ADS1261BIRHBR [TI]

适用于工厂自动化且具有 PGA、VREF、IDAC 和交流激励的 24 位 40kSPS 10 通道 Δ-Σ ADC | RHB | 32 | -40 to 125;
ADS1261BIRHBR
型号: ADS1261BIRHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于工厂自动化且具有 PGA、VREF、IDAC 和交流激励的 24 位 40kSPS 10 通道 Δ-Σ ADC | RHB | 32 | -40 to 125

转换器
文件: 总92页 (文件大小:2030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
ADS126x精密 5 通道和 10 通道 40kSPS 24 位  
Δ-Σ ADC  
1 特性  
3 说明  
1
24 位高精度 ADC  
ADS1260 ADS1261(ADS126x) 均为包含可编程增  
益放大器 (PGA) 的精密 40kSPS ΔΣ 模数转换器  
(ADC)。这些器件还包含精密的电压基准和内部故障监  
控器。这些支持传感器的 ADC 可以为要求最严苛的测  
量(包括称重秤和电阻式温度检测器 (RTD))提供高  
精度单芯片解决方案。  
温漂:1nV/°C  
增益漂移:0.5ppm/°C  
噪声:30nVRMS20SPS,增益 = 128)  
线性度:2ppm  
CMOS PGA 增益:1 128  
宽输入电压范围:±7mV ±5V  
数据速率:2.5SPS 40kSPS  
2.5V 基准:2ppm/°C  
这些 ADC 包含输入信号多路复用器、低噪声 PGA  
(提供 1 128 的增益)、4 ΔΣ 调制器、精密电  
压基准和可编程数字滤波器。  
同步 50Hz 60Hz 抑制模式  
单周期稳定模式  
高阻抗 PGA 输入 (1GΩ) 可减小由传感器负载导致的  
测量误差。ADS1260 支持三路差分输入或五路单端输  
入。ADS1261 支持五路差分输入或十路单端输入。集  
成式电流源可简化 RTD 测量。  
信号和基准监控器  
5V ±2.5V 电源  
内部温度传感器  
循环冗余校验 (CRC)  
灵活的数字滤波器可针对单周期稳定转换进行编程,同  
时能够提供同步 50Hz 60Hz 线路周期抑制。信号和  
基准监控器、温度传感器和 CRC 数据验证可增强数据  
可靠性。  
激励电流源  
传感器烧毁电流源  
四路通用输入/输出 (ADS1261)  
用于桥式传感器的交流激励 (ADS1261)  
5mm × 5mm VQFN 封装  
ADS126x 是引脚兼容的器件,采用 5mm × 5mm  
VQFN 封装,额定工作温度范围为 –40°C +125°  
C。  
2 应用  
器件信息(1)  
PLC 模拟输入模块  
器件型号  
ADS126x  
封装  
VQFN (32)  
封装尺寸(标称值)  
称重秤和应变仪数字转换器  
温度、压力测量  
实验室仪表  
5.0mm × 5.0mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
过程分析  
框图  
REFOUT  
5 V (A)  
2.5-V  
Ref  
ADS1260  
ADS1261  
3 V œ 5 V (D)  
Ref  
Mux  
START  
RESET  
PWDN  
DRDY  
AIN0  
AIN1  
Control  
Sensor  
Excitation  
Ref  
Monitor  
AIN2  
Buf  
Sensor  
Test  
AIN3  
AIN4  
AINCOM  
CS  
24-Bit  
ûADC  
Digital  
Filter  
Input  
Mux  
Serial  
Interface  
and  
PGA  
Level Shift  
DIN  
DOUT/DRDY  
SCLK  
CRC  
Verification  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
Signal  
Monitor  
Temp  
Sensor  
Internal  
Clock  
Mux  
CLKIN  
Oscillator  
Supply  
Monitor  
GPIO  
AC-Exc  
ADS1261  
(A)  
(D)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS760  
 
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
目录  
9.5 Programming........................................................... 50  
9.6 Register Map........................................................... 59  
10 Application and Implementation........................ 72  
10.1 Application Information.......................................... 72  
10.2 Typical Application ................................................ 76  
10.3 Initialization Setup................................................. 79  
11 Power Supply Recommendations ..................... 80  
11.1 Power-Supply Decoupling..................................... 80  
11.2 Analog Power-Supply Clamp ................................ 80  
11.3 Power-Supply Sequencing.................................... 80  
12 Layout................................................................... 81  
12.1 Layout Guidelines ................................................. 81  
12.2 Layout Example .................................................... 81  
13 器件和文档支持 ..................................................... 83  
13.1 文档支持................................................................ 83  
13.2 相关链接................................................................ 83  
13.3 接收文档更新通知 ................................................. 83  
13.4 社区资源................................................................ 83  
13.5 ....................................................................... 83  
13.6 静电放电警告......................................................... 83  
13.7 术语表 ................................................................... 83  
14 机械、封装和可订购信息....................................... 84  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 11  
7.7 Switching Characteristics........................................ 12  
7.8 Typical Characteristics............................................ 15  
Parameter Measurement Information ................ 22  
8.1 Noise Performance ................................................. 22  
Detailed Description ............................................ 26  
9.1 Overview ................................................................. 26  
9.2 Functional Block Diagram ....................................... 27  
9.3 Feature Description................................................. 28  
9.4 Device Functional Modes........................................ 43  
8
9
4 修订历史记录  
Changes from Revision B (October 2018) to Revision C  
Page  
已更改 Figure 14, Offset Voltage Long-Term Drift to include 2000-hour data .................................................................... 15  
已更改 Figure 31, Voltage Reference Long-Term Drift to include 2000-hour data ............................................................. 17  
已更改 CRC polynomial to correct listing error: changed CRC-8-ATM (HEC): X8 + X2 + X0 + 1 to CRC-8-ATM (HEC):  
X8 + X2 + X1 + 1.................................................................................................................................................................... 52  
Changes from Revision A (May 2018) to Revision B  
Page  
已添加 在产品说明书中添加了 ADS1261 器件 ....................................................................................................................... 1  
已更改 将 ADS1260 器件从预览更改成了生产数据(有效).................................................................................................. 1  
Added connection options to NC pins .................................................................................................................................... 5  
Added differential input current specification for gain = 128 in Electrical Characteristics ..................................................... 8  
Added no missing codes specification in Electrical Characteristics ...................................................................................... 8  
Changed integral nonlinearity specification for gain 64 and 128 in Electrical Characteristics ............................................... 8  
Changed integral nonlinearity specification for 40 kSPS mode in Electrical Characteristics ................................................ 8  
Added offset voltage long-term drift in Electrical Characteristics .......................................................................................... 8  
Added note for PSRR calculation in Electrical Characteristics ............................................................................................. 8  
Changed voltage reference inputs specification in Electrical Characteristics based on updated characteristics .................. 9  
Added voltage reference initial error specification for ADS1260B and ADS1261B in Electrical Characteristics .................. 9  
Added voltage reference temperature drift specification for ADS1260B and ADS1261B in Electrical Characteristics ........ 9  
Added voltage reference long-term drift in Electrical Characteristics .................................................................................... 9  
Added voltage reference thermal hysteresis in Electrical Characteristics ............................................................................. 9  
Changed th(SCDO2) specification in Switching Characteristics ............................................................................................... 12  
Changed tp(SCDO2) specification in Switching Characteristics................................................................................................ 12  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
已添加 Figure 14, Offset Voltage Long-Term Drift ............................................................................................................... 15  
已更改 Figure 24, Conversion Data Histogram (gain = 4) to 8192 data points.................................................................... 16  
已更改 Figure 25, Conversion Data Histogram (gain = 128) to 8192 data points ............................................................... 16  
已更改 Figure 27, Integral Nonlinearity vs Temperature based on updated characteristics ............................................... 17  
已更改 Figure 28, Integral Nonlinearity Distribution to add gain = 128 ............................................................................... 17  
已更改 Figure 29, Integral Nonlinearity vs Reference Voltage to add gain = 64 and 128 .................................................. 17  
已添加 Figure 30, Voltage Reference vs Temperature for ADS1260B, ADS1261B ........................................................... 17  
已添加 Figure 31, Voltage Reference Long-Term Drift ........................................................................................................ 17  
已更改 Figure 32, Reference Input Current vs Reference Voltage based on updated characteristics ................................ 17  
已添加 Figure 39, CMRR vs Frequency .............................................................................................................................. 19  
已添加 Figure 40, PSRR vs Frequency ............................................................................................................................... 19  
已添加 text for Table 2, Effective Resolution (Noise-Free Resolution) ................................................................................ 22  
已更改 Table 2, Effective Resolution (Noise-Free Resolution) based on updated characteristics ...................................... 24  
Changes from Original (March 2018) to Revision A  
Page  
已更改 将 ADS1261 器件从预告信息更改成了生产数据(有效) .......................................................................................... 1  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
5 Device Comparison Table  
CHANNELS(1)  
PART  
GPIO  
AC EXCITATION  
VOLTAGE REFERENCE GRADE  
REFERENCE INPUTS  
NUMBER  
SINGLE-ENDED  
DIFFERENTIAL  
ADS1260B(2)  
ADS1261B  
ADS1261  
5
3
5
5
12 ppm/°C max  
12 ppm/°C max  
40 ppm/°C max  
1
2
2
4
10  
10  
4
(1) Reference inputs, GPIOs, and AC-excitation outputs are multiplexed with the analog input channels.  
(2) The ADS1260 is available in B grade only.  
6 Pin Configuration and Functions  
RHB Package: ADS1260  
VQFN-32  
RHB Package: ADS1261  
VQFN-32  
Top View  
Top View  
AINCOM  
CAPP  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NC  
AINCOM  
CAPP  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
AIN8  
AIN9  
NC  
NC  
CAPN  
NC  
CAPN  
AVDD  
NC  
AVDD  
NC  
Thermal Pad  
Thermal Pad  
AVSS  
NC  
AVSS  
NC  
REFOUT  
PWDN  
RESET  
NC  
REFOUT  
PWDN  
RESET  
NC  
CLKIN  
DVDD  
CLKIN  
DVDD  
Not to scale  
Not to scale  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
ADS1260  
ADS1261  
Analog  
input/output  
1
AINCOM  
CAPP  
AINCOM  
Analog input common, IDAC1, IDAC2, VBIAS  
Analog  
output  
PGA output P; connect a 4.7-nF C0G dielectric capacitor across CAPP and  
CAPN  
2
3
CAPP  
CAPN  
Analog  
output  
PGA output N; connect a 4.7-nF C0G dielectric capacitor across CAPP and  
CAPN  
CAPN  
4
5
AVDD  
AVSS  
AVDD  
AVSS  
Analog  
Analog  
Positive analog power supply  
Negative analog power supply  
Analog  
output  
6
REFOUT  
REFOUT  
Internal 2.5-V reference output; connect a 10-µF capacitor to AVSS  
7
PWDN  
RESET  
START  
CS  
PWDN  
RESET  
START  
CS  
Digital input Power down, active low  
8
Digital input Reset, active low  
9
Digital input Start conversion control, active high  
Digital input Serial interface chip select, active low  
Digital Input Serial interface shift clock  
Digital Input Serial interface data input  
Digital output Data ready indicator, active low  
10  
11  
12  
13  
14  
SCLK  
DIN  
SCLK  
DIN  
DRDY  
DRDY  
DOUT/DRDY DOUT/DRDY Digital output Dual function serial interface data output and active-low data ready indicator  
Analog  
15  
BYPASS  
BYPASS  
Internal subregulator bypass; connect a 1-µF capacitor to DGND  
output  
Digital  
Digital  
16  
17  
DGND  
DVDD  
DGND  
DVDD  
Digital ground  
Digital power supply  
1) Internal oscillator: connect to DGND  
2) External clock: connect clock input  
18  
CLKIN  
NC  
CLKIN  
NC  
Digital input  
19-22  
23  
No connection. Electrically float or connect to DGND  
Analog  
ADS1260: No connection. Electrically float or connect to DGND  
input/output ADS1261: Analog input 9, IDAC1, IDAC2  
NC  
AIN9  
Analog  
ADS1260: No connection. Electrically float or connect to DGND  
24  
NC  
NC  
AIN8  
AIN7  
AIN6  
AIN5  
AIN4  
AIN3  
AIN2  
AIN1  
AIN0  
Pad  
input/output ADS1261: Analog input 8, IDAC1, IDAC2  
Analog  
ADS1260: No connection. Electrically float or connect to DGND  
25  
input/output ADS1261: Analog input 7, IDAC1, IDAC2  
Analog  
ADS1260: No connection. Electrically float or connect to DGND  
26  
NC  
input/output ADS1261: Analog input 6, IDAC1, IDAC2  
Analog  
ADS1260: No connection. Electrically float or connect to DGND  
27  
NC  
input/output ADS1261: Analog input 5, IDAC1, IDAC2, GPIO3, ACX2  
Analog  
ADS1260: Analog input 4, IDAC1, IDAC2  
28  
AIN4  
AIN3  
AIN2  
AIN1  
AIN0  
Pad  
input/output ADS1261: Analog input 4, IDAC1, IDAC2, GPIO2, ACX1  
Analog ADS1260: Analog input 3, IDAC1, IDAC2  
input/output ADS1261: Analog input 3, IDAC1, IDAC2, REFN1, GPIO1, ACX2  
Analog ADS1260: Analog input 2, IDAC1, IDAC2  
29  
30  
input/output ADS1261: Analog input 2, IDAC1, IDAC2, REFP1, GPIO0, ACX1  
Analog  
31  
Analog input 1, IDAC1, IDAC2, REFN0  
input/output  
Analog  
32  
Analog input 0, IDAC1, IDAC2, REFP0  
input/output  
Exposed thermal pad; Connect to AVSS. Pad must be soldered for  
mechanical integrity.  
Thermal Pad  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–0.3  
–3  
MAX UNIT  
AVDD to AVSS  
7
Power-supply voltage  
AVSS to DGND  
0.3  
7
V
DVDD to DGND  
–0.3  
Analog input voltage  
Digital input voltage  
Input current  
AINx  
AVSS – 0.3 AVDD + 0.3  
DGND – 0.3 DVDD + 0.3  
V
V
CS, SCLK, DIN, DOUT/DRDY, DRDY, START, RESET, PWDN, CLKIN  
Continuous, all pins except power-supply pins(2)  
–10  
10  
150  
150  
mA  
°C  
°C  
Junction, TJ  
Storage, Tstg  
Temperature  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input and output pins are diode-clamped to the internal power supplies. Limit the input current to 10 mA in the event the analog input  
voltage exceeds AVDD + 0.3 V or AVSS – 0.3 V, or if the digital input voltage exceeds DVDD + 0.3 V or DGND – 0.3 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
POWER SUPPLY  
AVDD to AVSS  
4.75  
–2.6  
2.7  
5
5.25  
V
Analog power supply  
AVSS to DGND  
DVDD to DGND  
0
Digital power supply  
5.25  
V
ANALOG INPUTS  
PGA mode  
See 公式 5  
V(AINx)  
VIN  
Absolute input voltage  
Differential input voltage  
V
V
PGA bypassed  
VIN = VAINp – VAINn  
AVSS – 0.1  
AVDD + 0.1  
(1)  
±VREF / Gain  
See  
VOLTAGE REFERENCE INPUTS  
VREF  
Differential reference voltage  
Negative reference voltage  
Positive reference voltage  
VREF = V(REFPx) – V(REFNx)  
0.9  
AVSS – 0.05  
V(REFNx) + 0.9  
AVDD – AVSS  
V(REFPx) – 0.9  
AVDD + 0.05  
V
V
V
V(REFNx)  
V(REFPx)  
EXTERNAL CLOCK  
2.5 SPS to 25.6 kSPS  
40 kSPS  
1
1
7.3728  
10.24  
8
10.75  
60%  
fCLK  
Frequency  
Duty cycle  
MHz  
40%  
GENERAL-PURPOSE INPUTS/OUTPUTS (GPIOs)  
Input voltage  
AVSS  
DGND  
–45  
AVDD  
DVDD  
125  
V
V
DIGITAL INPUTS (Other Than GPIOs)  
Input voltage  
TEMPERATURE  
TA  
Operating ambient temperature  
°C  
(1) In PGA mode, the maximum differential input voltage is ±(AVDD – AVSS – 0.6 V) / Gain, when operating with  
VREF AVDD – AVSS – 0.6 V.  
7.4 Thermal Information  
ADS126x  
RHB (VQFN)  
THERMAL METRIC(1)  
UNIT  
32 PINS  
28.6  
17.0  
9.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.7  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, PGA mode, gain = 1, and  
data rate = 20 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
PGA mode, V(AINx) = 2.5 V  
PGA bypass  
4
200  
0.01  
±0.1  
±1  
6
Absolute input current  
nA  
Absolute input current drift  
nA/°C  
PGA mode, VIN = 19 mV  
PGA mode, VIN = 2.5 V  
PGA mode, chop mode(1)  
PGA bypass, VIN = 2.5 V  
–3  
3
Differential input current  
nA  
±5  
±40  
0.05  
1
Differential input current drift  
Differential input impedance  
Crosstalk  
nA/°C  
GΩ  
PGA mode  
PGA bypass  
50  
MΩ  
0.1  
µV/V  
PGA  
Gain settings  
1, 2, 4, 8, 16, 32, 64, 128  
60  
V/V  
kHz  
Antialias filter frequency  
CCAPP, CAPN = 4.7 nF  
No missing codes  
PERFORMANCE  
Resolution  
24  
Bits  
DR  
Data rate  
2.5  
40000  
SPS  
Noise performance  
See 1  
Gain = 1 to 16  
–10  
–12  
±2  
±3  
10  
INL  
Integral nonlinearity  
Offset voltage  
Gain = 32 to 128  
Gain = 1 to 32 (40 kSPS)  
TA = 25°C  
12  
15  
ppmFSR  
–15  
±5  
–175 / gain – 5  
±50 / gain  
175 / gain + 5  
µV  
–0.5 / gain –  
0.05  
0.5 / gain +  
0.05  
VOS  
TA = 25°C, chop mode  
±0.2 / gain  
After calibration  
On the level of noise  
Gain = 1 to 8  
100 / gain  
350 / gain  
Offset voltage drift  
Gain = 16 to 128  
10  
50  
5
nV/°C  
µV  
Chop mode, gain = 1 to 128  
Gain = 1, 1000 hr  
TA = 25°C, gain = 1 to 128  
After calibration  
1
Offset voltage long-term drift  
Gain error  
±0.1  
–0.5%  
±0.05%  
0.5%  
4
GE  
On the level of noise  
Gain drift  
Normal-mode rejection ratio(2)  
Gain = 1 to 128  
0.5  
See 7  
130  
ppm/°C  
NMRR  
CMRR  
Data rate = 20 SPS  
Data rate = 400 SPS  
AVDD and AVSS  
DVDD  
Common-mode rejection ratio(3)  
Power-supply rejection ratio(4)  
dB  
dB  
105  
85  
115  
100  
PSRR  
100  
120  
INTERNAL OSCILLATOR  
2.5 SPS to 25.6 kSPS  
40 kSPS  
7.3728  
10.24  
fCLK  
Frequency  
Accuracy  
MHz  
–2%  
±0.5%  
2%  
(1) Chop-mode input current scales with data rate.  
(2) Normal-mode rejection ratio performance depends on the digital filter configuration.  
(3) Common-mode rejection ratio is specified at 60 Hz.  
(4) Power-supply rejection ratio specified at dc. PSRR (dB) = 20 Log (Δ power supply voltage / Δ offset voltage).  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, PGA mode, gain = 1, and  
data rate = 20 SPS (unless otherwise noted)  
PARAMETER  
VOLTAGE REFERENCE INPUTS  
Absolute input current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
±250  
15  
nA  
nA/V  
nA/°C  
MΩ  
Input current vs voltage  
Input current drift  
0.2  
30  
Input impedance  
Differential  
INTERNAL VOLTAGE REFERENCE(5)  
Voltage  
2.5  
±0.1%  
±0.2%  
V
TA = 25°C, ADS1260B, ADS1261B  
TA = 25°C, ADS1261  
±0.2%  
9
Initial error  
TA = 0°C to +85°C, ADS1260B,  
ADS1261B  
2
4
Temperature drift  
TA = –40°C to +125°C, ADS1260B,  
ADS1261B  
ppm/°C  
12  
40  
TA = –40°C to +125°C, ADS1261  
1000 hr  
10  
±25  
±70  
±20  
Long-term drift  
ppm  
ppm  
First temperature cycle  
Second temperature cycle  
Thermal hysteresis(6)  
Output current  
Load regulation  
–10  
10  
mA  
µV/mA  
ms  
50  
Start-up time  
Settling time to ±0.001% of final value  
100  
EXCITATION CURRENT SOURCES (IDACS)  
50, 100, 250, 500, 750,  
1000, 1500, 2000, 2500, 3000  
Current settings  
µA  
V
Compliance range  
Accuracy  
AVSS  
–4%  
AVDD – 1.1  
±0.7%  
±0.1%  
±1%  
50  
4%  
1%  
Same current magnitudes  
Different current magnitudes  
Absolute  
–1%  
Match error  
Temperature drift  
ppm/°C  
Match drift, IIDAC1 = IIDAC2  
5
25  
LEVEL-SHIFT VOLTAGE (VBIAS)  
Voltage  
(AVDD + AVSS) / 2  
100  
V
Output impedance  
BURN-OUT CURRENT SOURCES  
Current settings  
Ω
Sink and source  
0.05-µA range  
0.05, 0.2, 1, 10  
µA  
µA  
Accuracy  
0.025  
0.05  
0.075  
TEMPERATURE SENSOR  
Sensor voltage  
TA = 25°C  
122.4  
420  
mV  
Temperature coefficient  
MONITORS  
µV/°C  
Low  
High  
Low  
AVSS + 0.2  
AVDD – 0.2  
0.4  
PGA output  
V
V
Reference voltage  
0.6  
(5) Soldered to PCB using recommended PCB layout pattern and using reflow profile per JEDEC standard J-STD-020D.1  
(6) Voltage reference hysteresis measured by operating the device at 25°C cycling the device to 0°C and 105°C and returning the device to  
25°C.  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, PGA mode, gain = 1, and  
data rate = 20 SPS (unless otherwise noted)  
PARAMETER  
GENERAL-PURPOSE INPUTS/OUTPUTS (GPIOs)(7)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.2 · AVDD  
0.3 · AVDD  
UNIT  
VOL  
VOH  
VIL  
Low-level output voltage  
High-level output voltage  
Low-level input voltage  
High-level input voltage  
Input hysteresis  
IOL = –1 mA  
V
V
V
V
V
IOH = 1 mA  
0.8 · AVDD  
0.7 · AVDD  
VIH  
0.5  
DIGITAL INPUTS/OUTPUTS (Other Than GPIOs)  
IOL = –1 mA  
IOL = –8 mA  
IOH = 1 mA  
IOH = 8 mA  
0.2 · DVDD  
VOL  
Low-level output voltage  
High-level output voltage  
V
V
0.2 · DVDD  
0.8 · DVDD  
VOH  
0.75 · DVDD  
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
Input hysteresis  
0.3 · DVDD  
V
V
0.7 · DVDD  
–10  
0.1  
V
Input leakage  
VIH or VIL  
10  
µA  
POWER SUPPLY  
PGA bypass  
2.7  
4.5  
6
PGA mode, gain = 1 to 32  
PGA mode, gain = 64 or 128  
Power-down mode  
Voltage reference  
40-kSPS mode  
3.8  
mA  
IAVDD  
IAVSS  
,
,
Analog supply current  
4.3  
6.5  
8
2
µA  
0.2  
mA  
IAVDD  
IAVSS  
Analog supply current (by function)  
0.5  
Current sources  
20 SPS  
As programmed  
0.4  
0.6  
30  
0.65  
0.85  
50  
mA  
µA  
IDVDD  
Digital supply current  
Power dissipation  
40 kSPS  
Power-down mode(8)  
PGA mode  
20  
32  
PD  
mW  
Power-down mode  
0.1  
0.2  
(7) GPIO voltage with respect to AVSS.  
(8) CLKIN input stopped.  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
7.6 Timing Requirements  
over operating ambient temperature range, DVDD = 2.7 V to 5.25 V, and DOUT/DRDY load: 20 pF || 100 kΩ to DGND  
(unless otherwise noted); see 8  
MIN  
MAX  
UNIT  
SERIAL INTERFACE  
td(CSSC)  
tsu(DI)  
th(DI)  
Delay time, first SCLK rising edge after CS falling edge(1)  
50  
25  
25  
97  
ns  
ns  
ns  
ns  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
SCLK period(2)  
tc(SC)  
106  
tw(SCH),  
tw(SCL)  
Pulse duration, SCLK high or low  
40  
ns  
td(SCCS)  
tw(CSH)  
td(SCIR)  
RESET  
tw(RSTL)  
Delay time, last SCLK falling edge before CS rising edge  
Pulse duration, CS high to reset interface  
50  
25  
ns  
ns  
Delay time, SCLK high or low to force interface auto-reset  
65540  
1/fCLK  
Pulse duration, RESET low  
4
1/fCLK  
CONVERSION CONTROL  
tw(STH) Pulse duration, START high  
tw(STL)  
4
4
1/fCLK  
1/fCLK  
Pulse duration, START low  
Setup time, START low or STOP command after DRDY low to stop next  
conversion (continuous mode)  
tsu(DRST)  
th(DRSP)  
100  
1/fCLK  
1/fCLK  
Hold time, START low or STOP command after DRDY low to continue next  
conversion (continuous mode)  
150  
(1) CS can be tied low.  
(2) Serial interface time-out mode: minimum SCLK frequency = 1 kHz. Otherwise, no minimum SCLK frequency.  
.
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
7.7 Switching Characteristics  
over operating ambient temperature range, DVDD = 2.7 V to 5.25 V, and DOUT/DRDY load: 20 pF || 100 kΩ to DGND  
(unless otherwise noted); see 8  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
SERIAL INTERFACE  
tw(DRH)  
Pulse duration, DRDY high  
16  
0
1/fCLK  
ns  
Propagation delay time, CS falling edge to DOUT/DRDY  
driven  
tp(CSDO)  
50  
40  
Propagation delay time, SCLK rising edge to valid  
DOUT/DRDY  
tp(SCDO1)  
th(SCDO1)  
th(SCDO2)  
tp(SCDO2)  
ns  
ns  
ns  
ns  
ns  
Hold time, SCLK rising edge to invalid data on  
DOUT/DRDY  
0
Hold time, last SCLK falling edge of operation to invalid  
data on DOUT/DRDY  
15  
Propagation delay time, last SCLK falling edge to valid  
data ready function on DOUT/DRDY  
110  
50  
Propagation delay time, CS rising edge to DOUT/DRDY  
high impedance  
tp(CSDOZ)  
RESET  
tp(RSCN)  
Propagation delay time, RESET rising edge or RESET  
command to start of conversion  
512  
512  
2
1/fCLK  
1/fCLK  
1/fCLK  
Propagation delay time, power-on threshold voltage to  
ADC communication  
tp(PRCM)  
tp(CMCN)  
216  
Propagation delay time, ADC communication to  
conversion start  
AC EXCITATION  
td(ACX)  
Delay time, phase-to-phase blanking period  
ACX period  
8
1/fCLK  
tSTDR  
tc(ACX)  
CONVERSION CONTROL  
Propagation delay time, START high or START command  
tp(STDR)  
2
1/fCLK  
to DRDY high  
tw(CSH)  
CS  
td(CSSC)  
tc(SC)  
td(SCCS)  
tw(SCH)  
SCLK  
tw(SCL)  
th(DI)  
tsu(DI)  
DIN  
1. Serial Interface Timing Requirements  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
tw(DRH)  
DRDY  
CS  
SCLK  
tp(SCDO2)  
tp(CSDO)  
tp(SCDO1)  
DATA  
th(SCDO1)  
tp(CSDOZ)  
(1)  
(1)  
DRDY  
DRDY  
DOUT/DRDY  
th(SCDO2)  
(1) Before the first SCLK rising edge and after the last SCLK falling edge of a command, the function of DOUT/DRDY is data ready.  
2. Serial Interface Switching Characteristics  
Serial Interface  
Auto-Reset  
td(SCIR)  
Next byte transaction  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SCLK  
3. Serial Interface Auto-Reset Characteristics  
tw(STH)  
START  
tw(STL)  
Serial  
Command  
START  
STOP  
tsu(DRST)  
STOP  
tp(STDR)  
DRDY  
th(DRSP)  
4. Conversion Control Timing Requirements  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
DVDD  
1 V (typ)  
1 V (typ)  
VBYPASS  
AVDD - AVSS  
3.5 V (typ)  
All supplies reach thresholds  
DRDY  
Begin ADC Communication  
DOUT/DRDY  
tp(PRCM)  
tp(CMCN)  
Conversion  
Status  
Start of 1st Conversion  
5. Power-Up Characteristics  
tw(RSTL)  
RESET  
Reset  
Command  
tp(RSCN)  
Conversion  
Status  
Reset  
Start  
6. RESET pin and RESET Command Timing Requirements  
tc(ACX)  
td(ACX)  
td(ACX)  
ACX1  
ACX1  
ACX2  
ACX2  
7. AC-Excitation Timing Characteristics  
DVDD  
½ DVDD  
DGND  
50%  
td, th, tp, tw,tc  
8. Timing Voltage-Level Reference  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
7.8 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
0
PGA Bypass  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
PGA Bypass  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
After calibration, shorted input  
9. Offset Voltage vs Temperature  
Chop mode, after calibration, shorted input  
10. Offset Voltage vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 1  
Gain = 16  
Gain = 128  
Gain = 1  
Gain = 16  
Gain = 128  
Input-Referred Offset Drift (nV/èC)  
Input-Referred Offset Drift (nV/èC)  
D012  
D011  
Shorted input, 30 units  
Chop mode, shorted input, 30 units  
11. Offset Voltage Drift Distribution  
12. Offset Voltage Drift Distribution  
2
1.5  
1
40  
35  
30  
25  
20  
15  
10  
5
Gain = 1, 400 SPS  
Gain = 1, 40000 SPS  
Gain = 16, 400 SPS  
Gain = 16, 40000 SPS  
Gain = 128, 400 SPS  
Gain = 128, 40000  
0.5  
0
-0.5  
-1  
0
-1.5  
-2  
-5  
-10  
0
250  
500  
750  
1000 1250 1500 1750 2000  
0.5  
1
1.5  
2
2.5  
VREF(V)  
3
3.5  
4
4.5  
5
Time (hr)  
D205  
D001  
After calibration  
13. Offset Voltage vs Reference Voltage  
After calibration, gain = 1  
14. Offset Voltage Long-Term Drift  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
200  
150  
100  
50  
50  
40  
30  
20  
10  
0
PGA Bypass  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 1  
Gain = 8  
Gain = 128  
0
-50  
-100  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Gain Drift (ppm/èC)  
D014  
D013  
After calibration  
30 units  
15. Gain Error vs Temperature  
16. Gain Error Drift Distributions  
60  
50  
40  
30  
20  
10  
0
0.5  
0.45  
0.4  
Gain = 1, 400 SPS  
Gain = 1, 40000 SPS  
Gain = 128, 400 SPS  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 128, 40000 SPS  
0.35  
0.3  
0.25  
0.2  
-10  
-20  
-30  
-40  
0.15  
0.1  
0.05  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
VREF (V)  
Temperature (èC)  
D002  
DE0x0c3e  
After calibration  
17. Gain Error vs Reference Voltage  
20 SPS, Sinc4  
18. Noise vs Temperature  
10  
9
8
7
6
5
4
3
2
1
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 1  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 2  
Gain = 4  
Gain = 8  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D004  
D005  
7200 SPS, Sinc1  
40000 SPS, Sinc5  
19. Noise vs Temperature  
20. Noise vs Temperature  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
800  
140  
120  
100  
80  
Gain = 1, 400 SPS  
Gain = 128, 400 SPS  
Gain = 1, 7200 SPS  
Gain = 128, 7200 SPS  
Gain = 1, 40000 SPS  
Gain = 128, 40000 SPS  
100  
10  
1
60  
40  
20  
0.07  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
VREF(V)  
D006  
D028  
Conversion Data (mV)  
20 SPS, gain = 4, 256 data points  
21. Noise vs Reference Voltage  
22. Conversion Data Histogram  
3500  
3000  
2500  
2000  
1500  
1000  
500  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
Conversion Data (mV)  
D030  
D029  
Conversion Data (mV)  
7200 SPS, gain = 4, 8192 data points  
20 SPS, gain = 128, 256 data points  
23. Conversion Data Histogram  
24. Conversion Data Histogram  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
10  
8
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 32  
Gain = 64  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
0
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
Full Scale Range (%VIN  
)
Conversion Data (mV)  
D031  
D033  
7200 SPS, gain = 128, 8192 data points  
25. Conversion Data Histogram  
26. Integral Nonlinearity vs VIN  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
Gain = 1  
Gain = 4  
Gain = 32  
Gain = 128  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 128  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Integral Non-Linearity (ppmFSR  
)
D007  
D015  
30 Units  
27. Integral Nonlinearity vs Temperature  
28. Integral Nonlinearity Distribution  
20  
16  
12  
8
2.4985  
2.498  
Gain = 1, 20 SPS  
Gain = 4, 20 SPS  
Gain = 32, 20 SPS  
Gain = 64, 20 SPS  
Gain = 128, 20 SPS  
Gain = 1, 40000 SPS  
Gain = 4, 40000 SPS  
Gain = 32, 40000 SPS  
2.4975  
2.497  
Data for gains 64, 128 limited  
by instrument noise for VREF < 2 V  
2.4965  
2.496  
2.4955  
2.495  
4
2.4945  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0.5  
1
1.5  
2
2.5  
VREF (V)  
3
3.5  
4
4.5  
5
Temperature (èC]  
D102  
D008  
ADS1260B, ADS1261B - 30 units  
30. Voltage Reference vs Temperature  
29. Integral Nonlinearity vs Reference Voltage  
75  
50  
350  
300  
250  
200  
150  
100  
50  
IREFN, TA = -40èC  
IREFN, TA = 25èC  
IREFN, TA = 85èC  
IREFN, TA = 125èC  
IREFP, TA = -40èC  
IREFP, TA = 25èC  
IREFP, TA = 85èC  
IREFP, TA = 125èC  
REFP  
25  
0
-25  
-50  
-75  
0
REFN  
-50  
0
250  
500  
750  
1000 1250 1500 1750 2000  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (hr)  
Differential Reference Voltage (V)  
D204  
D024  
IREFP measured with VREFN = AVSS  
IREFN measured with VREFP = AVDD  
After calibration, 30 units  
32. Reference Input Current vs Reference Voltage  
31. Voltage Reference Long-Term Drift  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
40  
30  
20  
10  
0
1
0.5  
0
-0.5  
-1  
-1.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
D017  
Temperature (èC)  
Temperature Sensor Voltage (mV)  
D016  
30 units  
30 units  
34. Internal Oscillator vs Temperature  
33. Temperature Sensor Voltage Histogram  
6
5
4.95  
4.9  
IAVDD, IAVSS (Gain Ç 32)  
IAVDD, IAVSS (Gain í 64)  
IDVDD (20 SPS)  
IDVDD (40000 SPS)  
5
4
3
2
1
0
4.85  
4.8  
4.75  
4.7  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D018  
D025  
35. Operating Current vs Temperature  
36. PGA High Monitor Threshold  
0.3  
0.25  
0.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D026  
D027  
37. PGA Low Monitor Threshold  
38. Reference Voltage Low Alarm Threshold  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
135  
120  
105  
90  
125  
120  
115  
110  
105  
100  
95  
90  
75  
AVDD  
DVDD  
85  
60  
80  
1
10  
100  
1000  
10000  
100000 1000000  
1
10  
100  
1000  
10000  
100000 1000000  
Frequency (Hz)  
Frequency (Hz)  
D150  
D151  
Data rate = 1200 SPS  
39. CMRR vs Frequency  
Data rate = 1200 SPS  
40. PSRR vs Frequency  
130  
125  
120  
115  
110  
105  
100  
95  
55  
52.5  
50  
47.5  
45  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
90  
CMRR  
PSRR AVDD, AVSS  
PSRR DVDD  
42.5  
40  
85  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Temperature (èC)  
IDAC Voltage (V)  
D034  
D022  
IIDAC = 50 µA  
41. CMRR and PSRR vs Temperature  
42. IDAC Current vs IDAC Voltage  
260  
1050  
1000  
950  
250  
240  
230  
220  
210  
200  
900  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
850  
800  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IDAC Voltage (V)  
IDAC Voltage (V)  
D019  
D020  
IIDAC = 250 µA  
43. IDAC Current vs IDAC Voltage  
IIDAC = 1000 µA  
44. IDAC Current vs IDAC Voltage  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, VREF = 2.5 V, data rate = 20 SPS, fCLK = 7.3728 MHz (fCLK  
10.24 MHz for data rate = 40 kSPS), and gain = 1 (unless otherwise noted)  
=
3050  
3000  
2950  
2900  
2850  
2800  
0.2  
0.15  
0.1  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IDAC Voltage (V)  
IDAC Voltage (V)  
D021  
D023  
IIDAC = 3000 µA  
IIDAC1 = IIDAC2 = 250 µA  
46. IDAC Current Match vs IDAC Voltage  
45. IDAC Current vs IDAC Voltage  
0.2  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IDAC Voltage (V)  
D035  
IIDAC1 = IIDAC2 = 1000 µA  
47. IDAC Current Match vs IDAC Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Noise Performance  
The ADS126x noise performance depends on the ADC configuration: data rate, PGA gain, digital filter  
configuration, and chop mode. The combination of the parameters affect noise performance. Two significant  
factors affecting noise performance are data rate and PGA gain. Since the profile of noise is predominantly white  
(flat vs frequency), decreasing the data rate proportionally decreases bandwidth and therefore, total noise. Since  
the noise of the PGA is lower than that of the modulator of the ADC, increasing the gain reduces noise when  
treated as an input-referred quantity. Noise performance also depends on the digital filter and chop mode. As the  
order of the digital filter increases, the noise bandwidth correspondingly decreases resulting in lower noise.  
Further, as a result of two-point data averaging in chop mode, noise performance improves by 2 compared to  
normal operation.  
1 shows noise performance in units of μVRMS (RMS = root mean square) under the conditions listed. The  
values in parenthesis are peak-to-peak values. 2 shows the noise performance in effective resolution (bits)  
under the specified conditions. The values shown in parenthesis are the noise-free resolution. Noise-free  
resolution is the resolution of the ADC with no code flicker. The noise-free resolution data are calculated based  
on the peak-to-peak noise measurements.  
The effective resolution data listed in the tables are calculated using 公式 1:  
Effective Resolution or Noise-Free Resolution = ln (FSR / en) / ln (2)  
where  
FSR = full scale range = 2 · VREF / Gain (See Recommended Operating Conditions for FSR)  
en = Input referred voltage noise (RMS value to calculate effective resolution, p-p value to calculate noise-free  
resolution)  
(1)  
The data shown in the noise performance table represent typical ADC performance at TA = 25°C. The noise-  
performance data are the standard deviation and peak-to-peak computations of the ADC data. The noise data  
are acquired with inputs shorted, based on consecutive ADC readings for a period of ten seconds or 8192 data  
points, whichever occurs first. Because of the statistical nature of noise, repeated noise measurements may yield  
higher or lower noise performance results.  
As a result of the increased full-scale input range provided by 5-V reference operation, effective resolution and  
noise-free resolution performance are typically optimized using a 5-V reference. The effective resolution and  
noise-free resolution performance data shown in 2 are with external 5-V reference operation.  
1. Noise in µVRMS (µVPP) at TA = 25°C and Internal 2.5-V Reference  
DATA  
GAIN  
RATE FILTER  
(SPS)  
1
2
4
8
16  
32  
64  
128  
2.5  
2.5  
2.5  
2.5  
2.5  
5
FIR  
0.18 (0.6) 0.078 (0.28)  
0.046 (0.16) 0.025 (0.096) 0.014 (0.053) 0.012 (0.045) 0.01 (0.042)  
0.01 (0.04)  
Sinc1 0.15 (0.47) 0.071 (0.28)  
0.038 (0.14) 0.019 (0.075) 0.012 (0.051) 0.01 (0.039) 0.009 (0.037) 0.009 (0.037)  
Sinc2 0.14 (0.38) 0.065 (0.23) 0.032 (0.096) 0.018 (0.059) 0.011 (0.037) 0.007 (0.028) 0.007 (0.028) 0.008 (0.033)  
Sinc3 0.12 (0.38) 0.062 (0.17) 0.028 (0.064) 0.016 (0.053) 0.01 (0.035) 0.008 (0.027) 0.007 (0.026) 0.006 (0.023)  
Sinc4  
FIR  
0.1 (0.26)  
0.059 (0.17) 0.032 (0.085) 0.016 (0.059) 0.010 (0.035) 0.008 (0.027) 0.006 (0.025) 0.006 (0.024)  
0.22 (0.89)  
0.11 (0.4)  
0.058 (0.24)  
0.047 (0.17)  
0.032 (0.13) 0.021 (0.085) 0.016 (0.065) 0.014 (0.061) 0.015 (0.066)  
0.025 (0.11) 0.017 (0.069) 0.014 (0.061) 0.012 (0.054) 0.014 (0.063)  
5
Sinc1  
0.18 (0.6) 0.093 (0.36)  
5
Sinc2 0.16 (0.64) 0.084 (0.32)  
Sinc3 0.13 (0.51) 0.088 (0.32)  
Sinc4 0.13 (0.51) 0.077 (0.28)  
0.043 (0.16) 0.023 (0.085) 0.015 (0.064) 0.011 (0.047) 0.010(0.046) 0.011 (0.049)  
0.036 (0.15) 0.024 (0.091) 0.014 (0.053) 0.01 (0.043) 0.009 (0.045) 0.009 (0.042)  
0.034 (0.12) 0.021 (0.075) 0.013 (0.053) 0.010 (0.044) 0.008 (0.038) 0.009 (0.038)  
5
5
10  
10  
10  
10  
10  
16.6  
FIR  
0.27 (1.4)  
0.23 (1.1)  
0.2 (0.89)  
0.14 (0.72)  
0.13 (0.57)  
0.11 (0.51)  
0.076 (0.4)  
0.064 (0.3)  
0.054 (0.24)  
0.05 (0.22)  
0.049 (0.24)  
0.082 (0.43)  
0.042 (0.21)  
0.036 (0.19)  
0.03 (0.14)  
0.029 (0.15)  
0.024 (0.13)  
0.023 (0.12)  
0.02 (0.1)  
0.023 (0.11)  
0.022 (0.11)  
Sinc1  
Sinc2  
0.018 (0.083) 0.018 (0.089)  
0.019 (0.093) 0.015 (0.075) 0.015 (0.079) 0.016 (0.077)  
Sinc3 0.18 (0.81) 0.097 (0.38)  
Sinc4 0.17 (0.68) 0.099 (0.45)  
0.028 (0.14) 0.019 (0.088) 0.015 (0.063) 0.013 (0.067) 0.013 (0.065)  
0.024 (0.12) 0.018 (0.085) 0.013 (0.063) 0.012 (0.061) 0.012 (0.062)  
Sinc1  
0.3 (1.4)  
0.16 (0.81)  
0.048 (0.25)  
0.031 (0.17)  
0.025 (0.15)  
0.024 (0.12)  
0.024 (0.14)  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Noise Performance (接下页)  
1. Noise in µVRMS (µVPP) at TA = 25°C and Internal 2.5-V Reference (接下页)  
DATA  
GAIN  
RATE FILTER  
(SPS)  
1
2
4
8
16  
0.026 (0.14)  
32  
64  
128  
16.6  
16.6  
16.6  
20  
Sinc2  
0.24 (1.2)  
0.13 (0.64)  
0.12 (0.64)  
0.12 (0.53)  
0.2 (1.1)  
0.18 (0.92)  
0.15 (0.77)  
0.13 (0.64)  
0.13 (0.66)  
0.27 (1.6)  
0.22 (1.3)  
0.2 (1.2)  
0.19 (1.1)  
0.28 (1.9)  
0.24 (1.4)  
0.21 (1.3)  
0.2 (1.1)  
0.37 (2.4)  
0.3 (1.9)  
0.27 (1.8)  
0.26 (1.6)  
0.72 (5.4)  
0.58 (4.2)  
0.53 (3.7)  
0.51 (3.6)  
1.2 (9.2)  
1 (7.6)  
0.067 (0.34)  
0.065 (0.3)  
0.06 (0.29)  
0.1 (0.56)  
0.091 (0.48)  
0.073 (0.35)  
0.069 (0.35)  
0.066 (0.33)  
0.14 (0.83)  
0.11 (0.69)  
0.11 (0.64)  
0.098 (0.61)  
0.15 (0.88)  
0.12 (0.71)  
0.11 (0.68)  
0.11 (0.6)  
0.19 (1.3)  
0.16 (0.97)  
0.14 (0.9)  
0.14 (0.87)  
0.38 (2.7)  
0.31 (2.3)  
0.28 (2)  
0.038 (0.2)  
0.036 (0.18)  
0.035 (0.18)  
0.059 (0.34)  
0.051 (0.26)  
0.042 (0.22)  
0.039 (0.21)  
0.037 (0.19)  
0.08 (0.5)  
0.064 (0.38)  
0.058 (0.35)  
0.056 (0.32)  
0.087 (0.53)  
0.07 (0.45)  
0.065 (0.4)  
0.059 (0.36)  
0.11 (0.73)  
0.09 (0.55)  
0.083 (0.51)  
0.078 (0.48)  
0.22 (1.6)  
0.18 (1.3)  
0.17 (1.2)  
0.15 (1.2)  
0.37 (2.9)  
0.31 (2.4)  
0.29 (2.2)  
0.27 (2)  
0.021 (0.11) 0.019 (0.099) 0.019 (0.098)  
Sinc3 0.22 (0.98)  
0.024 (0.12) 0.019 (0.095) 0.017 (0.092) 0.018 (0.093)  
0.022 (0.11) 0.017 (0.084) 0.016 (0.085) 0.016 (0.086)  
Sinc4  
FIR  
0.21 (1.1)  
0.37 (2)  
0.32 (1.8)  
0.27 (1.4)  
0.24 (1.2)  
0.23 (1.1)  
0.49 (2.9)  
0.4 (2.3)  
0.37 (2.2)  
0.34 (2)  
0.55 (3.3)  
0.45 (2.7)  
0.41 (2.7)  
0.37 (2)  
0.69 (4.5)  
0.56 (3.5)  
0.51 (3.4)  
0.48 (3.3)  
1.4 (9.6)  
1.1 (8.2)  
1 (7.4)  
0.041 (0.22)  
0.034 (0.2)  
0.027 (0.14)  
0.026 (0.14)  
0.034 (0.18)  
0.028 (0.15)  
0.022 (0.13)  
0.02 (0.11)  
0.029 (0.17)  
0.025 (0.14)  
0.021 (0.11)  
0.018 (0.099)  
0.03 (0.15)  
0.025 (0.14)  
0.02 (0.11)  
0.018 (0.1)  
20  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
20  
20  
20  
0.024 (0.12) 0.018 (0.095) 0.017 (0.095) 0.017 (0.099)  
50  
0.053 (0.31)  
0.043 (0.27)  
0.04 (0.25)  
0.036 (0.23)  
0.058 (0.34)  
0.048 (0.32)  
0.044 (0.25)  
0.041 (0.25)  
0.075 (0.5)  
0.062 (0.39)  
0.056 (0.36)  
0.053 (0.34)  
0.15 (1.1)  
0.12 (0.9)  
0.11 (0.8)  
0.1 (0.7)  
0.043 (0.25)  
0.035 (0.22)  
0.033 (0.19)  
0.03 (0.17)  
0.047 (0.28)  
0.039 (0.25)  
0.036 (0.23)  
0.033 (0.21)  
0.06 (0.39)  
0.051 (0.32)  
0.045 (0.3)  
0.043 (0.27)  
0.12 (0.85)  
0.099 (0.74)  
0.09 (0.66)  
0.084 (0.58)  
0.2 (1.6)  
0.039 (0.23)  
0.033 (0.2)  
0.029 (0.18)  
0.028 (0.17)  
0.044 (0.29)  
0.036 (0.21)  
0.032 (0.19)  
0.03 (0.18)  
0.056 (0.37)  
0.046 (0.31)  
0.041 (0.27)  
0.039 (0.24)  
0.11 (0.85)  
0.091 (0.65)  
0.083 (0.61)  
0.077 (0.55)  
0.19 (1.4)  
0.16 (1.2)  
0.14 (1.1)  
0.13 (1)  
0.038 (0.23)  
0.032 (0.2)  
0.03 (0.18)  
0.028 (0.17)  
0.042 (0.26)  
0.035 (0.21)  
0.031 (0.19)  
0.03 (0.17)  
0.056 (0.38)  
0.045 (0.29)  
0.041 (0.25)  
0.039 (0.26)  
0.11 (0.79)  
0.091 (0.69)  
0.083 (0.59)  
0.077 (0.57)  
0.19 (1.5)  
0.16 (1.2)  
0.14 (1.1)  
0.13 (1)  
50  
50  
50  
60  
60  
60  
60  
100  
100  
100  
100  
400  
400  
400  
400  
1200  
1200  
1200  
1200  
2400  
2400  
2400  
2400  
4800  
4800  
4800  
4800  
7200  
7200  
7200  
7200  
0.95 (6.9)  
2.3 (17)  
1.9 (14)  
1.8 (13)  
1.6 (12)  
3.2 (25)  
2.7 (21)  
2.5 (19)  
2.3 (17)  
4.3 (33)  
3.8 (29)  
3.5 (27)  
3.3 (25)  
5 (38)  
0.27 (1.9)  
0.64 (5)  
0.25 (1.9)  
0.21 (1.6)  
0.19 (1.4)  
0.18 (1.4)  
0.35 (2.7)  
0.3 (2.2)  
0.54 (3.9)  
0.49 (3.7)  
0.46 (3.6)  
0.88 (6.7)  
0.76 (5.8)  
0.69 (5.2)  
0.65 (4.9)  
1.2 (9.4)  
0.17 (1.3)  
0.16 (1.2)  
0.15 (1.1)  
0.28 (2.2)  
0.24 (1.9)  
0.22 (1.7)  
0.21 (1.5)  
0.37 (2.9)  
0.33 (2.6)  
0.31 (2.4)  
0.29 (2.2)  
0.43 (3.2)  
0.39 (2.9)  
0.37 (2.8)  
0.35 (2.6)  
0.49 (3.8)  
0.57 (4.3)  
0.83 (6.3)  
1.2 (9.4)  
0.92 (7)  
0.86 (6.4)  
1.7 (13)  
0.51 (3.9)  
0.44 (3.3)  
0.4 (3)  
0.26 (2)  
0.26 (2)  
1.4 (10)  
0.22 (1.6)  
0.2 (1.6)  
0.22 (1.6)  
0.2 (1.5)  
1.3 (9.8)  
1.2 (9.4)  
2.3 (17)  
0.27 (2.1)  
0.25 (2)  
0.37 (2.8)  
0.69 (5.2)  
0.61 (4.7)  
0.56 (4.1)  
0.53 (4.1)  
0.8 (6)  
0.19 (1.5)  
0.34 (2.6)  
0.31 (2.3)  
0.28 (2.1)  
0.27 (2.1)  
0.39 (2.9)  
0.36 (2.8)  
0.34 (2.5)  
0.33 (2.5)  
0.45 (3.5)  
0.54 (4)  
0.19 (1.4)  
0.34 (2.6)  
0.3 (2.3)  
0.46 (3.5)  
0.41 (3.1)  
0.38 (3)  
2 (15)  
1.1 (8.5)  
1.8 (14)  
0.97 (7.2)  
0.92 (7.1)  
1.4 (10)  
0.28 (2.2)  
0.27 (1.9)  
0.39 (2.9)  
0.36 (2.7)  
0.34 (2.6)  
0.32 (2.5)  
0.45 (3.4)  
0.53 (4.1)  
0.81 (6)  
1.7 (13)  
0.36 (2.7)  
0.53 (4)  
2.6 (20)  
4.6 (35)  
4.3 (33)  
4.1 (31)  
6 (47)  
2.4 (19)  
1.3 (9.9)  
0.73 (5.4)  
0.68 (5)  
0.49 (3.8)  
0.46 (3.6)  
0.44 (3.3)  
0.61 (4.9)  
0.77 (6)  
2.2 (17)  
1.2 (9.3)  
2.1 (15)  
1.1 (8.8)  
0.65 (5)  
14400 Sinc5  
19200 Sinc5  
25600 Sinc5  
40000 Sinc5  
3.1 (24)  
1.7 (13)  
0.93 (7.1)  
1.2 (9.6)  
8.5 (67)  
19 (140)  
30 (220)  
4.3 (34)  
2.3 (17)  
9.5 (73)  
4.8 (37)  
2.5 (18)  
1.3 (10)  
0.8 (6)  
15 (110)  
7.7 (56)  
3.9 (29)  
2 (15)  
1.2 (8.9)  
1.2 (9)  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
2. Effective Resolution (Noise-Free Resolution) at TA = 25°C and External 5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
FILTER  
1
2
4
8
16  
32  
64  
128  
2.5  
2.5  
2.5  
2.5  
2.5  
5
FIR  
24 (24)  
24 (24)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (21.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
23.8 (21.5)  
24 (22.2)  
24 (22.2)  
24 (22.8)  
24 (22.8)  
23.7 (21.5)  
23.9 (21.5)  
23.9 (21.5)  
24 (21.8)  
23.6 (21)  
23.8 (21.5)  
23.9 (21.5)  
24 (21.8)  
23.4 (20.6)  
23.6 (21)  
23.6 (21.2)  
23.7 (21.2)  
22.5 (19.7)  
22.8 (20.1)  
22.9 (20)  
23 (20.2)  
21.8 (19.1)  
22.1 (19.3)  
22.2 (19.2)  
22.3 (19.6)  
21.4 (18.3)  
21.6 (18.6)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (22.8)  
24 (22.8)  
24 (22.8)  
24 (23.8)  
24 (23.8)  
24 (22.2)  
24 (22.2)  
24 (22.2)  
24 (22.8)  
23.9 (21.8)  
24 (21.8)  
24 (22.2)  
24 (22.2)  
24 (22.8)  
23.7 (21.2)  
23.8 (21.2)  
23.9 (21.5)  
24 (21.8)  
23.6 (21.2)  
23.7 (21.2)  
23.9 (21.5)  
23.9 (21.5)  
23.3 (20.5)  
23.6 (21)  
23.6 (21)  
23.7 (21.2)  
22.5 (19.6)  
22.8 (20)  
22.8 (19.9)  
22.9 (20.1)  
21.7 (18.9)  
22 (19.1)  
22.1 (19.2)  
22.2 (19.2)  
21.3 (18.4)  
21.5 (18.6)  
24 (23.8)  
24 (23.8)  
22.8 (23.8)  
22.8 (23.8)  
22.8 (23.8)  
24 (22.8)  
24 (22.8)  
24 (23.8)  
24 (23.8)  
22.8 (23.8)  
24 (22.2)  
24 (22.8)  
24 (22.8)  
24 (23.8)  
24 (22.8)  
24 (21.8)  
24 (22.2)  
24 (22.8)  
24 (22.8)  
23.9 (21.5)  
23.9 (21.8)  
24 (21.8)  
24 (22.8)  
24 (22.2)  
23.5 (20.8)  
23.7 (21.5)  
23.8 (21)  
23.9 (21.5)  
23.4 (20.8)  
23.6 (21.2)  
23.7 (21.2)  
23.7 (21.2)  
23.1 (20.4)  
23.4 (21)  
23.5 (21)  
23.6 (21)  
22.3 (19.6)  
22.6 (19.6)  
22.7 (20)  
22.7 (20.1)  
21.6 (18.7)  
21.8 (18.9)  
21.9 (19)  
22 (19.1)  
21.1 (18.1)  
21.3 (18.5)  
24 (23.8)  
24 (22.8)  
21.8 (22.8)  
24 (23.8)  
24 (23.8)  
24 (22.2)  
24 (22.2)  
24 (23.8)  
24 (23.8)  
24 (23.8)  
24 (21.8)  
24 (22.2)  
24 (22.2)  
24 (22.8)  
24 (22.8)  
23.7 (21.2)  
24 (21.8)  
24 (22.8)  
24 (22.2)  
23.5 (21)  
23.7 (21.5)  
24 (21.8)  
24 (21.8)  
24 (22.2)  
23.3 (20.6)  
23.5 (20.8)  
23.6 (21.2)  
23.7 (21.2)  
23.1 (20.5)  
23.4 (20.8)  
23.5 (20.8)  
23.4 (20.6)  
22.8 (20)  
23 (20.2)  
23.2 (20.5)  
23.3 (20.6)  
21.9 (19)  
22.1 (19.2)  
22.3 (19.4)  
22.3 (19.5)  
21.1 (18.3)  
21.4 (18.4)  
21.5 (18.5)  
21.6 (18.7)  
20.7 (17.7)  
20.9 (18)  
24 (22.8)  
24 (22.8)  
24 (22)  
23 (20.8)  
23.2 (21.2)  
23.9 (22)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
24 (22.4)  
24 (24)  
24 (23.8)  
24 (22.4)  
24 (24)  
24 (23.8)  
24 (22.4)  
23.8 (22)  
24 (24)  
24 (23.8)  
24 (23)  
23.5 (22)  
24 (23)  
24 (21.8)  
23.6 (21.7)  
23.3 (21.4)  
23.7 (21.7)  
23.5 (21.4)  
24 (22)  
22.5 (20.7)  
22.8 (20.7)  
22.8 (21)  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
24 (23.7)  
24 (24)  
24 (22.8)  
5
24 (22.8)  
5
24 (24)  
24 (22.8)  
23.5 (21.7)  
23.3 (21.2)  
22.1 (19.9)  
22.3 (19.8)  
22.3 (20.2)  
22.7 (20.7)  
22.9 (20.8)  
21.8 (19.6)  
22 (19.5)  
5
24 (24)  
24 (23.8)  
10  
24 (22.4)  
24 (23)  
23.5 (21.2)  
23.6 (21.2)  
24 (22.2)  
22.8 (20.5)  
23.4 (21.2)  
23.2 (21.4)  
23.3 (21.2)  
23.7 (21.4)  
22.5 (20.3)  
23 (20.7)  
10  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
10  
24 (23)  
10  
24 (24)  
24 (22.2)  
10  
24 (24)  
24 (22.2)  
16.6  
16.6  
16.6  
16.6  
20  
24 (22)  
23.4 (21)  
24 (22.4)  
24 (23)  
23.7 (21.2)  
23.9 (21.5)  
24 (21.5)  
23.1 (21)  
22 (19.8)  
24 (23)  
23.4 (20.7)  
22.2 (19.8)  
22.6 (20.3)  
22.8 (20.3)  
23 (20.7)  
22.5 (20.1)  
21.3 (18.7)  
21.5 (19.2)  
21.9 (19.6)  
21.9 (19.4)  
22 (19.4)  
24 (22)  
22.9 (20.5)  
23.3 (21)  
20  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
24 (22)  
20  
24 (23)  
23.6 (21.2)  
23.7 (21.5)  
23.8 (21.2)  
22.6 (20)  
20  
24 (22.4)  
24 (23)  
20  
23.1 (20.7)  
21.9 (19.3)  
22.1 (19.3)  
22.3 (19.8)  
22.4 (20)  
50  
23.9 (21.4)  
24 (21.7)  
24 (22)  
21 (18.6)  
50  
22.9 (20.2)  
23 (20.5)  
21.2 (18.8)  
21.3 (18.6)  
21.5 (18.9)  
20.8 (18.2)  
21.2 (18.5)  
21.2 (18.8)  
21.2 (18.7)  
20.5 (17.7)  
20.8 (18)  
50  
50  
24 (22)  
23.2 (20.8)  
22.5 (19.9)  
22.7 (20.2)  
22.9 (20.5)  
23 (20.2)  
60  
23.7 (21.4)  
24 (21.4)  
24 (21.7)  
24 (22)  
21.8 (19.1)  
22.1 (19.3)  
22.2 (19.5)  
22.2 (19.5)  
21.4 (18.8)  
21.7 (19.1)  
21.8 (19)  
60  
60  
60  
100  
100  
100  
100  
400  
400  
400  
400  
1200  
1200  
1200  
1200  
2400  
2400  
23.6 (21)  
23.8 (21)  
23.8 (21.2)  
23.9 (21.4)  
22.8 (19.8)  
23.1 (20.3)  
23.1 (20.4)  
23.2 (20.3)  
22.1 (19.2)  
22.3 (19.5)  
22.4 (19.6)  
22.5 (19.6)  
21.6 (18.7)  
21.8 (18.8)  
22.1 (19.4)  
22.4 (19.7)  
22.5 (19.9)  
22.6 (19.7)  
21.2 (18.2)  
21.4 (18.6)  
21.5 (18.7)  
21.7 (18.9)  
20.4 (17.5)  
20.6 (17.7)  
20.8 (18)  
20.8 (17.9)  
21 (18.1)  
21.9 (19.4)  
20.4 (17.6)  
20.7 (17.9)  
20.8 (17.8)  
21 (18)  
19.5 (16.6)  
19.8 (17.1)  
19.9 (17)  
20 (17.2)  
19.7 (16.8)  
20 (17.1)  
18.8 (15.7)  
19 (16)  
20.1 (17.2)  
20.2 (17.3)  
19.2 (16.2)  
19.5 (16.6)  
19.2 (16.2)  
19.2 (16.4)  
18.3 (15.4)  
18.5 (15.6)  
20.9 (18)  
19.9 (17.1)  
20.2 (17.3)  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
2. Effective Resolution (Noise-Free Resolution) at TA = 25°C and External 5-V Reference (接下页)  
DATA  
RATE  
(SPS)  
GAIN  
FILTER  
1
2
4
8
16  
32  
64  
128  
2400  
2400  
4800  
4800  
4800  
4800  
7200  
7200  
7200  
7200  
14400  
19200  
25600  
40000  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
21.9 (19.1)  
22 (19.1)  
21.7 (18.8)  
21.8 (19)  
21.6 (18.6)  
21.8 (19)  
21.4 (18.6)  
21.6 (18.6)  
20.6 (17.7)  
20.8 (17.9)  
21 (18)  
21 (18.1)  
21.1 (18)  
20.3 (17.5)  
20.4 (17.5)  
19.5 (16.6)  
19.7 (16.6)  
19.8 (16.8)  
19.9 (17)  
19.6 (16.7)  
19.7 (16.7)  
18.8 (15.8)  
19 (16.1)  
18.7 (15.7)  
18.8 (15.9)  
17.9 (14.9)  
18 (14.9)  
21.1 (18.1)  
21.3 (18.4)  
21.4 (18.4)  
21.5 (18.6)  
20.9 (17.8)  
21 (18.1)  
20.9 (17.9)  
21.1 (18.1)  
21.2 (18.3)  
21.3 (18.4)  
20.7 (17.7)  
20.8 (17.9)  
20.9 (18.1)  
21 (18)  
20.9 (17.9)  
21 (18.1)  
20.2 (17.2)  
20.4 (17.4)  
20.5 (17.6)  
20.6 (17.7)  
20 (17)  
21.1 (18.3)  
21.2 (18.2)  
20.6 (17.4)  
20.7 (17.9)  
20.8 (17.9)  
20.9 (18.1)  
20.2 (17.3)  
19.4 (16.5)  
18 (15.2)  
19.1 (16.3)  
19.2 (16.3)  
18.6 (15.7)  
18.7 (15.9)  
18.8 (15.9)  
18.9 (15.9)  
18.4 (15.4)  
18 (15.1)  
18.2 (15.1)  
18.2 (15.3)  
17.7 (14.7)  
17.8 (14.9)  
17.9 (14.9)  
18 (15)  
21.1 (18.1)  
20.4 (17.5)  
20.6 (17.6)  
20.6 (17.8)  
20.7 (18)  
19.3 (16.4)  
19.4 (16.4)  
19.5 (16.5)  
19.6 (16.7)  
19.1 (16.1)  
18.8 (15.9)  
17.8 (14.8)  
17.1 (14.3)  
20.2 (17.2)  
20.2 (17.2)  
20.3 (17.2)  
19.8 (16.9)  
19.2 (16.2)  
17.9 (15.1)  
17.2 (14.2)  
21.1 (18.1)  
21.2 (18.1)  
20.5 (17.7)  
19.7 (16.8)  
18.2 (15.2)  
17.4 (14.6)  
20.3 (17.5)  
19.5 (16.5)  
18 (14.9)  
20.1 (17.1)  
19.4 (16.3)  
17.9 (14.7)  
17.2 (14.3)  
17.5 (14.5)  
17 (14.2)  
17 (14.2)  
16 (13.2)  
17.2 (14.2)  
17.2 (14.2)  
16.3 (13.4)  
15.3 (12.5)  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ADS1260 and ADS1261 are 5-channel and 10-channel, precision 24-bit, delta-sigma (ΔΣ) ADCs with an  
integrated analog front end (AFE) and voltage reference. The low-noise and low-drift architecture make the  
ADCs suitable for precision measurement of low signal level sensors, such as strain-gauge bridges, pressure  
transducers and temperature sensors.  
Key features of the ADC are:  
Very low noise, 1-GΩ input impedance PGA  
High-precision, 24-bit ΔΣ ADC  
Internal oscillator  
2.5-V voltage reference  
Signal and voltage reference monitors  
Excitation current sources  
Input level-shift voltage  
Sensor burn-out current sources  
Temperature sensor  
Cyclic redundancy check (CRC) communication error detection  
Two voltage reference inputs ( ADS1261)  
Four GPIO with AC-excitation ( ADS1261)  
The analog inputs (AINx) connect to the input multiplexer (MUX). The ADC supports three (five) differential or  
five (ten) single-ended input configurations for the ADS1260 and ADS1261, respectively.  
The programmable gain amplifier (PGA) follows the input multiplexer. The PGA is suitable for direct connection  
to low-level sensors. The gain is programmable from 1 to 128. The PGA bypass option connects the analog  
inputs directly to the precharge buffered modulator, extending the input voltage range to the power supplies. The  
PGA output connects to pins CAPP and CAPN. The ADC antialias filter is provided at the PGA output with an  
external capacitor.  
The PGA is monitored to verify linear operation. Alarm bits in the status register set if the linear range of the PGA  
is exceeded.  
A delta-sigma modulator measures the input voltage relative to the reference voltage to produce the 24-bit  
conversion result. The differential input range of the ADC is ±VREF / Gain.  
The digital filter averages and decimates the modulator output data to yield the final, down-sampled conversion  
result. The sinc filter is programmable (sinc1 through sinc5) allowing optimization of conversion time, conversion  
noise and line-cycle rejection. The finite impulse response (FIR) filter mode provides single-cycle settled data  
with simultaneous rejection of 50-Hz and 60-Hz at data rates of 20 SPS or less.  
The ADC reference is either 2.5-V internal, external or the 5-V analog power supply. The REFOUT pin provides  
the buffered reference voltage output. The external reference is monitored for low or missing voltage. The  
ADS1261 provides two voltage reference inputs, multiplexed with the analog inputs.  
The ADC includes two current sources that provide excitation to resistive sensors (RTD). Additionally, the  
ADS1261 provides four GPIO control lines. The GPIOs are used for input and output of general-purpose logic  
signals, as well as providing drive signals for AC-excited bridges. The GPIOs are multiplexed to the analog  
inputs.  
The temperature sensor and the power supply voltages are read through the multiplexer. The programmable  
burn-out test currents connect to the multiplexer output. The currents detect failed sensors or faults in the sensor  
connection. The level-shift voltage on AINCOM provides the bias for floating sensors.  
The SPI-compatible serial interface is used to read the conversion data and also to configure and control the  
ADC. Data communication errors are detected by CRC. The serial interface consists of four signals: CS, SCLK,  
DIN and DOUT/DRDY. The dual function DOUT/DRDY provides data output and also the data ready signal. The  
ADC serial interface can be implemented with as little as three pins by tying CS low.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Overview (接下页)  
The ADC clock is either internal or external. The ADC detects the external clock automatically. The nominal clock  
frequency is 7.3728 MHz (10.24 MHz for 40-kSPS operation).  
ADC conversions are controlled by the START pin or by the START command. The ADC is programmable for  
continuous or one-shot conversions. The DRDY or DOUT/DRDY pin provides the conversion data ready signal.  
When taken low, the RESET pin resets the ADC. The ADC is powered down by the PWDN pin or is powered  
down in software mode.  
The ADC operates in either bipolar analog supply configuration (±2.5 V), or in a single 5-V supply configuration.  
The digital power supply range is 2.7 V to 5 V. The BYPASS pin is the internal subregulator output used for the  
ADC digital core.  
9.2 Functional Block Diagram  
AVDD AVSS  
DVDD  
CAPP CAPN  
BYPASS  
2.5-V Ref  
2-V Digital Core  
LDO  
I/O Voltage  
REFOUT  
Ref  
Mux  
Level  
Shift  
AVDD  
START  
RESET  
PWDN  
Ref  
Monitor  
Excitation  
Current  
Sources  
Control  
AIN0  
AIN1  
AIN2  
AIN3  
Buf  
DRDY  
Sensor  
Burn-Out  
Currents  
24-Bit  
ûADC  
Digital  
Filter  
CS  
Serial  
Interface  
+
PGA  
AIN4  
SCLK  
AINCOM  
DOUT/DRDY  
DIN  
CRC  
Verification  
Input  
Mux  
PGA  
Monitor  
AC  
Exc  
ADS1261  
GPIO  
Mux  
Temp  
Sensor  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
Power  
Supply  
Clock  
Mux  
Internal  
Oscillator  
CLKIN  
DGND  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3 Feature Description  
The following sections describe the functional blocks of the ADC.  
9.3.1 Analog Inputs  
48 shows the analog input circuit consist of ESD-protection diodes, the input multiplexer and sensor burn-out  
current sources. The ADS1260 has six analog inputs to support five single-ended measurement channels. The  
ADS1261 has 11 analog inputs to support 10 single-ended measurement channels. Both devices have four  
internal (system) measurements, and an option where no inputs are connected.  
ESD Diodes  
Positive Input Multiplexer  
MUXP[3:0] bits 7:4 of INPMUX  
(register address = 11h)  
AVDD  
Negative Input Multiplexer  
0000  
AINCOM  
MUXN[3:0] bits 3:0 of INPMUX  
0001  
(register address = 11h)  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
MUXP-OUT  
MUXN-OUT  
+
-
Sensor  
Burn-Out  
Currents  
PGA  
AIN6  
AIN7  
ADS1261  
1001  
1010  
AIN8  
AIN9  
1011  
1100  
1101  
1110  
1111  
Temperature Sensor  
(AVDD œ AVSS) / 4  
DVDD / 4  
All Open  
AVSS  
VCOM: (AVDD + AVSS) / 2  
ESD Diodes  
48. Analog Input Block Diagram  
9.3.1.1 ESD Diodes  
ESD diodes are incorporated to protect the ADC inputs from possible ESD events occurring during the  
manufacturing process and during PCB assembly when manufactured in an ESD-controlled environment. For  
system-level ESD protection, consider the use of external ESD protection devices for pins that are exposed to  
ESD, including the analog inputs.  
If either input is driven below AVSS – 0.3 V, or above AVDD + 0.3 V, the internal protection diodes may conduct.  
If these conditions are possible, use external clamp diodes, series resistors, or both to limit the input current to  
the specified maximum value.  
9.3.1.2 Input Multiplexer  
The input multiplexer selects the signal for measurement. The multiplexer consists of independent positive and  
negative sections. See 48 for multiplexer register settings. The multiplexers select any input as positive and  
any input as negative for the PGA. Because the level-shift voltage connects to AINCOM (only), AINCOM is  
suitable as the common input for single-ended signals that require a level-shift voltage.  
The switching sequence of the multiplexer is break-before-make in order to reduce charge injection into the next  
measurement channel. Be aware that over-driving unused channels beyond the power supplies can effect  
conversions taking place on active channels. See the Input Overload section for more information.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Feature Description (接下页)  
9.3.1.3 Temperature Sensor  
The ADC has an internal temperature sensor. The temperature sensor is comprised of two internal diodes with  
one diode having 80 times the current density of the other. The difference in current density of the diodes yields  
a differential output voltage that is proportional to absolute temperature. The temperature sensor reading is  
converted by the ADC. See 48 for register settings to select the temperature sensor for measurement.  
公式 2 shows how to convert the temperature sensor reading to degrees Celsius (˚C):  
Temperature (°C) = [(Temperature Reading (µV) – 122,400) / 420 µV/°C] + 25°C  
(2)  
Measure the temperature sensor with PGA on, gain = 1, burn-out current sources disabled and AC-excitation  
mode disabled. As a result of the low package-to-PCB thermal resistance, the internal temperature closely tracks  
the PCB temperature. Be aware that device self-heating increases the internal temperature relative to the  
surrounding PCB.  
9.3.1.4 Power-Supply Readback  
Read the power-supply voltage by the appropriate input multiplexer selection. The supply voltages are divided to  
reduce the voltage levels to within the ADC input range. The analog and digital supply readback levels are  
scaled by 公式 3 and 公式 4, respectively:  
Analog supply (V) = (AVDD - AVSS) / 4  
Digital supply (V) = DVDD / 4  
(3)  
(4)  
Measure the power supply voltages with either the internal or an external reference. If using an external  
reference, the minimum reference voltage is 1.5 V. Perform the measurement with PGA enabled, gain = 1, burn-  
out current sources disabled and AC-excitation mode disabled. See 48 for register settings to measure the  
supply voltages.  
9.3.1.5 Inputs Open  
This configuration opens all inputs. Use this configuration to test the functionality of the sensor burn-out current  
sources, and the PGA output monitors. When the inputs are open, the current sources drive the PGA inputs to  
full scale, resulting in an PGA monitor alarm and clipped conversion data. See 48 for register settings to open  
all inputs.  
9.3.1.6 Internal VCOM Connection  
For this multiplexer configuration, all inputs are open and the PGA inputs are connected to an internal VCOM  
voltage as defined: (AVDD + AVSS) / 2. Use this mode to measure the ADC noise performance and offset  
voltage, or to short the inputs for offset calibration. See 48 for register settings of the internal VCOM  
connection.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
9.3.1.7 Alternate Functions  
The ADC has several alternate functions that are multiplexed with the analog inputs. The alternate functions are  
reference input, current source output, GPIO, AC-excitation and level-shift voltage output. The functions are  
enabled by programming of the associated registers. The analog inputs retain measurement ability if the  
alternate functions are programmed. 3 summarizes the alternate functions.  
3. Analog Input Alternate Functions  
ANALOG INPUTS  
LEVEL-SHIFT  
VOLTAGE  
REFERENCE INPUTS  
CURRENT SOURCES  
GPIO/AC-EXCITATION(1)  
ADS1260  
AINCOM  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
ADS1261  
AINCOM  
AIN0  
REFP0  
REFN0  
REFP1(1)  
REFN1(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
AIN1  
AIN2  
GPIO0/ACX1  
AIN3  
GPIO1/ACX2  
AIN4  
GPIO2/ACX1  
AIN5  
GPIO3/ACX2  
AIN6  
AIN7  
AIN8  
AIN9  
(1) ADS1261 and ADS1261B only.  
9.3.2 PGA  
The PGA is a low-noise, CMOS differential-input, differential-output amplifier. The PGA extends the dynamic  
range of the ADC, important when used with low level sensors. The PGA provides gains of 1 through 32 and the  
ADC provides additional gains of 2 and 4. The combined gains are 1 through 128. Gain is controlled by the  
GAIN[2:0] register bits as shown in 49. In PGA bypass mode, the input voltage range extends to the analog  
supplies. The PGA is powered down in bypass mode.  
BYPASS bit 7 of PGA  
(register address = 10h)  
0: PGA active (shown)  
1: PGA bypass  
280  
350 Ω  
VAINP  
+
A1  
œ
8 pF  
CAPP  
GAIN[2:0] bits 2:0 of PGA  
12 pF  
(register address = 10h)  
000: 1  
001: 2  
010: 4  
011: 8  
PGA  
Output  
Monitors  
4.7 nF  
C0G  
ADC  
12 pF  
100: 16  
101: 32  
110: 64  
111:128  
12 pF  
œ
A2  
+
CAPN  
350 Ω  
280 Ω  
VAINN  
8 pF  
49. PGA Block Diagram  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
The PGA consists of two chopper-stabilized amplifiers (A1 and A2), and a resistor network that determines the  
PGA gain. The resistor network is precision matched, providing low drift performance. The PGA integrates noise  
filters to reduce sensitivity to electromagnetic-interference (EMI). The PGA output is monitored to indicate when  
the operating headroom is exceeded.  
Pins CAPP and CAPN are the PGA positive and negative outputs, respectively. Connect an external 4.7-nF  
capacitor (type C0G) as shown in 49. The capacitor filters the modulator sample pulses and with the internal  
resistors, forms the antialias filter. Place the capacitor as close as possible to the pins using short traces. Avoid  
running clock traces or other digital traces close to these pins.  
The full-scale differential input voltage range of the ADC is determined by the reference voltage and gain. 4  
shows the differential input voltage range verses gain for VREF = 2.5 V.  
4. Full-Scale Voltage Range  
GAIN[2:0] BITS  
GAIN  
1
FULL-SCALE DIFFERENTIAL INPUT RANGE(1)  
000  
001  
010  
011  
100  
101  
110  
111  
±2.500 V  
±1.250 V  
±0.625 V  
±0.312 V  
±0.156 V  
±0.078 V  
±0.039 V  
±0.0195 V  
2
4
8
16  
32  
64  
128  
(1) VREF = 2.5 V. Full scale differential input voltage range is proportional to VREF  
.
As with many amplifiers, the PGA has an input voltage range limitation that must not be exceeded in order to  
maintain linear operation. The specified input voltage range is expressed as the absolute voltage at the positive  
and negative inputs. As specified in 公式 5, the specified absolute input voltage depends on gain, the expected  
maximum differential voltage, and the minimum analog power-supply voltage.  
AVSS + 0.3 V + VIN · (Gain – 1) / 2 · < VAINP and VAINN < AVDD – 0.3 V – VIN · (Gain – 1) / 2  
where  
VAINP, VAINN = absolute input voltage  
VIN = maximum differential input voltage = VAINP - VAINN  
Gain (for gains = 64 and 128, use gain = 32 in the calculation)  
AVDD = minimum AVDD voltage  
AVSS = maximum AVSS voltage  
(5)  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
The relationship of the PGA input to the PGA output is shown graphically in 50. The PGA output voltages  
(VOUTP, VOUTN) depend on the respective absolute input voltage, the differential input voltage, and the PGA gain.  
To maintain the PGA within the linear operating range, the PGA output voltages must not exceed either AVDD –  
0.3 V or AVSS + 0.3 V. The diagram depicts a positive differential input voltage that results in a positive  
differential output voltage.  
PGA Input  
PGA Output  
AVDD  
AVDD œ 0.3 V  
VOUTP = VAINP + VIN (Gain œ 1) / 2  
VAINP  
VIN = VAINP ‡ VAINN  
VAINN  
VOUTN = VAINN œ VIN (Gain œ 1) / 2  
AVSS + 0.3 V  
AVSS  
50. PGA Input/Output Range  
9.3.2.1 PGA Bypass Mode  
Bypass the PGA to extend the input voltage range up to the analog power supply voltages. In bypass mode, the  
PGA is bypassed and the analog inputs are connected directly to the precharge buffers of the modulator, thereby  
extending the input voltage range. Be aware of the increased analog input current in bypass mode. See the  
Recommended Operating Conditions for the bypass-mode input voltage range specification, and see the  
Electrical Characteristics for the input current specification.  
9.3.2.2 PGA Voltage Monitor  
The PGA has voltage monitors to provide indication when the PGA is overloaded. In overload condition, the  
conversion data are no longer valid. If either the PGA positive or negative output exceeds AVDD – 0.2 V, the  
high alarm bit is set (PGAH_ALM). Similarly, if either PGA positive or negative output is less than AVSS + 0.2 V,  
the low alarm bit is set (PGAL_ALM). The monitor alarm state is read in the STATUS byte. The monitor alarm is  
read-only and automatically resets at the start of the next conversion cycle after the overload condition is cleared.  
The monitor diagram and threshold values are shown in 51 and 52.  
PGAH_ALM Condition  
AVDD œ 0.2 V  
œ
+
PGAH_ALM  
AVDD  
AVDD t 0.2 V  
œ
PGA Output  
P or N  
STATUS Byte  
P
N
+
PGA  
6
5
3
7
4
2
1
0
P or N  
œ
+
AVSS + 0.2 V  
AVSS  
PGAL_ALM  
œ
+
AVSS + 0.2 V  
PGAL_ALM Condition  
51. PGA Monitor Diagram  
52. PGA Monitor Thresholds  
The PGA monitors consist of fast-responding voltage comparators. Comparator operation is disabled during  
multiplexer changes to minimize the false triggering during these input switching events. However, it is possible  
the monitors can detect other transient overload conditions that may occur after gain changes, sensor connection  
changes, and so on.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.3.3 Reference Voltage  
The ADC requires a reference voltage for operation. The reference voltage options are 2.5-V internal, one or two  
external inputs (ADS1260 or ADS1261, respectively) or the 5-V analog power supply. The reference voltage is  
selected by independent positive and negative reference multiplexers for the reference positive and reference  
negative voltages, respectively. The default reference is the 5-V analog power supply (AVDD – AVSS). 53  
shows the block diagram of the reference multiplexer.  
REFENB bit 4 of REF  
(register address = 06h)  
2.5 V  
Internal  
Ref  
AVDD  
0: Internal Ref off  
1: Internal Ref on (default)  
RMUXP[1:0] bits 3:2 of REF  
(register address = 06h)  
REFOUT  
00  
01  
VREFP  
10  
(2)11  
AIN0  
AIN2  
(1)  
10 mF  
BUF  
00  
01  
AVSS  
ADC  
10  
(2) 11  
VREFN  
AIN1  
AIN3  
RMUXN[1:0] bits 1:0 of REF  
(register address = 06h)  
(1) The internal reference requires a 10-µF capacitor connected to pins REFOUT and AVSS.  
(2) ADS1261 only.  
53. Reference Input Diagram  
Program the RMUXP[1:0] and RMUXN[1:0] bits of the REF register to select the positive and negative reference  
voltages, respectively. The positive reference selections are internal positive, AIN0, AIN2, or AVDD. The negative  
reference input selections are internal negative, AIN1, AIN3, or AVSS. The reference low-voltage monitor is  
located after the reference multiplexer. See the Reference Monitor section for more information.  
9.3.3.1 Internal Reference  
The ADC incorporates a 2.5-V reference that is enabled by the REFENB bit of the REF register (default = off).  
Program the reference multiplexer bits RMUXP[1:0] and RMUXN[1:0] to 00b to select the internal reference. A  
10-μF capacitor is required between pins REFOUT and AVSS to filter reference noise. REFOUT is the reference  
output and AVSS is the reference return. Use a star-layout connection or plane connection for the reference  
return, connecting close to the AVSS pin. When the reference is enabled, be aware of the settling time before  
beginning conversions. Also be aware of the reference inrush current that may result in a transient droop of the  
AVDD voltage. Enable the internal reference for sensor excitation current source operation.  
9.3.3.2 External Reference  
Use an external reference by applying the reference voltage to the designated analog inputs. The reference  
inputs are differential with positive and negative inputs. Program the reference multiplexer bits RMUXP[1:0] and  
RMUXN[1:0] to 10b or 11b to select inputs AIN0/AIN1 or AIN2/AIN3, respectively (AIN2/AIN3 is available only for  
the ADS1261). For application that use multiple references, it is possible to connect the reference grounds  
together and use a single input pin for ground. Follow the specified absolute and differential reference voltage  
operating conditions, as specified in the Recommended Operating Conditions. Connect a 100-nF capacitor  
across the reference input pins to filter noise. Be aware of the reference input current if reference impedances  
are present. Consider the error to the overall system accuracy.  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3.3.3 AVDD - AVSS Reference (Default)  
A third reference option is the 5-V analog power supply (AVDD - AVSS). Select this reference option by setting  
the reference multiplexer bits RMUXP[1:0] and RMUXN[1:0] to 01b. For a 6-wire load cell application that uses  
excitation sense lines, or for AC-excitation operation, connect the excitation sense lines to the analog input  
reference inputs and program the ADC for external reference operation.  
9.3.3.4 Reference Monitor  
The ADC incorporates a reference monitor that detects an invalid reference voltage. As shown in 54 and 图  
55, if the reference voltage (VREF = VREFP – VREFN) is below 0.4 V, the REFL_ALM bit is set in the STATUS byte.  
The alarm is read-only and resets at the next conversion after the low reference condition is cleared.  
Use the reference monitor to detect a missing or failed reference voltage. To implement detection of a missing  
reference, use a 100-kΩ resistor across the reference inputs. If either input is unconnected, the resistor biases  
the differential reference input towards 0 V so that the missing reference can be detected.  
STATUS Byte  
Differential  
Reference Voltage  
6
5
3
7
4
2
1
0
AIN0  
100 k  
AIN1  
+
0.4 V, Typical  
REFL_ALM  
Ref  
MUX  
+
_
External  
_
+
Reference  
_
0.4 V  
Reference Low Condition  
54. Reference Monitor  
9.3.4 Level-Shift Voltage (VBIAS)  
55. Reference Monitor Threshold  
The ADC integrates a level-shift voltage that can be connected to the AINCOM pin by an internal switch. As  
shown in 56, the level-shift voltage is the mid-voltage between AVDD and AVSS. The purpose of the voltage  
is to shift the signal level of floating sensors to within the input range of the ADC. Isolated thermocouples and  
piezoelectric sensors are examples of sensors that are suitable for connection to the level-shift voltage. For these  
sensors, connect the negative lead to the AINCOM pin and enable the level-shift voltage.  
AINCOM  
100  
V = (AVDD + AVSS) / 2  
VBIAS bit 4 of INPBIAS  
(register address = 12h)  
0: off (default)  
1: on  
56. Level-Shift Voltage Diagram  
The turn-on time of the level-shift voltage depends on the total external capacitance connected from the AINCOM  
pin to ground or AVSS. 5 lists the level-shift voltage settling times for various load capacitance. Be certain the  
level-shift voltage is fully settled before starting a conversion.  
5. Level-Shift Enable Time  
LOAD CAPACITANCE  
LEVEL-SHIFT VOLTAGE SETTLING TIME  
0.1 µF  
1 µF  
0.22 ms  
2.2 ms  
22 ms  
10 µF  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.3.5 Burn-Out Current Sources  
The burn-out current sources are used to detect the occurrence of sensor burn-out or break. If the sensor or  
sensor connection is open, the currents drive either or both positive and negative PGA inputs to opposite supply  
voltages where the occurrence of an open sensor is detected by the PGA monitors or detected by the host for  
out-of-range (or clipped) conversion data.  
57 shows the burn-out currents connect at the output of the analog input multiplexer. The currents sink and  
source, and are configurable in pullup or pulldown mode. In pullup mode, the sourcing current connects to the  
positive input channel and the sinking current connects to the negative input channel. In this configuration, an  
open circuit pulls the inputs to positive full scale. The currents are Off, 0.050 µA, 0.2 µA, 1 µA, and 10 µA. See  
the Burn-Out Current Source section for application information.  
AVDD  
BOCS[2:0] bits 2:0 of INPBIAS  
(register address = 12h)  
000: off  
001: 0.05 uA  
010: 0.2 uA  
MUXP  
011: 1 uA  
100: 10 uA  
AIN0  
AINP  
AINN  
PGA  
AINCOM  
BOCSP bit 3 of INPBIAS  
(register address = 12h)  
MUXN  
0 = Pull-up mode (shown)  
1 = Pull-down Mode  
AVSS  
57. Burn-Out Current Sources  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3.6 Sensor-Excitation Current Sources (IDAC1 and IDAC2)  
The ADC incorporates two current sources that are used to provide excitation current to a resistive temperature  
device (RTD), thermistor, diode and other sensor type that require constant current biasing. The currents are  
programmable over the 50 μA to 3000 μA range and are internally multiplexed to all analog input pins. The  
current source multiplexer is shown in 58. The IMUX1 and IMUX2 register bits connect the corresponding  
current source to the analog inputs. The IMAG1 and IMAG2 register bits program the corresponding current  
magnitude.  
Enable the internal reference for current source operation. The current source value can be doubled or an  
intermediate value produced by connecting the current sources to the same analog input. Take care not to  
exceed the current source compliance voltage range. That is, when the current source is loaded by resistance,  
the voltage at the pin increases and must not exceed specification; otherwise the specified current source  
accuracy is not met.  
IDAC1  
IMUX1[3:0] bits 3:0 of IMUX  
(register address = 0Dh)  
IDAC2  
IMUX2[3:0] bits 7:4 of IMUX  
(register address = 0Dh)  
AVDD  
0000  
0001  
0010  
0011  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
IDAC1  
IMAG1[3:0] bits 3:0 of IMAG  
(register address = 0Eh)  
0000: Off  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
0100  
0101  
AVDD  
0110  
0111  
1000  
IDAC2  
ADS1261  
IMAG2[3:0] bits 7:4 of IMAG  
(register address = 0Eh)  
1001  
1010  
1111  
AINCOM  
Open  
58. Current Source Connection  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.3.7 General-Purpose Input/Outputs (GPIOs)  
The ADS1261 and ADS1261B devices provide four GPIO pins, GPIO0 through GPIO3. The GPIOs are digital  
inputs/outputs that are referenced to analog AVDD and AVSS. The GPIOs are read and written by the  
GPIO_DAT bits of register MODE3. The GPIOs are multiplexed with analog inputs AIN2 to AIN5. As shown in 图  
59, the GPIOs have a series of programming registers. Bits GPIO_CON[3:0] connect the GPIOs to the  
associated pin (1 = connect). Bits GPIO_DIR program the direction of the GPIOs; (0 = output, 1 = input). The  
input voltage threshold is the voltage value between AVDD and AVSS. Bits GPIO_DAT[3:0] are the data values  
for the GPIOs. Observe that if a GPIO pin is programmed as an output, the value read is the value previously  
written to the register data, not the actual state of the pin.  
The GPIOs also provide the AC-excitation drive signals. AC-excitation mode override the GPIO register data  
values. See the AC-Excitation Mode section for details.  
AVDD  
Write  
AC-Excitation Mode  
CHOP[1:0] bits 6:5 of MODE1  
(register address = 03h)  
GPIO_CON[3:0] bits 7:4 of MODE2  
(register address = 04h)  
GPIO_DAT[3:0] bits 3:0 of MODE3  
(register address = 05h)  
00: Normal mode (default)  
01: Chop mode  
10: 2-wire AC-excitation mode  
11: 4-wire AC-excitation mode  
Write  
0: GPIO not connected (default)  
1: GPIO connected  
0: VGPIO low (default)  
1: VGPIO high  
0
Read  
GPIO0  
AIN2  
AIN3  
AIN4  
1
GPIO1  
GPIO2  
GPIO_DIR[3:0] bits 3:0 of MODE2  
+
MUX  
Read Select  
(register address = 04h)  
GPIO3  
œ
AIN5  
0: GPIO is output (default)  
1: GPIO is input  
AVDD + AVSS  
2
AVSS  
59. GPIO Block Diagram  
9.3.8 Oversampling  
The ADC operates on the principle of oversampling, defined as the ratio of the sample rate of the modulator to  
that of the ADC output data rate. Oversampling improves ADC noise by digital bandwidth limiting (low-pass  
filtering) of the data. The digital filter also performs data rate reduction (decimation) in order to reduce the data  
rate proportional with the amount of data filtering.  
9.3.9 Modulator  
The modulator is an inherently stable, fourth-order, 2 + 2 pipelined ΔΣ modulator. The modulator samples the  
analog input voltage at a high sample rate (fMOD = fCLK / 8) and converts the analog input to a ones-density bit-  
stream given by the ratio of the input signal to the reference voltage. The modulator shapes the noise of the  
converter to high frequency, where the noise is removed by the digital filter.  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3.10 Digital Filter  
The digital filter receives the modulator output data and produces a high-resolution conversion result. The digital  
filter low-pass filters and decimates the modulator data (data rate reduction), yielding the final data output. By  
adjusting the type of filtering, tradeoffs are made between resolution, data throughput and line cycle rejection.  
The digital filter has two selectable modes: sin (x) / x (sinc) mode and finite impulse response (FIR) mode (see  
60). The sinc mode provides data rates of 2.5 SPS through 40000 SPS with variable sinc orders of 1 through  
5. The FIR filter provides simultaneous rejection of 50-Hz and 60-Hz frequencies with data rates 2.5 SPS through  
20 SPS while providing single-cycle settled conversions.  
Sinc Filter Section  
40000 SPS to 14400 SPS  
fCLK / 8  
7200 SPS to 2.5 SPS  
Modulator  
Sinc5 Filter  
SincN Filter  
To Offset/Gain  
Calibration  
Filter  
Mux  
FIR Filter Section  
20 SPS  
(
= Data rate reduction)  
FIR  
Averager  
10 SPS  
5 SPS  
2.5 SPS  
60. Digital Filter Block Diagram  
9.3.10.1 Sinc Filter  
The sinc filter is composed of two stages: a variable-decimation sinc5 filter, followed by a variable-decimation,  
variable-order sinc filter. The first stage filters and down-samples the modulator data to yield data rates of  
40000 SPS, 25600 SPS, 19200 SPS, and 14400 SPS. These data rates bypass the second stage and as a  
result have a sinc5 characteristic filter response. The second stage receives data from the first stage at a fixed  
rate of 14400 SPS. The data rate is reduced to the range 7200 SPS to 2.5 SPS, with programmable orders of  
sinc.  
The data rate is programmed by the DR[4:0] bits of register MODE0. The filter mode is programmed by the  
FILTER[2:0] bits of register MODE0 (see 32).  
9.3.10.1.1 Sinc Filter Frequency Response  
The characteristic of the sinc filter is low pass. The filter reduces noise present in the signal and noise present  
within the ADC. Changing the data rate and filter order changes the filter bandwidth.  
As shown in 61 and 62, the first-stage sinc5 filter has frequency response nulls occurring at N · fDATA  
,
where N = 1, 2, 3 and so on. At the null frequencies, the filter has zero gain. Data rates of 25600 SPS and 19200  
SPS have similar frequency response.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (kHz)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (kHz)  
D201  
D002  
62. Frequency Response (14400 SPS)  
61. Frequency Response (40000 SPS)  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
The second stage superimposes frequency response nulls to the nulls of the first stage 14400 SPS output. The  
first of the superimposed response nulls occurs at the data rate, followed by nulls occurring at multiples of the  
data rate. 63 illustrates the frequency response for various orders of sinc at data rate of 2400 SPS. This data  
rate has five nulls between the larger nulls at multiples of 14400 Hz. This frequency response is similar to that of  
data rates 2.5 SPS to 7200 SPS. 64 shows the frequency response nulls for 10 SPS.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (Hz)  
Frequency (kHz)  
D003  
D004  
63. Sinc Frequency Response (2400 SPS)  
64. Sinc Frequency Response (10 SPS)  
65 and 66 show the frequency response of data rates 50 SPS and 60 SPS, respectively. Increase the  
attenuation at 50 Hz or 60 Hz and harmonics by increasing the order of the sinc filter, as shown in the figures.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Frequency (Hz)  
0
60 120 180 240 300 360 420 480 540 600  
Frequency (Hz)  
D005  
D006  
65. Sinc Frequency Response (50 SPS)  
66. Sinc Frequency Response (60 SPS)  
67 and 68 show the detailed frequency response at 50 SPS and 60 SPS, respectively.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
Frequency (Hz)  
Frequency (Hz)  
D009  
D010  
67. Detail Sinc Frequency Response (50 SPS)  
68. Detail Sinc Frequency Response (60 SPS)  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3.10.2 FIR Filter  
The finite impulse response (FIR) filter is a coefficient based filter architecture that provides an overall low-pass  
filter response. The filter provides simultaneous attenuation of 50 Hz and 60 Hz and harmonics at data rates of  
20 SPS to 2.5 SPS. The conversion latency time of the FIR filter data rates are single-cycle. As shown in 60,  
the FIR filter receives pre-filtered data from the sinc filter. The FIR filter decimates the data to yield the output  
data rates of 20 SPS. A variable averager (sinc1) provides data rates of 10 SPS, 5 SPS, and 2.5 SPS. 6 lists  
the bandwidth of the data rates in FIR filter mode.  
9.3.10.2.1 FIR Filter Frequency Response  
69 and 70 show the FIR filter frequency attenuates 50 Hz and 60 Hz by a series of response nulls placed  
close to these frequencies. The response nulls are repeated at harmonics of 50 Hz and 60 Hz.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
40  
45  
50  
55  
60  
65  
70  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
Frequency (Hz)  
D012  
D011  
70. FIR Frequency Response Detail (20 SPS)  
69. FIR Frequency Response (20 SPS)  
71 is the FIR filter response at 10 SPS. As a result of the variable averager, new frequency nulls are  
superimposed. The first null appears at the date rate. Additional nulls occur at frequencies folded around  
multiples of 20 Hz.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
D013  
71. FIR Frequency Response (10 SPS)  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.3.10.3 Filter Bandwidth  
The bandwidth of the filter depends on the data rate and the filter mode. Be aware that the bandwidth of the  
entire system is the combined response of the filter, the antialias filter and external filters. 6 lists the bandwidth  
versus data rate and filter mode. 6 also lists the filter modes available for each data rate.  
6. Filter Bandwidth  
-3-dB BANDWIDTH (Hz)  
DATA RATE  
(SPS)  
2.5  
FIR  
1.2  
2.4  
4.7  
SINC1  
1.10  
2.23  
4.43  
7.38  
8.85  
22.1  
26.6  
44.3  
177  
525  
1015  
1798  
2310  
SINC2  
0.80  
1.60  
3.20  
5.33  
6.38  
16.0  
19.1  
31.9  
128  
381  
751  
1421  
1972  
SINC3  
0.65  
1.33  
2.62  
4.37  
5.25  
13.1  
15.7  
26.2  
105  
314  
623  
1214  
1750  
SINC4  
0.58  
1.15  
2.28  
3.80  
4.63  
11.4  
13.7  
22.8  
91.0  
273  
544  
1077  
1590  
SINC5  
5
10  
16.6  
20  
13  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
25600  
40000  
2940  
3920  
5227  
8167  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.3.10.4 50-Hz and 60-Hz Normal Mode Rejection  
To reduce 50-Hz and 60-Hz noise interference, configure the conversion period to reject the noise at 50 Hz and  
60 Hz. 50-Hz and 60-Hz noise rejection depends on the filter type. 7 summarizes the 50-Hz and 60-Hz noise  
rejection versus data rate and filter type. The table values are based on 2% and 6% tolerance of noise frequency  
to ADC clock frequency. For the sinc filter mode, noise rejection is increased by increasing the order of the filter.  
Common mode noise is also rejected at these frequencies.  
7. 50-Hz and 60-Hz Normal Mode Rejection  
DIGITAL FILTER RESPONSE (dB)  
DATA RATE (SPS)  
FILTER TYPE  
FIR  
50 Hz ±2%  
–113  
–36  
60 Hz ±2%  
–99  
50 Hz ±6%  
–88  
–40  
–80  
–120  
–160  
–77  
–30  
–60  
–90  
–120  
–73  
–25  
–50  
–75  
–100  
–24  
–48  
–72  
–96  
–66  
–18  
–36  
–54  
–72  
–24  
–48  
–72  
–96  
–12  
–24  
–36  
–48  
60 Hz ±6%  
–80  
–37  
–74  
–111  
–148  
–76  
–30  
–60  
–90  
–120  
–68  
–25  
–50  
–75  
–100  
–21  
–42  
–63  
–84  
–66  
–24  
–48  
–72  
–96  
–15  
–30  
–45  
–60  
–24  
–48  
–72  
–96  
2.5  
2.5  
2.5  
2.5  
2.5  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–37  
–72  
–74  
–108  
–144  
–111  
–34  
–111  
–148  
–95  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–34  
5
–68  
–68  
5
–102  
–136  
–111  
–34  
–102  
–136  
–94  
5
10  
10  
10  
10  
10  
16.6  
16.6  
16.6  
16.6  
20  
20  
20  
20  
20  
50  
50  
50  
50  
60  
60  
60  
60  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
–34  
–68  
–68  
–102  
–136  
–34  
–102  
–136  
–21  
–68  
–42  
–102  
–136  
–95  
–63  
–84  
–94  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
–18  
–34  
–36  
–68  
–54  
–102  
–136  
–15  
–72  
–34  
–68  
–30  
–102  
–136  
–13  
–45  
–60  
–34  
–27  
–68  
–40  
–102  
–136  
–53  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.4 Device Functional Modes  
9.4.1 Conversion Control  
Conversions are controlled by either the START pin or by the START command. If using commands to control  
conversions, keep the START pin low to avoid contentions between pin and commands. Commands take affect  
on the 16th falling SCLK edge (CRC mode disabled) or on the 32nd falling SCLK edge (CRC mode enabled).  
See 4 for conversion-control timing details.  
The ADC provides two conversion modes: continuous and pulse. The continuous-conversion mode performs  
conversions indefinitely until stopped by the user. Pulse-conversion mode performs one conversion and then  
stops. The conversion mode is programmed by the CONVRT bit (bit 4 of register MODE0).  
9.4.1.1 Continuous-Conversion Mode  
This conversion mode performs continuous conversions until stopped by the user. To start conversions, take the  
START pin high or send the START command. DRDY is driven high at the time the conversion is initiated. DRDY  
is driven low when the conversion data are ready. Conversion data are available to read at that time.  
Conversions are stopped by taking the START pin low or by sending the STOP command. When conversions  
are stopped, the conversion in progress runs to completion. To restart a conversion that is in progress, toggle the  
START pin low-then-high or send a new START command.  
9.4.1.2 Pulse-Conversion Mode  
In pulse-conversion mode, the ADC performs one conversion when START is taken high or when the START  
command is sent. When the conversion completes, further conversions stop. The DRDY output is driven high to  
indicate the conversion is in progress, and is driven low when the conversion data are ready. Conversion data  
are available to read at that time. To restart a conversion in progress, toggle the START pin low-then-high or  
send a new START command. Driving START low or sending the STOP command does not interrupt the current  
conversion.  
9.4.1.3 Conversion Latency  
The digital filter averages data from the modulator in order to produce the conversion result. The stages of the  
digital filter must have settled data in order to provide fully-settled output data. The order and the decimation ratio  
of the digital filter determine the amount of data averaged, and in turn, affect the latency of the conversion data.  
The FIR and sinc1 filter modes are zero latency because the ADC provides the conversion result in one  
conversion cycle. Latency time is an important consideration for the data throughput rate in multiplexed  
applications.  
8 lists the conversion latency values of the ADC. Conversion latency is defined as the time from the start of  
the first conversion, by taking the START pin high or sending the START command, to the time when the  
conversion data are ready. If the input signal is settled, then the ADC provides fully settled data under this  
condition. The conversion latency values listed in the table are with the start-conversion delay parameter = 50 µs,  
and include the overhead time needed to process the data. After the first conversion completes (in continuous  
conversion mode), the period of the following conversions are equal to 1/fDATA. The first conversion latency in  
chop and AC-excitation modes are twice the values listed in the table. Also when operating in these modes, the  
period of the following conversions are equal to the values listed in the table.  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
8. Conversion Latency  
CONVERSION LATENCY - t(STDR)(1) (ms)  
DATA RATE  
(SPS)  
FIR  
402.2  
202.2  
102.2  
SINC1  
400.4  
200.4  
100.4  
60.43  
50.43  
20.43  
17.09  
10.43  
2.925  
1.258  
0.841  
0.633  
0.564  
SINC2  
800.4  
400.4  
200.4  
120.4  
100.4  
40.43  
33.76  
20.43  
5.425  
2.091  
1.258  
0.841  
0.702  
SINC3  
1,200  
600.4  
300.4  
180.4  
150.4  
60.43  
50.43  
30.43  
7.925  
2.925  
1.675  
1.050  
0.841  
SINC4  
1,600  
800.4  
400.4  
240.4  
200.4  
80.43  
67.09  
40.43  
10.43  
3.758  
2.091  
1.258  
0.980  
SINC5  
2.5  
5
10  
16.6  
20  
52.23  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
25600  
40000  
0.423  
0.336  
0.271  
0.179  
(1) Chop mode off, conversion-start delay = 50 µs (DELAY[3:0] = 0001)  
If the input signal changes while free-running conversions, the conversion data are a mix of old and new data, as  
shown in 72. After an input change, the number of conversion periods required for fully settled data are  
determined by dividing the conversion latency by the period of the data rate, plus add one conversion period to  
the result. In chop mode and AC-excitation mode, use twice the latency values listed in the table.  
Old VIN  
New VIN  
VIN = VAINP - VAINN  
Fully settled  
new data  
Mix of old data  
and new data  
Old data  
DRDY pin  
72. Input Change During Conversions  
9.4.1.4 Start-Conversion Delay  
Some applications may require a delay at the start of a conversion in order to allow settling time for the PGA  
output antialias filter or to allow time after input and configuration changes. The ADC provides a user  
programmable delay time that delays the start of a new conversion. The default value is 50 μs. This allows for  
settling of the antialiasing filter. Use additional delay time as needed to provide settling time for external  
components. The delay time increases the conversion latency values listed in 8. As an alternative to the  
programmable start-conversion delay, manually delay the start of conversion after input and configuration  
changes.  
Start-conversion delay is an important consideration for operation in AC-excitation mode. In this mode, the  
reference inputs to the bridge, and therefore, the bridge output signals are reversed for each conversion As a  
result, time delay is required to allow for settling of external filter components after reversal. As a general  
guideline, set the start-conversion delay parameter to a minimum of 15 times the R-C time constant of the signal  
input and reference input filters.  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.4.2 Chop Mode  
The PGA and modulator are chopper-stabilized at high frequency in order to reduce offset voltage, offset voltage  
drift and 1/f noise. The offset and noise artifacts are modulated to high frequency and are removed by the digital  
filter. Although chopper stabilization is designed to remove all offset, a small offset voltage may remain. The  
optional global chop mode removes the remaining offset errors, providing exceptional offset voltage drift  
performance.  
Chop mode alternates the signal polarity of consecutive conversions. The ADC subtracts consecutive, alternate-  
phase conversions to yield the final conversion data. The result of subtraction removes the offset.  
CHOP[1:0] bits 6:5 of MODE1  
(register address = 03h)  
00: Normal mode  
01: Chop mode  
10: 2-wire AC excitation mode  
11: 4-wire AC excitation mode  
Chop Switch  
VOFS  
AIN0  
VAINP  
-
+
Digital  
Filter  
Full-Scale  
Cal  
Input  
MUX  
Chop  
Control  
C
A D  
Offset  
Cal  
Conversion  
Output  
ADC  
PGA  
VAINN  
AINCOM  
73. ADC Chop Mode  
As shown in 73, the internal chop switch reverses the signal after the input multiplexer. VOFS models the  
internal offset voltage. The operational sequence of chop mode is as follows:  
Conversion C1: VAINP – VAINN – VOFS First conversion withheld after start  
Conversion C2: VAINN – VAINP – VOFS Output 1 = (C1 – C2) / 2 = VAINP – VAINN  
Conversion C3: VAINP – VAINN – VOFS Output 2 = (C3 – C2) / 2 = VAINP – VAINN  
The sequence repeats for all conversions. Because of the internal mathematical operations, the chop mode data  
rate is reduced. The chop mode data rate is proportional to the order of the sinc filter. Referring to 8, the new  
data rate is equal to 1 / latency values and the first conversion latency is 2 × latency values. Because of the two-  
point data averaging arising from the mathematical operations, noise is reduced by 2. For chop mode, divide  
the noise data values shown in 1 by 2 to derive the new noise performance data. The null frequencies of the  
digital filter are not changed in chop-mode operation. However, new null frequencies appear at multiples of fDATA  
/ 2.  
9.4.3 AC-Excitation Mode  
Resistive bridge sensors are excited by DC or AC voltages; for DC or AC currents. DC voltage excitation is the  
most common type of excitation. AC excitation reverses the polarity of the voltage by the use of external  
switching components. Similar in concept to chop mode, the result of the voltage reversal removes offset voltage  
in the connections leading from the bridge to the ADC inputs. This removal includes the offset voltage of the ADC  
itself. The ADS1261 and ADS1261B devices provide the signals necessary to drive the external switching  
components in order to reverse the bridge voltage.  
The timing of the drive signals is synchronized to the ADC conversion phase. During one conversion phase, the  
voltage polarity is normal. For the alternate conversion phase, the voltage polarity is reversed. The ADC  
compensates the reversed polarity conversion by internal reversal of the reference voltage. The ADC subtracts  
the data corresponding to the normal and reverse phases in order to remove offset voltage from the input.  
The ADC output drive signals do not overlap in order to avoid bridge cross-conduction that can otherwise occur  
during excitation voltage reversal. The switch rate of the AC-excitation drive signals are at the data rate to avoid  
unnecessary fast switching. See 7 for output drive timing.  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9 shows the AC-excitation drive signals and the associated GPIO pins. Program the AC-excitation mode using  
the CHOP[1:0] bits in register MODE1. AC excitation can be programmed for two-wire or four-wire drive mode.  
For two-wire operation, two drive signals are provided on the GPIOs. If needed, use two external inverters to  
derive four signals to drive discrete transistors. The GPIO drive levels are referred to the 5-V analog supply. Be  
aware that the AC-excitation mode changes the nominal data rate, depending on the order of the sinc filter. See  
the Chop Mode section for details of the effective data rate.  
9. AC-Excitation Drive Pins  
DEVICE PIN  
AIN2  
GPIO  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
2-WIRE MODE (CHOP[1:0] = 10)  
4-WIRE MODE (CHOP[1:0] = 11)  
ACX1  
ACX2  
ACX1  
ACX2  
ACX1  
ACX2  
AIN3  
AIN4  
AIN5  
9.4.4 ADC Clock Mode  
Operate the ADC with an external clock or with the internal oscillator. The clock frequency is 7.3728 MHz, except  
for fDATA = 40000 SPS then fCLK = 10.24 MHz (internal or external). For external clock operation, apply the clock  
signal to CLKIN. For internal-clock operation, connect CLKIN to DGND. The internal oscillator begins operation  
immediately at power-up. The ADC automatically selects the clock mode of operation. Read the clock mode bit in  
the STATUS register to determine the clock mode.  
9.4.5 Power-Down Mode  
The ADC has two power-down modes: hardware and software. In both power-down modes, the digital outputs  
remain driven. The digital inputs must be maintained at VIH or VIL levels (do not float the digital inputs). The  
internal low-dropout regulator remains on, drawing 25 µA (typical) from DVDD.  
9.4.5.1 Hardware Power-Down  
Take the PWDN pin low to engage hardware power-down mode. Except for the internal LDO, all ADC functions  
are disabled. To exit hardware power-down mode (wake-up) take the PWDN pin high. The register values are  
not reset at wake-up. The internal reference is shut down in this mode; therefore, be sure to accommodate the  
start-up time of the internal reference before starting conversions.  
9.4.5.2 Software Power-Down  
Set the PWDN bit (bit 7 of register MODE3) to engage software power-down mode. Similar to the operation of  
hardware power-down mode, software mode powers down the internal functions except the serial interface  
remains powered, and the internal reference bias is unchanged (On or Off). Exit the software power-down mode  
by clearing the PWDN bit. The register values are not reset.  
9.4.6 Reset  
The ADC is reset in three ways: at power-on, by the RESET pin, and by the RESET command. When reset, the  
serial interface, conversion-control logic, digital filter, and register values are reset. The RESET bit of the  
STATUS byte is set to indicate a device reset has occurred by any of the three reset methods. Clear the bit to  
detect the next device reset. If the START pin is high after reset, the ADC begins conversions.  
9.4.6.1 Power-on Reset  
At power-on, after the supply voltages cross the reset-voltage thresholds, the ADC is reset and 216 fCLK cycles  
later the ADC is ready for communication. Until this time, DRDY is held low. DRDY is driven high to indicate  
when the ADC is ready for communication. If the START pin is high, the conversion cycle starts 512 / fCLK cycle  
after DRDY asserts high. 5 shows the power-on reset behavior.  
9.4.6.2 Reset by Pin  
Reset the ADC by taking the RESET pin low and then returning the pin high. After reset, the conversion starts  
512 / fCLK cycles later. See 6 for RESET timing.  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.4.6.3 Reset by Command  
Reset the ADC by the RESET command. Toggle CS high to make sure the serial interface resets before sending  
the command. For applications that tie CS low, see the Serial Interface Auto-Reset section for information on  
how to reset the serial interface. After reset, the conversion starts 512 / fCLK cycles later. See 6 for timing  
details.  
9.4.7 Calibration  
The ADC incorporates calibration registers and associated commands to calibrate offset and full-scale errors.  
Calibrate by using calibration commands, or calibrate by writing to the calibration registers directly (user  
calibration). To calibrate by command, send the offset or full-scale calibration commands. To user calibrate, write  
values to the calibration registers based on calculations of the conversion data. Perform offset calibration before  
full-scale calibration.  
9.4.7.1 Offset and Full-Scale Calibration  
Use the offset and full-scale (gain) registers to correct offset or full-scale errors, respectively. As shown in 74,  
the offset calibration register is subtracted from the output data before multiplication by the full-scale register,  
which is divided by 400000h. After the calibration operation, the final output data are clipped to 24 bits.  
VAINP  
C A D  
+
Output Data  
Clipped to 24 bits  
Digital  
Filter  
Final  
Output  
ADC  
VAINN  
-
1/400000h  
OFCAL[2:0] registers  
(register addresses = 07h, 08h, 09h)  
FSCAL[2:0] registers  
(register addresses = 0Ah, 0Bh, 0Ch)  
74. Calibration Block Diagram  
公式 6 shows the internal calibration.  
Final Output Data = (Filter Output - OFCAL[2:0]) · FSCAL[2:0] / 400000h  
(6)  
9.4.7.1.1 Offset Calibration Registers  
The offset calibration word is 24 bits, consisting of three 8-bit registers, as listed in 10. The offset value is  
subtracted from the conversion result. The offset value is in two's complement format with a maximum positive  
value equal to 7FFFFFh, and a maximum negative value equal to 800000h. A register value equal to 000000h  
has no offset correction. Although the offset calibration register provides a wide range of possible offset values,  
the input signal after calibration cannot exceed ±106% of the pre-calibrated range; otherwise, the ADC is  
overranged. 11 lists example values of the offset register.  
10. Offset Calibration Registers  
BYTE  
REGISTER  
OFCAL0  
OFCAL1  
OFCAL2  
ORDER  
ADDRESS  
07h  
BIT ORDER  
LSB  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
08h  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
09h  
B23 (MSB)  
B17  
B16  
11. Offset Calibration Register Values  
OFCAL[2:0] REGISTER VALUE  
IDEAL OUTPUT VALUE(1)  
000001h  
000000h  
FFFFFFh  
FFFFFFh  
000000h  
000001h  
(1) Output value with no offset error  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
 
 
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.4.7.1.2 Full-Scale Calibration Registers  
The full-scale calibration word is 24 bits consisting of three 8-bit registers, as listed in 12. The full-scale  
calibration value is in straight-binary format, normalized to a unity-gain factor at a value of 400000h. 13 lists  
register values for selected gain factors. Gain errors greater than unity are corrected by using full-scale values  
less than 400000h. Although the full-scale register provides a wide range of possible values, the input signal after  
calibration must not exceed ±106% of the precalibrated input range; otherwise, the ADC is overranged.  
12. Full-Scale Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
FSCAL0  
FSCAL1  
FSCAL2  
LSB  
0Ah  
0Bh  
0Ch  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
B23 (MSB)  
B17  
B16  
13. Full-Scale Calibration Register Values  
FSCAL[2:0] REGISTER VALUE  
GAIN FACTOR  
433333h  
400000h  
1.05  
1.00  
0.95  
3CCCCCh  
9.4.7.2 Offset Self-Calibration (SFOCAL)  
The offset self-calibration command corrects offset errors internal to the ADC. When the offset self-calibration  
command is sent, the ADC disconnects the external inputs, shorts the inputs to the PGA, and then averages 16  
conversion results to compute the calibration value. Averaging the data reduces conversion noise to improve  
calibration accuracy. When calibration is complete, the ADC restores the user input and performs one conversion  
using the new calibration value.  
9.4.7.3 Offset System-Calibration (SYOCAL)  
The offset system-calibration command corrects system offset errors. For this type of calibration, the user shorts  
the inputs to either the ADC or to the system. When the command is sent, the ADC averages 16 conversion  
results to compute the calibration value. Averaging the data reduces conversion noise to improve calibration  
accuracy. When calibration is complete, the ADC performs one conversion using the new calibration value.  
9.4.7.4 Full-Scale Calibration (GANCAL)  
The full-scale calibration command corrects gain error. To calibrate, apply a positive full-scale calibration voltage  
to the ADC, wait for the signal to settle, and then send the calibration command. The ADC averages 16  
conversion results to compute the calibration value. Averaging the data reduces conversion noise to improve  
calibration accuracy. The ADC computes the full-scale calibration value so that the calibration voltage is scaled  
to positive full scale output code. When calibration is complete, the ADC performs one new conversion using the  
new calibration value.  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.4.7.5 Calibration Command Procedure  
Use the following procedure to calibrate using commands. The register-lock mode must be UNLOCK for all  
calibration commands. After power-on, make sure the reference voltage has stabilized before calibrating.  
Perform offset calibration before full-scale calibration.  
1. Configure the ADC as required.  
2. Apply the appropriate calibration signal (zero or full-scale)  
3. Take the START pin high or send the START command to start conversions. DRDY is driven high.  
4. Before the conversion cycle completes, send the calibration command. Keep CS low otherwise the command  
is cancelled. Send no other commands during the calibration period.  
5. Calibration time depends on the data rate and digital filter mode. See 14. DRDY asserts low when  
calibration is complete. The offset or full-scale calibration registers are updated with new values. At  
calibration completion, new conversion data are ready using the new calibration value.  
14. Calibration Time (ms)  
(1)  
FILTER MODE  
DATA RATE  
(SPS)  
2.5  
FIR  
6805  
3405  
1705  
SINC1  
6801  
3401  
1701  
1021  
850.9  
340.9  
284.2  
170.9  
43.36  
15.02  
7.938  
4.397  
3.216  
SINC2  
7601  
3801  
1901  
1141  
951.0  
380.9  
317.5  
190.9  
48.36  
16.69  
8.772  
4.813  
3.494  
SINC3  
8401  
4201  
2101  
1261  
1051  
420.9  
350.9  
210.9  
53.36  
18.36  
9.605  
5.230  
3.772  
SINC4  
9201  
4601  
2301  
1381  
1151  
460.9  
384.2  
230.9  
58.36  
20.02  
10.44  
5.647  
4.050  
SINC5  
5
10  
16.6  
20  
854.5  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
25600  
40000  
1.892  
1.458  
1.133  
0.738  
(1) Nominal clock frequency. Chop and AC-excitation modes disabled.  
9.4.7.6 User Calibration Procedure  
To user calibrate, apply the calibration voltage, acquire conversion data, and compute the calibration value. The  
computed value is written to the corresponding calibration registers. Before starting calibration, preset the offset  
and full-scale registers to 000000h and 400000h, respectively.  
To offset calibrate, short the ADC inputs (or inputs to the system) and average n number of the conversion  
results. Averaging conversion data reduces noise to improve calibration accuracy. Write the averaged value of  
the conversion data to the offset registers.  
To gain calibrate using a full scale calibration voltage, temporarily reduce the full scale register 95% to avoid  
output clipped codes (set FSCAL[2:0] to 3CCCCCh). Acquire n number of conversions and average the  
conversions to reduce noise to improve calibration accuracy. Compute the full-scale calibration value as shown  
in 公式 7:  
Full-Scale Calibration Value = Expected Code / Actual Code · 400000h  
where  
Expected code = 799998h using full scale calibration signal and 95% scale factor  
(7)  
49  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.5 Programming  
9.5.1 Serial Interface  
The serial interface is SPI-compatible and is used to read conversion data, configure registers, and control the  
ADC. The serial interface consists of four control lines: CS, SCLK, DIN, and DOUT/DRDY. Most microcontroller  
SPI peripherals can operate with the ADC. The interface operates in SPI mode 1, where CPOL = 0 and CPHA =  
1. In SPI mode 1, SCLK idles low and data are updated or changed on SCLK rising edges; data are latched or  
read on SCLK falling edges. Timing details of the SPI protocol are found in 1 and 2.  
9.5.1.1 Chip Select (CS)  
CS is an active-low input that selects the serial interface for communication. CS must be low during the entire  
data transaction. When CS is taken high, the serial interface resets, SCLK input activity is ignored (blocking  
commands), and DOUT/DRDY enters the high-impedance state. The operation of DRDY is not effected by CS. If  
the ADC is a single device connected to the serial bus, CS can be tied low in order to reduce the serial interface  
to three lines.  
9.5.1.2 Serial Clock (SCLK)  
SCLK is the serial clock input that shifts data into and out of the ADC. Output data are updated on the rising  
edge of SCLK and input data are latched on the falling edge of SCLK. Return SCLK low after the data operation  
is completed. SCLK is a Schmidt-triggered input designed to improve noise immunity. Even though SCLK is  
noise resistant, keep SCLK as noise-free as possible to avoid unintentional SCLK transitions. Avoid ringing and  
overshoot on the SCLK input. Place a series termination resistor close to the SCLK drive pin to reduce ringing.  
9.5.1.3 Data Input (DIN)  
DIN is the serial data input to the ADC. DIN is used to input commands and register data to the ADC. Data are  
latched on the falling edge of SCLK.  
9.5.1.4 Data Output/Data Ready (DOUT/DRDY)  
The DOUT/DRDY pin is a dual-function output. The functions of this pin are data output and data ready. The  
functionality changes automatically based on whether a read data operation is in progress. During a read data  
operation, the functionality is data output. After the read operation is complete, the functionality changes to data  
ready.  
In data output mode, data are updated on the SCLK rising edge, therefore the host latches the data on the falling  
edge of SCLK. In data-ready mode, the pin functions the same as DRDY (if CS is low) by asserting low when  
data are ready. Therefore, monitor either DOUT/DRDY or DRDY to determine when data are ready. When CS is  
high, the DOUT/DRDY pin is in the high-impedance mode (tri-state).  
9.5.1.5 Serial Interface Auto-Reset  
The serial interface is reset by taking CS high. Applications that tie CS low do not have the ability to reset the  
serial interface by CS. If a false SCLK occurs (for example, caused by a noise pulse or clocking glitch), the serial  
interface may inadvertently advance one or more bit positions, resulting in loss of synchronization to the host. If  
loss of synchronization occurs, the ADC interface does not respond correctly until the interface is reset.  
For applications that tie CS low, the serial interface auto-reset feature recovers the interface in the event that an  
unintentional SCLK glitch occurs. When the first SCLK low-to-high transition occurs (either caused by a glitch or  
by normal SCLK activity), seven SCLK transitions must occur within 65536 fCLK cycles (8.9 ms) to complete the  
byte transaction, otherwise the serial interface resets. After reset, the interface is ready to begin the next byte  
transaction. If the byte transaction is completed within the 65536 fCLK cycles, the serial interface does not reset.  
The cycle of SCLK detection re-starts at the next rising edge of SCLK. The serial interface is reset by holding  
SCLK low for a minimum 65536 fCLK cycles.  
The auto-reset function is enabled by the SPITIM bit (default is off). See 3 for timing details.  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Programming (接下页)  
9.5.2 Data Ready (DRDY)  
DRDY is an output that asserts low when conversion data are ready. After power-up, DRDY also indicates when  
the ADC is ready for communication. The operation of DRDY depends on the conversion mode (continuous or  
pulse) and whether the conversion data are retrieved or not. 75 shows DRDY operation with and without data  
retrieval in the two modes of conversion.  
DRDY - with data retrieval  
(Continuous-conversion mode)  
DRDY œ w/o data retrieval  
(Continuous-conversion mode)  
DRDY œ w or w/o data retreival  
(Pulse-conversion mode)  
START  
Command  
START  
STOP  
START  
STOP  
75. DRDY Operation  
9.5.2.1 DRDY in Continuous-Conversion Mode  
In continuous-conversion mode, DRDY is driven high when conversions are started and is driven low when  
conversion data are ready. During data readback, DRDY returns high at the end of the read operation. If the  
conversion data are not read, DRDY pulses high 16 fCLK cycles prior to the next falling edge.  
To read conversion data before the next conversion is ready, send the complete read-data command 16 fCLK  
cycles before the next DRDY falling edge. If the readback command is sent less than 16 fCLK cycles before the  
DRDY falling edge, either old or new conversion data are provided, depending on the timing of when the  
command is sent. In the case that old conversion data are provided, DRDY driven low is delayed until after the  
read data operation is completed. In this case, the DRDY bit of the STATUS byte is cleared to indicate the same  
data have been read. If new conversion data are provided, DRDY transitions low at the normal period of the data  
rate. In this case, the DRDY bit of the STATUS byte is set to indicate that new data have been read. To make  
sure new data are read back, wait until DRDY asserts low before starting the data read operation.  
9.5.2.2 DRDY in Pulse-Conversion Mode  
DRDY is driven high at conversion start and is driven low when the conversion data are ready. During the data  
read operation DRDY remains low until a new conversion is started.  
9.5.2.3 Data Ready by Software Polling  
Use software polling of data ready in lieu of hardware polling of DRDY or DOUT/DRDY. To software poll, read  
the STATUS register and poll the DRDY bit. In order to not skip conversion data in continuous conversion mode,  
poll the bit at least as often as the period of the data rate. If the DRDY bit is set, then conversion data are new  
since the previous data read operation. If the bit is cleared, conversion data are not new since the previous data  
read operation. In this case, the previous conversion data are returned.  
9.5.3 Conversion Data  
Conversion data are read by the RDATA command. To read data, take CS low and issue the read data  
command. The data field response consists of the optional STATUS byte, three data bytes, and the optional  
CRC byte. The CRC is computed over the combination of status byte and conversion data bytes. See the  
RDATA Command section for details to read conversion data.  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Programming (接下页)  
9.5.3.1 Status byte (STATUS)  
The status byte contains information on the operating state of the ADC. The STATUS byte is included with the  
conversion data by enabling bit STATENB of register MODE3. Optionally, read the STATUS register directly to  
read status information without the need to read conversion data. See 81 for details.  
9.5.3.2 Conversion Data Format  
The conversion data are 24 bits, in two's-complement format to represent positive and negative values. The data  
output begins with the most significant bit (sign bit) first. The data are scaled so that VIN = 0 V results in an  
uncalibrated code value of 000000h; positive full scale equals 7FFFFFh and negative full scale equals 800000h;  
see 15 for the uncalibrated code values. The data are clipped to 7FFFFFh (positive full scale) and 800000h  
(negative full scale) during positive and negative signal overdrive, respectively.  
15. ADC Conversion Data Codes  
(1)  
DESCRIPTION  
Positive full scale  
1 LSB  
INPUT SIGNAL (V)  
VREF / Gain · (223 - 1) / 223  
24-BIT CONVERSION DATA  
7FFFFFh  
VREF / (Gain · 223  
)
000001h  
Zero scale  
0
000000h  
-1 LSB  
–VREF / (Gain · 223  
–VREF / Gain  
)
FFFFFFh  
Negative full scale  
800000h  
(1) Ideal (calibrated) conversion data.  
9.5.4 CRC  
Cyclic redundancy check (CRC) is an error checking code that detects communication errors to and from the  
host. CRC is the division remainder of the data payload bytes by a fixed polynomial. The data payload is 1, 2, 3  
or 4 bytes depending on the data operation. The CRC mode is optional and is enabled by the CRCENB bit. See  
35 to program the CRC mode.  
The user computes the CRC corresponding to the two command bytes and appends the CRC to the command  
string (3rd byte). A 4th, zero-value byte completes the command field. The ADC repeats the CRC calculation and  
compares the calculation to the received CRC. If the user and repeated CRC values match, the command  
executes and the ADC responds by transmitting the repeated CRC during the 4th byte of the command. If the  
operation is conversion data or register data read, the ADC responds with a 2nd CRC that is computed over the  
requested data payload bytes. The response data payload is 1, 3, or 4 bytes depending on the data operation.  
If the user and repeated CRC values do not match, the command does not execute and the ADC responds with  
an inverted CRC for the actual received command bytes. The inverted CRC is intended to signal the host of the  
failed operation. The user terminates transmission of the command bytes to match the action of ADC termination.  
The CRCERR bit is set in the STATUS register when a CRC error is detected. The ADC is ready to accept the  
next command after a CRC error occurs at the end of the 4th byte.  
The CRC data byte is the 8-bit remainder of the bitwise exclusive-OR (XOR) operation of the argument by a  
CRC polynomial. The CRC polynomial is based on the CRC-8-ATM (HEC): X8 + X2 + X1 + 1. The nine binary  
polynomial coefficients are: 100000111. The CRC calculation is preset with "1" data values.  
The CRC mnemonics apply to the following command sections.  
• CRC-2: Input CRC of command bytes 1 and 2. Except for WREG command, the value of byte 2 is arbitrary  
• Out CRC-1: Output CRC of one register data byte  
• Out CRC-2: Output CRC of two command bytes, inverted value if input CRC error detected  
• Out CRC-3: Output CRC of three conversion data bytes  
• Out CRC-4: Output CRC of three conversion data bytes plus STATUS byte  
• Echo Byte 1: Echo of received input byte 1  
• Echo Byte 2: Echo of received input byte 2  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.5.5 Commands  
Commands read conversion data, control the ADC, and read and write register data. See 16 for the list of  
commands. Send only the commands that are listed in 16. The ADC executes commands at completion of the  
2nd byte (no CRC verification) or at completion of the 4th byte (with CRC verification). Follow the two byte or four  
byte format according to the CRC mode. Except for register write commands, the value of the second command  
byte is arbitrary but the value is included in the CRC calculation (total of two-byte CRC). If a CRC error is  
detected, the ADC does not execute the command. Taking CS high before the command is completed results in  
termination of the command. When CS is taken low, the communication frame is reset to start a new command.  
16. Command Byte Summary  
BYTE 3  
(CRC Mode Only)  
BYTE 4  
(CRC Mode only)  
MNEMONIC  
DESCRIPTION  
BYTE 1  
BYTE 2  
Control Commands  
NOP  
No operation  
Reset  
00h  
06h  
08h  
0Ah  
Arbitrary  
Arbitrary  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
CRC-2  
CRC-2  
00h  
00h  
00h  
00h  
RESET  
START  
STOP  
Start conversion  
Stop conversion  
Read Data Command  
RDATA  
Read conversion data  
12h  
Arbitrary  
CRC-2  
00h  
Calibration Commands  
SYOCAL  
GANCAL  
SFOCAL  
System offset calibration  
16h  
17h  
19h  
Arbitrary  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
CRC-2  
00h  
00h  
00h  
Gain calibration  
Self offset calibration  
Register Commands  
RREG  
WREG  
Read register data  
Write register data  
20h + rrh(1)  
40h + rrh(1)  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
Register data  
Protection Commands  
LOCK  
Register lock  
Register unlock  
F2h  
F5h  
Arbitrary  
Arbitrary  
CRC-2  
CRC-2  
00h  
00h  
UNLOCK  
(1) rrh = 5-bit register address.  
9.5.5.1 NOP Command  
This command is no operation. Use the NOP command to validate the CRC response byte and error detection  
without affecting normal operation. 17 shows the NOP command byte sequence.  
17. NOP Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
00h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
00h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.2 RESET Command  
The RESET command resets ADC operation and resets the registers to default values. See the Reset by  
Command section for details. 18 shows the RESET command byte sequence.  
18. RESET Command  
DIRECTION  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
No CRC mode  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
18. RESET Command (接下页)  
DIRECTION  
DIN  
BYTE 1  
06h  
BYTE 2  
Arbitrary  
BYTE 3  
BYTE 4  
DOUT/DRDY  
FFh  
Echo byte 1  
CRC mode  
DIN  
06h  
FFh  
Arbitrary  
CRC-2  
00H  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.3 START Command  
This command starts conversions. See the Conversion Control section for details. 19 shows the START  
command byte sequence.  
19. START Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
08h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
08h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.4 STOP Command  
This command stops conversions. See the Conversion Control section for details. 20 shows the STOP  
command byte sequence.  
20. STOP Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
0Ah  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
0Ah  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
9.5.5.5 RDATA Command  
This command reads conversion data. Because the data are buffered, the data can be read at any time during  
the conversion phase. If data are read near the completion of the next conversion, old or new conversion data  
are returned. See the Data Ready (DRDY) section for details.  
The response of conversion data varies in length from 3 to 5 bytes depending if the STATUS byte and CRC  
bytes are included. See the Conversion Data Format section for the numeric data format. See 21, 76  
(minimum configuration) and 77 (maximum configuration) for operation of the RDATA command.  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
21. RDATA Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE 6  
BYTE 7  
BYTE 8  
BYTE 9  
12h  
FFh  
Arbitrary  
00h  
00h  
00h  
00h  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
STATUS(1)  
MSB data  
MID data  
LSB data  
12h  
FFh  
Arbitrary  
CRC-2  
00h  
00h  
00h  
00h  
00h  
00h  
Out CRC-3 or  
Out CRC-4  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
STATUS(1)  
MSB data  
MID data  
LSB data  
(1) Optional STATUS byte.  
(1)  
CS  
1
9
17  
25  
33  
SCLK  
DIN  
12h  
Arbitrary  
00h  
00h  
00h  
DOUT/DRDY  
FFh  
Echo byte 1  
MSB data  
MID data  
LSB data  
NOTE: CS can be tied low.  
76. Conversion Data Read Operation (STATUS Byte and CRC Mode Disabled)  
(1)  
CS  
41  
49  
57  
65  
1
9
17  
25  
33  
SCLK  
DIN  
12h  
FFh  
Arbitrary  
00h  
00h  
CRC-2  
00h  
00h  
00h  
00h  
MSB data  
MID data  
LSB DATA  
Out CRC-4  
Echo byte 1  
Echo byte 2  
Out CRC-2  
STATUS  
DOUT/DRDY  
NOTE: CS can be tied low.  
77. Conversion Data Read Operation (STATUS Byte and CRC Mode Enabled)  
9.5.5.6 SYOCAL Command  
This command is used for system offset calibration. See the Offset System-Calibration (SYOCAL) section for  
details. 22 shows the SYOCAL command byte sequence.  
22. SYOCAL Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
16h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
16h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte 2  
Out CRC-2  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.5.5.7 GANCAL Command  
This command is for gain calibration. See the Full-Scale Calibration (GANCAL) section for details. 23 shows  
the GANCAL command byte sequence.  
23. GANCAL Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
17h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
17h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte 2  
Out CRC-2  
9.5.5.8 SFOCAL Command  
This command is used for self offset calibration. See the Offset Self-Calibration (SFOCAL) section for details. 表  
24 shows the SFOCAL command byte sequence.  
24. SFOCAL Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
19h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
19h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte 2  
Out CRC-2  
9.5.5.9 RREG Command  
Use the RREG command to read register data. The register data are read one byte at a time by issuing the  
RREG command for each operation. Add the register address (rrh) to the base opcode (20h) to construct the  
command byte (20h + rrh). 25 illustrates the command byte sequence. The ADC responds with the register  
data byte, most significant bit first. The response to registers outside the valid address range is 00h. 78  
depicts an example of the register read operation. The Out CRC-1 byte is the CRC calculated for the register  
data byte.  
25. RREG Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE 6  
20h + rrh(1)  
FFh  
Arbitrary  
00h  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
Register data  
20h + rrh  
FFh  
Arbitrary  
CRC-2  
00h  
00h  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
Register data  
Out CRC-1  
(1) rrh = 5-bit register address.  
56  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
(1)  
CS  
1
9
17  
25  
33  
41  
SCLK  
DIN  
22h  
FFh  
Arbitrary  
CRC-2  
00h  
00h  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
Reg data  
Out CRC-1  
NOTE: CS can be tied low.  
78. Register Read Operation (address = 02h, CRC Mode Enabled)  
9.5.5.10 WREG Command  
Use the WREG command to write register data. The register data are written one byte at a time by issuing the  
WREG command for each operation. Add the register address (rrh) to the base opcode (40h) to construct the  
command byte (40h + rrh). 26 shows the command byte sequence. 79 shows an example of the WREG  
operation. Be aware that writing to certain registers results in conversion restart. 29 lists the registers that  
restart an ongoing conversion when written to. Do not write to registers outside the address range.  
26. WREG Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
40h + rrh(1)  
FFh  
Register data  
Echo byte 1  
DOUT/DRDY  
CRC mode  
DIN  
40h + rrh  
FFh  
Register data  
Echo byte 1  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 2  
Out CRC-2  
(1) rrh = 5-bit register address.  
(1)  
CS  
1
9
17  
25  
SCLK  
DIN  
42h  
FFh  
Reg Data  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo byte 2  
Out CRC-2  
NOTE: CS can be tied low.  
79. Register Write Operation (address = 02h, CRC Mode Enabled)  
版权 © 2018–2019, Texas Instruments Incorporated  
57  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.5.5.11 LOCK Command  
The LOCK command locks-out write access to the registers including the calibration registers that are changed  
by calibration commands. The default mode is UNLOCK. Read access is allowed in LOCK mode. 27 shows  
the LOCK command byte sequence.  
27. LOCK Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
F2h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
F2h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte2  
out CRC-2  
9.5.5.12 UNLOCK Command  
The UNLOCK command allows register write access, including access to the contents of the calibration registers  
that can be changed by the calibration commands. 28 shows the UNLOCK command byte sequence.  
28. UNLOCK Command  
DIRECTION  
No CRC mode  
DIN  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
F5h  
FFh  
Arbitrary  
DOUT/DRDY  
CRC mode  
DIN  
Echo byte 1  
F5h  
FFh  
Arbitrary  
CRC-2  
00h  
DOUT/DRDY  
Echo byte 1  
Echo Byte2  
Out CRC-2  
58  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6 Register Map  
The register map consists of 19, one-byte registers. Collectively, the registers are used to configure the ADC to  
the desired operating mode. Access the registers by using the RREG and WREG (read-register and write-  
register) commands. Register data are accessed one register byte at a time for each command operation. At  
power-on or device reset, the registers are reset to the default values, as shown in the Default column of 29.  
Writing new data to certain registers causes the ADC conversion in progress to restart. These registers are listed  
in the Restart column in 29.  
Register-write access is enabled or disabled by the UNLOCK and LOCK commands, respectively. The default  
mode is register UNLOCK. See the LOCK Command section for more details.  
29. Register Map Summary  
(rrh)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
REGISTER  
ID  
DEFAULT  
xxh  
RESTART  
BIT 7  
LOCK  
0
BIT 6  
DEV_ID[3:0]  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REV_ID[3:0]  
STATUS  
MODE0  
MODE1  
MODE2  
MODE3  
REF  
01h  
24h  
01h  
00h  
00h  
05h  
00h  
00h  
00h  
00h  
00h  
40h  
FFh  
00h  
00h  
00h  
FFh  
00h  
CRCERR  
PGAL_ALM  
DR[4:0]  
PGAH_ALM REFL_ALM  
CONVRT  
DRDY  
CLOCK  
RESET  
Yes  
Yes  
FILTER[2:0]  
CHOP[1:0]  
GPIO_CON[3:0]  
STATENB CRCENB  
DELAY[3:0]  
GPIO_DIR[3:0]  
GPIO_DAT[3:0]  
PWDN  
0
SPITIM  
Yes  
0
0
REFENB  
OFC[7:0]  
RMUXP[1:0]  
RMUXN[1:0]  
OFCAL0  
OFCAL1  
OFCAL2  
FSCAL0  
FSCAL1  
FSCAL2  
IMUX  
OFC[15:8]  
OFC[23:16]  
FSC[7:0]  
FSC[15:8]  
FSC[23:16]  
IMUX2[3:0]  
IMAG2[3:0]  
IMUX1[3:0]  
IMAG1[3:0]  
IMAG  
RESERVED  
PGA  
00h  
0
Yes  
Yes  
Yes  
BYPASS  
0
0
0
0
0
0
GAIN[2:0]  
MUXN[3:0]  
BOCS[2:0]  
INPMUX  
INPBIAS  
MUXP[3:0]  
VBIAS  
BOCSP  
9.6.1 Device Identification (ID) Register (address = 00h) [reset = xxh]  
80. ID Register  
7
6
5
4
3
2
1
0
DEV_ID[3:0]  
REV_ID[3:0]  
NOTE: Reset values are device dependent  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
30. ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Device ID  
7:4  
DEV_ID[3:0]  
R
xh  
1000: ADS1261, ADS1261B  
1010: ADS1260B  
3:0  
REV_ID[3:0]  
R
xh  
Revision ID  
Note: Revision ID can change without notification  
版权 © 2018–2019, Texas Instruments Incorporated  
59  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.6.2 Device Status (STATUS) Register (address = 01h) [reset = 01h]  
81. STATUS Register  
7
6
5
4
3
2
1
0
LOCK  
R-0h  
CRCERR  
R/W-0h  
PGAL_ALM  
R-0h  
PGAH_ALM  
R-0h  
REFL_ALM  
R-0h  
DRDY  
R-0h  
CLOCK  
R-xh  
RESET  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
31. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LOCK  
R
0h  
Register Lock Status  
Indicates register lock status. Register writes are locked by the  
LOCK command and unlocked by the UNLOCK command.  
0: Register write not locked (default)  
1: Register write locked  
CRC Error  
6
5
CRCERR  
R/W  
0h  
0h  
Indicates that a CRC error is detected by the ADC. The CRC  
error bit remains set until cleared by the user.  
0: No CRC error  
1: CRC error  
PGAL_ALM  
R
PGA Low Alarm  
Indicates PGA output voltage is below the low limit. The alarm  
resets at the start of conversion cycles.  
0: No Alarm  
1: Alarm  
4
3
PGAH_ALM  
REFL_ALM  
R
R
0h  
0h  
PGA High Alarm  
Indicates PGA output voltage is above the high limit. The alarm  
resets at the start of conversion cycles.  
0: No Alarm  
1: Alarm  
Reference Low Alarm  
Indicates reference voltage is below the low limit. The alarm  
resets at the start of conversion cycles.  
0: No Alarm  
1: Alarm  
2
1
DRDY  
R
R
0h  
xh  
Data Ready  
Indicates conversion data ready.  
0: Conversion data not new since the previous read operation  
1: Conversion data new since the previous read operation  
Clock  
CLOCK  
Indicates internal or external clock mode. The ADC automatically  
selects the clock source.  
0: ADC clock is internal  
1: ADC clock is external  
0
RESET  
R/W  
1h  
Reset  
Indicates ADC reset. Clear the bit to detect next device reset.  
0: No reset  
1: Reset (default)  
60  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6.3 Mode 0 (MODE0) Register (address = 02h) [reset = 24h]  
82. MODE0 Register  
7
6
5
4
3
2
1
0
DR[4:0]  
R/W-4h  
FILTER[2:0]  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
32. MODE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
DR[4:0]  
R/W  
4h  
Data Rate  
Select the ADC data rate.  
00000: 2.5 SPS  
00001: 5 SPS  
00010: 10 SPS  
00011: 16.6 SPS  
00100: 20 SPS (default)  
00101: 50 SPS  
00110: 60 SPS  
00111: 100 SPS  
01000: 400 SPS  
01001: 1200 SPS  
01010: 2400 SPS  
01011: 4800 SPS  
01100: 7200 SPS  
01101: 14400 SPS  
01110: 19200 SPS  
01111: 25600 SPS  
10000 - 11111: 40000 SPS (fCLK = 10.24 MHz)  
2:0  
FILTER[2:0]  
R/W  
4h  
Digital Filter  
Select the digital filter mode.  
000: sinc1  
001: sinc2  
010: sinc3  
011: sinc4  
100: FIR (default)  
101: Reserved  
110: Reserved  
111: Reserved  
版权 © 2018–2019, Texas Instruments Incorporated  
61  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.6.4 Mode 1 (MODE1) Register (address = 03h) [reset = 01h]  
83. MODE1 Register  
7
0
6
5
4
3
2
1
0
CHOP[1:0]  
R/W-0h  
CONVRT  
R/W-0h  
DELAY[3:0]  
R/W-1h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
33. MODE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
0
R/W  
0h  
Reserved  
Always write 0  
6:5  
CHOP[1:0]  
R/W  
0h  
Chop and AC-Excitation Modes  
Select the Chop and AC-excitation modes.  
00: Normal mode (default)  
01: Chop mode  
10: 2-wire AC-excitation mode ( ADS1261 only)  
11: 4-wire AC-excitation mode ( ADS1261 only)  
ADC Conversion Mode  
4
CONVRT  
R/W  
R/W  
0h  
1h  
Select the ADC conversion mode.  
0: Continuous conversions (default)  
1: Pulse (one shot) conversion  
3:0  
DELAY[3:0]  
Conversion Start Delay  
Program the time delay at conversion start. Delay values are  
with fCLK = 7.3728 MHz.  
0000: 0 µs (not for 25600 SPS or 40000 SPS operation)  
0001: 50 µs (default)  
0010: 59 µs  
0011: 67 µs  
0100: 85 µs  
0101: 119 µs  
0110: 189 µs  
0111: 328 µs  
1000: 605 µs  
1001: 1.16 ms  
1010: 2.27 ms  
1011: 4.49 ms  
1100: 8.93 ms  
1101: 17.8 ms  
1110: Reserved  
1111: Reserved  
62  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6.5 Mode 2 (MODE2) Register (address = 04h) [reset = 00h]  
84. MODE2 Register  
7
6
5
4
3
2
1
0
GPIO_CON[3:0]  
R/W-0h  
GPIO_DIR[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
34. MODE2 Register Field Descriptions(1)  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO_CON[3]  
R/W  
0h  
GPIO3 Pin Connection  
Connect GPIO3 to analog input AIN5.  
0: GPIO3 not connected to AIN5 (default)  
1: GPIO3 connected to AIN5  
6
5
4
3
2
1
0
GPIO_CON[2]  
GPIO_CON[1]  
GPIO_CON[0]  
GPIO_DIR[3]  
GPIO_DIR[2]  
GPIO_DIR[1]  
GPIO_DIR[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO2 Pin Connection  
Connect GPIO2 to analog input AIN4.  
0: GPIO2 not connected to AIN4 (default)  
1: GPIO2 connected to AIN4  
GPIO1 Pin Connection  
Connect GPIO1 to analog input AIN3.  
0: GPIO1 not connected to AIN3 (default)  
1: GPIO1 connected to AIN3  
GPIO0 Pin Connection  
Connect GPIO0 to analog input AIN2  
0: GPIO0 not connected to AIN2 (default)  
1: GPIO0 connected to AIN2  
GPIO3 Pin Direction  
Configure GPIO3 as a GPIO input or GPIO output on AIN5.  
0: GPIO3 is an output (default)  
1: GPIO3 is an input  
GPIO2 Pin Direction  
Configure GPIO2 as a GPIO input or GPIO output on AIN4.  
0: GPIO2 is an output (default)  
1: GPIO2 is an input  
GPIO1 Pin Direction  
Configure GPIO1 as a GPIO input or GPIO output on AIN3.  
0: GPIO1 is an output (default)  
1: GPIO1 is an input  
GPIO0 Pin Direction  
Configure GPIO0 as a GPIO input or GPIO output on AIN2.  
0: GPIO0 is an output (default)  
1: GPIO0 is an input  
(1) ADS1261 and ADS1261B only.  
版权 © 2018–2019, Texas Instruments Incorporated  
63  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.6.6 Mode 3 (MODE3) Register (address = 05h) [reset = 00h]  
85. MODE3 Register  
7
6
5
4
3
2
1
0
PWDN  
R/W-0h  
STATENB  
R/W-0h  
CRCENB  
R/W-0h  
SPITIM  
R/W-0h  
GPIO_DAT[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
35. MODE3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWDN  
R/W  
0h  
Software Power-down Mode  
Select the software power-down mode.  
0: Normal mode (default)  
1: Software power-down mode  
STATUS Byte  
6
5
STATENB  
CRCENB  
R/W  
R/W  
0h  
0h  
Enable the Status byte for the conversion data read operation.  
0: No Status byte (default)  
1: Status byte enabled  
CRC Data Verification  
Enable CRC data verification.  
0: No CRC (default)  
1: CRC enabled  
4
3
2
1
0
SPITIM  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
SPI Auto-Reset Function  
Enable the SPI auto-reset function.  
0: SPI auto-reset disabled (default)  
1: SPI auto-reset enabled  
GPIO_DAT[3](1)  
GPIO_DAT[2](1)  
GPIO_DAT[1](1)  
GPIO_DAT[0](1)  
GPIO3 Data  
Read or write the GPIO3 data on AIN5.  
0: GPIO3 is low (default)  
1: GPIO3 is high  
GPIO2 Data  
Read or write the GPIO2 data on AIN4.  
0: GPIO2 is low (default)  
1: GPIO2 is high  
GPIO1 Data  
Read or write the GPIO1 data on AIN3.  
0: GPIO1 is low (default)  
1: GPIO1 is high  
GPIO0 Data  
Read or write the GPIO1 data on AIN3.  
0: GPIO0 is low (default)  
1: GPIO0 is high  
(1) ADS1261 and ADS1261B only.  
64  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6.7 Reference Configuration (REF) Register (address = 06h) [reset = 05h]  
86. REF Register  
7
0
6
0
5
0
4
3
2
1
0
REFENB  
R/W-0h  
RMUXP[1:0]  
R/W-1h  
RMUXN[1:0]  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
36. REF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
0
R/W  
0h  
Reserved  
Always write 0h  
4
REFENB  
R/W  
R/W  
0h  
1h  
Internal Reference Enable  
Enable the internal reference.  
0: Internal reference disabled (default)  
1: Internal reference enabled  
3:2  
RMUXP[1:0]  
Reference Positive Input  
Select the positive reference input.  
00: Internal reference positive  
01: AVDD internal (default)  
10: AIN0 external  
11: AIN2 external ( ADS1261 only)  
1:0  
RMUXN[1:0]  
R/W  
1h  
Reference Negative Input  
Select the negative reference input.  
00: Internal reference negative  
01: AVSS internal (default)  
10: AIN1 external  
11: AIN3 external ( ADS1261 only)  
版权 © 2018–2019, Texas Instruments Incorporated  
65  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.6.8 Offset Calibration (OFCALx) Registers (address = 07h, 08h, 09h) [reset = 00h, 00h, 00h]  
87. OFCAL0, OFCAL1, OFCAL2 Registers  
7
6
5
4
3
2
1
9
0
8
OFC[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
OFC[15:8]  
R/W-00h  
17  
16  
OFC[23:16]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
37. OFCAL0, OFCAL1, OFCAL2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
23:0  
OFC[23:0]  
R/W  
000000h  
Offset Calibration  
These three registers are the 24-bit offset calibration word. The  
offset calibration is two's complement format. The ADC subtracts  
the offset value from the conversion result before the full-scale  
operation.  
9.6.9 Full-Scale Calibration (FSCALx) Registers (address = 0Ah, 0Bh, 0Ch) [reset = 00h, 00h, 40h]  
88. FSCAL0, FSCAL1, FSCAL2 Registers  
7
6
5
4
3
2
1
9
0
8
FSC[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
FSC[15:8]  
R/W-00h  
17  
16  
FSC[23:16]  
R/W-40h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
38. FSCAL0, FSCAL1, FSCAL2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
23:0  
FSC[23:0]  
R/W  
400000h  
Full-Scale Calibration  
These three registers are the 24-bit full scale calibration word.  
The full-scale calibration is straight binary format. The ADC  
divides the register value by 400000h then multiplies the result  
with the conversion data. The scaling operation occurs after the  
offset operation.  
66  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6.10 IDAC Multiplexer (IMUX) Register (address = 0Dh) [reset = FFh]  
89. IMUX Register  
7
6
5
4
3
2
1
0
IMUX2[3:0]  
R/W-Fh  
IMUX1[3:0]  
R/W-Fh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
39. IMUX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
IMUX2[3:0]  
R/W  
Fh  
IDAC2 Output Multiplexer  
Select the IDAC2 analog input pin connection.  
0000: AIN0  
0001: AIN1  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5 ( ADS1261 only)  
0110: AIN6 ( ADS1261 only)  
0111: AIN7 ( ADS1261 only)  
1000: AIN8 ( ADS1261 only)  
1001: AIN9 ( ADS1261 only)  
1010: AINCOM  
1011: No connection  
1100: No connection  
1101: No connection  
1110: No connection  
1111: No connection (default)  
3:0  
IMUX1[3:0]  
R/W  
Fh  
IDAC1 Output Multiplexer  
Select the IDAC1 analog input pin connection.  
0000: AIN0  
0001: AIN1  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5 ( ADS1261 only)  
0110: AIN6 ( ADS1261 only)  
0111: AIN7 ( ADS1261 only)  
1000: AIN8 ( ADS1261 only)  
1001: AIN9 ( ADS1261 only)  
1010: AINCOM  
1011: No connection  
1100: No connection  
1101: No connection  
1110: No connection  
1111: No connection (default)  
版权 © 2018–2019, Texas Instruments Incorporated  
67  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.6.11 IDAC Magnitude (IMAG) Register (address = 0Eh) [reset = 00h]  
90. IMAG Register  
7
6
5
4
3
2
1
0
IMAG2[3:0]  
R/W-0h  
IMAG1[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
40. IMAG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
IMAG2[3:0]  
R/W  
0h  
IDAC2 Current Magnitude  
Select the magnitude of current source IDAC2.  
0000: Off (default)  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
1011: Off  
1100: Off  
1101: Off  
1110: Off  
1111: Off  
3:0  
IMAG1[3:0]  
R/W  
0h  
IDAC1 Current Magnitude  
Select the magnitude of current source IDAC1.  
0000: Off (default)  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
1011: Off  
1100: Off  
1101: Off  
1110: Off  
1111: Off  
68  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6.12 Reserved (RESERVED) Register (address = 0Fh) [reset = 00h]  
91. RESERVED Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
41. RESERVED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
0
R
0h  
Reserved  
These bits are read only and always return 0  
9.6.13 PGA Configuration (PGA) Register (address = 10h) [reset = 00h]  
92. PGA Register  
7
6
0
5
0
4
0
3
0
2
1
0
BYPASS  
R/W-0h  
GAIN[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
42. PGA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BYPASS  
R/W  
0h  
PGA Bypass Mode  
Select the PGA mode.  
0: PGA mode (default)  
1: PGA bypass  
Reserved  
6:3  
2:0  
0
R/W  
R/W  
0h  
0h  
Always write 0  
Gain  
GAIN[2:0]  
Select the gain.  
000: 1 (default)  
001: 2  
010: 4  
011: 8  
100: 16  
101: 32  
110: 64  
111: 128  
版权 © 2018–2019, Texas Instruments Incorporated  
69  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
9.6.14 Input Multiplexer (INPMUX) Register (address = 11h) [reset = FFh]  
93. INPMUX Register  
7
6
5
4
3
2
1
0
MUXP[3:0]  
R/W-Fh  
MUXN[3:0]  
R/W-Fh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
43. INPMUX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MUXP[3:0]  
R/W  
Fh  
Positive Input Multiplexer  
Select the positive multiplexer input.  
0000: AINCOM  
0001: AIN0  
0010: AIN1  
0011: AIN2  
0100: AIN3  
0101: AIN4  
0110: AIN5 ( ADS1261 only)  
0111: AIN6 ( ADS1261 only)  
1000: AIN7 ( ADS1261 only)  
1001: AIN8 ( ADS1261 only)  
1010: AIN9 ( ADS1261 only)  
1011: Internal temperature sensor positive  
1100: Internal (AVDD - AVSS) / 4 positive  
1101: Internal (DVDD / 4) positive  
1110: Inputs open  
1111: Internal connection to VCOM (default)  
3:0  
MUXN[3:0]  
R/W  
Fh  
Negative Input Multiplexer  
Select the negative multiplexer input.  
0000: AINCOM  
0001: AIN0  
0010: AIN1  
0011: AIN2  
0100: AIN3  
0101: AIN4  
0110: AIN5 ( ADS1261 only)  
0111: AIN6 ( ADS1261 only)  
1000: AIN7 ( ADS1261 only)  
1001: AIN8 ( ADS1261 only)  
1010: AIN9 ( ADS1261 only)  
1011: Internal temperature sensor negative  
1100: Internal (AVDD - AVSS) / 4 negative  
1101: Internal (DVDD / 4) negative  
1110: All inputs open  
1111: Internal connection to VCOM (default)  
70  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
9.6.15 Input Bias (INPBIAS) Register (address = 12h) [reset = 00h]  
94. INPBIAS Register  
7
0
6
0
5
0
4
3
2
1
0
VBIAS  
R/W-0h  
BOCSP  
R/W-0h  
BOCS[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
44. INPBIAS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
0
R/W  
0h  
Reserved  
Always write 0  
4
3
VBIAS  
R/W  
R/W  
R/W  
0h  
0h  
0h  
VBIAS  
Select the VBIAS connection to the AINCOM pin.  
0: VBIAS disabled (default)  
1: VBIAS enabled  
BOCSP  
BOCS[2:0]  
Burn-Out Current Source Polarity  
Select the burn-out current source polarity.  
0: Pull-up mode (default)  
1: Pull-down mode  
2:0  
Burn-Out Current Source Magnitude  
Select the burn-out current source magnitude.  
000: Off (default)  
001: 50 nA  
010: 200 nA  
011: 1 µA  
100: 10 µA  
101: Reserved  
110: Reserved  
111: Reserved  
版权 © 2018–2019, Texas Instruments Incorporated  
71  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Input Range  
In PGA mode, the input voltage must be within the specified input range for linear operation. The following  
exercise shows how to use 公式 5 to verify the input voltage is within specification. The exercise is a  
thermocouple with the negative lead connected to AINCOM and the level-shift voltage enabled (2.5 V). The gain  
factor = 32 and the ADC is powered by a single 5-V power supply. The summary of conditions are:  
VAINN = Negative absolute input voltage = 2.5 V  
VAINP = Positive absolute input voltage = 2.56 V  
VIN = Differential input voltage = 60 mV  
AVDD = 4.75 V (worst-case minimum)  
AVSS = 0 V  
Gain = 32  
Evaluation of the equation results in:  
1.23 V < 2.5 V and 2.56 V < 3.52 V  
The inequality is satisfied, therefore the absolute input voltages are within the specified PGA input range. The  
input requirement can also be verified by measuring the PGA output voltages (pins CAPP and CAPN) with a  
voltmeter. Check that both outputs are within the range: AVSS + 0.3 V < V(CAPP) and V(CAPN) < AVDD – 0.3 V,  
under the worst-case input and power-supply conditions.  
10.1.2 Input Overload  
Observe the input overvoltage precautions as outlined in the ESD Diodes section. If an overvoltage condition  
occurs on an unused channel, the overvoltage channel may crosstalk to the measurement channel. One solution  
is to externally clamp the inputs with low-forward voltage diodes as shown in 95. The external diodes divert  
the overvoltage current around the ADC inputs to the power supply and ground. Be aware of the reverse leakage  
current of the Schottky diodes that may lead to measurement errors.  
IFAULT  
5 V  
Schottky  
Diode  
AVDD  
RLIM  
AINx  
ADC  
AVSS œ 0.3 V > VCLAMP > AVDD + 0.3 V  
Schottky  
Diode  
AVSS  
IFAULT  
95. External Diode Clamps  
72  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Application Information (接下页)  
10.1.3 Burn-Out Current Source  
When using the burn-out current sources, be aware of the offset error caused by the currents flowing through  
impedances in the input path, including the multiplexer resistance RMUX), external filter resistors and the internal  
impedance of the sensor REXT), as shown in 96. In many cases, the offset error can be calibrated. Be aware  
that the combination of chop mode and high data rates increases the input current to the PGA. The increased  
input current can affect the accuracy of the burn-out current sources.  
AVDD  
IBOCS  
REXT  
RMUX  
AINx  
+
VSENSOR  
VIN = VSENSOR + VOFFSET  
PGA  
œ
REXT  
RMUX  
AINx  
IBOCS  
AVSS  
96. Burn-Out Current Source Offset Voltage Error  
10.1.4 Unused Inputs and Outputs  
Analog inputs:  
To minimize input leakage of the measurement channel, tie unused inputs to mid-supply voltage (AVDD +  
AVSS) / 2 or to AVDD.  
Digital I/O:  
Not all the digital I/Os may be needed to operate the ADC. Be sure not to float both used and unused digital  
inputs, including during power-down mode. The following is a summary of the optional digital I/Os connection:  
CS: Tie CS low to permanently enable the serial interface.  
CLKIN: Tie CLKIN to DGND to permanently operate the ADC with the internal oscillator.  
START: Tie START to DGND to control conversions by command. Tie START to DVDD to permanently  
free-run conversions (Continuous-conversion mode only)  
RESET: Tie RESET to DVDD if not using hardware reset. The ADC is reset at power-on. The ADC is also  
reset by the RESET command.  
PWDN: Tie PWDN to DVDD if not using the hardware power-down mode. The ADC can be powered down  
by software.  
DRDY: The functionality of the DRDY output is also provided by the dual-mode DOUT/DRDY pin. The  
DOUT/DRDY output is active when CS is low. Data ready is also determined by software polling. Because  
the conversion data are buffered, data can be read at any time without the need to synchronize to data  
ready.  
版权 © 2018–2019, Texas Instruments Incorporated  
73  
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Application Information (接下页)  
10.1.5 AC-Excitation  
97 shows a example of an AC-excited bridge measurement system. The example shown omits optional filter  
components for clarity. The transistors switch the bridge excitation voltage by drive signals provided by the GPIO  
drivers through the analog input pins. The timing of the drive signals are synchronized to the ADC conversions.  
The drive signals do not overlap in order to avoid bridge commutation during the switching phase of the drive  
signal. The transistors gate resistors bias the transistors off at power-on. At host start-up, the host configures the  
ADC to the AC-excitation mode. See 7 for timing of the drive signals.  
5 V  
AVDD  
5 V  
ADS1261  
100 kΩ  
AIN2  
(ACX1)  
AIN5  
(ACX2)  
100 kΩ  
AIN0  
SEN +  
(REFP0)  
AIN6  
AIN7  
SIG +  
SIG -  
(AINP)  
(AINN)  
SEN -  
AIN1  
(REFN0)  
5 V  
100 kΩ  
AIN3  
AIN4  
(ACX2)  
(ACX1)  
100 kΩ  
AVSS  
97. 4-Wire Drive, AC-Excitation Example  
The recommended sequence AC-excitation configuration is as follows:  
1. Stop conversions by taking the START pin low, or by control of conversions in software mode; send the  
STOP command  
2. Program the input and reference MUX, gain, data rata, filter mode and other configurations as needed  
3. Program the 2-wire or 4-wire AC-excitation mode  
4. Program the 2 GPIOs or 4 GPIOs internal connection to the analog input pins  
5. Program the 2 GPIOs or 4 GPIOs as outputs to enable drive signals at the analog input pins.  
Start the conversions. Adjust the time delay parameter as necessary based on the time constant of the input and  
reference filters.  
74  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
Application Information (接下页)  
10.1.6 Serial Interface and Digital Connections  
98 shows an example of the digital connections from a host µC to the ADC. Not all I/O connections are  
necessary for basic ADC operation; see the Unused Inputs and Outputs section. Impedance-matching resistors  
in series with the I/O PCB traces help reduce overshoot and ringing, and is particularly helpful over long trace  
runs.  
ADC  
Optional  
Clock  
47  
CLKIN  
Source  
Host µC  
47 ꢀ  
47 ꢀ  
PWDN  
RESET  
Port Pin  
Port Pin  
Port Pin  
47 ꢀ  
47 ꢀ  
47 ꢀ  
47 ꢀ  
START  
CS  
Port Pin  
(CS)  
SCLK  
DIN  
SCLK  
MOSI  
MISO  
IRQ;  
DOUT  
/DRDY  
47 ꢀ  
47 ꢀ  
DRDY  
98. Serial Interface and Digital I/O Connections  
版权 © 2018–2019, Texas Instruments Incorporated  
75  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
10.2 Typical Application  
99 shows a fault-protected, 3-wire RTD application with hardware-based, lead-wire compensation. Two  
current sources are used together to compensate the RTD lead wire resistance. One current source (IDAC1)  
provides excitation to the RTD element through RLEAD1. The reference voltage of the ADC is derived directly from  
this current by resistor RREF. The second current source cancels lead-wire resistance by generating a voltage  
drop on lead-wire resistance RLEAD2 equal to the voltage drop of RLEAD1. Because the RRTD signal voltage is  
measured differentially via inputs AIN2 and AIN3, the voltages across the lead wire resistance cancel. Resistor  
RBIAS level-shifts the RTD signal voltage to within the ADC input range. The current sources route to the RTD  
element through low VF diodes to provide input fault protection.  
5 V  
3.3 V  
1 µF  
10 mF  
0.1 mF  
1 µF  
DVDD  
AVDD  
BYPASS  
IDAC1  
AVDD  
CAPP  
CAPN  
IIDAC1  
AINCOM  
(IDAC1)  
ADS1260  
ADS1261  
4.7 nF  
C0G  
500 A  
CCM4  
RF4  
(REFP0)  
(REFN0)  
AIN0  
AIN1  
REFOUT  
Internal  
Reference  
RREF  
Reference Mux  
CDIF2  
RF3  
10 mF  
CCM3  
Ref  
Mon  
Buf  
3-Wire RTD  
RLEAD1  
START  
RESET  
PWDN  
CCM2  
RF2  
AIN2  
AIN3  
CS  
Input  
Mux  
Serial  
Interface  
and  
Digital  
Filter  
CDIF1  
PGA  
RRTD  
ADC  
DIN  
RLEAD2  
RF1  
DOUT/DRDY  
SCLK  
Control  
CCM1  
DRDY  
Signal  
Mon  
IDAC2  
AVDD  
IIDAC2  
(IDAC2)  
AIN4  
Clock  
Mux  
Internal  
Oscillator  
CLKIN  
500 A  
AVSS  
DGND  
RLEAD3  
IIDAC1 + IIDAC2  
RBIAS  
99. RTD Element With 3-Wire Lead Resistance Compensation  
10.2.1 Design Requirements  
The key considerations in the design of a 3-wire RTD circuit are the accuracy, stability and noise of the  
measurement, accuracy of the lead-wire compensation and self-heating of the sensor. Stability of the  
measurement is determined by the offset and gain drift of the ADC and by the drift of the external reference  
resistor. Measurement noise is determined by the ADC sample rate and by the digital filter settings. These  
parameters are not summarized here. 45 summarizes the basic design goals for a 3-wire Pt100 RTD.  
45. Design Goals  
DESIGN PARAMETER  
RTD sensor type  
VALUE  
3-wire Pt100  
20 Ω to 400 Ω  
0 Ω to 10 Ω  
< 1 mW  
RTD resistance range  
RTD lead resistance range  
RTD self heating  
76  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
46 summarize the parameters of the detailed design procedure that follows.  
46. Design Parameters  
DESIGN PARAMETER  
DESIGN VALUE  
500 µA  
0.1 mW  
0.20 V  
IIDAC  
IDAC current  
PRTD  
VRTD  
Gain  
RTD power dissipation  
RTD input voltage  
ADC gain  
8
VREF  
RREF  
RBIAS  
VRTDN  
VRTDP  
VIDAC1  
Reference voltage (design target allows for 10% overrange)  
Reference resistor (senses the IDAC current to generate VREF  
Bias resistor (provides the RTD level-shift voltage)  
RTD negative input voltage  
1.76 V  
)
3.52 kΩ  
1.10 kΩ  
1.1 V  
RTD positive input voltage  
1.31 V  
IDAC1 loop voltage  
3.37 V  
10.2.2 Detailed Design Procedure  
IDAC1 current flows through reference resistor, RREF, which generates the ADC reference voltage, VREF = IIDAC1  
·
RREF. IDAC1 current also flows through the RTD element. Since the same current flows through RREF and the  
RTD element, the RTD measurement is ratiometric, which means the drift and error of the current source are  
cancelled. Therefore, the measurement accuracy is solely dependent on the tolerance of RREF and on ADC gain  
and offset errors. The errors are calibrated by host software control using shorted-input calibration and using a  
400 Ω precision resistor for full-scale calibration.  
The current of IDAC2 is programmed to the same value as IDAC1 and is connected to RLEAD2. IDAC2 generates  
an equal voltage drop across RLEAD1 and IDAC1. The accuracy of lead-wire compensation depends on the  
matching error between IDAC1 to IDAC2.  
Using RRTD = 400 Ω, IDAC current = 500 µA, and gain = 8, the minimum ADC reference voltage requirement  
calculates to 1.6 V. To provide 10% design margin, RREF calculates to 3.52 kΩ (1.76 V / 500 µA). 500 µA is  
selected to minimize heating of the sensor.  
Resistor RBIAS level-shifts the RTD voltage to meet the input range requirement of the ADC. This voltage is VRTDN  
and the low limit is calculated by 公式 8. The VRTDN low limit is 1 V.  
AVSS + 0.3 V + VRTD · (Gain – 1) / 2 VRTDN  
(8)  
Using 10% design margin, RBIAS calculates to 1.1 kΩ = 1.1 V / (2 · 500 µA). The next step is to verify the positive  
RTD voltage (VRTDP) does not exceed the maximum input range, as shown in 公式 9:  
Maximum VRTDP AVDD – 0.3 V – VRTD · (Gain – 1) / 2  
(9)  
Evaluation of the equation results in the VRTDP high limit = 3.75 V. Calculate the actual VRTDP input voltage by 公  
10:  
Actual VRTDP = VRTDN + IIDAC1 · ( RRTD + 2 · RLEAD) = 1.1 V + 500 µA · (400 Ω + 20 Ω) = 1.31 V  
(10)  
VRTDN = 1.1 V and VRTDP = 1.31 V satisfy the negative and positive input voltage requirements of the ADC,  
respectively.  
Verify the burden voltage of current source IDAC1 is below the specified compliance range. The burden voltage  
is the sum of voltages in the IDAC1 loop as calculated by VRTDP+ (IDAC1 · RREF) + VD ( VD= external diode  
voltage). The result is 3.37 V, which meets the specified compliance voltage of the current source.  
External filter components RF1, RF2, CDIF1, CCM1, CCM2) and RF3, RF4, CDIF2, CCM3, and CCM4) filter the signal and  
reference inputs of the ADC. The filters remove both differential and common-mode noise. The input signal  
differential filter cutoff frequency as calculated by 公式 11:  
fDIF = 1 / [2π · RF1 + RF2) · RDIF1 + CM1|| CM2)]  
(11)  
The Input signal common-mode filter is calculated by 公式 12:  
fCM = 1 / (2π · RF1 · CM1) = 1 / (2π · RF2 · CM2  
)
(12)  
版权 © 2018–2019, Texas Instruments Incorporated  
77  
 
 
 
 
 
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Component mismatch in the common-mode filter converts common-mode noise into differential noise. Use a  
differential capacitor CDIF1 10× higher value than the common-mode capacitors, CCM1 and CCM2 to minimize the  
effects of mismatch. The recommended range of input resistors is 1 kΩ to 10 kΩ; increasing the resistance  
beyond 10 kΩ beyond can compromise noise and drift performance of the ADC. Use high-quality C0G ceramics  
or film-type capacitors. For consistent noise performance across the full RTD temperature range, match the  
corner frequencies of the input and reference filters. Detailed information is found in the RTD Ratiometric  
Measurements and Filtering Using the ADS1148 and ADS1248 Family of Devices application report.  
10.2.3 Application Curves  
100 shows the resistance measurement results. The measurements are taken at TA = 25°C. The data are  
taken using a precision resistor simulator with a 3-wire connection in place of the RTD. A system offset  
calibration is performed using shorted inputs. A system gain calibration is performed using a 390-Ω precision  
resistor. The measurement data are in ohms and do not include the error of the RTD sensor. The measured  
resistance error is < ±0.02 Ω over the 20-Ω to 400-Ω range.  
0.1  
0.05  
0
-0.05  
-0.1  
0
50  
100  
150  
200  
250  
300  
350  
400  
RTD Value (W)  
100. 3-Wire RTD Example Measurement Results  
78  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
10.3 Initialization Setup  
101 shows a general configuration and measurement procedure.  
Power On  
/* These pins must be high for operation  
Set RESET and PWDN high  
Y
External clock?  
N
Apply clock to CLKIN  
/* ADC automatically detects external clock  
N
/* DRDY is held low at power-on until ready for communication  
/* If START pin is low, conversions are stopped  
DRDY pin high?  
Y
Y
START high?  
DRDY pulses at 20 Hz  
N
Set START low or  
STOP command  
/* For simplicity, stop conversions before register configuration  
/* Write register data, CRC verfication is optional  
/* Readback register data for verification  
DRDY not pulsing  
Configure the ADC  
Verify registers  
Wait for reference  
voltage to settle  
/* The internal reference requires time to settle after power-on  
/* Start or restart new ADC conversion  
Set START pin high  
or START command  
N
/* Read data at a rate faster than  
the data rate to avoid missed data  
Hardware DRDY?  
Y
Read STATUS register  
N
/* New data when DRDY bit =1  
DRDY bit asserted ?  
N
DRDY pin low ?  
Y
Y
Read Data  
N
Change ADC  
settings ?  
Y
101. ADC Configuration and Measurement Procedure  
版权 © 2018–2019, Texas Instruments Incorporated  
79  
 
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
The ADC requires an analog power supply (AVDD, AVSS) and digital power supply (DVDD). The analog power  
supply can be bipolar (AVDD = +2.5 V and AVSS = –2.5 V) or unipolar (AVDD = 5 V and AVSS = DGND). The  
digital supply range is 2.7 V to 5.25 V. DVDD powers the ADC core by use of an internal regulator. DVDD also  
sets the digital I/O voltage. Keep in mind that the GPIO I/O voltages are AVDD and AVSS. Voltage ripple  
produced by switch-mode power supplies may interfere with the ADC conversions. Use low-dropout regulators  
(LDOs) to reduce switch-mode power supply ripple.  
11.1 Power-Supply Decoupling  
Good power-supply decoupling is important in order to achieve optimum performance. Power supplies must be  
decoupled close to the power supply pins using short, direct connections to ground. For the analog supply, place  
0.1-µF and 10-µF capacitors between AVDD and AVSS and 0.1-µF capacitors from each supply to ground.  
Connect a 1-µF capacitor from DVDD to the ground plane. Connect a 1-µF capacitor from BYPASS to the  
ground plane.  
11.2 Analog Power-Supply Clamp  
It is important to evaluate circumstances when an input signal is present with the ADC, both powered and  
unpowered. When the input signal exceeds the power-supply voltage, it is possible to backdrive the analog  
power-supply voltage with the input signal through a conduction path of the internal ESD diodes. Backdriving the  
ADC power supply can also occur when the power-supply is on. The backdriven current path is illustrated in 图  
102. Depending on how the power supply responds during a backdriven condition, it is possible to exceed the  
maximum rated ADC supply voltage. The ADC voltage must not be exceeded at all times. One solution is to  
clamp the analog supply to safe voltage using an external zener diode.  
ADC supply On or Off  
IFAULT  
+V  
+5 V Reg  
AVDD  
RLIMIT  
ESD Diode  
AINx  
Optional  
+
6-V Zener Diode  
ADC  
Input Voltage  
œ
AINx  
IFAULT  
ESD Diode  
IFAULT  
AVSS  
102. Analog Power-Supply Clamp  
11.3 Power-Supply Sequencing  
The power supplies can be sequenced in any order, but do not allow the analog or digital inputs to exceed the  
respective analog or digital power-supplies without external limits of the possible input fault currents.  
80  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
12 Layout  
Good layout practices are crucial to realize the full-performance of the ADC. Poor grounding can quickly degrade  
the noise performance. The following layout guidelines help provide the best results.  
12.1 Layout Guidelines  
For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal traces  
on this layer. However, depending on restrictions imposed by specific end equipment, a dedicated ground plane  
may not be practical. If ground plane separation is necessary, make a direct connection of the planes at the  
ADC. Do not connect individual ground planes at multiple locations because this configuration creates ground  
loops.  
Route digital traces away from the CAPP and CAPN pins, away from the REFOUT pin, and away from all analog  
inputs and associated components in order to minimize interference.  
Avoid long traces on DOUT/DRDY, because high capacitance on this pin can lead to increase of ADC noise  
levels. Use a series resistor or a buffer if long traces are used.  
The internal reference output return shares the same pin as the AVSS power supply. To minimize coupling  
between the power supply and reference-return trace, route the traces separately; ideally, as a star connection to  
the AVSS pin.  
Use C0G capacitors on the analog inputs and for the CAPP to CAPN capacitor. Use ceramic capacitors (for  
example, X7R grade) for the power supply decoupling capacitors. High-K capacitors (Y5V) are not  
recommended. The REFOUT pin requires a 10-µF capacitor and can be either ceramic or tantalum type. Place  
the required capacitors as close as possible to the device pins using short, direct traces. For optimum  
performance, use low-impedance connections on the ground-side connections of the bypass capacitors.  
When applying an external clock, be sure the clock is free of overshoot and glitches. A source-termination  
resistor placed at the clock buffer often helps reduce overshoot. Glitches present on the clock input can lead to  
noise within the conversion data.  
12.2 Layout Example  
103 is an example layout of the ADS1261, requiring a minimum of three PCB layers. The example circuit is  
shown with single supply operation (AVSS = DGND). In this example, the inner layer is dedicated to the ground  
plane and the outer layers are used for signal and power traces. If a four-layer PCB is used, dedicate the  
additional inner layer as the power plane. In this example, the ADC is oriented in such a way to minimize  
crossover of the analog and digital signal traces.  
版权 © 2018–2019, Texas Instruments Incorporated  
81  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
Layout Example (接下页)  
ADC Clock Options:  
Option 1: To enable INTERNAL  
oscillator, tie CLKIN to  
GND  
C0G  
DVDD  
Supply  
(Differential Input Pair)  
Option 2: Connect EXTERNAL  
clock source to CLKIN  
1 µF  
C0G  
1 µF  
(Leave NC pins floating)  
16  
15  
AIN7 25  
(Differential Input Pair)  
AIN6 26  
DGND  
BYPASS  
14 DOUT/DRDY  
DRDY  
AIN5 27  
(Differential Input Pair)  
ADS1261  
13  
AIN4 28  
C0G  
C0G  
C0G  
12 DIN  
AIN3 29  
(Differential Input Pair)  
To  
Analog  
Circuitry  
Connect thermal pad to  
AVSS  
11 SCLK  
AIN2 30  
CS  
10  
9
AIN1 31  
(Differential Input Pair)  
AIN0 32  
START  
To  
MCU  
4.7 nF  
C0G  
(0805 shown)  
(0805 shown)  
10 µF  
10 µF  
1 µF  
AVDD  
Supply  
(0603 shown)  
(9-mil traces shown)  
Reference  
Output  
For Unipolar Supply,  
AVSS = GND  
103. ADS1261 Layout Example  
82  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)ADS1261 ADS1235 评估模块用户指南  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
47. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
ADS1260  
ADS1261  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018–2019, Texas Instruments Incorporated  
83  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
84  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
2X  
SYMM  
33  
3.5  
0.3  
32X  
0.2  
24  
0.1  
C A B  
1
0.05  
C
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
版权 © 2018–2019, Texas Instruments Incorporated  
85  
ADS1260, ADS1261  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223442/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
86  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1260, ADS1261  
www.ti.com.cn  
ZHCSHW1C MARCH 2018REVISED JANUARY 2019  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2018–2019, Texas Instruments Incorporated  
87  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1260BIRHBR  
ADS1260BIRHBT  
ADS1261BIRHBR  
ADS1261BIRHBT  
ADS1261IRHBR  
ADS1261IRHBT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
32  
32  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ADS  
1260B  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RHB  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ADS  
1260B  
RHB  
ADS  
1261B  
RHB  
ADS  
1261B  
RHB  
ADS  
1261  
RHB  
ADS  
1261  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1260BIRHBR  
ADS1260BIRHBT  
ADS1261BIRHBR  
ADS1261BIRHBT  
ADS1261IRHBR  
ADS1261IRHBT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS1260BIRHBR  
ADS1260BIRHBT  
ADS1261BIRHBR  
ADS1261BIRHBT  
ADS1261IRHBR  
ADS1261IRHBT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY