ADS1278-EP [TI]

增强型产品:八路、144kHz、24 位同步采样 Σ-Δ ADC;
ADS1278-EP
型号: ADS1278-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品:八路、144kHz、24 位同步采样 Σ-Δ ADC

文件: 总44页 (文件大小:2059K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
八路同步采样 24 位模数转换器  
查询样品: ADS1278-EP  
1
特性  
234  
同时测量八个通道  
应用范围  
高达 128kSPS 数据速率  
振动/模式分析  
多通道数据采集  
声学/动态应变仪  
压力传感器  
AC 性能:  
62kHz 带宽  
111dB 信噪比 (SNR)(高分辨率模式)  
-108dB 总谐波失真 (THD)  
xxxx  
DC 精度:  
0.8-μV/°C 偏移漂移  
1.3-ppm/°C 增益漂移  
说明  
基于单通道ADS1271ADS1278(八通道)是一款 24  
位、三角积分 (ΔΣ) 模数转换器 (ADC),其数据速率高  
达每秒 128k 次采样 (SPS),从而可实现八通道同时采  
样。  
可选运行模式:  
高速:128kSPS106dB SNR  
高分辨率:52kSPS111dB SNR  
低功耗:52kSPS31mW/ch  
低速:10kSPS7mW/ch  
传统上来讲,提供良好漂移性能的工业用三角积分  
ADC 使用带有较大通带衰减的数字滤波器。 因此,它  
们的信号带宽有限并且主要适合于 dc 测量。 音频应用  
中的高分辨 ADC 提供更大的可用带宽,但是与工业用  
ADC 相比,它的偏移和漂移技术规格被大大削弱。  
ADS1278 将三种类型的转换器组合在一起,从而实现  
带有出色 dc ac 技术规格的高精度工业测量。  
线性相位数字滤波器  
SPI™ 或者帧同步串行接口  
低采样孔径错误  
调制器输出选项(数字滤波器旁通)  
模拟电源:5V  
数字内核:1.8V  
I/O 电源:1.8V 3.3V  
高阶、斩波稳定调制器在低带内噪声情况下实现极低漂  
移。 板载抽取滤波器抑制调制器和信号带外噪声。 这  
ADC 在纹波小于 0.005dB 的情况下提供高达那奎  
斯特速率 90% 的可用信号带宽。  
当前提供散热增强薄型四方扁平封装 (HTQFP)-64  
封装 PowerPAD™ 封装  
支持国防、航空航天、和医疗应用  
四个运行模式可实现速度、分辨率和功率的优化。 所  
有操作直接由引脚控制;无需寄存器编程。 器件可在  
军用温度范围(-55°C 125°C)内运行并且采用  
HTQFP-64 PowerPAD 封装。  
受控基线  
一个组装/测试场所  
一个制造场所  
(1)  
军用温度范围 (-55°C/125°C) 内可用  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
(1) 可提供额外温度范围-请与厂家联系  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
2
3
4
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
English Data Sheet: SBAS579  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
VREFP VREFN AVDD  
DVDD  
IOVDD  
DS  
DS  
DS  
Input1  
Input2  
Input3  
Input4  
Input5  
Input6  
Input7  
Input8  
SPI  
and  
DRDY/FSYNC  
SCLK  
Frame-  
Sync  
DOUT[8:1]  
DIN  
Interface  
Eight  
Digital  
Filters  
DS  
DS  
DS  
DS  
DS  
TEST[1:0]  
FORMAT[2:0]  
CLK  
Control  
Logic  
SYNC  
PWDN[8:1]  
CLKDIV  
MODE[1:0]  
AGND  
DGND  
ADS1278  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
TA  
PACKAGE  
TQFP - PAP Reel of 250  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
VID NUMBER  
–55°C to 125°C  
ADS1278MPAPTEP  
ADS1278EP  
V62/12611-01XE  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
2
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
PIN ASSIGNMENTS  
PAP PACKAGE  
TQFP-64  
(TOP VIEW)  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AINN7  
AINP2  
AINN2  
AINP1  
AINN1  
AVDD  
AINP7  
3
AINN8  
4
AINP8  
5
AVDD  
6
AGND  
DGND  
TEST0  
TEST1  
CLKDIV  
SYNC  
DIN  
AGND  
7
PWDN1  
PWDN2  
PWDN3  
PWDN4  
PWDN5  
PWDN6  
PWDN7  
PWDN8  
MODE0  
MODE1  
8
ADS1278  
9
10  
11  
12  
13  
14  
15  
16  
DOUT8  
DOUT7  
DOUT6  
DOUT5  
(PowerPAD Outline)  
Table 1. PIN DESCRIPTIONS  
PIN  
NAME  
NO.  
FUNCTION  
DESCRIPTION  
6, 43, 54,  
58, 59  
AGND  
Analog ground  
Analog ground; connect to DGND using a single plane.  
AINP1  
AINP2  
AINP3  
AINP4  
AINP5  
AINP6  
AINP7  
AINP8  
3
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
1
63  
61  
51  
49  
47  
45  
AINP[8:1] Positive analog input, channels 8 through 1.  
Copyright © 2012, Texas Instruments Incorporated  
3
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
Table 1. PIN DESCRIPTIONS (continued)  
PIN  
NAME  
AINN1  
AINN2  
AINN3  
AINN4  
AINN5  
AINN6  
AINN7  
AINN8  
AVDD  
VCOM  
VREFN  
VREFP  
CLK  
NO.  
FUNCTION  
DESCRIPTION  
4
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
2
64  
62  
AINN[8:1] Negative analog input, channels 8 through 1.  
52  
50  
48  
46  
5, 44, 53, 60  
Analog power supply Analog power supply (4.75V to 5.25V).  
55  
57  
56  
27  
Analog output  
Analog input  
Analog input  
Digital input  
AVDD/2 Unbuffered voltage output.  
Negative reference input.  
Positive reference input.  
Master clock input (fCLK).  
CLK input divider control:  
1 = 37MHz (High-Speed mode)/otherwise 27MHz  
0 = 13.5MHz (low-power)/5.4MHz (low-speed)  
CLKDIV  
10  
Digital input  
DGND  
DIN  
7, 21, 24, 25  
Digital ground  
Digital input  
Digital ground power supply.  
Daisy-chain data input.  
12  
20  
19  
18  
17  
16  
15  
14  
13  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
DOUT1 is TDM data output (TDM mode).  
DOUT[8:1] Data output for channels 8 through 1.  
DRDY/  
FSYNC  
29  
Digital input/output  
Frame-Sync protocol: frame clock input; SPI protocol: data ready output.  
DVDD  
FORMAT0  
FORMAT1  
FORMAT2  
IOVDD  
26  
32  
31  
30  
22, 23  
34  
33  
42  
41  
40  
39  
38  
37  
36  
35  
28  
11  
8
Digital power supply Digital core power supply.  
Digital input  
FORMAT[2:0] Selects Frame-Sync/SPI protocol, TDM/discrete data outputs,  
fixed/dynamic position TDM data, and modulator mode/normal operating mode.  
Digital input  
Digital input  
Digital power supply I/O power supply (+1.65V to +3.6V).  
MODE0  
MODE1  
PWDN1  
PWDN2  
PWDN3  
PWDN4  
PWDN5  
PWDN6  
PWDN7  
PWDN8  
SCLK  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input/output  
Digital input  
Digital input  
Digital input  
MODE[1:0] Selects High-Speed, High-Resolution, Low-Power, or Low-Speed  
mode operation.  
PWDN[8:1] Power-down control for channels 8 through 1.  
Serial clock input, Modulator clock output.  
Synchronize input (all channels).  
SYNC  
TEST0  
TEST[1:0] Test mode select:  
01 = Do not use  
10 = Do not use  
00 = Normal operation  
11 = Test mode  
TEST1  
9
4
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range, unless otherwise noted(1)  
UNIT  
V
AVDD to AGND  
–0.3 to 6.0  
–0.3 to 3.6  
–0.3 to 0.3  
100  
DVDD, IOVDD to DGND  
AGND to DGND  
V
V
Momentary  
mA  
mA  
V
Input current  
Continuous  
10  
Analog input to AGND  
–0.3 to AVDD + 0.3  
–0.3 to DVDD + 0.3  
150  
Digital input or output to DGND  
Maximum junction temperature, TJ  
Storage temperature range  
V
°C  
°C  
–60 to 150  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
THERMAL INFORMATION  
ADS1278  
THERMAL METRIC(1)  
PAP  
64 PINS  
33.1  
6.2  
UNITS  
θJA  
θJC  
θJB  
ψJT  
ψJB  
Junction-to-ambient thermal resistance(2)  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance(3)  
Junction-to-top characterization parameter(4)  
Junction-to-board characterization parameter(5)  
7.9  
°C/W  
0.2  
7.8  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
(2) JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环  
境热阻。  
(3) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。  
(4) 结至顶部特征参数, ψJT,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参  
数以便获得 θJA  
(5) 结至电路板特征参数, ψJB,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该  
参数以便获得 θJA  
Copyright © 2012, Texas Instruments Incorporated  
5
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = –55°C to 125°C, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
VREFN = 0 V, and all channels active, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operating temperature range, TA  
-55  
125  
°C  
Analog Inputs  
Full-scale input voltage (FSR(1)  
)
VIN = (AINP – AINN)  
AINP or AINN to AGND  
VCM = (AINP + AINN)/2  
±VREF  
V
V
AVDD +  
0.1  
Absolute input voltage  
AGND – 0.1  
Common-mode input voltage (VCM  
)
2.5  
14  
V
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
k  
kΩ  
kΩ  
kΩ  
14  
Differential input  
impedance  
28  
140  
DC Performance  
Resolution  
No missing codes  
fCLK = 32.768MHz(2)  
fCLK = 27MHz  
24  
Bits  
SPS  
SPS(3)  
128,000  
105,469  
52,734  
52,734  
10,547  
±0.0003  
0.25  
High-Speed mode  
Data rate (fDATA  
)
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
SPS  
SPS  
SPS  
% FSR(1)  
Integral nonlinearity (INL)(4)  
Differential input, VCM = 2.5V  
±0.0014  
2
Offset error  
mV  
Offset drift  
0.8  
μV/°C  
% FSR  
ppm/°C  
μV, rms  
μV, rms  
μV, rms  
μV, rms  
dB  
Gain error  
0.1  
0.5  
Gain drift  
1.3  
High-Speed mode  
Shorted input  
Shorted input  
Shorted input  
Shorted input  
fCM = 60Hz  
8.5  
68  
13  
21  
21  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
5.5  
Noise  
8.5  
8.0  
Common-mode rejection  
90  
108  
AVDD  
80  
dB  
Power-supply rejection DVDD  
IOVDD  
fPS = 60Hz  
No load  
85  
dB  
105  
dB  
VCOM output voltage  
AC Performance  
Crosstalk  
AVDD/2  
V
f = 1kHz, –0.5dBFS(5)  
–107  
106  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Hz  
Hz  
High-Speed mode  
88.3  
101  
VREF = 2.5V  
VREF = 3V  
110  
High-Resolution mode  
Signal-to-noise ratio  
111  
(SNR)(6) (unweighted)  
Low-Power mode  
Low-Speed mode  
Total harmonic distortion (THD)(7)  
Spurious-free dynamic range  
Passband ripple  
98  
98  
106  
107  
VIN = 1kHz, –0.5dBFS  
–108  
–96  
109  
±0.005  
0.453 fDATA  
0.49 fDATA  
Passband  
–3dB Bandwidth  
(1) FSR = full-scale range = 2VREF  
.
(2) fCLK = 32.768MHz max for High-Speed mode, and 27MHz max for all other modes. When fCLK > 27MHz, operation is limited to Frame-  
Sync mode and VREF 2.6V.  
(3) SPS = samples per second.  
(4) Best fit method.  
(5) Worst-case channel crosstalk between one or more channels.  
(6) Minimum SNR is ensured by the limit of the DC noise specification.  
(7) THD includes the first nine harmonics of the input signal; Low-Speed mode includes the first five harmonics.  
6
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = –55°C to 125°C, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
VREFN = 0 V, and all channels active, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-Resolution mode  
All other modes  
95  
dB  
Stop band attenuation  
Stop band  
100  
127.453  
fDATA  
High-Resolution mode  
All other modes  
0.547 fDATA  
0.547 fDATA  
Hz  
Hz  
63.453  
fDATA  
High-Resolution mode  
All other modes  
39/fDATA  
38/fDATA  
78/fDATA  
76/fDATA  
s
s
s
s
Group delay  
High-Resolution mode  
All other modes  
Complete settling  
Complete settling  
Settling time (latency)  
Voltage Reference Inputs  
fCLK = 27MHz  
fCLK = 32.768MHz(2)  
0.5  
0.5  
2.5  
2.5  
3.1  
2.6  
V
V
Reference input voltage (VREF  
(VREF = VREFP – VREFN)  
)
AGND +  
0.1  
Negative reference input (VREFN)  
Positive reference input (VREFP)  
AGND – 0.1  
VREFN + 0.5  
V
V
AVDD +  
0.1  
High-Speed mode  
0.65  
0.65  
1.3  
kΩ  
kΩ  
kΩ  
kΩ  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
Reference Input  
impedance  
6.5  
Digital Input/Output (IOVDD = 1.8V to 3.6V)  
VIH  
0.7 IOVDD  
DGND  
IOVDD  
V
V
V
V
0.3  
IOVDD  
VIL  
VOH  
IOH = 4mA  
IOL = 4mA  
0.8 IOVDD  
DGND  
IOVDD  
0.2  
IOVDD  
VOL  
Input leakage  
0 < VIN DIGITAL < IOVDD  
High-Speed mode(8)  
Other modes  
±10  
32.768  
27  
μA  
0.1  
0.1  
MHz  
MHz  
Master clock rate (fCLK  
)
Power Supply  
AVDD  
4.75  
1.65  
1.65  
5
5.25  
1.95  
3.6  
10  
V
DVDD  
1.8  
V
IOVDD  
V
AVDD  
1
1
μA  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Power-down current  
AVDD current  
DVDD  
50  
IOVDD  
1
11  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
97  
145  
145  
64  
97  
44  
9
14  
23  
30  
16  
20  
DVDD current  
IOVDD current  
12  
17  
2.5  
0.25  
0.125  
0.125  
0.035  
4.5  
1
0.6  
0.6  
0.3  
(8) fCLK = 32.768MHz max for High-Speed mode, and 27MHz max for all other modes. When fCLK > 27MHz, operation is limited to Frame-  
Sync mode and VREF 2.6V.  
Copyright © 2012, Texas Instruments Incorporated  
7
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = –55°C to 125°C, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
VREFN = 0 V, and all channels active, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
530  
515  
245  
50  
MAX  
785  
765  
355  
80  
UNIT  
mW  
mW  
mW  
mW  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
Power dissipation  
TIMING CHARACTERISTICS: SPI FORMAT  
tCLK  
tCPW  
CLK  
· · ·  
tCPW  
tCD  
tCONV  
DRDY  
tSD  
tDS  
tSCLK  
tSPW  
SCLK  
tSPW  
tDOPD  
tMSBPD  
tDOHD  
Bit 23 (MSB)  
Bit 22  
tDIST  
Bit 21  
DOUT  
DIN  
tDIHD  
TIMING REQUIREMENTS: SPI FORMAT  
For TA = –40°C to 125°C, IOVDD = 1.65 V to 3.6 V, and DVDD = 1.65 V to 1.95 V.  
SYMBOL  
tCLK  
PARAMETER  
MIN  
37  
TYP  
MAX  
UNIT  
(1)  
CLK period (1/fCLK  
)
10,000  
ns  
ns  
tCPW  
CLK positive or negative pulse width  
15  
(2)  
tCONV  
Conversion period (1/fDATA  
)
256  
2560  
tCLK  
ns  
(3)  
tCD  
Falling edge of CLK to falling edge of DRDY  
Falling edge of DRDY to rising edge of first SCLK to retrieve data  
DRDY falling edge to DOUT MSB valid (propagation delay)  
Falling edge of SCLK to rising edge of DRDY  
SCLK period  
22  
18  
(3)  
tDS  
1
tCLK  
ns  
tMSBPD  
16  
32  
(3)  
tSD  
ns  
(4)  
tSCLK  
1
0.4  
10  
tCLK  
tCLK  
ns  
tSPW  
SCLK positive or negative pulse width  
(5)(3) (6)  
tDOHD  
tDOPD  
tDIST  
SCLK falling edge to new DOUT invalid (hold time)  
SCLK falling edge to new DOUT valid (propagation delay)  
New DIN valid to falling edge of SCLK (setup time)  
Old DIN valid to falling edge of SCLK (hold time)  
(5)(3)  
ns  
6
6
ns  
(6)  
tDIHD  
ns  
(1) fCLK = 27MHz maximum.  
(2) Depends on MODE[1:0] and CLKDIV selection. See Table 7 (fCLK/fDATA).  
(3) Load on DRDY and DOUT = 20pF.  
(4) For best performance, limit fSCLK/fCLK to ratios of 1, 1/2, 1/4, 1/8, etc.  
(5) Timing parameters are characerized or guranteed by design for specified temperature but not production tested.  
(6) tDOHD (DOUT hold time) and tDIHD (DIN hold time) are specified under opposite worst-case conditions (digital supply voltage and  
ambient temperature). Under equal conditions, with DOUT connected directly to DIN, the timing margin is >4ns.  
8
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
Figure 1. TIMING CHARACTERISTICS: FRAME-SYNC FORMAT  
tCPW  
tCLK  
CLK  
tCPW  
tCS  
tFRAME  
tFPW  
tFPW  
FSYNC  
SCLK  
DOUT  
DIN  
tFS  
tSCLK  
tSPW  
tSF  
tSPW  
tMSBPD  
Bit 23 (MSB)  
tDOPD  
tDOHD  
Bit 21  
Bit 22  
tDIST  
tDIHD  
TIMING REQUIREMENTS: FRAME-SYNC FORMAT(1)  
For TA = –40°C to 125°C, IOVDD = 1.65 V to 3.6 V, and DVDD = 1.65 V to 1.95 V.  
SYMBOL  
PARAMETER  
MIN  
37  
TYP  
MAX  
UNIT  
ns  
All modes  
10,000  
tCLK  
CLK period (1/fCLK)  
High-Speed mode only  
30.5  
12  
ns  
tCPW  
tCS  
CLK positive or negative pulse width  
ns  
Falling edge of CLK to falling edge of SCLK  
–0.25  
256  
1
0.25  
tCLK  
tCLK  
tSCLK  
ns  
(2)  
tFRAME  
tFPW  
tFS  
Frame period (1/fDATA  
)
2560  
FSYNC positive or negative pulse width  
Rising edge of FSYNC to rising edge of SCLK  
Rising edge of SCLK to rising edge of FSYNC  
SCLK period(3)  
5
tSF  
5
ns  
tSCLK  
tSPW  
tDOHD  
1
tCLK  
tCLK  
ns  
SCLK positive or negative pulse width  
0.4  
10  
(4)(5) (6)  
SCLK falling edge to old DOUT invalid (hold time)  
SCLK falling edge to new DOUT valid (propagation delay)  
FSYNC rising edge to DOUT MSB valid (propagation delay)  
New DIN valid to falling edge of SCLK (setup time)  
Old DIN valid to falling edge of SCLK (hold time)  
(4)(6)  
tDOPD  
31  
31  
ns  
(4)  
tMSBPD  
tDIST  
ns  
6
6
ns  
(5)  
tDIHD  
ns  
(1) Timing parameters are characerized or guranteed by design for specified temperature but not production tested.  
(2) Depends on MODE[1:0] and CLKDIV selection. See Table 7 (fCLK/fDATA).  
(3) SCLK must be continuously running and limited to ratios of 1, 1/2, 1/4, and 1/8 of fCLK  
.
(4) Timing parameters are characerized or guranteed by design for specified temperature but not production tested.  
(5) tDOHD (DOUT hold time) and tDIHD (DIN hold time) are specified under opposite worst-case conditions (digital supply voltage and  
ambient temperature). Under equal conditions, with DOUT connected directly to DIN, the timing margin is >4 ns.  
(6) Load on DOUT = 20 pF.  
Copyright © 2012, Texas Instruments Incorporated  
9
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
100000000.00  
www.ti.com.cn  
10000000.00  
1000000.00  
100000.00  
10000.00  
Wirebond Voiding Fail Mode  
Electromigration Fail Mode  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
Continuous T (°C)  
J
Figure 2. ADS1278 Operating Life Derating and Wirebond Voiding Fail Mode Chart  
Notes:  
1. See datasheet for absolute maximum and minimum recommended operating conditions.  
2. Sillicon operating life design goal is 10 years at 110°C junction temperature.  
10  
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
TYPICAL CHARACTERISTICS  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
OUTPUT SPECTRUM  
OUTPUT SPECTRUM  
0
-20  
0
-20  
High-Speed Mode  
High-Speed Mode  
fIN = 1kHz, -0.5dBFS  
fIN = 1kHz, -20dBFS  
32,768 Points  
32,768 Points  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
100k  
100k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 3.  
Figure 4.  
OUTPUT SPECTRUM  
NOISE HISTOGRAM  
25k  
20k  
15k  
10k  
5k  
0
High-Speed Mode  
High-Speed Mode  
Shorted Input  
-20 Shorted Input  
262,144 Points  
262,144 Points  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
1
10  
100  
1k  
10k  
Frequency (Hz)  
Output (mV)  
Figure 5.  
Figure 6.  
OUTPUT SPECTRUM  
OUTPUT SPECTRUM  
0
-20  
0
-20  
High-Resolution Mode  
fIN = 1kHz, -0.5dBFS  
32,768 Points  
High-Resolution Mode  
fIN = 1kHz, -20dBFS  
32,768 Points  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 7.  
Figure 8.  
Copyright © 2012, Texas Instruments Incorporated  
11  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
OUTPUT SPECTRUM  
NOISE HISTOGRAM  
25k  
20k  
15k  
10k  
5k  
0
High-Resolution Mode  
High-Resolution Mode  
-20 Shorted Input  
Shorted Input  
262,144 Points  
262,144 Points  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Output (mV)  
Figure 9.  
Figure 10.  
OUTPUT SPECTRUM  
OUTPUT SPECTRUM  
0
-20  
0
Low-Power Mode  
fIN = 1kHz, -0.5dBFS  
32,768 Points  
Low-Power Mode  
fIN = 1kHz, -20dBFS  
32,768 Points  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 11.  
Figure 12.  
OUTPUT SPECTRUM  
NOISE HISTOGRAM  
0
25k  
Low-Power Mode  
Low-Power Mode  
Shorted Input  
-20 Shorted Input  
262,144 Points  
262,144 Points  
20k  
15k  
10k  
5k  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Output (mV)  
Figure 13.  
Figure 14.  
12  
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
OUTPUT SPECTRUM  
OUTPUT SPECTRUM  
0
-20  
0
-20  
Low-Speed Mode  
Low-Speed Mode  
fIN = 100Hz, -0.5dBFS  
fIN = 100Hz, -20dBFS  
32,768 Points  
32,768 Points  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 15.  
Figure 16.  
OUTPUT SPECTRUM  
NOISE HISTOGRAM  
25k  
20k  
15k  
10k  
5k  
0
Low-Speed Mode  
Low-Speed Mode  
-20 Shorted Input  
Shorted Input  
262,144 Points  
262,144 Points  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
0.1  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Output (mV)  
Figure 17.  
Figure 18.  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
INPUT AMPLITUDE  
0
-20  
0
-20  
High-Speed Mode  
VIN = -0.5dBFS  
High-Speed Mode  
fIN = 1kHz  
-40  
-40  
-60  
-60  
-80  
-80  
THD+N  
THD  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
-120  
-100  
-80  
-60  
-40  
-20  
0
Frequency (Hz)  
Input Amplitude (dBFS)  
Figure 19.  
Figure 20.  
Copyright © 2012, Texas Instruments Incorporated  
13  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
INPUT AMPLITUDE  
0
-20  
0
-20  
High-Resolution Mode  
VIN = -0.5dBFS  
High-Resolution Mode  
fIN = 1kHz  
-40  
-40  
-60  
-60  
-80  
-80  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
THD+N  
THD  
10  
100  
1k  
10k  
100k  
100k  
10k  
-120  
-100  
-80  
-60  
-40  
-20  
0
0
0
Frequency (Hz)  
Input Amplitude (dBFS)  
Figure 21.  
Figure 22.  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
INPUT AMPLITUDE  
0
-20  
0
-20  
Low-Power Mode  
VIN = -0.5dBFS  
Low-Power Mode  
fIN = 1kHz  
-40  
-40  
-60  
-60  
-80  
-80  
THD+N  
THD  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
10  
100  
1k  
10k  
-120  
-100  
-80  
-60  
-40  
-20  
Frequency (Hz)  
Input Amplitude (dBFS)  
Figure 23.  
Figure 24.  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
INPUT AMPLITUDE  
0
0
-20  
Low-Speed Mode  
VIN = -0.5dBFS  
Low-Speed Mode  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
THD+N  
THD  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
10  
100  
1k  
-120  
-100  
-80  
-60  
-40  
-20  
Frequency (Hz)  
Input Amplitude (dBFS)  
Figure 25.  
Figure 26.  
14  
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
OFFSET DRIFT HISTOGRAM  
GAIN DRIFT HISTOGRAM  
400  
350  
300  
250  
200  
150  
100  
50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Multi-lot data based on  
25 units based on  
20°C intervals over the  
range -40°C to +105°C.  
20°C intervals over the  
range -40°C to +105°C.  
Outliers: T < -20°C  
0
Offset Drift (mV/°C)  
Gain Drift (ppm/°C)  
Figure 27.  
Figure 28.  
OFFSET WARMUP DRIFT RESPONSE BAND  
ADS1278 High-Speed and High-Resolution Modes  
ADS1278 Low-Power Mode  
GAIN WARMUP DRIFT RESPONSE BAND  
ADS1274/78 High-Speed and High-Resolution Modes  
ADS1278 Low-Power Mode  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-10  
-10  
-20  
-30  
-40  
-20  
-30  
-40  
ADS1278 Low-Speed Mode  
ADS1278 Low-Speed Mode  
ADS1274 High-Speed and High-Resolution Modes  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (s)  
Time (s)  
Figure 29.  
Figure 30.  
OFFSET ERROR HISTOGRAM  
GAIN ERROR HISTOGRAM  
90  
40  
35  
30  
25  
20  
15  
10  
5
High-Speed Mode  
25 Units  
High-Speed Mode  
25 Units  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
Offset (mV)  
Gain Error (ppm)  
Figure 31.  
Figure 32.  
Copyright © 2012, Texas Instruments Incorporated  
15  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
CHANNEL GAIN MATCH HISTOGRAM  
CHANNEL OFFSET MATCH HISTOGRAM  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
High-Speed Mode  
10 Units  
High-Speed Mode  
10 Units  
Channel Gain Match (ppm)  
Channel Offset Match (mV)  
Figure 33.  
Figure 34.  
OFFSET AND GAIN  
vs  
TEMPERATURE  
VCOM VOLTAGE OUTPUT HISTOGRAM  
400  
20  
18  
16  
14  
12  
10  
8
600  
500  
AVDD = 5V  
25 Units, No Load  
300  
200  
100  
400  
300  
200  
100  
0
Offset  
0
6
-100  
-100  
4
-200  
-300  
Gain  
-200  
-300  
2
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
Temperature (°C)  
VCOM Voltage Output (V)  
Figure 35.  
Figure 36.  
REFERENCE INPUT DIFFERENTIAL  
IMPEDANCE  
vs  
SAMPLING MATCH ERROR HISTOGRAM  
TEMPERATURE  
6.8  
6.7  
0.68  
40  
30 units over 3 production lots,  
inter-channel combinations.  
35  
30  
25  
20  
15  
10  
5
0.67  
0.66  
0.65  
0.64  
6.6  
6.5  
6.4  
High Speed and  
High Resolution  
6.3  
6.2  
0.63  
0.62  
Low Speed Mode  
0
-55  
-40  
-20  
0
25  
45  
65  
85  
105  
125  
Temperature (°C)  
Sampling Match Error (ps)  
Figure 37.  
Figure 38.  
16  
Copyright © 2012, Texas Instruments Incorporated  
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
ANALOG INPUT DIFFERENTIAL IMPEDANCE  
ANALOG INPUT DIFFERENTIAL IMPEDANCE  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
14.3  
14.2  
14.1  
170  
160  
150  
140  
28.6  
28.4  
28.2  
Low-Speed Mode  
14  
28  
13.9  
13.8  
13.7  
13.6  
13.5  
27.8  
27.6  
27.4  
27.2  
27  
High Speed and  
High Resolution  
130  
13.4  
13.3  
26.8  
26.6  
120  
110  
Low Power Mode  
13.2  
13.1  
26.4  
26.2  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
Temperature (°C)  
Temperature (°C)  
Figure 39.  
Figure 40.  
INTEGRAL NONLINEARITY  
LINEARITY ERROR  
vs  
vs  
TEMPERATURE  
INPUT LEVEL  
10  
10  
8
6
8
T = +105°C  
4
T = +25°C  
6
4
2
2
0
-2  
-4  
-6  
-8  
-10  
T = -40°C  
T = +125°C  
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
Temperature (°C)  
VIN (V)  
Figure 41.  
Figure 42.  
LINEARITY AND TOTAL HARMONIC DISTORTION  
vs  
NOISE AND LINEARITY  
vs  
REFERENCE VOLTAGE  
INPUT COMMON-MODE VOLTAGE  
14  
12  
10  
8
-100  
14  
12  
10  
8
14  
12  
10  
8
THD: fIN = 1kHz, VIN = -0.5dBFS  
-104  
-108  
-112  
-116  
-120  
-124  
-128  
Noise  
THD  
6
6
6
Linearity  
4
4
4
Linearity  
2
2
2
See Electrical Characteristics for VREF Operating Range.  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
-0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Common-Mode Voltage (V)  
VREF (V)  
Figure 43.  
Figure 44.  
Copyright © 2012, Texas Instruments Incorporated  
17  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
NOISE  
vs  
NOISE  
vs  
TEMPERATURE  
REFERENCE VOLTAGE  
12  
10  
12  
10  
8
High-Speed  
Low Power Mode  
Low-Power  
High Speed Mode  
8
Low Speed Mode  
Low-Speed  
6
4
2
6
4
High Resolution Mode  
High-Resolution  
2
0
See Electrical Characteristics for VREF Operating Range.  
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Temperature (°C)  
VREF (V)  
Figure 45.  
Figure 46.  
TOTAL HARMONIC DISTORTION AND NOISE  
COMMON-MODE REJECTION  
vs  
vs  
CLK  
INPUT FREQUENCY  
0
-20  
14  
12  
10  
8
0
High-Speed Mode  
fCLK > 32.768MHz: VREF = 2.048V, DVDD = 2.1V  
-20  
-40  
THD: AIN = fCLK/5120, -0.5dBFS  
Noise: Shorted Input  
-40  
-60  
-60  
Noise  
-80  
6
THD  
-80  
-100  
-120  
-140  
4
-100  
-120  
2
0
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
CLK (Hz)  
Input Frequency (Hz)  
Figure 47.  
Figure 48.  
POWER-SUPPLY REJECTION  
vs  
AVDD CURRENT  
vs  
POWER-SUPPLY FREQUENCY  
TEMPERATURE  
160  
0
140  
High Speed and High Resolution Modes  
-20  
-40  
120  
100  
80  
-60  
Low Power Mode  
AVDD  
60  
40  
-80  
Low Speed Mode  
DVDD  
-100  
-120  
20  
IOVDD  
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
10  
100  
1k  
10k  
100k  
1M  
Temperature (°C)  
Power-Supply Modulation Frequency (Hz)  
Figure 49.  
Figure 50.  
18  
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V, and  
VREFN = 0 V, unless otherwise noted.  
DVDD CURRENT  
IOVDD CURRENT  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
0.5  
0.4  
30  
25  
20  
15  
10  
High Speed Mode  
High Resolution Mode  
0.3  
0.2  
High Speed Mode  
Low Power Mode  
Low Speed Mode  
High Resolution and Low Power Modes  
Low Speed Mode  
0.1  
0
5
0
-55  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
Temperature (°C)  
Temperature (°C)  
Figure 51.  
Figure 52.  
POWER DISSIPATION  
vs  
TEMPERATURE  
800  
700  
600  
500  
High Speed Mode  
400  
300  
High Resolution Mode  
Low Power Mode  
200  
100  
Low Speed Mode  
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
Temperature (°C)  
Figure 53.  
Copyright © 2012, Texas Instruments Incorporated  
19  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
OVERVIEW  
High-Speed, High-Resolution, Low-Power, and Low-  
Speed. Table 2 summarizes the performance of each  
mode.  
The ADS1278 is an octal 24-bit, delta-sigma ADC  
based on the single-channel ADS1271. It offers the  
combination of outstanding dc accuracy and superior  
ac performance. Figure 54 shows the block diagram.  
The converter is comprised of eight advanced, 6th-  
order, chopper-stabilized, delta-sigma modulators  
followed by low-ripple, linear phase FIR filters. The  
In High-Speed mode, the maximum data rate is 128  
kSPS (when operating at 128 kSPS, Frame-Sync  
format must be used). In High-Resolution mode, the  
SNR = 111dB (VREF = 3.0 V); in Low-Power mode,  
the power dissipation is 31 mW/channel; and in Low-  
modulators measure the differential input signal, VIN  
=
(AINP – AINN), against the differential reference,  
VREF = (VREFP – VREFN). The digital filters receive  
the modulator signal and provide a low-noise digital  
output. To allow tradeoffs among speed, resolution,  
and power, four operating modes are supported:  
Speed mode, the power dissipation is only 7  
mW/channel at 10.5 kSPS. The digital filters can be  
bypassed, enabling direct access to the modulator  
output.  
The ADS1278 is configured by simply setting the  
appropriate I/O pins—there are no registers to  
program. Data are retrieved over a serial interface  
that supports both SPI and Frame-Sync formats. The  
ADS1278 has a daisy-chainable output and the ability  
to synchronize externally, so it can be used  
conveniently in systems requiring more than eight  
channels.  
VREFP  
AVDD  
VREFN  
DVDD  
IOVDD  
Mod 1  
Mod 2  
R
S
Modulator  
Output  
VCOM  
VREF  
R
Mod 8  
VIN1  
DS  
AINP1  
AINN1  
Digital  
DRDY/FSYNC  
SCLK  
S
S
Modulator1  
SPI  
and  
Frame-Sync  
Interface  
Filter1  
[8:1]  
DOUT  
DIN  
VIN2  
DS  
AINP2  
AINN2  
Digital  
Filter2  
Modulator2  
TEST[1:0]  
FORMAT[2:0]  
CLK  
Control  
Logic  
SYNC  
[8:1]  
PWDN  
VIN4/8  
DS  
AINP8  
AINN8  
Digital  
Filter8  
CLKDIV  
S
Modulator8  
MODE[1:0]  
AGND  
DGND  
Figure 54. Block Diagram  
Table 2. Operating Mode Performance Summary  
MODE  
High-Speed  
High-Resolution  
Low-Power  
Low-Speed  
MAX DATA RATE (SPS)  
PASSBAND (kHz)  
57,984  
SNR (dB)  
106  
NOISE (μVRMS  
)
POWER/CHANNEL (mW)  
128,000  
52,734  
52,734  
10,547  
8.5  
5.5  
8.5  
8.0  
70  
64  
31  
7
23,889  
110  
23,889  
106  
4,798  
107  
20  
Copyright © 2012, Texas Instruments Incorporated  
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
FUNCTIONAL DESCRIPTION  
SAMPLING APERTURE MATCHING  
The ADS1278 is a delta-sigma ADC consisting of  
eight independent converters that digitize eight input  
signals in parallel.  
The ADS1278 converter operates from the same CLK  
input. The CLK input controls the timing of the  
modulator sampling instant. The converter is  
designed such that the sampling skew, or modulator  
sampling aperture match between channels, is  
controlled. Furthermore, the digital filters are  
synchronized to start the convolution phase at the  
same modulator clock cycle. This design results in  
excellent phase match among the ADS1278  
channels.  
The converter is composed of two main functional  
blocks to perform the ADC conversions: the  
modulator and the digital filter. The modulator  
samples the input signal together with sampling the  
reference voltage to produce a 1s density output  
stream. The density of the output stream is  
proportional to the analog input level relative to the  
reference voltage. The pulse stream is filtered by the  
internal digital filter where the output conversion  
result is produced.  
Figure 37 shows the inter-device channel sample  
matching for the ADS1278.  
FREQUENCY RESPONSE  
In operation, the input signal is sampled by the  
modulator at a high rate (typically 64x higher than the  
final output data rate). The quantization noise of the  
modulator is moved to a higher frequency range  
where the internal digital filter removes it.  
Oversampling results in very low levels of noise  
within the signal passband.  
The digital filter sets the overall frequency response.  
The filter uses a multi-stage FIR topology to provide  
linear phase with minimal passband ripple and high  
stop band attenuation. The filter coefficients are  
identical to the coefficients used in the ADS1271. The  
oversampling ratio of the digital filter (that is, the ratio  
of the modulator sampling to the output data rate, or  
fMOD/fDATA) is a function of the selected mode, as  
shown in Table 3.  
Since the input signal is sampled at a very high rate,  
input signal aliasing does not occur until the input  
signal frequency is at the modulator sampling rate.  
This architecture greatly relaxes the requirement of  
external antialiasing filters because of the high  
modulator sampling rate.  
Table 3. Oversampling Ratio versus Mode  
MODE SELECTION  
High-Speed  
OVERSAMPLING RATIO (fMOD/fDATA)  
64  
128  
64  
High-Resolution  
Low-Power  
Low-Speed  
64  
Copyright © 2012, Texas Instruments Incorporated  
21  
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
High-Speed, Low-Power, and Low-Speed Modes  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
The digital filter configuration is the same in High-  
Speed, Low-Power, and Low-Speed modes with the  
oversampling ratio set to 64. Figure 55 shows the  
frequency response in High-Speed, Low-Power, and  
Low-Speed modes normalized to fDATA. Figure 56  
shows the passband ripple. The transition from  
passband to stop band is shown in Figure 57. The  
overall frequency response repeats at 64x multiples  
of the modulator frequency fMOD, as shown in  
Figure 58.  
0
-20  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
Normalized Input Frequency (fIN/fDATA  
)
-40  
Figure 57. Transition Band Response for High-  
Speed, Low-Power, and Low-Speed Modes  
-60  
-80  
20  
0
-100  
-120  
-140  
-20  
-40  
-60  
0
0.2  
0.4  
0.6  
0.8  
1.0  
Normalized Input Frequency (fIN/fDATA  
)
-80  
-100  
-120  
-140  
-160  
Figure 55. Frequency Response for High-Speed,  
Low-Power, and Low-Speed Modes  
0.02  
0
0
16  
32  
48  
64  
Input Frequency (fIN/fDATA  
)
Figure 58. Frequency Response Out to fMOD for  
High-Speed, Low-Power, and Low-Speed Modes  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
These image frequencies, if present in the signal and  
not externally filtered, will fold back (or alias) into the  
passband, causing errors. The stop band of the  
ADS1278 provides 100 dB attenuation of frequencies  
that begin just beyond the passband and continue out  
to fMOD. Placing an antialiasing, low-pass filter in front  
of the ADS1278 inputs is recommended to limit  
possible high-amplitude, out-of-band signals and  
noise. Often, a simple RC filter is sufficient. Table 4  
lists the image rejection versus external filter order.  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Normalized Input Frequency (fIN/fDATA  
)
Figure 56. Passband Response for High-Speed,  
Low-Power, and Low-Speed Modes  
Table 4. Antialiasing Filter Order Image Rejection  
IMAGE REJECTION (dB)  
(f–3dB at fDATA  
)
ANTIALIASING  
FILTER ORDER  
HS, LP, LS  
HR  
45  
1
2
3
39  
75  
87  
111  
129  
22  
Copyright © 2012, Texas Instruments Incorporated  
 
 
 
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
High-Resolution Mode  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
The oversampling ratio is 128 in High-Resolution  
mode. Figure 59 shows the frequency response in  
High-Resolution mode normalized to fDATA. Figure 60  
shows the passband ripple, and the transition from  
passband to stop band is shown in Figure 61. The  
overall frequency response repeats at multiples of the  
modulator frequency fMOD (128 × fDATA), as shown in  
Figure 62. The stop band of the ADS1278 provides  
100 dB attenuation of frequencies that begin just  
beyond the passband and continue out to fMOD  
.
Placing an antialiasing, low-pass filter in front of the  
ADS1278 inputs is recommended to limit possible  
high-amplitude out-of-band signals and noise. Often,  
a simple RC filter is sufficient. Table 4 lists the image  
rejection versus external filter order.  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
Normalized Input Frequency (fIN/fDATA  
)
Figure 61. Transition Band Response for High-  
Resolution mode  
0
-20  
20  
0
-40  
-20  
-60  
-40  
-80  
-60  
-100  
-120  
-140  
-80  
-100  
-120  
-140  
-160  
0
0.25  
0.50  
0.75  
1
Normalized Input Frequency (fIN/fDATA  
)
0
32  
64  
96  
128  
Normalized Input Frequency (fIN/fDATA  
)
Figure 59. Frequency Response for High-  
Resolution Mode  
Figure 62. Frequency Response Out to fMOD for  
High-Resolution Mode  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Normalized Input Frequency (fIN/fDATA  
)
Figure 60. Passband Response for High-  
Resolution Mode  
Copyright © 2012, Texas Instruments Incorporated  
23  
 
 
 
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
Table 5. Ideal Output Code versus Input Signal  
PHASE RESPONSE  
INPUT SIGNAL VIN  
(AINP – AINN)  
The ADS1278 incorporates a multiple stage, linear  
phase digital filter. Linear phase filters exhibit  
constant delay time versus input frequency (constant  
group delay). This characteristic means the time  
delay from any instant of the input signal to the same  
instant of the output data is constant and is  
independent of input signal frequency. This behavior  
results in essentially zero phase errors when  
analyzing multi-tone signals.  
IDEAL OUTPUT CODE(1)  
+VREF  
7FFFFFh  
) VREF  
223 * 1  
0
000001h  
000000h  
FFFFFFh  
* VREF  
223 * 1  
223  
ǒ
Ǔ
v −VREF  
800000h  
SETTLING TIME  
223 * 1  
As with frequency and phase response, the digital  
filter also determines settling time. Figure 63 shows  
the output settling behavior after a step change on  
the analog inputs normalized to conversion periods.  
The X-axis is given in units of conversion. Note that  
after the step change on the input occurs, the output  
data change very little prior to 30 conversion periods.  
The output data are fully settled after 76 conversion  
periods for High-Speed and Low-Power modes, and  
78 conversion periods for High-Resolution mode.  
(1) Excludes effects of noise, INL, offset, and gain errors.  
ANALOG INPUTS (AINP, AINN)  
The ADS1278 measures each differential input signal  
VIN = (AINP – AINN) against the common differential  
reference VREF = (VREFP – VREFN). The most  
positive measurable differential input is +VREF, which  
produces the most positive digital output code of  
7FFFFFh. Likewise, the most negative measurable  
differential input is –VREF, which produces the most  
negative digital output code of 800000h.  
Final Value  
100  
For optimum performance, the inputs of the ADS1278  
are intended to be driven differentially. For single-  
ended applications, one of the inputs (AINP or AINN)  
can be driven while the other input is fixed (typically  
to AGND or 2.5 V). Fixing the input to 2.5 V permits  
bipolar operation, thereby allowing full use of the  
entire converter range.  
Fully Settled Data  
at 76 Conversions  
(78 Conversions for  
High-Resolution mode)  
Initial Value  
0
While the ADS1278 measures the differential input  
signal, the absolute input voltage is also important.  
This value is the voltage on either input (AINP or  
AINN) with respect to AGND. The range for this  
voltage is:  
0
10  
20  
30  
40  
50  
60  
70  
80  
Conversions (1/fDATA  
)
Figure 63. Step Response  
–0.1 V < (AINN or AINP) < AVDD + 0.1 V  
If either input is taken below –0.4 V or above  
(AVDD + 0.4 V), ESD protection diodes on the inputs  
may turn on. If these conditions are possible, external  
Schottky clamp diodes or series resistors may be  
required to limit the input current to safe values (see  
the Absolute Maximum Ratings table).  
DATA FORMAT  
The ADS1278 outputs 24 bits of data in twos  
complement format.  
A positive full-scale input produces an ideal output  
code of 7FFFFFh, and the negative full-scale input  
produces an ideal output code of 800000h. The  
output clips at these codes for signals exceeding full-  
scale. Table 5 summarizes the ideal output codes for  
different input signals.  
The ADS1278 is a very high-performance ADC. For  
optimum performance, it is critical that the appropriate  
circuitry be used to drive the ADS1278 inputs. See  
the Application Information section for several  
recommended circuits.  
24  
Copyright © 2012, Texas Instruments Incorporated  
 
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
The ADS1278 uses switched-capacitor circuitry to  
measure the input voltage. Internal capacitors are  
charged by the inputs and then discharged. Figure 64  
shows a conceptual diagram of these circuits. Switch  
S2 represents the net effect of the modulator circuitry  
in discharging the sampling capacitor; the actual  
implementation is different. The timing for switches S1  
and S2 is shown in Figure 65. The sampling time  
AINP  
AINN  
Zeff = 14kW ´ (6.75MHz/fMOD  
)
(tSAMPLE  
) is the inverse of modulator sampling  
frequency (fMOD) and is a function of the mode, the  
CLKDIV input, and CLK frequency, as shown in  
Table 6.  
Figure 66. Effective Input Impedances  
VOLTAGE REFERENCE INPUTS  
(VREFP, VREFN)  
AVDD AGND  
The voltage reference for the ADS1278 ADC is the  
differential voltage between VREFP and VREFN:  
VREF = (VREFP – VREFN). The voltage reference is  
common to all channels. The reference inputs use a  
structure similar to that of the analog inputs with the  
equivalent circuitry on the reference inputs shown in  
Figure 67. As with the analog inputs, the load  
presented by the switched capacitor can be modeled  
with an effective impedance, as shown in Figure 68.  
However, the reference input impedance depends on  
the number of active (enabled) channels in addition to  
fMOD. As a result of the change of reference input  
impedance caused by enabling and disabling  
channels, the regulation and setting time of the  
external reference should be noted, so as not to  
affect the readings.  
S1  
AINP  
S2  
9pF  
AINN  
S1  
AGND AVDD  
ESD Protection  
Figure 64. Equivalent Analog Input Circuitry  
tSAMPLE = 1/fMOD  
VREFP  
VREFN  
ON  
S1  
OFF  
ON  
S2  
AGND  
AVDD  
AGND  
AVDD  
OFF  
Figure 65. S1 and S2 Switch Timing for Figure 64  
ESD  
Protection  
Table 6. Modulator Frequency (fMOD) Mode  
Selection  
MODE SELECTION  
High-Speed  
CLKDIV  
fMOD  
fCLK/4  
fCLK/4  
fCLK/8  
fCLK/4  
fCLK/40  
fCLK/8  
1
1
1
0
1
0
High-Resolution  
Figure 67. Equivalent Reference Input Circuitry  
Low-Power  
Low-Speed  
VREFP  
VREFN  
The average load presented by the switched  
capacitor input can be modeled with an effective  
differential impedance, as shown in Figure 66. Note  
5.2kW  
Zeff  
=
´ (6.75MHz/fMOD)  
N
that the effective impedance is a function of fMOD  
.
N = number of active channels.  
Figure 68. Effective Reference Impedance  
Copyright © 2012, Texas Instruments Incorporated  
25  
 
 
 
 
 
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
Table 7. Clock Input Options  
ESD diodes protect the reference inputs. To keep  
these diodes from turning on, make sure the voltages  
on the reference pins do not go below AGND by  
more than 0.4 V, and likewise do not exceed AVDD  
by 0.4 V. If these conditions are possible, external  
Schottky clamp diodes or series resistors may be  
required to limit the input current to safe values (see  
the Absolute Maximum Ratings table).  
MODE  
MAX fCLK  
DATA RATE  
(SPS)  
SELECTION  
(MHz)  
32.768  
27  
CLKDIV fCLK/fDATA  
High-Speed  
1
1
1
0
1
0
256  
512  
128,000  
52,734  
High-Resolution  
27  
512  
Low-Power  
Low-Speed  
52,734  
10,547  
13.5  
27  
256  
2,560  
512  
Note that the valid operating range of the reference  
inputs is limited to the following parameters:  
5.4  
–0.1 V VREFN +0.1 V  
MODE SELECTION (MODE)  
VREFN + 0.5 V VREFP AVDD + 0.1 V  
The ADS1278 supports four modes of operation:  
High-Speed, High-Resolution, Low-Power, and Low-  
Speed. The modes offer optimization of speed,  
resolution, and power. Mode selection is determined  
by the status of the digital input MODE[1:0] pins, as  
shown in Table 8. The ADS1278 continually monitors  
the status of the MODE pin during operation.  
CLOCK INPUT (CLK)  
The ADS1278 requires a clock input for operation.  
The individual converters of the ADS1278 operate  
from the same clock input. At the maximum data rate,  
the clock input can be either 27 MHz or 13.5 MHz for  
Low-Power mode, or 2 7MHz or 5.4 MHz for Low-  
Speed mode, determined by the setting of the  
CLKDIV input. For High-Speed mode, the maximum  
CLK input frequency is 32.768 MHz. For High-  
Resolution mode, the maximum CLK input frequency  
is 27 MHz. The selection of the external clock  
frequency (fCLK) does not affect the resolution of the  
ADS1278. Use of a slower fCLK can reduce the power  
consumption of an external clock buffer. The output  
data rate scales with clock frequency, down to a  
minimum clock frequency of fCLK = 100 kHz. Table 7  
summarizes the ratio of the clock input frequency  
(fCLK) to data rate (fDATA), maximum data rate and  
corresponding maximum clock input for the four  
operating modes.  
Table 8. Mode Selection  
(1)  
MODE[1:0]  
MODE SELECTION  
High-Speed  
MAX fDATA  
128,000  
52,734  
00  
01  
10  
11  
High-Resolution  
Low-Power  
52,734  
Low-Speed  
10,547  
(1) fCLK = 27 MHz max (32.768MHz max in High-Speed mode).  
When using the SPI protocol, DRDY is held high after  
a mode change occurs until settled (or valid) data are  
ready; see Figure 69 and Table 9.  
In Frame-Sync protocol, the DOUT pins are held low  
after a mode change occurs until settled data are  
ready; see Figure 69 and Table 9. Data can be read  
from the device to detect when DOUT changes to  
logic 1, indicating that the data are valid.  
As with any high-speed data converter, a high-quality,  
low-jitter clock is essential for optimum performance.  
Crystal clock oscillators are the recommended clock  
source. Make sure to avoid excess ringing on the  
clock input; keeping the clock trace as short as  
possible, and using a 50-series resistor placed  
close to the source end, often helps.  
26  
Copyright © 2012, Texas Instruments Incorporated  
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
MODE[1:0]  
Pins  
ADS1278  
Mode  
Previous  
Mode  
New Mode  
tNDR-SPI  
SPI  
DRDY  
DOUT  
Protocol  
New Mode  
Valid Data Ready  
tNDR-FS  
Frame-Sync  
Protocol  
New Mode  
Valid Data on DOUT  
Figure 69. Mode Change Timing  
Table 9. New Data After Mode Change  
SYMBOL  
tNDR-SPI  
tNDR-FS  
DESCRIPTION  
MIN  
TYP  
MAX  
129  
UNITS  
Time for new data to be ready (SPI)  
Time for new data to be ready (Frame-Sync)  
Conversions (1/fDATA  
)
)
127  
128  
Conversions (1/fDATA  
SYNCHRONIZATION (SYNC)  
See Figure 71 for the Frame-Sync format timing  
requirement.  
The ADS1278 can be synchronized by pulsing the  
SYNC pin low and then returning the pin high. When  
the pin goes low, the conversion process stops, and  
the internal counters used by the digital filter are  
reset. When the SYNC pin returns high, the  
conversion process restarts. Synchronization allows  
the conversion to be aligned with an external event,  
such as the changing of an external multiplexer on  
the analog inputs, or by a reference timing pulse.  
After synchronization, indication of valid data  
depends on whether SPI or Frame-Sync format was  
used.  
In the SPI format, DRDY goes high as soon as SYNC  
is taken low; see Figure 70. After SYNC is returned  
high, DRDY stays high while the digital filter is  
settling. Once valid data are ready for retrieval,  
DRDY goes low.  
Because the ADS1278 converters operate in parallel  
from the same master clock and use the same SYNC  
input control, they are always in synchronization with  
each other. The aperture match among internal  
channels is typically less than 500 ps. However, the  
synchronization of multiple devices is somewhat  
different. At device power-on, variations in internal  
reset thresholds from device to device may result in  
uncertainty in conversion timing.  
In the Frame-Sync format, DOUT goes low as soon  
as SYNC is taken low; see Figure 71. After SYNC is  
returned high, DOUT stays low while the digital filter  
is settling. Once valid data are ready for retrieval,  
DOUT begins to output valid data. For proper  
synchronization, FSYNC, SCLK, and CLK must be  
established before taking SYNC high, and must then  
remain running. If the clock inputs (CLK, FSYNC or  
SCLK) are subsequently interrupted or reset, re-  
assert the SYNC pin.  
The SYNC pin can be used to synchronize multiple  
devices to within the same CLK cycle. Figure 70  
illustrates the timing requirement of SYNC and CLK  
in SPI format.  
For consistent performance, re-assert SYNC after  
device power-on when data first appear.  
Copyright © 2012, Texas Instruments Incorporated  
27  
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
tCSHD  
CLK  
tSCSU  
tSYN  
SYNC  
DRDY  
tNDR  
Figure 70. Synchronization Timing (SPI Protocol)  
Table 10. SPI Protocol  
SYMBOL  
tCSHD  
tSCSU  
tSYN  
DESCRIPTION  
MIN  
10  
5
TYP  
MAX  
UNITS  
CLK to SYNC hold time  
SYNC to CLK setup time  
Synchronize pulse width  
Time for new data to be ready  
ns  
ns  
1
CLK periods  
tNDR  
129  
Conversions (1/fDATA)  
tCSHD  
CLK  
tSCSU  
tSYN  
SYNC  
FSYNC  
DOUT  
tNDR  
Valid Data  
Figure 71. Synchronization Timing (Frame-Sync Protocol)  
Table 11. Frame-Sync Protocol  
SYMBOL  
tCSHD  
tSCSU  
tSYN  
DESCRIPTION  
MIN  
10  
5
TYP  
MAX  
UNITS  
CLK to SYNC hold time  
SYNC to CLK setup time  
Synchronize pulse width  
Time for new data to be ready  
ns  
ns  
1
CLK periods  
Conversions (1/fDATA)  
tNDR  
127  
128  
28  
Copyright © 2012, Texas Instruments Incorporated  
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
POWER-DOWN (PWDN)  
3. Detect for non-zero data in the powered-up  
channel.  
The channels of the ADS1278 can be independently  
powered down by use of the PWDN inputs. To enter  
the power-down mode, hold the respective PWDN pin  
low for at least two CLK cycles. To exit power-down,  
return the corresponding PWDN pin high. Note that  
when all channels are powered down, the ADS1278  
enters a microwatt (μW) power state where all  
internal biasing is disabled. In this state, the  
TEST[1:0] input pins must be driven; all other input  
pins can float. The ADS1278 outputs remain driven.  
After powering up one or more channels, the  
channels are synchronized to each other. It is not  
necessary to use the SYNC pin to synchronize them.  
When a channel is powered down in TDM data  
format, the data for that channel are either forced to  
zero (fixed-position TDM data mode) or replaced by  
shifting the data from the next channel into the  
vacated data position (dynamic-position TDM data  
mode).  
As shown in Figure 72 and Table 12, a maximum of  
130 conversion cycles must elapse for SPI interface,  
and 129 conversion cycles must elapse for Frame-  
Sync, before reading data after exiting power-down.  
Data from channels already running are not affected.  
The user software can perform the required delay  
time in any of the following ways:  
In Discrete data format, the data are always forced to  
zero. When powering-up a channel in dynamic-  
position TDM data format mode, the channel data  
remain packed until the data are ready, at which time  
the data frame is expanded to include the just-  
powered channel data. See the Data Format section  
for details.  
1. Count the number of data conversions after  
taking the PWDN pin high.  
2. Delay 129/fDATA or 130/fDATA after taking the  
PWDN pins high, then read data.  
· · ·  
· · ·  
CLK  
tPWDN  
tNDR  
PWDN  
DRDY/FSYNC(1)  
DOUT  
(Discrete Data Output Mode)  
Post Power-Up Data  
Normal Position  
DOUT1  
(TDM Mode, Dynamic Position)  
Normal Position  
Data Shifts Position  
DOUT1  
(TDM Mode, Fixed Position)  
Normal Position  
Data Remains in Position  
Normal Position  
Figure 72. Power-Down Timing  
Table 12. Power-Down Timing  
SYMBOL  
tPWDN  
tNDR  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
PWDN pulse width to enter Power-Down mode  
Time for new data ready (SPI)  
2
CLK periods  
129  
128  
130  
129  
Conversions (1/fDATA  
)
)
tNDR  
Time for new data ready (Frame-Sync)  
Conversions (1/fDATA  
Copyright © 2012, Texas Instruments Incorporated  
29  
 
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
FORMAT[2:0]  
Even though the SCLK input has hysteresis, it is  
recommended to keep SCLK as clean as possible to  
prevent glitches from accidentally shifting the data.  
Data can be read from the ADS1278 with two  
interface protocols (SPI or Frame-Sync) and several  
options of data formats (TDM/Discrete and  
Fixed/Dynamic data positions). The FORMAT[2:0]  
inputs are used to select among the options. Table 13  
lists the available options. See the DOUT Modes  
section for details of the DOUT Mode and Data  
Position.  
SCLK may be run as fast as the CLK frequency.  
SCLK may be either in free-running or stop-clock  
operation between conversions. Note that one fCLK is  
required after the falling edge of DRDY until the first  
rising edge of SCLK. For best performance, limit  
fSCLK/fCLK to ratios of 1, 1/2, 1/4, 1/8, etc. When the  
device is configured for modulator output, SCLK  
becomes the modulator clock output (see the  
Modulator Output section).  
Table 13. Data Output Format  
INTERFACE  
PROTOCOL  
DOUT  
MODE  
DATA  
POSITION  
FORMAT[2:0]  
DRDY/FSYNC (SPI Format)  
000  
001  
010  
011  
100  
101  
110  
SPI  
SPI  
TDM  
TDM  
Dynamic  
Fixed  
In the SPI format, this pin functions as the DRDY  
output. It goes low when data are ready for retrieval  
and then returns high on the falling edge of the first  
subsequent SCLK. If data are not retrieved (that is,  
SCLK is held low), DRDY pulses high just before the  
next conversion data are ready, as shown in  
Figure 73. The new data are loaded within one CLK  
cycle before DRDY goes low. All data must be shifted  
out before this time to avoid being overwritten.  
SPI  
Discrete  
TDM  
Frame-Sync  
Frame-Sync  
Frame-Sync  
Modulator Mode  
Dynamic  
Fixed  
TDM  
Discrete  
SERIAL INTERFACE PROTOCOLS  
Data are retrieved from the ADS1278 using the serial  
interface. Two protocols are available: SPI and  
Frame-Sync. The same pins are used for both  
interfaces: SCLK, DRDY/FSYNC, DOUT[8:1], and  
DIN. The FORMAT[2:0] pins select the desired  
interface protocol.  
1/fCLK  
1/fDATA  
DRDY  
SCLK  
Figure 73. DRDY Timing with No Readback  
SPI SERIAL INTERFACE  
DOUT  
The SPI-compatible format is a read-only interface.  
Data ready for retrieval are indicated by the falling  
DRDY output and are shifted out on the falling edge  
of SCLK, MSB first. The interface can be daisy-  
chained using the DIN input when using multiple  
devices. See the Daisy-Chaining section for more  
information.  
The conversion data are output on DOUT[8:1]. The  
MSB data are valid on DOUT[8:1] after DRDY goes  
low. Subsequent bits are shifted out with each falling  
edge of SCLK. If daisy-chaining, the data shifted in  
using DIN appear on DOUT after all channel data  
have been shifted out. When the device is configured  
for modulator output, DOUT[8:1] becomes the  
modulator data output for each channel (see the  
Modulator Output section).  
NOTE: The SPI format is limited to a CLK input  
frequency of 27 MHz, maximum. For CLK input  
operation above 27 MHz (High-Speed mode only),  
use Frame-Sync format.  
DIN  
SCLK  
This input is used when multiple ADS1278s are to be  
daisy-chained together. The DOUT1 pin of the first  
device connects to the DIN pin of the next, etc. It can  
be used with either the SPI or Frame-Sync formats.  
Data are shifted in on the falling edge of SCLK. When  
using only one ADS1278, tie DIN low. See the Daisy-  
Chaining section for more information.  
The serial clock (SCLK) features a Schmitt-triggered  
input and shifts out data on DOUT on the falling  
edge. It also shifts in data on the falling edge on DIN  
when this pin is being used for daisy-chaining. The  
device shifts data out on the falling edge and the user  
normally shifts this data in on the rising edge.  
30  
Copyright © 2012, Texas Instruments Incorporated  
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
DOUT  
FRAME-SYNC SERIAL INTERFACE  
The conversion data are shifted out on DOUT[8:1].  
The MSB data become valid on DOUT[8:1] after  
FSYNC goes high. The subsequent bits are shifted  
out with each falling edge of SCLK. If daisy-chaining,  
the data shifted in using DIN appear on DOUT[8:1]  
after all channel data have been shifted out. When  
the device is configured for modulator output, DOUT  
becomes the modulator data output (see the  
Modulator Output section).  
Frame-Sync format is similar to the interface often  
used on audio ADCs. It operates in slave  
fashion—the user must supply framing signal FSYNC  
(similar to the left/right clock on stereo audio ADCs)  
and the serial clock SCLK (similar to the bit clock on  
audio ADCs). The data are output MSB first or left-  
justified on the rising edge of FSYNC. When using  
Frame-Sync format, the FSYNC and SCLK inputs  
must be continuously running with the relationships  
shown in the Frame-Sync Timing Requirements.  
DIN  
SCLK  
This input is used when multiple ADS1278s are to be  
daisy-chained together. It can be used with either SPI  
or Frame-Sync formats. Data are shifted in on the  
falling edge of SCLK. When using only one  
ADS1278, tie DIN low. See the Daisy-Chaining  
section for more information.  
The serial clock (SCLK) features a Schmitt-triggered  
input and shifts out data on DOUT on the falling  
edge. It also shifts in data on the falling edge on DIN  
when this pin is being used for daisy-chaining. Even  
though SCLK has hysteresis, it is recommended to  
keep SCLK as clean as possible to prevent glitches  
from accidentally shifting the data. When using  
Frame-Sync format, SCLK must run continuously. If it  
is shut down, the data readback will be corrupted.  
The number of SCLKs within a frame period (FSYNC  
clock) can be any power-of-2 ratio of CLK cycles (1,  
1/2, 1/4, etc), as long as the number of cycles is  
sufficient to shift the data output from all channels  
within one frame. When the device is configured for  
modulator output, SCLK becomes the modulator  
clock output (see the Modulator Output section).  
DOUT MODES  
For both SPI and Frame-Sync interface protocols, the  
data are shifted out either through individual channel  
DOUT pins, in a parallel data format (Discrete mode),  
or the data for all channels are shifted out, in a serial  
format, through a common pin, DOUT1 (TDM mode).  
TDM Mode  
In TDM (time-division multiplexed) data output mode,  
the data for all channels are shifted out, in sequence,  
on a single pin (DOUT1). As shown in Figure 74, the  
data from channel 1 are shifted out first, followed by  
channel 2 data, etc. After the data from the last  
channel are shifted out, the data from the DIN input  
follow. The DIN is used to daisy-chain the data output  
from an additional ADS1278 or other compatible  
device. Note that when all channels of the ADS1278  
are disabled, the interface is disabled, rendering the  
DIN input disabled as well. When one or more  
channels of the device are powered down, the data  
format of the TDM mode can be fixed or dynamic.  
DRDY/FSYNC (Frame-Sync Format)  
In Frame-Sync format, this pin is used as the FSYNC  
input. The frame-sync input (FSYNC) sets the frame  
period, which must be the same as the data rate. The  
required number of fCLK cycles to each FSYNC period  
depends on the mode selection and the CLKDIV  
input. Table 7 indicates the number of CLK cycles to  
each frame (fCLK/fDATA). If the FSYNC period is not  
the proper value, data readback will be corrupted.  
SCLK  
1
2
23  
24  
25  
47  
48  
49  
71  
73  
95  
96  
97  
167  
168  
169  
191  
192  
193  
194  
195  
72  
DOUT1  
CH1  
CH2  
CH3  
CH4  
CH5  
CH7  
CH8  
DIN  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 74. TDM Mode (All Channels Enabled)  
Copyright © 2012, Texas Instruments Incorporated  
31  
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
TDM Mode, Fixed-Position Data  
TDM Mode, Dynamic Position Data  
In this TDM data output mode, the data position of  
the channels remain fixed, regardless of whether the  
channels are powered down. If a channel is powered  
down, the data are forced to zero but occupy the  
same position within the data stream. Figure 75  
shows the data stream with channel 1 and channel 3  
powered down.  
In this TDM data output mode, when a channel is  
powered down, the data from higher channels shift  
one position in the data stream to fill the vacated data  
slot. Figure 76 shows the data stream with channel 1  
and channel 3 powered down.  
Discrete Data Output Mode  
In Discrete data output mode, the channel data are  
shifted out in parallel using individual channel data  
output pins DOUT[8:1]. After the 24th SCLK, the  
channel data are forced to zero. The data are also  
forced to zero for powered down channels. Figure 77  
shows the discrete data output format.  
SCLK  
1
2
23  
24  
25  
47  
48  
49  
71  
72  
73  
95  
96  
97  
167  
168  
169  
191  
192  
193  
194  
195  
DOUT1  
CH1  
CH2  
CH3  
CH4  
CH5  
CH7  
CH8  
DIN  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 75. TDM Mode, Fixed-Position Data (Channels 1 and 3 Shown Powered Down)  
SCLK  
1
2
23  
24  
25  
47  
48  
49  
50  
119  
120  
121  
143  
144  
145  
145  
146  
CH2  
CH4  
CH5  
CH7  
CH8  
DIN  
DOUT1  
DRDY  
(SPI)  
FSYNC  
(Frame- Sync)  
Figure 76. TDM Mode, Dynamic Position Data (Channels 1 and 3 Shown Powered Down)  
32  
Copyright © 2012, Texas Instruments Incorporated  
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
SCLK  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
1
2
22  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
23  
24  
25  
26  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 77. Discrete Data Output Mode  
Table 14. Maximum Channels in a Daisy-Chain  
(fSCLK = fCLK) (continued)  
DAISY-CHAINING  
(fSCLK = fCLK  
)
Multiple ADS1278s can be daisy-chained together to  
output data on a single pin. The DOUT1 data output  
pin of one device is connected to the DIN of the next  
device. As shown in Figure 78, the DOUT1 pin of  
device 1 provides the output data to a controller, and  
the DIN of device 2 is grounded. Figure 79 shows the  
data format when reading back data.  
MAXIMUM NUMBER  
OF CHANNELS  
MODE SELECTION  
High-Speed  
CLKDIV  
1
1
1
0
1
0
10  
21  
High-Resolution  
21  
Low-Power  
Low-Speed  
10  
The maximum number of channels that may be  
daisy-chained in this way is limited by the frequency  
of fSCLK, the mode selection, and the CLKDIV input.  
The frequency of fSCLK must be high enough to  
completely shift the data out from all channels within  
one fDATA period. Table 14 lists the maximum number  
106  
21  
Whether the interface protocol is SPI or Frame-Sync,  
it is recommended to synchronize all devices by tying  
the SYNC inputs together. When synchronized in SPI  
protocol, it is only necessary to monitor the DRDY  
output of one ADS1278.  
of daisy-chained channels when fSCLK = fCLK  
.
To increase the number of data channels possible in  
a chain, a segmented DOUT scheme may be used,  
producing two data streams. Figure 80 illustrates four  
ADS1278s, with pairs of ADS1278s daisy-chained  
together. The channel data of each daisy-chained  
pair are shifted out in parallel and received by the  
processor through independent data channels.  
In Frame-Sync interface protocol, the data from all  
devices are ready after the rising edge of FSYNC.  
Since DOUT1 and DIN are both shifted on the falling  
edge of SCLK, the propagation delay on DOUT1  
creates a setup time on DIN. Minimize the skew in  
SCLK to avoid timing violations.  
Table 14. Maximum Channels in a Daisy-Chain  
Copyright © 2012, Texas Instruments Incorporated  
33  
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
U1  
U2  
SYNC  
CLK  
SYNC  
SYNC  
DRDY  
DRDY Output from Device 1  
DOUT from Devices 1 and 2  
CLK  
DIN  
CLK  
DIN  
DOUT1  
DOUT1  
SCLK  
SCLK  
SCLK  
Note: The number of chained devices is limited by the SCLK rate and device mode.  
Figure 78. Daisy-Chaining of Two Devices, SPI Protocol (FORMAT[2:0] = 000 or 001)  
SCLK  
1
2
25  
26  
49  
50  
73  
74  
97  
98  
193  
194  
217  
218  
385  
386  
DOUT1  
CH1, U1  
CH2, U1  
CH3, U1  
CH4, U1  
CH5, U1  
CH1, U2  
CH2, U2  
DIN2  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 79. Daisy-Chain Data Format of Figure 78  
SYNC  
CLK  
Serial Data  
Devices 3 and 4  
U1  
U2  
U3  
U4  
SYNC  
CLK  
SYNC  
CLK  
SYNC  
CLK  
SYNC  
CLK  
Serial Data  
DOUT1  
DOUT1  
DIN  
DOUT1  
DIN  
DIN  
DOUT1  
DIN  
Devices 1 and 2  
FSYNC  
SCLK  
FSYNC  
SCLK  
FSYNC  
SCLK  
FSYNC  
SCLK  
SCLK  
FSYNC  
Note: The number of chained devices is limited by the SCLK rate and device mode.  
Figure 80. Segmented DOUT Daisy-Chain, Frame-Sync Protocol (FORMAT[2:0] = 011 or 100)  
34  
Copyright © 2012, Texas Instruments Incorporated  
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
POWER SUPPLIES  
space  
space  
The ADS1278 has three power supplies: AVDD,  
DVDD, and IOVDD. AVDD is the analog supply that  
powers the modulator, DVDD is the digital supply that  
powers the digital core, and IOVDD is the digital I/O  
power supply. The IOVDD and DVDD power supplies  
can be tied together if desired (1.8 V). To achieve  
rated performance, it is critical that the power  
supplies are bypassed with 0.1-μF and 10-μF  
capacitors placed as close as possible to the supply  
pins. A single 10-μF ceramic capacitor may be  
substituted in place of the two capacitors.  
MODULATOR OUTPUT  
The ADS1278 incorporates a 6th-order, single-bit,  
chopper-stabilized modulator followed by a multi-  
stage digital filter that yields the conversion results.  
The data stream output of the modulator is available  
directly, bypassing the internal digital filter. The digital  
filter is disabled, reducing the DVDD current, as  
shown in Table 15. In this mode, an external digital  
filter implemented in an ASIC, FPGA, or similar  
device is required. To invoke the modulator output, tie  
FORMAT[2:0], as shown in Figure 82. DOUT[8:1]  
then becomes the modulator data stream outputs for  
each channel and SCLK becomes the modulator  
clock output. The DRDY/FSYNC pin becomes an  
unused output and can be ignored. The normal  
operation of the Frame-Sync and SPI interfaces is  
disabled, and the functionality of SCLK changes from  
an input to an output, as shown in Figure 82.  
Figure 81 shows the start-up sequence of the  
ADS1278. At power-on, bring up the DVDD supply  
first, followed by IOVDD and then AVDD. Check the  
power-supply sequence for proper order, including  
the ramp rate of each supply. DVDD and IOVDD may  
be sequenced at the same time if the supplies are  
tied together. Each supply has an internal reset circuit  
whose outputs are summed together to generate a  
global power-on reset. After the supplies have  
exceeded the reset thresholds, 218 fCLK cycles are  
counted before the converter initiates the conversion  
process. Following the CLK cycles, the data for 129  
conversions are suppressed by the ADS1278 to allow  
output of fully-settled data. In SPI protocol, DRDY is  
held high during this interval. In frame-sync protocol,  
DOUT is forced to zero. The power supplies should  
be applied before any analog or digital pin is driven.  
For consistent performance, assert SYNC after  
device power-on when data first appear.  
Table 15. Modulator Output Clock Frequencies  
MODULATOR  
CLOCK OUTPUT  
(SCLK)  
MODE  
[1:0]  
CLKDIV  
DVDD (mA)  
00  
01  
1
1
1
0
1
0
fCLK/4  
fCLK/4  
fCLK/8  
fCLK/4  
fCLK/40  
fCLK/8  
8
7
4
4
1
1
10  
11  
DVDD  
IOVDD  
AVDD  
1V nom(1)  
1V nom(1)  
Modulator Data Channel 1  
DOUT1  
DOUT2  
3V nom(1)  
Modulator Data Channel 2  
IOVDD  
Internal Reset  
CLK  
DIN  
218  
129 (max)  
tDATA  
FORMAT0  
FORMAT1  
FORMAT2  
fCLK  
DOUT8  
SCLK  
Modulator Data Channel 8  
Modulator Clock Output  
DRDY  
(SPI Protocol)  
DOUT  
Figure 82. Modulator Output  
(Frame-Sync Protocol)  
Valid Data  
Figure 81. Start-Up Sequence  
Copyright © 2012, Texas Instruments Incorporated  
35  
 
 
 
ADS1278-EP  
ZHCSAC0 AUGUST 2012  
www.ti.com.cn  
Table 16. Test Mode Pin Map (TEST[1:0] = 11)  
In modulator output mode, the frequency of the  
modulator clock output (SCLK) depends on the mode  
selection of the ADS1278. Table 15 lists the  
modulator clock output frequency and DVDD current  
versus device mode.  
TEST MODE PIN MAP  
INPUT PINS  
PWDN1  
OUTPUT PINS  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DIN  
PWDN2  
Figure 83 shows the timing relationship of the  
modulator clock and data outputs.  
PWDN3  
PWDN4  
The data output is a modulated 1s density data  
stream. When VIN = +VREF, the 1s density is  
approximately 80% and when VIN = –VREF, the 1s  
density is approximately 20%.  
PWDN5  
PWDN6  
PWDN7  
PWDN8  
Modulator  
MODE0  
SCLK  
Clock Output  
MODE1  
SYNC  
FORMAT0  
FORMAT1  
FORMAT2  
CLKDIV  
FSYNC/DRDY  
SCLK  
Modulator  
DOUT  
Data Output  
(13ns max)  
Figure 83. Modulator Output Timing  
VCOM OUTPUT  
The VCOM pin provides a voltage output equal to  
AVDD/2. The intended use of this output is to set the  
output common-mode level of the analog input  
drivers. The drive capability of the output is limited;  
therefore, the output should only be used to drive  
high-impedance nodes (> 1 M). In some cases, an  
external buffer may be necessary. A 0.1-μF bypass  
capacitor is recommended to reduce noise pickup.  
PIN TEST USING TEST[1:0] INPUTS  
The test mode feature of the ADS1278 allows  
continuity testing of the digital I/O pins. In this mode,  
the normal functions of the digital pins are disabled  
and routed to each other as pairs through internal  
logic, as shown in Table 16. The pins in the left  
column drive the output pins in the right column.  
Note: some of the digital input pins become outputs;  
these outputs must be accommodated in the design.  
The analog input, power supply, and ground pins all  
remain connected as normal. The test mode is  
engaged by setting the pins TEST [1:0] = 11. For  
normal converter operation, set TEST[1:0] = 00. Do  
not use '01' or '10'.  
OPA350  
VCOM » (AVDD/2)  
0.1mF  
Figure 84. VCOM Output  
36  
Copyright © 2012, Texas Instruments Incorporated  
 
 
ADS1278-EP  
www.ti.com.cn  
ZHCSAC0 AUGUST 2012  
APPLICATION INFORMATION  
VREFP and VREFN. The reference input should  
be driven by a low-impedance source. For best  
performance, the reference should have less than  
3 μVRMS in-band noise. For references with noise  
higher than this level, external reference filtering  
may be necessary.  
To obtain the specified performance from the  
ADS1278, the following layout and component  
guidelines should be considered.  
1. Power Supplies: The device requires three  
power supplies for operation: DVDD, IOVDD, and  
AVDD. The allowed range for DVDD is 1.65 V to  
1.95 V; the range of IOVDD is 1.65 V to 3.6 V;  
AVDD is restricted to 4.75 V to 5.25 V. For all  
supplies, use  
a
10-μF tantalum capacitor,  
bypassed with a 0.1-μF ceramic capacitor, placed  
close to the device pins. Alternatively, a single  
10-μF ceramic capacitor can be used. The  
supplies should be relatively free of noise and  
should not be shared with devices that produce  
voltage spikes (such as relays, LED display  
drivers, etc.). If a switching power-supply source  
is used, the voltage ripple should be low (less  
than 2 mV) and the switching frequency outside  
the passband of the converter.  
6. Analog Inputs: The analog input pins must be  
driven differentially to achieve specified  
performance.  
A
true differential driver or  
2. Ground Plane: A single ground plane connecting  
both AGND and DGND pins can be used. If  
separate digital and analog grounds are used,  
connect the grounds together at the converter.  
transformer (ac applications) can be used for this  
purpose. Route the analog inputs tracks (AINP,  
AINN) as a pair from the buffer to the converter  
using short, direct tracks and away from digital  
tracks. A 1-nF to 10-nF capacitor should be used  
directly across the analog input pins, AINP and  
AINN. A low-k dielectric (such as COG or film  
type) should be used to maintain low THD.  
Capacitors from each analog input to ground can  
be used. They should be no larger than 1/10 the  
size of the difference capacitor (typically 100 pF)  
to preserve the ac common-mode performance.  
3. Digital Inputs: It is recommended to source-  
terminate the digital inputs to the device with 50-  
series resistors. The resistors should be placed  
close to the driving end of digital source  
(oscillator, logic gates, DSP, etc.) This placement  
helps to reduce ringing on the digital lines (ringing  
may lead to degraded ADC performance).  
4. Analog/Digital Circuits: Place analog circuitry  
(input buffer, reference) and associated tracks  
together, keeping them away from digital circuitry  
(DSP, microcontroller, logic). Avoid crossing  
digital tracks across analog tracks to reduce  
noise coupling and crosstalk.  
7. Component Placement: Place the power supply,  
analog input, and reference input bypass  
capacitors as close as possible to the device  
pins. This layout is particularly important for  
small-value ceramic capacitors. Larger (bulk)  
decoupling capacitors can be located farther from  
the device than the smaller ceramic capacitors.  
5. Reference Inputs: It is recommended to use a  
minimum 10-μF tantalum with a 0.1-μF ceramic  
capacitor directly across the reference inputs,  
Copyright © 2012, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1278MPAPTEP  
V62/12611-01XE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PAP  
PAP  
64  
64  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
ADS1278EP  
ADS1278EP  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
PAP 64  
10 x 10, 0.5 mm pitch  
HTQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226442/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PAP0064G  
PowerPAD TQFP - 1.2 mm max height  
SCALE 1.300  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
16  
33  
17  
32  
A
0.27  
64X  
60X 0.5  
0.17  
0.08  
C A B  
4X 7.5  
C
SEATING PLANE  
1.2 MAX  
(0.127)  
TYP  
SEE DETAIL A  
17  
32  
0.25  
GAGE PLANE  
(1)  
33  
16  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
65  
7.00  
5.99  
DETAIL A  
A
17  
TYPICAL  
1
48  
49  
64  
4218924/A 01/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PAP0064G  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8)  
NOTE 8  
(
7)  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
(R0.05)  
TYP  
1
48  
64X (0.3)  
65  
(11.4)  
SYMM  
(1.3 TYP)  
60X (0.5)  
33  
16  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
17  
32  
SEE DETAILS  
(1.3 TYP)  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218924/A 01/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PAP0064G  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
7)  
BASED ON 0.125  
THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
(R0.05) TYP  
SYMM  
65  
(11.4)  
60X (0.5)  
33  
16  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
7.83 X 7.83  
7.0 X 7.0 (SHOWN)  
6.39 X 6.39  
0.125  
0.15  
0.175  
5.92 X 5.92  
4218924/A 01/2022  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY