2  
Interface  
and  
CRC  
Input  
MUX  
AINCOM  
24-Bit  
ûADC  
Digital  
Filter  
DIN  
PGA  
Calibration  
Supply  
Monitor  
DOUT/DRDY  
Verification  
SCLK  
Signal  
Monitors  
PGA  
Nodes  
Temp  
Sensor  
Internal  
Oscillator  
Clock  
Mux  
CLKIN  
DGND  
CAPP/N  
HV_AVSS  
AGND  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Input Range  
The input range of the ADC (as defined by 公式 2) is determined by the reference voltage and by the PGA gain.  
3 lists the input range verses gain when operating with a 2.5-V reference voltage. The input range scales with  
the reference voltage. The maximum input differential signal that can be applied is restricted under certain  
conditions because of the operating voltage headroom required by the PGA. See the PGA Operating Range  
section for details.  
Input Range = ± VREF / Gain  
(2)  
3. ADC Input Range(1)  
INPUT RANGE  
DIFFERENTIAL SINGLE-ENDED  
±20 V  
GAIN[2:0] BITS  
GAIN  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
0.125  
0.1875  
0.25  
0.5  
1
0 V to ±15.5 V  
0 V to ±13.3 V  
0 V to ±10 V  
±13.3 V  
±10 V  
±5 V  
0 V to ±5 V  
±2.5 V  
0 V to ±2.5 V  
2
±1.25 V  
±0.625 V  
±0.312 V  
±0.156 V  
±0.0781 V  
±0.0391 V  
±0.0195 V  
0 V to ±1.25 V  
0 V to ±0.625 V  
0 V to ±0.312 V  
0 V to ±0.156 V  
0 V to ±0.0781 V  
0 V to ±0.0391 V  
0 V to ±0.0195 V  
4
8
16  
32  
64  
128  
(1) Reference voltage = 2.5 V and HV power supply = ±18 V.  
9.3.2 Analog Inputs  
As shown in 56, the analog inputs of the ADC consist of electrostatic discharge (ESD) protection diodes and  
an input multiplexer.  
Positive Multiplexer  
AIN0  
AIN1  
ESD Diodes  
AINCOM  
HV_AVDD  
HV_AVDD  
VCOM  
AINP  
Temp Sensor P  
AIN0  
AIN1  
AINCOM  
PGA  
Negative Multiplexer  
ADC  
AIN0  
AIN1  
HV_AVSS  
AINCOM  
AINN  
HV_AVSS  
VCOM  
Temp Sensor N  
56. Analog Input Diagram  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.3.2.1 ESD Diodes  
ESD diodes are incorporated to protect the ADC inputs from possible ESD events occurring during the  
manufacturing process and during printed circuit board (PCB) assembly when manufactured in an ESD-  
controlled environment. For system-level ESD protection, consider the use of external ESD protection devices for  
pins that are exposed to possible ESD, including the analog inputs.  
If an analog input is driven below HV_AVSS – 0.3 V, or above HV_AVDD + 0.3 V, the internal ESD protection  
diodes can conduct. If this condition is possible, current can flow through the inputs and flow out from the  
HV_AVDD or HV_AVSS pins. Use external clamp diodes, series resistors, or both to limit the input current to the  
specified value (see the PGA Operating Range section for details).  
9.3.2.2 Input Multiplexer  
The input multiplexer selects the signal for measurement. The multiplexer is programmed by the MUX[2:0] bits of  
the MODE4 register (address = 10h). 4 lists the input multiplexer settings used to select the signal for  
measurement.  
4. Input Multiplexer Settings  
MUX[2:0] BITS OF REGISTER MODE4 (10h)  
MEASUREMENT (P to N)  
AIN1 to AIN0  
000  
001  
010  
011  
100  
101  
110  
111  
AIN0 to AIN1  
AIN1 to AINCOM  
AIN0 to AINCOM  
HV supply: (HV_AVDD – HV_AVSS) / 36  
VCOM voltage: (HV_AVDD + HV_AVSS) / 2 (default)  
Temperature sensor  
Reserved  
9.3.2.2.1 Analog Inputs (AIN0, AIN1, AINCOM)  
The ADC allows one differential input (AIN0 to AIN1, and a reverse polarity connection from AIN1 to AIN0) and  
two single-ended inputs (AIN0 to AINCOM and AIN1 to AINCOM).  
9.3.2.2.2 High-Voltage Power Supply Readback  
Read the high-voltage power supply by selecting the voltage with the input multiplexer. The supply voltage is  
divided by 36 for measurement in order to reduce the voltage to within the PGA input range. 公式 3 shows the  
supply voltage scaling.  
High-Voltage Power Supply (V) = (HV_AVDD – HV_AVSS) / 36  
(3)  
Measure the high-voltage power supply using the internal or external reference. To measure, set the PGA gain to  
1 and disable the auto-zero mode. Write 100b to the MUX[2:0] control bits and then start a new conversion.  
9.3.2.2.3 Internal VCOM Connection (Default)  
In this multiplexer configuration, the external inputs are disconnected and the PGA inputs are shorted to an  
internal voltage given by: VCOM = (HV_AVDD + HV_AVSS) / 2. Use this mode to measure the ADC noise  
performance and offset voltage, or to short the inputs to perform offset calibration. Be aware that shorting the  
external inputs during calibration yields the best results. Write 101b to the MUX[2:0] control register and start a  
new conversion to obtain the internal shorted-input reading.  
9.3.2.2.4 Temperature Sensor  
The ADC has a temperature sensor comprised of two internal diodes with one diode having 80 times the current  
density of the other. The difference in current density of the diodes yields a differential output voltage that is  
proportional to absolute temperature. To measure the temperature sensor, write 110b to the MUX[2:0] control  
bits to select the multiplexer for the temperature sensor and then start a new ADC conversion. 公式 4 shows how  
to convert the temperature sensor reading to degrees Celsius (°C):  
Temperature (°C) = [(Temperature Reading (µV) – 120,000) / 390 µV/°C] + 25°C  
(4)  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
When measuring the temperature sensor, set the gain to 1 and disable auto-zero mode. As a result of the low  
package-to-PCB thermal resistance, the internal temperature closely tracks the PCB temperature. Be aware that  
device self-heating increases the internal temperature relative to the surrounding PCB.  
9.3.3 Programmable Gain Amplifier (PGA)  
The PGA is a low-noise, programmable gain and attenuation, CMOS differential-input, differential-output  
amplifier. The PGA operates in gain or attenuation mode depending on the gain selected. Typically, the PGA is  
programmed to provide gain when the expected range of the input signal is less than the reference voltage and  
is programmed to provide attenuation when the expected range of the input signal is greater than the reference  
voltage.  
57 shows the block diagram of the PGA.  
HV_AVDD  
AVDD  
PGA Monitor  
PGA Monitor  
AINP  
+
375  
œ
A3  
A1  
œ
CAPP  
+
GAIN[3:0] bits 3:0 of MODE4  
(register address = 10h)  
1 nF  
C0G  
ADC  
AVDD / 2  
0110: 4  
0111: 8  
1000: 16  
1001: 32  
1010: 64  
1011: 128  
0000: 0.125  
0001: 0.1875  
0010: 0.25  
0011: 0.5  
0100: 1  
375 ꢀ  
+
0101: 2  
œ
A2  
A4  
œ
CAPN  
AINN  
+
PGA Monitor  
PGA Monitor  
AGND  
HV_AVSS  
57. PGA Block Diagram  
The PGA inputs are filtered by an RC network to decrease sensitivity to radio frequency interference (RFI) and  
electromagnetic interference (EMI) interference. The PGA is comprised of two stages: a gain stage followed by  
an attenuation stage. The first stage is a high input impedance, noninverting differential amplifier (amplifiers A1  
and A2) and provides the PGA gain.  
The second stage is an inverting, differential amplifier (amplifiers A3 and A4) and provides the attenuation stage.  
The second stage provides the PGA attenuation for high-amplitude signals. The common-mode voltage of the  
differential signal is shifted to AVDD / 2. The second stage drives the modulator input of the ADC and is also  
connected to the CAPP and CAPN pins. An external 1-nF capacitor filters the modulator input sampling pulses  
and also provides the antialias filter. Place the capacitor close to the pins using short, direct traces. Avoid  
running clock traces or other digital traces underneath or in the vicinity of these pins.  
Amplifiers A1 and A2 have inverse-parallel-connected protection diodes across the amplifiers inputs to clamp the  
voltage under signal overrange conditions. When the input is overranged, the diodes may conduct resulting in  
current flow through the diodes, and subsequently, through the analog input pins. Conditions of high dV/dt input  
signals, such as those generated by the switching of a signal multiplexer, can lead to transient turn-on of the  
clamp diodes. Use an RC filter at the PGA inputs to limit the dV/dt of the signal to reduce turn-on of the clamp  
diodes.  
The PGA is monitored for high and low operating voltage headroom at four signal points. The output of the eight  
total monitor outputs are ORed together into a single error bit contained in the conversion data status byte and  
the STATUS0 register.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.3.3.1 PGA Operating Range  
As with many amplifiers, the PGA limits the absolute input voltage that must not be exceeded in the linear  
operating range. The absolute voltage is the combined differential and common-mode voltages. The maximum  
allowable absolute voltage is determined by the PGA gain, the maximum differential input voltage (VIN), and the  
minimum value of the high-voltage power supply. Maintain the absolute input voltage (VAINX) within the range as  
shown in 公式 5, otherwise incorrect conversion data can result:  
HV_AVSS + 2.5 + VIN × (Gain – 1) / 2 < V(AINx) < HV_AVDD – 2.5 – VIN × (Gain – 1) / 2  
where:  
For gain < 1, use value = 1 for gain  
V(AINx) = Absolute input voltage  
VIN = VAINP – VAINN = Maximum expected differential input voltage  
(5)  
The differential input signal can also be limited by two other conditions. The first limiting condition is when the  
reference voltage exceeds AVDD – 1 V (nominally VREF > 4 V). In this case, the differential input signal is limited  
to: VIN = ±(AVDD – 1 V) / Gain, instead of the ideal VIN = ±VREF / Gain. The second limiting condition applies to  
gains of 0.125 and 0.1875. In this case, the differential input signal is limited to: VIN = ±20 V, regardless of the  
reference voltage.  
58 and 59 show the relationship between the PGA input voltage to the PGA output voltage. In attenuation  
mode, the first PGA stage is configured as a unity-gain follower. The second PGA stage attenuates the  
differential input and shifts the signal common-mode voltage to AVDD / 2 to drive the ADC input.  
In gain mode, the first PGA stage amplifies the differential signal. The second PGA stage is configured as a  
unity-gain follower with level-shift. 58 and 59 show the corresponding output voltage of the PGA stages that  
must have operating voltage headroom.  
PGA Input  
PGA First Stage Output  
PGA Second Stage Output  
HV_AVDD  
HV_AVDD œ 2.5 V  
VINP  
AVDD  
AVDD œ 0.5 V  
VINP  
AVDD/2 + VIN ‡ Gain / 2  
AVDD/2  
AVDD/2 - VIN ‡ Gain / 2  
VIN = VINP - VINN  
VINN  
AGND + 0.5 V  
AGND  
VINN  
HV_AVSS + 2.5 V  
HV_AVSS  
58. PGA Attenuation Mode  
PGA Input  
PGA First Stage Output  
PGA Second Stage Output  
HV_AVDD  
HV_AVDD œ 2.5 V  
AVDD  
AVDD œ 0.5 V  
VIN = VINP - VINN  
VINP  
VINP + VIN (Gain œ 1) / 2  
AVDD/2 + VIN ‡ Gain / 2  
AVDD/2  
VINN  
AVDD/2 - VIN ‡ Gain / 2  
VINN - VIN (Gain œ 1) / 2  
AGND + 0.5 V  
AGND  
HV_AVSS + 2.5 V  
HV_AVSS  
59. PGA Gain Mode  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.3.3.2 PGA Monitor  
The PGA requires operating voltage headroom at the input and output nodes. The PGA must be within the linear  
operating range, otherwise the conversion data are not valid. Use the internal PGA monitors to assist in the  
detection of PGA overload. The PGA has four monitors (two monitors for the input and two monitors for the  
output) with high and low thresholds for each, for a total of eight possible alarms. The status of each PGA  
monitor is read in the STATUS1 register. The PGA monitoring points are illustrated in 57. 60 shows the  
operation of the low-overload threshold and the high-overload threshold of each PGA monitor point.  
Respective High Alarm  
HV_AVDD  
HV_AVDD œ 2 V  
PGA Input or Output Voltage  
HV_AVSS + 2 V  
HV_AVSS  
Respective Low Alarm  
60. PGA Monitor Thresholds  
Check for PGA overload by polling the STAT12 bit (bit 4 of the STATUS conversion byte or STATUS0 register).  
The STAT12 bit is the logical OR of all PGA error flags with the CRC-2 error flag. After the STAT12 bit asserts,  
poll the STATUS1 and STATUS2 registers (address 11h and 12h) to determine the source of the error. The  
status of the PGA overload is latched in the STATUS1 register and remains latched after the overload condition  
is removed. Reading the STATUS1 register clears the PGA overload bits (clear-on-read operation). The PGA  
overload flags and the CRC2 flag must be reset in order to clear the STAT12 bit. See the STATUS1 register for a  
description of the PGA overload bits.  
The PGA monitors are analog comparators that can respond to transient overload conditions. Transient  
conditions can occur, for example, when multiplexing the inputs or when the gain is too high for the voltage of the  
next channel.  
9.3.4 Reference Voltage  
The options for the ADC reference voltage are the internal 2.5-V reference, two external reference sources, or  
the AVDD power supply. The reference voltage is differential and is defined by: VREF = (VREFP – VREFN), where  
VREFP and VREFN are the positive and negative reference voltages. The polarity of VREF must always be positive.  
61 illustrates the block diagram of the reference input multiplexer used to select the reference.  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
REFENB bit 4 of REF  
(register address = 06h)  
0: Internal Ref off (default)  
1: Internal Ref on  
2.5-V  
Internal  
AVDD  
RMUXP[1:0] bits 3:2 of REF  
(register address = 06h)  
REFOUT  
00  
01  
10  
11  
VREFP  
REFP0  
10 µF  
+
REFP1/GPIO0  
(1)  
REF  
Monitor  
BUF  
00  
01  
10  
11  
AGND  
ADC  
REFN0  
VREFN  
REFN1/GPIO1  
RMUXN[1:0] bits 1:0 of REF  
(register address = 06h)  
(1) The internal reference requires an external 10-µF capacitor connected from REFOUT to AGND.  
61. Reference Multiplexer Diagram  
Program the RMUXP[1:0] and RMUXN[1:0] bits of the REF register to select the positive and negative reference  
voltages, respectively. The positive reference options are internal 2.5-V positive, external REFP0, external  
REFP1, or AVDD. The negative selections are internal 2.5-V negative, external REFN0, external REFN1, or  
AGND.  
The reference voltage is internally monitored for a low-voltage condition; see the Reference Monitor section.  
9.3.4.1 Internal Reference  
The ADC includes a precision 2.5-V reference. The REFENB bit of the REF register enables the reference  
(default = off). Program the reference multiplexer bits RMUXP[1:0] and RMUXN[1:0] to 00b to select the internal  
reference. A 10-µF capacitor is required between the REFOUT and AGND pins to filter the reference noise. The  
capacitor is not required if the internal reference is not used. Always enable the internal reference if using the  
current sources.  
REFOUT is the buffered reference output and AGND is the reference return. For good voltage regulation and to  
minimize ground noise, use a star-layout connection for the reference return and make the return connection  
close to the AGND pin.  
Be aware of AVDD inrush current when the reference is enabled. The inrush current is a result of charging the  
10-µF REFOUT capacitor. Also, be aware of the reference voltage stabilization time when starting a conversion  
or when calibrating the ADC.  
9.3.4.2 External Reference  
Use an external reference by applying the reference voltage to the reference input pins and then program the  
reference multiplexer bits RMUXP[1:0] and RMUXN[1:0]. Values of 10b select the REFP0 and REFN0 reference  
input pins and values of 11b select the REFP1 and REFN1 reference input pins. The reference inputs are  
differential with positive and negative inputs. Follow the specified absolute and differential reference voltage  
operating conditions; see the Recommended Operating Conditions table. Use a 10-nF or larger bypass capacitor  
across the reference input pins to filter noise. The reference input current can lead to a voltage error if large  
reference impedances are present. When a reference impedance is present, consider the impact of the reference  
voltage error to the overall measurement accuracy.  
9.3.4.3 AVDD Power-Supply Reference  
Use the AVDD power supply as a reference by setting the reference multiplexer bits RMUXP[1:0] and  
RMUXN[1:0] to 01 (default mode of operation). For a 6-wire load cell application, connect the excitation sense  
voltage to the reference inputs to improve measurement accuracy.  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.3.4.4 Reference Monitor  
The ADC incorporates a reference monitor to help detect a low or missing reference voltage. As shown in 62,  
when the reference input voltage (VREF = VREFP – VREFN) falls below 0.4 V, the REFALM bit is set in the  
STATUS0 register. The alarm is read-only and resets at the next conversion after the fault condition is cleared.  
To implement detection of a missing reference voltage, use a 100-kΩ resistor across the reference inputs. If  
either positive or negative reference inputs become disconnected, the reference inputs are biased to 0 V  
differential, thereby triggering the low reference alarm. Poll bit 3 (REFALM) of the STATUS0 register to  
determine if the reference alarm has triggered.  
Reference Voltage  
(VREF  
)
0.4 V  
REFALM  
(Bit 3 of register STATUS0)  
62. Reference Monitor Threshold  
9.3.5 Current Sources (IDAC1 and IDAC2)  
The ADC incorporates current sources designed to provide excitation current to the RTD, thermistor, diode, and  
other sensor types that require constant-current biasing. The current sources are on the IDAC1 and IDAC2 pins.  
The current sources are supplied by AVDD; therefore, the operating range is 5 V to AGND. Do not expose the  
current source to voltages outside of this range. The full-accuracy voltage compliance range is specified in the  
Electrical Characteristics table. The current sources are independently programmable over the 50-µA to 3000-µA  
range. 63 shows the associated registers to configure the current sources (see 39). Enable the internal  
reference to operate the current sources.  
1000: Current source 1 connected to IDAC1 pin  
I_MUX1[3:0] bits 3:0 of I_MUX  
1001: Current source 1 connected to IDAC2 pin  
1111: Open  
(register address = 0Dh)  
AVDD  
I_MAG1[3:0] bits 3:0 of I_MAG  
(register address = 0Eh)  
0000: off  
0001: 50 µA  
IDAC1  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
AVDD  
I_MAG2[3:0] bits 7:4 of I_MAG  
(register address = 0Eh)  
IDAC2  
1000: Current source 2 connected to IDAC1 pin  
1001: Current source 2 connected to IDAC2 pin  
1111: Open  
I_MUX2[3:0] bits 7:4 of I_MUX  
(register address = 0Dh)  
63. Current Source Diagram  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.3.6 General-Purpose Inputs and Outputs (GPIOs)  
The ADC provides four GPIO pins (GPIO0 through GPIO4). The GPIO are digital inputs and outputs with logic  
values that are read and written by the GPIO_DAT bits of the MODE3 register. Two GPIOs are available on  
dedicated pins and two GPIOs are multiplexed functions with an external reference (REFP1 and REFN1). The  
GPIO input and output levels are referred to AVDD and AGND. As 64 shows, the input threshold value is  
AVDD / 2 (typical). The GPIO_CON[3:0] bits set the GPIO connection to the designated pin (1 = connected). The  
GPIO_DIR bits program the direction of the GPIO as an input (1) or output (0). The GPIO_DAT[3:0] bits are the  
data values for the GPIO. If a GPIO pin is programmed as an output, the value read is the register data  
previously written.  
AVDD  
Write Data  
GPIO_CON[3:0] bits 7:4 of MODE2  
GPIO_DAT[3:0] bits 3:0 of MODE3  
(register address = 04h)  
(register address = 05h)  
0: VGPIOX is low (default)  
1: VGPIOX is high  
0: no connect (default)  
1: connect  
0
1
Read Data  
GPIO[0]  
GPIO[1]  
GPIO[2]  
REFP1/GPIO0  
REFN1/GPIO1  
GPIO2  
GPIO_DIR[3:0] bits 3:0 of MODE2  
(register address = 04h)  
+
MUX  
Read Select  
GPIO[3]  
œ
0: Output (default)  
1: Input  
GPIO3  
GPIO  
1 of 4  
AVDD/2  
AGND  
64. GPIO Block Diagram  
9.3.7 ADC Modulator  
The modulator is an inherently stable, fourth-order, 2 + 2 pipelined ΔΣ modulator. The modulator samples the  
analog input voltage at a high sample rate (fMOD = fCLK / 8) and converts the analog input to a ones density bit  
stream for processing by the digital filter.  
9.3.8 Digital Filter  
The digital filter processes the modulator output data to produce the high-resolution conversion result. The digital  
filter low-pass filters and decimates the data (data rate reduction), yielding the final data output. By adjusting the  
type of filtering, tradeoffs are made between resolution, data rate, and line cycle rejection.  
The digital filter has two operating modes, as shown in 65: sin(x) / x (sinc) mode and finite impulse response  
(FIR) mode. The sinc mode provides data rates of 2.5 SPS through 40 kSPS with a selectable filter order of  
sinc1 through sinc5. The FIR filter provides single-cycle settled conversions and simultaneous rejection of 50-Hz  
and 60-Hz signal interference frequencies with data rates of 2.5 SPS through 20 SPS.  
Sinc Filter Section  
40000 SPS to 14400 SPS  
fCLK / 8  
7200 SPS to 2.5 SPS  
Modulator  
Sinc5 Filter  
SincN Filter  
To Offset/Gain  
Calibration  
Filter  
Mux  
FIR Filter Section  
20 SPS  
(
= Data rate reduction)  
FIR  
Averager  
Data Rate  
Filter Mode  
10 SPS  
5 SPS  
2.5 SPS  
DR[4:0] bits 7:3 of MODE0  
(register address = 02h)  
FILTER[2:0] bits 2:0 of MODE0  
(register address = 02h)  
65. Digital Filter Block Diagram  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.3.8.1 Sinc Filter Mode  
The sinc filter consists of two stages: a variable-decimation sinc5 filter followed by a variable-decimation,  
variable-order sinc filter. The first stage sinc5 filter averages and down-samples the modulator data (fCLK / 8) to  
produce 40000 SPS, 25600 SPS, 19200 SPS, and 14400 SPS by using decimation ratios of 32, 36, 48, and 64,  
respectively. These data outputs bypass the second filter stage and as a result have response characteristics of  
the first-stage sinc5 filter. The second stage receives the first stage output data at 14400 SPS, and performs  
additional filtering and decimation to yield data rates of 7200 SPS to 2.5 SPS. The second stage is a  
programmable order sinc filter.  
The data rate is programmed by the DR[4:0] bits of the register MODE0. The filter mode is programmed by the  
FILTER[2:0] bits of the MODE0 register.  
9.3.8.1.1 Sinc Filter Frequency Response  
As shown in 66 and 67, the first-stage sinc5 filter has frequency response nulls occurring at N × fDATA  
(where N = 1, 2, 3, and so on). At the null frequencies, the filter has zero gain.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (kHz)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (kHz)  
D002  
D201  
67. Sinc Frequency Response (14400 SPS)  
66. Sinc Frequency Response (40000 SPS)  
The second stage superimposes additional nulls to the nulls produced by the first stage. The first of the  
superimposed nulls occurs at the output data rate with additional nulls at multiples of the output data rate.  
68 shows the frequency response of the combined filter stages at 2400 SPS. This data rate has five equally-  
spaced nulls residing between the larger nulls at 14400-Hz multiples that are produced by the first stage. This  
frequency response is similar to that of data rates 2.5 SPS to 7200 SPS. 69 shows the frequency response  
nulls at 10 SPS.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
20 25  
Frequency (kHz)  
30  
35  
40  
45  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (Hz)  
D003  
D004  
68. Sinc Frequency Response (2400 SPS)  
69. Sinc Frequency Response (10 SPS)  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
70 and 71 show the frequency response of data rates 50 SPS and 60 SPS, respectively. The frequency  
response is plotted to the 50-Hz 12th harmonic (10th harmonic for 60 Hz). The 50-Hz or 60-Hz fundamental and  
harmonic noise of the signal are reduced by increasing the filter order of the second stage.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Frequency (Hz)  
0
60 120 180 240 300 360 420 480 540 600  
Frequency (Hz)  
D005  
D006  
70. Sinc Frequency Response (50 SPS)  
71. Sinc Frequency Response (60 SPS)  
72 and 73 plot the detailed frequency response of the 50-SPS and 60-SPS data rates and show various  
orders of the sinc filter. The high-order sinc filter increases the frequency width of the null, which improves line  
cycle rejection. Improved 50-Hz or 60-Hz rejection occurs using the sinc3 or sinc4 order filter.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
45  
46  
47  
48  
49  
Frequency (Hz)  
50  
51  
52  
53  
54  
55  
55  
56  
57  
58  
59  
Frequency (Hz)  
60  
61  
62  
63  
64  
65  
D009  
D010  
72. Sinc Frequency Response, Detailed (50 SPS)  
73. Sinc Frequency Response, Detailed (60 SPS)  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
The sinc filter has an overall low-pass response that rolls off high-frequency components of the signal. The filter  
bandwidth depends on the output data rate and the order of the output data rate. The overall system bandwidth  
is the combined responses of the digital filter, the PGA antialias filter, and external signal filters. 5 lists the –3-  
dB bandwidth of the sinc filter.  
5. Sinc Filter Bandwidth  
-3-dB BANDWIDTH (Hz)  
DATA RATE  
SINC1  
SINC2  
SINC3  
SINC4  
SINC5  
(SPS)  
2.5  
1.10  
2.23  
4.43  
7.38  
8.85  
22.1  
26.6  
44.3  
177  
525  
1015  
1798  
2310  
0.80  
1.60  
3.20  
5.33  
6.38  
16.0  
19.1  
31.9  
128  
381  
751  
1421  
1972  
0.65  
1.33  
2.62  
4.37  
5.25  
13.1  
15.7  
26.2  
105  
314  
623  
1214  
1750  
0.58  
1.15  
2.28  
3.80  
4.63  
11.4  
13.7  
22.8  
91.0  
273  
544  
1077  
1590  
5
10  
16.6  
20  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
25600  
40000  
2940  
3920  
5227  
8167  
9.3.8.2 FIR Filter  
The finite impulse response (FIR) filter is a coefficient-based filter that provides an overall low-pass filter  
response. The filter provides simultaneous rejection of 50-Hz and 60-Hz line cycle frequencies and related  
harmonics at data rates of 2.5 SPS, 5 SPS, 10 SPS, and 20 SPS. The conversion latency of the FIR filter is a  
single cycle. (See 8 for latency of all filter settings). As illustrated in 65, the FIR filter section receives data  
from the second-stage sinc filter. The FIR filter section decimates the data to yield the output data rate of 20  
SPS. A first-order variable-decimation averaging filter (sinc1) yields 10 SPS, 5 SPS, and 2.5 SPS.  
As shown in 74 and 75, the FIR filter frequency response has a series of response nulls that are positioned  
close to 50 Hz and 60 Hz. The response nulls repeat near the harmonics of 50 Hz and 60 Hz.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
40  
45  
50  
55  
Frequency (Hz)  
60  
65  
70  
D011  
D012  
74. FIR Frequency Response (20 SPS)  
75. FIR Frequency Response Detail (20 SPS)  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
76 shows the FIR filter response at 10 SPS. New frequency nulls are superimposed to the nulls in 74 as a  
result of the variable averager. The first of the combined response nulls occurs at 10 Hz. Additional nulls occur at  
folded frequencies around multiples of 20 Hz. The first of the 10 SPS folded null frequencies is shown in 76 at  
10 Hz, 30 Hz, 70 Hz, 90 Hz, and so on.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
D013  
76. FIR Frequency Response (10 SPS)  
Similar to the response of the sinc filter, the overall FIR filter frequency has a low-pass response that rolls off  
high frequencies. The response is such that the FIR filter limits the bandwidth of the input signal. The signal  
bandwidth depends on the output data rate. 6 lists the –3-dB filter bandwidth of the FIR filter. The total system  
bandwidth is the combined response of the digital filter, the PGA antialias filter, and external filters.  
6. FIR Filter Bandwidth  
DATA RATE (SPS)  
–3-dB BANDWIDTH (Hz)  
2.5  
5
1.2  
2.4  
4.7  
13  
10  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.3.8.3 50-Hz and 60-Hz Normal Mode Rejection  
To reduce the effects of 50-Hz and 60-Hz noise interference, configure the data rate to reject noise occurring at  
50 Hz and 60 Hz. 50-Hz and 60-Hz noise rejection depends on the filter type and order of the filter. 7  
summarizes the 50-Hz and 60-Hz noise rejection versus data rate, filter type, and filter order. The table values  
are based on 2% and 6% tolerance of noise frequency to ADC clock frequency. For the sinc filter mode, 50-Hz  
and 60-Hz noise rejection is improved by increasing the filter order. Common-mode noise is also rejected at  
50 Hz and 60 Hz.  
7. 50-Hz and 60-Hz Normal Mode Rejection  
DIGITAL FILTER AMPLITUDE (dB)  
DATA RATE (SPS)  
FILTER TYPE  
FIR  
50 Hz (±2%)  
–113  
–36  
60 Hz (±2%)  
–99  
50 Hz (±6%)  
–88  
60 Hz (±6%)  
–80  
2.5  
2.5  
2.5  
2.5  
2.5  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–37  
–40  
–37  
–72  
–74  
–80  
–74  
–108  
–144  
–111  
–34  
–111  
–148  
–95  
–120  
–160  
–77  
–111  
–148  
–76  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–34  
–30  
–30  
5
–68  
–68  
–60  
–60  
5
–102  
–136  
–111  
–34  
–102  
–136  
–94  
–90  
–90  
5
–120  
–73  
–120  
–68  
10  
10  
10  
10  
10  
16.6  
16.6  
16.6  
16.6  
20  
20  
20  
20  
20  
50  
50  
50  
50  
60  
60  
60  
60  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–34  
–25  
–25  
–68  
–68  
–50  
–50  
–102  
–136  
–34  
–102  
–136  
–21  
–75  
–75  
–100  
–24  
–100  
–21  
–68  
–42  
–48  
–42  
–102  
–136  
–95  
–63  
–72  
–63  
–84  
–96  
–84  
–94  
–66  
–66  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
–18  
–34  
–18  
–24  
–36  
–68  
–36  
–48  
–54  
–102  
–136  
–15  
–54  
–72  
–72  
–72  
–96  
–34  
–24  
–15  
–68  
–30  
–48  
–30  
–102  
–136  
–13  
–45  
–72  
–45  
–60  
–96  
–60  
–34  
–12  
–24  
–27  
–68  
–24  
–48  
–40  
–102  
–136  
–36  
–72  
–53  
–48  
–96  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.4 Device Functional Modes  
9.4.1 Conversion Control  
The START pin or the START command controls the conversions. If using commands to control conversions,  
keep the START pin low to avoid contention between the pin and commands. Commands take affect on the  
32nd falling SCLK edge. See the Switching Characteristics table for details on conversion control timing.  
The ADC has two conversion control operating modes: continuous-conversion mode and pulse-conversion mode.  
The continuous-conversion mode performs conversions indefinitely until the user stops the conversions. Pulse-  
conversion mode performs one conversion and then stops. The CONVRT (bit 4 of the MODE1 register)  
programs the mode.  
9.4.1.1 Continuous-Conversion Mode  
This conversion mode performs continuous conversions until the user stops conversions. To start conversions,  
take the START pin high or send the START command. DRDY is driven high when the conversion is started.  
DRDY is driven low when the conversion data are ready. Conversion data are available to read at that time. Take  
the START pin low or send a STOP command to stop conversions. When conversions are stopped, the  
conversion in progress runs to completion. To restart a conversion that is in progress, toggle the START pin low-  
then-high or send a new START command.  
9.4.1.2 Pulse-Conversion Mode  
In pulse-conversion mode, the ADC performs one conversion when START is taken high or when the START  
command is sent. When the conversion completes, further conversions stop. The DRDY output is driven high to  
indicate the conversion is in progress and is driven low when the conversion data are ready. Conversion data are  
read at that time. To restart a conversion in progress, toggle the START pin low-then-high or send a new START  
command. Driving START low or sending the stop command does not interrupt the current conversion.  
9.4.1.3 Conversion Latency  
The digital filter averages data from the modulator to produce the conversion result. The discrete stages of the  
digital filter must have settled data to provide fully settled output data. The order and the decimation ratio of the  
digital filter determine the amount of data averaged that affects the latency of the conversion data. The FIR and  
sinc1 filter modes are zero latency because the ADC provides the conversion result in one conversion cycle.  
Latency time is an important consideration for data throughput in multiplexed applications.  
8 lists the conversion latency values of the ADC. Conversion latency is defined as the time from the start of  
the first conversion by taking the START pin high or sending the start command to when the conversion data are  
ready. The ADC is designed to provide fully settled data under this condition. The conversion latency values  
listed in 8 include the programmable start-conversion delay equal to 50 µs before the digital filter starts, which  
also includes overhead time for final data processing. After the first conversion completes in continuous  
conversion mode, the period of the next conversions are equal to 1 / fDATA. The first conversion latency time in  
auto-zero mode has twice the values listed in 8. The values listed in 8 are equal to the period of the next  
conversions.  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
8. Conversion Latency Time  
CONVERSION LATENCY TIME (t(STDR)(1), ms)  
DATA RATE  
(SPS)  
SINC1  
400.4  
200.4  
100.4  
60.43  
50.43  
20.43  
17.09  
10.43  
2.925  
1.258  
0.841  
0.633  
0.564  
SINC2  
800.4  
400.4  
200.4  
120.4  
100.4  
40.42  
33.76  
20.42  
5.424  
2.091  
1.258  
0.841  
0.702  
SINC3  
1,200  
600.4  
300.4  
180.4  
150.4  
60.43  
50.43  
30.43  
7.925  
2.925  
1.675  
1.050  
0.841  
SINC4  
1,600  
800.4  
400.4  
240.4  
200.4  
80.43  
67.09  
40.43  
10.43  
3.758  
2.091  
1.258  
0.980  
SINC5  
FIR  
402.2  
202.2  
102.2  
2.5  
5
10  
16.6  
20  
52.22  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
25600  
40000  
0.423  
0.336  
0.271  
0.179  
(1) Auto-zero mode off, conversion-start time delay = 50 µs (DELAY[3:0] = 0001). Actual conversion latency time can vary depending on the  
accuracy of fCLK  
.
As shown in 77, if the input signal changes during the conversion phase, the conversion data are a mix of old  
and new data. After an unsynchronized input change, the number of conversion periods required to provide fully  
settled output data are calculated by dividing the conversion latency by the nominal period and then adding one  
additional conversion. In auto-zero mode, use twice the latency values plus one additional conversion.  
Old VIN  
New VIN  
VIN = VAINP - VAINN  
Fully settled  
new data  
Mix of old data  
and new data  
Old data  
DRDY pin  
77. Input Change During Conversions  
9.4.1.4 Start-Conversion Delay  
At the start of a conversion, the ADC provides a programmable delay to allow for PGA settling time and to  
provide a delay for any external component settling effects. The default value is 50 µs and provides the settling  
time for the PGA antialiasing filter. Use additional delay time as needed to provide settling time for the effects of  
external components. The latency values listed in 8 are with a start-conversion delay value = 50 µs. As an  
alternative to this parameter, delay the start of conversion after the input and configuration changes.  
9.4.2 Auto-Zero Mode  
Auto-zero mode is a continuous calibration technique that provides low offset voltage and near-zero drift over  
time and temperature. Auto-zero mode is a form of chopping that covers the internal ADC signal chain. The ADC  
alternates the polarity of consecutive conversions by internally reversing the input signal. The digital filter  
subtracts the results of two reverse-polarity conversions to yield the final conversion data. The subtraction result  
removes the offset error. Auto-zero mode is available only for use with the AIN0 and AIN1 inputs. See the  
MODE1 register for details on how to program auto-zero mode.  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Auto-zero mode changes the data rate and the conversion latency time corresponding to the first conversion.  
The new data rate is equal to 1 divided by the latency values listed in 8. For example, when the ADC is  
programmed to 20 SPS and FIR mode, the new data rate is = 1 / 52.22 ms = 19.15 SPS. Regardless of the new  
data rate, the location of the digital filter frequency notches are unaltered. The latency time corresponding to the  
first conversion is equal to 2 × the latency time values listed in 8. Auto-zero mode reduces conversion noise  
by 2 because auto-zero mode effectively averages the data from two conversions.  
9.4.3 Clock Mode  
Operate the ADC with an external clock or with the internal oscillator. For external clock operation, apply the  
clock signal to CLKIN. The ADC detects the presence of the external clock and selects the clock automatically.  
As described in 9, the clock frequency depends on the data rate used. Be sure the external clock is free of  
overshoot and glitches. A source-termination resistor placed at the clock buffer often helps reduce overshoot. For  
internal clock operation, connect CLKIN to DGND. Be aware of the accuracy of the internal oscillator as  
described in the Electrical Characteristics table. The internal oscillator begins operating immediately at device  
power-on. Read the CLOCK bit in the STATUS0 register to verify the clock mode.  
9. External Clock vs Data Rate  
DATA RATE  
2.5 SPS to 25600 SPS  
40000 SPS  
CLOCK FREQUENCY  
7.3728 MHz  
10.24 MHz  
9.4.4 Reset  
The ADC is reset in three ways: automatic by power-on-reset, manually via the RESET pin, or by the RESET  
command.  
When reset, the serial interface, conversion-control logic, digital filter, and register map values are reset. The  
RESET bit of the STATUS0 register is set after a reset occurs. Clear the bit to detect the next device reset. If the  
START pin is high after reset, the ADC immediately begins conversions.  
9.4.4.1 Power-On Reset  
After supply voltages cross the respective reset voltage thresholds at power-up, the ADC is reset and after 216  
fCLK cycles the ADC is ready for communication. Until this time, DRDY is held low. DRDY is then driven high to  
indicate when ADC communication can begin. The conversion cycle starts 512 / fCLK cycle after DRDY asserts  
high. 4 illustrates the power-on reset behavior.  
9.4.4.2 Reset by Pin  
Reset the ADC by taking the RESET pin low for a minimum of four fCLK cycles, and then return the pin high. After  
reset, the conversion starts 512 / fCLK cycles later. See 5 for RESET pin timing.  
9.4.4.3 Reset by Command  
Reset the ADC through the serial interface by the RESET command. Bring CS1 high first to reset the serial  
interface to ensure the ADC is ready for the command. After reset, the conversion starts 512 / fCLK cycles later.  
See 5 for the reset command timing.  
9.4.5 Calibration  
The ADC incorporates calibration registers and associated commands to calibrate offset and full-scale errors.  
Calibrate the ADC by using calibration commands, or calibrate by writing to the calibration registers directly (user  
calibration). To calibrate by command, send the offset or full-scale calibration commands. To user calibrate, write  
to the calibration registers with values based on the acquired conversion data. Perform the offset calibration  
operation before the full-scale calibration operation.  
9.4.5.1 Offset and Full-Scale Calibration  
Use the offset and full-scale (gain) registers to correct offset or full-scale errors, respectively. As illustrated in 图  
78, the offset calibration register is subtracted from the output data before multiplication by the full-scale register,  
which is divided by 400000h. After the calibration operation, the final value of the output data is clipped to 24  
bits.  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
VAINP  
C A D  
ADC  
+
Output Data  
Clipped to 24 bits  
Digital  
Filter  
Final  
Output  
VAINN  
-
1/400000h  
OFCAL[2:0] registers  
(register addresses = 07h, 08h, 09h)  
FSCAL[2:0] registers  
(register addresses = 0Ah, 0Bh, 0Ch)  
78. Calibration Block Diagram  
公式 6 shows the internal calibration.  
Final Output Data = (Pre Data – OFCAL[2:0]) × FSCAL[2:0] / 400000h  
(6)  
9.4.5.1.1 Offset Calibration Registers  
The offset calibration word, as listed in 10, is 24 bits consisting of three 8-bit registers. The offset value is  
subtracted from the conversion result. The offset value is in two's-complement format with a maximum positive  
value equal to 7FFFFFh and a maximum negative value equal to 800000h. A register value equal to 000000h  
has no offset correction. Although the calibration registers provide a wide range of offset values, the input signal  
cannot exceed ±106% of the precalibrated range; otherwise the ADC is overranged. 11 lists example values  
of the offset register.  
10. Offset Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
OFCAL0  
OFCAL1  
OFCAL2  
LSB  
07h  
08h  
09h  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
B23 (MSB)  
B17  
B16  
11. Offset Calibration Register Values  
OFCAL[2:0] REGISTER VALUE  
OFFSET CALIBRATED OUTPUT VALUE  
000001h  
000000h  
FFFFFFh  
FFFFFFh  
000000h  
000001h  
9.4.5.1.2 Full-Scale Calibration Registers  
The full-scale calibration word, as listed in 12, is 24 bits consisting of three 8-bit registers. The full-scale  
calibration value is straight binary and normalized to a unity-gain at a value of 400000h. 13 lists register  
values for selected gain factors. Gain errors greater than unity are corrected by full-scale values less than  
400000h. Although the calibration registers provide a wide range of possible values, the input signal must not  
exceed ±106% of the precalibrated input range; otherwise the ADC is overranged.  
12. Full-Scale Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
FSCAL0  
FSCAL1  
FSCAL2  
LSB  
0Ah  
0Bh  
0Ch  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
B23 (MSB)  
B17  
B16  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
13. Full-Scale Calibration Register Values  
FSCAL[2:0] REGISTER VALUE  
GAIN FACTOR  
433333h  
400000h  
1.05  
1
3CCCCCh  
0.95  
9.4.5.2 Offset Calibration (OFSCAL)  
The offset calibration command corrects offset errors. To calibrate offset errors, short the inputs to the ADC or to  
calibrate the system, short the signal inputs to the system. When the command is sent, the ADC averages 16  
conversion results to reduce conversion noise for improved calibration accuracy. When calibration is complete,  
the ADC performs one conversion using the new calibration value. The new calibration value is written to the  
offset calibration register.  
9.4.5.3 Full-Scale Calibration (GANCAL)  
The full-scale calibration command corrects gain errors. To calibrate, apply a positive calibration voltage to the  
ADC, or apply the voltage to the signal inputs of the system, wait for the signal to settle, and then send the  
command. The ADC averages 16 conversion results to reduce conversion noise to improve calibration accuracy.  
The ADC computes the full-scale calibration value so that the applied calibration voltage is scaled to an equal  
positive full-scale output code. The computed result is written to the calibration register. The ADC then performs  
one new conversion using the new calibration value.  
9.4.5.4 Calibration Command Procedure  
Use the following calibration procedure using the calibration commands. The register lock mode must be in the  
UNLOCK state prior to using the calibration commands. When calibrating at power-on, make sure the reference  
voltage has stabilized. Perform an offset calibration operation prior to full-scale calibration.  
1. Select the desired input channel, gain, reference mode, and related ADC configurations as required.  
2. Apply the appropriate calibration signal (zero or full-scale) to the ADC or system inputs.  
3. Take the START pin high or send the START command to start conversions. DRDY is driven high.  
4. Before the first conversion completes, send the appropriate calibration command. Keep CS1 low; otherwise  
the command is cancelled. Do not send other commands during the calibration period.  
5. The calibration time, as described in 14, depends on the data rate and digital filter mode. DRDY is driven  
low when calibration is complete. As a result, offset or full-scale calibration registers are updated with new  
values. New conversion data are available immediately using the new calibration value.  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
14. Calibration Time (ms)  
FILTER MODE(1)  
DATA RATE  
(SPS)  
SINC1  
6801  
3401  
1701  
1021  
850.9  
340.9  
284.2  
170.9  
43.36  
15.02  
7.938  
4.397  
3.216  
SINC2  
SINC3  
8401  
4201  
2101  
1261  
1051  
421  
SINC4  
SINC5  
FIR  
6805  
3405  
1705  
2.5  
5
7601  
3801  
1901  
1141  
951  
9201  
4601  
2300  
1381  
1151  
460.9  
384.2  
230.9  
58.36  
20.02  
10.44  
5.647  
4.050  
10  
16.6  
20  
854.5  
50  
380.9  
317.5  
190.9  
48.36  
16.69  
8.772  
4.813  
3.494  
60  
350.9  
210.9  
53.36  
18.36  
9.605  
5.230  
3.772  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
25600  
40000  
1.892  
1.458  
1.133  
0.738  
(1) Nominal clock frequency. Auto-zero mode disabled.  
9.4.5.5 User Calibration Procedure  
To user calibrate, apply the calibration voltage, acquire conversion data, and compute the calibration value. Write  
the computed value to the corresponding calibration registers. Before starting calibration, preset the offset and  
full-scale registers to 000000h and 400000h, respectively.  
To offset calibrate, short the inputs to the system and average n number of the conversion data. Averaging  
conversion data reduces noise to increase calibration accuracy. Write the average value of the conversion data  
to the offset registers.  
To gain calibrate using a full-scale calibration signal, temporarily reduce the full-scale register by 95% to avoid  
any output clipped codes (set FSCAL[2:0] to 3CCCCCh). Acquire n number of conversions and average the  
conversions to increase calibration accuracy. Compute the full-scale calibration value as shown in 公式 7:  
Full-Scale Calibration Value = (Expected Code / Actual Code) × 400000h  
where:  
Expected code = 799998h using full-scale calibration signal and 95% precalibration scale factor  
(7)  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.5 Programming  
9.5.1 Serial Interface  
The SPI-compatible serial interface is used to read conversion data, configure the device registers, and control  
ADC operation. The CRC is used to validate error-free transmission of the input and output data flow. The serial  
interface consists of the following control signals: CS1, CS2, SCLK, DIN, and DOUT/DRDY. Most microcontroller  
SPI peripherals can operate with the ADC. The interface operates in SPI mode 1, where CPOL = 0 and CPHA =  
1. In SPI mode 1, SCLK idles low and data are updated or changed on the SCLK rising edges; data are latched  
or read on the SCLK falling edges. Timing details of the SPI protocol are provided in 1 and 2.  
9.5.1.1 Chip-Select Pins (CS1 and CS2)  
The ADC consists of discrete PGA and ADC sections with each section selected for communication by separate  
chip-select inputs (CS1 and CS2). Most commands require the use of CS1 to control the ADC section. However,  
for control of the PGA section, use CS2 for register access commands at address 10h and above. Communicate  
to the device by taking either CS1 or CS2 low corresponding to the type of command and whether addressing  
the ADC or PGA registers.  
CS1 and CS2 are active low inputs. In normal operation, take one chip-select input low at a time and keep that  
input low for the duration the command operation. Take the chip-select input high after the command operation  
completes. When the chip-select input is taken high, the serial interface resets and SCLK activity is ignored (thus  
blocking commands). When both chip-select inputs are high, DOUT/DRDY enters the high-impedance state. CS1  
must be low in order to poll the data-ready function provided by DOUT/DRDY. DRDY remains active regardless  
of the state of the chip-select inputs.  
9.5.1.2 Serial Clock (SCLK)  
SCLK is the serial interface shift clock input that clocks data into and out of the device. Output data are updated  
on the rising edge of SCLK and input data are latched on the falling edge of SCLK. Return SCLK low after the  
data operation completes. SCLK is a Schmidt-triggered input designed to provide noise immunity. Even though  
SCLK is noise resistant, keep SCLK noise-free as possible to avoid unintentional SCLK transitions. Avoid ringing  
and overshoot on the SCLK input. Use a series termination resistor at the SCLK drive pin to reduce ringing.  
9.5.1.3 Data Input (DIN)  
DIN is the serial interface data input. DIN inputs commands and register data to the device. Input data are  
latched on the falling edge of SCLK.  
9.5.1.4 Data Output/Data Ready (DOUT/DRDY)  
The DOUT/DRDY pin is the serial interface data output. This pin also provides the conversion-data ready output.  
The function of the pin changes whether a read data (or read register) operation is in progress. With CS1 low  
and when not reading register or conversion data, the pin indicates when data are ready by asserting low. For  
conversion data and register read operations, the function changes to data output. When the read operation is  
completed, the function changes to conversion-data ready. As DOUT, the data are updated on the SCLK rising  
edge and the data must therefore be latched on the SCLK falling edge. CS1 must be low for DOUT/DRDY to  
provide the data-ready function. When both chip-select pins are high, DOUT/DRDY is in high-impedance mode  
(tri-state).  
9.5.2 Data Ready (DRDY)  
DRDY asserts low to indicate that new conversion data are ready for readback. The operation of DRDY depends  
on the mode (continuous or pulse) and whether or not the conversion data are retrieved.  
9.5.2.1 DRDY in Continuous-Conversion Mode  
In continuous-conversion mode, DRDY is driven high when conversions are started and is driven low when  
conversion data are ready. During data readback, DRDY is driven high, which indicates completion of the read  
operation. If the conversion data are not read, DRDY remains low and pulses high 16 fCLK cycles prior to the next  
falling edge.  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Programming (接下页)  
To read back the current conversion data before the next conversion completes, send the read data command at  
least 16 fCLK cycles prior to the DRDY falling edge. If the readback command is sent less than 16 fCLK cycles  
prior to the DRDY falling edge, either the previous or new conversion data are provided. The timing of the  
command determines whether previous or new data are provided. In the event that previous data are provided,  
DRDY transitioning to low is suspended until after the read data operation completes. In this case, the DRDY bit  
of the STATUS0 byte is low to indicate that the previous data have already been read. In the event that new  
conversion data are provided, DRDY transitions low as normal. The DRDY bit of the STATUS0 byte is high to  
indicate new data are read. To ensure readback of new conversion data, wait until DRDY asserts low before  
starting the data read operation.  
9.5.2.2 DRDY in Pulse-Conversion Mode  
DRDY is driven high at conversion start and is driven low when the conversion data are ready. DRDY remains  
low until a new conversion is started.  
79 shows DRDY operation with and without data retrieval in two conversion modes.  
DRDY - with data retrieval  
(Continuous-conversion mode)  
DRDY œ w/o data retrieval  
(Continuous-conversion mode)  
DRDY œ w or w/o data retreival  
(Pulse-conversion mode)  
START  
Command  
START  
STOP  
START  
STOP  
79. DRDY Operation  
9.5.2.3 Data Ready by Software Polling  
If desired, poll the DRDY bit in the STATUS word instead of polling the DRDY pin. In software poll mode, read  
the STATUS0 byte and poll the DRDY bit. If the bit is high, then conversion data are new from the last data read  
operation. If the bit is low, conversion data are not new from the last data read operation. In this case, the  
previous conversion data are returned. In order to avoid missing conversion data in continuos conversion mode,  
poll the bit at least as often as the period of the data rate.  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Programming (接下页)  
9.5.3 Conversion Data  
Conversion data are read by the RDATA command. To read conversion data, take CS1 low and issue the read  
data command. The conversion data field consists of an optional STATUS0 byte, three data bytes, and the CRC  
byte. The CRC byte is computed over the combined STATUS0 byte and three conversion data bytes. See the  
RDATA Command section for details on reading conversion data.  
9.5.3.1 Status Byte (STATUS0)  
The status byte contains information on the operating status of the ADC. The contents of the STATUS0 register  
byte is included with the conversion data by setting the STATENB bit of the MODE3 register. Alternatively, read  
the STATUS0 register directly by the register read command without having to read conversion data.  
9.5.3.2 Conversion Data Format  
The conversion data are 24 bits, in two's-complement format to represent positive and negative values. The data  
begins with the most significant bit (sign bit) first. The data are scaled so that VIN = 0 V results in an ideal code  
value of 000000h, the positive full-scale input is equal to an ideal value of 7FFFFFh and the negative full-scale  
input is equal to an ideal code value of 800000h. 15 shows the code values. The data are clipped to 7FFFFFh  
and 800000h during positive and negative signal overdrive, respectively.  
15. ADC Conversion Data Codes  
DESCRIPTION  
Positive full scale  
1 LSB  
INPUT SIGNAL (V)  
VREF / Gain × (223 – 1) / 223  
24-BIT CONVERSION DATA(1)  
7FFFFFh  
000001h  
000000h  
FFFFFFh  
800000h  
VREF / (Gain × 223  
)
Zero scale  
0
–1 LSB  
–VREF / (Gain × 223  
–VREF / Gain  
)
Negative full scale  
(1) Ideal output code excluding noise, offset, gain, and linearity errors.  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.5.4 Cyclic Redundancy Check (CRC)  
Cyclic redundancy check (CRC) is an error detection byte that detects communication errors to and from the host  
and ADC. CRC is the division remainder of the payload data by the prescribed CRC polynomial. The payload  
data are 1, 2, 3, or 4 bytes depending on the data transfer operation.  
The host computes the CRC over the two command bytes and appends the CRC to the command string (third  
byte). A fourth, zero-value byte completes the command field to the ADC. The ADC performs the CRC  
calculation and compares the result to the CRC transmitted by the host. If the host and ADC CRC values match,  
the command executes and the ADC responds by transmitting the valid CRC during the fourth byte of the  
command. If the CRC is error free and the operation is a data read, the ADC responds with a second CRC that is  
computed for the requested data byte payload. The response data payload is 1, 3, or 4 bytes depending on the  
type of operation.  
If the host and ADC CRC values do not match, the command does not execute and the ADC responds with an  
inverted CRC value, calculated over the received command bytes. The inverted CRC is intended to signal the  
host of the failed operation. The host terminates transmission of further bytes to stop the command operation.  
The CRC1 bit is set in the STATUS0 register when a error pertaining to ADC registers occur. The STAT12 and  
CRC2 flags are set when an error pertaining to PGA registers occur.  
The ADC is ready to accept the next command after all required bytes are transmitted when no CRC error  
occurs, or after a CRC error occurs when terminated at the end of the fourth command byte.  
The CRC data byte is the 8-bit remainder of the bitwise exclusive-OR (XOR) of the argument by a CRC  
polynomial. The CRC polynomial is based on the CRC-8-ATM (HEC) polynomial: X8 + X2 + X + 1. The nine  
binary polynomial coefficients are: 100000111b.  
The following is a general procedure to compute the CRC value:  
1. Left shift the concatenated 1-, 2-, 3-, or 4-byte argument (if required) to create a new 40-bit data value  
(the starting data value). The shifted data are padded with ones to the right of the argument.  
2. Align the MSB of the CRC polynomial (100000111) to the left-most, logic-one value of the data.  
3. Perform an XOR operation on the data value with the aligned CRC polynomial. The XOR operation  
creates a new, shorter length value. The bits of the data values that are not in alignment with the CRC  
polynomial drop down and append to the right of the new XOR result.  
4. When the XOR result is less than 100000000b, the procedure ends, yielding the 8-bit CRC value.  
Otherwise, continue with the XOR operation shown in step 2 using the current data value. The number of  
loop iterations depends on the value of the initial data.  
The following sections detail the input and output data of each command. In the descriptions that follow, these  
CRC mnemonics apply:  
CRC-2: Input the CRC of command bytes 1 and 2. Except for the WREG command, the byte 2 value is  
arbitrary.  
Out CRC-1: Output the CRC of one register data byte.  
Out CRC-2: Output the CRC of two command bytes, inverted value if an input CRC error is detected.  
Out CRC-3: Output the CRC of three conversion data bytes.  
Out CRC-4: Output the CRC of three conversion data bytes plus the STATUS0 byte.  
Echo Byte 1: Echo of received input byte 1.  
Echo Byte 2: Echo of received input byte 2.  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.5.5 Commands  
Commands are used to read conversion data, control the device, and read and write register data. 16  
provides a list of commands and the corresponding command byte sequence. Only send the commands that are  
listed in 16.  
The column labeled CSx shows the use of CS1 or CS2 for the particular command type. Most commands use  
CS1. Only activate CS2 to access register data at address 10h and above and to lock register data at address  
10h and above. See the Chip-Select Pins (CS1 and CS2) section for details of chip-select operation.  
16. Command Byte Summary  
MNEMONIC  
CSx  
DESCRIPTION  
BYTE 1  
BYTE 2(1)  
BYTE 3  
BYTE 4  
CONTROL COMMANDS  
NOP  
CS1 or CS2  
No operation  
00h  
06h  
08h  
0Ah  
Arbitrary  
Arbitrary  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
CRC-2  
CRC-2  
00h  
00h  
00h  
00h  
RESET  
START  
STOP  
CS1  
CS1  
CS1  
Reset  
Start conversion  
Stop conversion  
READ DATA COMMAND  
RDATA CS1  
CALIBRATION COMMANDS  
Read conversion data  
12h  
Arbitrary  
CRC-2  
00h  
OFSCAL  
GANCAL  
CS1  
CS1  
Offset calibration  
Gain calibration  
16h  
17h  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
REGISTER COMMANDS  
RREG  
WREG  
CS1 or CS2  
CS1 or CS2  
Read register data  
Write register data  
20h + rrh(2)  
40h + rrh(2)  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
Register data  
PROTECTION COMMANDS  
LOCK  
CS1 or CS2  
CS1 or CS2  
Register data lock  
F2h  
F5h  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
UNLOCK  
Register data unlock  
(1) Excluding the write-register command, the value of the second byte is arbitrary (any value) but is included in the CRC calculation.  
(2) rrh = 5-bit register address.  
9.5.5.1 General Command Format  
80 shows an example register write operation to register address 02h (command opcode 42h). For this  
register address (02h), take CS1 low. The first byte output from the ADC is always 0FFh. The host calculates the  
CRC of the two input command bytes. The Out CRC-2 byte is the ADC-calculated, output CRC based on the  
received command bytes. If the CRC values match, the command is executed beginning at the last SCLK of the  
fourth byte in the sequence. Forcing chip select high before the command completes results in command  
termination. Toggle chip select low-to-high between command operations.  
CS1 or CS2  
1
9
17  
25  
SCLK  
DIN  
42h  
FFh  
Reg Data  
CRC-2  
00h  
DOUT/DRDY  
Echo Byte 1  
Echo Byte 2  
Out CRC-2  
80. Register Write Command Sequence (Address = 02h)  
The following sections detail the input and output byte sequence corresponding to each command. See the  
Cyclic Redundancy Check (CRC) section for the notation used for the CRC.  
版权 © 2018–2019, Texas Instruments Incorporated  
49  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.5.5.2 NOP Command  
This command has no operation. Use the NOP command to validate the CRC response byte and error detection  
without affecting normal operation. 17 shows the NOP command byte sequence.  
17. NOP Command  
DIRECTION  
DIN  
BYTE 1  
00h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.3 RESET Command  
The RESET command resets the ADC operation and resets all registers to default. See the Reset by Command  
section for details. 18 lists the RESET command byte sequence.  
18. RESET Command  
DIRECTION  
DIN  
BYTE 1  
06h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.4 START Command  
This command starts a conversions. See the Conversion Control section for details. 19 lists the START  
command byte sequence.  
19. START Command  
DIRECTION  
DIN  
BYTE 1  
08h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.5 STOP Command  
This command is used to stop conversions. See the Conversion Control section for details. 20 lists the STOP  
command byte sequence.  
20. STOP Command  
DIRECTION  
DIN  
BYTE 1  
0Ah  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.6 RDATA Command  
This command reads conversion data. Because the data are buffered, the data can be read at any time during  
the conversion sequence. If data are read near the completion of the conversion phase, old or new conversion  
data are returned. See the Data Ready (DRDY) section for details.  
The response data of the ADC varies in length depending on inclusion of the optional STATUS0 byte. See the  
Conversion Data Format section for details of the format of the conversion data. 21 and 81 describe the  
RDATA command byte sequence that includes the STATUS0 byte.  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
21. RDATA Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE 6  
BYTE 7  
BYTE 8  
BYTE 9  
DIN  
12h  
Arbitrary  
CRC-2  
00h  
00h  
00h  
00h  
00h  
00h  
Out CRC-3 or  
Out CRC-4(2)  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
STATUS0(1)  
MSB data  
MID data  
LSB data  
(1) Optional STATUS0 byte shown.  
(2) Out CRC-4 (4-byte CRC = STATUS0 + data) if the STATUS0 byte is included in the data packet.  
CS1  
41  
49  
57  
65  
1
9
17  
25  
33  
SCLK  
DIN  
12h  
FFh  
Arbitrary  
00h  
00h  
CRC-2  
00h  
00h  
00h  
00h  
MSB data  
MID data  
LSB DATA  
Out CRC-4  
Echo Byte 1  
Echo Byte 2  
Out CRC-2  
STATUS0  
DOUT/DRDY  
81. Conversion Data Read Operation  
9.5.5.7 OFSCAL Command  
This command is used for offset calibration. See the Calibration section for details. 22 lists the OFSCAL  
command byte sequence.  
22. OFSCAL Command  
DIRECTION  
DIN  
BYTE 1  
16h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.8 GANCAL Command  
This command is used for gain calibration. See the Calibration section for details. 23 lists the GANCAL  
command byte sequence.  
23. GANCAL Command  
DIRECTION  
DIN  
BYTE 1  
17h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.9 RREG Command  
Use the RREG command to read register data. Take CS1 low to access registers within the ADC register block.  
Take CS2 low to access registers within the PGA register block (see the Register Map section for the register  
block map). Register data are read one byte at a time using the RREG command for each operation. Add the  
register address (rrh) to the base opcode (20h) to complete the command byte (20h + rrh). 24 lists the RREG  
command byte sequence. The ADC responds with the register data byte, most significant bit first. Data for  
registers addressed outside the range is 00h. Out CRC-2 is the output CRC corresponding to the received  
command bytes. Out CRC-1 is the output CRC corresponding to the single register data byte.  
24. RREG Command  
DIRECTION  
DIN  
BYTE 1  
20h + rrh  
FFh  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
BYTE 5  
00h  
BYTE 6  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
Register data  
Out CRC-1  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.5.5.10 WREG Command  
Use the WREG command to write register data. Take CS1 low to access registers within the ADC register block.  
Take CS2 low to access registers within the PGA register block (see the Register Map section for the register  
block map). The WREG command writes the register data one byte at a time using the WREG command for  
each operation. Add the register address (rrh) to the base opcode (40h) to complete the command byte (40h +  
rrh). 25 lists the WREG command byte sequence. Writing to certain registers results in conversion restart. 表  
28 lists the affected registers. Do not write to registers outside the address range.  
Register-write access is enabled and disabled by the UNLOCK and LOCK commands, respectively. The default  
mode is register UNLOCK. See the LOCK Command section.  
25. WREG Command  
DIRECTION  
DIN  
BYTE 1  
40h + rrh  
FFh  
BYTE 2  
BYTE 3  
CRC-2  
BYTE 4  
00h  
Register data  
Echo byte 1  
DOUT/DRDY  
Echo byte 2  
Out CRC-2  
9.5.5.11 LOCK Command  
Use the LOCK command to lock unintended write operations to the registers. Send the LOCK command using  
CS1 to lock registers 00h to 0fh. Use CS2 to lock registers 10h to 12h. Locking the registers disables register  
write access including the calibration registers. The default mode is unlocked. Register reads are allowed in  
LOCK mode. 26 lists the LOCK command byte sequence.  
26. LOCK Command  
DIRECTION  
DIN  
BYTE 1  
F2h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.12 UNLOCK Command  
Use the UNLOCK command to allow writing register data. Send the UNLOCK command using CS1 to unlock  
registers 00h to 0fh. Use CS2 to unlock registers 10h to 12h. Register unlock allows register write access  
including calibration registers. 27 lists the UNLOCK command byte sequence.  
27. UNLOCK Command  
DIRECTION  
DIN  
BYTE 1  
F5h  
BYTE 2  
Arbitrary  
BYTE 3  
CRC-2  
BYTE 4  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
Echo byte 2  
Out CRC-2  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6 Register Map  
28 shows the device register map consisting of 19 one-byte registers. Collectively, the registers are used to  
configure the device to the desired operating mode. Access the registers by using the RREG and WREG  
commands (register-read and register-write, respectively). Data are accessed one register byte at a time for each  
command operation. The address of the register corresponds to using either CS1 or CS2 for the register  
command operation. The CSx column shows the correlation of CS1 or CS2 to the register address. Changing the  
data of certain registers results in a restart of conversions already in progress. The Restart column lists these  
registers.  
28. Register Map Summary  
ADDRESS  
00h  
REGISTER  
ID  
DEFAULT  
6xh  
RESTART  
CSx  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS1  
CS2  
CS2  
CS2  
BIT 7  
LOCK1  
0
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
DEV_ID[3:0]  
REV_ID1[3:0]  
01h  
STATUS0  
MODE0  
MODE1  
MODE2  
MODE3  
REF  
01h  
24h  
01h  
00h  
00h  
05h  
00h  
00h  
00h  
00h  
00h  
40h  
FFh  
00h  
00h  
50h  
xxh  
CRC1  
0
STAT12  
CONVRT  
REFALM  
DRDY  
CLOCK  
RESET  
02h  
Yes  
Yes  
DR[4:0]  
FILTER[2:0]  
03h  
0
AUTOZERO  
DELAY[3:0]  
04h  
GPIO_CON[3:0]  
GPIO_DIR[3:0]  
GPIO_DAT[3:0]  
05h  
0
0
STATENB  
0
0
0
0
06h  
Yes  
REFENB  
RMUXP[1:0]  
RMUXN[1:0]  
07h  
OFCAL0  
OFCAL1  
OFCAL2  
FSCAL0  
FSCAL1  
FSCAL2  
I_MUX  
OFC[7:0]  
08h  
OFC[15:8]  
OFC[23:16]  
FSC[7:0]  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
FSC[15:8]  
FSC[23:16]  
I_MUX2[3:0]  
I_MAG2[3:0]  
I_MUX1[3:0]  
I_MAG1[3:0]  
I_MAG  
RESERVED  
MODE4  
STATUS1  
STATUS2  
00h  
0
PGA_ONL  
0
MUX[2:0]  
PGA_OPL  
LOCK2  
GAIN[3:0]  
11h  
PGA_ONH  
0
PGA_OPH  
CRC2  
PGA_INL  
PGA_INH  
PGA_IPL  
PGA_IPH  
12h  
0xh  
REV_ID2[3:0]  
29 lists the access codes for the ADS125H02 registers.  
29. ADS125H02 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
R/W  
R-W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.6.1 Device Identification (ID) Register (address = 00h) [reset = 6xh]  
ID is shown in 82 and described in 30.  
Return to Register Map Summary.  
82. ID Register(1)  
7
6
5
4
3
2
1
0
DEV_ID[3:0]  
R-6h  
REV_ID1[3:0]  
R-xh  
(1) Reset values are device dependent.  
30. ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Device ID  
7:4  
DEV_ID[3:0]  
R
6h  
0110 = ADS125H02  
Revision ID1  
3:0  
REV_ID1[3:0]  
R
xh  
There are two revision ID fields: REV_ID1 and REV_ID2. The  
revision IDs can change without notification.  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6.2 Main Status (STATUS0) Register (address = 01h) [reset = 01h]  
STATUS0 is shown in 83 and described in 31.  
Return to Register Map Summary.  
83. STATUS0 Register  
7
6
5
0
4
3
2
1
0
LOCK1  
R-0h  
CRC1  
R/W-0h  
STAT12  
R-0h  
REFALM  
R-0h  
DRDY  
R-0h  
CLOCK  
R-xh  
RESET  
R/W-1h  
R-0h  
31. STATUS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Register Write Lock1 Status  
Indicates the register write lock status of register addresses 00h  
to 0Fh. See the LOCK Command section for details.  
7
LOCK1  
R
0h  
0: Registers 00h to 0Fh are not locked (default)  
1: Registers 00h to 0Fh are locked  
See the STATUS2 register for the register lock status of register  
addresses 10h to 12h.  
CRC1 Error  
Indicates if a CRC error occurred during commands when CS1  
is active. Write 0 to clear the CRC error.  
6
CRC1  
R/W  
0h  
0: No CRC error during commands using CS1  
1: CRC error occurred during commands using CS1  
See the STATUS2 register for the CRC error status for  
commands using CS2.  
Reserved  
5
4
0
R
R
0h  
0h  
Always write 0.  
STAT12 Error Flag  
Indicates one or more error events have been logged in the  
STATUS1 or STATUS2 registers. Read the STATUS1 and  
STATUS2 registers to determine the error. This bit clears after  
all errors are cleared.  
STAT12  
0: No error  
1: Error logged to the STATUS1 or STATUS2 registers  
Reference Voltage Alarm  
This bit sets when the reference voltage falls below < 0.4 V  
(typical). The alarm updates at each new conversion cycle (auto-  
reset).  
3
REFALM  
R
0h  
0: No reference low alarm  
1: Reference low alarm  
Data Ready  
Indicates new conversion data.  
2
1
DRDY  
R
R
0h  
xh  
0: Conversion data are not new since the last data read  
1: Conversion data are new since the last data read  
Clock  
Indicates internal or external clock mode. The ADC automatically  
selects the clock mode.  
CLOCK  
0: ADC clock is internal  
1: ADC clock is external  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
31. STATUS0 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
Reset  
Indicates an ADC reset has occurred. Clear the bit to detect the  
next device reset.  
0
RESET  
R/W  
1h  
0: No reset  
1: Reset (default)  
9.6.3 Mode 0 (MODE0) Register (address = 02h) [reset = 24h]  
MODE0 is shown in 84 and described in 32.  
Return to Register Map Summary.  
84. MODE0 Register  
7
6
5
4
3
2
1
0
DR[4:0]  
R/W-4h  
FILTER[2:0]  
R/W-4h  
32. MODE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Data Rate  
These bits select the data rate.  
00000: 2.5 SPS  
00001: 5 SPS  
00010: 10 SPS  
00011: 16.6 SPS  
00100: 20 SPS (default)  
00101: 50 SPS  
00110: 60 SPS  
7:3  
DR[4:0]  
R/W  
4h  
00111: 100 SPS  
01000: 400 SPS  
01001: 1200 SPS  
01010: 2400 SPS  
01011: 4800 SPS  
01100: 7200 SPS  
01101: 14400 SPS  
01110: 19200 SPS  
01111: 25600 SPS  
10000 - 11111: 40 kSPS (fCLK = 10.24 MHz)  
Digital Filter (see the Digital Filter section)  
These bits select the digital filter mode.  
000: Sinc1  
001: Sinc2  
2:0  
FILTER[2:0]  
R/W  
4h  
010: Sinc3  
011: Sinc4  
100: FIR (default)  
101-111: Reserved  
56  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6.4 Mode 1 (MODE1) Register (address = 03h) [reset = 01h]  
MODE1 is shown in 85 and described in 33.  
Return to Register Map Summary.  
85. MODE1 Register  
7
0
6
0
5
4
3
2
1
0
AUTOZERO  
R/W-0h  
CONVRT  
R/W-0h  
DELAY[3:0]  
R/W-1h  
R/W-0h  
R/W-0h  
33. MODE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:6  
0
R/W  
0h  
Always write 0  
Auto-Zero Mode  
Select normal or auto-zero operating mods. See the Auto-Zero  
Mode section.  
5
4
AUTOZERO  
CONVRT  
R/W  
R/W  
0h  
0h  
0: Normal mode (default)  
1: Auto-zero mode  
Conversion Mode  
Select the ADC conversion mode. See the Conversion Control  
section.  
0: Continuous conversion mode (default)  
1: Pulse (one shot) conversion mode  
Conversion Start Delay  
Program the time delay at the start of conversion. See the Start-  
Conversion Delay section.  
0000: 0 µs (not for 25600-SPS or 40000-SPS operation)  
0001: 50 µs (default)  
0010: 59 µs  
0011: 67 µs  
0100: 85 µs  
0101: 119 µs  
3:0  
DELAY[3:0]  
R/W  
1h  
0110: 189 µs  
0111: 328 µs  
1000: 605 µs  
1001: 1.16 ms  
1010: 2.27 ms  
1011: 4.49 ms  
1100: 8.93 ms  
1101: 17.8 ms  
1110-1111: Reserved  
版权 © 2018–2019, Texas Instruments Incorporated  
57  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.6.5 Mode 2 (MODE2) Register (address = 04h) [reset = 00h]  
MODE2 is shown in 86 and described in 34.  
Return to Register Map Summary.  
86. MODE2 Register  
7
6
5
4
3
2
1
0
GPIO_CON[3:0]  
R/W-0h  
GPIO_DIR[3:0]  
R/W-0h  
34. MODE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
GPIO[3] Pin Connection  
Connect GPIO[3] to the GPIO3 pin.  
7
GPIO_CON[3]  
GPIO_CON[2]  
GPIO_CON[1]  
GPIO_CON[0]  
GPIO_DIR[3]  
GPIO_DIR[2]  
R/W  
0h  
0: GPIO[3] not connected to GPIO3 (default)  
1: GPIO[3] connected to GPIO3  
GPIO[2] Pin Connection  
Connect GPIO[2] to the GPIO2 pin.  
0: GPIO[2] not connected to GPIO2 (default)  
1: GPIO[2] connected to GPIO2  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
GPIO[1] Pin Connection  
Connect GPIO[1] to the REFN1/GPIO1 pin.  
0: GPIO[1] not connected to REFN1/GPIO1 (default)  
1: GPIO[1] connected to REFN1/GPIO1  
GPIO[0] Pin Connection  
Connect GPIO[0] to the REFP1/GPIO0 pin.  
0: GPIO[0] not connected to REFP1/GPIO0 (default)  
1: GPIO[0] connected to REFP1/GPIO0  
GPIO[3] Pin Direction  
Configure GPIO[3] as a GPIO input or output to the GPIO3 pin.  
0: GPIO[3] is an output (default)  
1: GPIO[3] is an input  
GPIO[2] Pin Direction  
Configure GPIO[2] as a GPIO input or output to the GPIO2 pin.  
0: GPIO[2] is an output (default)  
1: GPIO[2] is an input  
GPIO[1] Pin Direction  
Configure GPIO[1] as a GPIO input or output to the REFN1/  
GPIO1 pin.  
1
0
GPIO_DIR[1]  
GPIO_DIR[0]  
R/W  
R/W  
0h  
0h  
0: GPIO[1] is an output (default)  
1: GPIO[1] is an input  
GPIO[0] Pin Direction  
Configure GPIO[0] as  
REFP1/GPIO0 pin.  
a GPIO input or output to the  
0: GPIO[0] is an output (default)  
1: GPIO[0] is an input  
58  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6.6 Mode 3 (MODE3) Register (address = 05h) [reset = 00h]  
MODE3 is shown in 87 and described in 35.  
Return to Register Map Summary.  
87. MODE3 Register  
7
0
6
5
0
4
0
3
2
1
0
STATENB  
R/W-0h  
GPIO_DAT[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
35. MODE3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7
0
R/W  
0h  
Always write 0h.  
STATUS0 Byte Enable  
Enable the STATUS0 byte contents for inclusion during  
conversion data read operation.  
6
STATENB  
R/W  
0h  
0: Exclude STATUS0 byte during conversion data read (default)  
1: Include STATUS0 byte during conversion data read  
Reserved  
5:4  
3
0
R/W  
R/W  
0h  
0h  
Always write 0h.  
GPIO[3] Data  
Read or write the GPIO data on the GPIO3 pin.  
0: GPIO[3] is low (default)  
1: GPIO[3] is high  
GPIO_DAT[3]  
GPIO[2] Data  
Read or write the GPIO data on the GPIO2 pin.  
0: GPIO[2] is low (default)  
1: GPIO[2] is high  
2
1
0
GPIO_DAT[2]  
GPIO_DAT[1]  
GPIO_DAT[0]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
GPIO[1] Data  
Read or write the GPIO data on the REFN1/GPIO1 pin.  
0: GPIO[1] is low (default)  
1: GPIO[1] is high  
GPIO[0] Data  
Read or write the GPIO data on the REFP1/GPIO0 pin.  
0: GPIO[0] is low (default)  
1: GPIO[0] is high  
版权 © 2018–2019, Texas Instruments Incorporated  
59  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.6.7 Reference Configuration (REF) Register (address = 06h) [reset = 05h]  
REF is shown in 88 and described in 36.  
Return to Register Map Summary.  
88. REF Register  
7
0
6
0
5
0
4
3
2
1
0
REFENB  
R/W-0h  
RMUXP[1:0]  
R/W-1h  
RMUXN[1:0]  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
36. REF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:5  
0
R/W  
0h  
Always write 0h.  
Internal Reference Enable  
Enable the internal reference.  
0: Internal reference disabled (default)  
1: Internal reference enabled  
4
REFENB  
R/W  
R/W  
0h  
1h  
Reference Positive Input (see the Reference Voltage section)  
Select the positive reference input.  
00: Internal reference positive  
01: AVDD (default)  
3:2  
RMUXP[1:0]  
RMUXN[1:0]  
10: REFP0 external  
11: REFP1/GPIO0 external  
Reference Negative Input (see the Reference Voltage section)  
Select the negative reference input.  
00: Internal reference negative  
01: AGND (default)  
1:0  
R/W  
1h  
10: REFN0 external  
11: REFN1/GPIO1 external  
60  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6.8 Offset Calibration (OFCALx) Registers (address = 07h, 08h, 09h) [reset = 00h, 00h, 00h]  
OFCALx is shown in 89 and described in 37.  
Return to Register Map Summary.  
89. OFCAL0, OFCAL1, OFCAL2 Registers  
7
6
5
4
3
2
1
9
0
8
OFC[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
OFC[15:8]  
R/W-00h  
17  
16  
OFC[23:16]  
R/W-00h  
37. OFCAL0, OFCAL1, OFCAL2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
Offset Calibration  
These three registers are the 24-bit offset calibration word. The  
offset calibration is in two's-complement data format. The offset  
value is subtracted from the conversion result before the full-  
scale operation.  
23:0  
OFC[23:0]  
R/W  
000000h  
9.6.9 Full-Scale Calibration (FSCALx) Registers (address = 0Ah, 0Bh, 0Ch) [reset = 00h, 00h, 40h]  
FSCALx is shown in 90 and described in 38.  
Return to Register Map Summary.  
90. FSCAL0, FSCAL1, FSCAL2 Registers  
7
6
5
4
3
2
1
9
0
8
FSCAL[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
FSCAL[15:8]  
R/W-00h  
17  
16  
FSCAL[23:16]  
R/W-40h  
38. FSCAL0, FSCAL1, FSCAL2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
Full-Scale Calibration  
These three registers are the 24-bit full-scale calibration word.  
The full-scale calibration is in straight binary data format. The  
full-scale value is divided by 400000h and multiplied with the  
conversion data. The scaling operation occurs after the offset  
operation.  
23:0  
FSCAL[23:0]  
R/W  
400000h  
版权 © 2018–2019, Texas Instruments Incorporated  
61  
 
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.6.10 Current Source Multiplexer (I_MUX) Register (address = 0Dh) [reset = FFh]  
I_MUX is shown in 91 and described in 39.  
Return to Register Map Summary.  
91. I_MUX Register  
7
6
5
4
3
2
1
0
I_MUX2[3:0]  
R/W-Fh  
I_MUX1[3:0]  
R/W-Fh  
39. I_MUX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current Source 2 Output Multiplexer  
These bits select the IDAC2 pin connection.  
0000-0111: No connection  
7:4  
I_MUX2[3:0]  
I_MUX1[3:0]  
R/W  
Fh  
1000: Connect current source 2 to pin IDAC1  
1001: Connect current source 2 to pin IDAC2  
1010-1111: No connection (default = 1111)  
Current Source 1 Output Multiplexer  
These bits select the IDAC1 pin connection.  
0000-0111: No connection  
3:0  
R/W  
Fh  
1000: Connect current 1 to pin IDAC1  
1001: Connect current 1 to pin IDAC2  
1010-1111: No connection (default = 1111)  
62  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6.11 Current Source Magnitude (I_MAG) Register (address = 0Eh) [reset = 00h]  
I_MAG is shown in 92 and described in 40.  
Return to Register Map Summary.  
92. I_MAG Register  
7
6
5
4
3
2
1
0
I_MAG2[3:0]  
R/W-0h  
I_MAG1[3:0]  
R/W-0h  
40. I_MAG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current Source 2 Magnitude  
These bits select current source 2 magnitude.  
0000: Off (default)  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
7:4  
I_MAG2[3:0]  
R/W  
0h  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
1011-1111: Off  
Current Source 1 Magnitude  
These bits select current source 1 magnitude.  
0000: Off (default)  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
3:0  
I_MAG1[3:0]  
R/W  
0h  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
1011-1111: Off  
版权 © 2018–2019, Texas Instruments Incorporated  
63  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.6.12 Reserved (RESERVED) Register (address = 0Fh) [reset = 00h]  
RESERVED is shown in 93 and described in 41.  
Return to Register Map Summary.  
93. RESERVED Register  
7
6
5
4
3
2
1
0
00h  
R/W-00h  
41. RESERVED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved bits  
7:0  
0
R
0h  
Always write 00h.  
9.6.13 MODE4 (MODE4) Register (address = 10h) [reset = 50h]  
MODE4 is shown in 94 and described in 42.  
Return to Register Map Summary.  
94. MODE4 Register  
7
0
6
5
4
3
2
1
0
MUX[2:0]  
R/W-5h  
GAIN[3:0]  
R/W-0h  
R/W-0h  
42. MODE4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7
0
R
0h  
Always write 0h.  
Input Multiplexer  
These bits set the input multiplexer control.  
000: AIN1 – AIN0  
001: AIN0 – AIN1  
010: AIN1 – AINCOM  
6:4  
MUX[2:0]  
R/W  
5h  
011: AIN0 – AINCOM  
100: HV supply readback (HV_AVDD – HV_AVSS) / 36  
101: Internal short to VCOM (HV_AVDD + HV_AVSS) / 2 (default)  
110: Temperature sensor reading  
111: Reserved (do not use)  
64  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
42. MODE4 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
PGA Gain  
These bits set the PGA gain setting.  
0000: 0.125 (default)  
0001: 0.1875  
0010: 0.25  
0011: 0.5  
0100: 1  
3:0  
GAIN[3:0]  
R/W  
0h  
0101: 2  
0110: 4  
0111: 8  
1000: 16  
1001: 32  
1010: 64  
1011: 128  
1100-1111: reserved  
版权 © 2018–2019, Texas Instruments Incorporated  
65  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
9.6.14 PGA Alarm (STATUS1) Register (address = 11h) [reset = xxh]  
STATUS1 is shown in 95 and described in 43.  
Return to Register Map Summary.  
95. STATUS1 Register  
7
6
5
4
3
2
1
0
PGA_ONL  
PGA_ONH  
PGA_OPL  
PGA_OPH  
PGA_INL  
PGA_INH  
PGA_IPL  
PGA_IPH  
R-xxh  
43. STATUS1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
PGA Output Negative Low Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
7
PGA_ONL  
R
xh  
1: Alarm active  
PGA Output Negative High Alarm  
This bit is cleared on register read (clear-on-read).  
6
5
4
3
2
1
0
PGA_ONH  
PGA_OPL  
PGA_OPH  
PGA_INL  
PGA_INH  
PGA_IPL  
PGA_IPH  
R
R
R
R
R
R
R
xh  
xh  
xh  
xh  
xh  
xh  
xh  
0: No alarm  
1: Alarm active  
PGA Output Positive Low Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
1: Alarm active  
PGA Output Positive High Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
1: Alarm active  
PGA Input Negative Low Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
1: Alarm active  
PGA Input Negative High Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
1: Alarm active  
PGA Input Positive Low Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
1: Alarm active  
PGA Input Positive High Alarm  
This bit is cleared on register read (clear-on-read).  
0: No alarm  
1: Alarm active  
66  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
9.6.15 Status 2 (STATUS2) Register (address = 12h) [reset = 0xh]  
STATUS2 is shown in 96 and described in 44.  
Return to Register Map Summary.  
96. STATUS2 Register  
7
0
6
0
5
4
3
2
1
0
LOCK2  
R-0h  
CRC2  
R/W-0h  
REV_ID2[3:0]  
R/W-xh  
R/W-0h  
R/W-0h  
44. STATUS2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:6  
0
R/W  
0h  
Always write 0.  
Register Write Lock2 Status  
Indicates the register write lock status of registers 10h to 12h.  
See the LOCK Command section for details.  
5
LOCK2  
R
0h  
0: Registers 10h to 12h are not locked (default)  
1: Registers 10h to 12h are locked  
See the STATUS2 register for the register write lock status of  
registers 00h to 0fh.  
CRC2 Error  
Indicates if a CRC error occurred during commands with CS2.  
The CRC error is latched until cleared by the user. Write 0 to  
clear the error.  
4
CRC2  
R/W  
0h  
x
0: No CRC error during commands with CS2  
1: CRC error occurred during commands with CS2  
Revision ID2  
3:0  
REV_ID2[3:0]  
R
Revision ID 2 field. The revision ID1 and ID2 can change without  
notification.  
版权 © 2018–2019, Texas Instruments Incorporated  
67  
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Input Range  
Linear operation of the PGA requires that the absolute input voltage does not exceed the specified range. The  
following example shows how to verify the absolute input voltage is within the valid range. In this example, the  
input signal is ±10 V with an arbitrary 15% overrange capability. The negative input lead of the sensor is  
connected to AGND. The ADC gain is 0.1875 using a 2.5-V reference voltage and ±15-V power supplies with 5%  
voltage tolerance. The summary of conditions to verify the ADC range are:  
V(AINx_MAX) = 11.5 V  
V(AINx_MIN) = –11.5 V  
V(AINCOM) = AGND  
HV_AVDD = 14.25 V  
HV_AVSS = –14.25 V  
Gain = 0.1875  
VREF = 2.5 V  
The evaluation of 公式 5 (for gain < 1) results in:  
–11.75 V < –11.5 V and 11.5 V < 11.75 V  
The inequality is satisfied, and as a result, the absolute input voltage is within the ADC input range requirement.  
10.1.2 Input Overload  
The input overvoltage precautions as described in the ESD Diodes section. If an overvoltage condition occurs on  
an unused channel, the overvoltage channel may crosstalk to the measurement channel. One solution, as shown  
in 97, is to externally clamp the inputs with low-forward voltage diodes. The external diodes shunt the  
overvoltage current flow around the ADC inputs. Be aware of the reverse leakage current that can cause  
measurement errors.  
+15 V  
IFAULT  
Schottky  
Diode  
HV_AVDD  
Zener  
Diode  
RLIM  
AINx  
ADS125H02  
40 V  
Schottky  
Diode  
HV_AVSS œ 0.3 V > VCLAMP > HV_AVDD + 0.3 V  
HV_AVSS  
IFAULT  
-15 V  
97. Optional Diode Clamps  
68  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Application Information (接下页)  
10.1.2.1 Input Signal Rate of Change (dV/dt)  
A high dV/dt signal at the ADC input can lead to transient turn-on of the PGA inverse-parallel protection diodes  
(see 57 for details). Turn-on of the PGA diodes can result in current flow in the analog inputs that can cause a  
disturbance in the measurement channel. For example, a high dV/dt voltage can be generated at the output of a  
signal multiplexer after a channel selection, leading to a possible flow of transient currents through the ADC  
inputs. Filter the ADC input voltage to limit the rate of voltage change (dV/dt).  
10.1.3 Unused Inputs and Outputs  
Analog Inputs  
To minimize input current leakage, connect unused analog inputs to AGND when operating the device with  
bipolar supplies, or connect unused inputs to AVDD when operating the device with a unipolar supply.  
Analog Outputs  
A capacitor is not required for REFOUT if the internal reference or the IDAC current sources are not used.  
Otherwise, connect a 10-µF capacitor between REFOUT and AGND.  
Digital I/O  
ADC operation is possible using only a subset of the digital I/O. Tie any unused digital inputs high or low  
(DVDD or DGND, as appropriate). Do not float (tri-state) the digital inputs or unpredictable operation can  
result. The following is a summary of digital I/O with optional connections:  
CLKIN: Tie CLKIN to DGND to operate the ADC using the internal oscillator. The internal oscillator stops  
operation if CLKIN is connected to DVDD, resulting in loss of ADC functionality. Connect CLKIN to an  
external clock source to operate with an external clock.  
START: Tie START low in order to control conversions entirely by command. Tie START high to free-run  
conversions when programmed to the continuous-conversion mode. Connect START to the host controller  
to control conversions directly by the pin.  
RESET: Tie RESET high if desired. An external RC reset on the RESET input pin is not necessary  
because the ADC resets at power on. The ADC can also be reset by the RESET command. Connect the  
RESET pin to the host controller to reset the ADC by hardware.  
DRDY: Indication of data ready is also provided by the DOUT/DRDY pin. CS1 must be low to use  
DOUT/DRDY in the data-ready function. The indication of data ready is also achieved by polling the  
DRDY bit of the STATUS0 byte. For these methods, the connection of DRDY to the host controller is not  
necessary and the pin can be unconnected.  
GPIO  
Program unused GPIOs as outputs (default setting). If any GPIOs are programmed as inputs, the GPIO must  
not be allowed to float (unconnected), otherwise AVDD power-supply leakage current may result.  
10.2 Typical Applications  
10.2.1 ±10-V Analog Input Module  
98 illustrates an example of the ADS125H02 used in a ±10-V analog input programmable logic controller  
(PLC) module. The inputs of the ADC are protected by external ESD diodes to provide system-level protection. A  
100-MΩ resistor is used to pull the positive analog input to 15 V if the field-wiring connection is open or the  
transmitter has failed in open-circuit mode.  
The signal from the transmitter is filtered to remove EMI and RFI interference when operated in noisy  
environments. The resistor also acts to limit the input current in the event of an input overvoltage, including if the  
module loses power with the signal present. The negative input signal is connected to AIN0, which is also  
connected to AGND. Connection to AGND is necessary if the sensor power supply is not referenced to the ADC  
ground.  
The ADC measures the differential voltage between inputs AIN1 and AIN0. The input configuration is single-  
ended with the input voltage driven ±10 V relative to AIN0 (AGND).  
Operation by internal reference requires a 10-µF capacitor connected to the REFOUT pin. Otherwise, apply the  
external reference voltage to REFP0 and REFN0. A 100-kΩ resistor biases the differential reference voltage to  
0 V. The resistor provides the bias to allow the reference monitor to detect a failed or missing reference voltage  
that otherwise may be unnoticed.  
版权 © 2018–2019, Texas Instruments Incorporated  
69  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Applications (接下页)  
Because the excitation current sources and GPIOs are not used they are left unconnected.  
The internal oscillator is selected by connecting the CLKIN input pin to ground. The serial interface and digital  
control lines of the ADC are connected to the host.  
The zener diode clamps the high-voltage supply (HV_AVDD – HV_AVSS) to 40 V to provide overvoltage  
protection if an input signal is present with module power off.  
15 V  
-15 V  
40 V  
0.1 mF  
0.1 mF  
1 mF  
19  
20  
15 V  
HV_AVDD  
HV_AVSS  
5 V  
ADS125H02  
100 M  
5 kꢀ  
4
2
27  
26  
AVDD  
AIN1  
AIN0  
10 mF  
0.1 mF  
10 V  
Input  
10 nF  
ESD  
Protection  
CAPP  
25  
1
AINCOM  
1 nF  
C0G  
3
6
CAPN  
2.5 V  
Reference  
5 V  
REFP0  
REFN0  
10 nF  
100 k  
REFOUT  
10 mF  
32  
Optional  
7
RESET  
START  
CS2  
24  
23  
31  
30  
29  
8
9
IDAC1  
IDAC2  
10  
11  
CS1  
To Host control  
REFP1/GPIO0  
REFN1/GPIO1  
GPIO2  
47 ꢀ  
SCLK  
47 ꢀ  
47 ꢀ  
47 ꢀ  
12  
13  
DIN  
DRDY  
28  
22  
GPIO3  
NC  
14  
18  
DOUT/DRDY  
CLKIN  
21  
15  
NC  
5 V  
17  
BYPASS  
DVDD  
DGND  
1 mF  
1 mF  
AGND  
5
16  
98. ±10-V Analog Input PLC Module  
70  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
Typical Applications (接下页)  
10.2.1.1 Design Requirements  
45 shows the design goals of the analog input PLC module. The ADC programmability allows various  
tradeoffs of sample rate, conversion noise, and conversion latency. 46 shows the design parameters of the  
analog input PLC module.  
45. Design Goals  
DESIGN GOAL  
Accuracy  
VALUE  
±0.1%  
Temperature range (internal module)  
Acquisition period  
0°C to +105°C  
50 µs  
Effective resolution  
18 bits  
46. Design Parameters  
DESIGN PARAMETER  
Nominal signal range  
Extended range  
VALUE  
±10 V  
±12 V  
Input impedance  
100 MΩ  
±35 V  
Overvoltage rating  
10.2.1.2 Detailed Design Procedure  
A key consideration in the design of an analog input module is the error over the ambient temperature range  
resulting from the drift of gain, offset, reference voltage, and linearity error. This example assumes the initial  
offset and gain (including reference voltage error) are user calibrated at TA = 25°C. 47 shows the maximum  
drift error of the ADC over the 0°C to +105°C temperature range.  
47. ADC Drift Error  
PARAMETER  
ERROR (0°C TO +105°C)  
0.00125%  
0.032%  
Offset drift error  
Gain drift error  
Linearity error (over temperature)  
0.001%  
ADS125H02 internal reference  
0.16%  
Reference drift error  
Total drift error  
REF5025IDGK external reference  
ADS125H02 internal reference  
REF5025IDGK external reference  
0.024%  
0.19425%  
0.05825%  
As shown in 47, the largest error is from the internal voltage reference. The reference drift error is improved  
by using the REF5025IDGK external reference. Using the external reference, the total drift error is 0.05825%,  
which satisfies the 0.1% total error design goal.  
The ADC gain is programmed to 0.1875. With a 2.5-V reference voltage, the ADC input range is ±2.5 V / 0.1875  
= ±13.3 V. However, using ±15-V power supplies, the required headroom of the PGA limits the range to ±12.5 V  
(which excludes the tolerance of the ±15-V power supplies). The input range satisfies the extended range design  
target of ±12 V.  
The 1-GΩ minimum input impedance of the ADC and the 100-MΩ external pullup resistor meets the input  
impedance goal of 100 MΩ. The input fault overvoltage requirement (35 V) is met by limiting the ADC input  
current to 10 mA. The external 5-kΩ input resistor limits the input current to 7 mA.  
The data rate that meets the continuos conversion, 50-µs acquisition period is 25600 SPS (39 µs actual). If a  
precise 50-µs conversion period is desired, reduce the clock frequency to the ADC with an external clock source.  
The clock frequency that yields a 50-µs conversion period is 5.76 MHz.  
版权 © 2018–2019, Texas Instruments Incorporated  
71  
 
 
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
1 lists noise performance data under all combinations of gain, sample rate, and digital filter order. The  
specified conversion noise for the ADC configuration in this example is 100 µVRMS. The effective resolution is  
derived by 公式 1, and calculates to: 3.32 log (26.6 V / 100 µV) = 18 bits.  
10.2.1.3 Application Curves  
99 shows 100,000 consecutive conversions over a four-second interval with the ADC inputs shorted using the  
ADC configuration given in this example. 100,000 conversions demonstrate the consistency of the ADC  
conversion results over time. The conversion noise in this example is 107 µVRMS. The effective resolution  
calculates to 18 bits, which meets the design requirement.  
800  
en = 107 mV RMS  
en = 865 mV PP  
600  
400  
200  
0
-200  
-400  
-600  
-800  
0
1
2
Time (s)  
3
4
D007  
99. Conversion Noise  
10.2.2 Thermocouple Input With High Common-Mode Voltage  
The low noise and low drift performance, 50-Hz and 60-Hz noise rejection, and high common-mode voltage  
range of the ADS125H02 make the device suitable for multiple thermocouple inputs that have varying levels of  
common-mode voltage. The common-mode voltage can be AC (50-Hz or 60-Hz noise pickup) or DC caused by  
varying ground potentials encountered in industrial machinery. 100 shows a simplified application of an 8-  
input, isolated ground, thermocouple module using an external 8:1 differential input multiplexer. The GPIO of the  
ADS125H02 drives the mux select pins.  
18 V  
18 V  
R1  
18 V  
R3  
R4  
R5  
R6  
C1  
AIN0  
AIN1  
ADS125H02  
C2  
ESD  
Protection  
R2  
8:1  
Differential  
Mux  
GPIO[3:0]  
-18 V  
-18 V  
CJC  
Temp Sensor  
EN  
A0  
A1  
A2  
CH 2  
R7  
CH 8  
GND  
-18 V  
100. Thermocouple Input  
72  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
10.3 Initialization Setup  
101 shows a general configuration and measurement procedure.  
Power On  
/* RESET must be high for operation  
Set RESET high  
Y
External clock?  
N
Apply clock to CLKIN  
/* ADC automatically detects external clock  
N
/* DRDY is held low at power-on until ready for communication  
DRDY pin high?  
Y
Y
START high?  
/* If START pin is low, conversions are stopped  
DRDY pulses at 20 Hz  
N
Set START pin low /  
Send STOP command  
/* For simplicity, stop conversions before register configuration  
DRDY not pulsing  
/* Write register data with CRC validation byte attached  
/* (Use CS1 for register addresses ≤ 0Eh)  
/* (Use CS2 for register addresses ≥ 10h)  
Write register data  
Read register data  
/* Optional readback validation of register data  
Wait for reference  
voltage to settle  
/* The internal reference requires time to settle after power-on  
Set START pin high /  
Send START command  
/* Start or restart new ADC conversion  
N
/* Read data at a rate faster than  
the data rate to avoid missed data  
Hardware DRDY?  
Y
Read STATUS0 register  
N
/* New data when DRDY bit =1  
DRDY bit asserted ?  
N
DRDY pin low ?  
Y
Y
Read Data  
N
Change ADC  
settings ?  
Y
101. ADC Configuration and Measurement Procedure  
版权 © 2018–2019, Texas Instruments Incorporated  
73  
 
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
The ADC requires three analog power supplies (high-voltage supplies HV_AVDD and HV_AVSS, and low-  
voltage AVDD) and a digital power supply (DVDD). The high-voltage analog power-supply configuration is either  
bipolar (±5 V to ±18 V) or unipolar (10 V to 36 V). The AVDD power supply is 5 V. The digital supply range is  
2.7 V to 5.25 V. AVDD and DVDD can be tied together as long as the 5-V power supply is free from noise and  
glitches that can affect conversion results. An internal low-dropout regulator (LDO) powers the digital core from  
the DVDD power supply. DVDD is the digital I/O voltage. Keep in mind that the GPIOs are referenced to AVDD  
and AGND voltage potentials.  
Voltage ripple produced by switch-mode power supplies can interfere with the ADC conversion accuracy. Use  
LDOs at the switching regulator output to reduce power-supply ripple.  
Inrush current is drawn from AVDD when the internal reference is enabled as a result of charging the 10-µF  
REFOUT capacitor. Observe the AVDD voltage under this condition and verify the supply does not drop below  
4.5 V.  
11.1 Power-Supply Decoupling  
Good power-supply decoupling is important in order to achieve optimum performance. Power supplies must be  
decoupled close to the device supply pins. For the high voltage analog supply (HV_AVDD and HV_AVSS), place  
a 1-µF capacitor between the pins and place 0.1-µF capacitors from each supply to the ground plane. Connect  
0.1-µF and 10-µF capacitors in parallel at AVDD to the ground plane. Connect a 1-µF capacitor from DVDD to  
the ground plane. Connect a 1-µF capacitor from BYPASS to the ground plane. Use multilayer ceramic chip  
capacitors (MLCCs) that offer low equivalent series resistance (ESR) and equivalent series inductance (ESL)  
characteristics for power-supply decoupling purposes.  
11.2 Analog Power-Supply Clamp  
Circumstances must be evaluated when an input signal is present when the ADC is unpowered. When the input  
signal exceeds the forward voltage of the ESD diodes, the diodes conduct resulting in backdrive of the analog  
power-supply voltage through the internal ESD diodes. Backdriving the ADC power supply can also occur when  
the power-supply is on. The backdrive fault-current path is illustrated in 97. Depending on the power supply  
response during a backdrive condition, the ADC supply voltage rating may be exceeded. The ADC maximum-  
rated supply voltage must not be exceeded under any condition. One solution is to clamp the analog supply  
using a Zener diode placed across HV_AVSS and HV_AVDD.  
11.3 Power-Supply Sequencing  
The power supplies can be sequenced in any order, but do not allow analog or digital voltage inputs to exceed  
the respective analog or digital power supplies without limiting the input current.  
11.4 5-V to ±15-V DC-DC Converter  
102 illustrates a 5-V to ±15-V DC/DC converter for use with the device. The DC/DC converter generates ±15-  
V supply voltages from 5-V power. The SN6505B is a push-pull driver that drives the transformer primary from 5-  
V power. The typical switching frequency of the driver is 424 kHz, and when combined with the driver spread-  
spectrum clocking operation, reduces interference to the ADC as well as system-level EMI emissions. The  
secondary voltage of the 2:1 step-up transformer is half-wave rectified in a configuration that quadruples the 5-V  
primary voltage to generate output voltages of 20 V and –20 V. The rectified voltages are regulated by the  
TPS7A39 high-PSRR, dual positive and negative regulator to provide the ±15-V supply voltages.  
74  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
5-V to ±15-V DC-DC Converter (接下页)  
15 V  
-15 V  
40 V  
0.1 mF  
0.1 mF  
5 V  
Wurth Electronik  
50 V  
1 µF  
#760390015  
19  
20  
3
1
2
5
4
5
6
MBR0580  
D1  
VCC  
HV_AVDD  
HV_AVSS  
TPS7A3901  
10  
1
2
5 V  
INP  
EN  
2
1
SN6505B  
ADS125H02  
OUTP  
50 V  
10 mF  
4
118 k  
3
4
50 V  
10 mF  
AVDD  
10 mF  
EN  
D2  
10 kꢀ  
0.1 mF  
9
FBP  
10 mF  
5
3
INN  
15  
6
BYPASS  
OUTN  
6
GND  
CLK  
1 mF  
50 V  
10 mF  
50 V  
10 mF  
127 kꢀ  
5 V  
7
17  
FBN  
BUF  
DVDD  
NR/NS  
10 kꢀ  
1 mF  
8
0.01 mF  
GND PAD  
DGND  
16  
AGND  
5
4
11  
102. 5-V to ±15-V DC/DC Converter  
12 Layout  
12.1 Layout Guidelines  
Good layout practices are crucial to realize the full performance of the ADC. Poor grounding can quickly degrade  
the noise performance. This section discusses layout recommendations that help provide the best results.  
For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal traces  
on this layer. However, depending on layout restrictions, a dedicated ground plane may not be practical. If  
ground plane separation is necessary, make a single, direct connection to the planes at the ADC. Do not connect  
individual ground planes at multiple locations because this configuration creates ground loops.  
Route digital traces away from the CAPP and CAPN pins, away from the REFOUT pin, and away from all analog  
inputs and associated components in order to minimize interference.  
Because large capacitance on DOUT/DRDY can lead to increased ADC noise levels, minimize the length of the  
PCB trace. Use a series resistor or a buffer if long traces are used.  
The internal reference output return is the AGND pin. To minimize coupling between the power supply and  
reference-return trace, route the traces separately; ideally, as a star connection to the AGND pin.  
Use C0G capacitors on the analog inputs and for the CAPP to CAPN capacitor. Use ceramic capacitors (for  
example, X7R grade) for the power-supply decoupling capacitors. High-K capacitors (Y5V) are not  
recommended. The REFOUT pin requires a 10-µF capacitor and can be either ceramic or tantalum type. Place  
the required capacitors as close as possible to the device pins using short, direct traces. For optimum  
performance, use low-impedance connections with multiple vias on the ground-side connections of the bypass  
capacitors.  
When applying an external clock, be sure the clock is free of overshoot and glitches. A source-termination  
resistor placed at the clock buffer often helps reduce overshoot. Glitches present on the clock input can lead to  
noisy conversion data.  
版权 © 2018–2019, Texas Instruments Incorporated  
75  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
12.2 Layout Example  
103 shows an example layout of the ADS125H02, requiring a minimum of three PCB layers. The example  
circuit is shown with bipolar supply operation (such as ±15 V) and using the internal reference. In this example,  
the inner layer is dedicated to the ground plane and the outer layers are used for signal and power traces. If a  
four-layer PCB is used, dedicate an additional inner layer for the power planes. In this example, the ADC is  
oriented in such a way to minimize crossover of the analog and digital signal traces.  
ADC Clock Options:  
Option 1: To enable INTERNAL  
oscillator, tie CLKIN to  
GND  
HV_AVSS  
Supply  
Option 2: Connect EXTERNAL  
clock source to CLKIN  
47  
0.1 µF  
0.1 µF  
DVDD  
Supply  
1 µF  
1 µF  
HV_AVDD  
Supply  
(9-mil traces shown)  
Current  
Source  
1 µF  
Input  
Signal  
10 nF  
16  
15  
AINCOM 25  
DGND  
AIN0 26  
(Diff. - Input Pair)  
BYPASS  
14 DOUT/DRDY  
AIN1 27  
GPIO3 28  
GPIO2 29  
ADS125H02  
DRDY  
DIN  
13  
12  
11  
10  
9
47 ꢀ  
47 ꢀ  
47 ꢀ  
47 ꢀ  
Connect thermal pad to  
AGND  
30  
SCLK  
CS1  
REFN1/GPIO1  
REFP1/GPIO0 31  
REFN0 32  
GPIO  
CS2  
To  
MCU  
C0G  
External  
Reference  
0.1 µF  
10 nF  
1 nF  
10 µF  
(0805 shown)  
10 µF  
(0805 shown)  
AVDD Supply  
103. PCB Layout Example  
76  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)REF50xx 低噪声、极低漂移、精密电压基准》数据表  
德州仪器 (TI)《用于隔离电源的 SN6505x 低噪声 1A 变压器驱动器》数据表  
德州仪器 (TI)TPS7A39 双路、150mA、宽输入电压正负 LDO 稳压器》数据表  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
77  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
78  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
2X  
SYMM  
33  
3.5  
0.3  
32X  
0.2  
24  
0.1  
C A B  
1
0.05  
C
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
版权 © 2018–2019, Texas Instruments Incorporated  
79  
ADS125H02  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223442/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
80  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS125H02  
www.ti.com.cn  
ZHCSIZ6C OCTOBER 2018REVISED JUNE 2019  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2018–2019, Texas Instruments Incorporated  
81  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS125H02IRHBR  
ADS125H02IRHBT  
ACTIVE  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
ADS  
125H02  
ACTIVE  
RHB  
NIPDAU  
ADS  
125H02  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS125H02IRHBR  
ADS125H02IRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS125H02IRHBR  
ADS125H02IRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS125H02IRHBT

具有 ±20V 输入、PGA、IDAC、GPIO 和基准电压的 24 位、40kSPS、2 通道 Δ-Σ ADC | RHB | 32 | -40 to 125
TI

ADS1260

适用于工厂自动化且具有 PGA、基准电压和 IDAC 的 24 位 40kSPS 5 通道 Δ-Σ ADC
TI

ADS1260-Q1

具有 PGA、基准电压和 IDAC 的汽车类 24 位、40kSPS、5 通道 Δ-Σ ADC
TI

ADS1260BIRHBR

适用于工厂自动化且具有 PGA、基准电压和 IDAC 的 24 位 40kSPS 5 通道 Δ-Σ ADC | RHB | 32 | -40 to 125
TI

ADS1260BIRHBT

适用于工厂自动化且具有 PGA、基准电压和 IDAC 的 24 位 40kSPS 5 通道 Δ-Σ ADC | RHB | 32 | -40 to 125
TI

ADS1260BQWRHMRQ1

具有 PGA、基准电压和 IDAC 的汽车类 24 位、40kSPS、5 通道 Δ-Σ ADC | RHM | 32 | -40 to 125
TI

ADS1261

适用于工厂自动化且具有 PGA、VREF、IDAC 和交流激励的 24 位 40kSPS 10 通道 Δ-Σ ADC
TI

ADS1261-Q1

具有 PGA、VREF、IDAC 和交流激励的汽车类 24 位、40kSPS、10 通道 Δ-Σ ADC
TI

ADS1261BIRHBR

适用于工厂自动化且具有 PGA、VREF、IDAC 和交流激励的 24 位 40kSPS 10 通道 Δ-Σ ADC | RHB | 32 | -40 to 125
TI

ADS1261BIRHBT

适用于工厂自动化且具有 PGA、VREF、IDAC 和交流激励的 24 位 40kSPS 10 通道 Δ-Σ ADC | RHB | 32 | -40 to 125
TI

ADS1261BQWRHMRQ1

具有 PGA、VREF、IDAC 和交流激励的汽车类 24 位、40kSPS、10 通道 Δ-Σ ADC | RHM | 32 | -40 to 125
TI

ADS1261IRHBR

适用于工厂自动化且具有 PGA、VREF、IDAC 和交流激励的 24 位 40kSPS 10 通道 Δ-Σ ADC | RHB | 32 | -40 to 125
TI