ADS1278MHFQ-MLS [TI]

抗辐射加固 24 位 8 通道同步采样 Δ-Σ ADC | HFQ | 84 | -55 to 125;
ADS1278MHFQ-MLS
型号: ADS1278MHFQ-MLS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

抗辐射加固 24 位 8 通道同步采样 Δ-Σ ADC | HFQ | 84 | -55 to 125

文件: 总57页 (文件大小:1770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
ADS1278-SP 耐辐射 8 通道同步采样  
24 位模数转换器  
1 特性  
3 说明  
1
耐辐射  
ADS1278-SP(八通道)是一款数据速率高达每秒  
12.8 万个采样 (128kSPS) 24 位、Σ-Δ 模数转换器  
(ADC),可支持八通道同步采样。  
TID 75krad (Si)  
TID 辐射批次验收测试 (RLAT) 待定  
125°C 的环境下,单粒子锁定 (SEL) 对于  
LET 的抗扰度为 68MeV-cm2/mg  
传统上来讲,提供良好漂移性能的工业用三角积分  
ADC 使用带有较大通带衰减的数字滤波器。因此,它  
们的信号带宽有限并且主要适合于 dc 测量。音频应用  
中的 高分辨率 ADC 可提供更大的可用带宽,但其失  
调电压和漂移规格均显著低于工业领域对应器件。  
ADS1278-SP 对上述类型的转换器进行了整合,可支  
持高精度工业测量,且具备出色的直流和交流规格。  
八个同步采样通道  
高达 128kSPS 的数据速率  
交流性能:  
63KHz 带宽  
111dB SNR(高分辨率模式)  
-108dB THD  
高阶、斩波稳定调制器在低带内噪声情况下实现极低漂  
移。板载抽取滤波器抑制调制器和信号带外噪声。这些  
ADC 在纹波小于 0.005dB 的情况下提供高达那奎斯特  
速率 90% 的可用信号带宽。  
直流精度:  
0.8μV/°C 的温漂  
1.3ppm/°C 增益漂移  
可选择工作模式:  
器件信息(1)  
高速:128kSPS106dB SNR  
高分辨率:52kSPS111dB SNR  
低功耗:52kSPS31mW/ch  
低速:10kSPS7mW/ch  
器件型号  
等级  
封装  
耐辐射等级 75krad  
(Si)–55°C 125°C  
ADS1278MHFQ-MLS  
84 引脚 HFQ  
重量:  
耐辐射等级 75krad  
(Si)–55°C 115°C  
工程样片(2)  
ADS1278WHFQ-MLS  
ADS1278HFQ/EM  
线性相位数字滤波器  
SPI™或者帧同步串行接口  
低采样孔径错误  
4.46g(3)  
ADS1278EVM-CVAL 陶瓷评估板  
EVM  
调制器输出选项(数字滤波器旁路)  
模拟电源:5V  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
(2) 这些部件仅适用于工程评估。部件按照不合规的流程进行加工  
处理。这些部件不适用于质检、生产、辐射测试或飞行。这些  
零部件无法在 –55°C 125°C 的完整 MIL 额定温度范围内或  
运行寿命中保证其性能。  
数字内核:1.8V  
I/O 电源:1.8V 3.3V  
(3) 重量误差在 ±10% 以内。  
2 应用  
空间系统(卫星、摆渡车、站点)  
简化原理图  
DVDD  
VREFP VREFN AVDD  
IOVDD  
卫星温度和位置检测  
轨道观测系统  
Input1  
Input2  
Input3  
Input4  
Input5  
Input6  
Input7  
Input8  
DS  
DS  
DS  
SPI  
and  
DRDY/FSYNC  
SCLK  
Frame-  
Sync  
精密且科学 应用  
高精度仪器  
DOUT[8:1]  
DIN  
Interface  
DS  
DS  
DS  
DS  
DS  
Eight  
Digital  
Filters  
TEST[1:0]  
FORMAT[2:0]  
CLK  
Control  
Logic  
SYNC  
PWDN[8:1]  
CLKDIV  
MODE[1:0]  
AGND  
DGND  
ADS1278-SP  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS937  
 
 
 
 
 
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 23  
8.3 Feature Description................................................. 23  
8.4 Device Functional Modes........................................ 45  
Application and Implementation ........................ 46  
9.1 Application Information............................................ 46  
9.2 Typical Application .................................................. 46  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements: SPI Format............................ 9  
7.7 Timing Requirements: Frame-Sync Format............ 11  
7.8 Quality Conformance Inspection............................. 11  
7.9 Typical Characteristics............................................ 13  
Detailed Description ............................................ 22  
8.1 Overview ................................................................. 22  
9
10 Power Supply Recommendations ..................... 49  
11 Layout................................................................... 50  
11.1 Layout Guidelines ................................................. 50  
11.2 Layout Example .................................................... 51  
12 器件和文档支持 ..................................................... 52  
12.1 接收文档更新通知 ................................................. 52  
12.2 社区资源................................................................ 52  
12.3 ....................................................................... 52  
12.4 静电放电警告......................................................... 52  
12.5 术语表 ................................................................... 52  
13 机械、封装和可订购信息....................................... 53  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2018) to Revision B  
Page  
已更改 将预告信息更改为生产数据................................................................................................................................ 1  
2
版权 © 2018, Texas Instruments Incorporated  
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
5 说明 (续)  
四个运行模式可实现速度、分辨率和功率的优化。所有操作直接由引脚控制;无需寄存器编程。该器件具有 –55°C  
+125°C 的扩展级温度范围,并且可提供 84 引脚 HFQ 封装。  
6 Pin Configuration and Functions  
HFQ Package  
84-Pin CFP  
Top View  
AINP2  
AINN2  
AGND  
AINP1  
AINN1  
AGND  
AVDD  
1
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
AGND  
AINN7  
AINP7  
2
3
4
AGND  
5
AINN8  
AINP8  
6
7
AGND  
AVDD  
8
AVDD  
AGND  
AGND  
AGND  
DGND  
TEST0  
TEST1  
CLKDIV  
SYNC  
DIN  
9
AVDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
AGND  
AGND  
PWDN1  
PWDN2  
PWDN3  
PWDN4  
PWDN5  
PWDN6  
PWDN7  
PWDN8  
MODE0  
MODE1  
DOUT8  
DOUT7  
DOUT6  
DOUT5  
Not to scale  
Copyright © 2018, Texas Instruments Incorporated  
3
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3, 6, 9, 10,  
11, 53, 54,  
57, 60, 63,  
66, 69, 72,  
76, 77, 82  
AGND  
Analog ground  
Analog ground; connect to DGND using a single plane.  
AINP1  
AINP2  
AINP3  
AINP4  
AINP5  
AINP6  
AINP7  
AINP8  
AINN1  
AINN2  
AINN3  
AINN4  
AINN5  
AINN6  
AINN7  
AINN8  
4
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
1
83  
80  
67  
64  
61  
58  
5
AINP[8:1] Positive analog input, channels 8 through 1.  
2
84  
81  
68  
65  
62  
59  
AINN[8:1] Negative analog input, channels 8 through 1.  
7, 8, 55, 56,  
70, 71, 78,  
79  
AVDD  
Analog power supply  
Analog power supply (4.75 V to 5.25 V).  
VCOM  
VREFN  
VREFP  
CLK  
73  
75  
74  
37  
Analog output  
Analog input  
Analog input  
Digital input  
AVDD / 2 Unbuffered voltage output.  
Negative reference input.  
Positive reference input.  
Master clock input.  
1 = 32.768 MHz (High-Speed mode only) / 27  
MHz  
0 = 13.5 MHz (low-power) / 5.4 MHz (low-speed)  
CLK input divider  
control:  
CLKDIV  
15  
Digital input  
12, 26, 31,  
32, 33, 34  
DGND  
Digital ground  
Digital ground power supply.  
DIN  
17  
25  
24  
23  
22  
21  
20  
19  
18  
Digital input  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Daisy-chain data input.  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DOUT1 is TDM data output (TDM mode).  
DOUT[8:1] Data output for channels 8 through 1.  
DRDY/  
FSYNC  
39  
Digital input/output  
Frame-Sync protocol: frame clock input; SPI protocol: data ready output.  
Digital core power supply (+1.65 V to +1.95 V).  
DVDD  
35, 36  
42  
Digital power supply  
Digital input  
FORMAT0  
FORMAT1  
FORMAT2  
FORMAT[2:0] Selects Frame-Sync/SPI protocol, TDM/discrete data outputs,  
fixed/dynamic position TDM data, and modulator mode/normal operating  
mode.  
41  
Digital input  
40  
Digital input  
27, 28, 29,  
30  
IOVDD  
Digital power supply  
I/O power supply (+1.65 V to +3.6 V).  
4
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
44  
43  
52  
51  
50  
49  
48  
47  
46  
45  
38  
16  
13  
14  
MODE0  
MODE1  
PWDN1  
PWDN2  
PWDN3  
PWDN4  
PWDN5  
PWDN6  
PWDN7  
PWDN8  
SCLK  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input/output  
Digital input  
Digital input  
Digital input  
MODE[1:0] Selects High-Speed, High-Resolution, Low-Power, or Low-Speed  
mode operation.  
PWDN[8:1] Power-down control for channels 8 through 1.  
Serial clock input, modulator clock output.  
Synchronize input (all channels).  
SYNC  
TEST0  
TEST1  
TEST[1:0] Test mode  
select:  
00 = Normal operation  
11 = Test mode  
01 = Do not use  
10 = Do not use  
Copyright © 2018, Texas Instruments Incorporated  
5
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
AVDD to AGND  
V
V
V
AGND to DGND  
0.3  
3.6  
DVDD, IOVDD to DGND  
Momentary  
100  
10  
Input current  
Continuous  
mA  
Analog input to AGND  
–0.3  
–0.3  
–55  
–55  
–60  
AVDD + 0.3  
DVDD + 0.3  
217  
V
V
Digital input or output to DGND  
HFQ and HKP Packages  
Junction temperature  
D Package  
°C  
°C  
175  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
TBD  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
TBD  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–55  
–55  
NOM  
MAX  
125  
UNIT  
ADS1278MHFQ-MLS  
ADS1278WHFQ-MLS  
TJ  
Operating junction temperature  
°C  
115  
7.4 Thermal Information  
ADS1278-SP  
HFQ (CFP)  
84 PINS  
23.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
9.6  
11.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.0  
ψJB  
10.9  
RθJC(bot)  
7.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2018, Texas Instruments Incorporated  
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
7.5 Electrical Characteristics  
All specifications at TA = –55°C to 125°C, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
VREFN = 0 V, and all channels active, unless otherwise noted.  
–55°C to +125°C  
(ADS1278MHFQ-MLS)  
–55°C to +115°C  
(ADS1278WHFQ-MLS)  
SUBGROUP  
PARAMETER  
TEST CONDITIONS  
UNIT  
(1)(2)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
ANALOG INPUTS  
Full-scale input voltage (FSR(3)  
)
VIN = (AINP – AINN)  
±VREF  
±VREF  
V
V
V
AGND –  
0.1  
AVDD AGND –  
AVDD  
+ 0.1  
Absolute input voltage  
AINP or AINN to AGND  
VCM = (AINP + AINN) / 2  
1, 2, 3  
+ 0.1  
0.1  
Common-mode input voltage (VCM  
)
2.5  
14  
2.5  
14  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
Differential  
input  
impedance  
14  
14  
k  
28  
28  
140  
140  
DC PERFORMANCE  
Resolution  
No missing codes  
fCLK = 32.768 MHz(4)  
fCLK = 27 MHz  
1, 2, 3  
24  
24  
Bits  
128,000  
105,469  
52,734  
52,734  
10,547  
128,000  
105,469  
52,734  
52,734  
10,547  
High-Speed mode  
Maximum data  
rate (fDATA  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
SPS(5)  
)
Differential input, VCM  
2.5 V  
=
±0.001  
2
±0.001  
2
Integral nonlinearity (INL)(6)  
1, 2, 3  
1, 2, 3  
±0.0003  
±0.0003  
% FSR(3)  
Offset error  
Offset drift  
Gain error  
Gain drift  
0.25  
0.8  
0.1  
1.3  
8.5  
5.5  
8.5  
8.0  
108  
80  
2
0.25  
0.8  
0.1  
1.3  
8.5  
5.5  
8.5  
8.0  
108  
80  
2
mV  
μV/°C  
1, 2, 3  
0.5  
0.5 % FSR  
ppm/°C  
21  
High-Speed mode  
Shorted input  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
23  
14  
23  
23  
High-Resolution mode Shorted input  
13  
Noise  
μV, rms  
21  
Low-Power mode  
Low-Speed mode  
Shorted input  
Shorted input  
fCM = 60 Hz  
21  
Common-mode rejection  
AVDD  
90  
90  
dB  
Power-supply  
rejection  
DVDD  
fPS = 60 Hz  
No load  
85  
85  
dB  
V
IOVDD  
105  
105  
AVDD /  
2
AVDD /  
2
VCOM output voltage  
AC PERFORMANCE  
Crosstalk  
f = 1 kHz, –0.5 dBFS(7)  
–107  
106  
110  
111  
106  
107  
–108  
109  
–107  
106  
110  
111  
106  
107  
–108  
109  
dB  
High-Speed mode  
4, 5, 6  
4, 5, 6  
98  
98  
VREF = 2.5 V  
VREF = 3 V  
101  
101  
Signal-to-noise  
ratio (SNR)(8)  
(unweighted)  
High-Resolution mode  
dB  
Low-Power mode  
Low-Speed mode  
4, 5, 6  
4, 5, 6  
4, 5, 6  
98  
98  
98  
98  
Total harmonic distortion (THD)(9)  
VIN = 1 kHz, –0.5 dBFS  
–96  
–96  
dB  
dB  
Spurious-free dynamic range  
(1) For subgroup definitions, please see Quality Conformance Inspection table.  
(2) Subgroups apply to –55°C to +125°C column only.  
(3) FSR = full-scale range = 2 VREF  
.
(4) fCLK = 32.768-MHz max for High-Speed mode and 27-MHz max for all other modes. When fCLK > 27 MHz, operation is limited to Frame-  
Sync mode and VREF 2.6 V.  
(5) SPS = samples per second.  
(6) Best fit method.  
(7) Worst-case channel crosstalk between one or more channels.  
(8) Minimum SNR is ensured by the limit of the DC noise specification.  
(9) THD includes the first nine harmonics of the input signal; Low-Speed mode includes the first five harmonics.  
Copyright © 2018, Texas Instruments Incorporated  
7
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
All specifications at TA = –55°C to 125°C, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
VREFN = 0 V, and all channels active, unless otherwise noted.  
–55°C to +125°C  
(ADS1278MHFQ-MLS)  
–55°C to +115°C  
(ADS1278WHFQ-MLS)  
SUBGROUP  
PARAMETER  
TEST CONDITIONS  
UNIT  
(1)(2)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Passband ripple  
±0.005  
±0.005  
dB  
Hz  
0.453  
fDATA  
0.453  
fDATA  
Passband  
0.49  
fDATA  
0.49  
fDATA  
–3-dB bandwidth  
Hz  
High-Resolution mode  
All other modes  
4, 5, 6  
4, 5, 6  
95  
95  
dB  
dB  
Stop band  
attenuation  
100  
100  
0.547  
fDATA  
127.45  
3 fDATA  
0.547  
fDATA  
127.45  
3 fDATA  
High-Resolution mode  
All other modes  
4, 5, 6  
4, 5, 6  
Stop band  
Hz  
0.547  
fDATA  
63.453  
fDATA  
0.547  
fDATA  
63.453  
fDATA  
High-Resolution mode  
All other modes  
39/fDATA  
38/fDATA  
78/fDATA  
76/fDATA  
39/fDATA  
38/fDATA  
78/fDATA  
76/fDATA  
Group delay  
s
s
High-Resolution mode Complete settling  
Settling time  
(latency)  
All other modes  
Complete settling  
VOLTAGE REFERENCE INPUTS  
fCLK = 27 MHz  
fCLK = 32.768 MHz(4)  
1, 2, 3  
1, 2, 3  
0.5  
0.5  
2.5  
2.5  
3.1  
2.6  
0.5  
0.5  
2.5  
2.5  
3.1  
2.6  
Reference input voltage (VREF  
(VREF = VREFP – VREFN)  
)
V
AGND –  
0.1  
AGND AGND –  
AGND  
+ 0.1  
Negative reference input (VREFN)  
1, 2, 3  
1, 2, 3  
V
V
+ 0.1  
0.1  
VREFN  
+ 0.5  
AVDD  
+ 0.1  
VREFN  
+ 0.5  
AVDD  
+ 0.1  
Positive reference input (VREFP)  
High-Speed mode  
0.65  
0.65  
1.3  
0.65  
0.65  
1.3  
Reference  
Input  
impedance  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
kΩ  
6.5  
6.5  
DIGITAL INPUT/OUTPUT (IOVDD = 1.8 V to 3.6 V)  
0.7  
IOVDD  
0.7  
IOVDD  
VIH  
4, 5, 6  
4, 5, 6  
4, 5, 6  
4, 5, 6  
IOVDD  
IOVDD  
V
V
V
0.3  
IOVDD  
0.3  
IOVDD  
VIL  
DGND  
DGND  
0.8  
IOVDD  
0.8  
IOVDD  
VOH  
IOH = 4 mA  
IOL = 4 mA  
IOVDD  
IOVDD  
0.2  
IOVDD  
0.2  
IOVDD  
VOL  
DGND  
DGND  
V
Input leakage  
0 < VIN DIGITAL < IOVDD  
High-Speed mode(4)  
Other modes  
4, 5, 6  
4, 5, 6  
1, 2, 3  
±11  
32.768  
27  
±10  
32.768  
27  
μA  
0.1  
0.1  
0.1  
0.1  
Master clock rate (fCLK  
)
MHz  
POWER SUPPLY  
AVDD  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
4.75  
1.65  
1.65  
5
5.25  
1.95  
3.6  
11  
4.75  
1.65  
1.65  
5
5.25  
1.95  
3.6  
10  
V
V
V
DVDD  
1.8  
1.8  
IOVDD  
AVDD  
1
1
1
1
Power-down  
current  
DVDD  
52  
50  
μA  
IOVDD  
1
12  
1
11  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
97  
97  
44  
9
148  
148  
66  
97  
97  
44  
9
145  
145  
64  
AVDD current  
mA  
15  
14  
8
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Electrical Characteristics (continued)  
All specifications at TA = –55°C to 125°C, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
VREFN = 0 V, and all channels active, unless otherwise noted.  
–55°C to +125°C  
(ADS1278MHFQ-MLS)  
–55°C to +115°C  
(ADS1278WHFQ-MLS)  
SUBGROUP  
PARAMETER  
TEST CONDITIONS  
UNIT  
(1)(2)  
MIN  
TYP  
23  
MAX  
31  
MIN  
TYP  
23  
MAX  
30  
High-Speed mode  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
High-Speed mode  
High-Resolution mode  
Low-Power mode  
Low-Speed mode  
16  
21  
16  
20  
DVDD current  
IOVDD current  
mA  
12  
18  
12  
17  
2.5  
5
2.5  
4.5  
1
0.25  
0.125  
0.125  
0.035  
530  
515  
245  
50  
1.5  
0.8  
0.8  
0.5  
805  
785  
370  
85  
0.25  
0.125  
0.125  
0.035  
530  
515  
245  
50  
0.6  
0.6  
0.3  
785  
765  
355  
80  
mA  
Power  
dissipation  
mW  
7.6 Timing Requirements: SPI Format(1)  
For TA = –55°C to 125°C, IOVDD = 1.65 V to 3.6 V, and DVDD = 1.65 V to 1.95 V.  
SYMBOL  
tCLK  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
(2)  
CLK period (1 / fCLK  
)
37  
15  
10,000  
ns  
ns  
tCPW  
CLK positive or negative pulse width  
(3)  
tCONV  
Conversion period (1 / fDATA  
)
256  
2560  
16  
tCLK  
ns  
(4)  
tCD  
Falling edge of CLK to falling edge of DRDY  
Falling edge of DRDY to rising edge of first SCLK to retrieve data  
DRDY falling edge to DOUT MSB valid (propagation delay)  
Falling edge of SCLK to rising edge of DRDY  
SCLK period  
22  
18  
(4)  
tDS  
1
tCLK  
ns  
tMSBPD  
(4)  
tSD  
ns  
(5)  
tSCLK  
tSPW  
1
0.4  
10  
tCLK  
tCLK  
ns  
SCLK positive or negative pulse width  
(4) (6)  
(4)  
tDOHD  
tDOPD  
tDIST  
SCLK falling edge to new DOUT invalid (hold time)  
SCLK falling edge to new DOUT valid (propagation delay)  
New DIN valid to falling edge of SCLK (setup time)  
Old DIN valid to falling edge of SCLK (hold time)  
32  
ns  
6
6
ns  
(6)  
tDIHD  
ns  
(1) Timing parameters are characterized or assured by design for specified temperature but not production tested.  
(2) fCLK = 27-MHz maximum.  
(3) Depends on MODE[1:0] and CLKDIV selection. See Table 5 (fCLK / fDATA).  
(4) Load on DRDY and DOUT = 20 pF.  
(5) For best performance, limit fSCLK / fCLK to ratios of 1, 1/2, 1/4, 1/8, etc..  
(6) tDOHD (DOUT hold time) and tDIHD (DIN hold time) are specified under opposite worst-case conditions (digital supply voltage and  
ambient temperature). Under equal conditions, with DOUT connected directly to DIN, the timing margin is > 4 ns.  
Copyright © 2018, Texas Instruments Incorporated  
9
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
tCLK  
tCPW  
CLK  
· · ·  
tCPW  
tCD  
tCONV  
DRDY  
tSD  
tDS  
tSCLK  
tSPW  
SCLK  
tSPW  
tDOPD  
tMSBPD  
Bit 23 (MSB)  
tDOHD  
Bit 22  
tDIST  
Bit 21  
DOUT  
DIN  
tDIHD  
Figure 1. SPI Format Timing Characteristics  
10  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
7.7 Timing Requirements: Frame-Sync Format(1)  
over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
PARAMETER  
MIN  
37  
TYP  
MAX  
UNIT  
ns  
All modes  
10,000  
tCLK  
CLK period (1 / fCLK)  
High-Speed mode only  
30.5  
12  
ns  
tCPW  
tCS  
CLK positive or negative pulse width  
ns  
Falling edge of CLK to falling edge of SCLK  
–0.25  
256  
1
0.25  
tCLK  
tCLK  
tSCLK  
ns  
(2)  
tFRAME  
tFPW  
tFS  
Frame period (1 / fDATA  
)
2560  
FSYNC positive or negative pulse width  
Rising edge of FSYNC to rising edge of SCLK  
Rising edge of SCLK to rising edge of FSYNC  
SCLK period(3)  
5
tSF  
5
ns  
tSCLK  
tSPW  
1
tCLK  
tCLK  
SCLK positive or negative pulse width  
0.4  
(4)  
tDOHD  
SCLK falling edge to old DOUT invalid (hold time)  
10  
ns  
(5)  
(5)  
tDOPD  
SCLK falling edge to new DOUT valid (propagation delay)  
FSYNC rising edge to DOUT MSB valid (propagation delay)  
New DIN valid to falling edge of SCLK (setup time)  
Old DIN valid to falling edge of SCLK (hold time)  
31  
31  
ns  
ns  
ns  
ns  
tMSBPD  
tDIST  
6
6
(4)  
tDIHD  
(1) Timing parameters are characterized or assured by design for specified temperature but not production tested.  
(2) Depends on MODE[1:0] and CLKDIV selection. See Table 5 (fCLK / fDATA).  
(3) SCLK must be continuously running and limited to ratios of 1, 1/2, 1/4, and 1/8 of fCLK  
.
(4) tDOHD (DOUT hold time) and tDIHD (DIN hold time) are specified under opposite worst-case conditions (digital supply voltage and  
ambient temperature). Under equal conditions, with DOUT connected directly to DIN, the timing margin is > 4 ns.  
(5) Load on DOUT = 20 pF.  
tCPW  
tCLK  
CLK  
tCPW  
tCS  
tFRAME  
tFPW  
tFPW  
FSYNC  
SCLK  
DOUT  
DIN  
tFS  
tSCLK  
tSPW  
tSF  
tSPW  
tMSBPD  
Bit 23 (MSB)  
tDOPD  
tDOHD  
Bit 21  
Bit 22  
tDIST  
tDIHD  
Figure 2. Frame-Sync Format Timing Characteristics  
7.8 Quality Conformance Inspection  
MIL-STD-883, Method 5005 - Group A  
SUBGROUP  
DESCRIPTION  
Static tests at  
TEMP (°C)  
25  
1
2
3
4
5
6
7
Static tests at  
125  
Static tests at  
–55  
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
25  
125  
–55  
25  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Quality Conformance Inspection (continued)  
SUBGROUP  
DESCRIPTION  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
Setting time at  
TEMP (°C)  
8A  
8B  
9
125  
–55  
25  
10  
11  
12  
13  
14  
125  
–55  
25  
Setting time at  
125  
–55  
Setting time at  
12  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
7.9 Typical Characteristics  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
0
-20  
0
-20  
High-Speed Mode  
fIN = 1kHz, -0.5dBFS  
32,768 Points  
High-Speed Mode  
fIN = 1kHz, -20dBFS  
32,768 Points  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
100k  
100k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 3. Output Spectrum  
Figure 4. Output Spectrum  
25k  
20k  
15k  
10k  
5k  
0
High-Speed Mode  
High-Speed Mode  
-20 Shorted Input  
Shorted Input  
262,144 Points  
262,144 Points  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
1
10  
100  
1k  
10k  
Frequency (Hz)  
Output (mV)  
Figure 5. Output Spectrum  
Figure 6. Noise Histogram  
0
-20  
0
-20  
High-Resolution Mode  
High-Resolution Mode  
fIN = 1kHz, -0.5dBFS  
fIN = 1kHz, -20dBFS  
32,768 Points  
32,768 Points  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 7. Output Spectrum  
Figure 8. Output Spectrum  
Copyright © 2018, Texas Instruments Incorporated  
13  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
25k  
20k  
15k  
10k  
5k  
0
High-Resolution Mode  
High-Resolution Mode  
Shorted Input  
-20 Shorted Input  
262,144 Points  
262,144 Points  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
1
10  
100  
1k  
10k  
100k  
100k  
100k  
Output (mV)  
Frequency (Hz)  
Figure 10. Noise Histogram  
Figure 9. Output Spectrum  
0
0
Low-Power Mode  
fIN = 1kHz, -0.5dBFS  
32,768 Points  
Low-Power Mode  
fIN = 1kHz, -20dBFS  
-20  
-40  
-20  
32,768 Points  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 11. Output Spectrum  
Figure 12. Output Spectrum  
0
25k  
Low-Power Mode  
Low-Power Mode  
-20 Shorted Input  
Shorted Input  
262,144 Points  
262,144 Points  
20k  
15k  
10k  
5k  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
1
10  
100  
1k  
10k  
Frequency (Hz)  
Output (mV)  
Figure 13. Output Spectrum  
Figure 14. Noise Histogram  
14  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
0
0
Low-Speed Mode  
fIN = 100Hz, -0.5dBFS  
32,768 Points  
Low-Speed Mode  
fIN = 100Hz, -20dBFS  
32,768 Points  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
1
10  
100  
Frequency (Hz)  
1k  
10k  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Figure 15. Output Spectrum  
Figure 16. Output Spectrum  
25k  
20k  
15k  
10k  
5k  
0
Low-Speed Mode  
Low-Speed Mode  
-20 Shorted Input  
Shorted Input  
262,144 Points  
262,144 Points  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
0.1  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Output (mV)  
Figure 17. Output Spectrum  
Figure 18. Noise Histogram  
0
-20  
0
-20  
High-Speed Mode  
VIN = -0.5dBFS  
High-Speed Mode  
fIN = 1kHz  
-40  
-40  
-60  
-60  
-80  
-80  
THD+N  
THD  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Figure 19. Total Harmonic Distortion vs Frequency  
Figure 20. Total Harmonic Distortion vs Input Amplitude  
Copyright © 2018, Texas Instruments Incorporated  
15  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
0
0
High-Resolution Mode  
High-Resolution Mode  
fIN = 1kHz  
VIN = -0.5dBFS  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
THD+N  
THD  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Figure 21. Total Harmonic Distortion vs Frequency  
Figure 22. Total Harmonic Distortion vs Input Amplitude  
0
0
Low-Power Mode  
Low-Power Mode  
VIN = -0.5dBFS  
fIN = 1kHz  
-20  
-20  
-40  
-40  
-60  
-80  
-60  
-80  
THD+N  
THD  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
-120  
-100  
-80  
-60  
-40  
-20  
0
Frequency (Hz)  
Input Amplitude (dBFS)  
Figure 23. Total Harmonic Distortion vs Frequency  
Figure 24. Total Harmonic Distortion vs Input Amplitude  
0
0
Low-Speed Mode  
Low-Speed Mode  
VIN = -0.5dBFS  
-20  
-40  
-20  
-40  
-60  
-80  
-60  
-80  
THD+N  
THD  
THD+N  
THD  
-100  
-120  
-140  
-100  
-120  
-140  
10  
100  
1k  
10k  
-120  
-100  
-80  
-60  
-40  
-20  
0
Frequency (Hz)  
Input Amplitude (dBFS)  
Figure 25. Total Harmonic Distortion vs Frequency  
Figure 26. Total Harmonic Distortion vs Input Amplitude  
16  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
400  
350  
300  
250  
200  
150  
100  
50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Multi-lot data based on  
20°C intervals over the  
range -40°C to +105°C.  
25 units based on  
20°C intervals over the  
range -40°C to +105°C.  
Outliers: T < -20°C  
0
Offset Drift (mV/°C)  
Gain Drift (ppm/°C)  
Figure 27. Offset Drift Histogram  
Figure 28. Gain Drift Histogram  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
ADS1278 High-Speed and High-Resolution Modes  
ADS1278 Low-Power Mode  
ADS1274/78 High-Speed and High-Resolution Modes  
ADS1278 Low-Power Mode  
-10  
-10  
-20  
-30  
-40  
-20  
-30  
-40  
ADS1278 Low-Speed Mode  
ADS1278 Low-Speed Mode  
ADS1274 High-Speed and High-Resolution Modes  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (s)  
Time (s)  
Figure 29. Offset Warmup Drift Response Band  
Figure 30. Gain Warmup Drift Response Band  
90  
40  
35  
30  
25  
20  
15  
10  
5
High-Speed Mode  
25 Units  
High-Speed Mode  
25 Units  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
Gain Error (ppm)  
Offset (mV)  
Figure 32. Gain Error Histogram  
Figure 31. Offset Error Histogram  
Copyright © 2018, Texas Instruments Incorporated  
17  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
High-Speed Mode  
10 Units  
High-Speed Mode  
10 Units  
Channel Gain Match (ppm)  
Channel Offset Match (mV)  
Figure 33. Channel Gain Match Histogram  
Figure 34. Channel Offset Match Histogram  
400  
300  
200  
100  
0
600  
20  
AVDD = 5V  
18  
16  
14  
12  
10  
8
500  
400  
25 Units, No Load  
Offset  
300  
200  
100  
0
6
-100  
-200  
-300  
4
-100  
2
-200  
Gain  
0
-300  
-55 -35 -15  
5
25 45 65 85 105 125  
VCOM Voltage Output (V)  
Temperature (°C)  
Figure 35. Offset and Gain vs Temperature  
Figure 36. VCOM Voltage Output Histogram  
6.8  
0.68  
40  
35  
30  
25  
20  
15  
10  
5
30 units over 3 production lots,  
inter-channel combinations.  
6.7  
6.6  
6.5  
0.67  
0.66  
0.65  
0.64  
6.4  
High Speed and  
High Resolution  
6.3  
0.63  
0.62  
Low Speed Mode  
0
6.2  
-55 -40 -20  
0
25  
Temperature (°C)  
45 65 85 105 125  
Sampling Match Error (ps)  
Figure 37. Sampling Match Error Histogram  
Figure 38. Reference Input Differential Impedance vs  
Temperature  
18  
Copyright © 2018, Texas Instruments Incorporated  
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
170  
160  
150  
140  
14.3  
14.2  
14.1  
28.6  
28.4  
28.2  
Low-Speed Mode  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
28  
27.8  
27.6  
27.4  
27.2  
27  
High Speed and  
High Resolution  
130  
13.4  
13.3  
26.8  
26.6  
120  
110  
Low Power Mode  
13.2  
13.1  
26.4  
26.2  
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
Temperature (°C)  
Temperature (°C)  
Figure 40. Analog Input Differential Impedance vs  
Temperature  
Figure 39. Analog Input Differential Impedance vs  
Temperature  
10  
10  
8
6
8
T = +105°C  
4
T = +25°C  
2
6
4
0
-2  
-4  
-6  
-8  
-10  
T = -40°C  
2
0
T = +125°C  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
-55 -35 -15  
5
25 45 65 85 105 125  
VIN (V)  
Temperature (°C)  
Figure 42. Linearity Error vs Input Level  
Figure 41. Integral Nonlinearity vs Temperature  
14  
12  
10  
8
-100  
14  
12  
10  
8
14  
12  
10  
8
THD: fIN = 1kHz, VIN = -0.5dBFS  
-104  
-108  
-112  
-116  
-120  
-124  
-128  
Noise  
THD  
6
6
6
Linearity  
4
4
4
Linearity  
2
2
2
See Electrical Characteristics for VREF Operating Range.  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
-0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Common-Mode Voltage (V)  
VREF (V)  
Figure 43. Linearity and Total Harmonic Distortion vs  
Reference Voltage  
Figure 44. Noise and Linearity vs Input Common-Mode  
Voltage  
Copyright © 2018, Texas Instruments Incorporated  
19  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
12  
12  
10  
8
High-Speed  
Low Power Mode  
High Speed Mode  
Low-Power  
10  
8
6
Low Speed Mode  
Low-Speed  
6
4
4
High-Resolution  
High Resolution Mode  
2
0
2
0
See Electrical Characteristics for VREF Operating Range.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
-55 -35 -15  
5
25 45 65 85 105 125  
VREF (V)  
Temperature (°C)  
Figure 46. Noise vs Reference Voltage  
Figure 45. Noise vs Temperature  
0
-20  
14  
12  
10  
8
0
High-Speed Mode  
fCLK > 32.768MHz: VREF = 2.048V, DVDD = 2.1V  
-20  
-40  
THD: AIN = fCLK/5120, -0.5dBFS  
Noise: Shorted Input  
-40  
-60  
-60  
Noise  
-80  
6
THD  
-80  
-100  
-120  
-140  
4
-100  
-120  
2
0
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
CLK (Hz)  
Input Frequency (Hz)  
Figure 47. Total Harmonic Distortion and Noise vs CLK  
Figure 48. Common-Mode Rejection vs Input Frequency  
160  
0
140  
-20  
High Speed and High Resolution Modes  
120  
100  
-40  
-60  
80  
AVDD  
Low Power Mode  
60  
-80  
40  
DVDD  
-100  
-120  
Low Speed Mode  
20  
IOVDD  
0
10  
100  
1k  
10k  
100k  
1M  
-55 -35 -15  
5
25 45 65 85 105 125  
Power-Supply Modulation Frequency (Hz)  
Temperature (°C)  
Figure 49. Power-Supply Rejection vs Power-Supply  
Frequency  
Figure 50. AVDD Current vs Temperature  
20  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Characteristics (continued)  
At TA = 25°C, High-Speed mode, AVDD = 5 V, DVDD = 1.8 V, IOVDD = 3.3 V, fCLK = 27 MHz, VREFP = 2.5 V,  
and VREFN = 0 V, unless otherwise noted.  
30  
25  
20  
15  
10  
0.5  
High Speed Mode  
0.4  
High Resolution Mode  
0.3  
0.2  
High Speed Mode  
Low Power Mode  
Low Speed Mode  
High Resolution and Low Power Modes  
Low Speed Mode  
0.1  
0
5
0
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
Temperature (°C)  
Temperature (°C)  
Figure 51. DVDD Current vs Temperature  
Figure 52. IOVDD Current vs Temperature  
800  
700  
600  
High Speed Mode  
500  
400  
300  
High Resolution Mode  
Low Power Mode  
200  
100  
0
Low Speed Mode  
-55 -35 -15  
5
25 45 65 85 105 125  
Temperature (°C)  
Figure 53. Power Dissipation vs Temperature  
Copyright © 2018, Texas Instruments Incorporated  
21  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADS1278-SP is a delta-sigma ADC consisting of eight independent converters that digitize eight input  
signals in parallel.  
The converter is composed of two main functional blocks to perform the ADC conversions: the modulator and the  
digital filter. The modulator samples the input signal together with sampling the reference voltage to produce a 1-  
s density output stream. The density of the output stream is proportional to the analog input level relative to the  
reference voltage. The pulse stream is filtered by the internal digital filter where the output conversion result is  
produced.  
In operation, the input signal is sampled by the modulator at a high rate (typically 64x higher than the final output  
data rate). The quantization noise of the modulator is moved to a higher frequency range where the internal  
digital filter removes it. Oversampling results in very low levels of noise within the signal passband.  
Since the input signal is sampled at a very high rate, input signal aliasing does not occur until the input signal  
frequency is at the modulator sampling rate. This architecture greatly relaxes the requirement of external  
antialiasing filters because of the high modulator sampling rate.  
The ADS1278-SP is an octal 24-bit, delta-sigma ADC. It offers the combination of outstanding dc accuracy and  
superior ac performance. Functional Block Diagram section shows the block diagram. The converter is  
comprised of eight advanced, 6th-order, chopper-stabilized, delta-sigma modulators followed by low-ripple, linear  
phase FIR filters. The modulators measure the differential input signal, VIN = (AINP – AINN), against the  
differential reference, VREF = (VREFP – VREFN). The digital filters receive the modulator signal and provide a  
low-noise digital output. To allow tradeoffs among speed, resolution, and power, four operating modes are  
supported:  
High-Speed, High-Resolution, Low-Power, and Low-Speed. Table 15 summarizes the performance of each  
mode.  
In High-Speed mode, the maximum data rate is 128 kSPS (when operating at 128 kSPS, Frame-Sync format  
must be used). In High-Resolution mode, the SNR = 111 dB (VREF = 3.0 V); in Low-Power mode, the power  
dissipation is 31 mW/channel; and in Low-Speed mode, the power dissipation is only 7 mW/channel at 10.5  
kSPS. The digital filters can be bypassed, enabling direct access to the modulator output.  
The ADS1278-SP is configured by simply setting the appropriate I/O pins—there are no registers to program.  
Data are retrieved over a serial interface that supports both SPI and Frame-Sync formats. The ADS1278-SP has  
a daisy-chainable output and the ability to synchronize externally, so it can be used conveniently in systems  
requiring more than eight channels.  
22  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.2 Functional Block Diagram  
VREFP  
AVDD  
VREFN  
DVDD  
IOVDD  
Mod 1  
Mod 2  
R
S
Modulator  
Output  
VCOM  
VREF  
R
Mod 8  
VIN1  
DS  
AINP1  
AINN1  
Digital  
DRDY/FSYNC  
SPI  
S
S
Modulator1  
Filter1  
SCLK  
DOUT  
DIN  
and  
Frame-Sync  
Interface  
[8:1]  
VIN2  
DS  
AINP2  
AINN2  
Digital  
Filter2  
Modulator2  
TEST[1:0]  
FORMAT[2:0]  
CLK  
Control  
Logic  
SYNC  
[8:1]  
PWDN  
VIN4/8  
DS  
AINP8  
AINN8  
Digital  
Filter8  
CLKDIV  
S
Modulator8  
MODE[1:0]  
AGND  
DGND  
8.3 Feature Description  
8.3.1 Sampling Aperture Matching  
The ADS1278-SP converter operates from the same CLK input. The CLK input controls the timing of the  
modulator sampling instant. The converter is designed such that the sampling skew, or modulator sampling  
aperture match between channels, is controlled. Furthermore, the digital filters are synchronized to start the  
convolution phase at the same modulator clock cycle. This design results in excellent phase match among the  
ADS1278-SP channels.  
Figure 37 shows the inter-device channel sample matching for the ADS1278-SP.  
8.3.2 Frequency Response  
The digital filter sets the overall frequency response. The filter uses a multi-stage FIR topology to provide linear  
phase with minimal passband ripple and high stop band attenuation. The filter coefficients are identical to the  
coefficients used in the ADS1271. The oversampling ratio of the digital filter (that is, the ratio of the modulator  
sampling to the output data rate, or fMOD/fDATA) is a function of the selected mode, as shown in Table 1.  
Table 1. Oversampling Ratio vs Mode  
MODE SELECTION  
High-Speed  
OVERSAMPLING RATIO (fMOD/fDATA)  
64  
128  
64  
High-Resolution  
Low-Power  
Low-Speed  
64  
Copyright © 2018, Texas Instruments Incorporated  
23  
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.3.2.1 High-Speed, Low-Power, And Low-Speed Modes  
The digital filter configuration is the same in High-Speed, Low-Power, and Low-Speed modes with the  
oversampling ratio set to 64. Figure 54 shows the frequency response in High-Speed, Low-Power, and Low-  
Speed modes normalized to fDATA. Figure 55 shows the passband ripple. The transition from passband to stop  
band is shown in Figure 56. The overall frequency response repeats at 64x multiples of the modulator frequency  
fMOD, as shown in Figure 57.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
0.2  
0.4  
0.6  
0.8  
1.0  
Normalized Input Frequency (fIN/fDATA  
)
Figure 54. Frequency Response For High-Speed, Low-Power, And Low-Speed Modes  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Normalized Input Frequency (fIN/fDATA  
)
Figure 55. Passband Response For High-Speed, Low-Power, And Low-Speed Modes  
24  
Copyright © 2018, Texas Instruments Incorporated  
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
Normalized Input Frequency (fIN/fDATA  
)
Figure 56. Transition Band Response For High-Speed, Low-Power, and Low-Speed Modes  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
16  
32  
48  
64  
Input Frequency (fIN/fDATA  
)
Figure 57. Frequency Response Out To FMOD For High-Speed, Low-Power, And Low-Speed Modes  
These image frequencies, if present in the signal and not externally filtered, will fold back (or alias) into the  
passband, causing errors. The stop band of the ADS1278-SP provides 100-dB attenuation of frequencies that  
begin just beyond the passband and continue out to fMOD. Placing an anti-aliasing, low-pass filter in front of the  
ADS1278-SP inputs is recommended to limit possible high-amplitude, out-of-band signals and noise. Often, a  
simple RC filter is sufficient. Table 2 lists the image rejection versus external filter order.  
Table 2. Antialiasing Filter Order Image Rejection  
IMAGE REJECTION (dB)  
(f–3dB at fDATA  
)
ANTIALIASING FILTER ORDER  
HS, LP, LS  
HR  
45  
1
2
3
39  
75  
87  
111  
129  
Copyright © 2018, Texas Instruments Incorporated  
25  
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.3.2.2 High-Resolution Mode  
The oversampling ratio is 128 in High-Resolution mode. Figure 58 shows the frequency response in High-  
Resolution mode normalized to fDATA. Figure 59 shows the passband ripple, and the transition from passband to  
stop band is shown in Figure 60. The overall frequency response repeats at multiples of the modulator frequency  
fMOD (128 × fDATA), as shown in Figure 61. The stop band of the ADS1278-SP provides 100-dB attenuation of  
frequencies that begin just beyond the passband and continue out to fMOD. Placing an antialiasing, low-pass filter  
in front of the ADS1278-SP inputs is recommended to limit possible high-amplitude out-of-band signals and  
noise. Often, a simple RC filter is sufficient. Table 2 lists the image rejection versus external filter order.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
0.25  
0.50  
0.75  
1
Normalized Input Frequency (fIN/fDATA  
)
Figure 58. Frequency Response For High-Resolution Mode  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Normalized Input Frequency (fIN/fDATA  
)
Figure 59. Passband Response For High-Resolution Mode  
26  
Copyright © 2018, Texas Instruments Incorporated  
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
Normalized Input Frequency (fIN/fDATA  
)
Figure 60. Transition Band Response For High-Resolution Mode  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
32  
64  
96  
128  
Normalized Input Frequency (fIN/fDATA  
)
Figure 61. Frequency Response Out To FMOD For High-Resolution Mode  
Copyright © 2018, Texas Instruments Incorporated  
27  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.3.3 Phase Response  
The ADS1278-SP incorporates a multiple stage, linear phase digital filter. Linear phase filters exhibit constant  
delay time versus input frequency (constant group delay). This characteristic means the time delay from any  
instant of the input signal to the same instant of the output data is constant and is independent of input signal  
frequency. This behavior results in essentially zero phase errors when analyzing multi-tone signals.  
8.3.4 Settling Time  
As with frequency and phase response, the digital filter also determines settling time. Figure 62 shows the output  
settling behavior after a step change on the analog inputs normalized to conversion periods. The X-axis is given  
in units of conversion. Note that after the step change on the input occurs, the output data change very little prior  
to 30 conversion periods. The output data are fully settled after 76 conversion periods for High-Speed and Low-  
Power modes, and 78 conversion periods for High-Resolution mode.  
Final Value  
100  
Fully Settled Data  
at 76 Conversions  
(78 Conversions for  
High-Resolution mode)  
Initial Value  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
Conversions (1/fDATA  
)
Figure 62. Step Response  
8.3.5 Data Format  
The ADS1278-SP outputs 24 bits of data in twos complement format.  
A positive full-scale input produces an ideal output code of 7FFFFFh, and the negative full-scale input produces  
an ideal output code of 800000h. The output clips at these codes for signals exceeding full-scale. Table 3  
summarizes the ideal output codes for different input signals.  
Table 3. Ideal Output Code Versus Input Signal  
INPUT SIGNAL VIN  
IDEAL OUTPUT CODE(1)  
(AINP – AINN)  
+VREF  
7FFFFFh  
000001h  
000000h  
FFFFFFh  
) VREF  
223 * 1  
0
* VREF  
223 * 1  
223  
ǒ
Ǔ
v −VREF  
800000h  
223
*
1  
(1) Excludes effects of noise, INL, offset, and gain errors.  
28  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.3.6 Analog Inputs (AINP, AINN)  
The ADS1278-SP measures each differential input signal VIN = (AINP – AINN) against the common differential  
reference VREF = (VREFP – VREFN). The most positive measurable differential input is +VREF, which produces  
the most positive digital output code of 7FFFFFh. Likewise, the most negative measurable differential input is  
–VREF, which produces the most negative digital output code of 800000h.  
For optimum performance, the inputs of the ADS1278-SP are intended to be driven differentially. For single-  
ended applications, one of the inputs (AINP or AINN) can be driven while the other input is fixed (typically to  
AGND or 2.5 V). Fixing the input to 2.5 V permits bipolar operation, thereby allowing full use of the entire  
converter range.  
While the ADS1278-SP measures the differential input signal, the absolute input voltage is also important. This  
value is the voltage on either input (AINP or AINN) with respect to AGND. The range for this voltage is:  
–0.1 V < (AINN or AINP) < AVDD + 0.1 V  
If either input is taken below –0.4 V or above (AVDD + 0.4 V), ESD protection diodes on the inputs may turn on.  
If these conditions are possible, external Schottky clamp diodes or series resistors may be required to limit the  
input current to safe values (see the Absolute Maximum Ratings table).  
The ADS1278-SP is a very high-performance ADC. For optimum performance, it is critical that the appropriate  
circuitry be used to drive the ADS1278-SP inputs. See the Application Information section for several  
recommended circuits.  
Copyright © 2018, Texas Instruments Incorporated  
29  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
The ADS1278-SP uses switched-capacitor circuitry to measure the input voltage. Internal capacitors are charged  
by the inputs and then discharged. Figure 63 shows a conceptual diagram of these circuits. Switch S2 represents  
the net effect of the modulator circuitry in discharging the sampling capacitor; the actual implementation is  
different. The timing for switches S1 and S2 is shown in Figure 64. The sampling time (tSAMPLE) is the inverse of  
modulator sampling frequency (fMOD) and is a function of the mode, the CLKDIV input, and CLK frequency, as  
shown in Table 4.  
AVDD AGND  
S1  
AINP  
S2  
9pF  
AINN  
S1  
AGND AVDD  
ESD Protection  
Figure 63. Equivalent Analog Input Circuitry  
tSAMPLE = 1/fMOD  
ON  
S1  
OFF  
ON  
S2  
OFF  
Figure 64. S1 and S2 Switch Timing for Figure 63  
Table 4. Modulator Frequency (FMOD) Mode Selection  
MODE SELECTION  
High-Speed  
CLKDIV  
fMOD  
1
1
1
0
1
0
fCLK / 4  
fCLK / 4  
fCLK / 8  
fCLK / 4  
fCLK / 40  
fCLK / 8  
High-Resolution  
Low-Power  
Low-Speed  
The average load presented by the switched capacitor input can be modeled with an effective differential  
impedance, as shown in Figure 65. Note that the effective impedance is a function of fMOD  
.
AINP  
Zeff = 14kW ´ (6.75MHz/fMOD  
)
AINN  
Figure 65. Effective Input Impedances  
30  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.3.7 Voltage Reference Inputs  
(VREFP, VREFN)  
The voltage reference for the ADS1278-SP ADC is the differential voltage between VREFP and VREFN: VREF  
=
(VREFP – VREFN). The voltage reference is common to all channels. The reference inputs use a structure  
similar to that of the analog inputs with the equivalent circuitry on the reference inputs shown in Figure 66. As  
with the analog inputs, the load presented by the switched capacitor can be modeled with an effective  
impedance, as shown in Figure 67. However, the reference input impedance depends on the number of active  
(enabled) channels in addition to fMOD. As a result of the change of reference input impedance caused by  
enabling and disabling channels, the regulation and setting time of the external reference should be noted, so as  
not to affect the readings.  
VREFP  
VREFN  
AGND  
AVDD  
AGND  
AVDD  
ESD  
Protection  
Figure 66. Equivalent Reference Input Circuitry  
VREFP  
VREFN  
5.2kW  
Zeff  
=
´ (6.75MHz/fMOD)  
N
N = number of active channels.  
Figure 67. Effective Reference Impedance  
ESD diodes protect the reference inputs. To keep these diodes from turning on, make sure the voltages on the  
reference pins do not go below AGND by more than 0.4 V, and likewise do not exceed AVDD by 0.4 V. If these  
conditions are possible, external Schottky clamp diodes or series resistors may be required to limit the input  
current to safe values (see the Absolute Maximum Ratings table).  
Note that the valid operating range of the reference inputs is limited to the following parameters:  
–0.1 V VREFN +0.1 V  
VREFN + 0.5 V VREFP AVDD + 0.1 V  
8.3.8 Clock Input (CLK)  
The ADS1278-SP requires a clock input for operation. The individual converters of the ADS1278-SP operate  
from the same clock input. At the maximum data rate, the clock input can be either 27 MHz or 13.5 MHz for Low-  
Power mode, or 27MHz or 5.4 MHz for Low-Speed mode, determined by the setting of the CLKDIV input. For  
High-Speed mode, the maximum CLK input frequency is 32.768 MHz. For High-Resolution mode, the maximum  
CLK input frequency is 27 MHz. The selection of the external clock frequency (fCLK) does not affect the resolution  
of the ADS1278-SP. Use of a slower fCLK can reduce the power consumption of an external clock buffer. The  
output data rate scales with clock frequency, down to a minimum clock frequency of fCLK = 100 kHz. Table 5  
summarizes the ratio of the clock input frequency (fCLK) to data rate (fDATA), maximum data rate and  
corresponding maximum clock input for the four operating modes.  
Copyright © 2018, Texas Instruments Incorporated  
31  
 
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
As with any high-speed data converter, a high-quality, low-jitter clock is essential for optimum performance.  
Crystal clock oscillators are the recommended clock source. Make sure to avoid excess ringing on the clock  
input; keeping the clock trace as short as possible, and using a 50-series resistor placed close to the source  
end, often helps.  
Table 5. Clock Input Options  
MODE SELECTION  
High-Speed  
MAX fCLK (MHz)  
CLKDIV  
fCLK/fDATA  
256  
DATA RATE (SPS)  
128,000  
32.768  
27  
1
1
1
0
1
0
High-Resolution  
512  
52,734  
27  
512  
Low-Power  
Low-Speed  
52,734  
10,547  
13.5  
27  
256  
2,560  
512  
5.4  
8.3.9 Mode Selection (MODE)  
The ADS1278-SP supports four modes of operation: High-Speed, High-Resolution, Low-Power, and Low-Speed.  
The modes offer optimization of speed, resolution, and power. Mode selection is determined by the status of the  
digital input MODE[1:0] pins, as shown in Table 6. The ADS1278-SP continually monitors the status of the  
MODE pin during operation.  
Table 6. Mode Selection  
(1)  
MODE[1:0]  
MODE SELECTION  
High-Speed  
MAX fDATA  
128,000  
52,734  
00  
01  
10  
11  
High-Resolution  
Low-Power  
52,734  
Low-Speed  
10,547  
(1) fCLK = 27-MHz max (32.768-MHz max in High-Speed mode).  
When using the SPI protocol, DRDY is held high after a mode change occurs until settled (or valid) data are  
ready; see Figure 68 and Table 7.  
In Frame-Sync protocol, the DOUT pins are held low after a mode change occurs until settled data are ready;  
see Figure 68 and Table 7. Data can be read from the device to detect when DOUT changes to logic 1,  
indicating that the data are valid.  
32  
Copyright © 2018, Texas Instruments Incorporated  
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
MODE[1:0]  
Pins  
ADS1278  
Mode  
Previous  
Mode  
New Mode  
tNDR-SPI  
SPI  
DRDY  
DOUT  
Protocol  
New Mode  
Valid Data Ready  
tNDR-FS  
Frame-Sync  
Protocol  
New Mode  
Valid Data on DOUT  
Figure 68. Mode Change Timing  
Table 7. New Data After Mode Change  
SYMBOL  
tNDR-SPI  
tNDR-FS  
DESCRIPTION  
MIN  
TYP  
MAX  
129  
UNITS  
Time for new data to be ready (SPI)  
Time for new data to be ready (Frame-Sync)  
Conversions (1/fDATA  
)
)
127  
128  
Conversions (1/fDATA  
8.3.10 Synchronization (SYNC)  
The ADS1278-SP can be synchronized by pulsing the SYNC pin low and then returning the pin high. When the  
pin goes low, the conversion process stops, and the internal counters used by the digital filter are reset. When  
the SYNC pin returns high, the conversion process restarts. Synchronization allows the conversion to be aligned  
with an external event, such as the changing of an external multiplexer on the analog inputs, or by a reference  
timing pulse.  
Because the ADS1278-SP converters operate in parallel from the same master clock and use the same SYNC  
input control, they are always in synchronization with each other. The aperture match among internal channels is  
typically less than 500 ps. However, the synchronization of multiple devices is somewhat different. At device  
power-on, variations in internal reset thresholds from device to device may result in uncertainty in conversion  
timing.  
The SYNC pin can be used to synchronize multiple devices to within the same CLK cycle. Figure 69 illustrates  
the timing requirement of SYNC and CLK in SPI format.  
See Figure 70 for the Frame-Sync format timing requirement.  
After synchronization, indication of valid data depends on whether SPI or Frame-Sync format was used.  
In the SPI format, DRDY goes high as soon as SYNC is taken low; see Figure 69. After SYNC is returned high,  
DRDY stays high while the digital filter is settling. Once valid data are ready for retrieval, DRDY goes low.  
In the Frame-Sync format, DOUT goes low as soon as SYNC is taken low; see Figure 70. After SYNC is  
returned high, DOUT stays low while the digital filter is settling. Once valid data are ready for retrieval, DOUT  
begins to output valid data. For proper synchronization, FSYNC, SCLK, and CLK must be established before  
taking SYNC high, and must then remain running. If the clock inputs (CLK, FSYNC or SCLK) are subsequently  
interrupted or reset, re-assert the SYNC pin.  
For consistent performance, re-assert SYNC after device power-on when data first appear.  
Copyright © 2018, Texas Instruments Incorporated  
33  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
tCSHD  
CLK  
tSCSU  
tSYN  
SYNC  
tNDR  
DRDY  
Figure 69. Synchronization Timing (SPI Protocol)  
Table 8. SPI Protocol  
SYMBOL  
tCSHD  
tSCSU  
tSYN  
DESCRIPTION  
MIN  
10  
5
TYP  
MAX  
UNITS  
CLK to SYNC hold time  
SYNC to CLK setup time  
Synchronize pulse width  
Time for new data to be ready  
ns  
ns  
1
CLK periods  
tNDR  
129  
Conversions (1/fDATA)  
tCSHD  
CLK  
tSCSU  
tSYN  
SYNC  
FSYNC  
DOUT  
tNDR  
Valid Data  
Figure 70. Synchronization Timing (Frame-Sync Protocol)  
Table 9. Frame-Sync Protocol  
SYMBOL  
tCSHD  
tSCSU  
tSYN  
DESCRIPTION  
MIN  
10  
5
TYP  
MAX  
UNITS  
CLK to SYNC hold time  
SYNC to CLK setup time  
Synchronize pulse width  
Time for new data to be ready  
ns  
ns  
1
CLK periods  
Conversions (1/fDATA)  
tNDR  
127  
128  
34  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.3.11 Power-Down (PWDN)  
The channels of the ADS1278-SP can be independently powered down by use of the PWDN inputs. To enter the  
power-down mode, hold the respective PWDN pin low for at least two CLK cycles. To exit power-down, return  
the corresponding PWDN pin high. Note that when all channels are powered down, the ADS1278-SP enters a  
microwatt (μW) power state where all internal biasing is disabled. In this state, the TEST[1:0] input pins must be  
driven; all other input pins can float. The ADS1278-SP outputs remain driven.  
As shown in Figure 71 and Table 10, a maximum of 130 conversion cycles must elapse for SPI interface, and  
129 conversion cycles must elapse for Frame-Sync, before reading data after exiting power-down. Data from  
channels already running are not affected. The user software can perform the required delay time in any of the  
following ways:  
1. Count the number of data conversions after taking the PWDN pin high.  
2. Delay 129/fDATA or 130/fDATA after taking the PWDN pins high, then read data.  
Copyright © 2018, Texas Instruments Incorporated  
35  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
3. Detect for non-zero data in the powered-up channel.  
After powering up one or more channels, the channels are synchronized to each other. It is not necessary to use  
the SYNC pin to synchronize them.  
When a channel is powered down in TDM data format, the data for that channel are either forced to zero (fixed-  
position TDM data mode) or replaced by shifting the data from the next channel into the vacated data position  
(dynamic-position TDM data mode).  
In Discrete data format, the data are always forced to zero. When powering-up a channel in dynamic-position  
TDM data format mode, the channel data remain packed until the data are ready, at which time the data frame is  
expanded to include the just-powered channel data. See the Data Format section for details.  
· · ·  
· · ·  
CLK  
tPWDN  
tNDR  
PWDN  
DRDY/FSYNC(1)  
DOUT  
(Discrete Data Output Mode)  
Post Power-Up Data  
Normal Position  
DOUT1  
(TDM Mode, Dynamic Position)  
Normal Position  
Normal Position  
Data Shifts Position  
DOUT1  
(TDM Mode, Fixed Position)  
Data Remains in Position  
Normal Position  
Figure 71. Power-Down Timing  
Table 10. Power-Down Timing  
SYMBOL  
tPWDN  
tNDR  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
PWDN pulse width to enter Power-Down mode  
Time for new data ready (SPI)  
2
CLK periods  
129  
128  
130  
129  
Conversions (1/fDATA  
)
)
tNDR  
Time for new data ready (Frame-Sync)  
Conversions (1/fDATA  
36  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.3.12 Format[2:0]  
Data can be read from the ADS1278-SP with two interface protocols (SPI or Frame-Sync) and several options of  
data formats (TDM/Discrete and Fixed/Dynamic data positions). The FORMAT[2:0] inputs are used to select  
among the options. Table 11 lists the available options. See the DOUT Modes section for details of the DOUT  
Mode and Data Position.  
Table 11. Data Output Format  
FORMAT[2:0]  
INTERFACE PROTOCOL  
SPI  
DOUT MODE  
TDM  
DATA POSITION  
000  
001  
010  
011  
100  
101  
110  
Dynamic  
Fixed  
SPI  
TDM  
SPI  
Discrete  
TDM  
Frame-Sync  
Frame-Sync  
Frame-Sync  
Modulator Mode  
Dynamic  
Fixed  
TDM  
Discrete  
8.3.13 Serial Interface Protocols  
Data are retrieved from the ADS1278-SP using the serial interface. Two protocols are available: SPI and Frame-  
Sync. The same pins are used for both interfaces: SCLK, DRDY/FSYNC, DOUT[8:1], and DIN. The  
FORMAT[2:0] pins select the desired interface protocol.  
8.3.14 SPI Serial Interface  
The SPI-compatible format is a read-only interface. Data ready for retrieval are indicated by the falling DRDY  
output and are shifted out on the falling edge of SCLK, MSB first. The interface can be daisy-chained using the  
DIN input when using multiple devices. See the Daisy-Chaining section for more information.  
NOTE: The SPI format is limited to a CLK input frequency of 27 MHz, maximum. For CLK input operation above  
27 MHz (High-Speed mode only), use Frame-Sync format.  
8.3.14.1 SCLK  
The serial clock (SCLK) features a Schmitt-triggered input and shifts out data on DOUT on the falling edge. It  
also shifts in data on the falling edge on DIN when this pin is being used for daisy-chaining. The device shifts  
data out on the falling edge and the user normally shifts this data in on the rising edge.  
Even though the SCLK input has hysteresis, it is recommended to keep SCLK as clean as possible to prevent  
glitches from accidentally shifting the data.  
SCLK may be run as fast as the CLK frequency. SCLK may be either in free-running or stop-clock operation  
between conversions. Note that one fCLK is required after the falling edge of DRDY until the first rising edge of  
SCLK. For best performance, limit fSCLK / fCLK to ratios of 1, 1/2, 1/4, 1/8, etc. When the device is configured for  
modulator output, SCLK becomes the modulator clock output (see the Modulator Output section).  
8.3.14.2 DRDY/FSYNC (SPI Format)  
In the SPI format, this pin functions as the DRDY output. It goes low when data are ready for retrieval and then  
returns high on the falling edge of the first subsequent SCLK. If data are not retrieved (that is, SCLK is held low),  
DRDY pulses high just before the next conversion data are ready, as shown in Figure 72. The new data are  
loaded within one CLK cycle before DRDY goes low. All data must be shifted out before this time to avoid being  
overwritten.  
1/fCLK  
1/fDATA  
DRDY  
SCLK  
Figure 72. DRDY Timing With No Readback  
Copyright © 2018, Texas Instruments Incorporated  
37  
 
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.3.14.3 DOUT  
The conversion data are output on DOUT[8:1]. The MSB data are valid on DOUT[8:1] after DRDY goes low.  
Subsequent bits are shifted out with each falling edge of SCLK. If daisy-chaining, the data shifted in using DIN  
appear on DOUT after all channel data have been shifted out. When the device is configured for modulator  
output, DOUT[8:1] becomes the modulator data output for each channel (see the Modulator Output section).  
8.3.14.4 DIN  
This input is used when multiple ADS1278-SPs are to be daisy-chained together. The DOUT1 pin of the first  
device connects to the DIN pin of the next, etc. It can be used with either the SPI or Frame-Sync formats. Data  
are shifted in on the falling edge of SCLK. When using only one ADS1278-SP, tie DIN low. See the Daisy-  
Chaining section for more information.  
38  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.3.15 Frame-Sync Serial Interface  
Frame-Sync format is similar to the interface often used on audio ADCs. It operates in slave fashion—the user  
must supply framing signal FSYNC (similar to the left/right clock on stereo audio ADCs) and the serial clock  
SCLK (similar to the bit clock on audio ADCs). The data are output MSB first or left-justified on the rising edge of  
FSYNC. When using Frame-Sync format, the FSYNC and SCLK inputs must be continuously running with the  
relationships shown in the Timing Requirements: Frame-Sync Format table.  
8.3.15.1 SCLK  
The serial clock (SCLK) features a Schmitt-triggered input and shifts out data on DOUT on the falling edge. It  
also shifts in data on the falling edge on DIN when this pin is being used for daisy-chaining. Even though SCLK  
has hysteresis, it is recommended to keep SCLK as clean as possible to prevent glitches from accidentally  
shifting the data. When using Frame-Sync format, SCLK must run continuously. If it is shut down, the data  
readback will be corrupted. The number of SCLKs within a frame period (FSYNC clock) can be any power-of-2  
ratio of CLK cycles (1, 1/2, 1/4, etc), as long as the number of cycles is sufficient to shift the data output from all  
channels within one frame. When the device is configured for modulator output, SCLK becomes the modulator  
clock output (see the Modulator Output section).  
8.3.15.2 DRDY/FSYNC (Frame-Sync Format)  
In Frame-Sync format, this pin is used as the FSYNC input. The frame-sync input (FSYNC) sets the frame  
period, which must be the same as the data rate. The required number of fCLK cycles to each FSYNC period  
depends on the mode selection and the CLKDIV input. Table 5 indicates the number of CLK cycles to each  
frame (fCLK/fDATA). If the FSYNC period is not the proper value, data readback will be corrupted.  
8.3.15.3 DOUT  
The conversion data are shifted out on DOUT[8:1]. The MSB data become valid on DOUT[8:1] after FSYNC  
goes high. The subsequent bits are shifted out with each falling edge of SCLK. If daisy-chaining, the data shifted  
in using DIN appear on DOUT[8:1] after all channel data have been shifted out. When the device is configured  
for modulator output, DOUT becomes the modulator data output (see the Modulator Output section).  
8.3.15.4 DIN  
This input is used when multiple ADS1278-SPs are to be daisy-chained together. It can be used with either SPI  
or Frame-Sync formats. Data are shifted in on the falling edge of SCLK. When using only one ADS1278-SP, tie  
DIN low. See the Daisy-Chaining section for more information.  
8.3.16 DOUT Modes  
For both SPI and Frame-Sync interface protocols, the data are shifted out either through individual channel  
DOUT pins, in a parallel data format (Discrete mode), or the data for all channels are shifted out, in a serial  
format, through a common pin, DOUT1 (TDM mode).  
8.3.16.1 TDM Mode  
In TDM (time-division multiplexed) data output mode, the data for all channels are shifted out, in sequence, on a  
single pin (DOUT1). As shown in Figure 73, the data from channel 1 are shifted out first, followed by channel 2  
data, etc. After the data from the last channel are shifted out, the data from the DIN input follow. The DIN is used  
to daisy-chain the data output from an additional ADS1278-SP or other compatible device. Note that when all  
channels of the ADS1278-SP are disabled, the interface is disabled, rendering the DIN input disabled as well.  
When one or more channels of the device are powered down, the data format of the TDM mode can be fixed or  
dynamic.  
Copyright © 2018, Texas Instruments Incorporated  
39  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
SCLK  
1
2
23  
24  
25  
47  
48  
49  
71  
73  
95  
96  
97  
167  
168  
169  
191  
192  
193  
194  
195  
72  
DOUT1  
CH1  
CH2  
CH3  
CH4  
CH5  
CH7  
CH8  
DIN  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 73. TDM Mode (All Channels Enabled)  
8.3.16.2 TDM Mode, Fixed-Position Data  
In this TDM data output mode, the data position of the channels remain fixed, regardless of whether the channels  
are powered down. If a channel is powered down, the data are forced to zero but occupy the same position  
within the data stream. Figure 74 shows the data stream with channel 1 and channel 3 powered down.  
8.3.16.3 TDM Mode, Dynamic Position Data  
In this TDM data output mode, when a channel is powered down, the data from higher channels shift one  
position in the data stream to fill the vacated data slot. Figure 75 shows the data stream with channel 1 and  
channel 3 powered down.  
8.3.16.4 Discrete Data Output Mode  
In Discrete data output mode, the channel data are shifted out in parallel using individual channel data output  
pins DOUT[8:1]. After the 24th SCLK, the channel data are forced to zero. The data are also forced to zero for  
powered down channels. Figure 76 shows the discrete data output format.  
SCLK  
1
2
23  
24  
25  
47  
48  
49  
71  
72  
73  
95  
96  
97  
167  
168  
169  
191  
192  
193  
194  
195  
DOUT1  
CH1  
CH2  
CH3  
CH4  
CH5  
CH7  
CH8  
DIN  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 74. TDM Mode, Fixed-Position Data (Channels 1 And 3 Shown Powered Down)  
SCLK  
1
2
23  
24  
25  
47  
48  
49  
50  
119  
120  
121  
143  
144  
145  
145  
146  
CH2  
CH4  
CH5  
CH7  
CH8  
DIN  
DOUT1  
DRDY  
(SPI)  
FSYNC  
(Frame- Sync)  
Figure 75. TDM Mode, Dynamic Position Data (Channels 1 And 3 Shown Powered Down)  
40  
Copyright © 2018, Texas Instruments Incorporated  
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
SCLK  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
1
2
22  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
23  
24  
25  
26  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 76. Discrete Data Output Mode  
8.3.17 Daisy-Chaining  
Multiple ADS1278-SPs can be daisy-chained together to output data on a single pin. The DOUT1 data output pin  
of one device is connected to the DIN of the next device. As shown in Figure 77, the DOUT1 pin of device 1  
provides the output data to a controller, and the DIN of device 2 is grounded. Figure 78 shows the data format  
when reading back data.  
The maximum number of channels that may be daisy-chained in this way is limited by the frequency of fSCLK, the  
mode selection, and the CLKDIV input. The frequency of fSCLK must be high enough to completely shift the data  
out from all channels within one fDATA period. Table 12 lists the maximum number of daisy-chained channels  
when fSCLK = fCLK  
.
To increase the number of data channels possible in a chain, a segmented DOUT scheme may be used,  
producing two data streams. Figure 79 illustrates four ADS1278-SPs, with pairs of ADS1278-SPs daisy-chained  
together. The channel data of each daisy-chained pair are shifted out in parallel and received by the processor  
through independent data channels.  
Table 12. Maximum Channels In A Daisy-Chain (FSCLK = FCLK  
)
MODE SELECTION  
High-Speed  
CLKDIV  
MAXIMUM NUMBER OF CHANNELS  
1
1
1
0
1
0
10  
21  
High-Resolution  
21  
Low-Power  
Low-Speed  
10  
106  
21  
Whether the interface protocol is SPI or Frame-Sync, it is recommended to synchronize all devices by tying the  
SYNC inputs together. When synchronized in SPI protocol, it is only necessary to monitor the DRDY output of  
one ADS1278-SP.  
In Frame-Sync interface protocol, the data from all devices are ready after the rising edge of FSYNC.  
Since DOUT1 and DIN are both shifted on the falling edge of SCLK, the propagation delay on DOUT1 creates a  
setup time on DIN. Minimize the skew in SCLK to avoid timing violations.  
Copyright © 2018, Texas Instruments Incorporated  
41  
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
U1  
U2  
SYNC  
CLK  
SYNC  
SYNC  
DRDY  
DRDY Output from Device 1  
DOUT from Devices 1 and 2  
CLK  
DIN  
CLK  
DIN  
DOUT1  
DOUT1  
SCLK  
SCLK  
SCLK  
Note: The number of chained devices is limited by the SCLK rate and device mode.  
Figure 77. Daisy-Chaining of Two Devices, SPI Protocol (Format[2:0] = 000 or 001)  
SCLK  
1
2
25  
26  
49  
50  
73  
74  
97  
98  
193  
194  
217  
218  
385  
386  
DOUT1  
CH1, U1  
CH2, U1  
CH3, U1  
CH4, U1  
CH5, U1  
CH1, U2  
CH2, U2  
DIN2  
DRDY  
(SPI)  
FSYNC  
(Frame-Sync)  
Figure 78. Daisy-Chain Data Format of Figure 77  
SYNC  
CLK  
Serial Data  
Devices 3 and 4  
U1  
U2  
U3  
U4  
SYNC  
CLK  
SYNC  
CLK  
SYNC  
CLK  
SYNC  
CLK  
Serial Data  
DOUT1  
DOUT1  
DIN  
DOUT1  
DIN  
DIN  
DOUT1  
DIN  
Devices 1 and 2  
FSYNC  
SCLK  
FSYNC  
SCLK  
FSYNC  
SCLK  
FSYNC  
SCLK  
SCLK  
FSYNC  
Note: The number of chained devices is limited by the SCLK rate and device mode.  
Figure 79. Segmented DOUT Daisy-Chain, Frame-Sync Protocol (Format[2:0] = 011 or 100)  
8.3.18 Modulator Output  
The ADS1278-SP incorporates a 6th-order, single-bit, chopper-stabilized modulator followed by a multi-stage  
digital filter that yields the conversion results. The data stream output of the modulator is available directly,  
bypassing the internal digital filter. The digital filter is disabled, reducing the DVDD current, as shown in Table 13.  
In this mode, an external digital filter implemented in an ASIC, FPGA, or similar device is required. To invoke the  
modulator output, tie FORMAT[2:0], as shown in Figure 80. DOUT[8:1] then becomes the modulator data stream  
outputs for each channel and SCLK becomes the modulator clock output. The DRDY/FSYNC pin becomes an  
unused output and can be ignored. The normal operation of the Frame-Sync and SPI interfaces is disabled, and  
the functionality of SCLK changes from an input to an output, as shown in Figure 80.  
42  
Copyright © 2018, Texas Instruments Incorporated  
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Table 13. Modulator Output Clock Frequencies  
MODE  
[1:0]  
CLKDIV  
MODULATOR CLOCK OUTPUT (SCLK)  
DVDD (mA)  
00  
1
1
1
0
1
0
fCLK / 4  
fCLK / 4  
fCLK / 8  
fCLK / 4  
fCLK / 40  
fCLK / 8  
8
7
4
4
1
1
01  
10  
11  
Modulator Data Channel 1  
Modulator Data Channel 2  
DOUT1  
DOUT2  
IOVDD  
DIN  
FORMAT0  
FORMAT1  
FORMAT2  
DOUT8  
SCLK  
Modulator Data Channel 8  
Modulator Clock Output  
Figure 80. Modulator Output  
Copyright © 2018, Texas Instruments Incorporated  
43  
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
In modulator output mode, the frequency of the modulator clock output (SCLK) depends on the mode selection of  
the ADS1278-SP. Table 13 lists the modulator clock output frequency and DVDD current versus device mode.  
Figure 81 shows the timing relationship of the modulator clock and data outputs.  
The data output is a modulated 1s density data stream. When VIN = +VREF, the 1s density is approximately 80%  
and when VIN = –VREF, the 1s density is approximately 20%.  
Modulator  
SCLK  
Clock Output  
Modulator  
DOUT  
Data Output  
(13ns max)  
Figure 81. Modulator Output Timing  
8.3.19 Pin Test Using Test[1:0] Inputs  
The test mode feature of the ADS1278-SP allows continuity testing of the digital I/O pins. In this mode, the  
normal functions of the digital pins are disabled and routed to each other as pairs through internal logic, as  
shown in Table 14. The pins in the left column drive the output pins in the right column. Note: some of the digital  
input pins become outputs; these outputs must be accommodated in the design. The analog input, power supply,  
and ground pins all remain connected as normal. The test mode is engaged by setting the pins TEST [1:0] = 11.  
For normal converter operation, set TEST[1:0] = 00. Do not use '01' or '10'.  
Table 14. Test Mode Pin Map (Test[1:0] = 11)  
TEST MODE PIN MAP  
INPUT PINS  
PWDN1  
OUTPUT PINS  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DIN  
PWDN2  
PWDN3  
PWDN4  
PWDN5  
PWDN6  
PWDN7  
PWDN8  
MODE0  
MODE1  
SYNC  
FORMAT0  
FORMAT1  
FORMAT2  
CLKDIV  
FSYNC/DRDY  
SCLK  
8.3.20 VCOM Output  
The VCOM pin provides a voltage output equal to AVDD / 2. The intended use of this output is to set the output  
common-mode level of the analog input drivers. The drive capability of the output is limited; therefore, the output  
should only be used to drive high-impedance nodes (> 1 M). In some cases, an external buffer may be  
necessary. A 0.1-μF bypass capacitor is recommended to reduce noise pickup.  
LM124AQML-SP  
VCOM » (AVDD/2)  
µF  
0.1  
Figure 82. VCOM Output  
44  
Copyright © 2018, Texas Instruments Incorporated  
 
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
8.4 Device Functional Modes  
Table 15. Operating Mode Performance Summary  
MODE  
High-Speed  
High-Resolution  
Low-Power  
Low-Speed  
MAX DATA RATE (SPS)  
PASSBAND (kHz)  
57,984  
SNR (dB)  
106  
NOISE (μVRMS  
)
POWER/CHANNEL (mW)  
128,000  
52,734  
52,734  
10,547  
8.5  
5.5  
8.5  
8.0  
70  
64  
31  
7
23,889  
110  
23,889  
106  
4,798  
107  
Copyright © 2018, Texas Instruments Incorporated  
45  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ADS1278-SP is a radiation-hardened high resolution delta-sigma ADC that is ideal for precision sensing and  
high accuracy instrumentation applications. With eight simultaneous sampling 24-bit ADCs integrated, the device  
reduces the board area needed to digitize eight analog signals.  
9.2 Typical Application  
(1)  
THS4521  
+3.3 V  
ADS1278-SP  
IN1(+)  
IN1(-)  
AINP1  
AINN1  
IOVDD  
DVDD (I/O)  
10 µF(2)  
2.2 nF(3)  
Microcontroller /  
DSP  
CLK  
DRDY/FSYNC  
DOUT1  
50 Ω  
FSR  
DR  
U2  
0
>
Q
U1  
CVDD  
+1.6 V  
SCLK  
Q
(CORE)  
50 Ω  
DOUT2  
CLKR  
See  
Note (5)  
200 MHz  
DOUT3  
IN4/8(+)  
IN4/8(-)  
AINP4/8  
AINN4/8  
DOUT4  
2.2 nF(3)  
+5 V  
SYNC  
PWDN1  
PWDN2  
PWDN3  
PWDN4  
I/O  
AVDD  
DVDD  
+
10 µF(2)  
+1.8 V(6)  
10 µF(2)  
See  
Note (6)  
1 µF  
LM4050QML-SP  
VREFP  
VREFN  
+
10 µF  
0.1 µF(2)  
+3.3 V  
CLKDIV  
(High-Speed, Frame-Sync, TDM,  
and Fixed-Position data selected.)  
MODE0  
MODE1  
VCOM  
+5 V  
0.1 µF(2)  
(4)  
TEST0  
TEST1  
DIN  
+3.3 V  
FORMAT2  
FORMAT1  
100 Ω  
Buffered  
VCOM  
Output  
LM124AQML-SP  
AGND  
DGND  
FORMAT0  
Figure 83. Typical Application Schematic  
9.2.1 Design Requirements  
Depending on the accuracy and speed requirements of the sensing application to be digitized by the ADC1278-  
SP, users must first determine the optimal device configuration. Table 16 shows the possible configurations for  
device for the maximum fCLKIN for each configuration. The yellow highlighted columns indicate user defined  
inputs (through I/O pins) to the device, while the italic row indicates the default configuration of the  
ADS1278EVM-CVAL EVM that is available as a reference design. As shown, a maximum data rate of 52734  
SPS is possible while using the High Resolution mode, which yields a typical SNR of 111 dB or an ENOB of 18  
bits.  
46  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Application (continued)  
Table 16. ADS1278-SP Configuration Modes  
fCLKIN_max  
(MHz)  
Oversampling  
(fMOD/fDATA)  
fMOD  
(MHz)  
fDATA_max  
(SPS)  
Mode  
CLKDIV  
fCLK/fMOD  
fCLKIN/fMOD  
High-Speed  
High-Speed  
High-Speed  
High Resolution  
Low-Power  
Low-Power  
Low-Speed  
Low-Speed  
1
1
1
1
1
0
1
0
4
4
32.768  
32.768  
27  
64  
64  
64  
128  
64  
64  
64  
64  
8.192  
8.192  
6.75  
128000  
128000  
105469  
52734  
52734  
52734  
10547  
10547  
4
4
4
4
4
27  
6.75  
4
8
27  
3.375  
3.375  
0.675  
0.675  
8
4
13.5  
27  
4
40  
8
40  
8
5.4  
9.2.2 Detailed Design Procedure  
To obtain the specified performance from the ADS1278-SP, the following layout and component guidelines  
should be considered.  
1. Power Supplies: The device requires three power supplies for operation: DVDD, IOVDD, and AVDD. The  
allowed range for DVDD is 1.65 V to 1.95 V; the range of IOVDD is 1.65 V to 3.6 V; AVDD is restricted to  
4.75 V to 5.25 V. For all supplies, use a 10-μF tantalum capacitor, bypassed with a 0.1-μF ceramic capacitor,  
placed close to the device pins. Alternatively, a single 10-μF ceramic capacitor can be used. The supplies  
should be relatively free of noise and should not be shared with devices that produce voltage spikes (such as  
relays, LED display drivers, etc.). If a switching power-supply source is used, the voltage ripple should be low  
(less than 2 mV) and the switching frequency outside the passband of the converter.  
2. Ground Plane: A single ground plane connecting both AGND and DGND pins can be used. If separate  
digital and analog grounds are used, connect the grounds together at the converter.  
3. Digital Inputs: It is recommended to source-terminate the digital inputs to the device with 50-series  
resistors. The resistors should be placed close to the driving end of digital source (oscillator, logic gates,  
DSP, etc.) This placement helps to reduce ringing on the digital lines (ringing may lead to degraded ADC  
performance).  
4. Analog/Digital Circuits: Place analog circuitry (input buffer, reference) and associated tracks together,  
keeping them away from digital circuitry (DSP, microcontroller, logic). Avoid crossing digital tracks across  
analog tracks to reduce noise coupling and crosstalk.  
5. Reference Inputs: It is recommended to use a minimum 10-μF tantalum with a 0.1-μF ceramic capacitor  
directly across the reference inputs, VREFP and VREFN. The reference input should be driven by a low-  
impedance source. For best performance, the reference should have less than 3-μVRMS in-band noise. For  
references with noise higher than this level, external reference filtering may be necessary.  
6. Analog Inputs: The analog input pins must be driven differentially to achieve specified performance. A true  
differential driver or transformer (ac applications) can be used for this purpose. Route the analog inputs  
tracks (AINP, AINN) as a pair from the buffer to the converter using short, direct tracks and away from digital  
tracks. A 1-nF to 10-nF capacitor should be used directly across the analog input pins, AINP and AINN. A  
low-k dielectric (such as COG or film type) should be used to maintain low THD. Capacitors from each  
analog input to ground can be used. They should be no larger than 1/10 the size of the difference capacitor  
(typically 100 pF) to preserve the ac common-mode performance.  
7. Component Placement: Place the power supply, analog input, and reference input bypass capacitors as  
close as possible to the device pins. This layout is particularly important for small-value ceramic capacitors.  
Larger (bulk) decoupling capacitors can be located farther from the device than the smaller ceramic  
capacitors.  
Copyright © 2018, Texas Instruments Incorporated  
47  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
9.2.3 Application Curve  
Figure 84 illustrates how the noise of the device, and thus, the SNR, is determined by the mode that is utilized.  
12  
Low Power Mode  
10  
High Speed Mode  
8
Low Speed Mode  
6
4
High Resolution Mode  
2
0
-55 -35 -15  
5
25 45 65 85 105 125  
Temperature (°C)  
Figure 84. Noise vs Temperature  
48  
Copyright © 2018, Texas Instruments Incorporated  
 
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
10 Power Supply Recommendations  
The ADS1278-SP has three power supplies: AVDD, DVDD, and IOVDD. AVDD is the analog supply that powers  
the modulator, DVDD is the digital supply that powers the digital core, and IOVDD is the digital I/O power supply.  
The IOVDD and DVDD power supplies can be tied together if desired (1.8 V). To achieve rated performance, it is  
critical that the power supplies are bypassed with 0.1-μF and 10-μF capacitors placed as close as possible to the  
supply pins. A single 10-μF ceramic capacitor may be substituted in place of the two capacitors.  
Figure 85 shows the start-up sequence of the ADS1278-SP. At power-on, bring up the DVDD supply first,  
followed by IOVDD and then AVDD. Check the power-supply sequence for proper order, including the ramp rate  
of each supply. DVDD and IOVDD may be sequenced at the same time if the supplies are tied together. Each  
supply has an internal reset circuit whose outputs are summed together to generate a global power-on reset.  
After the supplies have exceeded the reset thresholds, 218 fCLK cycles are counted before the converter initiates  
the conversion process. Following the CLK cycles, the data for 129 conversions are suppressed by the  
ADS1278-SP to allow output of fully-settled data. In SPI protocol, DRDY is held high during this interval. In  
frame-sync protocol, DOUT is forced to zero. The power supplies should be applied before any analog or digital  
pin is driven. For consistent performance, assert SYNC after device power-on when data first appear.  
DVDD  
IOVDD  
AVDD  
1V nom(1)  
1V nom(1)  
3V nom(1)  
Internal Reset  
CLK  
218  
129 (max)  
tDATA  
fCLK  
DRDY  
(SPI Protocol)  
DOUT  
(Frame-Sync Protocol)  
Valid Data  
Figure 85. Start-Up Sequence  
Copyright © 2018, Texas Instruments Incorporated  
49  
 
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
In any mixed-signal system design, the power-supply and grounding design plays a significant role. The device  
distinguishes between two different grounds: AVSS (analog ground) and DGND (digital ground). In low frequency  
applications such as temperature sensing with thermocouples, laying out the printed circuit board (PCB) to use a  
single ground plane is adequate but care must be taken so that ground loops are avoided. Ground loops act as  
loop antennas picking up interference currents which transform into voltage fluctuations. These fluctuations are  
effectively noise which can degrade system performance in high resolution applications. When placing  
components and routing over the ground plane, pay close attention to the path that ground currents will take.  
Avoid having return currents for digital functions pass close to analog sensitive devices or traces.  
Additionally, the proximity of digital devices to an analog signal chain has the potential to induce unwanted noise  
into the system. One primary source of noise is the switching noise from any digital circuitry such as the data  
output serializer or the microprocessor receiving the data. For the device, care must be taken to ensure that the  
interaction between the analog and digital supplies within the device is kept to a minimal amount. The extent of  
noise coupled and transmitted from the digital and analog sections depends on the effective inductances of each  
of the supply and ground connections. Smaller effective inductances of the supply and ground pins results in  
better noise suppression. For this reason, multiple pins are used to connect to the digital ground. Low inductance  
properties must be maintained throughout the design of the PCB layout by use of proper planes and layer  
thickness.  
To avoid noise coupling through supply pins, TI recommends to keep sensitive input pins away from the DVDD  
and DGND planes. Do not route the traces or vias connected to these pins across these planes; that is, avoid the  
digital power planes under the analog input pins. Care should be taken to minimize inductance and route digital  
signals away from analog section.  
The analog inputs represent the most sensitive node of the ADC as the total system accuracy depends on the  
how well the integrity of this signal is maintained. The analog differential inputs to the ADC should be routed  
tightly coupled and symmetrical for common mode rejection. These inputs should be as short in length as  
possible to minimize exposure to potential sources of noise.  
50  
Copyright © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
11.2 Layout Example  
Figure 86. ADS1278-SP Layout Example  
版权 © 2018, Texas Instruments Incorporated  
51  
ADS1278-SP  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
52  
版权 © 2018, Texas Instruments Incorporated  
ADS1278-SP  
www.ti.com.cn  
ZHCSIS6B SEPTEMBER 2018REVISED DECEMBER 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
53  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1278HFQ/EM  
ADS1278MHFQ-MLS  
ADS1278WHFQ-MLS  
ACTIVE  
CFP  
CFP  
CFP  
HFQ  
84  
84  
84  
1
RoHS-Exempt  
& Green  
Call TI  
Call TI  
Call TI  
Call TI  
25 to 25  
-55 to 125  
-55 to 115  
ADS1278HFQ/EM  
EVAL ONLY  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
HFQ  
1
RoHS-Exempt  
& Green  
Call TI  
Call TI  
ADS1278MHFQ-MLS  
HFQ  
1
RoHS-Exempt  
& Green  
ADS1278  
WHFQ-MLS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ADS1278-SP :  
Catalog : ADS1278  
Enhanced Product : ADS1278-EP  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY