ADS1262IPWR [TI]

适用于工厂自动化且具有 PGA 和电压基准的 32 位 38kSPS 10 通道 Δ-Σ ADC | PW | 28 | -40 to 125;
ADS1262IPWR
型号: ADS1262IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于工厂自动化且具有 PGA 和电压基准的 32 位 38kSPS 10 通道 Δ-Σ ADC | PW | 28 | -40 to 125

文件: 总136页 (文件大小:4201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
具有可编程增益放大(PGA) 和电压基准ADS126x 32 位、38kSPS、精密模  
数转换(ADC)  
1 特性  
3 说明  
32 位精Δ-ΣADC  
24 位辅Δ-ΣADC (ADS1263)  
• 数据速率2.5SPS 38400SPS  
• 差分输入CMOS PGA  
11 个多功能模拟输入  
• 高精度架构:  
ADS1262 ADS1263 (ADS126x) 是具有集成 PGA、  
电压基准和内部故障监视器的低噪声、低漂移、  
38.4kSPS、Δ-Σ ADCADS1263 集成了一个 24 位  
Δ-ΣADC适用于后台测量。这种支持传感器的  
ADC 提供了一套完备的高精度、单芯片测量解决方  
可满足要求极为严苛的传感器应用需求其中包括  
称重秤、应变计传感器、热电偶和电阻式温度器件  
(RTD)。  
– 温漂1nV/°C  
– 增益漂移0.5ppm/°C  
– 噪声7nVRMS2.5SPS= 32)  
– 线性度3ppm  
ADC 由低噪声 CMOS PGA增益范围为 1 32、  
Δ-Σ 调制器以及可编程数字滤波器组成。模拟前端  
(AFE) 非常灵活其包含两个传感器激励电流源非常  
适合直接进RTD 测量。  
2.5V 内部电压基准:  
– 温漂2ppm/°C  
50Hz 60Hz 抑制  
• 单周期稳定转换  
• 双传感器激励电流源  
• 内部故障监测器  
单周期稳定数字滤波器可更大限度提高多输入转换吞吐  
同时能够为 50Hz 60Hz 线路周期干扰提供  
130dB 抑制。  
• 内ADC 测试信号  
8 个通用输入/输出  
ADS1262 ADS1263 的引脚和功能彼此兼容。这两  
款器件均采28 TSSOP 封装,  
并且额定工作温度范围均-40°C +125°C。  
2 应用  
器件信息(1)  
• 工厂自动化和控制:  
封装尺寸标称值)  
器件型号  
ADS126x  
封装  
模拟输入模块  
温度控制器  
称重模块  
TSSOP (28)  
9.70mm x 4.40mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
• 仪表:  
过程分析  
实验室和现场仪表  
称重秤  
+5 V  
0.25  
+3.3 V  
Input Range = ê78 mV  
Data Rate = 20 SPS  
Noise = 0.16 mVP-P  
REFOUT  
AVDD  
DVDD  
0.2  
2.5-V Ref  
ADS1262  
ADS1263  
Ref  
Mux  
0.15  
+Exc  
+Sen  
+Sig  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
Dual Sensor  
Excitation  
Ref  
Alarm  
0.1  
0.05  
0
œSig  
Buf  
START  
RESET/PWDN  
CS  
œSen  
Sensor Test  
Bridge  
AIN5  
Serial  
Interface  
and  
32-Bit  
ûADC  
Digital  
Filter  
AIN6  
AIN7  
AIN8  
DIN  
PGA  
œExc  
DOUT/DRDY  
Control  
Input  
Mux  
SCLK  
DRDY  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
Signal  
Alarm  
AIN9  
Pt 100  
AINCOM  
GPIO  
Internal  
Oscillator  
24-Bit  
ûADC  
Digital  
Filter  
PGA  
Level Shift  
Temp Sensor  
Test V  
XTAL2  
ADS1263 Only  
Clock  
Mux  
XTAL1/CLKIN  
DGND  
AVSS  
0
1
2
3
4
5
Time (s)  
6
7
8
9
10  
温度补偿电桥测量  
D017  
ADC 转换噪声  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS661  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
8.8 Noise Performance................................................... 25  
9 Detailed Description......................................................30  
9.1 Overview...................................................................30  
9.2 Functional Block Diagram.........................................31  
9.3 Feature Description...................................................32  
9.4 Device Functional Modes..........................................62  
9.5 Programming............................................................ 86  
9.6 Register Maps...........................................................89  
10 Application and Implementation..............................107  
10.1 Application Information......................................... 108  
10.2 Typical Application................................................ 115  
10.3 What To Do and What Not To Do..........................120  
10.4 Initialization Setup.................................................121  
11 Power Supply Recommendations............................123  
11.1 Power-Supply Decoupling.....................................123  
11.2 Analog Power-Supply Clamp................................ 124  
11.3 Power-Supply Sequencing....................................124  
12 Layout.........................................................................124  
12.1 Layout Guidelines................................................. 124  
12.2 Layout Example.................................................... 126  
13 Device and Documentation Support........................127  
13.1 接收文档更新通知................................................. 127  
13.2 支持资源................................................................127  
13.3 Trademarks...........................................................127  
13.4 Electrostatic Discharge Caution............................127  
13.5 Glossary................................................................127  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................4  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Timing Requirements: Serial Interface......................10  
7.7 Switching Characteristics: Serial Interface................10  
7.8 Timing Diagrams.......................................................10  
7.9 Typical Characteristics..............................................12  
8 Parameter Measurement Information..........................23  
8.1 Offset Temperature Drift Measurement.....................23  
8.2 Gain Temperature Drift Measurement.......................23  
8.3 Common-Mode Rejection Ratio Measurement.........23  
8.4 Power-Supply Rejection Ratio Measurement........... 24  
8.5 Crosstalk Measurement (ADS1263)......................... 24  
8.6 Reference-Voltage Temperature-Drift  
Measurement.............................................................. 24  
8.7 Reference-Voltage Thermal-Hysteresis  
Measurement.............................................................. 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2015) to Revision C (May 2021)  
Page  
更新了整个文档中的表格、图和交叉参考的编号格........................................................................................1  
• 添加了指向部分的链接................................................................................................................................1  
Changed Functional Block Diagram to correct XTAL1/CLKIN pin name.......................................................... 31  
Added discussion to Internal Reference section regarding 10 μF (max) REFOUT capacitor ability to  
decrease reference noise................................................................................................................................. 42  
Changed IDAC Block Diagram and text to include 2500 μA setting............................................................... 50  
Added last paragraph to Pulse Conversion Mode section to explain operation in chop mode.........................63  
Changed EBh to AFh in the example checksum computation in the Checksum Mode section....................... 73  
Changed text in GPIO Data Register section regarding GPIO data read when programmed as an output...104  
Changed calculation of VREFMIN to use gain = 8 in Detailed Design Procedure application section...............116  
Changed title of What To Do and What Not To Do from Do's and Don'ts ......................................................120  
Changes from Revision A (May 2015) to Revision B (July 2015)  
Page  
ADS1263 从产品预发布更改为量产数据并在整个数据表中添加ADS1263 ADC2 的文本和规格.......1  
• 更改了整个数据表中的文本使之更加清晰....................................................................................................... 1  
Added condition line to Absolute Maximum Ratings table..................................................................................5  
Added Crosstalk section to Electrical Characteristics table................................................................................7  
Added 7-32 ..................................................................................................................................................12  
Added 7-36 ..................................................................................................................................................12  
Changed legend in 7-45 ..............................................................................................................................12  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
Added missing gain term in FSR definition of 方程8 ...................................................................................25  
Changed text in fourth paragraph of Noise Performance section to clarify conditions to achieve maximum  
ENOB................................................................................................................................................................25  
Changed bit names from PGAH and PGAL to PGAH_ALM and PGAL_ALM, respectively, in PGA Absolute  
Output-Voltage Monitor section........................................................................................................................ 40  
Changed 9-12 to show correct name of bit 4............................................................................................... 41  
Changed RMUX to RMUXP in second paragraph of ADC Reference Voltage section.................................... 41  
Changed text in last paragraph of ADC Reference Voltage section to show correct name of bit 4..................41  
Changed text in External Reference section to clarify external reference inputs, polarity reversal switch,  
reference input current, and external reference buffer..................................................................................... 42  
Changed text in Power-Supply Reference section to clarify use of power-supply reference in critical  
applications.......................................................................................................................................................42  
Added ADC1 Modulator section....................................................................................................................... 42  
Changed text in last paragraph of Sensor-Excitation Current Sources (IDAC1 and IDAC2) section to clarify  
settling time in IDAC rotation mode.................................................................................................................. 50  
Changed text in General-Purpose Input/Output (GPIO) section regarding GPIO data readback when  
programmed as an output.................................................................................................................................53  
Changed 9-27 ............................................................................................................................................. 53  
Changed TSIGP and TSIGN to TDACP and TDACN, respectively, in the last paragraph of the Test DAC  
(TDAC) section................................................................................................................................................. 54  
Changed text in Test DAC (TDAC) section allowing for any common-mode value instead of 0 V................... 54  
Added note (1) to 9-30 ................................................................................................................................ 58  
Changed th(DRSP) value of 16 from max to min.................................................................................................62  
Added stop-start sequence text to restart conversions in Continuous Conversion Mode section....................62  
Deleted software polling text from Data Ready ( DRDY) section..................................................................... 68  
Added Conversion Data Software Polling section............................................................................................ 68  
Added text to clarify data reset at conversion restart........................................................................................69  
Added text to Read Data Direct (ADC1) section to clarify conversion restart...................................................69  
Changed 9-43 to show complete list of CRC bit settings.............................................................................69  
Changed text in Read Data by Command section to clarify software polling................................................... 70  
Changed 9-44 to show complete list of CRC bit settings.............................................................................70  
Added text to Offset Calibration Registers section regarding offset calibration disabled in chop mode...........77  
Added new step 1 to Calibration Command Procedure section....................................................................... 80  
Added text to WREG Command section regarding conversion restart.............................................................88  
Changed text in 2nd paragraph of Register Map section................................................................................. 89  
Changed Group Update column of 9-34 ..................................................................................................... 89  
Added software polling to 10-16 ................................................................................................................121  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
5 Device Comparison  
PRODUCT  
INPUTS  
11  
AUXILIARY 24-BIT ADC  
ADS1262  
No  
ADS1263  
11  
Yes  
6 Pin Configuration and Functions  
AIN8  
AIN9  
1
2
3
4
5
28  
27  
26  
25  
24  
23  
22  
21  
20  
AIN7  
AIN6  
AIN5  
AIN4  
AIN3  
AIN2  
AIN1  
AINCOM  
CAPP  
CAPN  
AVDD  
AVSS  
6
7
8
9
REFOUT  
START  
AIN0  
RESET/PWDN  
DVDD  
CS  
SCLK  
19  
18  
17  
16  
15  
10  
11  
12  
DGND  
BYPASS  
XTAL2  
DIN  
DOUT/DRDY  
DRDY  
13  
14  
XTAL1/CLKIN  
6-1. PW Package, 28-Pin TSSOP, Top View (Not To Scale)  
6-1. Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
AIN8  
AIN9  
Analog input/output Analog input 8, IDAC1, IDAC2, GPIO5  
Analog input/output Analog input 9, IDAC1, IDAC2, GPIO6  
Analog input/output Analog input common, IDAC1, IDAC2, GPIO7, VBIAS  
2
3
AINCOM  
CAPP  
4
Analog output  
Analog output  
Analog  
PGA output P: connect a 4.7-nF C0G dielectric capacitor from CAPP to CAPN  
PGA output N: connect a 4.7-nF C0G dielectric capacitor from CAPP to CAPN  
Positive analog power supply  
5
CAPN  
6
AVDD  
7
AVSS  
Analog  
Negative analog power supply  
8
REFOUT  
START  
CS  
Analog Output  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital output  
Digital output  
Internal reference voltage output, connect 1-µF capacitor to AVSS  
Start conversion control  
9
10  
11  
12  
13  
14  
Serial interface chip select (active low)  
SCLK  
Serial interface shift clock  
DIN  
Serial interface data input  
DOUT/DRDY  
DRDY  
Serial interface data output and data ready indicator (active low)  
Data ready indicator (active low)  
1) Internal oscillator: Connect to DGND  
15  
16  
XTAL1/CLKIN  
XTAL2  
Digital Input  
Digital Input  
2) External clock: Connect clock input  
3) Crystal oscillator: Connect to crystal and crystal load capacitor  
1) Internal oscillator: No connection (float)  
2) External clock: No connection (float)  
3) Crystal oscillator: Connect to crystal and crystal load capacitor  
17  
18  
BYPASS  
DGND  
Analog Output  
Digital  
2-V sub-regulator external bypass; connect 1-µF capacitor to DGND  
Digital ground  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
NAME  
DVDD  
RESET/PWDN  
AIN0  
Digital  
Digital power supply  
Reset (active low); hold low to power down the ADC  
Digital input  
Analog input/output Analog input 0, REFP1, IDAC1, IDAC2  
Analog input/output Analog input 1, REFN1, IDAC1, IDAC2  
Analog input/output Analog input 2 ,REFP2, IDAC1, IDAC2  
Analog input/output Analog input 3, REFN2, IDAC1, IDAC2, GPIO0  
Analog input/output Analog input 4, REFP3, IDAC1, IDAC2, GPIO1  
Analog input/output Analog input 5, REFN3, IDAC1, IDAC2, GPIO2  
Analog input/output Analog input 6, IDAC1, IDAC2, GPIO3, TDACP  
Analog input/output Analog input 7, IDAC1, IDAC2, GPIO4, TDACN  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
AVDD to AVSS  
AVSS to DGND  
7
V
V
V
V
0.3  
7
3  
DVDD to DGND  
Voltage  
0.3  
Analog input  
VAVDD + 0.3  
V
AVSS 0.3  
VDGND  
0.3  
Digital input  
VDVDD + 0.3  
V
Current  
Input(2)  
10  
mA  
°C  
10  
50  
-60  
Junction, TJ  
Storage, Tstg  
150  
150  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input pins are diode-clamped to the power supply rails. Limit the input current to 10 mA or less if the analog input voltage exceeds  
VAVDD + 0.3 V or is below VAVSS 0.3 V, or if the digital input voltage exceeds VDVDD + 0.3 V or is below VDGND 0.3 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
MAX UNIT  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
POWER SUPPLY  
VAVDD to VAVSS  
Analog power supply  
4.75  
2.6  
2.7  
5
5.25  
V
VAVSS to VDGND  
0
Digital power supply  
ADC1 ANALOG INPUTS  
FSR  
Full-scale differential input voltage range(1)  
VDVDD to VDGND  
5.25  
V
VREF / Gain  
V
V
VREF / Gain  
PGA enabled  
See 方程12  
VINP,VINN Absolute input voltage(2)  
PGA bypassed  
VAVDD + 0.1  
V
AVSS 0.1  
ADC2 ANALOG INPUTS (ADS1263)  
Full-scale differential input voltage range  
VREF / Gain  
VAVDD + 0.1  
V
V
VREF / Gain  
Gain = 1, 2 and 4  
Gain = 8 to 128  
V
AVSS 0.1  
Absolute input voltage  
See 方程15  
VOLTAGE REFERENCE INPUTS  
V
AVDD VAVSS  
VREF  
Differential reference voltage  
0.9  
V
VREF = VREFP VREFN  
+ 0.2  
VREFN  
VREFP  
Negative reference voltage  
Positive reference voltage  
V
V
V
AVSS 0.1  
VREFP 0.9  
VREFN + 0.9  
VAVDD + 0.1  
CLOCK INPUT  
External clock frequency  
1
30%  
1
7.3728  
7.3728  
8
70%  
8
MHz  
MHz  
V
fCLK  
External clock duty cycle  
External crystal frequency  
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)  
Input voltage  
VAVSS  
VDGND  
40  
VAVDD  
VDVDD  
125  
DIGITAL INPUTS (other than GPIO)  
Input voltage  
V
TEMPERATURE  
TA  
Operating ambient temperature  
°C  
(1) FSR is the ideal full-scale differential input voltage range, excluding noise, offset and gain errors. For ADC1, the maximum FSR is  
achieved with VREF = 5 V and the PGA bypassed. If the PGA is enabled and VREF = 5 V, the FSR is limited by the PGA input range.  
For ADC2, if VREF = 5 V and gains = 8 to 128 then FSR is limited by the PGA input range.  
(2) VINP, VINN = Absolute Input Voltage. VIN = Differential Input Voltage = VINP VINN  
.
7.4 Thermal Information  
ADS126x  
PW (TSSOP)  
28 PINS  
65.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
13.6  
23.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
23.1  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = 40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, ADC1 data rate = 20 SPS  
with PGA enabled and gain = 1, and ADC2 data rate = 10 SPS with gain = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC1 ANALOG INPUTS  
Gain = 32  
2
150  
0.1  
150  
1
Absolute input current  
Differential input current  
nA  
nA  
PGA bypassed  
Gain = 32  
PGA bypassed, VIN = 5 V  
PGA enabled  
GΩ  
MΩ  
Differential input impedance  
Channel-to-channel crosstalk  
PGA bypassed  
40  
0.5  
DC, VAVSS VINX VAVDD  
μV/V  
ADC1 PERFORMANCE  
PGA gain  
1, 2, 4, 8, 16, 32  
V/V  
Bits  
SPS  
Resolution  
32  
DR  
INL  
VOS  
Data rate  
2.5  
38400  
Noise performance  
Integral nonlinearity  
See 8-1  
3
Gain = 1 to 32, PGA bypassed  
12  
800 / Gain  
±0.5 / Gain  
ppm  
Chop mode off  
Chop mode on  
350 / Gain  
±0.1 / Gain  
Noise / 4  
TA = 25°C  
μV  
Offset voltage  
After calibration(1)  
Chop mode off  
Chop mode on  
30 / Gain + 10 100 / Gain + 50  
Offset voltage drift  
Gain error  
nV/°C  
ppm  
1
±50  
5
TA = 25°C, gain = 1 to 32  
After calibration(1)  
±300  
GE  
Noise / 4  
0.5  
Gain drift  
Gain = 1 to 32, and PGA bypassed  
4
ppm/°C  
NMRR  
CMRR  
Normal-mode rejection ratio(2)  
See 9-6  
fIN = 60 Hz, data rate = 20 SPS  
fIN = 60 Hz, data rate = 400 SPS  
AVDD and AVSS  
130  
120  
90  
Common-mode rejection ratio(3)  
Power-supply rejection ratio(4)  
dB  
dB  
100  
80  
PSRR  
DVDD  
80  
120  
ADC2 ANALOG INPUTS (ADS1263)  
Absolute input current  
Differential input current  
ADC2 PERFORMANCE (ADS1263)  
Gain  
Gain = 16  
Gain = 16  
2
nA  
nA  
0.5  
1, 2, 4, 8, 16, 32, 64, 128  
V/V  
Bits  
SPS  
Resolution  
24  
DR  
Data rate  
10, 100, 400, 800  
Noise performance  
See 8-3  
Gain = 1 to 64  
4
20  
30  
INL  
Integral nonlinearity  
ppm  
Gain = 128  
7
VOS  
Offset voltage  
TA = 25°C, gain = 1 to 128  
Gain = 1 to 128  
±150  
±500  
200  
μV  
nV/°C  
ppm  
Offset voltage drift  
Gain error  
30  
GE  
TA = 25°C, gain = 1 to 128  
Gain = 1 to 128  
±500  
±3000  
5
Gain drift  
1
See 9-11  
110  
ppm/°C  
NMRR  
CMRR  
PSRR  
Normal-mode rejection ratio  
fIN = 60 Hz, DR = 10 SPS  
fIN = 60 Hz, DR = 400 SPS, gain = 8  
AVDD and AVSS  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
dB  
75  
75  
90  
90  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, ADC1 data rate = 20 SPS  
with PGA enabled and gain = 1, and ADC2 data rate = 10 SPS with gain = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CROSSTALK  
ADC1 to ADC2  
20  
1
Crosstalk  
μV/V  
ADC2 to ADC1  
EXTERNAL VOLTAGE REFERENCE INPUTS  
ADC1  
150  
1
Reference input current(5)  
nA  
ADC2  
Input current vs voltage  
Input current drift  
VREF = 2 V to 4.8 V, ADC1  
ADC1  
10  
0.1  
50  
0.4  
nA/V  
nA/°C  
MΩ  
V
Input impedance  
Differential, ADC1  
Threshold, ADC1  
Low reference monitor  
INTERNAL VOLTAGE REFERENCE  
Reference voltage  
0.6  
2.5  
±0.1%  
2
V
Initial accuracy  
TA = 25°C  
±0.2%  
6
TA = 0°C to +85°C  
TA = 40°C to +105°C  
TA = 85°C, 1st 1000 hr  
First 0°C to 85°C cycle  
Reference voltage temperature drift  
ppm/°C  
4
12  
Reference voltage long term drift  
Thermal hysteresis  
50  
ppm  
ppm  
50  
Output current  
-10  
10  
mA  
Load regulation  
40  
50  
μV/mA  
ms  
Start-up time  
Settling time to ±0.001% final value  
TA = 25°C  
TEMPERATURE SENSOR  
Voltage  
122.4  
420  
mV  
Temperature coefficient  
CURRENT SOURCES (IDAC1, IDAC2)  
μV/°C  
50, 100, 250, 500, 750,  
1000, 1500, 2000, 2500, 3000  
Currents  
μA  
Compliance range  
Absolute error  
All currents  
VAVSS  
V
V
AVDD 1.1  
±4%  
All currents  
±0.7%  
±0.1%  
±1%  
50  
IDAC1 current = IDAC2 current  
IDAC1 current IDAC2 current  
Absolute  
±1%  
Match error  
Temperature drift  
ppm/°C  
Match  
5
20  
LEVEL-SHIFT VOLTAGE  
Voltage  
(VAVDD + VAVSS) / 2  
100  
V
Output impedance  
SENSOR BIAS  
Ω
Currents  
±0.5, ±2, ±10, ±50, ±200  
10  
μA  
MΩ  
Pull-up/pull-down resistor  
TEST DAC (TDAC)  
DAC reference voltage  
Differential output voltage  
Absolute output voltage  
Accuracy  
V
V
V
V
AVDD VAVSS  
18 binary weighted settings  
To VAVSS  
4
4.5  
4  
0.5  
±0.1%  
±1.5%  
Output impedance  
See 9-8  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +125°C; typical specifications are at TA = 25°C; all  
specifications are at VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, fCLK = 7.3728 MHz, ADC1 data rate = 20 SPS  
with PGA enabled and gain = 1, and ADC2 data rate = 10 SPS with gain = 1 (unless otherwise noted)  
PARAMETER  
PGA OVER-RANGE MONITOR  
Differential alarm  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Threshold  
±105%  
±1%  
FSR  
Differential alarm accuracy  
±3%  
Low threshold  
High threshold  
VAVSS + 0.2  
V
V
Absolute alarm thresholds  
V
AVDD 0.2  
ADC CLOCK  
fCLK  
Internal oscillator frequency  
Internal oscillator accuracy  
External crystal start-up time  
7.3728  
±0.5%  
20  
MHz  
ms  
±2%  
See 9-21 for recommended crystals  
GENERAL-PURPOSE INPUT/OUTPUTS (GPIO)(6)  
VOH  
VOL  
VIH  
VIL  
High-level output voltage  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
Input hysteresis  
IOH = 1 mA  
0.8 · VAVDD  
V
V
V
V
V
0.2 · VAVDD  
VAVDD  
IOL = 1 mA  
0.7 · VAVDD  
VAVSS  
0.3 · VAVDD  
0.5  
DIGITAL INPUT/OUTPUT (Other Than GPIO)  
IOH = 1 mA  
IOH = 8 mA  
IOL = 1 mA  
IOL = 8 mA  
0.8 · VDVDD  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.75 · VDVDD  
0.2 · VDVDD  
0.2 · VDVDD  
VOL  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Input hysteresis  
0.7 · VDVDD  
VDGND  
VDVDD  
V
V
0.3 · VDVDD  
0.1  
V
Input leakage  
±10  
μA  
POWER SUPPLY  
Active mode,  
voltage reference off  
ADS1262  
4
Active mode,  
voltage reference on  
ADS1262  
4.2  
6.5  
mA  
IAVDD  
IAVSS  
Analog supply current  
Active mode,  
voltage reference on  
ADS1263  
4.3  
2
6.5  
15  
Power-down mode  
μA  
mA  
μA  
ADS1262  
Active mode  
1
1.25  
50  
ADS1263  
IDVDD  
Digital supply current  
Power dissipation  
Power-down mode(7)  
25  
24  
Active mode,  
voltage reference on  
ADS1262  
37  
mW  
Active mode,  
voltage reference on  
PD  
ADS1263  
25  
90  
37  
Power-down mode  
240  
μW  
(1) Offset and gain calibration accuracy on the order of ADC conversion noise / 4. Conversion noise depends on data rate and PGA gain.  
(2) Normal-mode rejection ratio depends on the digital filter setting.  
(3) Common-mode rejection ratio is specified at date rate 20 SPS and 400 SPS.  
(4) Power-supply rejection ratio is specified at dc.  
(5) Specified with VAVSS VREFN and VREFP VAVDD. For reference input voltage exceeding VAVDD or VAVSS, the ADC1 reference input  
current = 10 nA/ mV.  
(6) GPIO input and output voltages are referenced to VAVSS  
.
(7) External CLK input stopped. All other digital inputs maintained at VDVDD or VDGND  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.6 Timing Requirements: Serial Interface  
MIN  
50  
0
MAX  
UNIT  
ns  
CSbefore first SCLK: delay time(1)  
DRDYor DOUT/DRDYbefore first SCLK: delay time  
Valid DIN to SCLK: setup time  
td(CSSC)  
td(DRSC)  
tsu(DI)  
ns  
35  
25  
125  
40  
40  
30  
ns  
th(DI)  
ns  
SCLKto valid DIN: hold time  
tc(SC)  
SCLK period(2)  
106  
ns  
tw(SCH), w(SCL)  
td(SCCS)  
tw(CSH)  
t
SCLK high pulse duration or SCLK low pulse duration  
Last SCLKto CS: delay time  
CS high pulse duration  
ns  
ns  
ns  
(1) CS can be tied low.  
(2) If serial interface time-out mode enabled, minimum SCLK frequency = 1 kHz. If serial interface time-out mode disabled (default), there  
is no minimum SCLK frequency.  
7.7 Switching Characteristics: Serial Interface  
over operating the ambient temperature range and DVDD = 2.7 V to 5.25 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tw(DRH)  
DRDY high pulse duration  
16  
1/fCLK  
CSto DOUT/DRDY driven:  
propagation delay time  
DOUT/DRDY load: 20 pF || 100 kΩto  
DGND  
tp(CSDO)  
0
40  
60  
ns  
ns  
ns  
ns  
SCLKto valid DOUT/DRDY:  
propagation delay time  
DOUT/DRDY load: 20 pF || 100 kΩto  
DGND  
tp(SCDO)  
th(SCDO)  
tp(CSDOZ)  
SCLKto invalid DOUT/DRDY:  
hold time  
DOUT/DRDY load: 20 pF || 100 kΩto  
DGND  
0
CSto DOUT/DRDY high impedance: DOUT/DRDY load: 20 pF || 100 kΩto  
propagation delay time DGND  
40  
7.8 Timing Diagrams  
DRDY  
td(DRSC)  
tw(CSH)  
CS  
td(CSSC)  
td(SCCS)  
tc(SC)  
tw(SCH)  
SCLK  
DIN  
tw(SCL)  
tsu(DI)  
th(DI)  
7-1. Serial Interface Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
tw(DRH)  
DRDY  
CS  
SCLK  
tp(CSDOZ)  
tp(SCDO)  
(A)  
MSB  
DOUT/DRDY  
tp(CSDO)  
th(SCDO)  
7-2. Serial Interface Switching Characteristics  
VDVDD  
½ VDVDD  
VDGND  
50%  
td, th, tp, tw,tc  
7-3. Timing Reference  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
4
3
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
PGA Bypass  
Gain = 1  
Gain = 2  
Gain = 8  
Gain = 16  
Gain = 32  
PGA Bypass  
Gain = 1  
Gain = 2  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 4  
Gain = 4  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D028  
D029  
After offset calibration, shorted inputs  
Chop mode on, after offset calibration, shorted inputs  
7-4. ADC1 Offset Voltage vs Temperature  
7-5. ADC1 Offset Voltage vs Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
Gain = 1  
Gain = 32  
Gain = 1  
Gain = 32  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Referred Offset Voltage Drift (nV/èC)  
Input Referred Offset Voltage Drift (nV/èC)  
D064  
D072  
Shorted inputs, 30 units  
Chop mode on, shorted inputs, 30 units  
7-6. ADC1 Offset Voltage vs Temperature Distribution  
7-7. ADC1 Offset Voltage vs Temperature Distribution  
400  
50  
20 SPS, Gain = 1  
20 SPS, Gain = 32  
400 SPS, Gain = 1  
7200 SPS, Gain = 1  
38400 SPS, Gain = 1  
300  
25  
0
200  
100  
0
-100  
-200  
-300  
-25  
PGA Bypass  
Gain = 1  
Gain = 2  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 4  
-50  
-50  
0.5  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D054  
D030  
Shorted inputs  
After gain calibration  
7-8. ADC1 Offset Voltage vs Reference Voltage  
7-9. ADC1 Gain Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
Gain = 1  
Gain = 32  
20 SPS, Gain = 1  
20 SPS, Gain = 32  
400 SPS, Gain = 1  
7200 SPS, Gain = 1  
38400 SPS, Gain = 1  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.5  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
Gain Drift (ppm/èC)  
D037  
D053  
30 units  
7-10. ADC1 Gain vs Temperature Distribution  
7-11. ADC1 Gain Error vs Reference Voltage  
0.5  
8
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
7
6
5
4
3
2
1
0
0.4  
0.3  
0.2  
0.1  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D026  
D027  
20 SPS, sinc4  
7200 SPS, sinc4  
7-12. ADC1 Noise vs Temperature  
7-13. ADC1 Noise vs Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
200  
100  
50  
20 SPS, Gain = 1  
20 SPS, Gain = 32  
400 SPS, Gain = 1  
7200 SPS, Gain = 1  
38400 SPS, Gain = 1  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.5  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
D055  
Output Voltage (mV)  
D070  
20 SPS, FIR filter, gain = 1, after offset calibration,  
256 samples  
20 SPS, 400 SPS, 7200 SPS = sinc4, 38400 SPS = sinc5  
7-15. ADC1 Output Reading Distribution  
7-14. ADC1 Noise vs Reference Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
120  
100  
80  
60  
40  
20  
0
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
600  
300  
0
D056  
Input Referred Voltage (mV)  
Input Referred Voltage (mV)  
D057  
20 SPS, FIR filter, gain = 32, after offset calibration,  
256 samples  
7200 SPS, sinc4 filter, gain = 1, after offset calibration,  
8192 samples  
7-16. ADC1 Output Reading Distribution  
7-17. ADC1 Output Reading Distribution  
2100  
0
-20  
-40  
-60  
-80  
1800  
1500  
1200  
900  
600  
300  
0
-100  
-120  
-140  
-160  
-180  
0
1
2
3
4
5
6
Frequency (Hz)  
7
8
9
10  
D058  
D059  
Input Referred Voltage (mV)  
20 SPS, gain = 1, 256 points  
7200 SPS, sinc4 filter, gain = 32, after offset calibration,  
8192 samples  
7-19. ADC1 Output Spectrum  
7-18. ADC1 Output Reading Distribution  
0
8
6
Gain = 1  
Gain = 32  
-20  
-40  
4
-60  
2
-80  
0
-100  
-120  
-140  
-160  
-180  
-2  
-4  
-6  
-8  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 32  
-100 -80 -60 -40 -20  
0
VIN (% of FSR)  
20  
40  
60  
80 100  
0
2
4
6
8
10  
12  
Frequency (kHz)  
14  
16  
18  
20  
D024  
D060  
38400 SPS, 8192 points  
7-20. ADC1 Output Spectrum  
7-21. ADC1 INL vs VIN  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
6
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 32  
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
INL (ppm)  
6
7
8
9
10  
Temperature (èC)  
D033  
D03041  
Gain = 32, 30 units  
7-23. ADC1 INL Distribution  
7-22. ADC1 INL vs Temperature  
10  
8
180  
150  
120  
90  
20 SPS, Gain = 1  
20 SPS, Gain = 32  
20 SPS, Gain = 1  
7200 SPS, Gain = 1  
38400 SPS, Gain = 1  
60  
6
30  
0
-30  
-60  
-90  
-120  
-150  
-180  
4
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
2
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
-5  
-4  
-3  
-2  
-1  
0
1
2
Differential Input Voltage (V)  
3
4
5
D052  
D040  
PGA bypassed  
7-24. ADC1 INL vs Reference Voltage  
7-25. ADC1 Differential Input Current  
250  
200  
150  
100  
50  
8
7
6
5
4
3
2
1
0
Gain = 1, T = -40èC  
Gain = 1, T = 25èC  
Gain = 1, T = 85èC  
Gain = 1, T = 125èC  
Gain = 4, T = -40èC  
Gain = 4, T = 25èC  
Gain = 4, T = 85èC  
Gain = 4, T = 125èC  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Absolute Input Voltage (V)  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Absolute Input Voltage (V)  
4
4.5  
5
D041  
D042  
PGA bypassed  
Gain = 1, 4  
7-26. ADC1 Absolute Input Current  
7-27. ADC1 Absolute Input Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
8
7
6
5
4
3
2
1
0
3
Gain = 16, T = -40èC  
Gain = 16, T = 25èC  
Gain = 16, T = 85èC  
Gain = 16, T = 125èC  
Gain = 32, T = -40èC  
Gain = 32, T = 25èC  
Gain = 32, T = 85èC  
Gain = 32, T = 125èC  
PGA = 1, T = -40èC  
PGA = 1, T = 25èC  
PGA = 1, T = 85èC  
PGA = 1, T = 125èC  
PGA = 4, T = -40èC  
PGA = 4, T = 25èC  
PGA = 4, T = 85èC  
PGA = 4, T = 125èC  
2
1
0
-1  
-2  
-3  
0
0.5  
1
1.5  
Absolute Input Voltage (V)  
2
2.5  
3
3.5  
4
4.5  
5
-100 -80 -60 -40 -20  
0
Differential Input Voltage (% FSR)  
20  
40  
60  
80 100  
D043  
D044  
Gain = 16, 32  
Gain = 1, 4  
7-28. ADC1 Absolute Input Current  
7-29. ADC1 Differential Input Current  
3
2
2.502  
2.501  
2.5  
PGA = 16, T = -40èC  
PGA = 16, T = 25èC  
PGA = 16, T = 85èC  
PGA = 16, T = 125èC  
PGA = 32, T = -40èC  
PGA = 32, T = 25èC  
PGA = 32, T = 85èC  
PGA = 32, T = 125èC  
1
0
2.499  
2.498  
2.497  
-1  
-2  
-3  
-100 -80 -60 -40 -20  
0
20  
40  
Differential Input Voltage (% FSR)  
60  
80 100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D045  
D0350  
Gain = 16, 32  
30 units  
7-30. ADC1 Differential Input Current  
7-31. Voltage Reference vs Temperature  
80  
60  
40  
20  
0
0.01  
0.008  
0.006  
0.004  
0.002  
0
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
-20  
-40  
-60  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
0
0.5  
1
1.5  
2
2.5  
Time (s)  
3
3.5  
4
4.5  
5
D086  
D025  
TA = 85°C, 30 units  
7-32. Voltage Reference Long-Term Drift  
7-33. Voltage Reference Start-Up Time  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
200  
175  
150  
125  
100  
75  
140  
120  
100  
80  
60  
50  
25  
40  
IREFP, T = -40èC  
IREFP, T = 25èC  
IREFP, T = 85èC  
IREFP, T = 125èC  
IREFN, T = -40èC  
IREFN, T = 25èC  
IREFN, T = 85èC  
IREFN, T = 125èC  
0
20  
-25  
-50  
0
0.001  
0.5  
1
1.5  
2
Reference Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
0.01  
0.1  
1
Frequency (kHz)  
10  
100  
1000  
D031  
D065  
IREFP measured with VREFN = VAVSS, IREFN measured with  
VREFP = VAVDD  
7-34. ADC1 Reference Input Current  
7-35. ADC1 CMRR vs Frequency  
140  
140  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
CMRR  
PSRR (Analog)  
PSRR (Digital)  
Analog Supply  
Digital Supply  
0.001  
0.01  
0.1  
1
Frequency (kHz)  
10  
100  
1000  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D075  
D069  
7-36. ADC1 PSRR vs Frequency  
7-37. ADC1 CMRR, PSRR vs Temperature  
0.25  
0
0.25  
0
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0
0.5  
1
1.5  
IDAC Compliance Voltage (VAVDD - VAINX  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
IDAC Compliance Voltage (VAVDD - VAINx)  
2
2.5  
3
3.5  
4
4.5  
5
)
D046  
D047  
IIDAC = 250 μA  
IIDAC = 1000 μA  
7-38. IDAC Error vs Compliance Voltage  
7-39. IDAC Error vs Compliance Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
0.25  
0.1  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0
0
-0.25  
-0.5  
-0.75  
-1  
-0.1  
-0.2  
-0.3  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
IDAC Compliance Voltage (VAVDD - VAINX  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
IDAC Compliance Voltage (VAVDD - VAINX  
4
4.5  
5
)
)
D048  
D049  
IIDAC = 3000 μA  
IIDAC1= IIDAC2 = 250 μA  
7-40. IDAC Error vs Compliance Voltage  
7-41. IDAC Current Error vs Compliance Voltage  
50  
170  
160  
150  
140  
130  
120  
110  
100  
90  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100  
125  
D039  
Temperature (èC)  
Temperature Sensor Voltage (mV)  
D038  
TA = 25°C, 30 units  
30 units  
7-43. Temperature Sensor Voltage Distribution  
7-42. Temperature Sensor Voltage vs Temperature  
2
1.5  
1
6
IAVDD,IAVSS  
IDVDD, 20 SPS  
IDVDD, 38400 SPS  
5
4
3
2
1
0
0.5  
0
-0.5  
-1  
-1.5  
-2  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D036  
D032  
30 units  
7-44. Internal Oscillator Frequency vs Temperature  
7-45. ADS1262 Active Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
110  
108  
106  
104  
102  
100  
0.25  
0.24  
0.23  
0.22  
0.21  
0.2  
0.19  
0.18  
0.17  
0.16  
0.15  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D001  
D061  
30 units  
30 units  
7-46. ADC1 Differential Over-range Alarm Threshold vs  
7-47. ADC1 Absolute Low Alarm Threshold vs Temperature  
Temperature  
4.85  
4.84  
4.83  
4.82  
4.81  
4.8  
0.14  
0.5 V  
2.25 V  
2.484375 V  
2.5 V  
2.515625 V  
2.75 V  
4.5 V  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
4.79  
4.78  
4.77  
4.76  
4.75  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D062  
D067  
30 units  
7-48. ADC1 Absolute High Alarm Threshold vs Temperature  
7-49. TDAC Error vs Temperature  
10  
8
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Gain = 1  
Gain = 64  
6
4
2
0
-2  
-4  
Gain = 1  
Gain = 4  
Gain = 16  
-6  
-8  
Gain = 64  
-10  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Input Referred Offset Voltage Drift (nV/°C)  
D080  
D081  
After offset calibration, shorted input  
7-50. ADC2 Offset Voltage vs Temperature  
Inputs shorted, 30 units  
7-51. ADC2 Offset Voltage vs Temperature Distribution  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
100  
75  
100  
80  
60  
40  
20  
0
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 1  
Gain = 64  
50  
25  
0
-25  
-50  
-75  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Temperature (èC)  
Gain drift (ppm/èC)  
D078  
D079  
After gain calibration  
30 units  
7-52. ADC2 Gain vs Temperature  
7-53. ADC2 Gain vs Temperature Distribution  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
Input Referred Voltage (mV)  
D091  
D05962  
Input Referred Voltage (mV)  
Gain = 1, 10 SPS, after offset calibration, 128 samples  
Gain = 128, 10 SPS, after offset calibration, 128 samples  
7-54. ADC2 Output Reading Distribution  
7-55. ADC2 Output Reading Distribution  
6
10  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
4
2
8
6
0
4
2
0
-2  
-4  
-6  
-100 -80 -60 -40 -20  
0
20  
VIN (% of FSR)  
40  
60  
80 100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D076  
D077  
7-56. ADC2 INL vs VIN  
7-57. ADC2 INL vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
100  
50  
1000  
500  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
10 SPS, Gain = 1  
10 SPS, Gain = 4  
10 SPS, Gain = 8  
10 SPS, Gain = 16  
800 SPS, Gain = 8  
30  
20  
200  
100  
50  
10  
5
20  
10  
5
3
2
1
2
1
0.5  
0.5  
0.3  
0.2  
0.2  
0.1  
0.1  
0.5  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D074  
D090  
10 SPS  
7-59. ADC2 Noise vs Reference Voltage  
7-58. ADC2 Noise vs Temperature  
20  
16  
12  
8
8
7
6
5
4
3
2
1
Gain = 1, T = -40èC  
Gain = 1, T = 25èC  
Gain = 1, T = 85èC  
Gain = 1, T = 125èC  
Gain = 4, T = -40èC  
Gain = 4, T = 25èC  
Gain = 4, T = 85èC  
Gain = 4, T = 125èC  
Gain = 16, T = -40èC  
Gain = 16, T = 25èC  
Gain = 16, T = 85èC  
Gain = 16, T = 125èC  
Gain = 64, T = -40èC  
Gain = 64, T = 25èC  
Gain = 64, T = 85èC  
Gain = 64, T = 125èC  
4
0
0
0
0
0.5  
1
1.5  
Absolute Input Voltage (V)  
2
2.5  
3
3.5  
4
4.5  
5
0.5  
1
1.5  
2
Absolute Input Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
D082  
D043  
Gain = 1, 4  
Gain = 16, 64  
7-60. ADC2 Absolute Input Current  
7-61. ADC2 Absolute Input Current  
25  
20  
15  
10  
5
5
4
3
2
1
0
0
-5  
-1  
-2  
-3  
-4  
-5  
-10  
-15  
-20  
-25  
PGA = 1, T = -40èC  
PGA = 1, T = 25èC  
PGA = 1, T = 85èC  
PGA = 1, T = 125èC  
PGA = 4, T = -40èC  
PGA = 4, T = 25èC  
PGA = 4, T = 85èC  
PGA = 4, T = 125èC  
PGA = 16, T = -40èC  
PGA = 16, T = 25èC  
PGA = 16, T = 85èC  
PGA = 16, T = 125èC  
PGA = 64, T = -40èC  
PGA = 64, T = 25èC  
PGA = 64, T = 85èC  
PGA = 64, T = 125èC  
-100 -80 -60 -40 -20  
0
20  
40  
Differential Input Voltage (% FSR)  
60  
80 100  
-100 -80 -60 -40 -20  
0
20  
40  
Differential Input Voltage (% FSR)  
60  
80 100  
D084  
D085  
Gain = 1, 4  
Gain = 16, 64  
7-62. ADC2 Differential Input Current  
7-63. ADC2 Differential Input Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VDVDD = 3.3 V, VREF = 2.5 V, and fCLK = 7.3728 MHz (unless otherwise noted); typical  
ADC1 characteristics at data rate = 20 SPS and gain = 1; typical ADC2 characteristics at data rate = 10 SPS and gain = 1  
120  
100  
80  
60  
40  
20  
0
16  
14  
12  
10  
8
IREFP, T = -40èC  
IREFP, T = 25èC  
IREFP, T = 85èC  
IREFP, T = 125èC  
IREFN, T = -40èC  
IREFN, T = 25èC  
IREFN, T = 85èC  
IREFN, T = 125èC  
6
4
2
0
-2  
-4  
-6  
0.001  
0.01  
0.1  
1
Frequency (kHz)  
10  
100  
1000  
0.5  
1
1.5  
2
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
D073  
D031  
IREFP measured with VREFN = VAVSS, IREFN measured with  
VREFP = VAVDD  
7-64. ADC2 CMRR vs Frequency  
7-65. ADC2 Reference Input Current  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Offset Temperature Drift Measurement  
Offset temperature drift is defined as the maximum change of offset voltage measured over the specified  
temperature range. The offset voltage drift is input referred and is calculated using the box method, as described  
by 方程1:  
Offset Voltage Drift = (VOSMAX VOSMIN) / (TMAX TMIN  
)
(1)  
where  
VOSMAX and VOSMIN are the maximum and minimum offset voltages, respectively  
TMAX and TMIN are the maximum and minimum temperatures, respectively, over the specified temperature  
range  
8.2 Gain Temperature Drift Measurement  
Gain temperature drift is defined as the maximum change of gain error measured over the specified temperature  
range. The gain error drift is calculated using the box method, as described by 方程2:  
Gain Error Drift = (GEMAX GEMIN) / (TMAX TMIN  
)
(2)  
where  
GEMAX and GEMIN are the maximum and minimum gain errors, respectively  
TMAX and TMIN are the maximum and minimum temperatures, respectively, over the specified temperature  
range  
8.3 Common-Mode Rejection Ratio Measurement  
Common-mode rejection ratio (CMRR) is defined as the rejection of the ADC output to an applied common-  
mode input voltage. The common-mode input is 60 Hz with a peak-to-peak amplitude equal to the specified  
absolute input voltage range. The standard deviation (RMS) value of the ADC output is calculated and scaled to  
volts. In order to measure CMRR, record two ADC readings. The first reading (VA) is with no common-mode  
input signal. The first reading represents the baseline ADC noise. The second reading (VB) is with the common-  
mode input applied. The second reading represents the combination of the ADC baseline noise plus the  
increased RMS noise caused by the common-mode input. The ADC baseline noise is extracted from the  
combined noise to yield the noise induced by the common-mode input voltage. The CMRR measurement is  
described by 方程3:  
CMRR = 20 · Log (VIC / VOC  
)
(3)  
where  
VIC = RMS value of the input common-mode voltage = 1.56 VRMS  
2
2 0.5  
VOC = Calculated RMS value of output voltage = (VB VA  
)
VA = RMS output voltage with no common-mode input  
VB = RMS output voltage with common-mode input  
For gains > 1, add 6 dB of compensation value for each binary increase of gain.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8.4 Power-Supply Rejection Ratio Measurement  
Power-supply rejection ratio (PSRR) is defined as the rejection of the ADC output to the DC change of the power  
supply voltage referred to the input range. PSRR is calculated using two ADC mean-value readings with inputs  
shorted, scaled to volts. The first ADC reading (VOA) is acquired at one power-supply voltage, and the second  
ADC reading (VOB) is acquired after changing the power-supply voltage by 0.5 V. The PSRR calculation is  
described by 方程4:  
PSRR = 20 · Log |(VPSAVPSB )/ (VOA VOB)| 20 dB  
(4)  
where  
VPSAVPSB = power-supply DC voltage change = 0.5 V  
VOA VOB = ADC DC output voltage change (V)  
Range compensation factor = 20 · log (0.5 V / 5 V) = 20 dB for gain = 1  
For gains > 1, add an additional 6 dB of compensation value for each binary increase of gain.  
8.5 Crosstalk Measurement (ADS1263)  
Crosstalk is defined as the unintended coupling of signals between ADC1 and ADC2. Measure crosstalk by  
changing the dc input voltage of one ADC and measuring the rejection of the other ADC. The dc input voltage  
change is 0.3 V, and the gain of the affected ADC is 16. Acquire two mean-value readings of the affected ADC  
with inputs shorted. Take the first ADC reading (VOA) with VIN = 0 V, and take the second ADC reading (VOB  
)
after changing the input voltage by 0.3 V. The crosstalk calculation is described by 方程5:  
Crosstalk = |(VOA VOB) / (VINA VINB)| · 106 (µV/V)  
(5)  
where  
VOA VOB = DC output voltage change of the affected ADC  
VINA VINB = DC input voltage change of the driven ADC = 0.3 V  
8.6 Reference-Voltage Temperature-Drift Measurement  
Internal reference-voltage temperature drift is defined as the maximum change in reference voltage measured  
over the specified temperature range. The reference voltage drift is calculated using the box method, as  
described by 方程6:  
Reference Drift = (VREFMAX VREFMIN) / (VREFNOM · (TMAX TMIN) ) · 106 (ppm)  
(6)  
where  
VREFMAX, VREFMIN and VREFNOM are the maximum, minimum and nominal (TA = 25°C) reference voltages,  
respectively  
TMAX and TMIN are the maximum and minimum temperatures, respectively, over the specified temperature  
range  
8.7 Reference-Voltage Thermal-Hysteresis Measurement  
Internal reference-voltage thermal hysteresis is defined as the change in reference voltage after operating the  
device at TA = 25°C, cycling the device through the TA = 0°C to 85°C temperature range for ten minutes at each  
temperature and returning to TA = 25°C. The internal reference thermal hysteresis is defined in 方程7:  
Reference Thermal Hysteresis = |VREFPRE VREFPOST| / VREFPRE · 106 (ppm)  
(7)  
where  
VREFPRE and VREFPOST are the reference voltages before and after the temperature cycle, respectively  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8.8 Noise Performance  
The ADC noise performance depends on the following ADC settings: PGA gain, data rate, digital filter mode, and  
chop mode. Generally, the lowest input-referred noise is achieved using the highest gain possible, consistent  
with the input signal range. Do not set the gain too high or the result is ADC overrange. Noise also depends on  
the output data rate and mode of the digital filter. As the data rate reduces, the ADC bandwidth correspondingly  
reduces. As the order of the digital filter mode increases, the ADC bandwidth also reduces. This reduction in  
total bandwidth results in lower overall noise. The ADC noise is reduced by a factor of 1.4 with chop mode  
enabled.  
8-1 lists ADC1 noise performance in units of μVRMS (RMS = root mean square) under the conditions shown.  
The values in parenthesis are peak-to-peak values. 8-2 lists the noise performance in effective number of bits  
(ENOB) with an external 5-V reference voltage. The values shown in parenthesis are noise-free bits. The  
definition of noise-free bits is the resolution of the ADC with no code flicker. The noise-free bits data are based  
on the µVPP values. Note that for data rate = 38400 SPS, noise scales with increased reference voltage. For all  
other data rates, noise does not scale with reference voltage.  
8-3 lists the noise performance of ADC2 (ADS1263) in units of μVRMS and (µVPP). The values in  
parenthesis are peak-to-peak values. 8-4 lists the ENOB and noise-free bits of ADC2.  
The ENOB and noise-free bits shown in the tables are calculated using 方程8:  
ENOB = ln (FSR / VNRMS) / ln (2)  
(8)  
where  
FSR = full scale range = 2 · VREF/Gain  
VNRMS = Input referred noise voltage  
Achieve maximum ENOB with maximum FSR. For ADC1, achieve maximum FSR with VREF = 5 V and the PGA  
bypassed. If the PGA is enabled, the FSR is limited by the PGA input range (see the Electrical Characteristics  
table.) For ADC2, achieve maximum FSR with VREF = 5 V and gains = 1, 2, or 4. If gain = 8 to 128, then FSR is  
limited by the PGA input range (see the Electrical Characteristics table).  
For ADC1 operation, if the reference voltage is equal to 5 V and the PGA is enabled, the available FSR is  
restricted because of the limited PGA range specification. For ADC2 operation, if the reference voltage is equal  
to 5 V, The FSR is reduced for ADC2 gains equal to or greater than eight because of the limited PGA range.  
The data shown in the noise performance tables represent typical ADC performance at TA = 25°C. The noise-  
performance data are the standard deviation and peak-to-peak computations of the ADC data. Because of the  
statistical nature of noise, repeated noise measurements may yield higher or lower noise results. The noise data  
are acquired with inputs shorted, from consecutive ADC readings for a period of ten seconds or 8192 data  
points, whichever occurs first.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8-1. ADC1 Noise in µVRMS (µVPP) at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VREF = 2.5 V  
GAIN  
DATA RATE  
FILTER MODE  
1
2
4
8
16  
32  
2.5 SPS  
2.5 SPS  
2.5 SPS  
2.5 SPS  
2.5 SPS  
5 SPS  
FIR  
0.145 (0.637)  
0.121 (0.510)  
0.101 (0.437)  
0.080 (0.307)  
0.080 (0.308)  
0.206 (1.007)  
0.161 (0.726)  
0.146 (0.661)  
0.128 (0.611)  
0.122 (0.587)  
0.284 (1.418)  
0.229 (1.220)  
0.193 (1.019)  
0.176 (0.896)  
0.164 (0.788)  
0.306 (1.708)  
0.248 (1.401)  
0.216 (1.221)  
0.214 (1.169)  
0.393 (2.467)  
0.336 (1.861)  
0.270 (1.560)  
0.237 (1.415)  
0.229 (1.285)  
0.514 (2.925)  
0.426 (2.400)  
0.389 (2.324)  
0.358 (2.319)  
0.558 (3.574)  
0.465 (2.753)  
0.414 (2.704)  
0.383 (2.288)  
0.734 (4.715)  
0.604 (3.662)  
0.531 (3.431)  
0.511 (3.340)  
0.071 (0.279)  
0.058 (0.249)  
0.055 (0.225)  
0.046 (0.195)  
0.043 (0.180)  
0.098 (0.448)  
0.090 (0.432)  
0.069 (0.308)  
0.067 (0.325)  
0.063 (0.269)  
0.142 (0.753)  
0.123 (0.662)  
0.093 (0.488)  
0.088 (0.452)  
0.076 (0.389)  
0.147 (0.810)  
0.122 (0.729)  
0.120 (0.667)  
0.101 (0.544)  
0.191 (1.102)  
0.167 (0.964)  
0.136 (0.745)  
0.124 (0.701)  
0.113 (0.612)  
0.255 (1.584)  
0.209 (1.217)  
0.196 (1.185)  
0.175 (1.023)  
0.285 (1.703)  
0.235 (1.424)  
0.208 (1.187)  
0.195 (1.174)  
0.361 (2.276)  
0.305 (1.934)  
0.277 (1.780)  
0.255 (1.632)  
0.038 (0.149)  
0.033 (0.143)  
0.025 (0.104)  
0.026 (0.116)  
0.020 (0.078)  
0.054 (0.252)  
0.047 (0.246)  
0.038 (0.195)  
0.033 (0.153)  
0.030 (0.144)  
0.077 (0.379)  
0.060 (0.322)  
0.048 (0.254)  
0.043 (0.217)  
0.040 (0.200)  
0.077 (0.436)  
0.068 (0.403)  
0.060 (0.332)  
0.054 (0.302)  
0.104 (0.603)  
0.085 (0.486)  
0.070 (0.376)  
0.067 (0.399)  
0.060 (0.325)  
0.140 (0.940)  
0.108 (0.666)  
0.104 (0.624)  
0.096 (0.597)  
0.151 (0.913)  
0.121 (0.760)  
0.112 (0.655)  
0.105 (0.623)  
0.192 (1.209)  
0.156 (1.072)  
0.143 (0.935)  
0.134 (0.861)  
0.380 (2.657)  
0.313 (2.280)  
0.285 (1.991)  
0.266 (1.947)  
0.651 (5.044)  
0.545 (4.107)  
0.494 (3.833)  
0.459 (3.405)  
0.023 (0.089)  
0.018 (0.073)  
0.015 (0.064)  
0.013 (0.052)  
0.013 (0.049)  
0.028 (0.123)  
0.026 (0.120)  
0.021 (0.100)  
0.019 (0.095)  
0.017 (0.076)  
0.041 (0.197)  
0.035 (0.177)  
0.028 (0.149)  
0.028 (0.137)  
0.024 (0.119)  
0.044 (0.250)  
0.037 (0.213)  
0.033 (0.197)  
0.031 (0.175)  
0.057 (0.353)  
0.049 (0.266)  
0.039 (0.231)  
0.035 (0.192)  
0.034 (0.193)  
0.077 (0.457)  
0.064 (0.381)  
0.057 (0.367)  
0.055 (0.319)  
0.085 (0.515)  
0.068 (0.417)  
0.064 (0.396)  
0.059 (0.347)  
0.108 (0.679)  
0.088 (0.579)  
0.081 (0.545)  
0.076 (0.479)  
0.215 (1.469)  
0.178 (1.313)  
0.161 (1.132)  
0.151 (1.061)  
0.368 (2.807)  
0.309 (2.315)  
0.281 (2.145)  
0.261 (2.018)  
0.014 (0.064)  
0.012 (0.054)  
0.010 (0.043)  
0.008 (0.034)  
0.008 (0.031)  
0.020 (0.098)  
0.017 (0.083)  
0.013 (0.061)  
0.012 (0.054)  
0.011 (0.048)  
0.027 (0.156)  
0.023 (0.118)  
0.019 (0.099)  
0.018 (0.091)  
0.016 (0.081)  
0.030 (0.176)  
0.024 (0.136)  
0.022 (0.130)  
0.022 (0.129)  
0.039 (0.222)  
0.033 (0.191)  
0.028 (0.149)  
0.024 (0.130)  
0.022 (0.123)  
0.051 (0.315)  
0.042 (0.265)  
0.038 (0.228)  
0.036 (0.217)  
0.055 (0.335)  
0.046 (0.276)  
0.042 (0.276)  
0.040 (0.242)  
0.071 (0.473)  
0.059 (0.371)  
0.054 (0.343)  
0.050 (0.322)  
0.143 (1.066)  
0.119 (0.884)  
0.107 (0.781)  
0.101 (0.708)  
0.244 (1.846)  
0.205 (1.586)  
0.186 (1.374)  
0.174 (1.337)  
0.011 (0.051)  
0.008 (0.037)  
0.007 (0.031)  
0.006 (0.023)  
0.007 (0.027)  
0.015 (0.073)  
0.012 (0.057)  
0.011 (0.050)  
0.010 (0.046)  
0.008 (0.039)  
0.023 (0.118)  
0.018 (0.103)  
0.016 (0.079)  
0.014 (0.067)  
0.013 (0.065)  
0.024 (0.138)  
0.020 (0.111)  
0.017 (0.095)  
0.016 (0.092)  
0.030 (0.167)  
0.026 (0.138)  
0.021 (0.111)  
0.020 (0.109)  
0.017 (0.098)  
0.042 (0.264)  
0.033 (0.200)  
0.030 (0.179)  
0.028 (0.176)  
0.045 (0.271)  
0.036 (0.208)  
0.034 (0.197)  
0.031 (0.188)  
0.058 (0.362)  
0.048 (0.321)  
0.043 (0.288)  
0.041 (0.271)  
0.116 (0.843)  
0.095 (0.676)  
0.087 (0.630)  
0.081 (0.583)  
0.197 (1.519)  
0.165 (1.283)  
0.148 (1.094)  
0.139 (1.032)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
5 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
5 SPS  
5 SPS  
5 SPS  
10 SPS  
10 SPS  
10 SPS  
10 SPS  
10 SPS  
16.6 SPS  
16.6 SPS  
16.6 SPS  
16.6 SPS  
20 SPS  
20 SPS  
20 SPS  
20 SPS  
20 SPS  
50 SPS  
50 SPS  
50 SPS  
50 SPS  
60 SPS  
60 SPS  
60 SPS  
60 SPS  
100 SPS  
100 SPS  
100 SPS  
100 SPS  
400 SPS  
400 SPS  
400 SPS  
400 SPS  
1200 SPS  
1200 SPS  
1200 SPS  
1200 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
1.438 (10.374) 0.734 (5.410)  
1.186 (8.523)  
1.072 (7.923)  
0.995 (7.107)  
0.607 (4.333)  
0.550 (3.999)  
0.508 (3.664)  
2.451 (17.755) 1.254 (9.305)  
2.038 (15.480) 1.037 (8.128)  
1.858 (14.005) 0.960 (7.223)  
1.743 (13.428) 0.890 (6.585)  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8-1. ADC1 Noise in µVRMS (µVPP) at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VREF = 2.5 V (continued)  
GAIN  
DATA RATE  
FILTER MODE  
1
2
4
8
16  
32  
2400 SPS  
2400 SPS  
2400 SPS  
2400 SPS  
4800 SPS  
4800 SPS  
4800 SPS  
4800 SPS  
7200 SPS  
7200 SPS  
7200 SPS  
7200 SPS  
14400 SPS  
19200 SPS  
38400 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc5  
Sinc5  
Sinc5  
3.411 (26.095) 1.724 (13.528) 0.903 (6.609)  
2.870 (21.677) 1.468 (11.032) 0.770 (5.932)  
0.510 (3.920)  
0.435 (3.379)  
0.395 (3.035)  
0.371 (2.869)  
0.682 (5.252)  
0.606 (4.777)  
0.560 (4.176)  
0.527 (4.004)  
0.335 (2.626)  
0.286 (2.123)  
0.262 (1.951)  
0.245 (1.885)  
0.446 (3.239)  
0.398 (2.986)  
0.367 (2.890)  
0.349 (2.626)  
0.516 (3.881)  
0.472 (3.531)  
0.445 (3.590)  
0.426 (3.261)  
0.596 (4.430)  
0.747 (5.725)  
0.270 (2.107)  
0.230 (1.758)  
0.211 (1.533)  
0.198 (1.576)  
0.361 (2.957)  
0.321 (2.397)  
0.297 (2.211)  
0.277 (2.184)  
0.409 (3.189)  
0.379 (2.792)  
0.359 (2.666)  
0.341 (2.467)  
0.466 (3.524)  
0.555 (4.058)  
2.656 (20.100) 1.337 (9.936)  
2.475 (19.447) 1.262 (9.452)  
0.705 (5.355)  
0.657 (4.966)  
4.590 (34.155) 2.329 (17.298) 1.221 (8.943)  
4.091 (30.903) 2.070 (15.168) 1.077 (8.141)  
3.720 (28.423) 1.894 (14.842) 0.998 (7.626)  
3.535 (27.437) 1.784 (13.760) 0.926 (7.273)  
5.326 (42.076) 2.709 (19.749) 1.407 (11.126) 0.792 (5.784)  
4.867 (36.820) 2.467 (18.627) 1.280 (9.874)  
4.567 (35.194) 2.310 (17.516) 1.209 (9.036)  
4.365 (34.008) 2.211 (17.432) 1.143 (8.804)  
0.726 (5.612)  
0.682 (5.181)  
0.642 (5.075)  
6.377 (48.242) 3.235 (25.178) 1.675 (12.508) 0.929 (7.280)  
8.720 (65.389) 4.432 (32.931) 2.285 (17.055) 1.227 (9.870)  
103.55 (759.91) 51.76 (371.46) 25.95 (192.20) 13.02 (99.09)  
6.493 (46.060) 3.276 (24.435)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8-2. ADC1 ENOB (Noise Free Bits) at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VREF = 5 V  
GAIN  
DATA RATE  
FILTER MODE  
1 (BYPASS)  
26.0 (23.9)  
26.3 (24.2)  
26.6 (24.4)  
26.9 (25.0)  
26.9 (25.0)  
25.5 (23.2)  
25.9 (23.7)  
26.0 (23.9)  
26.2 (24.0)  
26.3 (24.0)  
25.1 (22.7)  
25.4 (23.0)  
25.6 (23.2)  
25.8 (23.4)  
25.9 (23.6)  
25.0 (22.5)  
25.3 (22.8)  
25.5 (23.0)  
25.5 (23.0)  
24.6 (22.0)  
24.8 (22.4)  
25.1 (22.6)  
25.3 (22.8)  
25.4 (22.9)  
24.2 (21.7)  
24.5 (22.0)  
24.6 (22.0)  
24.7 (22.0)  
24.1 (21.4)  
24.4 (21.8)  
24.5 (21.8)  
24.6 (22.1)  
23.7 (21.0)  
24.0 (21.4)  
24.2 (21.5)  
24.2 (21.5)  
22.7 (19.9)  
23.0 (20.2)  
23.2 (20.3)  
23.3 (20.4)  
22.0 (19.1)  
22.2 (19.3)  
22.4 (19.4)  
22.5 (19.5)  
2
4
8
16  
32  
2.5 SPS  
2.5 SPS  
2.5 SPS  
2.5 SPS  
2.5 SPS  
5 SPS  
FIR  
25.9 (23.9)  
26.2 (24.1)  
26.3 (24.2)  
26.5 (24.4)  
26.6 (24.5)  
25.4 (23.2)  
25.5 (23.3)  
25.9 (23.8)  
26.0 (23.7)  
26.1 (24.0)  
24.9 (22.5)  
25.1 (22.7)  
25.5 (23.1)  
25.6 (23.2)  
25.8 (23.4)  
24.8 (22.4)  
25.1 (22.5)  
25.1 (22.7)  
25.4 (22.9)  
24.5 (21.9)  
24.7 (22.1)  
24.9 (22.5)  
25.1 (22.6)  
25.2 (22.8)  
24.0 (21.4)  
24.3 (21.8)  
24.4 (21.8)  
24.6 (22.0)  
23.9 (21.3)  
24.2 (21.6)  
24.3 (21.8)  
24.4 (21.8)  
23.5 (20.9)  
23.8 (21.1)  
23.9 (21.2)  
24.0 (21.4)  
22.5 (19.6)  
22.8 (20.0)  
22.9 (20.1)  
23.0 (20.2)  
21.7 (18.9)  
22.0 (19.0)  
22.1 (19.2)  
22.2 (19.3)  
25.8 (23.8)  
26.0 (23.9)  
26.4 (24.3)  
26.3 (24.2)  
26.7 (24.7)  
25.3 (23.1)  
25.5 (23.1)  
25.8 (23.4)  
26.0 (23.8)  
26.1 (23.9)  
24.8 (22.5)  
25.1 (22.7)  
25.4 (23.0)  
25.6 (23.3)  
25.7 (23.4)  
24.8 (22.3)  
24.9 (22.4)  
25.1 (22.7)  
25.3 (22.8)  
24.3 (21.8)  
24.6 (22.1)  
24.9 (22.5)  
25.0 (22.4)  
25.1 (22.7)  
23.9 (21.2)  
24.3 (21.7)  
24.3 (21.8)  
24.4 (21.8)  
23.8 (21.2)  
24.1 (21.5)  
24.2 (21.7)  
24.3 (21.8)  
23.5 (20.8)  
23.8 (21.0)  
23.9 (21.2)  
24.0 (21.3)  
22.5 (19.7)  
22.7 (19.9)  
22.9 (20.1)  
23.0 (20.1)  
21.7 (18.7)  
21.9 (19.0)  
22.1 (19.1)  
22.2 (19.3)  
25.5 (23.6)  
25.9 (23.8)  
26.1 (24.0)  
26.3 (24.3)  
26.3 (24.4)  
25.2 (23.1)  
25.4 (23.1)  
25.7 (23.4)  
25.8 (23.5)  
25.9 (23.8)  
24.7 (22.4)  
24.9 (22.6)  
25.2 (22.8)  
25.2 (22.9)  
25.5 (23.1)  
24.6 (22.1)  
24.8 (22.3)  
25.0 (22.4)  
25.1 (22.6)  
24.2 (21.6)  
24.4 (22.0)  
24.7 (22.2)  
24.9 (22.4)  
25.0 (22.4)  
23.8 (21.2)  
24.0 (21.5)  
24.2 (21.5)  
24.3 (21.7)  
23.6 (21.0)  
24.0 (21.3)  
24.0 (21.4)  
24.1 (21.6)  
23.3 (20.6)  
23.6 (20.9)  
23.7 (20.9)  
23.8 (21.1)  
22.3 (19.5)  
22.6 (19.7)  
22.7 (19.9)  
22.8 (20.0)  
21.5 (18.6)  
21.8 (18.9)  
21.9 (19.0)  
22.0 (19.1)  
25.4 (23.0)  
25.6 (23.3)  
25.8 (23.6)  
26.1 (23.9)  
26.2 (24.1)  
24.8 (22.4)  
25.0 (22.7)  
25.4 (23.1)  
25.6 (23.3)  
25.7 (23.5)  
24.4 (21.8)  
24.6 (22.2)  
24.9 (22.4)  
25.0 (22.5)  
25.1 (22.7)  
24.2 (21.6)  
24.6 (21.9)  
24.6 (22.0)  
24.7 (22.0)  
23.9 (21.2)  
24.1 (21.5)  
24.3 (21.8)  
24.5 (22.0)  
24.6 (22.1)  
23.5 (20.7)  
23.7 (21.0)  
23.9 (21.2)  
24.0 (21.3)  
23.4 (20.6)  
23.6 (20.9)  
23.7 (20.9)  
23.8 (21.1)  
23.0 (20.1)  
23.2 (20.5)  
23.4 (20.6)  
23.5 (20.7)  
22.0 (19.0)  
22.2 (19.2)  
22.4 (19.4)  
22.5 (19.6)  
21.2 (18.2)  
21.5 (18.4)  
21.6 (18.6)  
21.7 (18.6)  
24.6 (22.4)  
25.0 (22.8)  
25.2 (23.1)  
25.6 (23.5)  
25.2 (23.3)  
24.1 (21.9)  
24.4 (22.2)  
24.6 (22.4)  
24.7 (22.5)  
25.0 (22.8)  
23.5 (21.2)  
23.8 (21.4)  
24.1 (21.7)  
24.2 (22.0)  
24.4 (22.0)  
23.5 (20.9)  
23.7 (21.2)  
23.9 (21.5)  
24.0 (21.5)  
23.1 (20.7)  
23.3 (20.9)  
23.6 (21.2)  
23.7 (21.3)  
23.9 (21.4)  
22.6 (20.0)  
23.0 (20.4)  
23.1 (20.6)  
23.2 (20.6)  
22.5 (20.0)  
22.9 (20.3)  
23.0 (20.4)  
23.1 (20.5)  
22.2 (19.5)  
22.4 (19.7)  
22.6 (19.9)  
22.7 (20.0)  
21.2 (18.3)  
21.5 (18.6)  
21.6 (18.7)  
21.7 (18.8)  
20.4 (17.5)  
20.7 (17.7)  
20.8 (17.9)  
20.9 (18.0)  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
5 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
5 SPS  
5 SPS  
5 SPS  
10 SPS  
10 SPS  
10 SPS  
10 SPS  
10 SPS  
16.6 SPS  
16.6 SPS  
16.6 SPS  
16.6 SPS  
20 SPS  
20 SPS  
20 SPS  
20 SPS  
20 SPS  
50 SPS  
50 SPS  
50 SPS  
50 SPS  
60 SPS  
60 SPS  
60 SPS  
60 SPS  
100 SPS  
100 SPS  
100 SPS  
100 SPS  
400 SPS  
400 SPS  
400 SPS  
400 SPS  
1200 SPS  
1200 SPS  
1200 SPS  
1200 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
8-2. ADC1 ENOB (Noise Free Bits) at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VREF = 5 V (continued)  
GAIN  
DATA RATE  
FILTER MODE  
1 (BYPASS)  
21.5 (18.5)  
21.7 (18.8)  
21.8 (18.9)  
21.9 (19.0)  
21.1 (18.2)  
21.2 (18.3)  
21.4 (18.4)  
21.4 (18.5)  
20.8 (17.9)  
21.0 (18.1)  
21.1 (18.1)  
21.1 (18.2)  
20.6 (17.7)  
20.1 (17.2)  
15.6 (12.6)  
2
4
8
16  
32  
2400 SPS  
2400 SPS  
2400 SPS  
2400 SPS  
4800 SPS  
4800 SPS  
4800 SPS  
4800 SPS  
7200 SPS  
7200 SPS  
7200 SPS  
7200 SPS  
14400 SPS  
19200 SPS  
38400 SPS  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc5  
Sinc5  
Sinc5  
21.3 (18.3)  
21.5 (18.6)  
21.7 (18.8)  
21.7 (18.8)  
20.8 (18.0)  
21.0 (18.1)  
21.1 (18.2)  
21.2 (18.3)  
20.6 (17.8)  
20.8 (17.8)  
20.9 (17.9)  
20.9 (17.9)  
20.4 (17.4)  
19.9 (17.0)  
15.4 (12.6)  
21.2 (18.3)  
21.4 (18.5)  
21.6 (18.6)  
21.7 (18.8)  
20.8 (17.9)  
21.0 (18.0)  
21.1 (18.1)  
21.2 (18.2)  
20.6 (17.6)  
20.7 (17.8)  
20.8 (17.9)  
20.9 (17.9)  
20.3 (17.4)  
19.9 (17.0)  
15.4 (12.5)  
21.0 (18.1)  
21.3 (18.3)  
21.4 (18.5)  
21.5 (18.5)  
20.6 (17.7)  
20.8 (17.8)  
20.9 (18.0)  
21.0 (18.1)  
20.4 (17.5)  
20.5 (17.6)  
20.6 (17.7)  
20.7 (17.7)  
20.2 (17.2)  
19.8 (16.8)  
15.3 (12.5)  
20.7 (17.7)  
21.0 (18.0)  
21.1 (18.1)  
21.2 (18.2)  
20.3 (17.4)  
20.5 (17.5)  
20.6 (17.5)  
20.7 (17.7)  
20.1 (17.1)  
20.2 (17.2)  
20.3 (17.2)  
20.4 (17.4)  
19.9 (16.9)  
19.6 (16.6)  
15.5 (12.6)  
20.0 (17.0)  
20.2 (17.3)  
20.3 (17.5)  
20.4 (17.4)  
19.5 (16.5)  
19.7 (16.8)  
19.8 (16.9)  
19.9 (16.9)  
19.4 (16.4)  
19.5 (16.6)  
19.5 (16.7)  
19.6 (16.8)  
19.2 (16.3)  
18.9 (16.0)  
15.4 (12.5)  
8-3. ADC2 (ADS1263) Noise in µVRMS (µVPP) at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VREF = 2.5 V  
GAIN  
DATA RATE FILTER  
1
2
4
8
16  
32  
64  
128  
10 SPS  
Sinc1  
Sinc3  
Sinc3  
Sinc3  
7.34 (32.6) 3.54 (16.5) 1.52 (7.57) 0.87 (4.22) 0.47 (2.42) 0.28 (1.43) 0.20 (1.08) 0.14 (0.70)  
10.3 (65.2) 5.58 (36.0) 3.13 (20.4) 1.80 (11.5) 0.96 (6.30) 0.62 (4.03) 0.48 (3.08) 0.32 (2.04)  
100 SPS  
400 SPS  
800 SPS  
56.8 (827)  
29.2 (345)  
15.3 (158)  
7.88 (76.9) 4.02 (36.2) 2.18 (17.9) 1.32 (9.94) 0.80 (5.56)  
38.9 (417) 19.8 (199) 10.0 (90.0) 5.21 (43.6) 2.71 (21.9)  
299 (3195) 151 (1756) 76.8 (875)  
8-4. ADC2 (ADS1263) ENOB (Noise Free Bits) at TA = 25°C, VAVDD = 5 V, VAVSS = 0 V, VREF = 5 V  
GAIN  
DATA RATE FILTER  
1
2
4
8
16  
32  
64  
128  
10 SPS  
Sinc1  
Sinc3  
Sinc3  
Sinc3  
21.4 (18.8) 21.3 (18.8) 21.1 (18.6) 20.6 (18.2) 20.6 (18.1) 20.2 (17.8) 19.4 (17.0) 19.1 (16.7)  
20.3 (17.5) 20.1 (17.3) 19.8 (17.2) 19.4 (16.7) 19.3 (16.5) 18.9 (16.2) 18.2 (15.6) 17.8 (15.0)  
16.5 (12.5) 16.5 (12.5) 16.4 (12.7) 16.2 (12.8) 16.2 (12.6) 16.2 (13.0) 16.1 (13.0) 15.9 (13.0)  
14.0 (10.7) 14.0 (10.7) 14.0 (10.4) 13.8 (10.4) 13.8 (10.4) 13.8 (10.4) 13.7 (10.6) 13.7 (10.7)  
100 SPS  
400 SPS  
800 SPS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ADS1262 and ADS1263 are precision 32-bit, delta-sigma (ΔΣ) ADCs with an integrated analog front end  
(AFE) to simplify connection to sensors. A 32-bit ADC (ADC1) provides output data rates from 2.5 SPS to 38400  
SPS for flexibility in resolution and data rates over a wide range of applications. The ADC low noise and low drift  
architecture make these devices suitable for precise digitization of low-level transducers, such as load cell  
bridges and temperature sensors. The ADS1263 includes an auxiliary 24-bit delta-sigma ADC (ADC2).  
The ADS1262 and the ADS1263 incorporate several functions that provide increased utility. The key integrated  
functions include:  
Low-drift voltage reference  
Dual, matched, sensor-excitation current sources (IDAC)  
Input-level-shift voltage  
Eight GPIOs  
Dual-sensor, bias current sources  
Low-noise, CMOS PGA with integrated signal fault detection  
Internal test signal source (TDAC)  
Temperature sensor  
Internal oscillator  
Three sets of buffered external reference inputs with low reference voltage alarm  
As shown in the Functional Block Diagram, these devices feature 11 analog inputs that are configurable as either  
ten single-ended inputs, five differential inputs, or any combination, to either ADC1 or ADC2. Many of the analog  
inputs are multifunction as programmed by the user. The analog inputs can be programmed to the following  
extended functions:  
Three external reference inputs: pins AIN0, AIN1, AIN2, AIN3, AIN4 and AIN5  
Two sensor excitation current source: all analog input pins  
Level shift (VBIAS): AINCOM pin  
Eight GPIO: pins AIN3, AIN4, AIN5, AIN6, AIN7, AIN8, AIN9, AINCOM  
Sensor break current source: all analog input pins  
Two test signal output: pins AIN6, AIN7  
Following the input multiplexer (mux), ADC1 features a high-impedance, CMOS, programmable gain amplifier  
(PGA). The PGA provides very low voltage and current noise, enabling direct connection to low-level  
transducers, and in many cases, eliminating the need for an external amplifier. The PGA gain is programmable  
from 1 V/V to 32 V/V in binary steps. The PGA can be bypassed to allow the input range to extend below  
ground. The PGA has voltage overrange monitors to improve the integrity of the conversion result. The PGA  
overrange alarm is latched during the conversion phase and appended to the conversion data. The  
programmable sensor bias uses a test current to help detect a failed sensor or sensor connection.  
An inherently stable delta-sigma modulator measures the ratio of the input voltage to the reference voltage to  
provide the ADC result. The ADC operates with the internal 2.5-V reference, or with up to three external  
reference inputs. The external reference inputs are continuously monitored for low (or missing) voltage. The  
reference alarm status is latched during the conversion phase and appended to the conversion data. The  
REFOUT pin is the buffered 2.5-V internal voltage reference output.  
Dual excitation current sources (IDAC) provide bias to resistance sensors (such as 3-wire RTD). The ADC  
integrates several system monitors for readback, such as temperature sensor and supply monitor. The ADC  
features an internal test signal voltage (TDAC) that is used to verify the ADC operation across all gains. The  
TDAC has two outputs to provide test voltages for single-ended and differential input configurations. Eight GPIO  
ports are available on the analog input pins.  
The digital filter provides two functional modes, sinc and FIR, allowing optimization of settling time and line-cycle  
rejection. The sinx/x (sinc) filter is programmable to sinc orders one through four to tradeoff filter settling time  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
and 50-Hz and 60-Hz line-cycle rejection. The finite impulse response (FIR) filter mode provides single-cycle  
settled data with 50-Hz and 60-Hz line cycle rejection at data rates up to 20 SPS.  
The ADS1263 includes an auxiliary 24-bit delta-sigma ADC (ADC2) featuring buffered PGA inputs, gains from 1  
V/V to 128 V/V, and data rates up to 800 SPS. All analog inputs and reference inputs are available to ADC2.  
ADC2 can be used to provide redundant measurements or system measurements such as sensor temperature  
compensation and thermocouple cold junction compensation (CJC). The ADS1263 is pin and functionally  
compatible to the ADS1262.  
The SPI-compatible serial interface is used to read the conversion data and also to configure and control the  
ADC. The serial interface consists of four signals: CS, SCLK, DIN and DOUT/DRDY. The conversion data are  
provided with a CRC code for improved data integrity. The dual function DOUT/DRDY output indicates when  
conversion data are ready and also provides the data output. The serial interface can be implemented with as  
little as three connections by tying CS low.  
The ADC has three clock options: internal oscillator, external crystal, and external clock. The ADC detects the  
clock mode automatically. The nominal clock frequency is 7.3728 MHz.  
ADC conversions are started by a control pin or by commands. The ADC can be programmed to free-run mode  
or perform one-shot conversions. The DRDY and DOUT/DRDY pins are driven low when the conversion data  
are ready. The RESET/PWDN digital input resets the ADC when momentarily pulsed low, and when held low,  
enables the ADC power-down mode.  
The ADC operates with bipolar (± 2.5 V) supplies, or with a single 5-V supply. For single-supply operation, use  
the internal level-shift voltage to level-shift isolated (floating) sensors. The digital power-supply range is 2.7 V to  
5.25 V. The BYPASS pin is the subregulator output (2 V) that is used for internal digital supply.  
9.2 Functional Block Diagram  
AVSS  
AVDD  
CAPP  
CAPN  
BYPASS  
DVDD  
Ref  
Mux  
2V Digital  
Supply  
2.5 V Ref  
LDO  
ADC1  
REFOUT  
START  
RESET/PWDN  
DRDY  
Ref  
Mux  
ADC2  
Control  
Low Ref  
Alarm  
Dual  
Sensor  
Excitation  
AIN0  
AIN1  
Buf  
Input  
Mux  
AIN2  
ADC1  
AIN3  
32-bit  
ADC1  
Sensor  
Bias  
Digital  
Filter  
CS  
AIN4  
PGA  
Serial  
Interface  
AIN5  
SCLK  
AIN6  
DOUT/DRDY  
Signal  
Level  
Alarm  
AIN7  
GPIO  
DIN  
AIN8  
8
AIN9  
Input  
Mux  
AINCOM  
ADC2  
Power Supplies  
ADS1263 only  
Buf  
Internal  
Oscillator  
Level Shift  
24-bit  
ADC2  
Digital  
Filter  
Sensor  
Bias  
PGA  
XTAL2  
Temp Sensor  
Clock  
Mux  
XTAL1/CLKIN  
Test DAC  
DGND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Multifunction Analog Inputs  
The ADS1262 and ADS1263 have 11 multifunction analog inputs configurable in a variety of extended functions.  
9-1 shows the internal analog signal routing to the circuit blocks. 9-1 summarizes the input pin functions.  
The devices have two cross-point multiplexers; one multiplexer for ADC1, and one multiplexer for ADC2. The  
multiplexers select any analog input for the positive PGA input and any input for the negative PGA input. The  
ADCs are also configurable for a number of internal monitor functions. The internal monitors are temperature  
sensor, TDAC test voltage, analog power-supply voltage, and digital power-supply voltage. The dual excitation-  
current sources (IDAC1 and IDAC2) are independently connected to any analog input pin. Eight analog inputs  
are configurable as GPIO. The GPIOs are programmable as inputs or outputs, and are referenced to the analog  
power-supply voltages (VAVDD and VAVSS). The level-shift function (VBIAS) is available on AINCOM and is used  
to provide an input level-shift voltage for isolated sensors. The internal TDAC test voltage is available on output  
pins AIN6 and AIN7. The ADC has two voltage-reference multiplexers; one reference multiplexer for ADC1, and  
one reference multiplexer for ADC2. Through the reference multiplexers, select the internal reference, three  
external reference sources, or the analog power-supply voltage (VAVDD VAVSS).  
6
AIN0-AIN5  
VREFP  
ADC1  
INT REF  
Reference  
Mux  
VREFN  
Sensor  
Excitation  
Analog Supply  
11  
AIN0 - AINCOM  
ADC1  
Input  
Mux  
GPIO[7:0]  
Test DAC  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
VAINP  
VAINN  
TEMP Sensor  
8
Analog Supply  
Monitor  
Digital Supply  
Monitor  
ADS1263 Only  
AIN7  
AIN8  
AIN0 - AIN5  
INT REF  
VREFP_2  
VREFN_2  
ADC2  
Reference  
Mux  
2.5 V Reference  
AIN9  
Analog Supply  
AINCOM  
VBIAS  
Temperature  
Sensor  
AIN0 - AINCOM  
Test DAC  
2
ADC2  
Input  
Mux  
VAINP_2  
VAINN_2  
TEMP Sensor  
Test DAC  
Analog Supply  
Monitor  
Digital Supply  
Monitor  
9-1. Analog Input Routing Overview  
9-1. Analog Input Pin Functions  
LEVEL  
SHIFT  
ADC1  
INPUT  
ADC2  
PIN  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AINCOM  
INPUT  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
ADC1 REF INPUT(1)  
ADC2 REF INPUT  
IDAC1 OUTPUT IDAC2 OUTPUT  
GPIO  
TDAC OUTPUT  
OUTPUT  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
REFP1, REFN1  
REFP1  
REFN1  
REFP2  
REFN2  
REFP3  
REFN3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
REFP1, REFN1  
REFP2, REFN2  
REFP2, REFN2  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
REFP3, REFN3  
REFP3, REFN3  
TDACP  
TDACN  
(1) The reference voltage of ADC1 can be either polarity and reversed by programming.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.2 Analog Input Description  
As shown in 9-2, the analog inputs of the device consist of ESD protection diodes, an ADC1 and ADC2 cross-  
point input multiplexer, the sensor bias circuit, and individual PGAs for each ADC. The ADC has 11 external  
inputs, four internal monitor signals, and one no-connection (float). Note that in figures throughout this  
document, italic text shows the associated register and register settings.  
AVDD  
AIN0  
AIN1  
0000  
0001  
0010  
0011  
AIN2  
AIN3  
AIN4  
AIN5  
ADC1 Positive Multiplexer  
MUXP[3:0] bits 7:4 of INPMUX  
(register address = 06h)  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
AIN6  
AIN7  
ADC2 Positive Multiplexer  
MUXP2[3:0] bits 7:4 ADC2MUX  
(register address = 16h)  
AIN8  
ESD Diodes  
AIN9  
AINCOM  
1011  
1100  
1101  
TEMP Sensor P  
Analog Supply Mon P  
Digital Supply Mon P  
TDAC P  
AIN0  
AIN1  
1110  
1111  
VAINP1  
AIN2  
Float  
Sensor  
PGA1  
Bias  
VAINN1  
AIN3  
AIN4  
AIN5  
AIN6  
VAINP2  
AIN7  
Sensor  
PGA2  
Bias  
AIN8  
0000  
0001  
0010  
0011  
AIN0  
AIN1  
VAINN2  
AIN9  
AINCOM  
AIN2  
AIN3  
AIN4  
AIN5  
(ADS1263)  
0100  
0101  
0110  
ADC1 Negative Multiplexer  
AIN6  
AIN7  
MUXN[3:0] bits 3:0 of INPMUX  
(register address = 06h)  
ESD Diodes  
0111  
1000  
1001  
1010  
1011  
1100  
AIN8  
AIN9  
ADC2 Negative Multiplexer  
AINCOM  
MUXN2[3:0] bits 3:0 of ADC2MUX  
(register address = 16h)  
TEMP Sensor N  
Analog Supply Mon N  
Digital Supply Mon N  
TDAC N  
1101  
1110  
1111  
Float  
AVSS  
9-2. ADC1 and ADC2 Input Block Diagram  
9.3.2.1 ESD Diode  
The analog inputs have internal ESD diodes that are connected to the analog supplies (AVDD and AVSS). The  
function of the diodes is to protect the ADC inputs from ESD events. If the input signal exceeds VAVDD by more  
than 0.3 V or goes below VAVSS by more than 0.3 V, the diodes may conduct. When the diodes conduct, input  
current flows into the analog inputs through the AVDD or AVSS pins. If an input overvoltage is possible, limit the  
input current to less than |±10 mA|. In many applications, a resistor in series with the input is sufficient to limit the  
current. Depending on the application requirements, be aware of the thermal noise of the current limit resistor.  
9.3.2.2 Input Multiplexer  
Use the dual, cross-point input multiplexers to select from one of the 11 external inputs, one of the four internal  
monitors, and a floating connection, in any combination, to either ADC. One input is selected by the positive  
multiplexer, and one input is selected by the negative multiplexer. The ADC1 positive and negative multiplexers  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
are programmed by bits MUXP[3:0] and bits MUXN[3:0] in the INPMUX register (address = 06h). The ADC2  
positive and negative multiplexers have identical functionality and are programmed by bits MUXP2[3:0] bits and  
bits MUXN2[3:0] in the ADC2MUX register (address = 16h).  
9.3.3 Sensor Bias  
The ADC incorporates a sensor bias current source that can be used to apply a small test current to diagnose  
broken sensor leads or problems existing in the sensor. 9-3 shows the sensor bias block diagram. The sensor  
bias circuit consists of programmable current sources and bias resistors. The sensor bias circuit connects to the  
outputs of either the ADC1 or ADC2 multiplexers. Program the sensor bias to either pull-up or pull-down mode.  
In pull-up mode, the current flows into the positive input and flows out of the negative input. In pull-down mode,  
the polarities are reversed. Configure the sensor bias either to a 10-MΩ bias resistor, or to current with  
magnitudes of ±0.5, ±2, ±10, ±50, or ±200 µA.  
AVDD  
AVSS  
SBMAG[2:0] bits 2:0 of MODE1  
(register address = 04h)  
10 M  
10 MΩ  
000 = off  
001 = 0.5 uA  
010 = 2 uA  
011 = 10 uA  
100 = 50 uA  
101 = 200 uA  
110 = 10 MΩ (shown)  
SBPOL bit 3 of MODE1  
(register address = 04h)  
0 = Pull-up mode (shown)  
1 = Pull-down Mode  
0 = ADC1 Connection (shown)  
1 = ADC2 Connection  
SBADC bit 4 MODE1  
(register address = 04h)  
VAINP1  
ADC1  
PGA1  
INPUT  
MUX  
VAINN1  
VAINP2  
ADC2  
INPUT  
MUX  
PGA2  
VAINN2  
9-3. Sensor Bias Block Diagram  
In pull-up mode, an open sensor results in the positive input pulled to VAVDD, and the negative input pulled to  
VAVSS. An open sensor in pull-up mode results in a positive full-scale reading. A full-scale reading can also be an  
indication of sensor overload or that the reference voltage is lower than expected. The sensor bias can remain  
on while actively converting, or pulsed on periodically to test the sensor. When pulsed on, allow time for settling  
because external capacitance loads the sensor bias when first enabled. Be aware of offset error as a result of  
sensor bias current flowing through the multiplexer switch resistance.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.4 Temperature Sensor  
The ADC incorporates an integrated temperature sensor. The temperature sensor is comprised of two internal  
diodes with one diode having 16 times the current density of the other, as shown in 9-4. The difference in  
current density of the diodes yields a differential output voltage that is proportional to absolute temperature.  
Measure the temperature sensor voltage with either ADC1 or ADC2. For ADC1 measurement, set the INPMUX  
register (address 06h) to BBh. For ADC2 measurement, set the ADC2MUX register (address 16h) to BBh. 方程  
9 shows how to convert the temperature sensor reading to degrees Celcius (°C):  
Temperature (°C) = [(Temperature Reading (µV) 122,400) / 420 µV/°C] + 25°C  
(9)  
where  
Temperature reading units are in µV  
Before temperature sensor measurement, enable the PGA, set gain = 1, disable chop mode, and make sure the  
internal voltage reference is powered on. As a result of the low package-to-PCB thermal resistance, the internal  
device temperature closely tracks the PCB temperature. Note that ADC self-heating results in an increase of  
0.7°C relative to the temperature of the surrounding PCB.  
AVDD  
ADC1 MUX P  
1x  
2x  
TEMP Sensor P  
TEMP Sensor N  
ADC1 MUX N  
ADC2 MUX P  
ADC2 MUX N  
1x  
8x  
AVSS  
9-4. Temperature Sensor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.5 Power-Supply Monitor  
To internally monitor the ADC power supplies, use either ADC1 or ADC2. As shown in 9-5, the power supply  
voltages are divided by a resistor network to reduce the voltages within the ADC input range. The reduced  
power-supply voltage is routed to the ADC input multiplexers. The analog (VANLMON) and digital (VDIGMON) power  
supply readings are scaled by 方程10 and 方程11, respectively:  
VANLMON = (VAVDD VAVSS) / 4  
VDIGMON = (VDVDD VDGND) / 4  
(10)  
(11)  
Measure the supply monitor readings using either the internal or an external reference. For an external  
reference, the minimum reference voltage is 1.5 V.  
Before measurement, enable the PGA, set gain = 1, and disable chop mode.  
For analog supply monitor ADC1 measurement, set the INPMUX register (address 06h) to CCh.  
For digital supply monitor ADC1 measurement, set the INPMUX register to DDh.  
For analog supply monitor ADC2 measurement, set the ADC2MUX register (address 16h) to CCh.  
For digital supply monitor ADC2 measurement, set the ADC2MUX register to DDh.  
Analog Supply Monitor  
Digital Supply Monitor  
AVDD  
DVDD  
ADC1 MUX P  
ADC1 MUX N  
ADC1 MUX P  
ADC1 MUX N  
1.5 R  
2.5 R  
VANLMON_ P  
VDIGMON_ P  
R
R
VANLMON_ N  
VDIGMON_ N  
ADC2 MUX P  
ADC2 MUX N  
ADC2 MUX P  
ADC2 MUX N  
0.5 R  
1.5 R  
AVSS  
DGND  
9-5. Power-Supply Monitors  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.6 PGA  
The ADC1 PGA is a low-noise, programmable gain, CMOS differential-input, differential-output amplifier. The  
PGA extends the ADC dynamic range of sensors with low input-signal levels. The PGA provides gains of 1, 2, 4,  
8 ,16, and 32. Bypass the PGA to extend the analog input range to below ground (if the AVSS pin is grounded).  
9-6 shows the PGA block diagram. The PGA consists of two chopper-stabilized amplifiers (A1 and A2), and a  
resistor network that is programmed to set the PGA gain. The PGA input is equipped with a high-frequency,  
electromagnetic-interference (EMI) input filter consisting of two 350-Ω input resistors, and several filter  
capacitors, as shown in the figure. Bypass the PGA to directly connect the inputs to the ADC. The PGA output is  
monitored by an overrange voltage monitor. The voltage monitor triggers an alarm when the absolute or  
differential PGA output voltage exceeds the linear range of operation. Pins CAPP and CAPN are the PGA  
positive and negative outputs, respectively. Connect a 4.7-nF (C0G) capacitor as shown in the figure. The  
capacitor provides an analog antialias filter, as well as the deglitch filter for the modulator sample pulses. Place  
the capacitor close to the pins using short, direct traces. Avoid running clock traces or other digital traces close  
to the pins.  
0 = PGA active (shown)  
1 = PGA bypass  
BYPASS bit 7 of MODE2  
(register address = 05h)  
280  
350 Ω  
VAINP  
CAPP  
+
A1  
œ
8 pF  
12 pF  
GAIN[2:0] bits 6:4 of MODE2  
(register address = 05h)  
PGA1  
Over-range  
Detection  
000: 1  
001: 2  
010: 4  
011: 8  
100: 16  
101: 32  
4.7 nF  
C0G  
ADC1  
12 pF  
12 pF  
œ
A2  
350 Ω  
280 Ω  
VAINN  
+
CAPN  
8 pF  
9-6. ADC1 PGA Block Diagram  
The ADC1 full-scale voltage range is determined by the reference voltage and the PGA gain. 9-2 shows the  
full-scale voltage range verses gain for reference voltage = 2.5 V. The full-scale voltage range scales with the  
reference voltage and is increased or decreased by changing the reference voltage.  
9-2. ADC1 Full-Scale Voltage Range  
GAIN[2:0] BITS OF REGISTER  
MODE2  
GAIN (V/V)  
FULL SCALE RANGE (V)(1)  
±2.500 V  
000  
1
2
001  
±1.250 V  
010  
4
±0.625 V  
011  
8
±0.312 V  
100  
16  
32  
±0.156 V  
101  
±0.078 V  
(1) VREF = 2.5 V. The full-scale input range is proportional to VREF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
As with many amplifiers, the PGA has an absolute input voltage range requirement that cannot be exceeded.  
The maximum and minimum absolute input voltages are limited by the voltage swing capability of the PGA  
output. The specified minimum and maximum absolute input voltages (VINP and VINN) depend on the PGA gain,  
the input differential voltage (VIN), and the tolerance of the analog power-supply voltages (VAVDD and VAVSS).  
The absolute positive and negative input voltages must be within the specified range, as shown in 方程12:  
VAVSS + 0.3 + |VIN| · (Gain 1) / 2 · < VINP and VINN < VAVDD 0.3 |VIN| · (Gain 1) / 2  
(12)  
where  
VINP, VINN = absolute input voltage  
VIN = differential input voltage = VINP - VINN  
The relationship between the PGA input to the PGA output is shown graphically in 9-7. The PGA output  
voltages (VOUTP, VOUTN) depend on the PGA gain and the input voltage magnitudes. For linear operation, the  
PGA output voltages must not exceed VAVDD 0.3 or VAVSS + 0.3. Note the diagram depicts a positive  
differential input voltage that results in a positive differential output voltage.  
PGA Input  
PGA Output  
VAVDD  
VAVDD œ 0.3 V  
VOUTP = VINP + VIN (Gain œ 1) / 2  
VINP  
VIN = VINP ‡ VINN  
VINN  
VOUTN = VINN œ VIN (Gain œ 1) / 2  
VAVSS + 0.3 V  
VAVSS  
9-7. PGA Input/Output Range  
If the PGA is bypassed, the ADC absolute input voltage range extends beyond the VAVDD and VAVSS power  
supplies allowing input voltages at or below ground. The absolute input voltage range when the PGA is  
bypassed is shown in 方程13:  
V
AVSS 0.1 < VINP and VINN < VAVDD + 0.1  
(13)  
9.3.7 PGA Voltage Overrange Monitors  
ADC1 incorporates two PGA output-voltage monitors. The monitors trigger an alarm if the PGA output is driven  
into overrange. The corresponding bits are set (= 1) in the data output status byte when an alarm is triggered.  
The PGA output voltage is monitored in two ways:  
1) Differential: If the PGA differential output voltage exceeds either +105% or 105% FSR.  
2) Absolute: If either PGA absolute output voltage is higher than VAVDD 0.2 V or lower than VAVSS + 0.2 V.  
The alarms automatically reset when the PGA is no longer in voltage overload. The monitors are fast-  
responding, analog, voltage-level comparators. Therefore, these monitors detect short-duration voltage  
overrange events that are not necessarily evident in the output as clipped codes because of averaging of the  
digital filter that may span one or more conversion cycles. Use the monitor function to detect certain type of  
faults (such as signal overranges, incorrect gain settings, sensor faults, input miswiring, and so on) without the  
need to change input configuration or interrupt readings.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.7.1 PGA Differential Output Monitor  
ADC1 incorporates a differential PGA output voltage monitor. This voltage monitor triggers an alarm when the  
magnitude of the differential PGA output voltage is more positive than +105% or more negative than 105% of  
full scale, but only during a conversion cycle. The alarm event, corresponding to the conversion cycle when the  
alarm occurred, is set in the status byte (PGAD_ALM). For the next conversion, the alarm resets. If the  
magnitude of differential output voltage is within the range of ±105% of full-scale range, the alarm remains reset.  
The PGA differential monitor block diagram is shown in 9-8.  
Data Bytes  
VOUTP  
C
A D  
Digital  
Filter  
ADC  
DATA 3  
DATA 4  
STATUS  
DATA 2  
CRC/CHK  
DATA 1  
PGA  
VOUTN  
VREF Comparators  
PGAD_ALM  
Bit 1 of STATUS byte  
+105% VREF  
œ
+
Latch  
+
S
Q
Q
œ
œ
R
PGA Output  
difference amplifier  
-105% VREF  
Conversion  
Start Reset  
+
9-8. PGA Differential Overload Monitor  
9-9 shows an example of the differential overrange monitor event.  
+ 105%  
- 105%  
Alarms latched during  
conversion cycle  
Conversions (DRDY)  
PGAD_ALM bit  
9-9. PGA Differential Alarm  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.7.2 PGA Absolute Output-Voltage Monitor  
ADC1 contains an integrated a PGA absolute output-voltage monitor. If the absolute level of the PGA positive or  
negative output exceeds VAVDD 0.2 V, the PGA high alarm triggers (PGAH_ALM). If the absolute level of the  
PGA positive or negative output voltage is less than VAVSS + 0.2 V, the PGA low alarm triggers (PGAL_ALM).  
The alarms are set in the status byte corresponding to the conversion cycle when the alarms occurred. For the  
next conversion cycle, the alarms reset. If the magnitude of PGA output voltages remains within the range  
(VAVDD 0.2 V and VAVSS + 0.2 V), the alarms remain reset. The PGA absolute output-voltage monitor block  
diagram is shown in 9-10.  
Data Bytes  
VOUTP  
VOUTN  
C
A D  
Digital  
Filter  
ADC  
DATA 3  
DATA 4  
STATUS  
DATA 2  
CRC/CHK  
DATA 1  
PGA  
VAVDD œ 0.2 V  
œ
PGAH_ALM  
Bit 2 of STATUS byte  
+
S
R
Q
Q
Latch  
œ
+
Supply Rail  
Comparators  
œ
PGAL_ALM  
Bit 3 of STATUS byte  
+
S
R
Q
Q
Latch  
œ
+
VAVSS + 0.2 V  
Conversion  
Start Reset  
9-10. PGA Absolute Output-Voltage Monitor  
9-11 shows an example of the PGA absolute output-voltage monitor overrange event.  
VAVDD - 0.2  
VAVSS + 0.2  
Alarms latched during  
conversion cycle  
Conversions (DRDY)  
PGAH_ALM bit  
PGAL_ALM bit  
9-11. PGA Absolute Alarm  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.8 ADC Reference Voltage  
These devices require a reference voltage for operation. Both ADCs default to the same internal reference,  
however, the reference voltage of ADC1 is independent of the ADC2 reference voltage. The reference voltage is  
provided internally by the internal 2.5-V reference, or externally, by one of the three external reference inputs.  
The specified external reference voltage range is 0.9 V to 5 V. The reference voltage is defined as VREF = VREFP  
VREFN, where VREFP and VREFN are the absolute positive and absolute negative reference voltages,  
respectively. The polarity of the reference voltage internal to the ADC must be always positive. The magnitude of  
the reference voltage together with the PGA gain establishes the ADC full-scale differential input range as  
defined by VIN = ±VREF / gain. 9-12 shows the block diagram of the ADC1 reference multiplexer. Use the  
reference multiplexer to select the internal reference, one of three external reference inputs, or the analog power  
supply.  
INTREF bit 0 of POWER 0 = reference off  
(register address = 01h) 1 = reference on  
RMUXP[2:0] bits 5:3 of REFMUX  
(register address = 0Fh)  
+2.5 V  
Reference  
AVDD  
REFREV bit 7 of MODE0  
(register address = 03h)  
REFOUT  
000  
001  
010  
AIN0  
AIN2  
AIN4  
REF_ALM bit of status byte  
(bit 4)  
0 = normal  
1 = reverse  
Low Reference  
Monitor  
REF_MUXP  
(A)  
1 mF  
011  
100  
0 = no alarm  
1 = alarm  
+0.4 V  
VVREFP  
+
+
S Q  
œ
VVREFN  
œ
Q
R
000  
001  
010  
011  
AIN1  
AIN3  
Start Conversion Reset  
REF_MUXN  
AIN5  
100  
ADC1  
AVSS  
RMUXN[2:0] bits 2:0 of REFMUX  
(register address = 0Fh)  
A. The internal reference requires a 1-µF capacitor connected to pins REFOUT and AVSS.  
9-12. ADC1 Reference Multiplexer Block Diagram  
The ADC1 reference multiplexer consists of a positive multiplexer and a negative multiplexer. The positive and  
negative multiplexers are programmed by the RMUXP[2:0] and RMUXN[2:0] bits, respectively, of the REFMUX  
register. The positive reference input is either internal (2.5 V), external (pins AIN0, AIN2, AIN4), or the analog  
power-supply voltage (VAVDD). The negative reference input is either internal (2.5 V), external (pins AIN1, AIN3,  
AIN5), or the analog power-supply voltage (VAVSS). A reference polarity-reversal switch changes the reference  
polarity from negative to positive. The polarity switch allows either positive or negative external reference  
polarity. Set the reversal switch to the normal position (REFREV = 0) when using the internal reference or analog  
power supplies.  
The ADC also contains and integrated low-reference voltage monitor. This monitor provides continuous detection  
of a low or missing reference during the conversion cycle. The low reference alarm is appended to the data  
output status byte (REF_ALM, bit 4 of the status byte).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.8.1 Internal Reference  
The ADC incorporates an integrated, precision, 2.5-V reference featuring very low drift. The internal reference is  
enabled by setting INTREF equal to 1 (default is on). To select the internal reference for use with ADC1, set the  
RMUXP and RMUXN bits of register REFMUX to 0h. The REFOUT pin provides a buffered reference output  
voltage. The negative reference (return) is the AVSS pin, as shown in 9-12. Be careful when laying out the  
REFOUT return to the AVSS pin. Connect a 1-uF capacitor from the REFOUT pin to the AVSS pin. The  
capacitor can be increased up to 10 μF (maximum) to decrease the reference noise, but results in increased  
reference start-up time. The capacitor is not required if the internal reference is not used. The internal reference  
must be powered if using the IDACs or the internal temperature sensor. After internal reference start-up, the  
reference requires start-up time before beginning the first conversion; see 7-33.  
9.3.8.2 External Reference  
The ADC provides three external reference inputs. The reference inputs are differential with independent positive  
and negative inputs. The reference inputs are the analog pins, AIN0 to AIN5. Typically, the positive reference is  
applied to pin AIN0, AIN2, or AIN4, and the negative reference is applied to pin AIN1, AIN2, or AIN3. The  
reference polarity can be negative, but the ADC requires a positive voltage reference. In this case, reverse the  
polarity using the internal polarity-reversal switch (ADC1 reference only). The reference polarity-reversal switch  
changes the reference polarity from negative to positive, and is controlled by REFREV (bit 7 of MODE0).  
The reference inputs are high impedance. A reference input current flowing through a reference-voltage source  
impedance leads to possible loading errors (see 7-34). To reduce the input current, use an external reference  
buffer; however, in most applications, an external reference buffer is not necessary.  
Connect a 100-nF bypass capacitor across the external reference input pins. Follow the specified absolute and  
differential reference voltage requirements.  
9.3.8.3 Power-Supply Reference  
A third option for ADC reference is the internal analog power supply. However, an increase of linearity error  
results with this connection, and therefore, use this option only for less-critical applications, such as ADC self-  
diagnostics.  
For critical applications, do not use the power-supply reference option. For applications that use the power-  
supply voltage as the reference voltage, connect the power-supply voltage to the external reference inputs, and  
select the appropriate external reference bits in the REFMUX register. For example, to measure a 6-wire load-  
cell, connect the bridge excitation voltages to the external reference inputs, and select the appropriate REFMUX  
bits.  
9.3.8.4 Low-Reference Monitor  
ADC1 incorporates a low-reference monitor to detect a low or missing reference. If the differential reference  
voltage (VREF = VREFP VREFN) falls below 0.4 V (typical), the low reference alarm triggers (REF_ALM). The  
low-reference monitor sets the corresponding alarm bit in the conversion data status byte. The alarm resets at  
the start of each new conversion. Use the low-reference monitor to detect a missing or failed reference voltage  
connection. Connect a 100-kΩ resistor across the reference inputs to provide the necessary bias. If either  
reference input is missing or unconnected, this external resistor biases the reference inputs to each other. The  
low-reference monitor is a fast-responding analog comparator; therefore, transients in the reference voltage may  
trigger the alarm.  
9.3.9 ADC1 Modulator  
The ADC1 modulator is an inherently stable, fourth-order, 2 + 2 pipelined ΔΣ modulator. The modulator  
samples the analog input voltage at a high sample rate (fMOD = fCLK / 8 = 921.6 kHz) and converts the analog  
input to a ones density bit stream. The digital filter receives the ones density bit stream output, and then filters  
and decimates the data to yield the final conversion result.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.10 Digital Filter  
The digital filter of ADC1 receives the modulator output data and produces a high-resolution conversion result.  
The digital filter low-pass filters and decimates the modulator data (rate reduction), yielding the final data output.  
By adjusting the type of filtering, tradeoffs are made between resolution, data rate, line cycle rejection, and  
conversion latency.  
The digital filter has two selectable modes: sin (x) / x (sinc) mode and finite impulse response (FIR) mode (see  
9-13). The sinc mode provides data rates of 2.5 SPS though 38400 SPS with selectable sinc orders of 1  
through 5. The FIR filter provides simultaneous rejection of 50-Hz and 60-Hz power-line frequencies with data  
rates 2.5 SPS through 20 SPS with single-cycle settled conversions.  
fCLK: 7.3728 MHz  
38400 SPS  
19200 SPS  
14400 SPS  
fCLK/8  
fMOD: 921.6 kHz  
14400 SPS  
921.6 kHz  
2.5 SPS...7200 SPS  
FIR Filter Section  
1st Stage  
Sinc5 Filter  
2nd Stage  
SincN Filter  
Modulator  
Filter Output  
Decimation A  
(24, 48, 64)  
Decimation B  
(2...5760)  
20 SPS  
600 SPS  
FIR  
Averager  
10 SPS  
5 SPS  
2.5 SPS  
Decimation  
(30)  
Average  
(2,4,8)  
DR[3:0] bits 3:0 of MODE2  
(register address = 05h)  
FILTER[2:0] bits 7:5 of MODE1  
(register address = 04h)  
000 = sinc1  
001 = sinc2  
010 = sinc3  
011 = sinc4  
100 = FIR  
0000 = 2.5 SPS  
0001 = 5 SPS  
1000 = 400 SPS  
1001 = 1200 SPS  
1010 = 2400 SPS  
1011 = 4800 SPS  
1100 = 7200 SPS  
1101 = 14400 SPS  
1110 = 19200 SPS  
1111 = 38400 SPS  
0010 = 10 SPS  
0011 = 16.6 SPS  
0100 = 20 SPS  
0101 = 50 SPS  
0110 = 60 SPS  
0111 = 100 SPS  
9-13. Digital Filter Block Diagram  
9.3.10.1 Sinc Filter Mode  
The sinc filter consists of two stages: a variable-decimation, fixed-order sinc5 filter, followed by a variable-  
decimation, variable-order sinc filter. The first-stage filter is sinc5. The sinc5 stage filters and down-samples the  
modulator data (fCLK / 8 = 921.6 kHz) to 38400 SPS, 19200 SPS, and 14400 SPS by decimating to 24, 48, and  
64, respectively. These data rates bypass the second filter stage and as a result have a sinc5 frequency  
response profile. The second filter stage receives the data from the first stage at 14400 SPS. The second stage  
reduces the data rate to produce output data of 7200 SPS to 2.5 SPS. The second stage is a variable-order sinc  
filter that is programmable.  
The combined decimation ratio of the first and second stages determine the output data rate as follows: data  
rate = 921.6 kHz / (A · B). The filter order of the second stage affects the 50-Hz and 60-Hz rejection together  
with conversion latency. The high-order sinc filter yields the widest 50-Hz and 60-Hz response null widths, but  
correspondingly increases the conversion latency. The sinc order is programmed by the FILTER[2:0] bits of  
register MODE1. 9-3 lists the decimation ratio corresponding to the first and second filter stages (A and B,  
respectively) for each data rate. The data rate is programmed by the DR[3:0] bits of register MODE2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-3. Sinc Filter Mode Data Rates and Decimation Ratio  
DATA RATE  
(SPS)(1)  
DR[3:0] BITS OF  
REGISTER MODE2  
FIRST-STAGE  
DECIMATION RATIO A  
SECOND-STAGE  
DECIMATION RATIO B  
2.5  
5
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
48  
24  
5760  
2880  
1440  
864  
720  
288  
240  
144  
36  
10  
16.6  
20  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
38400  
12  
6
3
2
1
1
1
(1) fCLK = 7.3728 MHz. Data rate scales with fCLK  
9.3.10.1.1 Sinc Filter Frequency Response  
The low-pass filtering effect of the sinc filter sets the overall frequency response of the ADC. The frequency  
response of data rates 14400 SPS, 19200 SPS and 38400 SPS is that of the first filter stage. The frequency  
response of data rates 2.5 SPS ranging to 7200 SPS is the product of the first and second stage individual  
frequency responses. The overall filter response is given in 方程14:  
5
N
»
ÿ
»
ÿ
8ŒfA  
fCLK  
512Œf B  
fCLK  
sin  
sin  
Ÿ
Ÿ
8Œf  
fCLK  
H( = Hsinc  
5
(
f
)
ì HsincN  
(
f
)
=
ì
f
)
»
ÿ
»
ÿ
512Œf  
fCLK  
Aìsin  
Bìsin  
Ÿ
Ÿ
(14)  
where  
f = signal frequency  
fCLK = ADC clock frequency  
A = First-stage decimation ratio (see 9-3)  
B = Second-stage decimation ratio (see 9-3)  
N = Second-stage filter order where N = 1 (sinc1), 2 (sinc2), 3 (sinc3), or 4 (sinc4)  
The digital filter attenuates out-of-band noise that is present in the signal, and noise within the PGA and ADC  
modulator. Adjusting the filter by changing the decimation ratio and sinc order changes the filter bandwidth.  
Tradeoffs are made between signal bandwidth, noise, and filter latency.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
As shown in 9-14 and 9-15, the first-stage sinc5 filter has frequency response nulls occurring at the data  
rate (fMOD / A) and at data rate multiples. At the null frequencies, the filter has zero gain.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (kHz)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (kHz)  
D002  
D001  
9-15. Sinc Frequency Response  
9-14. Sinc Frequency Response  
(14400 SPS)  
(38400 SPS)  
The second stage superimposes new nulls in the frequency response over the nulls produced by the first stage.  
The first of the superimposed frequency response nulls occur at the output data rate, followed by nulls occurring  
at data rate multiples.  
9-16 illustrates the frequency response of data rate 2400 SPS produced by the combined filter stages. This  
data rate has five equally-spaced nulls between the larger nulls produced by the first stage. The frequency  
response is also characteristic of data rates 2.5 SPS to 7200 SPS that are also produced by the second-stage  
filter. 9-17 shows the frequency response nulls for 10 SPS.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
20 25  
Frequency (kHz)  
30  
35  
40  
45  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (Hz)  
D003  
D004  
9-16. Sinc Frequency Response (2400 SPS)  
9-17. Sinc Frequency Response (10 SPS)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-18 and 9-19 illustrate the frequency response of data rates 50 SPS and 60 SPS. The frequency  
response is plotted out to the 50-Hz 12th harmonic (10th harmonic for 60 Hz). The 50-Hz or 60-Hz fundamental  
frequency and harmonics are suppressed by increasing the second-stage filter order, as shown in the figures.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Frequency (Hz)  
0
60 120 180 240 300 360 420 480 540 600  
Frequency (Hz)  
D005  
D006  
9-18. Sinc Frequency Response (50 SPS)  
9-19. Sinc Frequency Response (60 SPS)  
9-20 and 9-21 plot the detailed frequency response of 50-SPS and 60-SPS data rates of different sinc-filter  
orders. Note that the high-order sinc filter increases the width of the null and improves line cycle rejection. The  
high-order filter decreases the sensitivity of the ratio tolerance between the ADC clock frequency and the line  
frequency that can otherwise degrade line cycle rejection. As shown in the plots, the best 50-Hz or 60-Hz  
rejection is provided by the sinc4 order, but has longer filter latency compared to the sinc1 order.  
0
-20  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
45  
46  
47  
48  
49  
Frequency (Hz)  
50  
51  
52  
53  
54  
55  
55  
56  
57  
58  
59  
Frequency (Hz)  
60  
61  
62  
63  
64  
65  
D009  
D010  
9-20. Sinc Frequency Response Zoom  
9-21. Sinc Frequency Response Zoom  
(50 SPS)  
(60 SPS)  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
The overall sinc filter frequency has a low-pass response that rolls off high-frequency components in the signal.  
The signal bandwidth depends on the output data rate and the order of the sinc filter. Note the overall system  
bandwidth is the combination of the digital filter, the antialias filter, and external filter components. 9-4 lists the  
3-dB filter bandwidth of the sinc filter. Note the bandwidth reduction of the higher-order sinc filters.  
9-4. Sinc Filter Bandwidth  
-3-dB BANDWIDTH (Hz)  
DATA RATE (SPS)  
SINC1  
1.10  
2.23  
4.43  
7.38  
8.85  
22.1  
26.6  
44.3  
177  
SINC2  
0.80  
1.60  
3.20  
5.33  
6.38  
16.0  
19.1  
31.9  
128  
381  
751  
1421  
1972  
SINC3  
0.65  
1.33  
2.62  
4.37  
5.25  
13.1  
15.7  
26.2  
105  
314  
623  
1214  
1750  
SINC4  
0.58  
1.15  
2.28  
3.80  
4.63  
11.4  
13.7  
22.8  
91.0  
273  
544  
1077  
1590  
SINC5  
2.5  
5
10  
16.6  
20  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
38400  
525  
1015  
1798  
2310  
2940  
3920  
7740  
9.3.10.2 FIR Filter  
The finite impulse response (FIR) filter of ADC1 is a coefficient-based filter that provides simultaneous rejection  
of 50-Hz and 60-Hz line cycle frequencies and harmonics. The FIR filter data rates are 2.5, 5, 10 and 20 SPS. All  
of the FIR data rates settle within a single conversion cycle. As shown in 9-13, the FIR filter section receives  
data from the second-stage sinc filter at 600 Hz. The FIR filter section decimates by 30 to yield the output data  
rate of 20 SPS. A first-order averager (sinc1) with variable decimation provides the data rates of 10 SPS, 5 SPS,  
and 2.5 SPS.  
As shown in 9-22 and 9-23, the FIR filter frequency response has a series of response nulls close to 50 Hz  
and 60 Hz. The response nulls repeat close to the 50-Hz and 60-Hz harmonics. The FIR frequency response  
superimposes with the response of the 600-SPS pre-stage filter.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
40  
45  
50  
55  
Frequency (Hz)  
60  
65  
70  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
D012  
D011  
9-23. FIR Frequency Response Detail  
9-22. FIR Frequency Response (20 SPS)  
(20 SPS)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-24 is the FIR filter response at 10 SPS. As a result of the sinc1 averager in the FIR filter block, new  
frequency-response nulls are superimposed to the response in 9-22. The first of the added response nulls  
occur at 10 Hz. Additional nulls occur at folded frequencies around 20-Hz multiples. These additional nulls are  
seen at 10 Hz and 30 Hz.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
30  
60  
90 120 150 180 210 240 270 300  
Frequency (Hz)  
D013  
9-24. FIR Frequency Response (10 SPS)  
Similar to the response of the sinc filter, the overall FIR filter frequency has a low-pass response that rolls off  
high frequencies of the signal. The response is such that the FIR filter limits the bandwidth of the input signal.  
The FIR filter signal bandwidth depends on the output data rate. 9-5 lists the 3-dB filter bandwidth of the  
FIR filter. The total system bandwidth is the combined individual responses of the digital filter, the ADC antialias  
filter, and external filter components.  
9-5. FIR Filter Bandwidth  
DATA RATE (SPS)  
3-dB BANDWIDTH (Hz)  
2.5  
5
1.2  
2.4  
4.7  
13  
10  
20  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.10.3 50-Hz and 60-Hz Line Cycle Rejection  
If the ADC connection leads are in close proximity to industrial motors and conductors, coupling of 50-Hz and  
60-Hz power line frequencies can occur. The coupled noise interferes with the signal voltage, and may lead to  
inaccurate or unstable conversions. The digital filter provides enhanced rejection of power-line coupled noise for  
data rates of 60 SPS and less. Program the filter to tradeoff data rate and conversion latency versus the desired  
level of line cycle rejection. 9-6 summarizes the ADC1 50-Hz and 60-Hz line-cycle rejection based on 2% and  
6% ratio tolerance of power-line to ADC clock frequency. Best possible power line rejection is provided by the  
high-order sinc filter and by using an accurate ADC clock.  
9-6. 50-Hz and 60-Hz Line Cycle Rejection  
DIGITAL FILTER Response (dB)  
DATA RATE (SPS)  
FILTER TYPE  
FIR  
50 Hz ±2%  
113  
36  
60 Hz ±2%  
99  
50 Hz ±6%  
88  
40  
80  
120  
160  
77  
30  
60  
90  
120  
73  
25  
50  
75  
100  
24  
48  
72  
96  
66  
18  
36  
54  
72  
24  
48  
72  
96  
12  
24  
36  
48  
60 Hz ±6%  
80  
37  
74  
111  
148  
76  
30  
60  
90  
120  
68  
25  
50  
75  
100  
21  
42  
63  
84  
66  
24  
48  
72  
96  
15  
30  
45  
60  
24  
48  
72  
96  
2.5  
2.5  
2.5  
2.5  
2.5  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
37  
72  
74  
108  
144  
111  
34  
111  
148  
95  
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
34  
5
68  
68  
5
102  
136  
111  
34  
102  
136  
94  
5
10  
10  
10  
10  
10  
16.6  
16.6  
16.6  
16.6  
20  
20  
20  
20  
20  
50  
50  
50  
50  
60  
60  
60  
60  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
FIR  
34  
68  
68  
102  
136  
34  
102  
136  
21  
68  
42  
102  
136  
95  
63  
84  
94  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc1  
Sinc2  
Sinc3  
Sinc4  
18  
34  
36  
68  
54  
102  
136  
15  
72  
34  
68  
30  
102  
136  
13  
45  
60  
34  
27  
68  
40  
102  
136  
53  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.11 Sensor-Excitation Current Sources (IDAC1 and IDAC2)  
The ADS1262 and ADS1263 incorporate two, integrated, matched current sources (IDAC1, IDAC2). The current  
sources provide excitation current to resistive temperature devices (RTDs), thermistors, diodes, and other  
sensors that require constant current biasing. These devices also contain an internal IDAC multiplexer that  
provides connection of IDAC1 or IDAC2 to one of the 11 analog pins (AIN0 to AINCOM). The IDACs can be  
programmed over these current ranges: 50 μA, 100 μA, 250 μA, 500 μA, 750 μA, 1000 μA, 1500 μA, 2000  
μA, 2500 μA, and 3000 μA. 9-25 details the IDAC connection. The IDAC switches shown in the diagram  
are used in the IDAC rotation mode.  
MUX1[3:0] bits 3:0 of IDACMUX  
(register address = 0Dh)  
IDAC Modes  
CHOP[1:0] bits 5:4 of register MODE0  
00: Normal (shown)  
(register address = 03h)  
01: Chop on (see Chop section)  
10: IDAC rotation (automated)  
11: Chop on and IDAC rotation  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
0000  
0001  
0010  
0011  
VAVDD  
IDAC1  
MUX  
MAG1[3:0] bits 3:0 of IDACMAG  
(register address = 0Eh)  
0100  
0101  
0110  
0000: off  
0001: 50 µA  
IDAC1  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
0111  
1000  
1001  
1010  
AINCOM  
1011  
No Connection  
AIN0  
AIN1  
AIN2  
AIN3  
0000  
0001  
0010  
0011  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN4  
VAVDD  
IDAC2  
MUX  
AIN5  
MAG2[3:0] bits 7:4 of IDACMAG  
(register address = 0Eh)  
AIN6  
AIN7  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
0000: off  
0001: 50 µA  
AIN8  
IDAC2  
AIN9  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
AINCOM  
AINCOM  
No Connection  
MUX2[3:0] bits 7:4 of IDACMUX  
(register address = 0Dh)  
9-25. IDAC Block Diagram  
The internal reference must be enabled for IDAC operation. Take care not to exceed the compliance voltage of  
the IDACs. In other words, the voltage on the input pin must not exceed VAVDD 1.1 V; otherwise, the specified  
accuracy of the IDAC current is not met.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
The IDAC currents track the internal reference voltage. As a result of using the same reference voltage for  
IDAC1 and IDAC2, the current sources are matched. Matched performance is important for applications such as  
hardware compensated, 3-wire RTDs. IDAC to IDAC mismatch can be improved further by use of the IDAC  
rotation mode. The rotation mode automatically swaps the IDAC1 and IDAC2 connections of alternate  
conversions. The ADC averages the alternate conversions to eliminate IDAC mismatch. IDAC rotation can be  
performed manually by the user (by alternating the IDAC pin connections) or by the IDAC automatic rotation  
mode. The IDAC rotation sequence is shown as follows:  
Conversion 1: IDAC1, IDAC2 normal first output result withheld  
Conversion 2: IDAC1, IDAC2 rotated positions Output result 1 = (Conversion 1 + Conversion 2) / 2  
Conversion 3: IDAC1, IDAC2 normal Output result 2 = (Conversion 3 + Conversion 2) / 2  
Conversion 4: IDAC1, IDAC2 rotated positions Output result 3 = (Conversion 4 + Conversion 3) / 2  
The sequence repeats for all succeeding conversions.  
In rotation mode, the ADC provides a time delay to allow for settling after the IDAC pin connections are  
alternated. Note IDAC switching transients may interact with external components that may require additional  
time to settle. Additional settling time are provided by bits DELAY[3:0] in the MODE0 register. The total delay  
time results in a reduction of the nominal data rate (see the Conversion Latency section). Nevertheless, the  
existing frequency response nulls provided by the digital filter remain unchanged.  
9.3.12 Level-Shift Voltage  
The ADC integrates an optional level-shift voltage on the AINCOM pin. As shown in 9-26, the level-shift  
voltage is the mid-voltage of the analog power supply. The level-shift voltage shifts floating sensors (that is,  
sensors isolated from the ADC ground) to within the ADC specified input range. Thermocouple and 4-mA to 20-  
mA transmitters (isolated supply) are examples of floating signals.  
AVDD  
INPUT  
MUX  
AINCOM  
R
100  
VBIAS = (VAVDD + VAVSS) /2  
R
0 = off  
1 = on  
VBIAS bit 1 of POWER  
(register address = 01h)  
AVSS  
9-26. Level-Shift Voltage Diagram  
When operating the ADC with ±2.5-V analog supplies, either ground the AINCOM pin or use the level-shift  
voltage. Level shift other inputs by connecting the input pins to the REFOUT pin (2.5 V). The turn-on time of the  
level-shift voltage depends on the pin load capacitance. The total capacitance includes those connected to  
AVDD, AVSS and ground. 9-7 lists the level-shift voltage settling times for various external load capacitances.  
Be certain the level-shift voltage is fully settled before starting a conversion.  
9-7. Level-Shift Enable Time  
LOAD CAPACITANCE  
LEVEL-SHIFT VOLTAGE SETTLING TIME  
0.1 µF  
1 µF  
0.22 ms  
2.2 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-7. Level-Shift Enable Time (continued)  
LOAD CAPACITANCE  
LEVEL-SHIFT VOLTAGE SETTLING TIME  
10 µF  
22 ms  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.13 General-Purpose Input/Output (GPIO)  
Eight analog inputs can be programmed as GPIO functions (GPIO[0] through GPIO[7]). The GPIO function is a  
digital input/output with a logic value that is read and written by the GPIODAT data register. The GPIO voltage  
levels are referenced to the ADC analog power supply voltages, VAVDD and VAVSS. The GPIO input voltage  
threshold for logic 1 is (VAVDD + VAVSS) / 2. As shown in 9-27, analog inputs, AIN3 through AINCOM, can be  
programmed for GPIO function. Register GPIOCON programs the GPIO connection for each pin (1 = connect).  
Register GPIODIR programs the direction of each pin, either as input or output (0 = output). Register GPIODAT  
is the GPIO data value register. Note if a GPIO pin is programmed as an output, the readback data value of the  
corresponding GPIODAT register bit is zero.  
AVDD  
CON[7:0] bits 7:0 of GPIOCON 0 = no connect  
1 = connect  
(register address = 12h)  
DAT[7:0] bits 7:0 of GPIODAT  
(register address = 14h)  
0 = VGPIO < (VAVDD+ VAVSS) /2  
1 = VGPIO > (VAVDD+ VAVSS) /2  
GPIO[0]  
GPIO[1]  
GPIO[2]  
AIN3  
AIN4  
GPIO  
1 of 8  
Write  
0
Read  
AIN5  
0
1
GPIO[3]  
GPIO[4]  
AIN6  
AIN7  
+
GPIO[5]  
GPIO[6]  
GPIO[7]  
GPIO Read Select  
AIN8  
œ
AIN9  
VAVDD + VAVSS  
2
DIR[7:0] bits 7:0 of GPIODIR  
(register address = 13h)  
AINCOM  
0 = Output  
1 = Input  
AVSS  
9-27. GPIO Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.14 Test DAC (TDAC)  
The ADC includes a test voltage digital-to-analog converter (TDAC) intended for ADC self-testing and  
verification. The TDAC is capable of providing single-ended, differential and common mode test voltages. The  
voltages are suitable to test the ADCs under all gains and input configurations.  
As shown in 9-28, the TDAC consists of two independent DACs, TDACP, and TDACN. The DACs have  
independent control registers to program the output voltage. TDACP is programmed by register TDACP and  
TDACN is programmed by register TDACN. The TDACP output connects to the ADC1 and ADC2 positive input  
multiplexer input and TDACN connects to the ADC1 and ADC2 negative input multiplexer. The OUT1 and OUT2  
bits can be programmed to connect the TDAC outputs to pins AIN6 and AIN7. The TDAC outputs are unbuffered  
and should not be loaded. The TDAC reference voltage is the analog supply (VAVDD VAVSS); therefore, the  
output levels refer to, and scale with, the analog power supply. Note that chop mode must be disabled to test the  
ADC with the TDAC.  
AVDD  
AVSS  
VTDACP  
MAGP[4:0] bits 4:0 of TDACP  
(register address = 10h)  
TDACP  
ADC1 Input  
MUX  
VTDACN  
MAGN[4:0] bits 4:0 of TDACN  
(register address = 11h)  
TDACN  
>0000h: > Mid-supply  
00000: = Mid-supply  
<0000h: < Mid-supply  
ADC2 Input  
MUX  
AIN6  
0: No connect  
1: Connect  
OUTP bit 7 of TDACP  
(register address = 10h)  
AIN7  
0: No connect  
1: Connect  
OUTN bit 7 of TDACN  
(register address = 11h)  
9-28. Test DAC Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-8 shows the TDAC output voltages and the corresponding output impedance. The TDAC settings are  
binary-weighted and correspond to the binary-weighted ADC gains. To generate a single ended test voltage, set  
TDACN = 00h. This value sets the TDACN voltage to mid-supply. Set TDACP above or below the TDACN  
voltage to generate positive or negative test voltages, respectively. Differential test voltages are generated by  
setting TDACP and TDACN to symmetric values centered around a common-code value (typical common value  
= 00h). For example, use code values equal to 01h and 11h, 02h and 12h, and so forth, to generate a differential  
voltage. To generate common-mode test voltages, set the TDACs to equal values.  
9-8. TDAC Output Voltage  
OUTPUT  
IMPEDANCE  
TDACP, TDACN  
REGISTER VALUES  
DIVIDER RATIO  
(V/V)  
OUTPUT VOLTAGE (V),  
5-V SUPPLY(1)  
OUTPUT VOLTAGE (V),  
±2.5-V SUPPLY(1)  
(kΩ)  
09h  
08h  
07h  
06h  
05h  
04h  
03h  
02h  
01h  
00h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
0.9  
0.7  
4.5  
3.5  
2
1
2.9  
6.4  
8.7  
10  
0.6  
3
0.5  
0.55  
2.75  
0.25  
0.525  
0.5125  
0.50625  
0.503125  
0.5015625  
0.5  
2.625  
2.5625  
2.53125  
2.515625  
2.5078125  
2.5  
0.125  
10.7  
9.6  
8.7  
8.1  
7.8  
7.5  
7.8  
8.1  
8.7  
9.6  
10.7  
10  
0.0625  
0.03125  
0.015625  
0.0078125  
0
0.4984375  
0.496875  
0.49375  
0.4875  
0.475  
0.45  
2.4921875  
2.484375  
2.46875  
2.4375  
2.375  
2.25  
0.0078125  
0.015625  
0.03125  
0.0625  
0.125  
0.25  
0.5  
0.4  
2
8.7  
6.4  
2.9  
0.3  
1.5  
1  
0.1  
0.5  
2  
(1) Output voltages relative to VDGND  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.15 ADC2 (ADS1263)  
The ADS1263 includes an auxiliary, 24-bit, delta-sigma ADC (ADC2). ADC2 operation is independent of ADC1,  
with independent selections of input channel, reference voltage, sample rate, and channel gain. All input  
configurations (channel select, IDAC, level shift, sensor bias) are available to ADC2. Use ADC2 to perform main  
channel (ADC1) cross-checking measurements (for example, diagnostics purposes and redundant channel  
measurements), system background measurements, or temperature compensation of the primary sensor (such  
as thermocouple cold junction compensation). Using data rates of 10, 100, and 400 SPS for both ADCs, ADC2  
performs virtual parallel conversions with ADC1 on the same input channel.  
As shown in 9-29, the ADC2 consists of an input signal multiplexer followed by a high-impedance PGA. The  
input multiplexer has the same functionality as the ADC1 input multiplexer. The sensor bias current source or a  
10-MΩ bias resistor can be connected to the multiplexer output. Connect the sensor bias to either of the ADCs.  
ADC2 provides gains of 1, 2, 4 ,8, 16, 32, 64, and 128. Depending on the gain settings, ADC2 gains are either  
implemented in the PGA or in the modulator. For gains of 1, 2, and 4, the PGA is bypassed and the gain is  
performed in the modulator. For gains of 8, 16, 32, 64, and 128, the modulator gain is fixed at gain = 4, and the  
additional gains are performed in the PGA.  
The PGA drives an inherently-stable, second-order, delta-sigma modulator. The modulator output data are  
filtered and down-sampled by a programmable decimation digital filter. The digital filter provides data rates of 10,  
100, 400, or 800 SPS with 24-bit resolution. A calibration block follows the digital filter. The calibration block  
consists of 16-bit offset correction and 16-bit, full-scale correction registers. The ADC2 reference multiplexer  
selects from one of three external reference input pairs, the analog power supply, or the internal reference. The  
reference input is buffered to minimize errors caused by external circuit loading.  
AVDD  
ADC2  
Ref  
Mux  
AVSS  
Internal REF P  
VREFP2  
VREF2N  
Internal REF N  
AIN0  
AIN1  
AIN2  
AIN3  
VAVDD  
Sensor Bias  
0.5 µA  
AIN4  
AIN5  
ADC2 Ref  
Buffer  
2 µA  
10 µA  
50 µA  
200 µA  
10 MΩ  
AIN0  
AIN1  
ADC2  
Input  
Mux  
VAINP2  
24-bit  
Output Data  
ADC2  
2nd order  
ûModulator  
ADC2  
Digital Filter  
(sinc3/sinc1)  
ADC2  
PGA  
ADC2  
Calibration  
AIN2  
VAINN2  
AIN3  
AIN4  
AIN5  
PGA bypassed for  
gains = 1, 2 and 4  
AIN6  
0.5 µA  
2 µA  
AIN7  
AIN8  
10 µA  
50 µA  
200 µA  
10 MΩ  
AIN9  
AINCOM  
VAVSS  
TEMP Sensor P  
TEMP Sensor N  
VAVDD  
Dual Sensor  
Excitation  
Analog Supply Mon P  
Analog Supply Mon N  
50 µA  
100 µA  
250 µA  
500 µA  
750 µA  
1000 µA  
1500 µA  
2000 µA  
2500 µA  
3000 µA  
Digital Supply Mon P  
Digital Supply Mon N  
TDAC P  
TDAC N  
9-29. ADC2 Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.15.1 ADC2 Inputs  
ADC2 features an independent input multiplexer with identical channel selections of ADC1. As shown in 9-2,  
all the external and internal inputs are available to ADC2. The ADC2 positive input is programmed by the value  
of MUXP2[3:0] bits (register ADC2MUX) and the negative input is programmed by the value of the MUXN2[3:0]  
bits of same ADC2MUX register. The ADC2MUX register address is 16h.  
9.3.15.2 ADC2 PGA  
ADC2 features a low-drift, low-noise CMOS PGA. The ADC2 PGA is bypassed for gains = 1, 2 and 4. Therefore,  
for these gains the input signal is connected directly to the buffered modulator input.  
The full-scale voltage range of ADC2 is determined by the reference voltage and gain. 9-9 shows the ADC2  
full-scale voltage range versus gain using reference voltage = 2.5 V. The full-scale voltage range scales with the  
reference voltage and is increased or decreased by changing the reference voltage.  
9-9. ADC2 Full-Scale Voltage Range  
GAIN2[2:0] BITS  
OF ADC2CFG REGISTER  
FULL-SCALE INPUT RANGE  
(V)(1)  
GAIN (V/V)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
±2.500 V  
±1.250 V  
±0.625 V  
±0.312 V  
±0.156 V  
±0.078 V  
±0.039 V  
±0.0195 V  
4
8
16  
32  
64  
128  
(1) VREF = 2.5 V. The full-scale voltage range is proportional to VREF  
.
As with many amplifiers, do not exceed the PGA absolute input voltage requirement. For gains 8 (PGA  
active), the absolute input voltage is limited by the PGA output voltage swing range. The specified minimum and  
maximum absolute input voltages (VINP2 and VINN2) depend on the PGA gain, the input differential voltage (VIN2),  
and the tolerance of the analog power supply voltages (VAVDD, VAVSS). If using ADC2 in an overall gain 8, the  
absolute positive and negative input voltage must be within the specified range, as shown in 方程15:  
VAVSS + 0.3 + |VIN2| · (Gain 1) / 2 · < VINP2 and VINN2 < VAVDD 0.3 |VIN2| · (Gain 1) / 2  
(15)  
where  
VINP2, VINN2 = ADC2 absolute input voltage  
VIN2 = ADC2 differential input voltage = VINP2 - VINN2  
Gain = 8, 16, 32, 64 or 128  
For gains 1, 2, or 4, the ADC2 absolute input voltage range extends beyond the VAVDD and VAVSS supply  
voltages, allowing voltage inputs at or below ground. The absolute input voltage range corresponding to gains 1,  
2 and 4 is shown in 方程16:  
V
AVSS 0.1 < VINP2 and VINN2 < VAVDD + 0.1  
(16)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.15.3 ADC2 Reference  
ADC2 requires a reference voltage for operation. Use the ADC2 reference multiplexer to select from one of the  
external reference sources on pins AIN0 to AIN5, the internal 2.5-V internal reference, or the analog power  
supply, as shown in 9-30. The external reference uses positive and negative pairs for the positive and  
negative references, respectively. The external reference input pairs are pins AIN0-AIN1, AIN2-AIN3, and AIN4-  
AIN5, for the positive and negative references, respectively.  
0 = Internal reference off  
1 = Internal reference on  
INTREF bit 0 of POWER  
(register address = 01h)  
REF[2:0] bits 5:4 of ADC2CFG  
(register address = 15h)  
+2.5 V  
Reference  
AVDD  
REFOUT  
000h  
001h  
010h  
011h  
AIN0  
AIN2  
AIN4  
ADC2 REFMUX P  
(A)  
1 mF  
100h  
VREFP2  
VREFN2  
000h  
001h  
010h  
011h  
AIN1  
AIN3  
BUF  
AIN5  
ADC2 REFMUX N  
100h  
ADC2  
AVSS  
A. The internal reference requires a 1-μF capacitor connected to pins REFOUT and AVSS.  
9-30. ADC2 Reference Multiplexer  
9.3.15.4 ADC2 Modulator  
ADC2 is an inherently stable, second-order, ΔΣ modulator. The modulator samples the analog input voltage at  
fMOD2 = fCLK / 144 = 51.2 kHz and converts the analog input to a ones density bit-stream output. The digital filter  
receives the ones density bit stream output, and then filters and decimates the data to yield the final conversion  
result.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.3.15.5 ADC2 Digital Filter  
The ADC2 digital filter receives the modulator output and produces a 24-bit digital output. The digital filter low-  
pass filters and down-samples the modulator data to yield the final data rate. The ADC2 digital filter is a cascade  
of two stages. The first stage is a sinc3 filter that decimates by 64, 128, or 512, to derive data rates of 800 SPS,  
400 SPS, or 100 SPS, respectively. The second stage receives the output of the first stage at 100 SPS. The  
second stage is a sinc1 filter with decimation equal to ten that derives the data rate of 10 SPS, as illustrated in 图  
9-31. The ADC bypasses the second stage for data rates of 800 SPS, 400 SPS, and 100 SPS. 9-10 shows  
the sinc filter data rates and decimation ratios (A and B) that correspond to each filter stage. The overall filter  
decimation ratio is the product of A and B decimation ratios. The data rate is programmed by the DR2[1:0] bits of  
register ADC2CFG.  
fCLK: 7.3728 MHz  
800 SPS  
400 SPS  
100 SPS  
fCLK / 144  
fMOD2: 51.2 kHz  
51.2 kHz  
ADC2  
Calibration  
ADC2  
Final data output  
Clip to 24 Bits  
100 SPS  
10 SPS  
ADC2  
Sinc1 Filter  
Sinc3 Filter  
Decimation A  
(64,128, 512)  
Decimation B  
(10)  
DR2[1:0] bits 7:6 of ADC2CFG  
(register address = 15h)  
00 = 10 SPS  
01 = 100 SPS  
10 = 400 SPS  
11 = 800 SPS  
9-31. ADC2 Digital Filter Block Diagram  
9-10. ADC2 Data Rates and Filter Decimation Ratios  
DR2[1:0] BITS OF  
1st STAGE  
2nd STAGE DECIMATION  
RATIO B  
DATA RATE (SPS)(1) REGISTER ADC2CFG DECIMATION RATIO A  
10 ( default)  
100  
00  
01  
10  
11  
512  
512  
128  
64  
10  
-
400  
-
800  
-
(1) fCLK = 7.3728 MHz. The data rate scales with fCLK  
.
The low pass nature of the ADC2 sinc filter establishes the overall frequency response. The frequency response  
is given by 方程17:  
3
»
ÿ
»
ÿ
144 ŒfA  
fCLK  
73728 Œf B  
fCLK  
sin  
sin  
Ÿ
Ÿ
H( = Hsinc 3  
(
f
)
ì Hsinc  
(
f
)
=
ì
f
)
»
ÿ
»
ÿ
144 Œf  
fCLK  
73728 Œf  
fCLK  
A ì sin  
B ì sin  
Ÿ
Ÿ
(17)  
where  
f = Input frequency  
fCLK = ADC clock (7.3728 MHz)  
A = First stage decimation ratio  
B = Second stage decimation ratio  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
Figures 9-32 through 9-36 show the frequency response of different ADC2 data rates. Nulls are located in  
the frequency response at the data rate and at data rate multiples. 9-32 (data rate = 10 SPS) has frequency  
response nulls at 50 Hz and 60 Hz and their multiples. Therefore, the rate of 10 SPS provides rejection of power  
line cycle frequencies. 9-33 shows filter response detail of frequencies centered around 50 Hz and 60 Hz.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Frequency (Hz)  
46  
48  
50  
52  
54 56  
Frequency (Hz)  
58  
60  
62  
64  
D018  
D019  
9-32. ADC2 10 SPS Frequency Response  
9-33. ADC2 10 SPS Frequency Response 50-Hz  
and 60-Hz Detail  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (Hz)  
0
0.4 0.8 1.2 1.6  
2
Frequency (kHz)  
2.4 2.8 3.2 3.6  
4
D020  
D021  
9-34. ADC2 100 SPS Frequency Response  
9-35. ADC2 400 SPS Frequency Response  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
0.8 1.6 2.4 3.2  
4
Frequency (kHz)  
4.8 5.6 6.4 7.2  
8
D022  
9-36. ADC2 800 SPS Frequency Response  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-11 summarizes the ADC2 digital filter 3-dB bandwidth and 50-Hz and 60-Hz line-cycle rejection based on  
2% and 6% ratio tolerance of power-line frequency to ADC clock frequency. The sample rate of 10 SPS has  
frequency response nulls at 50 Hz and 60 Hz; therefore, this data rate provides the best possible rejection of  
power-line interference.  
9-11. ADC2 3-dB Bandwidth, 50-Hz and 60-Hz Line Cycle Rejection  
DIGITAL FILTER RESPONSE (dB)  
-3-dB BANDWIDTH  
(Hz)  
50-Hz REJECTION  
±2%  
60-Hz REJECTION  
±2%  
50-Hz REJECTION  
±6%  
60-Hz REJECTION  
±6%  
DATA RATE (SPS)  
10  
4.4  
26  
41  
12  
0.5  
0.2  
47  
17  
0.9  
0.2  
32  
10  
0.5  
0.1  
36  
16  
0.9  
0.2  
100  
400  
800  
104  
208  
The ADC digital filter provides attenuation of frequencies greater than ½ of the data rate (Nyquist frequency) to  
minimize out-of-band frequencies folding back to the bandwidth of interest. As with all digital filters, response  
images appear at frequency multiples of the filter input frequency (fMOD2 = fCLK / 144 = 51.2 kHz). 9-37 shows  
the frequency response to 175 kHz for DR = 800 SPS. The response near dc is the desired signal bandwidth.  
Note how the filter response repeats at multiplies of 51.2 kHz. The filter response repeats at frequencies shown  
in 方程18:  
Aliased frequency bands = N · fMOD2 ± fDR2  
(18)  
where  
N = 1, 2, 3...  
fDR2 = ADC2 data-rate frequency  
The digital filter attenuates signal or noise up to the frequency where the response repeats. However, any signal  
or noise present within the frequency bands where the response repeats aliases into the passband, unless  
attenuated by an analog filter. Often, using a simple RC analog filter is sufficient to reject these frequencies.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
25  
50  
75 100  
Frequency (kHz)  
125  
150  
175  
D023  
9-37. ADC2 Frequency Response to 175 kHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Conversion Control  
ADC1 conversions are controlled by the START pin or by serial commands. If using commands to control ADC1  
conversions, keep the START pin low to avoid possible contentions between the START pin and commands.  
ADC1 has two conversion modes: continuous or pulse. Continuous-conversion mode converts indefinitely until  
stopped by the user. Pulse-conversion mode performs one conversion after the START pin is taken high or after  
the start command is sent. Use RUNMODE (bit 6, MODE0) to program the conversion mode. 9-38 shows the  
start and stop timing to control ADC conversions.  
tw(STH)  
(A)  
START pin  
tw(STL)  
or  
Serial (B)  
Command  
STOP  
START  
tsu(STDR)  
td(STDR)  
DRDY pin  
th(DRSP)  
A. START and DRDY pins apply only to ADC1 operation.  
B. Start and stop opcodes take effect on the 7th SCLK falling edge.  
C. Start and stop opcodes:  
START1 for ADC1: 08h or 09h  
START2 for ADC2: 0Ch or 0Dh  
STOP1 for ADC1: 0Ah or 0Bh  
STOP2 for ADC2: 0Eh or 0Fh  
9-38. ADC1 Start and Stop Conversion Timing  
9-12. ADC1 START and STOP Conversion Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
(1)  
tw(STH)  
tw(STL)  
td(STDR)  
START pin high: pulse duration  
4
tCLK  
tCLK  
tCLK  
START pin low to re-start conversion: pulse duration  
Start condition to DRDY high: delay time  
4
Pulse conversion mode  
2
Continuous conversion  
mode  
Stop condition to DRDYstopping additional  
conversions: set-up time  
tsu(STDR)  
th(DRSP)  
16  
16  
tCLK  
Continuous conversion  
mode  
DRDYto stop condition to continue current  
conversion: hold time  
tCLK  
(1) tCLK = 1 / fCLK  
9.4.1.1 Continuous Conversion Mode  
To start ADC1 conversions, take the START pin high or send the START1 command. In this mode, ADC1  
continuously converts until stopped by taking the START pin low or by sending the STOP1 command. To restart  
a conversion in progress, toggle the START pin or send a STOP1 and START1 command sequence. DRDY is  
driven high if conversions are restarted. DRDY is driven low when the conversion data are ready. See 9-38  
and 9-12 for stop-to-DRDY timing requirements in order to stop further conversions.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.1.2 Pulse Conversion Mode  
In pulse conversion mode, ADC1 performs one conversion each time the START pin is taken high or the  
START1 command is sent. After the first conversion completes, further conversions are automatically stopped.  
To restart a conversion in progress, toggle the START pin or send a STOP1 and START1 command sequence.  
The DRDY output is driven high to indicate conversion start, and is driven low when the conversion data are  
ready. If a stop command is sent during an ongoing conversion, the command has no effect because the ADC  
completes the conversion.  
The pulse conversion mode cannot be used in conjunction with chop mode. Instead, use the continuous-  
conversion mode when chop is enabled by briefly pulsing the START pin (or sequentially send the START1 and  
STOP1 commands) to achieve the same single-conversion result provided by the pulse conversion mode.  
9.4.1.3 ADC2 Conversion Control (ADS1263)  
ADC2 conversions are independent of ADC1 conversions, and are controlled by commands only. The ADC2  
conversion mode is similar to the ADC1 continuous conversion mode. To start an ADC2 conversion, send the  
START2 command. Conversions continue until the STOP2 command is sent. To restart a conversion in  
progress, send a STOP2 and START2 command sequence.  
9.4.2 Conversion Latency  
The digital filter averages and down-samples data from the modulator to provide the final data rate (rate  
reduction). The order of the digital filter affects the amount of data averaging and in turn, the time delay of the  
conversion (or filter latency). The FIR and sinc1 filter modes are zero latency providing the conversion result in  
single cycle. The higher order sinc filters (sinc2, 3, 4, 5) have more than one conversion latency and therefore  
require more conversion cycles to provide fully settled data. Tradeoffs can be made between 50-Hz and 60-Hz  
line cycle rejection verses conversion latency by selection of the sinc filter order. A higher order sinc filter  
increases the rejection of the 50-Hz and 60-Hz line cycles, but also increases the filter latency. Filter latency is  
an important consideration when multiplexing (scanning) through input channels. To make sure that conversions  
are settled after changing channels, start a new conversion for each channel using the START pin or start  
command. Note if the multiplexer is changed during ongoing conversions, the conversion is stopped and  
restarted at the time multiplexer register is changed.  
9-13 lists the filter latency after starting the first conversion. Note the conversion latency depends on the filter  
setting. The conversion latency is illustrated in 9-39. Parameter td(STDR) shows the latency from start to  
conversion data ready (DRDY low). Note that settled data are provided, assuming the analog input is settled  
before the start condition. After the first conversion is completed (in continuous conversion mode), subsequent  
conversions occur at the nominal data rate. The latency values are for the programmable time-delay parameter  
set to off (DELAY[3:0] = 000).  
Settled VIN  
VIN = VAINP - VAINN  
START pin  
or  
Serial Command  
START1  
td(STDR)  
DRDY pin  
9-39. Conversion Latency After Start Condition  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-13. ADC1 Conversion Latency, td (STDR)  
CONVERSION LATENCY(1) (ms)  
DATA RATE  
(SPS)  
SINC1  
400.4  
200.4  
100.4  
60.35  
50.35  
20.35  
17.02  
10.35  
2.855  
1.188  
0.771  
0.563  
0.494  
SINC2  
800.4  
400.4  
200.4  
120.4  
100.4  
40.42  
33.76  
20.42  
5.424  
2.091  
1.258  
0.8409  
0.702  
SINC3  
1,200  
600.4  
300.4  
180.4  
150.4  
60.42  
50.42  
30.42  
7.924  
2.924  
1.674  
1.049  
0.841  
SINC4  
1,600  
800.4  
400.4  
240.4  
200.4  
80.42  
67.09  
40.42  
10.42  
3.758  
2.091  
1.258  
0.980  
SINC5  
FIR  
2.5  
5
402.2  
202.2  
102.2  
10  
16.6  
20  
52.22  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
38400  
0.424  
0.337  
0.207  
(1) Chop and IDAC rotation off, DELAY[3:0] = 0000.  
If using chop or IDAC rotation modes, the latency of the first conversion increases. The latency of chop and  
IDAC rotation modes is shown in 方程19 and 方程20.  
Chop or IDAC rotation mode: latency = 2 · (td(STDR) + DELAY[3:0] value)  
Chop and IDAC rotation modes: latency = 4 · (td(STDR) + DELAY[3:0] value)  
(19)  
(20)  
In addition, chop or IDAC rotation mode can reduce the conversion data rate depending on the time-delay  
parameter. The 50-Hz and 60-Hz filter response nulls are not altered by chop or IDAC rotation modes. 方程21  
shows the effective data rate with the DELAY parameter.  
Chop or IDAC rotation mode data rate = 1 / (td(STDR) + DELAY[3:0] value)  
(21)  
9-14 shows the first conversion latency of ADC2. The filter latency is the elapsed time after sending the  
START2 command before the first conversion is ready.  
9-14. ADC2 Conversion Latency, td (STDR)  
DATA RATE (SPS)  
CONVERSION LATENCY (ms)  
10  
121  
31.2  
8.71  
4.97  
100  
400  
800  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
If the input signal changes while the ADC is continuously converting, the output data are a mix of old and new  
data, as shown in 9-40. The filter latency values for settled data (td(STDR)) with an input step change while  
continuously converting is shown in 9-15. The filter latency values listed in the table (td(STDR)) assume the  
analog input is settled before the start of the first whole conversion period.  
New VIN  
Old VIN  
VIN = VAINP - VAINN  
Fully settled  
new data  
Mix of old data  
and new data  
Old data  
DRDY pin  
td(DRDR)  
9-40. ADC1 Latency Timing While Continuously Converting  
9-15. Fully-Settled Conversion Values for 9-40  
FULLY SETTLED CONVERSION  
td(DRDR)  
DIGITAL FILTER  
FIR  
(1 / DR)(1)  
1
1
2
3
4
5
Sinc1  
Sinc2  
Sinc3  
Sinc4  
Sinc5  
(1) Chop and IDAC rotation modes off.  
9.4.3 Programmable Time Delay  
When a new conversion is started, the ADC provides an internal delay of 52 µs before the actual start of the  
conversion. This timed delay is provided to allow for the integrated, analog, antialias filter to settle. In some  
cases, more delay is required to allow for external settling effects. Program additional time by using bits  
DELAY[3:0] of the MODE register. The programable range is 8.7 µs to 8.8 ms in binary steps. As an alternative  
to using the programmable time delay, the initiation of the start condition can also be delayed as needed after an  
ADC configuration change. For CHOP or IDAC rotation modes, additional time delay may be necessary to allow  
for external settling effects, and can only be provided by the DELAY bits; see 9-38 for the delay settings.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.4 Serial Interface  
The ADC has an SPI-compatible, bidirectional serial interface that is used to read the conversion data as well as  
configure and control the ADC. The serial interface consists of four control lines: CS, SCLK, DIN, and DOUT/  
DRDY. If the ADS1262 or ADS1263 is the only device connected to the SPI bus, the CS input can be tied low,  
resulting in a minimum of three control signals for communications: SCLK, DIN, and DOUT/DRDY. The ADC has  
a data ready output signal (DRDY) that asserts regardless of interface selection. The DRDY functionality is also  
integrated with the DOUT/DRDY pin.  
9.4.4.1 Chip Select (CS)  
The CS pin is an active low input that enables the ADC serial interface for communication. CS must be low  
during the entire data transaction. When CS is high, the serial interface is reset, SCLK input activity is ignored  
(blocking input commands), and the DOUT/DRDY output pin enters a high-impedance state. ADC conversions  
are not affected by the state of CS. If the serial bus is dedicated to the ADC, the CS pin can be optionally tied  
low to reduce the serial interface from four I/Os to three I/Os. Tying the CS pin low permanently enables the ADC  
serial interface. The DRDY output asserts low when conversion data are ready and is not affected by CS.  
9.4.4.2 Serial Clock (SCLK)  
The serial interface clock is a noise-filtered, Schmidt-triggered input used to clock data into and out of the ADC.  
Input data to the ADC is latched on the falling SCLK edge and data output from the ADC is updated on the rising  
SCLK edge. Return SCLK low after the data sequence is complete. Even though the SCLK is a noise-immune,  
keep SCLK as clean as possible to prevent unintentional SCLK transitions. Avoid ringing and voltage overshoot  
on the SCLK input. Place a series termination resistor at the SCLK drive pin to help reduce ringing.  
9.4.4.3 Data Input (DIN)  
The DIN pin is the serial data input to the ADC. DIN is used to input commands and register data to the ADC.  
The ADC latches input data on the falling edge of SCLK. During direct-mode data readback, when no command  
is intended, keep DIN low.  
9.4.4.4 Data Output/Data Ready (DOUT/DRDY)  
The DOUT/DRDY pin is a dual-function output. The pin functions as the digital data output and the ADC1 data-  
ready indication. When CS is high, the DOUT/DRDY pin is in high-impedance mode (tri-state). Output data are  
updated on the rising edge of SCLK. As a data-ready indicator, the DOUT/DRDY pin transitions low at the same  
time as the DRDY pin. Therefore, monitor either the DOUT/DRDY pin or the DRDY pin to determine when ADC1  
data are ready. CS must be low to monitor DOUT/DRDY as a data-ready indicator.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.4.5 Serial Interface Autoreset  
The CS input resets the serial interface when taken high. However, applications that tie the CS pin low do not  
have the ability to reset the serial interface by using this pin. If a false SCLK occurs (for example, caused by a  
noise pulse or clocking glitch), the serial interface may inadvertently advance one or more bit positions, resulting  
in loss of synchronization to the external microcontroller. If loss of synchronization occurs, the interface does not  
respond correctly until the interface is reset.  
For applications that tie CS low, the ADC provides a feature that automatically resets the serial interface in the  
event of a glitch. As shown in 9-41, after the first SCLK low-to-high transition is detected by the ADC (either  
caused by a glitch or a normal SCLK input), if the ADC does not detect seven additional SCLK transitions within  
65536 fCLK cycles (approximately 8.9 ms), the serial interface resets. After reset, the interface is ready for the  
next transaction four fCLK cycles later.  
If the seven SCLK transitions are detected within the 65536 fCLK cycles, the serial interface is not reset, and the  
SCLK detection cycle restarts at the next SCLK transition.  
If the serial interface loses synchronization to an external controller, reset the serial interface by holding SCLK  
low for 65536 fCLK cycles.  
The serial interface autoreset function is enabled by the setting TIMEOUT = 1 (bit 3 of the INTERFACE register).  
The default mode is off.  
TIMEOUT bit 3 of INTERFACE  
(register address = 02h)  
0 = Disabled  
1 = Enabled  
Serial Interface  
Auto-reset  
td(SCRS)  
td(RSSC)  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SCLK pin  
9-41. Serial Interface Autoreset  
9-16. Autoreset Timing Requirement  
PARAMETER  
TEST CONDITIONS  
MIN  
UNIT  
(1)  
td(SCRS)  
td(RSSC)  
TIMEOUT bit =1  
TIMEOUT bit =1  
65536  
4
tCLK  
tCLK  
SCLKtransition to interface reset : delay time  
Serial interface reset to first SCLK: delay time  
(1) tCLK = 1 / fCLK  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.5 Data Ready Pin (DRDY)  
The DRDY pin is an output that transitions low to indicate when ADC1 conversion data are ready for retrieval. 图  
9-42 depicts the DRDY operation. Initially, DRDY is high at power-on. When converting, the state of DRDY  
depends on the conversion mode (continuous or pulse) and whether the conversion data are retrieved or not. In  
Continuous conversion mode, after DRDY goes low, DRDY is driven high on the first SCLK falling edge. If data  
are not read, DRDY remains low and then pulses high 16 fCLK cycles before the next DRDY falling edge. The  
data must be retrieved before the next DRDY falling edge otherwise the data are overwritten by new data and  
previous data are lost. In Pulse mode, DRDY is driven high when a conversion is started and goes low when the  
conversion data are ready. DRDY remains low until the next conversion is started.  
The DOUT/DRDY output operates similarly to DRDY. DOUT/DRDY transitions low when ADC1 conversion data  
are ready. If data are not retrieved, the DOUT/DRDY pin stays low and is pulsed high for 16 fCLK cycles at the  
next data ready. Note that CS must be low to enable the DOUT/DRDY pin.  
tc(DR)  
tw(DRL)  
DRDY  
With data retrieval  
(Continuous conversion Mode)  
DRDY  
No data retrieval  
(Continuous conversion Mode)  
tw(DRH)  
DRDY  
(Pulse conversion Mode)  
START Pin  
or  
Command  
START1  
STOP1  
START1  
STOP1  
9-42. DRDY Operation  
9-17. DRDY Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
DRDYto DRDYconversion time: DRDY  
period  
tc(DR)  
After first conversion  
1
1/data rate  
DRDY drives high  
on first falling  
SCLK edge  
With data retrieval, Continuous  
conversion mode  
t w(DRL)  
DRDYto DRDY: delay time  
No data retrieval, Continuous  
conversion mode,  
(1)  
t w(DRH)  
DRDY pulse high: pulse duration  
16  
tCLK  
(1) tCLK = 1 / fCLK  
.
9.4.6 Conversion Data Software Polling  
In addition to hardware polling using DRDY, new conversion data are also detected by software polling. In  
software polling, read either ADC1 or ADC2 conversion data and poll the STATUS byte ADC1 or ADC2 data-  
ready bits. The data ready bits are set if the corresponding ADC1 or ADC2 conversion data are new since the  
last ADC1 or ADC2 data read; otherwise, the bits are cleared. If the bits are cleared, the corresponding  
conversion data are the previous data. To avoid missing data when using software polling, poll the status bits at  
a rate faster than the corresponding ADC1 or ADC2 conversion rate. The ADC2 status bit is valid only when the  
data are read by command (RDATA1 or RDATA2).  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.7 Read Conversion Data  
ADC1 data are read by two methods: read data direct or read data by command. ADC1 writes new conversion  
data to the output shift register and the internal data-holding register. Two registers hold the conversion data;  
therefore, data are read either from the output shift register (in direct mode) or read from the data-holding  
register (in command mode). Reading data from the data-holding register (command mode) does not require  
synchronizing the start of data readback to DRDY. ADC2 data are read only from the ADC2 data-holding register  
(command mode).  
9.4.7.1 Read Data Direct (ADC1 Only)  
In this method of data retrieval, ADC1 conversion data are shifted out directly from the output shift register. No  
opcode is necessary. Read data direct requires that no serial activity occur from the time of DRDY low to the  
readback, or the data are invalid. The serial interface is full duplex; therefore, commands are decoded during the  
data readback. If no command is intended, keep the DIN pin low during readback. If an input command is sent  
during readback, the ADC executes the command, and data interruption may result. The data readback  
operation must be completed 16 fCLK cycles before the next DRDY, or the old data are overwritten with new  
data. Synchronize the data readback to DRDY or to DOUT/DRDY to make sure the data are read before the  
next DRDY falling edge.  
If new ADC1 conversion data are ready during an ongoing data or register read or write operation, data are not  
loaded to the output register but are written only to the data holding register. Retrieve the conversion data later  
from the holding register by sending a read command. However, writing new data to certain registers results in a  
conversion-cycle restart. Conversion restart clears the contents of the conversion data-holding register;  
therefore, the previous conversion data are not available. Read the conversion data before the register write  
operation.  
As shown in 9-43, the ADC1 data field is 4, 5, or 6 bytes long, depending on programming. The data field  
consists of an optional status byte, four bytes of conversion data, and an optional checksum byte. After all the  
bytes are read, the data-byte sequence is repeated by continuing SCLK. The byte sequence repeats starting  
with the first byte. In order to help verify error-free communication, read the same data multiple times in each  
conversion interval and compare.  
(A)  
DRDY  
CS (B)  
48  
9
25  
40  
1
17  
33  
SCLK  
DIN  
HI-Z  
DOUT/DRDY  
Status  
Data 1  
Data 2  
Data 3  
Data 4  
CRC/CHK  
Optional (D)  
Repeat  
(C)  
Optional (D)  
Repeated Data (E)  
00 = Off  
ADC1 Data Bytes  
0 = Off  
1 = On  
01 = Checksum  
10 = CRC  
STATUS bit 2 of INTERFACE  
(register address = 02h)  
CRC[1:0] bits 1:0 of INTERFACE  
(register address = 02h)  
A. In Continuous conversion mode, DRDY returns high on the first SCLK falling edge. In Pulse Conversion mode, DRDY stays low until the  
next conversion is started.  
B. CS can be tied low. If CS is low, DOUT/DRDY asserts low at the same time as DRDY.  
C. Data read must be completed before DOUT/DRDY and DRDY goes high (16 tCLK before new data ready).  
D. The STATUS and CRC/CHK bytes are optional.  
E. The byte sequence repeats by continuing SCLK.  
9-43. Data Read Direct  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.7.2 Read Data by Command  
In this method of data retrieval, a command is used to read ADC1 or ADC2 data. When the command is sent,  
the data are retrieved from the respective ADC data-holding register. Read the data at any time because the  
command method does not require synchronizing to DRDY. In addition to hardware polling of DRDY or DOUT/  
DRDY to determine when ADC1 data are ready, the ADC can be software polled by reading bits ADC1 and  
ADC2 of the status byte. If the ADC1 or ADC2 status bit is 1, the ADC1 or ADC2 data are new since the last  
ADC1 or ADC2 read operation. If data are read again before the new data are ready, the status bit is 0 and the  
previous data are returned. ADC2 data can only be read by the command method.  
9-44 shows the read data by command sequence. The output data MSB begins on the first rising edge of  
SCLK after the command. The output data field can be 4, 5, or 6 bytes long, depending on programming. The  
data field consists of an optional status byte, four bytes of conversion data, and an optional checksum byte. The  
ADC2 data block consists of the optional status byte, 3 bytes of data, a fixed-value byte equal to 00h (zero pad  
byte), and the optional checksum byte. A read data command must be sent for each read operation. The ADC  
does not respond to commands until the read operation is complete, or terminated by taking CS high.  
(A)  
CS  
49  
9
25  
41  
1
17  
33  
(B)  
SCLK  
DIN  
OPCODE (C)  
HI-Z  
DOUT/DRDY  
(D)  
Data 4  
CRC/CHK  
Dont Care  
STATUS  
Data 1  
Data 2  
Data 3  
ADC2 (00h)  
ADC2 Data Bytes  
ADC1 Data Bytes  
Optional (E)  
Optional (E)  
00 = Off  
01 = Checksum  
10 = CRC  
0 = Off  
1 = On  
CRC[1:0] bits 1:0 of INTERFACE  
(register address = 02h)  
STATUS bit 2 of INTERFACE  
(register address = 02h)  
A. CS can be tied low. If CS is low, DOUT/DRDY asserts low with DRDY.  
B. In continuous conversion mode, DRDY returns high on the first SCLK falling edge of sending the opcode. For pulse conversion mode,  
DRDY stays low until the next conversion is started.  
C. Read ADC1 command byte = 12h or 13h, Read ADC2 command byte = 14h or 15h  
D. DOUT/DRDY is driven low with DRDY. If a read operation occurs after DRDY falling edge, then DOUT can be high or low.  
E. The STATUS and CRC/CHK bytes are optional.  
9-44. Read Data by Command  
9.4.7.3 Data-Byte Sequence  
The ADC1 data sequence can be 4, 5, or 6 bytes long, depending on whether the optional status and checksum  
bytes are enabled. The entire data sequence consists of the status byte, four bytes of the 32-bit conversion  
word, and the checksum byte. The ADC2 data sequence is the same, except the conversion data are three  
bytes long (24-bit word), followed by a zero-value pad byte. If the status byte is not enabled, the remaining bytes  
are left shifted.  
9.4.7.3.1 Status Byte  
The status byte is the first byte in the sequence. The status byte indicates new ADC1 and ADC2 data, the state  
of the ADC1 PGA alarms, the low-reference alarm state, the clock mode, and the reset state. The status byte is  
enabled by the STATUS bit of the INTERFACE register (bit 2 of register 02h). 9-45 and 9-18 shows the  
status-byte field description.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9-45. Status Byte  
7
6
5
4
3
2
1
0
ADC2  
ADC1  
EXTCLK  
REF_ALM  
PGAL_ALM  
PGAH_ALM  
PGAD_ALM  
RESET  
9-18. Status Byte Field Descriptions  
Bit  
Field  
Type  
Description  
ADC2 Data(1)  
7
ADC2  
Read Only  
This bit indicates the status of ADC2 conversion data  
0: ADC2 data not new since the last ADC2 read operation  
1: ADC2 data new since the last ADC2 read operation  
6
5
4
ADC1  
Read Only  
Read Only  
Read Only  
ADC1 Data  
This bit indicates the status of ADC1 conversion data  
0: ADC1 data not new since the last ADC1 read operation  
1: ADC1 data new since the last ADC1 read option  
EXTCLK  
ADC Clock  
This bit indicates the ADC clock source  
0: ADC clock is internal  
1: ADC clock is external  
ADC1 Low Reference Alarm(2)  
REF_ALM  
This bit is the low reference voltage alarm of ADC1. The alarm bit is set if  
REF 0.4 V, typical.  
V
0: No alarm  
1: Low reference alarm  
3
2
1
0
PGAL_ALM  
PGAH_ALM  
PGAD_ALM  
RESET  
Read Only ADC1 PGA Output Low Alarm (2)  
This bit is the ADC1 PGA absolute low voltage alarm. The bit is set if the  
absolute voltage of either PGA output is less than VAVSS + 0.2 V. See the  
PGA Absolute Output-Voltage Monitor section.  
0: No alarm  
1: PGA low voltage alarm  
Read Only ADC1 PGA Output High Alarm (2)  
This bit is the ADC1 PGA absolute high voltage alarm. The bit is set if the  
absolute voltage of either PGA output is greater than VAVDD 0.2 V. See  
the PGA Absolute Output-Voltage Monitor section.  
0: No alarm  
1: PGA high voltage alarm  
Read Only ADC1 PGA Differential Output Alarm (2)  
This bit is the ADC1 PGA differential output range alarm. The bit is set if  
the PGA differential output voltage exceeds +105% FS or 105% FS.  
See the PGA Differential Output Monitor section.  
0: No alarm  
1: PGA differential range alarm  
Read Only RESET  
Indicates device reset. Device reset occurs at power-on, by the RESET/  
PWDN pin or by the reset command. This bit is the same as the RESET  
bit of the POWER register (see 9-36).  
0: No reset occurred since the RESET bit in power register last cleared by  
the user  
1: Device reset occurred  
(1) The ADC2 status bit is valid only with use of RDATA1 or RDATA2 read data commands.  
(2) These bits are valid during the readback of ADC1 data only. All other bits are valid during the readback of either ADC1 or ADC2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.7.3.2 Data Byte Format  
ADC1 data are 32 bits in a twos complement format that represents positive and negative values, and are output  
starting with the most significant bit first (ADC1[31]). The data are scaled so that VIN = 0 V results in ideal code  
value of 00000000h; see 9-19 for other ideal code values. Some applications require reduction of the 32-bit  
data to 24-bit data in order to provide compatibility to 24-bit systems. This reduction is done by simple truncation  
(or rounding) of the 32-bit data to 24 bits. See 9-46 for the ADC1 data byte field.  
9-19. ADC1 and ADC2 Output Codes  
INPUT SIGNAL (V)(1)  
ADC1 OUTPUT CODE (32 Bits) (2)  
ADC2 OUTPUT CODE (24 Bits) (2)  
VREF / Gain · (2N1 - 1) / 2N1  
7FFFFFFFh  
7FFFFFh  
000001h  
000000h  
FFFFFFh  
800000h  
VREF / (Gain · 2N1  
)
00000001h  
0
00000000h  
VREF / (Gain · 2N1  
VREF / Gain  
)
FFFFFFFFh  
80000000h  
(1) N = 32 (ADC1), N = 24 (ADC2)  
(2) Ideal output code, excluding effects of ADC noise, offset, gain and linearity errors.  
9-46. ADC1 Data Field, Four Bytes - 32 Bits  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
ADC1[31:24]  
R-0  
ADC1[23:16]  
R-0  
ADC1[15:8]  
R-0  
1
0
ADC1[7:0]  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
ADC2 data are 24 bits in a twos complement data format that represents positive and negative code values, and  
are output starting with the most significant bit first (ADC2[23]). The data are scaled so that a zero-voltage input  
results in an ideal code value of 000000h; see 9-19 for other ideal code values. See 9-47 for the ADC2  
data-byte field.  
9-47. ADC2 Data Field, Three Bytes - 24 Bits  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
17  
9
16  
8
ADC2[23:16]  
R-0  
ADC2[15:8]  
R-0  
1
0
ADC2[7:0]  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.7.3.3 Checksum Byte (CRC/CHK)  
The checksum byte is the last byte in the data-byte sequence. The checksum byte can be programmed to  
checksum mode or to cyclic redundancy check (CRC) mode. The checksum byte is optional and is enabled by  
the CRC[1:0] bits of the INTERFACE register. Use the checksum byte to detect transmission errors during data  
read-back. 9-48 and 9-20 shows the checksum byte description. The checksum byte is not provided when  
register data are read.  
9-48. Checksum Byte (CRC/CHK)  
7
6
5
4
3
2
1
0
SUM[7:0]  
9-20. Checksum Byte (CRC/CHK) Field Descriptions  
Bit  
7:0  
Field  
Type  
Description  
SUM[7:0]  
R
CRC or Checksum value  
This byte is the CRC or checksum of four ADC1 data bytes, or three  
ADC2 data bytes.  
9.4.7.3.3.1 Checksum Mode (CRC[1:0] = 01h)  
In checksum mode, the checksum byte is the lower 8-bit sum of the data conversion bytes plus an offset value  
9Bh. The offset value is added to help detect whether the DOUT/DRDY has failed and is in a permanent low  
state. ADC1 sums four data bytes. and ADC2 sums three data bytes. To verify the correct checksum, sum the  
data bytes plus 9Bh and compare the value read from the ADC. If the checksum values do not match, a data  
transmission error occurred. In the event of a data transmission error, read the data again for verification. The  
checksum provides basic levels of error detection caused by single-bit errors, and limited combinations of  
multiple-bit errors.  
Example computation of ADC1 four-data-byte checksum calculation:  
Data byte 1: 12h  
Data byte 2: 34h  
Data byte 3: 56h  
Data byte 4: 78h  
Constant: 9Bh  
Checksum value = AFh  
9.4.7.3.4 CRC Mode (CRC[1:0] = 10h)  
In CRC mode, the checksum byte is the 8-bit remainder of the bitwise exclusive-OR (XOR) of the data bytes by  
a CRC polynomial. For ADC1, use four conversion data bytes in the calculation; for ADC2, use three conversion  
data bytes. The CRC is based on the CRC-8-ATM (HEC) polynomial: X8 + X2 + X + 1.  
The nine binary coefficients of the polynomial are: 100000111. Calculate the CRC by dividing (XOR operation)  
the data bytes (excluding the CRC) with the polynomial and compare the calculated CRC values to the ADC  
CRC value. If the values do not match, a data transmission error has occurred. In the event of a data  
transmission error, read the data again. The CRC provides a higher level of detection of multiple-bit errors.  
The following list shows a general procedure to compute the CRC value:  
1. Left shift the initial ADC1 32-bit data value by 8 bits, with zeros padded to the right, creating a new 40-bit  
data value (the starting data value). For ADC2, left shift the 24-bit value to create a new 32-bit starting data  
value.  
2. Align the MSB of the CRC polynomial (100000111) to the left-most, logic-one value of the data.  
3. Perform an XOR operation on the data value with the aligned CRC polynomial. The XOR operation creates a  
new, shorter-length value. The bits of the data values that are not in alignment with the CRC polynomial drop  
down and append to the right of the new XOR result.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
4. When the XOR result is less than 100h, the procedure ends, yielding the 8-bit CRC value. Otherwise,  
continue with the XOR operation shown in step 2, using the current data value. The number of loop iterations  
depends on the value of the initial data.  
9.4.8 ADC Clock Modes  
The ADC conversion process requires a clock for operation. These devices have three clock operating modes:  
1. Internal oscillator  
2. External clock  
3. External crystal  
The nominal clock frequency is 7.3728 MHz. The output data rate and the corresponding 50-Hz and 60-Hz filter  
response nulls scale with clock frequency. Good line-cycle rejection requires an accurate clock frequency that is  
best provided by a crystal oscillator.  
As depicted in 9-49, the ADC contains an integrated clock generator and automatic detection circuit. If no  
external clock is detected, the ADC automatically selects the internal oscillator. If an external clock is detected,  
the ADC automatically selects the external clock. The clock mode can be verified by reading the EXTCLK bit, bit  
5 of the status byte (0 = internal clock).  
Clock Mux  
Internal Oscillator  
(7.3728 MHz)  
System  
Clock  
Clock Detect  
Logic  
EXTCLK bit of status byte  
(bit 5)  
XTAL1/  
XTAL2  
CLKIN  
9-49. ADC Clock Block Diagram  
9-50 illustrates the configuration for the three clock modes.  
External Clock Mode  
Crystal Oscillator Mode  
Internal Oscillator Mode  
XTAL1/  
CLKIN  
XTAL1/  
CLKIN  
XTAL1/  
CLKIN  
XTAL2  
XTAL2  
C2  
XTAL2  
7.3728 MHz  
Clock  
C1  
50 Ω  
C1, C2: 5 pf to 20 pF  
see text  
9-50. Clock Mode Configurations  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.8.1 Internal Oscillator  
The ADC contains an integrated 7.3728-MHz internal oscillator. After ADC power-on, the internal oscillator  
immediately starts. To select the internal oscillator, ground the XTAL1/CLKIN pin and float the XTAL2 pin; see 图  
9-50 (internal oscillator mode).  
9.4.8.2 External Clock  
Drive the ADC with an external clock by applying the clock input to the XTAL1/CLKIN pin and floating the XTAL2  
pin; see 9-50 (external clock mode). The ADC automatically detects the external clock. Be sure the external  
clock is free of overshoot and glitches. A source-terminating resistor placed at the external clock buffer often  
helps to reduce overshoot.  
9.4.8.3 Crystal Oscillator  
The ADC contains an integrated oscillator circuit for use with an external crystal. Connect the crystal and load  
capacitors to the XTAL1/CLKIN and XTAL2 pins; see 9-50 (crystal oscillator mode). Place the crystal and  
crystal load capacitors close to the ADC pins using short direct traces. Connect the load capacitors to digital  
ground. Do not connect any other external circuit to the crystal oscillator. 9-21 shows approved crystals for  
use with the ADS1262 and ADS1263. The crystal oscillator start-up time is characterized at 10 ms (typical), and  
can be longer depending on the crystal characteristics.  
9-21. Recommended Crystals  
OPERATING TEMPERATURE  
MANUFACTURER  
Citizen  
FREQUENCY  
7.3728 MHz  
7.3728 MHz  
7.3728 MHz  
LOAD CAPACITORS  
RANGE  
PART NUMBER  
HCM497372800ABJT  
ATS073BSM-1E  
18 pF  
18 pF  
18 pF  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
CTS  
Abracon  
ABLS-7.3728MHZ-K4T  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.9 Calibration  
The ADC incorporates offset and gain calibration commands, as well as user-offset and full-scale calibration  
registers to calibrate the ADC. The ADC1 calibration registers are 24-bits wide and the ADC2 calibration  
registers are 16-bits wide. Use calibration to correct internal ADC errors or overall system errors. Calibrate by  
sending calibration commands to the ADC, or by direct user calibration. In user calibration, the user calculates  
and writes the correction values to the calibration registers. The ADC performs self or system-offset calibration,  
or for full-scale calibration, system calibration. Perform offset calibration before full-scale calibration. After power-  
on, but before calibrating, wait for the power supplies and reference voltage to fully settle.  
9.4.9.1 Offset and Full-Scale Calibration  
Use the offset and full-scale (gain) registers to correct ADC error. As shown in 9-51, the value of the offset  
calibration register is subtracted from the filter output and then multiplied by the full-scale register value divided  
by 400000h. The data are then clipped to a 32-bit value to provide the final output.  
VAINP  
C A D  
+
Output Data  
Clipped to 32 bits  
Digital  
Filter  
Final  
Output  
ADC  
VAINN  
-
1/400000h  
OFCAL[2:0] registers  
(register addresses = 07h, 08h, 09h)  
>000000h: negative offset  
000000h: no offset  
<000000h: positive offset  
FSCAL[2:0] registers  
(register addresses = 0Ah, 0Bh, 0Ch)  
<400000h: gain >1  
400000h: gain =1  
>400000h: gain <1  
9-51. ADC1 Calibration Block Diagram  
方程式 22 shows the internal calibration. ADC2 calibration registers are 16 bit. For ADC2, the ADC2FSC[1:0}  
registers are for full-scale calibration and the ADC2OFC[1:0] registers are for offset calibration.  
ADC1 Final Output Data = (Filter Output - OFCAL[2:0]) · FSCAL[2:0]/400000h  
(22)  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.9.1.1 Offset Calibration Registers  
The ADC1 offset calibration word is 24 bits, consisting of three 8-bit registers, as shown in 9-22. The offset  
value is twos complement format with a maximum positive value equal to 7FFFFFh (for negative offset), and a  
maximum negative value equal to 800000h (for positive offset). The 24-bit register is internally left-shifted to  
align with the 32-bit data before subtraction occurs. A register value equal to 000000h has no offset correction.  
Although the offset calibration register allows a wide range of offset values, the input signal cannot exceed  
±106% of the precalibrated range in order to prevent ADC overrange. If chop mode is enabled, the offset  
calibration register is disabled. 9-23 shows example settings of the offset register.  
9-22. ADC1 Offset Calibration Registers  
BYTE  
REGISTER  
OFCAL0  
OFCAL1  
OFCAL2  
ORDER  
ADDRESS  
07h  
BIT ORDER  
LSB  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
08h  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
09h  
B23 (MSB)  
B17  
B16  
9-23. ADC1 Offset Calibration Register Values  
OFCAL[2:0] REGISTER VALUE  
OFFSET CALIBRATED 32-BIT OUTPUT CODE(1)  
000001h  
000000h  
FFFFFFh  
FFFFFF00h  
00000000h  
00000100h  
(1) Ideal output code with shorted input, excluding ADC noise and offset voltage error.  
The ADC2 offset calibration word is 16 bits, consisting of two 8-bit registers, as shown in 9-24. The 16-bit  
calibration value is internally aligned with the 24-bit ADC2 conversion result. The offset calibration value is  
subtracted from the conversion data.  
9-24. ADC2 Offset Calibration Registers  
BYTE  
REGISTER  
ADC2OFC0  
ADC2OFC1  
ORDER  
ADDRESS  
17h  
BIT ORDER  
LSB  
B7  
B6  
B5  
B4  
B12  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MSB  
18h  
B15  
B14  
B13  
B11  
B10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.9.1.2 Full-Scale Calibration Registers  
The ADC1 full-scale calibration word is 24 bits consisting of three 8-bit registers, as shown in 9-25. The full-  
scale calibration value is straight binary, normalized to a unity-gain correction factor at a register value equal to  
400000h. 9-26 shows register values for selected gain factors. Correct ADC gain for gain errors greater than  
one (resulting in full-scale register values less than 400000h, or less than 4000h for ADC2). However, to prevent  
ADC overrange, the input signal must not exceed ±106% of the precalibrated input range. Do not exceed the  
PGA input range limits during full-scale calibration.  
9-25. ADC1 Full-Scale Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
FSCAL0  
FSCAL1  
FSCAL2  
LSB  
0Ah  
0Bh  
0Ch  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
MSB  
B23 (MSB)  
B17  
B16  
9-26. ADC1 Full-Scale Calibration Register Values  
FSCAL[2:0] REGISTER VALUE  
GAIN FACTOR  
433333h  
400000h  
1.05  
1.00  
0.95  
3CCCCCh  
The ADC2 full-scale calibration word is 16 bits consisting of two 8-bit registers, as shown in 9-27. The full-  
scale calibration value is straight binary, normalized to a unity correction factor at a register value equal to  
4000h. A full-scale register value greater than 4000h increases the ADC2 gain factor.  
9-27. ADC2 Full-Scale Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
ADC2FSC0  
ADC2FSC1  
LSB  
19h  
1Ah  
B7  
B6  
B5  
B4  
B12  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
MSB  
B15  
B14  
B13  
B11  
B10  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.9.2 ADC1 Offset Self-Calibration (SFOCAL1)  
The offset self-calibration command corrects internal ADC1 offset error. Program the ADC1 input multiplexer  
register (INPMUX) to FFh to force open all input connections before sending the command. When the SFOCAL1  
self-calibration command is sent, the ADC shorts together the internal PGA inputs, then averages 16 readings to  
reduce the conversion noise for an accurate calibration. When calibration is complete, the calibration result is  
written to the 24-bit offset calibration register (OFCAL[2:0]). After calibration, set the input multiplexer to the  
desired measurement channel. The offset calibration register is disabled in chop mode.  
9.4.9.3 ADC1 Offset System Calibration (SYOCAL1)  
The offset system-calibration command corrects ADC1 system offset error. For this type of calibration, externally  
short the system inputs before the command. When the SYSOCAL1 command is sent, the ADC averages 16  
readings to reduce conversion noise for an accurate calibration. When calibration is complete, the offset  
calibration result is written to the 24-bit offset calibration register (OFCAL[2:0]). The offset calibration register is  
disabled in chop mode.  
9.4.9.4 ADC2 Offset Self-Calibration ADC2 (SFOCAL2)  
The offset self-calibration command corrects internal ADC2 offset error. Program the ADC2 input multiplexer  
register (ADC2MUX) to FFh to force open all input connections before sending the command. When the  
SFOCAL2 self-calibration command is sent, the ADC shorts together the internal PGA inputs of ADC2, then  
averages 16 readings to reduce conversion noise for an accurate calibration. When calibration is complete, the  
offset calibration result is written to the 16-bit ADC2 offset calibration register ADC2OFC[1:0]. After calibration,  
set the input multiplexer to the desired channel.  
9.4.9.5 ADC2 Offset System Calibration ADC2 (SYOCAL2)  
The offset system-calibration command corrects ADC2 system offset error. For this offset calibration, externally  
short the ADC2 inputs before sending the command. When the SYOCAL2 command is sent, the ADC averages  
16 readings to reduce conversion noise for an accurate calibration. When calibration is complete, the calibration  
result is written to the 16-bit ADC2 offset calibration register (ADC2OFC[1:0)].  
9.4.9.6 ADC1 Full-Scale System Calibration (SYGCAL1)  
The full-scale calibration command corrects ADC1 system gain error. To calibrate, apply a positive full-scale dc  
signal to the ADC, wait until the signal is fully settled, and then send the command. When the SYGCAL1  
command is sent, the ADC averages 16 readings to reduce conversion noise for an accurate calibration. When  
calibration completes, the ADC computes a full-scale calibration where the applied voltage calibrates to a  
positive full-scale code value. The computed result is written to the 24-bit offset calibration register (FSCAL[2:0]).  
The precalibrated ADC overrange limitation is 106% FSR.  
9.4.9.7 ADC2 Full-Scale System Calibration ADC2 (SYGCAL2)  
The full-scale system calibration command corrects ADC2 system gain error. To calibrate, apply a positive full-  
scale dc signal to ADC2, wait until the signal is fully settled, and then send the command. When the SYGCAL2  
command is sent, the ADC averages 16 readings to reduce conversion noise for an accurate calibration. When  
calibration is complete, the full-scale calibration is computed so that applied voltage calibrates to positive full  
scale. The computed result is written to the ADC2 16-bit, full-scale calibration register (ADC2FSC[1:0]). The  
precalibrated ADC overrange limitation is 106% FSR.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.9.8 Calibration Command Procedure  
The following steps show the ADC calibration procedure using commands. Make sure that the reference voltage  
is stable before calibrating the ADC. Perform offset calibration before full-scale calibration.  
1. Enable continuous-conversion mode (ADC1 only).  
2. Select the desired gain and reference voltage of the ADC.  
3. Choose calibration type:  
a. For offset self-calibration, program the ADC1 or ADC2 input multiplexer register to FFh to open all inputs  
before sending the calibration command.  
b. For system calibration, select the input channel and short the external inputs (offset calibration); or apply  
positive full-scale input (full-scale calibration). If performing full-scale calibration, the analog inputs  
cannot exceed 106% FSR. Do not exceed the specified absolute or differential PGA input range when  
calibrating.  
4. Start conversions:  
a. If calibrating ADC1, take the START pin high (or send the ADC1 start command).  
b. If calibrating ADC2, send the ADC2 start command.  
5. Send the desired calibration command. When the calibration command is received, calibration is started,  
and for ADC1, DRDY is driven high. Keep CS and SCLK low during the calibration time. The calibration time  
depends on the data rate and digital filter mode, as shown in 9-28 for ADC1 and 9-29 for ADC2.  
For ADC1, DRDY is driven low when calibration is complete. The new offset or full-scale calibration values are  
written to the calibration registers. New conversion data are now ready using the new calibration coefficients.  
For ADC2, the end of calibration is not indicated by DRDY. Instead, wait for the time shown in 9-29 before  
reading ADC2 data.  
9-28. ADC1 Calibration Time (ms)  
FILTER MODE (1)  
DATA RATE  
(SPS)  
SINC1  
6801  
3401  
1701  
1021  
850.7  
340.9  
284.1  
170.8  
43.27  
14.93  
7.845  
4.302  
3.123  
SINC2  
7601  
3801  
1901  
1141  
951.0  
380.9  
317.7  
190.9  
48.43  
16.72  
8.816  
4.858  
3.534  
SINC3  
8401  
4201  
2101  
1261  
1051  
421.0  
350.9  
210.9  
53.42  
18.40  
9.643  
5.276  
3.815  
SINC4  
9201  
4601  
2300  
1381  
1151  
460.9  
384.4  
230.8  
58.41  
20.07  
10.48  
5.692  
4.095  
SINC5  
FIR  
2.5  
6805  
3405  
1705  
5
10  
16.6  
20  
854.5  
50  
60  
100  
400  
1200  
2400  
4800  
7200  
14400  
19200  
38400  
1.941  
1.490  
0.812  
(1) fCLK = 7.3728 MHz. CHOP disabled.  
9-29. ADC2 Calibration Time  
DATA RATE (SPS)  
ADC2 CALIBRATION TIME (ms)(1)  
10  
1742  
212  
100  
400  
800  
54.6  
28.3  
(1) fCLK = 7.3728 MHz.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.9.9 User Calibration Procedure  
The user calibration procedure is similar to the calibration command procedure, except the user computes the  
calibration coefficients and writes the corresponding values to the calibration registers. Before starting user  
calibration, preset the ADC1 offset and full-scale registers to 000000h and 400000h, respectively.  
For ADC2, preset the offset and full-scale registers to 0000h and 4000h, respectively.  
For offset calibration, short the ADC inputs or system inputs and average the conversions (averaging reduces  
noise for a more accurate calibration). Write the average value to the offset calibration registers. The ADC  
subtracts the value from the conversion result.  
For full-scale calibration, apply a dc calibration voltage that is less than positive full scale to avoid clipped codes  
(VIN < +FSR), and average the conversions to reduce noise for a more accurate calibration. Full-scale calibration  
is computed as shown in 方程23:  
Full-Scale Calibration = (Expected Code Value / Actual Code Value) × NF  
(23)  
where  
NF = Normalization Factor = 400000h for ADC1, or 4000h for ADC2  
If the actual code is higher than the expected value, the calculated calibration value is less than 400000h  
(4000h) and the ADC gain is subsequently reduced. Write the calibration value to the full-scale register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.10 Reset  
The ADC is reset in one of three ways:  
1) Power-on reset  
2) RESET/PWDN pin  
3) RESET command  
When the ADC is reset, the device registers reset to default values and the analog-to-digital conversion cycles  
restart. After reset, the RESET bit of the status byte (bit 0) and of the power register (bit 4) are set to 1 to  
indicate reset has occurred. Set the RESET register bit to 0 to clear the reset flag. If the RESET bit is then set  
after clearing the bit, a new reset has occurred.  
9.4.10.1 Power-On Reset (POR)  
After the power supplies are turned on, the ADC remains in reset until VDVDD, the internal LDO output (BYPASS  
pin voltage), and the combined (VAVDD VAVSS) power supply voltage have exceeded their respective POR  
voltage thresholds. 9-52 shows the POR sequence. When the power supplies have crossed the voltage  
thresholds, the ADC is operational 65536 fCLK cycles later (9 ms, typical). Note the 1-µF capacitor connected to  
the BYPASS pin requires charging at power-on, and as a result, can delay when the ADC is operational. Wait at  
least 9 ms after the power supplies have fully stabilized before beginning ADC communication.  
VDVDD  
VDIGITAL_POR  
VAVDD - VAVSS  
VANALOG_POR  
fCLK  
Internal Reset  
ADC Reset  
ADC Operational  
td(POROP)  
Set RESET bit of status byte  
(bit 0 of data byte 1)  
Set RESET, bit4 of POWER  
(register address 01h )  
9-52. Power-On Reset  
9-30. POR Characteristics  
PARAMETER  
TEST CONDITIONS  
VDVDD and VBYPASS  
AVDD VAVSS  
TYP  
1
UNIT  
V
VDIGITAL_POR  
VANALOG_POR  
Digital power supply POR threshold  
Analog power supply POR threshold  
3.5  
V
V
Propagation delay from last POR supply threshold  
to ADC operational  
(1)  
td(POROP)  
65536  
tCLK  
(1) tCLK = 1 / fCLK  
.
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.10.2 RESET/PWDN Pin  
Reset the ADC by taking the RESET/PWDN pin low for a minimum four fCLK cycles, and then returning the pin  
high, as shown in 9-53. Holding the RESET/PWDN pin low for longer than 65536 fCLK cycles (9 ms) engages  
power-down mode. As depicted in the diagram, after the RESET/PWDN pin is taken high, the delay time shown  
in 9-31 is required before sending the first serial interface command.  
Set RESET bit of status byte  
(bit 0)  
Set RESET bit 4 of POWER  
(register address 01h )  
th(RSTL)  
RESET/PWDN  
Serial  
Command  
Serial Interface  
th(RSTCM)  
9-53. RESET/PWDN Pin Timing  
9-31. RESET/PWDN Pin Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
4
UNIT  
RESET/PWDN low for reset: hold time  
RESET/PWDN low for power down: hold time  
(1)  
th(RSTL)  
tCLK  
65536  
8
RESET/PWDN high to serial command: hold time After reset  
th(RSTCM)  
tCLK  
RESET/PWDN high to serial command: hold time After exiting power down  
65536  
(1) tCLK = 1 / fCLK  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.10.3 Reset by Command  
Reset the ADC by using the reset command (opcode = 06h or 07h). Toggle CS high first to make sure the serial  
interface resets before sending the command. For applications that tie CS low, see the Serial Interface Autoreset  
section for information on how to reset the serial interface. After sending the reset command, provide an 8-fCLK  
-
cycle delay before sending the next command, as shown in 9-54 and 9-32.  
Set RESET bit of status byte  
(bit 0)  
Set RESET bit 4 of POWER  
(register address 01h )  
Serial  
Command  
RESET  
Command  
Next  
Command  
th(CMCM)  
9-54. RESET Command Timing  
9-32. RESET Command Timing Requirements  
PARAMETER  
MIN  
UNIT(1)  
th(CMCM)  
RESET command to next command: hold time  
8
tCLK  
(1) tCLK = 1 / fCLK  
.
9.4.11 Power-Down Mode  
Power down the ADC by holding the RESET/PWDN pin low. To reset the ADC without engaging power-down  
mode, pulse the pin low for less than 65536 clock cycles. In power-down mode, the ADC (including the internal  
reference) is shutdown. The internal low-dropout regulator (LDO) output to the BYPASS pin remains on, typically  
drawing 25-µA idle current from the DVDD power supply. To exit power-down mode, take the RESET/PWDN pin  
high.  
While in power-down mode, the ADC digital outputs remain driven and the analog inputs and reference inputs  
are high impedance. Maintain the digital inputs at VIH or VIL levels (do not float the digital inputs). When power-  
down mode is exited, the ADC resets, resulting in the registers resetting to default values. Wait the required  
65536 fCLK cycles (9 ms) before first communication to the ADC. Make sure to allow time for the internal  
reference to settle before starting the first conversion.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.4.12 Chop Mode  
The device uses a chopper-stabilized PGA and modulator in order to provide very low input voltage offset drift  
(VOS/dT). However, because of nonidealities arising from chopper stabilization, a small amount of offset voltage  
drift sometimes remains. ADC1 incorporates a global chop option to reduce the offset voltage and offset voltage  
drift to very low levels. When Chop is enabled, the ADC performs two internal conversions to cancel the input  
offset voltage. The first conversion is taken with normal input polarity. The ADC reverses the internal input  
polarity for the second conversion. The difference of the two conversions is computed to yield the final corrected  
result with the offset voltage removed. See 9-55. The ADC internal offset voltage is modeled as VOFS  
.
CHOP[1:0] bits 5:4 of MODE0  
(register address = 03h)  
00: Chop off  
01: Chop on  
10: IDAC rotation  
Chop Switch  
11: Chop on and IDAC rotation  
VOFS  
AIN0  
VINP  
-
+
Digital  
Filter  
Input  
MUX  
Chop  
Control  
C
A D  
Conversion Output  
ADC  
PGA  
VINN  
AINCOM  
9-55. ADC1 Chop Block Diagram  
The following is the internal Chop mode sequence.  
Internal Conversion 1: VAINP - VAINN - VOFS => First conversion withheld  
Internal Conversion 2: VAINN - VAINP - VOFS => Output result 1 = (Conversion 1 - Conversion 2) /2 = VAINP - VAINN  
Internal Conversion 3: VAINP - VAINN - VOFS => Output result 2 = (Conversion 3 - Conversion 2) /2 = VAINP - VAINN  
Internal Conversion 4: VAINN - VAINP - VOFS => Output result 3 = (Conversion 3 - Conversion 4) /2 = VAINP - VAINN  
The internal chop sequence repeats for all successive conversions.  
As a result of the delay required by the digital filter to settle after reversing the inputs, the chop-mode data rate is  
less than the nominal data rate, depending on the digital filter order and programmed settling delay.  
Nevertheless, if the data rate currently in use has 50-Hz and 60-Hz frequency response nulls, the null  
frequencies remain unchanged. Chop mode also reduces the ADC noise by a factor of 1.4 because of the  
averaging of two conversions. In some cases, it is necessary to increase the time delay parameter, DELAY[3:0],  
to allow for settling of external components.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.5 Programming  
Commands are used to access the configuration and data registers and also to control the ADC. Many of the  
ADC commands are stand-alone (that is, single-byte). The register write and register read commands, however,  
are multibyte, consisting of two opcode bytes plus the register data byte or bytes. The commands are listed in 表  
9-33.  
Commands can be sent at any time, either during a conversion or while conversions are stopped. However, if  
register read/write commands are in progress when conversion data are ready, the ADC blocks loading of  
conversion data to the output shift register. The CS input pin can be taken high between commands; or held low  
between consecutive commands. CS must stay low for the entirety of the command sequence. Complete the  
command, or terminate before command completion by taking CS high. Only send the commands that are listed  
in 9-33.  
9-33. ADC Commands  
COMMAND MNEMONIC  
NOP  
COMMAND TYPE  
NOP  
DESCRIPTION  
OPCODE 1 BYTE  
OPCODE 2 BYTE  
No operation  
0000 0000 (00h)  
RESET  
Reset the ADC  
0000 011x (06h or 07h)(1)  
0000 100x (08h or 09h)(1)  
0000 101x (0Ah or 0Bh)(1)  
0000 110x (0Ch or 0Dh)(1)  
0000 111x (0Eh or 0Fh)(1)  
0001 001x (12h or 13h)(1)  
0001 010x (14h or 15h)(1)  
START1  
Start ADC1 conversions  
Stop ADC1 conversions  
Start ADC2 conversions  
Stop ADC2 conversions  
Read ADC1 data  
STOP1  
Control  
START2  
STOP2  
RDATA1  
Conversion data read  
RDATA2  
Read ADC2 data  
ADC1 system offset  
calibration  
SYOCAL1  
SYGCAL1  
SFOCAL1  
SYOCAL2  
SYGCAL2  
SFOCAL2  
0001 0110 (16h)  
0001 0111 (17h)  
0001 1001 (19h)  
0001 1011 (1Bh)  
0001 1100 (1Ch)  
0001 1110 (1Eh)  
ADC1 system gain  
calibration  
ADC1 self offset  
calibration  
Calibration  
ADC2 system offset  
calibration  
ADC2 system gain  
calibration  
ADC2 self offset  
calibration  
RREG  
WREG  
Read registers  
Write registers  
001r rrrr (20h+000r rrrr)(2) 000n nnnn(3)  
010r rrrr (40h+000r rrrr)(2) 000n nnnn(3)  
Register data read and  
write  
(1) x = don't care.  
(2) r rrrr = register address.  
(3) n nnnn = number of registers to read or write minus 1.  
9.5.1 NOP Command  
The NOP command sends a no operation command to the device. The NOP command opcode is 00h. Hold the  
DIN pin low for the NOP command.  
9.5.2 RESET Command  
The RESET command resets the ADC operation and resets the device registers to default. See the Reset by  
Command section.  
9.5.3 START1, STOP1, START2, STOP2 Commands  
These commands start and stop the conversions of ADC1 and ADC2. See the Conversion Control section.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.5.4 RDATA1, RDATA2 Commands  
These commands are used to read ADC1 or ADC2 conversion data from the respective data holding buffers.  
See the Read Conversion Data section for more details.  
9.5.5 SYOCAL1, SYGCAL1, SFOCAL1, SYOCAL2, SYGCAL2, SFOCAL2 Commands  
These commands are used to calibrate ADC1 or ADC2. See the Calibration section.  
9.5.6 RREG Command  
Use the RREG command to read the device register data. Read the register data one register at a time, or read  
as a block of register data. The starting register address is any register in the map. The RREG opcode consists  
of two bytes. The first byte specifies the starting register address: 001r rrrr: where r rrrr is the starting register  
address. The second opcode byte is the number of registers to read (minus 1): 000n nnnn: where n nnnn is the  
number of registers to read minus 1.  
After the read command is sent, the ADC responds with one or more register data bytes, most significant bit first.  
If the byte count exceeds the last register address, the ADC begins to output zero data (the address pointer  
does not wrap). During the register read operation, if ADC1 data are ready, the conversion data are not loaded to  
the output shift register to avoid data contention. However, the conversion data can be retrieved later by the  
RDATA1 command. After the register read command has been started, further commands are disabled until one  
of the following conditions:  
1) The read operation is completed.  
2) The read operation is terminated by taking CS high.  
3) The read operation is terminated by a serial interface autoreset.  
4) The ADC is reset by toggling the RESET/PWDN pin.  
9-56 depicts a two-register read operation example. As shown, the opcodes required to read data from two  
registers starting at register MODE2 (address = 05h) are: OPCODE 1 = 25h and OPCODE 2 = 01h. Keep the  
DIN input low after the two opcode bytes are sent.  
(Aa)  
CS  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DONT CARE  
DONT CARE  
REG DATA 1  
REG DATA 2  
DIN  
OPCODE 1  
OPCODE 2  
A. CS can be set high or kept low between commands. If kept low, the command must be completed.  
9-56. Read Register Sequence  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.5.7 WREG Command  
Use the WREG command to write the device register data. The register data are written one register at a time or  
as a block of register data. The starting register address is any register in the map.  
The WREG opcode consists of two bytes. The first byte specifies the starting register address: 010r rrrr, where r  
rrrr is the starting register address The second opcode byte is the number of registers to write (minus one): 000n  
nnnn, where n nnnn is the number of registers to write minus one. The following byte (or bytes) is the register  
data, most significant bit first. If the byte count exceeds the last register address, the ADC ignores the data (the  
address pointer does not wrap). Writing new data to certain registers results in a reset of ADC1 or ADC2  
conversions, as specified in the ADC restart column in the Register Maps. The previous conversion data are  
cleared at restart; therefore, read the data before the register write operation. After the register write command  
has been started, further commands are disabled until one of these conditions occur:  
1) The write operation is completed.  
2) The write operation is terminated by taking CS high.  
3) The write operation is terminated by a serial interface auto-reset  
4) The ADC is reset by toggling the RESET/PWDN pin.  
9-57 depicts a two-register write operation example. As shown, the required opcodes to write data to two  
registers starting at register MODE2 (address = 05h) are: OPCODE 1 = 45h and OPCODE 2 = 01h.  
(A)  
CS  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DIN  
DONT CARE  
DONT CARE  
DONT CARE  
DONT CARE  
OPCODE 1  
OPCODE 2  
REG DATA 1  
REG DATA 2  
A. Between commands, either set CS high or keep CS low. If CS is kept low, the command must be completed.  
9-57. Write Register Sequence  
The MODE2 and INPMUX registers are modified. Typically, register changes take effect immediately after the  
data are written. However, if the registers are part of a group, then the data are written only after all data for the  
grouped registers in the write block have been sent. In this example, data for MODE2 and INPMUX are written  
only after the data for INPMUX are sent. See the Register Maps section for those registers that are grouped  
when writing register data.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6 Register Maps  
The ADS1262 register map consists of 21, 8-bit registers. The ADS1263 has six additional registers totaling 27  
registers. Registers with addresses 15h through 1Ah apply exclusively to the ADC2. Collectively, these registers  
are used to configure and control the ADC to the desired mode of operation. Access the registers through the  
serial interface by using the RREG and WREG register-read and -write commands. At power-on or reset, the  
registers default to their initial settings, as shown in the Default column of 9-34.  
Writing new data to certain registers results in restart of conversions that are in progress. The registers that  
result in conversion restart (either ADC1 or ADC2) are shown in the ADC Restart column in 9-34. The device  
drives the DRDY output high when ADC1 restarts. Additionally, data can be written as a block to multiple  
registers using a single command. If data are written as a block, the data of certain registers take effect  
immediately as the data are shifted in, while the data of other registers are buffered and take effect when the  
command is fully completed. The registers that update as a group are identified in the Group Update column in  
9-34. The group update registers that pertain to ADC1 operation are labeled Group1. The group update  
registers that pertain to ADC2 operation are labeled Group2. Update registers as a group to minimize the ADC  
recovery time after a configuration change. If the write command is terminated before completion, the data of  
group registers are not saved.  
9-34. Register Map  
ADC  
GROUP  
ADDR  
00h  
REGISTER  
ID  
DEFAULT RESTART UPDATE  
BIT 7  
BIT 6  
DEV_ID[2:0]  
0
BIT 5  
BIT 4  
BIT 3  
BIT 2  
REV_ID[4:0]  
0
BIT 1  
BIT 0  
xxh  
11h  
01h  
POWER  
0
0
0
0
RESET  
0
0
VBIAS  
INTREF  
TIME  
OUT  
02h  
03h  
INTERFACE  
MODE0  
05h  
0
STATUS  
CRC[1:0]  
RUN  
MODE  
00h  
ADC1  
Group1  
REFREV  
BYPASS  
CHOP[1:0]  
DELAY[3:0]  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
MODE1  
MODE2  
80h  
04h  
01h  
00h  
00h  
00h  
00h  
00h  
40h  
BBh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
01h  
00h  
00h  
00h  
40h  
ADC1  
ADC1  
ADC1  
Group1  
Group1  
Group1  
FILTER[2:0]  
SBADC SBPOL  
SBMAG[2:0]  
DR[3:0]  
GAIN[2:0]  
INPMUX  
MUXP[3:0]  
MUXN[3:0]  
OFCAL0  
OFC[7:0]  
OFC[15:8]  
OFC[23:16]  
FSC[7:0]  
OFCAL1  
OFCAL2  
FSCAL0  
FSCAL1  
FSC[15:8]  
FSC[23:16]  
FSCAL2  
IDACMUX  
IDACMAG  
REFMUX  
TDACP  
ADC1  
ADC1  
ADC1  
Group1  
Group1  
Group1  
MUX2[3:0]  
MAG2[3:0]  
MUX1[3:0]  
MAG1[3:0]  
0
0
RMUXP[2:0]  
RMUXN[2:0]  
MAGP[4:0]  
MAGN[4:0]  
OUTP  
OUTN  
0
0
0
0
TDACN  
GPIOCON  
GPIODIR  
GPIODAT  
ADC2CFG  
ADC2MUX  
ADC2OFC0  
ADC2OFC1  
ADC2FSC0  
ADC2FSC1  
CON[7:0]  
DIR[7:0]  
DAT[7:0]  
ADC2  
ADC2  
Group2  
Group2  
DR2[1:0]  
REF2[2:0]  
GAIN2[2:0]  
MUXN2[3:0]  
MUXP2[3:0]  
OFC2[7:0]  
OFC2[15:8]  
FSC2[7:0]  
FSC2[15:8]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.1 Device Identification Register (address = 00h) [reset = x]  
9-58. Device Identification Register (ID)  
7
6
5
4
3
2
1
0
DEV_ID[2:0]  
REV_ID[4:0]  
NOTE: Reset values are device dependent  
9-35. Device Identification Register (ID) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
DEV_ID[2:0]  
R
x
Device ID.  
000: ADS1262  
001: ADS1263  
4:0  
REV_ID[4:0]  
R
x
Revision ID  
Note: the chip revision ID can change without notification  
9.6.2 Power Register (address = 01h) [reset = 11h]  
9-59. Power Register (POWER)  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
RESET  
R/W-1h  
RESERVED  
R-0h  
VBIAS  
R/W-0h  
INTREF  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-36. Power Register (POWER) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
RESERVED  
R
0h  
Reserved  
Always write 000  
4
RESET  
R/W  
1h  
Reset Indicator  
Indicates ADC reset has occurred. Clear this bit to detect the  
next device reset.  
0: No new reset occurred  
1: New reset has occurred (default)  
3:2  
1
RESERVED  
VBIAS  
R
0h  
0h  
Reserved  
Always write 00  
R/W  
Level Shift Voltage Enable  
Enables the internal level shift voltage to the AINCOM pin.  
VBIAS = (VAVDD + VAVSS)/2  
0: Disabled (default)  
1: VBIAS enabled  
0
INTREF  
R/W  
1h  
Internal Reference Enable  
Enables the 2.5 V internal voltage reference. Note the IDAC and  
temperature sensor require the internal voltage reference.  
0: Disabled  
1: Internal reference enabled (default)  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.3 Interface Register (address = 02h) [reset = 05h]  
9-60. Interface Register (INTERFACE)  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
TIMEOUT  
R/W-0h  
STATUS  
R-1h  
CRC[1:0]  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-37. Interface Register (INTERFACE) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
RESERVED  
R
0h  
Reserved  
Always write 00h  
3
2
TIMEOUT  
STATUS  
R/W  
R/W  
0h  
1h  
Serial Interface Time-Out Enable  
Enables the serial interface automatic time-out mode  
0: Disabled (default)  
1: Enable the interface automatic time-out  
Status Byte Enable  
Enables the inclusion of the status byte during conversion data  
read-back  
0: Disabled  
1: Status byte included during conversion data read-back  
(default)  
1:0  
CRC[1:0]  
R/W  
1h  
Checksum Byte Enable  
Enables the inclusion of the checksum byte during conversion  
data read-back  
00: Checksum byte disabled  
01: Enable Checksum byte in Checksum mode during  
conversion data read-back (default)  
10: Enable Checksum byte in CRC mode during conversion  
data read-back  
11: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.4 Mode0 Register (address = 03h) [reset = 00h]  
9-61. Mode0 Register (MODE0)  
7
6
5
4
3
2
1
0
REFREV  
R/W-0h  
RUNMODE  
R/W-0h  
CHOP[1:0]  
R/W-0h  
DELAY[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-38. Mode0 Register (MODE0) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REFREV  
R/W  
0h  
Reference Mux Polarity Reversal  
Reverses the ADC1 reference multiplexer output polarity  
0: Normal polarity of reference multiplexer output (default)  
1: Reverse polarity of reference multiplexer output  
6
RUNMODE  
CHOP[1:0]  
R/W  
R/W  
0h  
0h  
ADC Conversion Run Mode  
Selects the ADC conversion (run) mode  
0: Continuous conversion (default)  
1: Pulse conversion (one shot conversion)  
5:4  
Chop Mode Enable  
Enables the ADC chop and IDAC rotation options  
00: Input chop and IDAC rotation disabled (default)  
01: Input chop enabled  
10: IDAC rotation enabled  
11: Input chop and IDAC rotation enabled  
3:0  
DELAY[3:0]  
R/W  
0h  
Conversion Delay  
Provides additional delay from conversion start to the beginning  
of the actual conversion  
0000: no delay (default)  
0001: 8.7 µs  
0010: 17 µs  
0011: 35 µs  
0100: 69 µs  
0101: 139 µs  
0110: 278 µs  
0111: 555 µs  
1000: 1.1 ms  
1001: 2.2 ms  
1010: 4.4 ms  
1011: 8.8 ms  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.5 Mode1 Register (address = 04h) [reset = 80h]  
9-62. Mode1 Register (MODE1)  
7
6
5
4
3
2
1
0
FILTER[2:0]  
R/W-4h  
SBADC  
R/W-0h  
SBPOL  
R/W-0h  
SBMAG[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-39. Mode1 Register (MODE1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
FILTER[2:0]  
R/W  
4h  
Digital Filter  
Configures the ADC digital filter  
000: Sinc1 mode  
001: Sinc2 mode  
010: Sinc3 mode  
011: Sinc4 mode  
100: FIR mode (default)  
101: Reserved  
110: Reserved  
111: Reserved  
4
3
SBADC  
SBPOL  
R/W  
R/W  
0h  
0h  
Sensor Bias ADC Connection  
Selects the ADC to connect the sensor bias  
0: Sensor bias connected to ADC1 mux out (default)  
1: Sensor bias connected to ADC2 mux out  
Sensor Bias Polarity  
Selects the sensor bias for pull-up or pull-down  
0: Sensor bias pull-up mode (AINP pulled high, AINN pulled low)  
(default)  
1: Sensor bias pull-down mode (AINP pulled low, AINN pulled  
high)  
2:0  
SBMAG[2:0]  
R/W  
0h  
Sensor Bias Magnitude  
Selects the sensor bias current magnitude or the bias resistor  
000: No sensor bias current or resistor (default)  
001: 0.5-µA sensor bias current  
010: 2-µA sensor bias current  
011: 10-µA sensor bias current  
100: 50-µA sensor bias current  
101: 200-µA sensor bias current  
110: 10-MΩresistor  
111: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.6 Mode2 Register (address = 05h) [reset = 04h]  
9-63. Mode2 Register (MODE2)  
7
6
5
4
3
2
1
0
BYPASS  
R/W-0h  
GAIN[2:0]  
R/W-0h  
DR[3:0]  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-40. Mode2 Register (MODE2) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BYPASS  
R/W  
0h  
PGA Bypass Mode  
Selects PGA bypass mode  
0: PGA enabled (default)  
1: PGA bypassed  
6:4  
GAIN[2:0]  
R/W  
0h  
PGA Gain  
Selects the PGA gain  
000: 1 V/V (default)  
001: 2 V/V  
010: 4 V/V  
011: 8 V/V  
100: 16 V/V  
101: 32 V/V  
110: Reserved  
111: Reserved  
3:0  
DR[3:0]  
R/W  
4h  
Data Rate  
Selects the ADC data rate. In FIR filter mode, the available data  
rates are limited to 2.5, 5, 10 and 20 SPS.  
0000: 2.5 SPS  
0001: 5 SPS  
0010: 10 SPS  
0011: 16. 6SPS  
0100: 20 SPS (default)  
0101: 50 SPS  
0110: 60 SPS  
0111: 100 SPS  
1000: 400 SPS  
1001: 1200 SPS  
1010: 2400 SPS  
1011: 4800 SPS  
1100: 7200 SPS  
1101: 14400 SPS  
1110: 19200 SPS  
1111: 38400 SPS  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.7 Input Multiplexer Register (address = 06h) [reset = 01h]  
9-64. Input Multiplexer Register (INPMUX)  
7
6
5
4
3
2
1
0
MUXP[3:0]  
R/W-0h  
MUXN[3:0]  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-41. Input Multiplexer Register (INPMUX) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MUXP[3:0]  
R/W  
0h  
Positive Input Multiplexer  
Selects the positive input multiplexer.  
0000: AIN0 (default)  
0001: AIN1  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5  
0110: AIN6  
0111: AIN7  
1000: AIN8  
1001: AIN9  
1010: AINCOM  
1011: Temperature sensor monitor positive  
1100: Analog power supply monitor positive  
1101: Digital power supply monitor positive  
1110: TDAC test signal positive  
1111: Float (open connection)  
3:0  
MUXN[3:0]  
R/W  
1h  
Negative Input Multiplexer  
Selects the negative input multiplexer.  
0000: AIN0  
0001: AIN1 (default)  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5  
0110: AIN6  
0111: AIN7  
1000: AIN8  
1001: AIN9  
1010: AINCOM  
1011: Temperature sensor monitor negative  
1100: Analog power supply monitor negative  
1101: Digital power supply monitor negative  
1110: TDAC test signal negative  
1111: Float (open connection)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.8 Offset Calibration Registers (address = 07h, 08h, 09h) [reset = 00h, 00h, 00h]  
9-65. Offset Calibration Registers (OFCAL0, OFCAL1, OFCAL2) 24-bit, 3 Rows  
7
6
5
4
3
2
1
0
8
OFC[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
9
OFC[15:8]  
R/W-00h  
17  
16  
OFC[23:16]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-42. Offset Calibration Registers (OFCAL0, OFCAL1, OFCAL2) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23:0  
OFC[23:0]  
R/W  
000000h  
Offset Calibration  
Three registers compose the 24-bit offset calibration word. The  
24-bit word is twos complement format, and is internally left-  
shifted to align with the 32-bit conversion result. The ADC  
subtracts the register value from the 32-bit conversion result  
before the full-scale operation.  
9.6.9 Full-Scale Calibration Registers (address = 0Ah, 0Bh, 0Ch) [reset = 40h, 00h, 00h]  
9-66. Full-Scale Calibration Registers (FSCAL0, FSCAL1, FSCAL2) 24-bit, 3 Rows  
7
6
5
4
3
2
1
0
8
FSCAL[7:0]  
R/W-00h  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
9
FSCAL[15:8]  
R/W-00h  
17  
16  
FSCAL[23:16]  
R/W-40h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-43. Full-Scale Calibration Registers (FSCAL0, FSCAL1, FSCAL2) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23:0  
FSCAL[23:0]  
R/W  
400000h  
Full-Scale Calibration  
Three 8-bit registers compose the 24-bit full scale calibration  
word. The 24-bit word format is straight binary. The ADC divides  
the 24-bit value by 400000h to derive the gain coefficient. The  
ADC multiplies the gain coefficient by the 32-bit conversion  
result after the offset operation.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.10 IDACMUX Register (address = 0Dh) [reset = BBh]  
9-67. IDAC Multiplexer Register (IDACMUX)  
7
6
5
4
3
2
1
0
MUX2[3:0]  
R/W-Bh  
MUX1[3:0]  
R/W-Bh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-44. IDAC Multiplexer Register (IDACMUX) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MUX2[3:0]  
R/W  
Bh  
IDAC2 Output Multiplexer  
Selects the analog input pin to connect IDAC2  
0000: AIN0  
0001: AIN1  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5  
0110: AIN6  
0111: AIN7  
1000: AIN8  
1001: AIN9  
1010: AINCOM  
1011: No Connection (default)  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
3:0  
MUX1[3:0]  
R/W  
Bh  
IDAC1 Output Multiplexer  
Selects the analog input pin to connect IDAC1  
0000: AIN0  
0001: AIN1  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5  
0110: AIN6  
0111: AIN7  
1000: AIN8  
1001: AIN9  
1010: AINCOM  
1011: No Connection (default)  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.11 IDACMAG Register (address = 0Eh) [reset = 00h]  
9-68. IDAC Magnitude Register (IDACMAG)  
7
6
5
4
3
2
1
0
MAG2[3:0]  
R/W-0h  
MAG1[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-45. IDAC Magnitude (IDACMAG) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MAG2[3:0]  
R/W  
0h  
IDAC2 Current Magnitude  
Selects the current values of IDAC2  
0000: off (default)  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
1011: Reserved  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
3:0  
MAG1[3:0]  
R/W  
0h  
IDAC1 Current Magnitude  
Selects the current values of IDAC1  
0000: off (default)  
0001: 50 µA  
0010: 100 µA  
0011: 250 µA  
0100: 500 µA  
0101: 750 µA  
0110: 1000 µA  
0111: 1500 µA  
1000: 2000 µA  
1001: 2500 µA  
1010: 3000 µA  
1011: Reserved  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.12 REFMUX Register (address = 0Fh) [reset = 00h]  
9-69. Reference Multiplexer Register (REFMUX)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
RMUXP[2:0]  
R/W-0h  
RMUXN[2:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-46. Reference Multiplexer Register (REFMUX) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Reserved  
R
0h  
Reserved  
Always write 0h  
5:3  
RMUXP[2:0]  
R/W  
0h  
Reference Positive Input  
Selects the positive reference input  
000: Internal 2.5 V reference - P (default)  
001: External AIN0  
010: External AIN2  
011: External AIN4  
100: Internal analog supply (VAVDD  
101: Reserved  
)
110: Reserved  
111: Reserved  
2:0  
RMUXN[2:0]  
R/W  
0h  
Reference Negative Input  
Selects the negative reference input  
000: Internal 2.5 V reference - N (default)  
001: External AIN1  
010: External AIN3  
011: External AIN5  
100: Internal analog supply (VAVSS  
101: Reserved  
)
110: Reserved  
111: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.13 TDACP Control Register (address = 10h) [reset = 00h]  
9-70. TDACP Control Register (TDACP)  
7
6
5
4
3
2
1
0
OUTP  
R/W-0h  
RESERVED  
R-0h  
MAGP[4:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-47. TDACP Output Register (TDACP) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OUTP  
R/W  
0h  
TDACP Output Connection  
Connects TDACP output to pin AIN6  
0: No connection  
1: TDACP output connected to pin AIN6  
6:5  
4:0  
Reserved  
R
0h  
0h  
Reserved  
Always write 0  
MAGP[4:0]  
R/W  
MAGP Output Magnitude  
Select the TDACP output magnitude. The TDAC output voltages  
are ideal and are with respect to VAVSS  
01001: 4.5 V  
01000: 3.5 V  
00111: 3 V  
00110: 2.75 V  
00101: 2.625 V  
00100: 2.5625 V  
00011: 2.53125 V  
00010: 2.515625 V  
00001: 2.5078125 V  
00000: 2.5 V  
10001: 2.4921875 V  
10010: 2.484375 V  
10011: 2.46875 V  
10100: 2.4375 V  
10101: 2.375 V  
10110: 2.25 V  
10111: 2 V  
11000: 1.5 V  
11001: 0.5 V  
Remaining codes are reserved  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.14 TDACN Control Register (address = 11h) [reset = 00h]  
9-71. TDACN Control Register (TDACN)  
7
6
5
4
3
2
1
0
OUTN  
R/W-0h  
RESERVED  
R-0h  
MAGN[4:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-48. TDAC Negative Output Register (TDACN) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OUTN  
R/W  
0h  
TDACN Output Connection  
Connects TDACN output to pin AIN7  
0: No external connection  
1: TDACN output connected to pin AIN7  
6:5  
4:0  
Reserved  
R
0h  
0h  
Reserved  
Always write 0h  
MAGN[4:0]  
R/W  
TDACN Output Magnitude  
Select the TDACN output magnitude. The TDAC output voltages  
are ideal and are with respect to VAVSS  
01001: 4.5 V  
01000: 3.5 V  
00111: 3 V  
00110: 2.75 V  
00101: 2.625 V  
00100: 2.5625 V  
00011: 2.53125 V  
00010: 2.515625 V  
00001: 2.5078125 V  
00000: 2.5 V  
10001: 2.4921875 V  
10010: 2.484375 V  
10011: 2.46875 V  
10100: 2.4375 V  
10101: 2.375 V  
10110: 2.25 V  
10111: 2 V  
11000: 1.5 V  
11001: 0.5 V  
Remaining codes are reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.15 GPIO Connection Register (address = 12h) [reset = 00h]  
9-72. GPIO Connection Register (GPIOCON)  
7
6
5
4
3
2
1
0
CON[7:0]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-49. GPIO Connection Register (GPIOCON) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
CON[0]  
R/W  
0h  
GPIO[0] Pin Connection  
Connects GPIO[0] to analog input pin AIN3  
0: GPIO[0] not connected to AIN3 (default)  
1: GPIO[0] connected to AIN3  
1
2
3
4
5
6
7
CON[1]  
CON[2]  
CON[3]  
CON[4]  
CON[5]  
CON[6]  
CON[7]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO[1] Pin Connection  
Connects GPIO[1] to analog input pin AIN4  
0: GPIO[1] not connected to AIN4 (default)  
1: GPIO[1] connected to AIN4  
GPIO[2] Pin Connection  
Connects GPIO[2] to analog input pin AIN5  
0: GPIO[2] not connected to AIN5 (default)  
1: GPIO[2] connected to AIN5  
GPIO[3] Pin Connection  
Connects GPIO[3] to analog input pin AIN6  
0: GPIO[3] not connected to AIN6 (default)  
1: GPIO[3] connected to AIN6  
GPIO[4] Pin Connection  
Connects GPIO[4] to analog input pin AIN7  
0: GPIO[4] not connected to AIN7 (default)  
1: GPIO[4] connected to AIN7  
GPIO[5] Pin Connection  
Connects GPIO[5] to analog input pin AIN8  
0: GPIO[5] not connected to AIN8 (default)  
1: GPIO[5] connected to AIN8  
GPIO[6] Pin Connection  
Connects GPIO[6] to analog input pin AIN9  
0: GPIO[6] not connected to AIN9 (default)  
1: GPIO[6] connected to AIN9  
GPIO[7] Pin Connection  
Connects GPIO[7] to analog input pin AINCOM  
0: GPIO[7] not connected to AINCOM (default)  
1: GPIO[7] connected to AINCOM  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.16 GPIO Direction Register (address = 13h) [reset = 00h]  
9-73. GPIO Direction Register (GPIODIR)  
7
6
5
4
3
2
1
0
DIR[7:0]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-50. GPIO Direction Register (GPIODIR) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
DIR[0]  
R/W  
0h  
GPIO[0] Pin Direction  
Configures GPIO[0] as a GPIO input or GPIO output  
0: GPIO[0] is an output (default)  
1: GPIO[0] is an input  
1
2
3
4
5
6
7
DIR[1]  
DIR[2]  
DIR[3]  
DIR[4]  
DIR[5]  
DIR[6]  
DIR[7]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO[1] Pin Direction  
Configures GPIO[1] as a GPIO input or GPIO output  
0: GPIO[1] is an output (default)  
1: GPIO[1] is an input  
GPIO[2] Pin Direction  
Configures GPIO[2] as a GPIO input or GPIO output  
0: GPIO[2] is an output (default)  
1: GPIO[2] is an input  
GPIO[3] Pin Direction  
Configures GPIO[3] as a GPIO input or GPIO output  
0: GPIO[3] is an output (default)  
1: GPIO[3] is an input  
GPIO[4] Pin Direction  
Configures GPIO[4] as a GPIO input or GPIO output  
0: GPIO[4] is an output (default)  
1: GPIO[4] is an input  
GPIO[5] Pin Direction  
Configures GPIO[5] as a GPIO input or GPIO output  
0: GPIO[5] is an output (default)  
1: GPIO[5] is an input  
GPIO[6] Pin Direction  
Configures GPIO[6] as a GPIO input or GPIO output  
0: GPIO[6] is an output (default)  
1: GPIO[6] is an input  
GPIO[7] Pin Direction  
Configures GPIO[7] as a GPIO input or GPIO output  
0: GPIO[7] is an output (default)  
1: GPIO[7] is an input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.17 GPIO Data Register (address = 14h) [reset = 00h]  
9-74. GPIO Data Register (GPIODAT)  
7
6
5
4
3
2
1
0
DAT[7:0]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-51. GPIO Data Register (GPIODAT) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
DAT[0]  
R/W  
0h  
GPIO[0] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[0] is low  
1: GPIO[0] is high  
1
2
3
4
5
6
7
DAT[1]  
DAT[2]  
DAT[3]  
DAT[4]  
DAT[5]  
DAT[6]  
DAT[7]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO[1] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[1] is low  
1: GPIO[1] is high  
GPIO[2] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[2] is low  
1: GPIO[2] is high  
GPIO[3] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[3] is low  
1: GPIO[3] is high  
GPIO[4] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[4] is low  
1: GPIO[4] is high  
GPIO[5] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[5] is low  
1: GPIO[5] is high  
GPIO[6] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[6] is low  
1: GPIO[6] is high  
GPIO[7] Pin Data  
Configured as an output, read returns 0b  
Configured as an input, write sets the register value only  
0: GPIO[7] is low  
1: GPIO[7] is high  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.18 ADC2 Configuration Register (address = 15h) [reset = 00h]  
9-75. ADC2 Configuration Register (ADC2CFG)  
7
6
5
4
3
2
1
0
DR2[1:0]  
R/W-0h  
REF2[2:0]  
R/W-0h  
GAIN2[2:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-52. ADC2 Configuration Register (ADC2CFG) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
DR2[1:0]  
R/W  
0h  
ADC2 Data Rate  
These bits select the data rate of ADC2  
00: 10 SPS (default)  
01: 100 SPS  
10: 400 SPS  
11: 800 SPS  
5:3  
REF2[2:0]  
R/W  
0h  
ADC2 Reference Input  
Selects the reference inputs of ADC2 as positive and negative  
pairs  
000: Internal 2.5 V reference, positive and negative (default)  
001: External AIN0 and AIN1 pin pairs as positive and negative  
010: External AIN2 and AIN3 pin pairs as positive and negative  
011: External AIN4 and AIN5 pin pairs as positive and negative  
100: Internal VAVDD and VAVSS  
101: Reserved  
110: Reserved  
111: Reserved  
2:0  
GAIN2[2:0]  
R/W  
0h  
ADC2 Gain  
These bits configure the gain of ADC2  
000: 1 V/V (default)  
001: 2 V/V  
010: 4 V/V  
011: 8 V/V  
100: 16 V/V  
101: 32 V/V  
110: 64 V/V  
111: 128 V/V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.19 ADC2 Input Multiplexer Register (address = 16h) [reset = 01h]  
9-76. ADC2 Input Multiplexer Register (ADC2MUX)  
7
6
5
4
3
2
1
0
MUXP2[3:0]  
R/W-0h  
MUXN2[3:0]  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-53. ADC2 Input Multiplexer Register (ADC2MUX) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MUXP2[3:0]  
R/W  
0h  
ADC2 Positive Input Multiplexer  
Selects the ADC2 positive input  
0000: AIN0 (default)  
0001: AIN1  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5  
0110: AIN6  
0111: AIN7  
1000: AIN8  
1001: AIN9  
1010: AINCOM  
1011: Temperature sensor monitor positive  
1100: Analog power supply monitor positive  
1101: Digital power supply monitor positive  
1110: TDAC test signal positive  
1111: Open connection  
3:0  
MUXN2[3:0]  
R/W  
1h  
ADC2 Negative Input Multiplexer  
Selects the ADC2 negative input  
0000: AIN0  
0001: AIN1 (default)  
0010: AIN2  
0011: AIN3  
0100: AIN4  
0101: AIN5  
0110: AIN6  
0111: AIN7  
1000: AIN8  
1001: AIN9  
1010: AINCOM  
1011: Temperature sensor monitor negative  
1100: Analog power supply monitor negative  
1101: Digital power supply monitor negative  
1110: TDAC test signal negative  
1111: Open Connection  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
9.6.20 ADC2 Offset Calibration Registers (address = 17h, 18h) [reset = 00h, 00h]  
9-77. ADC2 Offset Calibration Registers (ADC2OFC0, ADC2OFC1) 16-bit, 2 Rows  
7
6
5
4
3
2
1
0
8
OFC2[7:0]  
R/W-00h  
15  
14  
13  
12  
11  
10  
9
OFC2[15:8]  
R/W-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-54. ADC2 Offset Calibration Registers (ADC2OFC0, ADC2OFC1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
OFC2[15:0]  
R/W  
0000h  
ADC2 Offset Calibration  
Two registers compose the ADC2 16-bit offset calibration word.  
The 16-bit word is twos complement format and is internally left-  
shifted to align with the ADC2 24-bit conversion result. The ADC  
subtracts the register value from the conversion result before  
full-scale operation.  
9.6.21 ADC2 Full-Scale Calibration Registers (address = 19h, 1Ah) [reset = 00h, 40h]  
9-78. ADC2 Full-Scale Calibration Registers (ADC2FSC0, ADC2FSC1) 16-bit, 2 Rows  
7
6
5
4
3
2
1
0
8
FSC2[7:0]  
R/W-00h  
15  
14  
13  
12  
11  
10  
9
FSC2[15:8]  
R/W-40h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-55. ADC2 Full-Scale Calibration Registers (ADC2FSC0, ADC2FSC1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
FSC2[15:0]  
R/W  
4000h  
ADC2 Full-Scale Calibration  
Two registers compose the ADC2 16-bit full scale calibration  
word. The 16-bit word format is straight binary. The ADC divides  
the 16-bit value by 4000h to derive the scale factor for  
calibration. After the offset operation, the ADC multiplies the  
scale factor by the conversion result.  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.1 Application Information  
10.1.1 Isolated (or Floated) Inputs  
Isolated sensors (sensors that are not referenced to the ADC ground) must have a common-mode voltage  
established within the specified ADC input range. Level shift the common-mode voltage by external resistor  
biasing, by connecting the negative lead to ground (bipolar analog supply), or by connecting to a dc voltage  
(unipolar analog supply). Use the level-shift voltage option on the AINCOM pin for this purpose. The 2.5-V  
reference output voltage is also used to provide level shifting to other floating sensor inputs.  
10.1.2 Single-Ended Measurements  
Single-ended measurements typically have one input connected to a fixed potential (ground or dc voltage) and  
the other input is the signal. Usually, the fixed connection is the negative input. The positive input is the signal  
and is driven above and below the negative input, as depicted in 10-1. This is an example of a bipolar signal  
because the positive input can swing above and below the negative input. Unipolar signals are those where the  
positive signal is equal to or greater than the negative signal. The single-ended signal plus the level-shift voltage  
must be within the ADC specified operating range. In single supply configurations (5 V), the level-shift voltage is  
usually 2.5 V. This type of input configuration is shown in 10-2. For bipolar power supplies (±2.5 V), the  
negative voltage can be grounded. This type of input is shown in 10-3.  
Voltage  
+ Full Scale Input  
VAINP  
VAINN  
Offset Voltage  
Time  
- Full Scale Input  
10-1. Single-Ended Input Voltage Diagram  
+5 V  
AVDD  
+
œ
+/- Signal  
ADC  
AVSS  
+
Level Shift Voltage= +2.5 V  
10-2. Single-Ended Input with Level-Shift Voltage  
+2.5 V  
AVDD  
+
œ
+/- Signal  
ADC  
AVSS  
-2.5 V  
10-3. Single-Ended Input with Ground  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.1.3 Differential Measurements  
A differential signal is one where both inputs are driven in symmetric and opposite polarities centered at a  
common-mode voltage. Optimally, the common-mode voltage is the midpoint of the ADC input range. The  
common-mode voltage plus the signal must always be within the ADC specified operating range to avoid signal  
clipping. As shown in 10-4, the magnitude of each signal is maximum ½ of the ADC full-scale range. The  
maximum differential signal (VAINP VAINN) is equal to or less than the ADC FSR. For single 5-V operation, the  
common-mode voltage is typically equal to mid-supply (2.5 V) in order to use the full ADC input range. This type  
of input with single 5-V supply operation is shown in 10-5. For bipolar supplies (±2.5 V), the common-mode  
voltage of VAINP and VAINN are typically equal to ground potential. This type of input of configuration is shown in  
10-6. Certain types of differential signals, such as from a bridge circuits, are referenced to ADC ground;  
therefore, the common-mode voltage is defined.  
Voltage  
VAINP  
+ ½ Full Scale Input  
Common Mode Voltage  
Time  
- ½ Full Scale Input  
VAINN  
10-4. Differential Input Voltage Diagram  
+5 V  
+ ½ VDIFF  
œ
AVDD  
ADC  
œ
AVSS  
Common Mode Voltage = +2.5 V  
- ½ VDIFF  
10-5. Differential Input With Common-Mode Level-Shift  
+2.5 V  
+ ½ VDIFF  
œ
AVDD  
ADC  
œ
AVSS  
- ½ VDIFF  
-2.5 V  
10-6. Differential Input With Common-Mode Ground  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.1.4 Input Range  
For proper operation of ADC1, the PGA absolute input voltages, VINP and VINN, must always remain within the  
valid PGA input range, as shown in 方程12.  
The following example uses 方程式 12 to determine the input-range requirement. For this example, use a  
thermocouple (60 mV, maximum differential output) with the negative lead connected to the internal level-shift  
voltage (2.5 V). Use a PGA gain of 32 and operate the ADC with a single 5-V power supply. To verify the PGA  
input-range requirement, the conditions are:  
VINN = Negative absolute input voltage = 2.5 V  
VINP = Positive absolute input voltage = 2.56 V  
VIN = Differential input voltage = 0.06 V  
VAVDD = 4.75 V (worst-case minimum)  
VAVSS = 0 V  
Gain = 32  
Filling in 方程12 with the values shown gives:  
VAVSS + 0.3 + |VIN| · (Gain 1) / 2 < VINP and VINN < VAVDD 0.3 |VIN| · (Gain 1) / 2  
= 0 + 0.3 + 0.06 · (32 1) / 2 < 2.5 and 2.56 < 4.75 0.3 0.06 · (32 1) / 2  
= 1.23 V < 2.5 V and 2.56 V < 3.52 V  
The inequality is satisfied, therefore the VINN and VINP absolute input voltages are within the required PGA input  
range. Alternatively, measure the PGA output voltages (pins CAPP and CAPN) with a voltmeter to verify that  
each PGA output voltage is < VAVDD 0.3 V and > VAVSS 0.3 V under the expected minimum and maximum  
input conditions, respectively.  
The input range requirement of ADC2 is verified in the same way as ADC1. See 方程式 15 for the ADC2 input  
range requirements.  
10.1.5 Input Filtering  
Analog input filtering serves two purposes: first, to limit the effect of aliasing during the sampling process; and  
second, to reduce external noise that affects the measurement.  
10.1.5.1 Aliasing  
As with all ADCs, out-of-band input signals can fold back or alias if not band-limited. Aliasing describes the effect  
of input frequencies greater than ½ the sample rate folding back to the bandwidth of interest. An antialias filter  
placed at the ADC inputs reduces the magnitude of the aliased frequencies. The ADS1262 and ADS1263  
incorporate analog and digital antialiasing filters to attenuate the aliased frequencies. There are two ranges of  
aliased frequencies: frequencies greater than ½ of the down-sampled output data rate (Nyquist frequency) and  
frequencies occurring at multiples of the modulator sample rate.  
Aliasing can occur at frequencies greater than ½ the ADC output data rate. For example, at data rate of 50 SPS,  
aliasing occurs at frequencies greater than 25 Hz. The ADC digital filter rejects the aliased frequencies as input  
frequency increases. The amount of aliased frequency rejection is given by the filter type and order. 10-7  
illustrates the frequency response of the sinc filter. Note the sinc4 filter provides the best rejection of aliased  
frequencies.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
0
-20  
sinc1  
sinc2  
sinc3  
sinc4  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Frequency (Hz)  
D005  
10-7. Frequency Response (50 SPS)  
The second band of aliased frequencies occur at the ADC modulator sample rate multiples (fMOD = fCLK / 8 =  
921.6 kHz, multiples = 1843.2 kHz and so on). 10-8 shows the 38400 SPS frequency response plotted to 1.2  
MHz. The response near dc is the signal bandwidth of interest. Observe how the digital filter response repeats  
on the sides of the modulator sample rate (921.6 kHz). 10-9 shows the repeated response at the modulator  
frequency multiples = N · fMOD ± fDR, where N = multiples of fMOD starting at 1, and fDR = data rate frequency.  
The digital filter attenuates signal or noise up to where the response repeats. However, signal or noise occurring  
at the modulator sample rate is not attenuated by the digital filter and therefore, is aliased to the passband.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
200  
400  
600  
Frequency (kHz)  
800  
1000  
1200  
D014  
0
1
2
3
Frequency (MHz)  
4
5
6
7
8
D015  
10-8. Frequency Response to 1.2 MHz (38400  
10-9. Frequency Response to 8 MHz  
SPS)  
(38400 SPS)  
10-10 illustrates how the frequencies alias near the modulator sample rate frequency. The final figure shows  
the aliased frequency rejection provided by an antialias filter. The ADC incorporates an analog antialias filter with  
a cutoff frequency of 60 kHz that rejects the aliased frequencies.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
Magnitude  
Sensor  
Signal  
Unwanted  
Signals  
Unwanted  
Signals  
Output  
Data Rate  
fMOD / 2  
fMOD  
Frequency  
Frequency  
Frequency  
Magnitude  
Digital Filter  
Aliasing of Unwanted  
Signals  
Output  
Data Rate  
fMOD / 2  
fMOD  
Magnitude  
External  
Antialiasing Filter  
Roll-Off  
Output  
Data Rate  
fMOD / 2  
fMOD  
10-10. Alias Effect  
Many sensor signals are inherently band-limited; for example, the output of a thermocouple has a limited rate of  
change. In this case, the sensor signal does not alias back into the pass band when using a ΔΣ ADC.  
However, any noise picked up along the sensor wiring or the application circuitry can potentially alias into the  
pass band. Power line-cycle frequency and harmonics are one common noise source. External noise is also  
generated from electromagnetic interference (EMI) or radio frequency interference (RFI) sources, such as  
nearby motors and cellular phones. Another noise source exists on the printed circuit board (PCB) in the form of  
clocks and other digital signals. Analog input filtering helps remove unwanted signals from affecting the  
measurement result. The ADC incorporates a low-pass, antialias filter with a corner frequency of 60 kHz to  
reduce the aliased frequencies. The filter consists of the external 4.7-nF PGA output capacitor (CAPP and CAPN  
pins) and internal 280-Ωresistors.  
Use an input filter to provide increased rejection of aliased noise frequencies and further attenuate possible  
strong high-frequency interference signals. For best performance, filter strong interference frequencies at the  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
ADC inputs. Ideally, select a low-pass corner frequency that allows frequencies within the desired bandwidth and  
attenuates those frequencies outside the desired bandwidth. As a result of the stable and linear dielectric  
characteristics, use C0G-type MLCC capacitors in analog signal filters. In applications where high energy  
transients can be generated, such as caused by inductive load switching, transient voltage suppressor (TVS)  
diodes or external ESD diodes should be used to protect the ADC inputs.  
10.1.6 Input Overload  
Follow the input overvoltage precautions as outlined in the ESD Diode section. Despite external current limit  
provided for the input pins, if an overvoltage condition occurs on an unused channel, the overvoltage channel  
may crosstalk to the measurement channel. One solution is to externally clamp the inputs with low-forward  
voltage diodes as shown in 10-11. The external diodes shunt the overvoltage fault current around the ADC  
inputs. Be aware of the reverse leakage current in the external clamp diodes in the application.  
IFAULT  
+5 V  
Schottky  
Diode  
AVDD  
RI-LIM  
AINx  
ADC  
VIN-FAULT > VAVDD + 0.3 V  
VIN-FAULT < VAVSS + 0.3 V  
Schottky  
Diode  
AVSS  
IFAULT  
10-11. External Diode Voltage Clamp  
10.1.7 Unused Inputs and Outputs  
To minimize input leakage of the measurement channel, tie the unused input channels to mid-supply (VAVDD  
+
VAVSS) / 2. Use the 2.5-V reference output voltage for this purpose if operating with single 5-V supply. Do not  
float unused digital inputs. Tie all unused digital inputs to the appropriate levels, VDVDD or VDGND, including when  
in power-down mode. Do not float (3-state) the digital inputs to the ADC or excessive power-supply leakage  
current can result. If the DRDY output is unused, leave the pin unconnected or connect to an external circuit.  
10.1.8 Voltage Reference  
For nonratiometric (absolute) measurements where the input signal is not derived from the voltage reference,  
either use the internal precision voltage reference, or use an external precision reference. Examples of these  
types of measurements come from sensors such as thermocouples, 20-mA transmitters, and accelerometers.  
For ratiometric measurements, where the input signal is derived from the voltage reference, reference noise and  
drift are canceled by the same ratio of noise and drift within the signal. Ratiometric operation is common with  
many types of bridge and RTD measurements. For best noise performance, match the reference filter and input  
filter time constants (see the 3-Wire RTD Measurement with Lead-Wire Compensation section for more  
information). In general, achieve the best ADC signal-to-noise ratio by using large amplitude signals, a large  
reference voltage, and the highest gain setting possible.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.1.9 Serial Interface Connections  
After power up, take the CS input high to reset the ADC serial interface. CS high resets the serial interface in the  
event an unintentional SCLK glitch has occurred during power-on initialization. If CS is tied low, glitches at SCLK  
power on can interrupt synchronization to the serial interface and must be avoided. In this case, reset the ADC  
using the RESET/PWDN input. The SCLK input is edge sensitive, and therefore must be free of noise, glitches,  
and overshoot. Use a terminating resistor located at the SCLK buffer to smooth the edges and reduce overshoot.  
Most microcontroller SPI peripherals can operate with the ADC. The interface operates in SPI mode 1, where  
CPOL = 0 and CPHA = 1. In SPI mode 1, SCLK idles low and data are updated or changed on SCLK rising  
edges; data are latched or read by the host and the ADC on SCLK falling edges. Details of the SPI  
communication protocol employed by the device is found in the Timing Requirements: Serial Interface table.  
Place a 47-Ω resistor in series with all digital input and output pins (CS, SCLK, DIN, DOUT/DRDY, and DRDY).  
The resistors match the characteristic impedance of the PCB trace by source termination, helping reduce  
overshoot and ringing.  
1
2
3
4
5
6
7
8
9
AIN8  
AIN7 28  
AIN6 27  
AIN9  
AINCOM  
CAPP  
CAPN  
AVDD  
AVSS  
AIN5 26  
AIN4 25  
4.7 nF  
AIN3 24  
5 V  
AIN2 23  
1 F  
0.1 F  
1 F  
3.3 V  
AIN1 22  
Device  
REFOUT  
START  
AIN0 21  
10 kꢁ  
47 ꢁ  
47 ꢁ  
47 ꢁ  
47 ꢁ  
GPIO  
GPIO  
RESET/PWDN 20  
DVDD 19  
GPIO  
3.3 V  
10 CS  
0.1 F  
1 F  
SCLK  
11 SCLK  
12 DIN  
DGND 18  
BYPASS 17  
XTAL2 16  
XTAL1/CLKIN 15  
MOSI  
47 ꢁ  
1 F  
MISO  
13 DOUT/DRDY  
14 DRDY  
47 ꢁ  
GPIO/IRQ  
DVDD  
3.3 V  
0.1 F  
DGND  
10-12. Serial Interface Connections  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.2 Typical Application  
10.2.1 3-Wire RTD Measurement with Lead-Wire Compensation  
10-13 is a fault-protected, filtered, 3-wire RTD application circuit with hardware-based, lead-wire  
compensation. Two IDAC current sources provide the lead-wire compensation. One IDAC current source  
(IDAC1) provides excitation to the RTD element. The ADC reference voltage input (pins AIN2 and AIN3) is  
derived from the same current by resistor RREF, providing ratiometric cancellation of current-source drift. The  
other current source (IDAC2) has the same current setting, providing cancellation of lead-wire resistance by  
generating a voltage drop across lead-wire resistance RLEAD2 equal to the voltage drop of RLEAD1. Because the  
RRTD voltage is measured differentially at ADC pins AIN4 and AIN5, the voltages across the lead wire resistance  
cancel. Resister RBIAS level-shifts the RTD signal to within the ADC specified input range. The current sources  
are provided by two additional pins (AIN1 and AIN6) that connect to the RTD through blocking diodes. The  
additional pins are used to route the RTD excitation currents around the input resistors, avoiding the voltage  
drop otherwise caused by the filter resistors RF1 and RF4. The diodes protect the ADC inputs in the event of a  
miswired connection. The input filter resistors limit the input fault currents flowing into the ADC.  
5 V  
3.3 V  
0.1 mF  
0.1 mF  
AVDD  
DVDD  
IDAC1  
AVDD  
IIDAC1  
AIN1  
(IDAC1)  
500 A  
Device  
CCM4  
RF4  
AIN2  
(REFP)  
Reference  
Mux  
Internal  
Reference  
RREF  
REFOUT  
CDIF2  
RF3  
AIN3  
(REFN)  
CCM3  
Ref  
Alarm  
Buf  
3-Wire RTD  
RLEAD1  
CCM2  
START  
RESET/PWDN  
CS  
RF2  
AIN4  
(AINP)  
Serial  
Interface  
and  
Input  
MUX  
32-bit  
ûADC  
Digital  
Filter  
CDIF1  
PGA  
RRTD  
DIN  
RLEAD2  
RF1  
AIN5  
DOUT/DRDY  
SCLK  
Control  
(AINN)  
CCM1  
DRDY  
Signal  
Alarm  
IDAC2  
AVDD  
IIDAC2  
AIN6  
XTAL2  
XTAL1  
Clock  
Mux  
Internal  
Oscillator  
(IDAC2)  
500 A  
AVSS  
DGND  
RLEAD3  
IIDAC1 + IIDAC2  
RBIAS  
10-13. 3-Wire RTD Application  
10.2.1.1 Design Requirements  
10-1 shows the design requirements of the 3-wire RTD application.  
10-1. Design Requirements  
DESIGN PARAMETER  
ADC supply voltage  
RTD sensor type  
VALUE  
4.75 V (minimum)  
3-wire Pt100  
20 Ωto 400 Ω  
0 Ωto 10 Ω  
1 mW  
RTD resistance range  
RTD lead resistance range  
RTD self heating  
Accuracy (1)  
±0.02 Ω  
(1) TA = 25°C. After offset and full-scale calibration.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.2.1.2 Detailed Design Procedure  
The key considerations In the design of a 3-wire RTD circuit are the accuracy, the lead wire compensation, and  
the sensor self-heating. As the design values of 10-2 illustrate, several values of excitation currents are  
available. The resolution is expressed in units of noise-free bits (NFR). Noise-free resolution is resolution with no  
code flicker. The selection of excitation currents trades off resolution against sensor self-heating. In general,  
measurement resolution improves with increasing excitation current. Increasing the excitation current beyond  
1000 µA results in no further improvement in resolution. The design procedure is based on 500-µA excitation  
current, because this level of current results in very low sensor self-heating (0.4 mW).  
10-2. RTD Circuit Design Parameters  
(5)  
(8)  
(1)  
(3)  
(4)  
(6)  
(7)  
(9)  
(10)  
(11)  
RREF  
(kΩ)  
RBIAS  
IIDAC  
(µA)  
NFR  
(bits)  
PRTD  
(mW)  
VRTD  
(V)  
Gain(2) VREFMIN  
VREF  
(V)  
VINNLIM  
(V)  
VINPLIM  
(V)  
VRTDN  
(V)  
VRTDP  
(V)  
VIDAC1  
(V)  
(V/V)  
32  
32  
16  
8
(V)  
(kΩ)  
7.10  
5.10  
2.30  
1.10  
0.57  
0.50  
0.23  
0.10  
50  
16.8  
17.8  
18.8  
19.1  
18.9  
19.3  
19.1  
18.3  
0.001  
0.004  
0.025  
0.100  
0.225  
0.400  
0.900  
1.600  
0.02  
0.04  
0.10  
0.20  
0.30  
0.40  
0.60  
0.80  
0.64  
1.28  
1.60  
1.60  
1.20  
1.60  
1.20  
0.80  
0.90  
1.41  
1.76  
1.76  
1.32  
1.76  
1.32  
0..90  
18  
0.6  
0.9  
1.1  
1.0  
0.8  
0.9  
0.6  
0.3  
4.1  
3.8  
3.7  
3.8  
4.0  
3.9  
4.2  
4.5  
0.7  
1.0  
1.2  
1.1  
0.9  
1.0  
0.7  
0.4  
0.7  
1.1  
1.3  
1.3  
1.2  
1.4  
1.3  
1.2  
1.9  
2.8  
3.3  
3.4  
2.8  
3.5  
3.0  
2.4  
100  
14.1  
7.04  
3.52  
1.76  
1.76  
0.88  
0.45  
250  
500  
750  
4
1000  
1500  
2000  
4
2
1
(1) VRTD is the RTD input voltage.  
(2) Gain is the ADC gain  
(3) VREFMIN is the minimum reference voltage required by the design.  
(4) VREF is the design target reference voltage allowing for 10 % over-range or the minimum 0.9 V reference voltage requirement.  
(5) RREF is the resistor that senses the IDAC current to generate VREF  
.
(6) VINNLIM is the absolute minimum input voltage required by the ADC.  
(7) VINPLIM is the absolute maximum input voltage required by the ADC.  
(8) RBIAS establishes the level-shift voltage.  
(9) VRTDN is the design target negative input voltage.  
(10) VRTDP is the design target positive input voltage.  
(11) VIDAC1 is the design target IDAC1 loop voltage.  
Initially, RLEAD1 and RLEAD2 are considered to be 0 Ω. Route the IDAC1 current through the external reference  
resistor, RREF. IDAC1 generates the ADC reference voltage, VREF, across the reference resistor. This voltage is  
defined by 方程24:  
VREF = IIDAC1 · RREF  
(24)  
Route the second current (IDAC2) to the second RTD lead.  
Program both IDAC1 and IDAC2 to the same value by using the IDACMAG register; however, only the IDAC1  
current flows through the reference resistor and RTD. The IDAC1 current excites the RTD to produce a voltage  
proportional to the RTD resistance. The RTD voltage is defined by 方程25:  
VRTD = RRTD · IIDAC1  
(25)  
The ADC amplifies the RTD signal voltage (VRTD) and measures the resulting voltage against the reference  
voltage to produce a proportional digital output code, as shown in 方程26 through 方程28.  
Code VRTD · Gain / VREF  
(26)  
(27)  
(28)  
Code (RRTD · IIDAC1) · Gain / (IIDAC1 · RREF  
Code (RRTD · Gain) / RREF  
)
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
As shown in 方程式 28, the RTD measurement depends on the value of the RTD, the PGA gain, and the  
reference resistor RREF, but not on the IDAC1 value. Therefore, the absolute accuracy and temperature drift of  
the excitation current does not matter.  
The second excitation current (IDAC2) provides a second voltage drop across the second RTD lead resistance,  
RLEAD2. The second voltage drop compensates the voltage drop caused by IDAC1 and RLEAD1. The leads of a 3-  
wire RTD typically have the same length; therefore, the lead resistance is typically identical. Taking the lead  
resistance into account (RLEADx 0), the differential voltage (VIN) across ADC inputs AIN4 and AIN5 is shown in  
方程29:  
VIN = IIDAC1 · (RRTD + RLEAD1) IIDAC2 · RLEAD2  
(29)  
If RLEAD1 = RLEAD2 and IIDAC1 = IIDAC2, the expression for VIN reduces to 方程30:  
VIN = IIDAC1 · RRTD  
(30)  
In other words, the measurement error resulting from the voltage drop across the RTD lead resistance is  
compensated, as long as the lead resistance values and the IDAC values are matched.  
Using 方程式 25, the value of RTD resistance (400 Ω, maximum) and the excitation current (500 μA) yields an  
RTD voltage of VRTD = 500 μA · 400 Ω = 0.2 V. Use the maximum gain of 8 V/V in order to limit the reference  
voltage requirement as well as the corresponding loop voltage of IDAC1. The total loop voltage must not exceed  
the maximum IDAC voltage compliance specification. Gain = 8 requires a minimum reference voltage VREFMIN  
=
0.2 V · 8 = 1.6 V. To provide a margin for the ADC operating range, increase the target reference voltage by 10%  
(VREF = 1.6 V · 1.1 = 1.76 V). Calculate the value of the reference resistor, as shown in 方程31:  
RREF = VREF / IIDAC1 = 1.76 V / 500 μA = 3.52 kΩ  
(31)  
For best results, use a precision reference resistor RREF with a low temperature drift (< 10 ppm/°C).  
The next step in the design is determining the value of the RBIAS resistor, in order to level shift the RTD voltage  
to meet the ADC absolute input-voltage specification. The required level-shift voltage is determined by  
calculating the minimum absolute voltage (VINNLIM) as shown in 方程32:  
VAVSS + 0.3 + VRTD · (Gain 1) / 2 VINNLIM  
(32)  
where  
VRTD = maximum differential RTD voltage = 0.2 V  
Gain = 8  
VAVSS = 0 V  
The result of the equation requires a minimum absolute input voltage (VRTDN) > 1.0 V. Therefore, the RTD  
voltage must be level shifted a minimum of 1.0 V. To meet this requirement, a target level-shift value of 1.1 V is  
chosen to provide 0.1 V margin. Calculate the value of RBIAS as shown in 方程33:  
RBIAS= VINN / (IIDAC1+ IIDAC2) = 1.1 V / ( 2 · 500 μA) = 1.1 kΩ.  
(33)  
After the level-shift voltage is determined, verify that the positive RTD voltage (VRTDP) is less than the maximum  
absolute input voltage (VINPLIM), as shown in 方程34:  
V
INPLIM VAVDD 0.3 VRTD · (Gain 1) / 2  
(34)  
where  
VRTD = maximum differential RTD voltage = 0.2 V  
Gain = 8  
VAVDD = 4.75 V (minimum)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
Solving 方程34 results in a required VRTDP of less than 3.8 V. Calculate the VRTDP input voltage by 方程35:  
VINP = VRTDN + IIDAC1 · ( RRTD + RLEAD1) = 1.1 V + 500 μA · (400 Ω+ 10 Ω) = 1.3 V  
(35)  
Because 1.3 V is less than the 3.8-V maximum input voltage limit, the absolute positive and negative RTD  
voltages are within the ADC specified input range.  
The next step in the design is to verify that the loop voltage of the excitation current is less than the specified  
IDAC compliance voltage. The IDAC compliance voltage is the maximum voltage drop developed across each  
IDAC current path to AVSS. In this circuit, IDAC1 has the largest voltage drop developed across its current path.  
The IDAC1 calculation is sufficient to satisfy IDAC2 because the IDAC2 voltage drop is always less than IDAC1  
voltage drop. The sum of voltages in the IDAC1 loop is shown in 方程36:  
VIDAC1 = [(IIDAC1 + IIDAC2) · (RLEAD3 + RBIAS)] + [IIDAC1 · (RRTD + RLEAD1 + RREF)] + VD  
(36)  
where  
VD = external blocking diode voltage.  
The equation results in a loop voltage of VIDAC1= 3.4 V. The worst-case current source compliance voltage is:  
(VAVDD 1.1 V) = (4.75 V 1.1 V) = 3.64 V. The VIDAC1 loop voltage is less than the specified current source  
compliance voltage (3.4 V < 3.64 V).  
Many applications benefit from using an analog filter at the inputs to remove noise and interference from the  
signal. Filter components are placed on the ADC inputs (RF1, RF2, CDIF1, CCM1, and CCM2), as well as on the  
reference inputs (RF3, RF4, CDIF2, CCM3, and CCM4). The filters remove both differential and common-mode  
noise. The application shows a differential input noise filter formed by RF1, RF2 and CDIF, with additional  
differential mode capacitance provided by the common-mode filter capacitors, CM1 and CM2. Calculate the  
differential cutoff frequency as shown in 方程37:  
fDIF = 1 / [2π· (RF1 + RF2) · (CDIF1 + CM1|| CM2)]  
(37)  
The common-mode noise filter is formed by components RF1, RF2, CM1 and CM2. Calculate the common-mode  
signal cutoff frequency as shown in 方程38:  
fCM = 1 / (2π· RF1 · CM1) = 1 / (2π· RF2 · CM2  
)
(38)  
Mismatches in the common-mode filter components convert common-mode noise into differential noise. To  
reduce the effect of mismatch, use a differential mode filter with a corner frequency that is 10 times lower than  
the common-mode filter corner frequency. The low-frequency differential filter removes the common-mode  
converted noise. The filter resistors (RFx) also serve as current-limiting resistors. These resistors limit the current  
into the analog inputs (AINx) of the device to safe levels when an overvoltage occurs on the inputs.  
Filter resistors lead to an offset voltage error due to the dc input current leakage flowing into and out of the  
device. Remove this voltage error by system offset calibration. Resistor values that are too large generate  
excess thermal noise and degrade the overall noise performance. The recommended range of the filter resistor  
values is 2 kΩto 10 kΩ. The properties of the capacitors are important because the capacitors are connected to  
the signal; use high-quality C0G ceramics or film-type capacitors.  
For consistent noise performance across the full range of RTD measurements, match the corner frequencies of  
the input and reference filter. Detailed information on matching the input and reference filter is found in the RTD  
Ratiometric Measurements and Filtering Using the ADS1148 and ADS1248 application report.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.2.1.3 Application Curve  
10-14 shows the resistance measurement results. The measurements are taken at TA = 25°C. A system  
offset calibration is performed using shorted inputs. A system gain calibration is performed using a 390-Ω  
precision resistor. The data are taken using a precision resistor simulator with a 3-wire connection in place of a  
3-wire RTD. Note that the measurement data are in ohms and do not include the error of the RTD sensor itself.  
The measured resistance error is < ±0.02 Ωover the 20-Ωto 400-Ωrange.  
0.1  
0.05  
0
-0.05  
-0.1  
0
50  
100  
150  
200  
250  
300  
350  
400  
RTD Value (W)  
10-14. Resistance Measurement Error  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.3 What To Do and What Not To Do  
Do partition the analog, digital, and power supply circuitry into separate sections on the PCB.  
Do use a single ground plane for analog and digital grounds.  
Do place the analog components close to the ADC pins using short, direct connections.  
Do keep the SCLK pin free of glitches and noise.  
Do verify that the analog input voltages are within the specified PGA input voltage range under all input  
conditions.  
Do tie unused analog input pins to midsupply to minimize input leakage current.  
Do provide current limiting to the analog inputs in case overvoltage faults occur.  
Do use an LDO regulator to reduce ripple voltage generated by switch-mode power supplies.  
Don't route digital clock traces in the vicinity of the CAPP and CAPN pins.  
Don't cross digital signals over analog signals.  
Don't allow the analog and digital power supply voltages to exceed 7 V under all conditions, including during  
power-up and power-down.  
10-15 shows Do's and Don'ts of ADC circuit connections.  
INCORRECT  
CORRECT  
5 V  
5 V  
AVDD  
AVDD  
Device  
Device  
AINP  
AINN  
AINP  
AINN  
32-bit  
32-bit  
PGA  
PGA  
ûADC  
ûADC  
AVSS  
0 V  
AVSS  
0 V  
0 V  
0 V  
Single-ended input, PGA enabled  
Single-ended input, PGA bypassed  
CORRECT  
CORRECT  
5 V  
2.5 V  
AVDD  
AVDD  
Device  
Device  
AINP  
AINN  
AINP  
AINN  
32-bit  
32-bit  
PGA  
PGA  
PGA enabled  
2.5 V  
ûADC  
ûADC  
AVSS  
AVSS  
0 V  
-2.5 V  
0 V  
Single-ended input, PGA enabled  
Single-ended input, PGA enabled  
3.3 V  
5 V  
5 V  
3.3 V  
INCORRECT  
INCORRECT  
Device  
AVDD  
PGA  
DVDD  
AVDD  
PGA  
DVDD  
Device  
32-bit  
32-bit  
ûADC  
ûADC  
AVSS  
DGND  
AVSS  
DGND  
Inductive supply or ground connections  
AGND/DGND isolation  
CORRECT  
3.3 V  
3.3 V  
5 V  
2.5 V  
CORRECT  
AVDD  
PGA  
DVDD  
32-bit  
AVDD  
DVDD  
Device  
Device  
32-bit  
PGA  
ûADC  
ûADC  
AVSS  
DGND  
AVSS  
-2.5 V  
DGND  
Low impedance AGND/DGND connection  
Low impedance AGND/DGND connection  
10-15. Dos and Don'ts Circuit Connections  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10.4 Initialization Setup  
10-16 is a general procedure that shows a typical ADS1262 configuration and measurement sequence.  
Apply Power  
Set RESET/PWDN High  
/* This pin must be high for operation  
Y
/* ADC automatically detects external clock  
(external clock can be applied at power-on)  
External clock?  
N
Apply clock to XTAL1  
Wait 216 clock cycles  
/* The ADC is internally held in reset for 216 clocks after power-on  
Y
/* If START pin is high, conversions are free-running  
If START pin is low, conversions are stopped  
START High?  
DRDY pulses at 20 Hz  
N
Set START low or  
STOP1 command  
/* For simplicity, stop conversions before register configuration  
DRDY not pulsing  
Issue Write Register  
command to configure the  
ADC  
/* Readings are suspended until Write Register command completes  
(If conversions are active, changes to certain registers result in ADC restart)  
Issue Read Register  
command to verify registers  
/* Readings are suspended until Read Register command completes  
Wait for reference  
voltage to settle  
/* The internal reference require time to settle after power-on  
/* Start or restart new ADC conversion  
Set START pin high  
or START1 command  
N
/* Read data at a rate faster than  
the data rate to avoid dropping data  
Read Data using  
RDATA1 command  
Hardware DRDY?  
Y
N
ADC1 Status bit = 1 ?  
Y
N
DRDY low ?  
Y
New ADC1 data  
/* By Direct or  
Command method  
Read Data  
N
Change ADC  
Settings ?  
Y
10-16. ADS1262 Configuration and Measurement Procedure  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
10-17 shows a general procedure to read concurrent ADC1 and ADC2 data of the ADS1263. The conversion  
time of ADC1 can be faster or slower than ADC2. If the conversion time of ADC1 is less than or equal to that of  
ADC2, and if the ADC2 status bit is equal to 1, then when ADC1 data are ready, ADC2 data are also ready. The  
ADC2 data can then be read by the RDATA2 command. Similarly, if the conversion time of ADC2 is less than  
that of ADC1, and if the ADC1 status bit is equal to 1, then when ADC2 data are ready. ADC1 data are also  
ready, The ADC1 data can then be read by the RDATA1 command. It is important to note an exception to the  
conversion time related to the data rate: the time of the first conversion is not always the same as (1 / data rate)  
because of digital filter latency. Therefore, it is possible that although the data rate of ADC1 can be faster than  
ADC2, the time required for the first conversion of ADC1 can be greater than ADC2 depending on the digital filter  
setting and chop mode. When checking the ADC2 status by reading ADC1 data, use the RDATA1 command.  
Begin  
Stop Conversions  
ADC1: START pin low; or  
STOP1 command  
ADC2: STOP2 command  
/* For simplicity, stop conversions before ADC configuration  
Configure ADC1  
/* Configure the ADCs  
Configure ADC2  
Start Conversions  
ADC1: START pin high; or  
/* Start conversions  
START1 command  
ADC2: START2 command  
/* Read data at a rate faster than  
the data rate to avoid dropping data  
N
Read ADC2 data  
using RDATA2 command  
ADC1 conversion  
time ≤ ADC2 ?  
Y
N
N
ADC2 Status bit = 1 ?  
Read ADC1 data  
using RDATA1 command  
Hardware DRDY?  
Y
Y
New ADC2 data  
N
ADC1 Status bit = 1 ?  
N
DRDY low ?  
Y
N
Y
ADC1 Status bit =1 ?  
New ADC1 data  
Read ADC1 data  
using RDATA1 command  
Y
Read ADC1 data using  
RDATA1 command  
N
ADC2 Status bit =1 ?  
Y
Read ADC2 data  
using RDATA2 command  
N
Change ADC  
configuration ?  
Y
10-17. ADS1263 Concurrent Read of ADC1 and ADC2 Data  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
11 Power Supply Recommendations  
The ADS1262 and ADS1263 require an analog power supply (VAVDD, VAVSS) and digital power supply (VDVDD).  
The analog power supply can be bipolar (for example, VAVDD = +2.5 V, VAVSS = 2.5 V) or unipolar (for  
example, VAVDD = 5 V, VAVSS = 0 V). The digital supply (VDVDD) range is 2.7 V to 5.25 V. The digital supply  
voltage determines the digital I/O logic levels. Keep in mind that the GPIO logic levels (AIN3-AINCOM) are  
referenced to the analog supply voltage and may be different from the digital I/O logic level. The analog and  
digital sections of the ADC are not internally isolated and the grounds for analog and digital must be connected  
together. Output voltage ripple produced by switch-mode power supplies may interfere with the ADC resulting in  
reduced performance. Use low-dropout regulators (LDOs) to reduce the power-supply ripple voltage produced  
by switch-mode power supplies.  
11.1 Power-Supply Decoupling  
Good power-supply decoupling is important in order to achieve optimum performance. Power supplies VAVDD  
,
VAVSS and VDVDD must be decoupled to a common ground potential. For proper power-supply decoupling, place  
a 0.1-µF capacitor as close as possible to the supply with an additional 1-µF bulk capacitor placed nearby. 图  
11-1 shows decoupling for bipolar-supply (left figure) and single-supply (right figure) operation. When using  
bipolar supplies, bypass both AVDD and AVSS to ground separately, and include a bypass capacitor between  
AVDD and AVSS. Use a multilayer ceramic chip capacitors (MLCCs) that offers low equivalent series resistance  
(ESR) and equivalent series inductance (ESL) characteristics for power-supply decoupling purposes. The  
BYPASS pin is the bypass output of an internal 2-V regulator. The 2-V regulator powers the digital circuitry.  
Connect a ceramic or tantalum 1-µF capacitor from this pin to DGND. Do not load this voltage by external  
circuits.  
1
2
3
4
5
6
7
8
9
AIN8  
AIN7 28  
AIN6 27  
1
2
3
4
5
6
7
8
9
AIN8  
AIN7 28  
AIN6 27  
AIN9  
AIN9  
AINCOM  
CAPP  
CAPN  
AVDD  
AVSS  
AIN5 26  
AINCOM  
CAPP  
CAPN  
AVDD  
AVSS  
AIN5 26  
AIN4 25  
AIN4 25  
4.7 nF  
4.7 nF  
AIN3 24  
AIN3 24  
5 V  
+2.5 V  
AIN2 23  
AIN2 23  
1 mF  
1 mF  
0.1 mF  
1 mF  
1 mF  
0.1 mF  
1 mF  
AIN1 22  
AIN1 22  
ADS1262  
ADS1263  
ADS1262  
ADS1263  
REFOUT  
START  
AIN0 21  
REFOUT  
START  
AIN0 21  
œ2.5 V  
œ2.5 V  
3.3 V  
RESET/PWDN 20  
DVDD 19  
RESET/PWDN 20  
DVDD 19  
3.3 V  
10 CS  
10 CS  
0.1 mF  
0.1 mF  
1 mF  
1 mF  
11 SCLK  
12 DIN  
DGND 18  
BYPASS 17  
XTAL2 16  
XTAL1/CLKIN 15  
11 SCLK  
12 DIN  
DGND 18  
BYPASS 17  
XTAL2 16  
XTAL1/CLKIN 15  
1 mF  
1 mF  
13 DOUT/DRDY  
14 DRDY  
13 DOUT/DRDY  
14 DRDY  
11-1. Power-Supply Decoupling for Bipolar (left) and Single-Supply (right) Operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: ADS1262 ADS1263  
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
11.2 Analog Power-Supply Clamp  
It is important to evaluate circumstances when an input signal is present while the ADC is powered and  
unpowered. When the input signal exceeds the power-supply voltage, it is possible to back drive the analog  
power-supply voltage with the input signal through a conduction path of the internal ESD diodes. Back driving  
the ADC power supply can also occur when the power-supply voltage is on. The back-drive, fault-current path is  
shown in 11-2. Depending on the external power-supply components, it is possible that the maximum rating of  
the ADC power-supply voltage can be exceeded if back-driven. ADC power supply overvoltage must be  
prevented in all cases. One solution is to clamp the AVDD to AVSS voltage with an external 6-V Zener diode.  
ADC supply On or Off  
IFAULT  
+V  
+5 V Reg  
AVDD  
RLIMIT  
ESD Diode  
AINx  
Optional  
6-V Zener Diode  
+
œ
ADC  
Input Voltage  
AINx  
IFAULT  
ESD Diode  
IFAULT  
AVSS  
11-2. Analog Power-Supply Clamp  
11.3 Power-Supply Sequencing  
Sequence the power supplies in any order, but never allow and analog or digital inputs to exceed the respective  
analog or digital power-supplies without limiting the input fault current. The ADC remains in reset until both  
analog and digital power supplies exceed the respective power-on reset (POR) thresholds. 9-52 shows the  
power-on reset sequence. After the power supplies have crossed the reset levels (including the internal 2-V  
LDO), the ADC resets (POR) and is ready for communication 65536 clock periods later (nominally 9 ms).  
Delay communication for 50 ms after the power supplies have stabilized within the specified range to make sure  
the ADC is operational. In addition to POR, make sure that the reference voltage has fully settled before starting  
the conversions. When using a 1-µF reference capacitor allow a minimum of 50 ms for the internal reference to  
settle. External references may require additional settling time.  
12 Layout  
Good layout practices are crucial to realize the full-performance of the ADS1262 and ADS1263. Poor grounding  
can quickly degrade the noise performance of the main 32-bit ADC and auxiliary 24-bit ADC. The following  
layout recommendations are given to help provide best results.  
12.1 Layout Guidelines  
Ground must be a low impedance connection for return currents to flow undisturbed back to their respective  
sources. Keep connections to the ground plane as short and direct as possible. When using vias to connect to  
the ground layer, use multiple vias in parallel to reduce impedance to ground.  
A mixed-signal layout sometimes incorporates separate analog and digital ground planes that are tied together  
at one location; however, separating the ground planes is not necessary when analog, digital, and power supply  
components are properly placed. Proper placement of components partitions the analog, digital, and power  
supply circuitry into different PCB regions to prevent digital return currents from coupling into sensitive analog  
circuitry.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal traces  
on this layer. However, depending on restrictions imposed by specific form factors, single ground planes may not  
be possible. If ground plane separation is necessary, then make the connection at the ADC. Do not connect  
individual ground planes at multiple locations because this configuration creates ground loops. A single plane for  
analog and digital ground avoids ground loops.  
If isolation is required in the application, isolate the digital signals between the ADC and controller, or provide the  
isolation from the controller to the remaining system. if an external crystal is used to provide the ADC clock,  
place the crystal and load capacitors directly to the ADC pins using short direct traces. See the Crystal Oscillator  
section for more details.  
Supply pins must be bypassed with a low-ESR ceramic capacitor. Place the bypass capacitors as close as  
possible to the supply pins using short, direct traces. For optimum performance, use low-impedance connections  
on the ground-side connections of the bypass capacitors. Flow the supply current through the bypass capacitor  
pin first and then to the supply pin to make the bypassing most effective (also known as a Kelvin connection). If  
multiple ADCs are on the same PCB, use wide power supply traces or dedicated power-supply planes to  
minimize the potential of crosstalk between ADCs.  
If external filtering is used for the analog inputs, use C0G-type ceramic capacitors when possible. C0G  
capacitors have stable properties and low-noise characteristics. Ideally, route the differential signals as pairs in  
order to minimize the loop area between the traces. For the ADC CAPP and CAPN pins, place the 4.7-nF C0G  
capacitor close to the pins using short direct traces. Route digital circuit traces (such as clock signals) away from  
all analog pins. Note the internal reference output return shares the same pin as the AVSS power supply. To  
minimize coupling between the power-supply trace and reference-return trace, route the two traces separately;  
ideally, as a star connection at the AVSS pin.  
It is important the SCLK input of the serial interface is free from noise and glitches. Even with relatively slow  
SCLK frequencies, short digital-signal rise and fall times may cause excessive ringing and noise. For best  
performance, keep the digital signal traces short, use termination resistors as needed, and ensure all digital  
signals are routed directly above the ground plane with minimal use of vias.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC filters  
and  
Interface  
Device  
Microcontroller  
Tranceiver  
amplifiers)  
Connector  
or Antenna  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
12-1. System Component Placement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: ADS1262 ADS1263  
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
12.2 Layout Example  
12-2 is an example layout of the ADS1262 and ADS1263, requiring a minimum of three PCB layers. The  
example circuit is shown for a single analog supply (5 V) connection and an external crystal oscillator. In this  
example, an inner layer is dedicated to the ground plane and the outer layers are used for signal and power  
traces. If a four-layer PCB is used, dedicate the additional inner layers to route power traces. The ADC  
orientation is shown left to right to minimize crossover of the analog and digital signal traces. The PCB is  
partitioned with analog signals routed from the left, digital signals routed to the lower-right, and power routed  
from the upper-right. Analog supply bypass capacitors are placed opposite to the ADC on the bottom layer to  
allow the reference and PGA output capacitors to be placed closer to the ADC.  
Internal plane connected to GND (DGND = AVSS)  
IN1  
RTD input  
IN2  
6V Zener Diode  
(OPTIONAL)  
AVDD  
IN6  
DVDD  
Differential input  
External Crystal  
IN7  
(OPTIONAL)  
IN6  
(TO XTAL1)  
(TO XTAL2)  
Differential input  
IN7  
/RESET/PWDN  
START  
/CS  
COM  
/DRDY  
DOUT  
DIN  
Thermocouple/single-ended input  
IN9  
SCLK  
Tie unused inputs to REFOUT  
for lowest leakage current  
12-2. PCB Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: ADS1262 ADS1263  
 
 
ADS1262, ADS1263  
ZHCSDN4C FEBRUARY 2015 REVISED MAY 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.3 Trademarks  
SPIis a trademark of Motorola Inc.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: ADS1262 ADS1263  
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1262IPW  
ADS1262IPWR  
ADS1263IPW  
ADS1263IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
28  
28  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1262  
1262  
1263  
1263  
2000 RoHS & Green  
50 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Apr-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1262IPWR  
ADS1263IPWR  
TSSOP  
TSSOP  
PW  
PW  
28  
28  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS1262IPWR  
ADS1263IPWR  
TSSOP  
TSSOP  
PW  
PW  
28  
28  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ADS1262IPW  
ADS1263IPW  
PW  
PW  
TSSOP  
TSSOP  
28  
28  
50  
50  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY