ADS127L01 [TI]

24 位、512kSPS、单通道、超低功耗、宽带宽 Δ-Σ ADC;
ADS127L01
型号: ADS127L01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24 位、512kSPS、单通道、超低功耗、宽带宽 Δ-Σ ADC

文件: 总90页 (文件大小:2963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
ADS127L01 24 位高速、高带宽模数转换器  
1 特性  
3 说明  
1
数据速率:高达 512kSPS  
交流 + 直流性能:  
ADS127L01 是一款 24 Δ-Σ 模数转换器 (ADC),其  
数据速率最高可达 512kSPS。该器件兼具出色直流精  
度和卓越交流性能。高阶、斩波稳定调制器在低带内噪  
声条件下实现极低漂移。集成抽取滤波器抑制调制器带  
外噪声。除低延迟滤波器外,ADS127L01 还提供多个  
纹波小于 ±0.00004dB 的宽带滤波器以及在奈奎斯特速  
率下实现 –116dB 阻带衰减的选项。  
通带:最高可达 230kHz  
信噪比 (SNR):最高可达 115.5dB  
总谐波失真 (THD):低至 -129dB  
直流精度:  
偏移漂移:1.5μV/°C  
增益漂移:0.2ppm/°C  
提供良好漂移性能的工业 Δ-Σ ADC 通常使用通带显著  
衰减的数字滤波器。因此,工业 Δ-Σ ADC 的信号带宽  
有限,主要用于直流测量。音频应用中的 高分辨率  
ADC 提供 较大的可用带宽,但偏移和漂移规范明显弱  
于同类工业产品。ADS127L01 将这些转换器相结合,  
能够在 –40°C +125°C 的工业温度范围内提供高精  
度工业测量,实现出色的直流和交流规范。  
运行模式:  
高分辨率(26mW 时为 128kSPS)  
低功耗(15mW 时为 128kSPS)  
超低功耗:105dB SNR9mW 时为  
128kSPS)  
数字滤波器选项:  
低延迟滤波器:正弦频率响应  
该器件的不同工作模式可优化速度、分辨率和功率。可  
编程串行接口具备 SPI、帧同步从器件或帧同步主器件  
这三个选项中的任意一个,可轻松跨越隔离栅与单片机  
或数字信号处理器 (DSP) 相连。  
宽带 1 滤波器:  
(0.45 0.55) × fDATA 过渡带  
宽带 2 滤波器:  
(0.40 0.50) × fDATA 过渡带  
SPI™或者帧同步串行接口  
兼容菊花链  
器件信息(1)  
器件型号  
ADS127L01  
封装  
TQFP (32)  
封装尺寸(标称值)  
模拟电源:2.7V 3.6V  
5.00mm x 5.00mm  
数字电源:1.7V 3.6V  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
工作温度范围:-40°C +125°C  
2 应用  
振动和模态分析  
数据采集系统  
声学和动态应力计  
电能质量分析  
ADS127L01 框图  
ADC 频谱  
REFP REFN LVDD AVDD  
DVDD  
0
256 kSPS Data Rate  
65536 Data Points  
-20  
-40  
LDO  
INTLDO  
SCLK  
CS  
SPI and  
Frame-Sync  
Interface  
Low-Latency  
Filter  
DIN  
AINP  
AINN  
DOUT  
-60  
ûADC  
Modulator  
Wideband 1  
Filter  
DRDY/FSYNC  
-80  
DAISYIN  
Wideband 2  
Filter  
FSMODE  
FORMAT  
-100  
-120  
-140  
-160  
-180  
Control Logic  
RESET/PWDN  
OSR [1:0]  
FILTER [1:0]  
CLK  
ADS127L01  
DGND  
Copyright © 2016, Texas Instruments Incorporated  
AGND  
0
20  
40  
60 80  
Frequency (kHz)  
100  
120  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS607  
 
 
 
 
 
 
 
 
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 26  
8.3 Feature Description................................................. 27  
8.4 Device Functional Modes........................................ 38  
8.5 Programming .......................................................... 46  
8.6 Register Maps......................................................... 53  
Application and Implementation ........................ 58  
9.1 Application Information............................................ 58  
9.2 Typical Application ................................................. 72  
9.3 Do's and Don'ts ...................................................... 75  
9.4 Initialization Setup .................................................. 77  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Timing Requirements: Serial Interface.................... 11  
6.7 Switching Characteristics: Serial Interface Mode.... 11  
6.8 Timing Requirements: Frame-Sync Master Mode .. 13  
9
10 Power Supply Recommendations ..................... 78  
10.1 Power-Supply Sequencing.................................... 78  
10.2 Power-Supply Decoupling .................................... 78  
11 Layout................................................................... 79  
11.1 Layout Guidelines ................................................. 79  
11.2 Layout Example .................................................... 80  
12 器件和文档支持 ..................................................... 82  
12.1 文档支持 ............................................................... 82  
12.2 接收文档更新通知 ................................................. 82  
12.3 社区资源................................................................ 82  
12.4 ....................................................................... 82  
12.5 静电放电警告......................................................... 82  
12.6 Glossary................................................................ 82  
13 机械、封装和可订购信息....................................... 82  
6.9 Switching Characteristics: Frame-Sync Master  
Mode ........................................................................ 13  
6.10 Timing Requirements: Frame-Sync Slave Mode .. 14  
6.11 Switching Characteristics: Frame-Sync Slave  
Mode ........................................................................ 14  
6.12 Typical Characteristics.......................................... 16  
Parameter Measurement information ................ 24  
7.1 Noise Performance ................................................. 24  
Detailed Description ............................................ 26  
8.1 Overview ................................................................. 26  
7
8
4 修订历史记录  
Changes from Revision A (May 2016) to Revision B  
Page  
特性,将交流性能更改为:交流 + 直流性能........................................................................................................................... 1  
特性,将 SNR:最高可达 115.5dB(在 OSR 256 条件下)更改为:SNR:最高可达 115.5dB ........................................... 1  
特性,将 THD–126dB(低功耗 (LP) 和超低功耗 (VLP) 模式)更改为:THD:低至 -129dB ............................................ 1  
特性,将直流精度更改为:积分非线性:1ppm ..................................................................................................................... 1  
特性,将 HR111dB SNR 更改为:高分辨率....................................................................................................................... 1  
特性,将 LP108dB SNR 更改为:低功........................................................................................................................... 1  
特性,将 VLP105dB SNR 更改为:超低功..................................................................................................................... 1  
Pin Functions, Changed pin 14 description of 1: Master mode.............................................................................................. 5  
Pin Functions, Changed pin 19 description "protocol" To: interface ...................................................................................... 5  
Pin Functions, Changed pin 27 description "Decouple DVDD to DGND with a 1-μF capacitor" To: Connect a 1-μF  
capacitor to DGND ................................................................................................................................................................. 5  
Pin Functions, Changed pin 32 description "Decouple AVDD to AGND with a 1-μF capacitor" To: Connect a 1-μF  
capacitor to AGND.................................................................................................................................................................. 5  
Recommended Operating Conditions, Changed VCM NOM value From: (AVDD + AGND) / 2 To: AVDD / 2 ...................... 7  
Electrical Characteristics, Added test conditions to SNR: WB2, OSR 32/64/128, VREF = 3 V ............................................... 9  
Figure 2, Changed th(DO) To: tv(DO) in order to match Switching Characteristics: Serial Interface Mode table...................... 12  
Timing Requirements: Frame-Sync Slave Mode, Deleted text from conditions statement "and DVDD = 1.7 V to 3.6 V"... 14  
Typical Characteristics, Changed conditions statement....................................................................................................... 16  
Table 1, Changed the values in the ENOB column.............................................................................................................. 25  
Table 2, Changed the values in the ENOB column.............................................................................................................. 25  
Changed text frame-sync mode To: frame-sync interface mode throughout the document ................................................ 26  
2
版权 © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
修订历史记录 (接下页)  
Changed text frame-sync protocol. To: frame-sync interface mode throughout the document ........................................... 26  
Changed section Mode Selection To: Operating Modes (HR, LP, VLP).............................................................................. 38  
Changed section Filter Selection Pins (FILTER) To: Digital-Filter Path Selection Pins (FILTER[1:0])................................ 40  
Figure 85, Changed tw(STH) To: tw(STL).................................................................................................................................... 41  
Table 13, Changed tw(STH) To: tw(STL)..................................................................................................................................... 41  
Start Pin (START), Deleted text "For consistent performance, reassert START after device power-on when data first  
appear, or after any hardware MODE pin change." ............................................................................................................. 42  
Figure 86, Changed tw(STH) To: tw(STL).................................................................................................................................... 42  
Table 14, Changed tw(STH) To: tw(STL)..................................................................................................................................... 42  
Data Ready (DRDY/FSYNC), Changed "...with the first SCLK rising edge." To: "...with the first SCLK falling edge, as  
shown in Figure 91."............................................................................................................................................................. 47  
Data Ready (DRDY/FSYNC), Added text "A new conversion result is..."............................................................................ 47  
Data Ready (DRDY/FSYNC), Added Figure 91 ................................................................................................................... 47  
START (0000 100x), Added sentence "The START command is decoded..." ................................................................... 48  
STOP (0000 101x) , Added sentence "The START pin must be held low..."....................................................................... 48  
RREG (0010 rrrr 0000 nnnn), Added Figure 92 ................................................................................................................... 49  
WREG (0100 rrrr 0000 nnnn), Added Figure 93 .................................................................................................................. 49  
Synchronizing Devices, Added text "When synchronizing multiple devices..." .................................................................... 63  
Figure 112, Changed position of fMOD arrow......................................................................................................................... 64  
Antialiasing Filter, Changed paragraph following Figure 112 .............................................................................................. 65  
Table 30, Changed THS4551 Gain Bandwidth Product (MHz) From: 130 To: 135............................................................. 66  
Modulator Saturation, Added new section............................................................................................................................ 68  
Table 32, Changed values in the Noise column................................................................................................................... 70  
Detailed Design Procedure, Changed "With a 130-MHz gain-bandwidth product" To: "With a 135-MHz gain-  
bandwidth product" .............................................................................................................................................................. 72  
Layout Guidelines, Changed section.................................................................................................................................... 79  
Changes from Original (April 2016) to Revision A  
Page  
已从产品预览更改为量产数据” ............................................................................................................................................ 1  
Copyright © 2016, Texas Instruments Incorporated  
3
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
5 Pin Configuration and Functions  
PBS package  
32-Pin TQFP  
Top View  
LVDD  
CAP1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CLK  
CS  
AINN  
SCLK  
AINP  
DIN  
AGND  
AVDD  
REXT  
INTLDO  
DOUT  
DRDY/FSYNC  
DAISYIN  
START  
Not to scale  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION(1)  
NO.  
LVDD analog supply.  
1
LVDD  
Supply  
INTLDO = 0: LVDD is an analog-supply output pin. Connect a 1-µF capacitor to AGND.  
INTLDO = 1: LVDD is an analog-supply input pin. Connect to a 1.8-V supply.  
Modulator common-mode voltage.  
Connect a 1-µF capacitor to AGND  
2
CAP1  
Analog output  
3
4
5
AINN  
AINP  
Analog input  
Analog input  
Supply  
Negative analog input.  
Positive analog input.  
Analog ground.  
AGND  
Analog supply.  
Connect a 1-μF capacitor to AGND.  
6
AVDD  
REXT  
Supply  
Analog power-scaling bias resistor pin.  
Recommended external resistor values:  
REXT = 60.4 kΩ to AGND for high-resolution (HR) and low-power (LP) modes  
REXT = 120 kΩ to AGND for very-low-power (VLP) mode  
7
Analog input  
LVDD voltage selection pin (pull high to AVDD or low to AGND through 10-kΩ resistor).  
0: Internal analog low-dropout regulator (LDO) for LVDD voltage supply.  
1: External LVDD voltage supply.  
8
INTLDO  
Digital input  
Positive analog reference input.  
Connect a minimum 10-μF capacitor to REFN  
9
REFP  
REFN  
CAP2  
Analog input  
Analog input  
Analog output  
10  
11  
Negative analog reference input.  
Reference common-mode voltage.  
Connect a 1-µF capacitor to AGND.  
(1) See the Unused Inputs and Outputs section for unused pin connections.  
4
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION(1)  
NO.  
12  
NAME  
FILTER1  
Digital input  
Digital filter select pin(2)  
.
00: Wideband 1 filter (WB1)  
01: Wideband 2 filter (WB2)  
10: Low-latency filter (LL)  
11: Reserved  
13  
FILTER0  
Digital input  
Frame-sync mode pin(2)  
0: Slave mode  
1: Master mode. Applies to Frame-Sync interface mode only. No effect in SPI interface  
mode.  
.
14  
15  
FSMODE  
OSR1  
Digital input  
Digital input  
Oversampling ratio (OSR) pin for the decimation filters(2)  
.
Wideband filters, FILTER[1:0] = 00 or 01:  
00: 32x oversampling (OSR 32)  
01: 64x oversampling (OSR 64)  
10: 128x oversampling (OSR 128)  
11: 256x oversampling (OSR 256)  
16  
OSR0  
Digital input  
Low-latency filter, FILTER[1:0] = 10:  
00: 32x oversampling (OSR 32)  
01: 128x oversampling (OSR 128)  
10: 512x oversampling (OSR 512)  
11: 2048x oversampling (OSR 2048)  
17  
18  
START  
Digital input  
Digital input  
Synchronization signal to start or restart a conversion.  
Daisy-chain input.  
DAISYIN  
SPI interface: Data ready, active low(3)  
.
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DRDY/FSYNC  
DOUT  
Digital input/output  
Digital output  
Frame-sync interface: Frame-sync input signal(3)  
Serial data output  
Serial data input.  
Tie directly to DGND when using the frame-sync interface.  
Digital input/output Serial clock input(3)  
.
DIN  
Digital input  
SCLK  
Chip select.  
Digital input  
CS  
Tie directly to DGND when using the frame-sync interface.  
Master clock input.  
CLK  
Digital input  
Analog output  
Supply  
Internally-generated digital operating voltage.  
Connect a 1-µF capacitor to DGND.  
CAP3  
DGND  
DVDD  
Digital ground.  
Digital supply.  
Supply  
Connect a 1-μF capacitor to DGND(3)  
RESET/PWDN  
Digital input  
Reset or power-down pin, active low(3)  
.
ADC operating mode(2)  
1: High-resolution (HR)  
.
29  
30  
HR  
Digital input  
Digital input  
0: Low-power (LP) or very-low-power (VLP)(4)  
Interface select pin(2)  
0: SPI  
.
FORMAT  
1: Frame-Sync  
31  
32  
AGND  
AVDD  
Supply  
Supply  
Analog ground.  
Analog supply.  
Decouple AVDD to AGND with a 1-μF capacitor.  
(2) Pull the hardware mode pins high to DVDD or low to DGND through 100-kΩ resistors.  
(3) See the Reset and Power-Down Pin (RESET/PWDN) section for specific hardware design details if using power-down mode.  
(4) Entering LP mode or VLP mode is set by REXT resistor value.  
Copyright © 2016, Texas Instruments Incorporated  
5
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
MAX  
4.0  
UNIT  
AVDD to AGND  
DVDD to DGND  
LVDD to AGND  
–0.3  
4.0  
–0.3  
2.0  
AGND to DGND  
–0.3  
0.3  
Voltage  
V
REFP to AGND  
–0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
DVDD + 0.3  
10  
REFN to AGND  
Analog input  
Digital input  
–0.3  
AGND – 0.3  
DGND – 0.3  
–10  
(2)  
Current  
Input, continuous, any pin except power supply pins  
mA  
°C  
Operating ambient, TA  
Junction, TJ  
–40  
125  
Temperature  
150  
Storage, Tstg  
–60  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Limit the input current to 10 mA or less if the analog input voltage exceeds  
AVDD + 0.3 V or is less than AGND – 0.3 V, or if the digital input voltage exceeds DVDD + 0.3 V or is less than DGND – 0.3 V.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
LVDD  
DVDD  
Analog power supply  
Low voltage analog supply  
Digital supply  
2.7  
1.7  
1.7  
3.0  
1.8  
1.8  
3.6  
1.9  
3.6  
V
V
V
INTLDO = 1  
ANALOG INPUTS  
VIN  
Differential input voltage  
VIN = (VAINP – VAINN  
)
–VREF  
AGND  
VREF  
V
V
V
VAINP  
VAINN  
,
Absolute input voltage  
AINP or AINN to AGND  
VCM = (VAINP + VAINN) / 2  
AVDD  
VCM  
Common-mode input voltage  
AVDD / 2  
VOLTAGE REFERENCE INPUTS  
VREFN  
VREFP  
VREF  
Negative reference input  
Positive reference input  
Reference input voltage  
AGND – 0.1  
VREFN + 0.5  
0.5  
AGND  
2.5  
AGND + 1.0  
AVDD  
V
V
V
VREF = VREFP – VREFN  
2.5  
3.0  
EXTERNAL CLOCK SOURCE  
HR mode  
LP mode  
VLP mode  
0.1  
0.1  
0.1  
16.384  
8.192  
4.096  
17.6  
8.8  
fCLK  
Master clock rate(1)  
MHz  
4.4  
DIGITAL INPUTS  
Input voltage  
TEMPERATURE RANGE  
TA Operating ambient temperature  
DGND  
DVDD  
125  
V
–40  
°C  
(1) To meet maximum speed conditions, fCLK duty cycle must be 49% < duty cycle < 51%.  
6.4 Thermal Information  
ADS127L01  
THERMAL METRIC(1)  
PBS (TQFP)  
32 PINS  
73.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.9  
26.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
26.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
7
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.5 Electrical Characteristics  
Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.  
All specifications are at AVDD = 3 V, LVDD = 1.8 V (external), DVDD = 1.8 V, VREF = 2.5 V, INTLDO = 1, FILTER[1:0] = 01  
(WB2), and fCLK = 16.384 MHz for HR mode, 8.192 MHz for LP mode, or 4.096 MHz for VLP mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
HR mode, fCLK = 16.384 MHz  
5
11  
23  
Differential input  
impedance  
LP mode, fCLK = 8.192 MHz  
VLP mode, fCLK = 4.096 MHz  
k  
DC PERFORMANCE  
Resolution  
No missing codes  
HR mode  
24  
Bits  
Wideband filters  
Low-latency filter  
Wideband filters  
Low-latency filter  
Wideband filters  
Low-latency filter  
VCM = AVDD / 2  
VCM = AVDD / 2  
VCM = AVDD / 2  
512, 256, 128, 64  
512, 128, 32, 8  
256, 128, 64, 32  
fDATA  
Data rate  
LP mode  
kSPS  
256, 64, 16, 4  
128, 64, 32, 16  
VLP mode  
128, 32, 8, 2  
HR mode  
LP mode  
VLP mode  
2.5  
1
10  
5
INL  
Integral nonlinearity(1)  
ppm  
1
5
Offset error  
±0.1  
1.5  
mV  
Offset drift  
3.0  
μV/°C  
%FSR  
Gain error  
0.2  
Gain calibration accuracy  
0.003%  
0.8  
HR mode  
LP mode  
VLP mode  
3
2.5  
2
Gain drift  
Noise(2)  
0.4  
ppm/°C  
0.2  
WB2, OSR 32  
WB2, OSR 64  
WB2, OSR 128  
WB2, OSR 256  
10.6  
7.3  
10.1  
7.2  
HR mode  
μVRMS  
5.1  
3.6  
5.2  
Common-mode rejection  
ratio  
CMRR  
PSRR  
fCM = 60 Hz  
fPS = 60 Hz  
95  
dB  
dB  
AVDD  
DVDD  
LVDD  
90  
85  
80  
Power-supply rejection  
ratio  
(1) Best fit method.  
(2) For all Wideband filter configurations, see Table 1. For all Low-latency filter configurations, see Table 2.  
8
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Electrical Characteristics (continued)  
Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.  
All specifications are at AVDD = 3 V, LVDD = 1.8 V (external), DVDD = 1.8 V, VREF = 2.5 V, INTLDO = 1, FILTER[1:0] = 01  
(WB2), and fCLK = 16.384 MHz for HR mode, 8.192 MHz for LP mode, or 4.096 MHz for VLP mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
WB2, OSR 32  
WB2, OSR 64  
WB2, OSR 128  
WB2, OSR 256  
104.4  
107.8  
110.9  
113.9  
105.8  
109.3  
112  
104.9  
107.9  
110.6  
SNR  
Signal-to-noise ratio(2)(3)  
dB  
WB2, OSR 32, VREF = 3 V  
WB2, OSR 64, VREF = 3 V  
WB2, OSR 128, VREF = 3 V  
WB2, OSR 256, VREF = 3 V  
HR mode, fIN = 4 kHz, VIN = –0.5 dBFS  
LP mode, fIN = 4 kHz, VIN = –0.5 dBFS  
VLP mode, fIN = 4 kHz, VIN = –0.5 dBFS  
HR mode  
115.5  
–113  
–126  
–129  
–115  
–130  
–130  
Total harmonic  
distortion(4)  
THD  
dB  
dB  
Spurious-free dynamic  
range  
SFDR  
LP mode  
VLP mode  
DIGITAL FILTER RESPONSE: WIDEBAND  
Bandwidth  
See Table 1  
Pass-band ripple  
±0.000032  
dB  
Hz  
(0.45 to 0.55) ×  
fDATA  
FILTER[1:0] = 00 (WB1)  
Transition band  
(0.40 to 0.50) ×  
fDATA  
FILTER[1:0] = 01 (WB2)  
Stop-band attenuation  
Group delay  
116  
dB  
s
42 / fDATA  
84 / fDATA  
Settling time  
Complete settling  
s
DIGITAL FILTER RESPONSE: LOW-LATENCY  
Bandwidth  
Group delay  
See Table 2  
See Low-Latency Filter section  
See Low-Latency Filter section  
Settling time  
VOLTAGE REFERENCE INPUTS  
HR mode  
Reference input  
LP mode  
2.2  
3.2  
4
kΩ  
impedance  
VLP mode  
SYSTEM MONITORS  
Input over-range detect  
accuracy  
±100  
mV  
DIGITAL INPUT/OUTPUT (DVDD = 1.7 V to 3.6 V)  
VIH  
VIL  
VOH  
VOL  
IH  
High-level input voltage  
0.7 DVDD  
DGND  
DVDD  
V
V
Low-level input voltage  
0.3 DVDD  
DVDD  
0.2 DVDD  
10  
High-level output voltage IOH = 2 mA  
Low-level output voltage IOL = 2 mA  
0.8 DVDD  
DGND  
–10  
V
V
Input leakage, high  
Input leakage, low  
IH = 3.6 V  
μA  
μA  
IL  
IL = DGND  
–10  
10  
(3) Minimum SNR is ensured by the limit of the dc noise specification.  
(4) THD includes the first nine harmonics of the input signal.  
Copyright © 2016, Texas Instruments Incorporated  
9
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.  
All specifications are at AVDD = 3 V, LVDD = 1.8 V (external), DVDD = 1.8 V, VREF = 2.5 V, INTLDO = 1, FILTER[1:0] = 01  
(WB2), and fCLK = 16.384 MHz for HR mode, 8.192 MHz for LP mode, or 4.096 MHz for VLP mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
INTLDO = 0  
8
2
AVDD  
INTLDO = 1  
Power-down current  
AVDD current  
μA  
DVDD  
0.6  
0.6  
1.3  
0.8  
0.4  
9.3  
4.6  
2.3  
2.8  
1.5  
0.8  
LVDD, INTLDO = 1  
HR mode  
LP mode  
1.6  
1.0  
0.6  
11  
IAVDD  
ILVDD  
IDVDD  
mA  
mA  
mA  
VLP mode  
HR mode  
LP mode  
(6)  
LVDD current(5)  
5.5  
2.8  
3.4  
1.8  
1.1  
VLP mode  
HR mode  
LP mode  
OSR 128  
OSR 128  
OSR 128  
DVDD current(2)  
VLP mode  
INTLDO = 1,  
LVDD = 1.8 V,  
HR mode, OSR 128,  
AVDD = 3.0 V,  
DVDD = 1.8 V  
25.7  
36.8  
13.4  
18.9  
6.8  
30.8  
44.2  
16.1  
22.7  
8.2  
INTLDO = 0  
INTLDO = 1,  
LVDD = 1.8 V,  
LP mode, OSR 128,  
AVDD = 3.0 V,  
DVDD = 1.8 V  
PD  
Power dissipation  
mW  
INTLDO = 0  
INTLDO = 1,  
LVDD = 1.8 V,  
VLP mode, OSR 128,  
AVDD = 3.0 V,  
DVDD = 1.8 V  
INTLDO = 0  
9.5  
11.4  
(5) LVDD current sourced from AVDD when the internal LDO is used (INTLDO = 0).  
(6) LVDD current scales with fCLK; see Figure 47.  
10  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
6.6 Timing Requirements: Serial Interface  
over operating ambient temperature range (unless otherwise noted)  
2.8 V < DVDD 3.6 V  
1.7 V DVDD 2.8 V  
MIN  
57  
TYP  
MAX  
10,000  
10,000  
10,000  
5,000  
MIN  
57  
TYP  
MAX  
10,000  
10,000  
10,000  
5,000  
UNIT  
HR mode  
LP mode  
VLP mode  
HR mode  
LP mode  
VLP mode  
tc(CLK)  
Master clock period  
114  
227  
28  
114  
227  
28  
ns  
Pulse duration, Master clock  
high or low  
tw(CP)  
56  
5,000  
56  
5,000  
ns  
ns  
112  
5,000  
112  
5,000  
Delay time, CS falling edge to first SCLK rising  
edge(1)  
td(CSSC)  
8
12  
tc(SC)  
SCLK period  
40  
20  
6
6250  
50  
25  
9
6250  
ns  
ns  
tw(SCHL)  
tsu(DI)  
th(DI)  
Pulse duration, SCLK high or low  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Pulse duration, CS high  
ns  
8
9
ns  
tw(CSH)  
6
6
tCLK  
Delay time, final SCLK falling edge to CS rising  
edge  
td(SCCS)  
2
4
2
4
tCLK  
td(DECODE)  
Delay time, command decode time  
tCLK  
tCLK  
tCLK  
TOUT_DEL = 0  
SPI timeout(2)  
216  
214  
216  
214  
TOUT_DEL = 1  
Setup time, DAISYIN valid before SCLK falling  
edge  
tsu(DCI)  
th(DCI)  
5
8
ns  
ns  
Hold time, DAISYIN valid after SCLK falling  
edge  
20  
25  
(1) CS can be tied low permanently in case the serial bus is not shared with any other device.  
(2) See the SPI Timeout section for more information.  
6.7 Switching Characteristics: Serial Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
2.8 V < DVDD 3.6 V  
1.7 V DVDD 2.8 V  
MIN TYP  
MIN  
TYP  
MAX  
MAX  
UNIT  
Propagation delay time,  
CS falling edge to DOUT driven  
tp(CSDO)  
12  
18  
ns  
Propagation delay time,  
SCLK rising edge to valid new DOUT  
tp(SCDO)  
tv(DO)  
15  
20  
21  
20  
ns  
ns  
ns  
Valid time, SCLK falling edge to DOUT invalid  
18 tSCLK / 2  
20 tSCLK / 2  
Propagation delay time,  
CS rising edge to DOUT high impedance  
tp(CSDOZ)  
Copyright © 2016, Texas Instruments Incorporated  
11  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
tw(CP)  
tc(CLK)  
CLK  
CS  
tw(CSH)  
td(DECODE)  
td(CSSC)  
tw(SCHL)  
td(SCCS)  
tc(SC)  
SCLK  
DIN  
1
2
3
8
1
2
3
8
th(DI)  
tv(DO)  
tsu(DI)  
tp(SCDO)  
tp(CSDOZ)  
tp(CSDO)  
DOUT  
NOTE: SPI settings are CPOL = 0 and CPHA = 1.  
Figure 1. SPI Interface Timing  
MSBD1  
LSBD1  
DAISYIN  
tsu(DCI)  
th(DCI)  
SCLK  
DOUT  
tv(DO)  
MSBD0  
LSBD0  
MSBD1  
Figure 2. SPI Daisy-Chain Interface Timing  
12  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
6.8 Timing Requirements: Frame-Sync Master Mode  
over operating ambient temperature range and DVDD = 1.7 V to 3.6 V (unless otherwise noted)  
1.7 V DVDD 3.6 V  
MIN  
57  
TYP  
MAX  
10,000  
10,000  
10,000  
5,000  
UNIT  
HR mode  
LP mode  
VLP mode  
HR mode  
LP mode  
VLP mode  
tc(CLK)  
Master clock period  
114  
227  
28  
ns  
tw(CP)  
Pulse duration, Master clock high or low  
56  
5,000  
ns  
112  
5,000  
6.9 Switching Characteristics: Frame-Sync Master Mode  
over operating free-air temperature range (unless otherwise noted)  
2.8 V < DVDD 3.6 V  
MIN TYP  
1.7 V DVDD 2.8 V  
MAX  
MIN  
TYP  
MAX  
UNIT  
Delay time, CLK rising edge to SCLK falling  
edge  
td(CSC)  
15  
15  
ns  
tc(FRAME)  
tw(FP)  
Frame period  
1 / fDATA  
1 / fDATA  
s
s
Pulse duration, FSYNC high or low  
1 / (2fDATA  
)
1 / (2fDATA  
)
Delay time, FSYNC rising edge to SCLK falling  
edge  
td(FSSC)  
6
8
ns  
tc(SC)  
SCLK period  
1 / (32fDATA  
)
)
1 / (32fDATA  
)
)
s
s
tw(SCHL)  
tv(DO)  
Pulse duration, SCLK high or low  
Valid time, SCLK rising edge to DOUT invalid  
1 / (64fDATA  
1 / (64fDATA  
25  
25  
ns  
Propagation delay time,  
SCLK falling edge to DOUT driven  
tp(SCDO)  
tp(FSDO)  
15  
12  
17  
15  
ns  
ns  
Propagation delay time,  
FSYNC rising edge to DOUT MSB valid  
tw(CP)  
tc(CLK)  
CLK  
tc(FRAME)  
td(CSC)  
tw(FP)  
tw(SCHL)  
FSYNC  
td(FSSC)  
tc(SC)  
SCLK  
tp(FSDO)  
tv(DO)  
tp(SCDO)  
Bit 31  
Bit 30  
Bit 15  
Bit 14  
Bit 0  
DOUT  
Figure 3. Frame-Sync Interface Timing Master Mode  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.10 Timing Requirements: Frame-Sync Slave Mode  
over operating ambient temperature range (unless otherwise noted)  
2.8 V < DVDD 3.6 V  
1.7 V DVDD 2.8 V  
MIN  
57  
TYP  
MAX  
10,000  
10,000  
10,000  
5,000  
MIN  
57  
TYP  
MAX  
UNIT  
HR mode  
LP mode  
VLP mode  
HR mode  
LP mode  
VLP mode  
10,000  
10,000  
10,000  
5,000  
tc(CLK)  
Master clock period  
114  
227  
28  
114  
227  
28  
ns  
Pulse duration, Master clock  
high or low  
tw(CP)  
56  
5,000  
56  
5,000  
ns  
ns  
112  
5,000  
112  
5,000  
Delay time, CLK rising edge to SCLK falling  
edge  
td(CSC)  
2
2
tc(FRAME)  
tw(FP)  
Frame period  
1 / fDATA  
1 / fDATA  
s
Pulse durration, FSYNC high or low  
2
2
tSCLK  
Delay time, FSYNC rising edge to SCLK falling  
edge  
td(FSSC)  
td(SCFS)  
6
2
6
2
ns  
ns  
Delay time, SCLK falling edge to FSYNC rising  
edge  
tc(SC)  
SCLK period  
40  
20  
56  
28  
ns  
ns  
tw(SCHL)  
Pulse duration, SCLK high or low  
DAISY-CHAIN TIMING  
Setup time, DAISYIN valid before SCLK rising  
edge  
tsu(DCI)  
th(DCI)  
8
8
ns  
ns  
Hold time, DAISYIN valid after SCLK rising  
edge  
25  
31  
6.11 Switching Characteristics: Frame-Sync Slave Mode  
over operating ambient temperature range (unless otherwise noted)  
2.8 V < DVDD 3.6 V  
1.7 V DVDD 2.8 V  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
tv(DO)  
Valid time, SCLK rising edge to DOUT invalid  
17  
25  
ns  
Propagation delay time,  
SCLK falling edge to valid new DOUT  
tp(SCDO)  
22  
22  
22  
32  
ns  
ns  
Propagation delay time,  
FSYNC rising edge to DOUT MSB valid  
tp(FSDO)  
15  
25  
tw(CP)  
tc(CLK)  
CLK  
td(CSC)  
tc(FRAME)  
FSYNC  
tw(FP)  
td(FSSC)  
td(SCFS)  
tw(SCHL)  
tc(SC)  
SCLK  
tp(FSDO)  
tv(DO)  
tp(SCDO)  
Bit 31  
Bit 30  
Bit 15  
Bit 14  
Bit 0  
DOUT  
Figure 4. Frame-Sync Interface Timing Slave Mode  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
MSBD1  
LSBD1  
DAISYIN  
SCLK  
tsu(DCI)  
th(DCI)  
MSBD0  
LSBD0  
MSBD1  
DOUT  
Figure 5. Frame-Sync Interface Slave Daisy-Chain Timing  
Copyright © 2016, Texas Instruments Incorporated  
15  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.12 Typical Characteristics  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
40  
80  
120  
160  
200  
240  
0
40  
80  
120  
160  
200  
240  
Frequency (kHz)  
Frequency (kHz)  
D026  
D027  
fIN = 4 kHz, VIN = –0.5 dBFS, HR mode, WB2, 512 kSPS,  
32768 samples  
fIN = 4 kHz, VIN = –20 dBFS, HR mode, WB2, 512 kSPS,  
32768 samples  
Figure 6. Output Spectrum  
Figure 7. Output Spectrum  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
40  
80  
120  
160  
200  
240  
0
40  
80  
120  
160  
200  
240  
Frequency (kHz)  
Frequency (kHz)  
D028  
D029  
fIN = 4 kHz, VIN = –0.5 dBFS, HR mode, WB1, 512 kSPS,  
32768 samples  
fIN = 4 kHz, VIN = –20 dBFS, HR mode, WB1, 512 kSPS,  
32768 samples  
Figure 8. Output Spectrum  
Figure 9. Output Spectrum  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
20  
40  
60  
80  
100  
120 130  
0
20  
40  
60  
80  
100  
120 130  
Frequency (kHz)  
Frequency (kHz)  
D030  
D031  
fIN = 4 kHz, VIN = –0.5 dBFS, LP mode, WB2, 256 kSPS,  
32768 samples  
fIN = 4 kHz, VIN = –20 dBFS, LP mode, WB2, 256 kSPS,  
32768 samples  
Figure 10. Output Spectrum  
Figure 11. Output Spectrum  
16  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
10  
20  
30  
40  
50  
60 65  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Frequency (kHz)  
Frequency (kHz)  
D032  
D033  
fIN = 4 kHz, VIN = –0.5 dBFS, VLP mode, WB2, 128 kSPS,  
32768 samples  
fIN = 4 kHz, VIN = –20 dBFS, VLP mode, WB2, 128 kSPS,  
32768 samples  
Figure 12. Output Spectrum  
Figure 13. Output Spectrum  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
30  
60  
90  
120 150 180 210 240  
0
20  
40  
60  
80  
100  
120  
Frequency (kHz)  
Frequency (kHz)  
D034  
D035  
Inputs shorted, HR mode, WB2, 512 kSPS,  
32768 samples  
Inputs shorted, LP mode, WB2, 256 kSPS,  
32768 samples  
Figure 14. Output Spectrum  
Figure 15. Output Spectrum  
0
-20  
30  
25  
20  
15  
10  
5
-40  
-60  
-80  
0
-100  
-120  
-140  
-160  
-180  
-5  
-10  
-15  
-20  
-25  
-30  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Frequency (kHz)  
0
12000  
24000  
36000  
48000  
60000  
Time (ms)  
D036  
D039  
Inputs shorted, VLP mode, WB2, 128 kSPS,  
32768 samples  
HR mode, 0.5 seconds data collection  
space  
Figure 16. Output Spectrum  
Figure 17. ADC Conversion Noise  
Copyright © 2016, Texas Instruments Incorporated  
17  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
5.2  
5.18  
5.16  
5.14  
5.12  
5.1  
5.08  
5.06  
5.04  
5.02  
5
4.98  
4.96  
4.94  
4.92  
4.9  
4200  
3900  
3600  
3300  
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
600  
300  
0
0.5 0.75  
1
1.25 1.5 1.75  
VREF (V)  
2
2.25 2.5 2.75  
3
Voltage (mV)  
D053  
D040  
Inputs shorted, HR mode  
Inputs shorted, HR mode, 65536 points  
Figure 19. Noise vs VREF  
Figure 18. Noise Histogram  
9
8
7
6
5
4
3
5.15  
5.125  
5.1  
5.075  
5.05  
5.025  
5
2
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
2
4
6
8
10  
12  
14  
16  
18  
Temperature (èC)  
fCLK (MHz)  
D048  
D055  
Inputs shorted  
Inputs shorted, HR mode  
Figure 20. Noise vs Temperature  
Figure 21. Noise vs fCLK  
0
-15  
0
-20  
HR Mode  
LP Mode  
VLP Mode  
HR Mode  
LP Mode  
VLP Mode  
-30  
-40  
-45  
-60  
-60  
-80  
-75  
-100  
-120  
-140  
-160  
-90  
-105  
-120  
-135  
0.5 0.7  
1
2
3
4 5 6 78 10  
20 30 4050 70 100  
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
Input Amplitude (dBFS)  
0
Input Frequency (kHz)  
D037  
D038  
WB2, OSR 32  
WB2, OSR 32  
Figure 22. Total Harmonic Distortion vs fIN  
Figure 23. Total Harmonic Distortion vs VIN  
18  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
0.5  
1
1.5  
2
2.5  
3
0
2
4
6
8
10  
12  
14  
16  
18  
VREF (V)  
fCLK (MHz)  
D052  
D054  
HR mode, fIN = 4 kHz, VIN = –0.5 dBFS  
fIN = 4 kHz, HR mode  
Figure 25. Total Harmonic Distortion vs fCLK  
Figure 24. Total Harmonic Distortion vs VREF  
15  
12.5  
10  
14  
13  
12  
11  
10  
9
8
7.5  
5
7
6
5
4
3
2.5  
0
2
1
0
0
1
3
4
6
8
2
5
4
8
6.  
2.  
8.  
4.  
9.  
8.  
3.  
1.  
-12  
-12  
-11  
-11  
-10  
-10  
-12  
-12  
-12  
-12  
Total Harmonic Distortion (dB)  
Total Harmonic Distortion (dB)  
D074  
D072  
HR mode, fIN = 4 kHz, VIN = –0.5 dBFS  
Figure 26. Total Harmonic Distortion Histogram  
LP mode, fIN = 4 kHz, VIN = –0.5 dBFS  
Figure 27. Total Harmonic Distortion Histogram  
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
HR Mode  
LP Mode  
VLP Mode  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
4
5
6
7
9
6
1
3
5.  
3.  
1.  
9.  
7.  
4.  
2.  
-12  
Temperature (èC)  
D050  
-13  
-13  
-13  
-12  
-12  
-12  
-12  
Total Harmonic Distortion (dB)  
D073  
VLP mode, fIN = 4 kHz, VIN = –0.5 dBFS  
Figure 28. Total Harmonic Distortion Histogram  
Figure 29. INL vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
19  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
3
2.5  
2
1400  
1200  
1000  
800  
600  
400  
200  
0
25èC  
-40èC  
125èC  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
1
1
1
8
4
-79  
-39  
121  
161  
D042  
-231 -199  
-159  
-119  
VIN (V)  
D051  
Offset Error (mV)  
Inputs shorted  
Figure 30. INL vs VIN  
Figure 31. Offset Error Histogram  
200  
150  
100  
50  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
-50  
-100  
-150  
-200  
-250  
-300  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
8
1
9
6
3
1
2
5
7
3
1.2  
0.2  
0.5  
0.8  
1.5  
Temperature (èC)  
-1.6 -1.4  
-1.0  
-0.7  
-0.4  
-0.1  
D047  
Gain Error (%FSR)  
D041  
Inputs shorted  
Figure 33. Offset Error vs Temperature  
Figure 32. Gain Error Histogram  
-0.24  
10  
9
8
7
6
5
4
3
2
1
0
-0.21  
-0.18  
-0.15  
-0.12  
-0.09  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1
1
2
3
4
6
7
7
8
9
0.6  
1.9  
0.7  
0.8  
0.9  
1.1  
1.3  
1.5  
1.6  
1.7  
1O.0ffset Drift (mV1/è.4C)  
Temperature (èC)  
D049  
D043  
Inputs shorted, 30 devices  
Figure 34. Gain Error vs Temperature  
Figure 35. Offset Drift Histogram  
20  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
10  
9
8
7
6
5
4
3
2
1
0
20  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
51  
19  
14  
46  
79  
11  
44  
76  
09  
42  
74  
43  
15  
13  
41  
69  
97  
25  
53  
Gai0n. Drift (ppm/èC)  
0.  
0.  
1.  
1.  
2.  
2.  
2.  
0.  
0.  
0.  
1.  
1.  
G0a.in Drift (ppm/èC1).  
-0.  
-0.  
-0.  
-0.  
D044  
D045  
HR mode, 30 Devices  
LP mode, 30 Devices  
Figure 36. Gain Drift Histogram  
Figure 37. Gain Drift Histogram  
0.22  
0.21  
0.2  
20  
18  
16  
14  
12  
10  
8
TA = 25èC  
TA = -40èC  
TA = 125èC  
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
6
4
2
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17  
4
65  
14  
11  
36  
61  
87  
12  
37  
63  
88  
13  
-0.  
0.  
0.  
1.  
1.  
1.  
2.  
Gain0E. rror0(. ppm/èC) 1.  
fCLK (MHz)  
-0.  
-0.  
D061  
D046  
HR mode  
VLP mode, 30 Devices  
Figure 39. Gain Error vs fCLK  
Figure 38. Gain Drift Histogram  
250  
200  
150  
100  
50  
5.29  
5.27  
5.25  
5.23  
5.21  
5.19  
5.17  
5.15  
5.13  
5.11  
5.09  
TA = 25èC  
TA = -40èC  
TA = 125èC  
0
-50  
-100  
-150  
-200  
-250  
-300  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Temperature (èC)  
fCLK (MHz)  
D075  
D062  
HR mode, fCLK = 16.384 MHz  
Inputs shorted, HR mode  
Figure 40. Offset Voltage vs fCLK  
Figure 41. Differential Input Impedance vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
21  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
AVDD  
LVDD  
DVDD  
AVDD  
DVDD  
80  
80  
70  
70  
60  
60  
0
50 100 150 200 250 300 350 400 450 500  
fPS (kHz)  
0
50 100 150 200 250 300 350 400 450 500  
fPS (kHz)  
D076  
D077  
HR mode, INTLDO = 1  
HR mode, INTLDO = 0  
Figure 42. PSRR vs Power-Supply Frequency  
Figure 43. PSRR vs Power-Supply Frequency  
2
1.6  
1.2  
0.8  
0.4  
0
10  
8
HR Mode  
LP Mode  
VLP Mode  
HR Mode  
LP Mode  
VLP Mode  
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D056  
D057  
Figure 44. IAVDD vs Temperature  
Figure 45. ILVDD vs Temperature  
3
10  
9
8
7
6
5
4
3
2
1
HR Mode  
LP Mode  
VLP Mode  
2.4  
1.8  
1.2  
0.6  
0
HR Mode  
LP Mode  
VLP Mode  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Temperature (èC)  
fCLK (MHz)  
D058  
D063  
Figure 46. IDVDD vs Temperature  
Figure 47. ILVDD vs fCLK  
22  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
30  
25  
20  
15  
10  
5
40  
32  
24  
16  
8
HR Mode  
LP Mode  
VLP Mode  
HR Mode  
LP Mode  
VLP Mode  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D059  
D060  
INTLDO = 1, LVDD = 1.8 V  
Figure 48. Power Dissipation vs Temperature  
INTLDO = 0  
Figure 49. Power Dissipation vs Temperature  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
40  
80  
120  
160  
200  
240  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Frequency (kHz)  
Frequency (kHz)  
D064  
D065  
Inputs shorted, HR mode, LL, 512 kSPS, 32768 samples  
Inputs shorted, HR mode, LL, 128 kSPS, 32768 samples  
Figure 50. Output Spectrum  
Figure 51. Output Spectrum  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Frequency (kHz)  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Frequency (kHz)  
D065  
D067  
Inputs shorted, HR mode, LL, 32 kSPS, 32768 samples  
Inputs shorted, HR mode, LL, 8 kSPS, 32768 samples  
Figure 52. Output Spectrum  
Figure 53. Output Spectrum  
Copyright © 2016, Texas Instruments Incorporated  
23  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3.3 V, and external VREF = 2.5 V (unless otherwise noted)  
7000  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
0
0
5.4  
2.1  
4.2  
6.4  
8.5  
Voltage (mV)  
-2.1Voltage (mV)  
-5.4  
-8.5  
-6.4  
-4.2  
10.8  
16.2  
20.5  
10.2  
-20.5  
-16.2  
-10.8  
-10.2  
D068  
D069  
Inputs shorted, HR mode, LL, 512 kSPS, 32768 samples  
Inputs shorted, HR mode, LL, 128 kSPS, 32768 samples  
Figure 54. Noise Histogram  
Figure 55. Noise Histogram  
7000  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
6
4
2
0
2
4
6
2
1
-
0
1
2
-
-
-
-
7.6  
3.1  
4.1  
D071  
-7.6  
-3.9  
-3.1  
Noise (mV)  
Voltage (mV)  
D070  
Inputs shorted, HR mode, LL, 32 kSPS, 32768 samples  
Inputs shorted, HR mode, LL, 8 kSPS, 32768 samples  
Figure 56. Noise Histogram  
Figure 57. Noise Histogram  
7 Parameter Measurement information  
7.1 Noise Performance  
Adjust the oversampling ratio (OSR) to control the data rate and change the digital filter in order to optimize the  
noise performance of the ADS127L01. Hardware control pins offer four oversampling options and three  
selectable digital filter options to configure the ADC for a specific bandwidth of interest. When averaging is  
increased by reducing the data rate (increasing the OSR), the in-band noise drops as more samples from the  
modulator are averaged to yield one conversion result. Table 1 and Table 2 summarize the device noise  
performance across the various oversampling and digital filter options. Wideband 1 filter has a filter transition  
band of (0.45 to 0.55) fDATA, and Wideband 2 filter has a filter transition band of (0.40 to 0.50) fDATA. Data are  
representative of typical noise performance at TA = 25°C with an external 2.5-V reference. Data shown are the  
result of one standard deviation of the readings with the inputs shorted together and biased to midsupply. A  
minimum of 1,000 consecutive readings are used to calculate the VRMS_noise voltage noise for each  
measurement. Equation 1 is used to convert the noise in VRMS_noise to SNR, and Equation 2 is used to convert  
the noise in VRMS_noise to ENOB. The peak-to-peak noise for the Low-latency filter is defined as VPP_noise  
.
SNR = 20 × log (VREF × 0.7071 / VRMS_noise  
)
(1)  
(2)  
ENOB = In (2 x VREF / VRMS_noise) / In (2)  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Noise Performance (continued)  
Table 1. Wideband Filters Performance Summary  
at AVDD = 3.0 V, DVDD = 1.8 V, and 2.5-V Reference  
DATA RATE  
(SPS)  
PASS BAND  
(kHz)  
SNR  
(dB)  
VRMS_noise  
IDVDD  
(mA)  
MODE  
OSR  
TRANSITION BAND  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
Wideband 1 filter  
Wideband 2 filter  
(μVRMS  
11.61  
10.64  
7.61  
7.25  
5.35  
5.06  
3.79  
3.58  
11.27  
10.31  
7.38  
6.96  
5.18  
4.95  
3.67  
3.47  
11.01  
10.11  
7.20  
6.80  
5.07  
4.81  
3.59  
3.41  
)
ENOB  
18.72  
18.84  
19.33  
19.40  
19.83  
19.91  
20.33  
20.41  
18.76  
18.89  
19.37  
19.45  
19.88  
19.95  
20.38  
20.46  
18.79  
18.92  
19.41  
19.49  
19.91  
19.99  
20.41  
20.48  
230.4  
204.8  
115.2  
102.4  
57.6  
51.2  
28.8  
25.6  
115.2  
102.4  
57.6  
51.2  
28.8  
25.6  
14.4  
12.8  
57.6  
51.2  
28.8  
25.6  
14.4  
12.8  
7.2  
103.7  
104.1  
107.3  
107.7  
110.4  
110.9  
113.4  
113.9  
103.9  
104.7  
107.6  
108.1  
110.7  
111.1  
113.7  
114.1  
104.1  
104.9  
107.8  
108.3  
110.9  
111.3  
113.9  
114.3  
512,000  
256,000  
128,000  
64,000  
256,000  
128,000  
64,000  
32,000  
128,000  
64,000  
32,000  
16,000  
32  
7.50  
4.35  
2.80  
2.00  
3.80  
2.25  
1.50  
1.10  
1.95  
1.20  
0.80  
0.60  
64  
128  
256  
32  
High-resolution  
(HR)  
64  
Low-power  
(LP)  
128  
256  
32  
64  
Very-low-power  
(VLP)  
128  
256  
6.9  
Table 2. Low-Latency Filter Performance Summary  
at AVDD = 3.0 V, DVDD = 1.8 V, and 2.5-V Reference  
-3-dB  
DATA RATE  
(SPS)  
BANDWIDTH  
(kHz)  
SNR  
(dB)  
VRMS_noise  
VPP_noise  
(μVPP)  
IDVDD  
(mA)  
MODE  
OSR  
32  
(μVRMS  
7.40  
5.12  
2.74  
1.41  
7.22  
4.97  
2.65  
1.37  
6.97  
4.80  
2.57  
1.34  
)
ENOB  
19.37  
19.90  
20.80  
21.76  
19.40  
19.94  
20.85  
21.80  
19.45  
19.99  
20.89  
21.83  
512,000  
128,000  
32,000  
8,000  
101.8  
50.6  
13.7  
3.5  
107.6  
110.8  
116.2  
122.0  
107.8  
111.0  
116.5  
122.2  
108.1  
111.3  
116.7  
122.4  
64.67  
44.11  
24.14  
11.32  
61.99  
46.79  
22.05  
10.73  
65.57  
39.64  
20.27  
10.73  
1.60  
1.39  
1.33  
1.32  
0.85  
0.75  
0.73  
0.72  
0.50  
0.44  
0.41  
0.40  
128  
512  
2048  
32  
High-resolution  
(HR)  
256,000  
64,000  
16,000  
4,000  
50.9  
25.3  
6.9  
128  
512  
2048  
32  
Low-power  
(LP)  
1.7  
128,000  
32,000  
8,000  
25.5  
12.7  
3.4  
128  
512  
2048  
Very-low-power  
(VLP)  
2,000  
0.9  
Copyright © 2016, Texas Instruments Incorporated  
25  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADS127L01 is a 24-bit delta-sigma (ΔΣ) ADC that offers a combination of excellent dc accuracy and ac  
performance. The flexible digital-filter options make it suitable for both dc and ac applications. The device is  
hardware programmable, making it easy to configure for a variety of applications without the need to program  
any registers.  
The Functional Block Diagram shows the main internal features of the ADS127L01. The converter is comprised  
of a third-order, chopper-stabilized, delta-sigma modulator, that measures the differential input signal, VIN  
=
(VAINP – VAINN), against the differential reference, VREF = (VREFP – VREFN). The converter core consists of a  
differential, switched-capacitor, delta-sigma modulator followed by a selectable digital filter. The digital-filter low-  
latency path uses a cascaded combination of a fifth-order sinc and a first-order sinc filter, ideal for applications  
requiring fast response time or systems using a multiplexed input. Two wide-bandwidth paths (Wideband 1 and  
Wideband 2) are also available, providing outstanding frequency response with very low pass-band ripple, a  
steep-transition band, and high stop-band attenuation. The ADS127L01 provides two selectable options for  
transition-band frequency. The Wideband-filter paths are suited for applications that require high-resolution  
measurements of high-frequency, ac-signal content. To allow tradeoffs among speed, resolution, and power,  
three operating modes are supported: high-resolution (HR), low-power (LP), and very-low-power (VLP).  
In HR mode, SNR = 104.4 dB (VREF = 2.5 V) at a maximum data rate of 512 kSPS. At this data rate, the power  
dissipation is only 35 mW, and scales with master clock frequency. In LP mode, the maximum data rate is 256  
kSPS, while consuming only 19 mW of power. In VLP mode, the maximum data rate is 128 kSPS, while  
consuming only 9 mW of power.  
Configure the ADS127L01 by setting the appropriate hardware I/O pins. Registers are available for gain and  
offset calibrations. Three interface communication modes are available, providing flexibility for convenient  
interfacing to microcontrollers, DSPs, or FPGAs. SPI, frame-sync slave, or frame-sync master communication  
modes are hardware selectable on the device. The ADS127L01 has a daisy-chain output available, and can  
synchronize externally to another device or system using the START signal. The daisy-chain configuration allows  
the device to be used conveniently in systems that require multiple channels.  
8.2 Functional Block Diagram  
REFP REFN LVDD AVDD  
DVDD  
LDO  
INTLDO  
SCLK  
CS  
SPI and  
Frame-Sync  
Interface  
Low-Latency  
Filter  
DIN  
AINP  
AINN  
DOUT  
ûADC  
Modulator  
Wideband 1  
Filter  
DRDY/FSYNC  
DAISYIN  
Wideband 2  
Filter  
FSMODE  
FORMAT  
Control Logic  
RESET/PWDN  
OSR [1:0]  
FILTER [1:0]  
CLK  
ADS127L01  
DGND  
Copyright © 2016, Texas Instruments Incorporated  
AGND  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.3 Feature Description  
This section discusses the details of the ADS127L01 internal functional elements. Throughout this document,  
fCLK denotes the frequency of the signal at the CLK pin, tCLK denotes the period of the signal at the CLK pin, fDATA  
denotes the output data rate, and tDATA denotes the time period of the output data.  
8.3.1 Analog Inputs (AINP, AINN)  
The ADS127L01 measures the differential input signal VIN = (VAINP – VAINN) against the differential reference  
VREF = (VREFP – VREFN). The most positive measurable differential input is +VREF and the most negative  
measurable differential input is –VREF  
.
For optimum performance, drive the ADS127L01 inputs differentially, centered around a common-mode voltage  
of AVDD / 2. Alternatively, if the signal is of pseudo-differential nature, the negative input can be held at a  
constant voltage other than 0 V (typically AVDD / 2), and the voltage on the positive input can change. Figure 58  
and Figure 59 show examples of both fully-differential and pseudo-differential signals, respectively.  
AINP  
AINP  
VCM  
VCM  
1.5 V  
1.5 V  
AINN  
AINN  
0 V  
0 V  
Figure 59. Pseudo-Differential Input Signal  
Figure 58. Fully-Differential Input Signal  
Electrostatic discharge (ESD) diodes to AVDD and AGND protect the inputs. To prevent the ESD diodes from  
turning on, the absolute voltage on any input must stay within the range provided by Equation 3:  
AGND – 0.3 V < VAINx < AVDD + 0.3 V  
(3)  
The analog input pins, AINP and AINN, at the front end of the converter are connected directly to the switched-  
capacitor sampling network to measure the input voltage. Figure 60 shows a conceptual diagram of the  
modulator circuit charging and discharging the sampling capacitor through switches, although the actual  
implementation is slightly different. The sampling time (tCLK / 2) is equivalent to half the master clock period, and  
is the inverse of the modulator sampling frequency.  
AVDD AGND  
tCLK = 1/fCLK  
AINP  
S1  
S1  
ON  
S1  
S2  
OFF  
S2  
8 pF  
ON  
AINN  
OFF  
AVDD AGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 60. Equivalent Analog Input Circuitry  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
The average load presented by the switched-capacitor input can be modeled with an effective differential  
impedance, as shown in Figure 61. The effective impedance is a function of the modulator clock, and is equal to  
the master clock, fCLK. The ADS127L01 samples the input at very high speeds, and does not include an  
integrated buffer; a suitable driver must be used. See the Application and Implementation section for  
recommended driver circuit designs.  
AINP  
Zeff = 5 kx (16.384 MHz/fCLK  
)
AINN  
Figure 61. Effective Input Impedance  
The ADC sampling network is connected to a delta-sigma modulator used to convert the analog input voltage  
into a data bit stream. The modulator is third-order, with a multibit quantizer that runs at the modulator clock  
frequency, fMOD, equal to the master clock frequency, fCLK  
.
8.3.2 Digital Filter  
The ADS127L01 offers three selectable digital filters to perform both filtering and decimation of the digital data  
stream coming from the modulator. The oversampling ratio (OSR) and digital-filter selection sets the overall  
frequency response for the data converter. The available filter options for the ADS127L01 are:  
Low-latency sinc filter (LL)  
Wideband finite impulse response (FIR) filter with a transition band of (0.45 to 0.55) × fDATA (WB1)  
Wideband finite impulse response (FIR) filter with a transition band of (0.40 to 0.50) × fDATA (WB2)  
Use the hardware FILTER[1:0] pins shown in Table 11. Each filter has four OSR options (the ratio of the  
modulator sampling to the output data rate, or fMOD / fDATA), shown in Table 12, that are selectable through  
hardware OSR[1:0] pins. The low-latency sinc filter is a cascaded sinc5 and sinc1 filter, and provides OSR  
options to achieve data rates ranging from 8 kSPS to 512 kSPS when operating from a 16.384-MHz master  
clock. The two Wideband filters use a multistage FIR topology to provide linear phase response with very low  
pass-band ripple and high stop-band attenuation. Wideband filters 1 and 2 provide four OSRs to achieve data  
rates ranging from 64 kSPS to 512 kSPS when operating from a 16.384-MHz master clock.  
Select the filter and data rate when START is low, or take the START or RESET/PWDN pin low and back high  
after a filter-path or data-rate change. If software commands are used to control conversions, use the STOP and  
START commands after a change to the filter path selection or the data rate. If a conversion is in process during  
a filter-path or data-rate change, the output data are not valid and must be discarded.  
8.3.2.1 Low-Latency Filter  
The low-latency sinc filter consists of two stages: a fixed-decimation, sinc5 filter, followed by a variable-  
decimation, sinc1 filter. The first-stage, sinc5 digital filter decimates by a fixed value of 32. When using OSR 32,  
the first-stage digital filter bypasses the second filter stage, and has a sinc5 frequency response profile. The  
second digital-filter stage provides an additional decimation of 4, 16, or 64 to create overall decimation options of  
128, 512, and 2048. Together, the two stages create four selectable, Low-latency, filter data rates when operated  
from a 16.384-MHz clock: 512 kSPS, 128 kSPS, 32 kSPS, and 4 kSPS.  
8.3.2.1.1 Low-Latency Filter Frequency Response  
The low-pass filtering effect of the sinc filter sets the overall frequency response of the ADC when in low-latency  
filter mode. The frequency response of OSR 32 is from only the sinc5 filter stage. The frequency response of  
OSR 128, 512, or 2048 is the product of the sinc5 first-stage and sinc1 second-stage frequency responses. The  
overall filter response is given in Equation 4:  
28  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Feature Description (continued)  
5
»
ÿ
Ÿ
»
ÿ
Ÿ
32pf  
fCLK  
32Npf  
fCLK  
sin  
sin  
H(f) = Hsinc5 (f) ì H  
(f) =  
ì
sinc1  
»
ÿ
Ÿ
»
ÿ
Ÿ
pf  
fCLK  
32pf  
fCLK  
32ì sin  
Nì sin  
where  
f = signal frequency  
fCLK = ADC master clock frequency = ADC modulator clock frequency  
N = Second-stage oversampling = 1 (OSR 32), 4 (OSR 128), 16 (OSR 512), or 64 (OSR 2048)  
(4)  
The inherent nature of the sinc filter response begins to attenuate frequencies as the signal moves away from dc.  
The pass band droop for inband ac signals makes the low-latency filter less ideal for ac signals.  
As shown in Figure 62 and Figure 63, when OSR is set to 32, the digital filter frequency response follows a sinc5  
transfer function with nulls occurring at fDATA and at multiples thereof. At the null frequencies, the filter has zero  
gain. Convert the x-axis from the data rate, fDATA, to terms of the master clock, fCLK, by using Equation 5:  
fDATA = fCLK / OSR  
(5)  
0
-20  
0
-25  
-40  
-50  
-60  
-75  
-80  
-100  
-125  
-150  
-175  
-200  
-225  
-250  
-100  
-120  
-140  
-160  
-180  
-200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Normalized Input Frequency (fIN/fDATA  
)
Normalized Input Frequency (fIN/fDATA  
)
D001  
D002  
Figure 62. Low-Latency Filter Frequency Response  
(OSR 32)  
Figure 63. Low-Latency Filter Frequency Response  
(OSR 32) to fCLK  
Adjust the digital-filter response by changing the OSR or the master clock, fCLK. Noise tradeoffs are made with  
signal bandwidth and filter latency.  
Selecting an OSR other than 32 superimposes new nulls from the second-stage sinc1 filter over the nulls  
produced by the sinc5 stage. The end result is a combined frequency response from a sinc5 function at OSR 32  
with nulls created from the sinc1 second stage at fDATA and multiple thereof.  
Figure 64 and Figure 65 illustrate the normalized frequency response of the Low-latency filter across all four  
OSR settings. OSR 32 follows a sinc5 frequency response, as highlighted in Figure 62. OSR 128, OSR 512, and  
OSR 2048 show a combined sinc5 and sinc1 response.  
Figure 66, Figure 67, and Figure 68 illustrate the frequency response of OSR 128, OSR 512, and OSR 2048,  
respectively.  
The Low-latency filter uses a multiple-stage, linear-phase, digital filter. Linear-phase filters exhibit constant delay  
time versus input frequency (also known as constant group delay). This feature of linear phase filters means that  
the time delay from any instant of the input signal to the corresponding same instant of the output data is  
constant and independent of the input-signal frequency. This behavior results in essentially zero phase error  
when measuring multitone signals.  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
0
0
-2  
-20  
-40  
-4  
-60  
-6  
-80  
-8  
-100  
-120  
-10  
-12  
-14  
-16  
-18  
-20  
-140  
OSR 32  
OSR 32  
OSR 128  
OSR 512  
OSR 2048  
OSR 128  
OSR 512  
OSR 2048  
-160  
-180  
-200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Input Frequency (fIN/fDATA  
)
Normalized Input Frequency (fIN/fDATA)  
D003  
D003  
Figure 64. Low-Latency Filter Frequency Response  
Figure 65. Low-Latency Filter Frequency Response  
to 0.5 × fIN / fDATA  
0
-25  
0
-25  
-50  
-50  
-75  
-75  
-100  
-125  
-150  
-175  
-200  
-225  
-250  
-100  
-125  
-150  
-175  
-200  
-225  
-250  
0
20  
40  
60  
80  
100  
120  
0
80  
160  
240  
320  
400  
480  
Normalized Input Frequency (fIN/fDATA  
)
Normalized Input Frequency (fIN/fDATA  
)
D004  
D005  
Figure 66. Low-Latency Filter Frequency Response  
(OSR 128) to fCLK  
Figure 67. Low-Latency Filter Frequency Response  
(OSR 512) to fCLK  
0
-25  
-50  
-75  
-100  
-125  
-150  
-175  
-200  
-225  
-250  
0
300  
600  
900  
1200  
1500  
1800  
2100  
Normalized Input Frequency (fIN/fDATA  
)
D006  
Figure 68. Low-Latency Filter Frequency Response  
(OSR 2048) to fCLK  
30  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Feature Description (continued)  
8.3.2.1.2 Low-Latency Filter Settling Time  
The Low-latency filter takes several conversion cycles to provide fully-settled data following a START pin low-to-  
high transition or a START command. The OSR setting determines the exact number of conversion cycles for  
first new available data, as shown in Table 3. In SPI mode, the DRDY signal remains high until settled data are  
available. After settled data are available, a high-to-low transition on DRDY takes place. In frame-sync mode,  
DOUT shifts zeroes until settled data are available. Figure 69 shows the relationship between START to the first  
settled available data for SPI and frame-sync interface mode. See the Start Pin (START) section for exact timing  
for the START pin to first available data.  
START  
START  
Command  
or  
START Pin  
DRDY  
Settled Data  
FSYNC  
Figure 69. START to First Available Data  
When applying an asynchronous step input to a converting ADS127L01, the output shift register does not gate  
data during digital-filter settling. The step-input-setting timing diagram shown in Figure 70 illustrates the converter  
step response with an asynchronous step input. The time that the analog input must be stable varies depending  
on the OSR. Table 3 summarizes the settling time of the Low-latency filter when a step input is applied to the  
input.  
Step Input  
1
1
2
2
DRDY  
FSYNC  
Figure 70. Asynchronous Step-Input Settling Time  
Table 3. Low-Latency Filter Settling Time (Conversion Latency)  
OSR  
SETTLING TIME FROM START  
(tCLK Periods)  
INPUT SETTLING  
(DRDY or FSYNC Pulses)  
32  
128  
512  
2048  
160  
288  
5
3
2
2
672  
2208  
Copyright © 2016, Texas Instruments Incorporated  
31  
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.3.2.2 Wideband Filter  
The two Wideband filters use a multistage FIR topology to provide linear phase response with minimal pass-band  
ripple and high stop-band attenuation. The filters are well suited for measuring high-frequency ac signals while  
still maintaining excellent dc accuracy. Both Wideband filter options offer the same four OSR options; 32, 64,  
128, and 256. The difference is in the transition band. When these four OSRs are paired with a 16.384-MHz  
clock, four selectable Wideband filter data rates are created: 512 kSPS, 256 kSPS, 128 kSPS, and 64 kSPS.  
8.3.2.2.1 Wideband Filters Frequency Response  
Figure 71 shows the frequency response of the Wideband 1 filter with a transition band of (0.45 to 0.55) × fDATA  
normalized to the output data rate, fDATA. Figure 72 shows the frequency response of the Wideband 2 filter with a  
transition band of (0.40 to 0.50) × fDATA normalized to the output data rate, fDATA. These plots are valid for all of  
the data rates available on the ADS127L01. Substitute the selected data rate, fDATA (calculated using  
Equation 5), to express the x-axis in absolute frequency. Figure 73 overlaps the transition band of the Wideband  
1 and Wideband 2 filters, showing the difference in frequency response. The Wideband 2 filter frequency  
response is designed to attenuate out-of-band signals more than –116 dB by the Nyquist frequency (0.5 × fDATA  
)
to reduce the effects of aliasing near the transition band.  
10  
0
10  
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Normalized Input Frequency (fIN/fDATA  
)
Normalized Input Frequency (fIN/fDATA)  
D007  
D008  
FILTER[1:0] = 00  
FILTER[1:0] = 01  
Figure 71. Wideband 1 Filter Frequency Response  
Figure 72. Wideband 2 Filter Frequency Response  
10  
0
-10  
WB1 Filter  
WB2 Filter  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
0.35  
0.4  
0.45  
0.5  
0.55  
0.6  
Normalized Input Frequency (fIN/fDATA  
)
D001  
Figure 73. Wideband Filters Transition Band  
32  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
The pass-band ripple for the two digital filters are shown in Figure 74 and Figure 75.  
0.00010  
0.00008  
0.00006  
0.00004  
0.00002  
0.00000  
-0.00002  
-0.00004  
-0.00006  
-0.00008  
-0.00010  
0.00010  
0.00008  
0.00006  
0.00004  
0.00002  
0.00000  
-0.00002  
-0.00004  
-0.00006  
-0.00008  
-0.00010  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55  
Normalized Input Frequency (fIN/fDATA  
)
Normalized Input Frequency (fIN/fDATA)  
D010  
D011  
FILTER[1:0] = 00  
FILTER[1:0] = 01  
Figure 74. Pass Band Ripple for Wideband 1 Filter  
Figure 75. Pass Band Ripple for Wideband 2 Filter  
The overall frequency response repeats at the modulator sampling rate, which is the same as the input clock  
frequency, fCLK. Figure 76 shows the response with the fastest data rate selected (512 kSPS when fCLK = 16.384  
MHz).  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Normalized Input Frequency (fIN/fDATA  
)
D013  
Figure 76. Extended Frequency Response of Wideband 1 Filter (OSR 32)  
The Wideband filters use a multiple-stage, linear-phase, digital-filter architecture. Linear-phase filters exhibit  
constant delay time versus input frequency (also known as constant group delay). This feature of linear phase  
filters means that the time delay from any instant of the input signal to the corresponding same instant of the  
output data is constant and independent of the input-signal frequency. This behavior results in essentially zero  
phase error when measuring multitone signals.  
Copyright © 2016, Texas Instruments Incorporated  
33  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.3.2.2.2 Wideband Filters Settling Time  
The Wideband filters fully settle before outputting data after the START pin low-to-high transition or a START  
command is issued. The settling time of the Wideband filters is 84 conversion cycles; the DRDY signal idles high  
and does not assert until new settled data are available in SPI interface mode. In frame-sync interface mode, the  
output shift register outputs zeroes in place of the conversion data for 84 conversion cycles until the first settled  
data are available. A step input on the analog input requires multiple conversions to settle if START is not  
pulsed, or if the START command is not issued. Figure 77 shows the settling response with the x-axis  
normalized to conversions or DRDY/FSYNC cycles.  
150  
Fully Settled Data at 84 Conversions  
130  
110  
90  
70  
50  
30  
10  
-10  
-30  
-50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Conversions (1/fDATA  
)
D012  
Figure 77. Step Response For Wideband Filters  
Figure 78 and Figure 79 plot the undershoot and overshoot from the Wideband digital filter during an input step  
function.  
60  
65  
120  
115  
110  
105  
100  
95  
70  
75  
80  
85  
90  
90  
95  
85  
100  
105  
110  
115  
120  
80  
75  
70  
65  
60  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
Conversions (1/fDATA  
)
Conversions (1/fDATA  
)
D001  
D00210  
Figure 78. Wideband Filters Step-Response Undershoot  
Figure 79. Wideband Filters Step-Response Overshoot  
34  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.3.3 Voltage Reference Inputs (REFP, REFN)  
The ADC requires the connection of an external reference voltage for operation. The voltage reference for the  
device is the differential voltage between REFP and REFN: VREF = (VREFP – VREFN). The reference inputs are not  
buffered and use a sampling structure similar to that of the analog inputs, with the equivalent circuitry on the  
reference inputs shown in Figure 80. The load across REFP and REFN is presented by the switched-capacitor in  
parallel with a 6.4-kΩ resistor, and is modeled with an effective impedance (Zeff) proportional to the master clock,  
fCLK, as shown in Figure 81.  
REFP  
REFN  
AVDD  
AGND  
AVDD  
AGND  
Figure 80. Equivalent Reference Input Circuitry  
REFP  
REFN  
Zeff = (3.4 k× 16.384 MHz / fCLK) || 6.4 kꢀ  
Figure 81. Effective Reference Impedance  
ESD diodes protect the reference inputs. To keep these diodes from turning on, make sure the voltages on the  
reference pins do not go below AGND by more than 0.3 V, and do not exceed AVDD by 0.3 V. Use external  
Schottky clamp diodes or series resistors to limit the input current to safe values if the reference input may  
exceed the absolute maximum ratings (see the Absolute Maximum Ratings table).  
A high-quality reference voltage with the appropriate drive strength is required for achieving the best  
performance from the ADS127L01. Noise and drift on the reference degrade overall system performance. Use a  
minimum parallel combination of 10-µF and 0.1-µF ceramic bypass capacitors directly across the reference  
inputs, REFP and REFN. Place these capacitors as close as possible to the device on the layout. See the  
Application Information section for example reference circuits.  
Copyright © 2016, Texas Instruments Incorporated  
35  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.3.4 Clock Input (CLK)  
The ADS127L01 requires an external clock for operation. This clock signal is used for the sampling network of  
the modulator without any prescalers or dividers, and for the timing for the digital filter. Drive the ADC with an  
external clock by applying the clock input to the CLK pin. At the maximum data rate, the clock input is 16.384  
MHz for HR mode, 8.192 MHz for LP mode, and 4.096 MHz for VLP mode.  
A high-quality, low-jitter clock is essential for optimum performance measuring the high-frequency input signals.  
Any uncertainty during sampling of the input from clock jitter limits the maximum achievable SNR. For example,  
uses an external clock with better than 10 psrms jitter for a 200-kHz fIN. For a lower fIN, the target jitter  
requirement can be relaxed by –20 dB per decade. At fIN = 20 kHz, use a clock with better than 100-psrms jitter.  
The selection of the external clock frequency (fCLK) does not affect the resolution of the ADS127L01. The output  
data rates scale with fCLK frequency down to a minimum clock frequency of fCLK = 100 kHz. Use a slower fCLK to  
reduce the ADC power consumption and relax the requirements of an external ADC drive circuit on the analog  
input and reference input.  
Crystal clock oscillators are the recommended clock source. Make sure to avoid excess ringing on the clock  
input. A series resistor placed at the external clock buffer output often helps to reduce overshoot.  
8.3.5 Out-of-Range-Detect System Monitor  
An out-of-range-detect system-monitor bit (INP) is available in the status word (see the Status Word section).  
The out-of-range detect bit flags (INP = 1) when the input exceeds the positive or negative full-scale range, set  
by VREF, with each conversion result. The input is monitored using an analog comparator. The flag is issued  
when the full-scale range is exceeded without waiting for the conversions to propagate through the digital filter.  
The INP bit is used for narrow out-of-range input glitches that may or may not be removed by the ADC digital  
filter.  
8.3.6 System Calibration  
The ADC incorporates optional offset- and gain-calibration registers to system-calibrate the ADC and signal chain  
when in SPI interface mode. Enable the offset calibration register by setting FSC bit (bit 5 in the Configuration  
register) to 1, and enable the gain calibration register by setting OFC bit (bit 4 in the Configuration register) to 1.  
The programmable offset calibration value is 24 bits wide, and the gain calibration value is 16 bits wide. Use  
calibration to correct internal ADC errors or overall system errors. Calibration is only supported through direct  
user calibration, requiring the user to calculate and write the correction values to the calibration registers.  
Perform a system offset calibration before full-scale calibration. After power-up, but before calibrating, wait for the  
power supplies and reference voltage to fully settle.  
As shown in Figure 82, the value of the offset calibration register is subtracted from the filter output, and then  
multiplied by the full-scale register value. The data are then clipped to a 24-bit value to provide the final output.  
AINP  
+
Digital  
Filter  
Output Data  
Clipped to 24 Bits  
Final  
Output  
ADC  
AINN  
-
OFC[2:0] registers  
(register addresses = 02h, 03h, 04h)  
FSC[1:0] registers  
(register addresses = 05h, 06h)  
> 000000h: negative offset  
000000h: no offset  
< 000000h: positive offset  
< 8000h: gain > 1  
8000h: gain = 1  
> 8000h: gain < 1  
Figure 82. ADC Calibration Block Diagram  
Equation 6 shows the internal calibration on the data result.  
ADC Final Output Data = (Filter Output – OFC[23:0]) × FSC[15:0] / 8000h  
(6)  
36  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
The ADC offset calibration word is 24 bits, consisting of three 8-bit registers (OFC2, OFC, 1 OFC0), as shown in  
Table 4. The offset value is twos complement format with a maximum positive value equal to 7FFFFFh (for  
negative offset), and a maximum negative value equal to 800000h (for positive offset). A register value equal to  
000000h has no offset correction. For offset calibration, short the ADC inputs or system inputs, and average the  
conversions; averaging reduces noise for a more accurate calibration. Write the average value to the offset  
calibration registers. The ADC subtracts the value from the conversion result.  
Table 4. Offset Calibration Registers  
BYTE  
ORDER  
REGISTER  
ADDRESS  
BIT ORDER  
OFC_B4 OFC_B3  
OFC_B0  
(LSB)  
OFC0  
OFC1  
OFC2  
LSB  
02h  
03h  
04h  
OFC_B7  
OFC_B6  
OFC_B5  
OFC_B2  
OFC_B1  
MID  
OFC_B15 OFC_B14 OFC_B13 OFC_B12 OFC_B11 OFC_B10 OFC_B9  
OFC_B23  
OFC_B8  
MSB  
OFC_B22 OFC_B21 OFC_B20 OFC_B19 OFC_B18 OFC_B17 OFC_B16  
(MSB)  
The ADC gain calibration word is 16 bits consisting of two 8-bit registers (FSC1, FSC0), as shown in Table 5.  
The full-scale calibration value is twos compliment, with a unity-gain correction factor at a register value equal to  
8000h. Table 6 shows register values for selected gain factors.  
Table 5. Gain Calibration Registers  
BYTE  
ORDER  
REGISTER  
FSC0  
ADDRESS  
05h  
BIT ORDER  
FSC_B4 FSC_B3  
FSC_B14 FSC_B13 FSC_B12 FSC_B11 FSC_B10  
FSC_B0  
(LSB)  
LSB  
FSC_B7  
FSC_B6  
FSC_B5  
FSC_B2  
FSC_B1  
FSC_B9  
FSC_B15  
(MSB)  
FSC1  
MSB  
06h  
FSC_B8  
Table 6. Gain Calibration Register Values  
FSCAL[2:0] REGISTER VALUE  
GAIN FACTOR  
7FFFh  
8000h  
0000h  
2.00  
1.00  
0.00  
For gain calibration, apply a dc calibration voltage that is less than positive full-scale voltage in order to avoid  
clipped codes (VIN < +FSR), and average the conversions to reduce noise for a more accurate calibration. Gain  
calibration is computed as shown in Equation 7, after offset error is removed.  
Full-Scale Calibration = Expected Code Value / Actual Code Value  
(7)  
If the actual code is higher than the expected value, then the calculated calibration value is less than 8000h, and  
the ADC gain is subsequently reduced. Write the calibration value to the gain calibration registers.  
Copyright © 2016, Texas Instruments Incorporated  
37  
 
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Operating Modes (HR, LP, VLP)  
The ADS127L01 offers three operational modes: high-resolution (HR), low-power (LP), and very-low-power  
(VLP). These modes optimize power consumption by restricting the maximum master-clock frequency (fCLK  
)
controlling the data rate. The status of the HR pin determines if the device is in HR mode or LP mode. Enter VLP  
mode by setting the ADS127L01 in LP mode, and increasing the value of the external REXT power scaling  
resistor from 60.4 kΩ to 120 kΩ. The tolerance on the REXT power-scaling resistor must be 1% or better. The  
analog current consumed by AVDD and LVDD decreases when in LP mode, and decreases further in VLP mode,  
with a tighter restriction on maximum master-clock frequency. Table 7 details the HR pin and REXT settings for  
each operating mode in the ADS127L01.  
Table 7. Operating Mode Selection  
OPERATING MODE  
High-Resolution (HR)  
Low-Power (LP)  
OPERATING MODE SELECTION PIN (HR)  
REXT VALUE  
60.4 kΩ  
MAXIMUM fCLK  
17.6 MHz  
8.8 MHz  
1
0
0
60.4 kΩ  
Very-Low-Power (VLP)  
120 kΩ  
4.4 MHz  
8.4.2 Hardware Mode Pins  
The ADS127L01 uses two-state hardware mode pins for ADC configuration. The operating mode, interface  
selection, digital filter selection, and oversampling ratio (OSR) are all controlled through hardware pins. These  
pins are constantly monitored, and set by either pulling them high to DVDD, or low to DGND. Use pull-up or pull-  
down 100-kΩ resistors, or directly tie the pins to microcontroller or DSP I/O lines to set the state of the pins.  
When a change is sensed on the hardware mode pins after power-up, the ADC automatically issues a reset. To  
ensure synchronization, issue a software reset command, or pulse the RESET/PWDN pin following the mode  
change delay, td(MD)  
.
When using the SPI interface mode, DRDY is held high after a mode change occurs until settled data are ready;  
see Figure 83 and Table 8.  
MODE  
pin  
td(MD)  
ADS127L01  
Old Mode  
New Mode  
td(FILT)  
Mode  
CLK  
td(NDR)  
DRDY  
Figure 83. Mode Change Timing (SPI Interface)  
Table 8. SPI Interface New Data After Mode Change  
SYMBOL  
td(MD)  
DESCRIPTION  
MIN  
TYP  
MAX  
3
UNIT  
tCLK  
Delay time, MODE pin rising edge to mode change  
Delay time, mode change to first modulator sample  
td(FILT)  
3.5  
4.5  
tCLK  
Wideband filters  
Low-latency filter  
84  
tDATA  
tDATA  
td(NDR)  
Delay time for new data to be ready  
See Table 3  
38  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
In Frame-sync intreface mode, the DOUT pins are held low after a mode change occurs until settled data are  
ready; see Figure 84 and Table 9. Data can be read from the device to detect when DOUT changes, indicating  
that data are valid.  
MODE  
pin  
td(MD)  
ADS127L01  
Old Mode  
New Mode  
Mode  
CLK  
tsu(FILT)  
FSYNC  
DOUT  
td(NDR)  
New Data  
Figure 84. Mode Change Timing (Frame-Sync Interface)  
Table 9. Frame-Sync Interface New Data After Mode Change  
SYMBOL  
td(MD)  
DESCRIPTION  
Delay time, MODE pin rising edge to mode change  
Setup time, mode change to FSYNC rising edge  
MIN  
TYP  
MAX  
UNIT  
tCLK  
3
tsu(FILT)  
Frame-sync slave  
Frame-sync master  
Wideband filters  
Low-latency filter  
5
1
tCLK  
tCLK  
td(NDR)  
Delay time for new data to be ready  
84  
tDATA  
tDATA  
See Table 3  
8.4.2.1 Interface Selection Pins (FORMAT, FSMODE)  
Data are read from the ADS127L01 using one of two selectable interface modes, SPI or frame-sync. Use the  
FORMAT input pin to select among the two interface options.  
If the frame-sync interface is selected, the ADS127L01 offers either a master or slave option, selectable using  
the FSMODE pin. Table 10 lists the available options.  
Table 10. Interface Mode Options  
FORMAT  
FSMODE  
INTERFACE MODE  
SPI  
0
0
1
1
0
1
0
1
SPI  
Frame-sync slave mode  
Frame-sync master mode  
Copyright © 2016, Texas Instruments Incorporated  
39  
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.4.2.2 Digital-Filter Path Selection Pins (FILTER[1:0])  
Three digital filter options are available in the ADS127L01: two Wideband filter options, and a Low-latency filter.  
See the Digital Filter section for detailed information on the digital filters and the frequency responses. The  
FILTER[1:0] hardware mode pins set the filter path selection for the modulator data, as shown in Table 11.  
Select the filter when START is low, or take the START or RESET/PWDN pin low and back high after a filter  
path change. If software commands are used to control conversions, use the STOP and START commands after  
a change to the filter path selection. If a conversion is in process during a filter path change, the output data are  
not valid and must be discarded.  
Table 11. Digital-Filter Path Selection  
FILTER1  
FILTER0  
SELECTED FILTER PATH  
Wideband 1 filter  
FILTER TRANSITION BAND  
0.45 × fDATA to 0.55 × fDATA  
0.40 × fDATA to 0.50 × fDATA  
SINC5 / SINC  
0
0
1
1
0
1
0
1
Wideband 2 filter  
Low-latency filter  
Reserved: do not use  
8.4.2.3 Oversampling Ratio Selection Pins (OSR[1:0])  
The ADS127L01 has two hardware oversampling ratio (OSR) pins used to configure the converter data rate. The  
rate at which the modulator bit stream data is decimated differs depending on whether the Wideband or the Low-  
latency digital filter is used (set using the Digital-Filter Path Selection Pins (FILTER[1:0])). The OSR options and  
corresponding maximum data rate at fCLK = 16.384 MHz are shown in Table 12 for both the Wideband and the  
Low-latency filters. Change the OSR when START is low, or take the START or RESET/PWDN pin low and back  
high after changing the OSR. If software commands are used to control conversions, use the STOP and START  
commands after changing the OSR.  
Table 12. OSR Selection  
DATA RATE (kSPS)  
AT fCLK = 16.384 MHz  
FILTER  
OSR1  
OSR0  
OSR  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32  
64  
512  
256  
128  
64  
Wideband filters  
128  
256  
32  
512  
128  
32  
128  
512  
2048  
Low-latency filter  
8
40  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.4.3 Start Pin (START)  
The START pin controls the start and stop of ADC conversions used for converter synchronization. Take the  
START pin low to stop conversions and reset the digital filter. Pull START high to start or restart the conversions.  
Synchronization allows the conversion to be aligned with an external event, such as the changing of an external  
multiplexer on the analog inputs. The START pin is also used to synchronize multiple devices to within the same  
CLK cycle.  
Figure 85 and Figure 86 illustrate the timing requirement for the START pin with respect to CLK in SPI and  
frame-sync interface modes. After synchronization, indication of valid data depends on whether SPI or frame-  
sync interface mode is used.  
In the SPI interface mode, DRDY goes high as soon as START is taken low, as shown in Figure 85. After  
START is returned high, DRDY stays high while the digital filter completes reset and settles. After valid data are  
ready for retrieval, DRDY goes low.  
tw(STL)  
START  
tsu(ST)  
td(FILT)  
CLK  
td(NDR)  
DRDY  
Figure 85. Synchronization Timing (SPI Interface)  
Table 13. SPI Interface Start  
SYMBOL  
tw(STL)  
DESCRIPTION  
MIN  
4
TYP  
MAX  
UNIT  
tCLK  
ns  
Pulse duration, START low  
tsu(ST)  
Setup time, START rising edge to CLK rising edge  
10  
4
td(FILT)  
Delay time, START rising edge to first modulator sample  
5
tCLK  
tDATA  
tDATA  
Wideband filters  
Low-latency filter  
84  
td(NDR)  
Delay time for new data to be ready  
See Table 3  
Copyright © 2016, Texas Instruments Incorporated  
41  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
In frame-sync interface, DOUT goes low as soon as START is taken low, as shown in Figure 86. After START is  
returned high, the following FSYNC rising edge releases the digital filter from reset to begin conversions. DOUT  
stays low while the digital filter is settling. Data are ready for retrieval on DOUT after the digital filter settles. For  
proper synchronization, FSYNC, SCLK, and CLK must be established before taking START high, and must then  
remain running. If either CLK, FSYNC or SCLK are interrupted or reset, reassert the START pin.  
tw(STL)  
START  
tsu(ST)  
FSYNC  
CLK  
td(NDR)  
Settled  
Data  
DOUT  
Figure 86. Synchronization Timing (Frame-Sync Interface)  
Table 14. Frame-Sync Interface Start  
SYMBOL  
DESCRIPTION  
MIN  
4
TYP  
MAX  
UNIT  
tCLK  
tw(STL)  
Pulse duration, START low  
Frame-sync slave  
Frame-sync master  
Wideband filters  
Low-latency filter  
6
tCLK  
Setup time, START rising edge to FSYNC rising  
edge  
tsu(ST)  
5
tCLK  
84  
tDATA  
tDATA  
td(NDR)  
Delay time for new data to be ready  
See Table 3  
In addition to the START pin, START and STOP commands are also available to control the start and stop of  
conversions, but only when using the SPI interface. Using the commands requires that the hardware START pin  
is tied low the entire time. The START command is also used to synchronize multiple ADS127L01s sharing the  
same SPI interface. See the SPI Commands section for information on using the START and STOP commands  
to control ADC conversions.  
42  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.4.4 Reset and Power-Down Pin (RESET/PWDN)  
The RESET/PWDN pin has two functions, depending on the amount of time the pin is held in a low state. If  
RESET/PWDN is low for < 215 – 1 CLK periods, the ADS127L01 resets both the digital filter and register  
contents to default settings. The low-to-high transition of the RESET/PWDN pin brings the ADS127L01 out of  
reset by completing the digital filter reset, as shown in Figure 87 and Figure 88.  
tw(RSL)  
RESET/PWDN  
tsu(RS)  
td(FILT)  
CLK  
td(NDR)  
DRDY  
Figure 87. Reset Timing (SPI Interface)  
Table 15. SPI Interface Reset Timing  
SYMBOL  
tw(RSL)  
DESCRIPTION  
MIN  
4
TYP  
MAX  
215 – 1  
UNIT  
tCLK  
ns  
Pulse duration RESET/PWDN low  
tsu(RS)  
Setup time, RESET/PWDN rising edge to CLK rising edge  
Delay time, RESET/PWDN rising edge to first modulator sample  
10  
37  
td(FILT)  
tCLK  
tDATA  
tDATA  
Wideband filters  
Delay time for new data to be ready  
Low-latency filter  
84  
td(NDR)  
See Table 3  
tw(RSL)  
RESET/PWDN  
tsu(RSS)  
FSYNC  
tsu(RSM)  
td(RSM)  
CLK  
td(NDR)  
Settled  
Data  
DOUT  
Figure 88. Reset Timing (Frame-Sync Interface)  
Table 16. Frame-Sync Interface Reset Timing  
SYMBOL  
DESCRIPTION  
Pulse duration RESET/PWDN low  
MIN  
TYP  
MAX  
215 – 1  
UNIT  
tCLK  
tw(RSL)  
4
Frame-Sync Slave Mode: Setup time, RESET/PWDN rising edge to  
first FSYNC  
tCLK  
tsu(RSS)  
tsu(RSM)  
td(RSM)  
7
10  
4
Frame-Sync Master Mode: Setup time, RESET/PWDN rising edge to  
CLK rising edge  
ns  
Frame-Sync Master Mode: Delay time, CLK rising edge to FSYNC  
rising edge  
tCLK  
Wideband filters  
Delay time for new data to be ready  
Low-latency filter  
84  
tDATA  
tDATA  
td(NDR)  
See Table 3  
Copyright © 2016, Texas Instruments Incorporated  
43  
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
If RESET/PWDN is low for > 215 – 1 CLK periods, the ADS127L01 enters power-down mode where both the  
analog and digital circuitry is completely deactivated. The digital inputs are internally disabled so there is no  
concern in driving the pins.  
Use individual 1-MΩ pull-down resistors placed on CAP3 to DGND, SCLK to DGND, and DRDY/FSYNC to  
DGND if power-down mode is planned to be used. These resistors help discharge voltage when the device is  
placed in power-down mode. Shut down the CLK and SCLK in power-down mode to avoid additional power  
consumption.  
Return the RESET/PWDN pin high to exit power-down mode. As shown in Figure 89 and Figure 90, a minimum  
of 215 + 37 master clock periods must elapse before the device exits power-down mode and begins sampling  
when using SPI interface mode. DRDY stays high after exiting power-down mode while the digital filter settles.  
tw(PWDN)  
RESET/PWDN  
tsu(PWDN)  
td(POR)  
CLK  
td(NDR)  
DRDY  
Figure 89. Power-Down Timing (SPI Interface)  
Table 17. SPI Interface Power-Down Timing  
SYMBOL  
tw(PWDN)  
tsu(PWDN)  
DESCRIPTION  
Pulse duartionRESET/PWDN low  
MIN  
215  
TYP  
MAX  
UNIT  
tCLK  
ns  
Setup time, RESET/PWDN rising edge to CLK rising edge  
10  
Delay time, power-on-reset complete following RESET/PWDN rising  
edge  
215 + 37  
tCLK  
td(POR)  
td(NDR)  
Wideband filters  
Delay time for new data to be ready  
Low-latency filter  
84  
tDATA  
tDATA  
See Table 3  
44  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
A minimum of 215 + 7 master clock periods must elapse before the device exits power-down mode to begin  
sampling, when in Frame-Sync interface mode, as shown in Figure 90 and Table 18. When using Frame-Sync  
interface mode, DOUT will read back low while the digital filter settles.  
tw(PWDN)  
RESET/PWDN  
FSYNC  
CLK  
td(PORS)  
tsu(PORM)  
td(PORM)  
td(NDR)  
Settled  
Data  
DOUT  
Figure 90. Power-Down Timing (Frame-Sync Interface)  
Table 18. Frame-Sync Interface Power-Down Timing  
SYMBOL  
DESCRIPTION  
Pulse duration RESET/PWDN low  
MIN  
215  
TYP  
MAX  
UNIT  
tCLK  
tw(PWDN)  
Frame-Sync Slave Mode, Delay time, RESET/PWDN rising edge to  
FSYNC rising edge  
215 + 7  
tCLK  
td(PORS)  
tsu(PORM)  
td(PORM)  
Frame-Sync Slave Mode, Setup time, RESET/PWDN rising edge to  
CLK rising edge  
10  
ns  
Frame-Sync Slave Mode, Delay time, CLK rising edge to FSYNC  
rising edge  
215 + 7  
tCLK  
Wideband filters  
Delay time for new data to be ready  
Low-latency filter  
84  
tDATA  
tDATA  
td(NDR)  
See Table 3  
Copyright © 2016, Texas Instruments Incorporated  
45  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.5 Programming  
Data are retrieved from the ADS127L01 using a serial interface. To provide easy connection to either  
microcontrollers or DSPs, three communication modes are available: SPI, frame-sync master, and frame-sync  
slave. The FORMAT and FSMODE hardware mode pins select the interface. The same communication pins are  
used for all three interfaces: SCLK, DRDY/FSYNC, DIN, DAISYIN, and DOUT; however, functionality depends  
on the interface selected.  
When FORMAT = 0, SPI interface is selected, and the DRDY/FSYNC pin becomes a data ready (DRDY) output.  
In SPI interface mode, commands and internal registers are available for further device configuration. Tie the  
FSMODE pin to DGND when using SPI communication mode.  
When FORMAT = 1, frame-sync interface mode is selected, and the DRDY/FSYNC pin becomes an FSYNC  
input or output. Frame-sync offers two different modes controlled by the FSMODE pin.  
When FSMODE = 0, the interface uses frame-sync slave mode, requiring that the SCLK and FSYNC signals are  
driven by the processor to the ADS127L01.  
When FSMODE = 1, the interface is set to frame-sync master mode, and the SCLK and FSYNC signals are  
generated from the ADC derived from the master clock.  
8.5.1 Serial Peripheral Interface (SPI) Programming  
The SPI-compatible serial interface of the device is used to read conversion data, read and write the device  
configuration registers, and control device operation. Only SPI mode 1 (CPOL = 0, CPHA = 1) is supported. The  
interface consists of five control lines (CS, SCLK, DIN, DOUT, and DRDY/FSYNC), but the interface is  
operational with only four control lines. If the serial bus is not shared with any other device, CS can be tied low  
permanently so that only signals SCLK, DIN, DOUT and DRDY/FSYNC are required to communicate with the  
device.  
8.5.1.1 Chip Select (CS)  
Chip select (CS) is an active-low input that selects the device for SPI communication. CS must remain low for the  
entire duration of the serial communication to complete a command or data readback. When CS is taken high,  
the serial interface is reset, SCLK is ignored, and DOUT enters a high-impedance state. If the serial bus is not  
shared with another peripheral, CS can be tied low.  
8.5.1.2 Serial Clock (SCLK)  
The serial clock (SCLK) features a Schmitt-triggered input, and is used to clock data into and out of the device  
on DIN and DOUT, respectively. SCLKs can be sent to the ADC continuously or in byte increments. Even though  
the input has hysteresis, keep the SCLK signal as clean as possible to prevent glitches from accidentally shifting  
data. When the serial interface is idle, hold SCLK low.  
46  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Programming (continued)  
8.5.1.3 Data Ready (DRDY/FSYNC)  
In SPI interface mode, DRDY/FSYNC is an active-low, new-data-ready indicator for when a new conversion  
result is ready for retrieval. When DRDY/FSYNC transitions low, new conversion data are ready. The  
DRDY/FSYNC signal transitions from low to high with the first SCLK falling edge, as shown in Figure 91. When  
no data are read during continuous conversion mode, DRDY/FSYNC remains low but pulses high for a duration  
of 2 · tCLK before the next DRDY/FSYNC falling edge. The DRDY/FSYNC pin is always actively driven, even  
when CS is high.  
A new conversion result is loaded into the output shift register before DRDY transitions from high to low. The  
LSB of the previous data word must be read at least 4 · tCLK before the next DRDY falling edge. This delay is  
known as keep-out time (tKO). Keep SCLK low during tKO until the next conversion result is ready for retrieval, as  
shown in Figure 91.  
CLK  
DRDY  
tKO  
SCLK  
MSB  
MSB œ 1  
LSB + 1  
LSB  
DOUT  
MSB  
Figure 91. SPI Keep-Out Time (tKO  
)
8.5.1.4 Data Input (DIN)  
The data input pin (DIN) is used with SCLK to send data (commands and register data) to the device. The device  
latches data on DIN on the SCLK falling edge. The device never drives the DIN pin.  
8.5.1.5 Data Output (DOUT)  
DOUT is used with SCLK to read conversion and register data from the device. Data on DOUT are shifted out on  
the SCLK rising edge, to be read from the host on the SCLK falling edge. DOUT goes to a high-impedance state  
when CS is high.  
8.5.1.6 Daisy-Chain Input (DAISYIN)  
DAISYIN is an optional pin used with SCLK to shift data in from a secondary ADS127L01 device when in a  
daisy-chain configuration. Data are shifted out from DOUT of a secondary device into the DAISYIN pin of the first  
device. The individual data bits are latched into DAISYIN on the SCLK falling edge. See the Multiple Device  
Configuration section for more information on using daisy-chain mode. If not used, tie the DAISYIN pin to DGND.  
8.5.1.7 SPI Timeout  
The ADS127L01 offers an SPI timeout feature that is used to recover communication when a serial interface  
transmission is interrupted. This feature is especially useful in applications where CS is permanently tied low and  
is not used to frame a communication sequence.  
The timeout feature is disabled by default, but can be enabled in the CONFIG register. The time for the timeout  
to issue is also configurable using the CONFIG register. When enabled, and whenever a complete command is  
not sent within 214 · tCLK or 216 · tCLK (configurable by the TOUT_DEL bit in the CONFIG register), the serial  
interface resets and the next SCLK pulse starts a new communication cycle. For the RREG and WREG  
commands, a complete command includes the command byte plus the register bytes that are read or written.  
Copyright © 2016, Texas Instruments Incorporated  
47  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Programming (continued)  
8.5.1.8 SPI Commands  
The ADS127L01 provides flexible configuration, including commands and configurable registers, only when using  
the SPI interface. The commands, summarized in Table 19, are stand-alone and configure the operation of the  
ADS127L01. Each command is a single byte, except for the register read and write operations that require two or  
more bytes. CS must remain low for the entire command operation (especially for multibyte commands). Take  
CS high during a opcode command to abort the command.  
Table 19. Command Definitions  
COMMAND  
System Commands  
RESET  
DESCRIPTION  
FIRST BYTE  
SECOND BYTE  
Reset the device  
0000 011x  
0000 100x  
0000 101x  
START  
Start or restart (synchronize) conversions  
Stop conversion  
STOP  
Data Read Commands  
RDATA  
Read data by command  
0001 0010  
Register Commands  
RREG  
Read (nnnn + 1) registers starting at address rrrr  
Write (nnnn + 1) registers starting at address rrrr  
0010 rrrr  
0100 rrrr  
0000 nnnn  
0000 nnnn  
WREG  
8.5.1.8.1 RESET (0000 011x)  
The RESET command halts conversions and resets the ADC to power-on-reset values. During this time, the  
digital filter resets, requiring an additional power-up time for conversions to begin. The RESET command is  
decoded by the ADS127L01 on the seventh falling edge of SCLK. For more information, refer to the Reset and  
Power-Down Pin (RESET/PWDN) section.  
8.5.1.8.2 START (0000 100x)  
The START command starts conversions and resynchronize the device. When conversions are stopped, either at  
power-up or following a STOP command, issue a START command to begin ADC conversions. Issuing a START  
command restarts the conversions by resetting the digital filters. During the reset period, DRDY/FSYNC does not  
toggle. The START command is decoded by the ADS127L01 on the seventh falling edge of SCLK. The START  
pin must be held low if the START and STOP commands are used. For more information, refer to the Start Pin  
(START) section.  
8.5.1.8.3 STOP (0000 101x)  
The STOP command places the ADC in an idle state where the modulator stops converting. The STOP  
command is decoded by the ADS127L01 on the seventh falling edge of SCLK. The START pin must be held low  
if the START and STOP commands are used.  
8.5.1.8.4 RDATA (0001 0010)  
The RDATA command reloads the output shift register to the MSB of the most recent data. The RDATA  
command is decoded on the eighth SCLK falling edge, and begins shifting out the MSB of the data word on  
DOUT on the ninth SCLK.  
48  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.5.1.8.5 RREG (0010 rrrr 0000 nnnn)  
The RREG command reads the number of bytes specified by nnnn (number of registers to be read – 1) from the  
device configuration register, starting at register address rrrr. The command is completed after nnnn + 1 bytes  
are clocked out after the RREG command byte. For example, the command to read three registers (nnnn =  
0010) starting at register address 00h (rrrr = 0000) is 0010 0000 0000 0010 as shown in Figure 92. The  
communication length must be extended by the proper number of SCLKs to shift register contents out.  
1st  
2nd  
Command  
Byte  
Command  
Byte  
DIN  
0010 0000  
0000 0010  
DOUT  
ID  
CONFIG  
OFC0  
Data  
Byte  
Data  
Byte  
Data  
Byte  
Figure 92. Read from Register  
8.5.1.8.6 WREG (0100 rrrr 0000 nnnn)  
The wREG command writes the number of bytes specified by nnnn (number of registers to be written – 1) to the  
device configuration register, starting at register address rrrr. The command is completed after nnnn + 1 bytes  
are clocked in after the WREG command byte. For example, the command to write two registers (nnnn = 0001)  
starting at register address 01h (rrrr = 0001) is 0100 0001 0000 0001 as shown in Figure 93. Two bytes follow  
the command to write the contents to the registers. The frame must extend by the proper number of SCLKs to  
write data to the registers.  
DIN  
0100 0001  
0000 0001  
CONFIG  
OFC0  
1st  
2nd  
Command  
Byte  
Data  
Byte  
Data  
Byte  
Command  
Byte  
Figure 93. Write to Register  
8.5.2 Frame-Sync Programming  
Frame-sync interface is similar to the interface often used on audio ADCs. The ADS127L01 offers both frame-  
sync master and frame-sync slave modes that are selectable using the FSMODE pin. In frame-sync format,  
commands and register assignments are not available. Tie DIN low to DGND.  
8.5.2.1 Frame-Sync Master Mode  
When operating in frame-sync master mode, the ADC acts as the system master, and provides the FSYNC,  
SCLK, and DOUT signals. The FSYNC and SCLK signals are derived as a function of the master clock input,  
fCLK. The data are output MSB first on the rising edge of FSYNC.  
8.5.2.1.1 Chip Select (CS) in Frame-Sync Master Mode  
CS is not used in frame-sync interface mode.. Tie the CS pin to DGND.  
8.5.2.1.2 Serial Clock (SCLK) in Frame-Sync Master Mode  
When operating in frame-sync master mode, the serial clock (SCLK) is derived from the master clock and  
provided from the ADC to the microprocessor. Every frame period, tc(FRAME), includes 32 SCLKs to shift all data  
out before new data are ready. This SCLK speed is proportional to the frame size, tc(FRAME) / 32 in frame-sync  
master mode. The frame size is determined by the data rate setting using the hardware FILTER pin settings,  
OSR pin settings, and speed of the master clock, fCLK. The data on DOUT are clocked out on the falling edge of  
SCLK to be latched by the host processor on the rising edge of SCLK.  
Copyright © 2016, Texas Instruments Incorporated  
49  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.5.2.1.3 Frame-Sync (DRDY/FSYNC) in Frame-Sync Master Mode  
In frame-sync master mode, the FSYNC pin is an output whose period is proportional to the ADC programmed  
data rate. Within each FSYNC period are 32 SCLKs to shift out the data on DOUT. The FSYNC duty cycle is  
designed to be 50-50, where an FSYNC low-to-high transition takes place before the MSB of new data, and high-  
to-low transition takes place before bit 15 on the falling edge of SCLK. For more information on FSYNC master-  
mode timing, see the Frame-Sync Master Mode Timing Requirements.  
8.5.2.1.4 Data Input (DIN) in Frame-Sync Master Mode  
DIN is not available in frame-sync master mode. Tie DIN to DGND.  
8.5.2.1.5 Data Output (DOUT) in Frame-Sync Master Mode  
The conversion data are clocked out on the falling edge of SCLK to be latched by the host processor on the  
rising edge of SCLK. The MSB data become valid on DOUT after FSYNC goes high. The subsequent bits are  
shifted out with each falling edge of SCLK.  
8.5.2.1.6 Daisy-Chain Input (DAISYIN) in Frame-Sync Master Mode  
DAISYIN and daisy-chain operation are not supported in frame-sync master mode. Tie DAISYIN to DGND.  
8.5.2.2 Frame-Sync Slave Mode  
When operating in frame-sync slave mode, the user must supply the framing signal FSYNC (similar to the  
left/right clock on stereo audio ADCs) and the serial clock SCLK (similar to the bit clock on audio ADCs). The  
data are output MSB first or left-justified on the rising edge of FSYNC. The FSYNC and SCLK inputs must be  
continuously running with the relationships shown in the Frame-Sync Timing Requirements.  
8.5.2.2.1 Chip Select (CS) in Frame-Sync Slave Mode  
CS is not used in frame-sync programming. Tie CS to DGND.  
8.5.2.2.2 Serial Clock (SCLK) in Frame-Sync Slave Mode  
In frame-sync slave mode, use SCLK to clock data out on DOUT. SCLK must run continuously; if SCLK is shut  
down, the data read back is corrupted. The number of SCLKs within a frame period (tc(FRAME)) can be any power-  
of-two ratio of CLK cycles (1, 1/2, 1/4, and so on), as long as the number of cycles is sufficient to shift the data  
output within one frame.  
Use SCLK to also shift data into DAISYIN when multiple devices are configured for daisy-chain operation. Even  
though SCLK has hysteresis, keep SCLK as clean as possible to prevent glitches from accidentally shifting the  
data.  
8.5.2.2.3 Frame-Sync (DRDY/FSYNC) in Frame-Sync Slave Mode  
In frame-sync slave mode, the FSYNC pin is an input that transitions low to high at the data-rate frequency. The  
required number of fCLK cycles to each FSYNC period depends on the configuration of the FILTER[1:0] and  
OSR[1:0] pins. If the FSYNC period is not the proper value, data read back is corrupted. For more information on  
frame-sync slave-mode timing, see the Frame-Sync Slave Mode Timing Requirements.  
8.5.2.2.4 Data Input (DIN) in Frame-Sync Slave Mode  
DIN is not used in frame-sync slave mode. Tie the DIN pin to DGND.  
8.5.2.2.5 Data Output (DOUT) in Frame-Sync Slave Mode  
The conversion data are clocked out on the falling edge of SCLK to be latched by the host processor on the  
rising edge of SCLK. The MSB data become valid on DOUT after FSYNC goes high. The subsequent bits are  
shifted out with each falling edge of SCLK.  
50  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.5.2.2.6 Daisy-Chain Input (DAISYIN) in Frame-Sync Slave Mode  
DAISYIN is an optional pin used along with SCLK to shift data from a secondary ADS127L01 device. Data are  
shifted out from DOUT of a secondary device into the DAISYIN pin of the first device. The data on DOUT is  
latched into DAISYIN on the SCLK falling edge. See the Multiple Device Configuration section for more  
information on using daisy-chain mode. Tie the DAISYIN pin to DGND if not used.  
8.5.3 Data Format  
The ADS127L01 provides either a 24-bit or 32-bit output word, 24 bits of which are data in binary twos  
complement format with an optional eight LSBs containing status word information. The size of one code (LSB) is  
calculated using Equation 8:  
1 LSB = (2 x VREF ) / 224 = +FS / 223  
(8)  
A positive full-scale input [VIN (+FS – 1 LSB) = (VREF – 1 LSB)] produces an output code of 7FFFFFh, and a  
negative full-scale input (VIN –FS = –VREF ) produces an output code of 800000h. The output clips at these  
codes for signals that exceed full-scale.  
Table 20 summarizes the ideal output codes for different input signals.  
Table 20. Ideal Output Code Versus Input Signal  
INPUT SIGNAL, VIN  
(VAINP – VAINN  
)
IDEAL OUTPUT CODE(1)  
+FS (223 – 1) / 223  
7FFFFFh  
000001h  
0
+FS / 223  
0
–FS / 223  
–FS  
FFFFFFh  
800000h  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
8.5.4 Status Word  
Trailing the 24 bits of data is an optional 8-bit status word. The status word provides a real-time update of  
internal system monitors and data integrity. By default, the contents are a mixture of 4-bit CRC data integrity and  
system monitors. Alternatively, the status word can be set to output an 8-bit CRC without the system monitors.  
The CRCB bit in the CONFIG regsiter controls the status word contents. Set the CRCB bit to 0 for the status  
word to contain 4-bit CRC [bits 7:4], one bit [bit 3] to monitor out of range input (INP), and three bits [bits 2:0] to  
read back as 0. Set the CRCB bit to 1 for all eight bits [bits 7:0] of the status word to contain 8-bit CRC. See  
Figure 94 for a visual representation of the two modes.  
By default, the optional 8-bit status word is enabled, but can be disabled when operating in SPI interface mode  
and setting the CS_ENB bit to 1 in the CONFIG register.  
SCLK  
DOUT  
DATA  
DATA  
0
CRC - 4  
INP  
0
0
CRCB = 0  
DOUT  
CRC - 8  
CRCB = 1  
Figure 94. Status Word  
Copyright © 2016, Texas Instruments Incorporated  
51  
 
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.5.5 Cyclic Redundancy Check (CRC)  
The ADS127L01 implements two standard CRC algorithms: CRC-4-ITU to provide a 4-bit CRC, and CRC-8-  
CCITT for an 8-bit CRC. By default, the CRC-4-ITU option is enabled. Set the CRCB bit to 1 in the CONFIG  
register to change the format to CRC-8-CCITT and remove the system monitor bits from the status word.  
The CRC is placed after the ADC data. The CRC is calculated using only the ADC output. When the 4-bit CRC is  
enabled, the ADS127L01 outputs a 4-bit status block after the CRC that is not used as part of the CRC check.  
8.5.5.1 Computing the CRC  
To calculate the CRC, divide the data bytes by the CRC polynomial using an XOR operation.  
In 4-bit CRC mode, the CRC value is the 4-bit remainder of the division of the data bytes by a CRC polynomial of  
P(x) = x4 + x + 1.  
In 8-bit CRC mode, the CRC value is the 8-bit remainder of the division of the ADC data bytes by a CRC  
polynomial of P(x) = x8 + x2 + x + 1.  
Then compare the calculated CRC values to the provided CRC value in the ADC output.  
If the values do not match, a data-transmission error has occurred. In the event of a data-transmission error,  
read the data again. The CRC provides a higher level of detection of multiple-bit errors.  
The following list shows a general procedure to compute the CRC value. Assume the shift register is n bits wide,  
where n is the number of CRC bits:  
1. Set the polynomial value to 0x3 for an 4-bit CRC, or 0x07 for an 8-bit CRC .  
2. Set the shift register to all zeros.  
3. Begin with the MSB in the data stream. For every n bits:  
(a) Align the MSB of the data stream with the MSB of the shift register. XOR the data with the shift register, and place  
the result in the shift register.  
(b) Test the MSB of the shift register n times, and do one of the following each time:  
(a) If the most significant bit of the shift register is set, shift the register left by one bit, XOR the result with the  
polynomial, and place the result into the shift register.  
(b) If the most significant bit of the shift register is not set, shift the register left by one bit.  
4. The result in the shift register is the CRC check value.  
NOTE  
The CRC algorithm used here employs an assumed set high bit. This bit is divided out by  
left-shifting the bit out of the register prior to XORing with the polynomial shift register.  
This process allows for calculation of the CRC with 8-bit hardware.  
52  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.6 Register Maps  
Table 21 describes the various ADS127L01 registers. Access to the registers is available in SPI interface mode.  
Register access is not available in frame-sync master or slave interface modes.  
Table 21. ADS127L01 Register Assignments  
RESET  
VALUE  
ADDRESS  
Device ID (Read-Only Registers)  
00h ID  
Configuration Settings  
REGISTER  
(Hex)  
BIT 7  
BIT 6  
BIT 5  
REV_ID[4:0]  
FSC  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
x3h(1)  
DEV_ID[2:0]  
CS_ENB  
01h  
02h  
03h  
04h  
05h  
06h  
CONFIG  
00h  
00h  
00h  
00h  
00h  
80h  
0
0
OFC  
TOUT_DEL  
SPI_TOUT  
CRCB  
OFC0  
OFC1  
OFC2  
FSC0  
FSC1  
OFC_B[7:0]  
OFC_B[15:8]  
OFC_B[23:16]  
FSC_B[7:0]  
FSC_B[15:8]  
Device Settings (Read-Only Registers)  
07h MODE  
xx(1)  
0
HR  
OSR[1:0]  
OSR[1:0]  
FILTER[1:0]  
FILTER[1:0]  
FORMAT  
FSMODE  
(1) x is undefined.  
8.6.1 ID: ID Control Register (address = 00h) [reset = x3h]  
This register is programmed during device manufacture to indicate device characteristics.  
Figure 95. ID Register  
7
6
5
4
3
2
1
0
REV_ID[4:0]  
R-Undefined(1)  
DEV_ID[2:0]  
R-3h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) Reset values are device dependent.  
Table 22. ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Revision ID.  
7:3  
REV_ID[4:0]  
R
xh(1)  
These bits indicate the revision of the device and are subject to  
change without notice.  
Device Family Identification.  
011 = ADS127L01  
2:0  
DEV_ID[2:0]  
R
3h  
(1) Reset values are device dependent.  
Copyright © 2016, Texas Instruments Incorporated  
53  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.6.2 CONFIG: ADC Configuration Register (address = 01h) [reset = 00h]  
This register contains the software controlled device options.  
Figure 96. CONFIG Register  
7
0
6
0
5
4
3
2
1
0
FSC  
OFC  
TOUT_DEL  
R/W-0h  
SPI_TOUT  
R/W-0h  
CS_ENB  
R/W-0h  
CRCB  
R/W-0h  
R-0h  
R-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Always write 0  
7:6  
Reserved  
R
0h  
System Gain Correction  
This bit enables system gain correction using the register  
contents from FSC0 and FSC1 registers.  
0 = Disable system gain correction  
5
4
FSC  
OFC  
R/W  
R/W  
0h  
0h  
1 = Enable system gain correction  
Offset Correction  
This bit enables Offset Correction using the register contents  
from OFC0, OFC1, and OFC2 registers.  
0 = Disable offset correction  
1 = Enable offset correction  
SPI Timeout  
This bit sets the time limit to hold SCLK in an idle position for the  
SPI reset.  
3
2
1
0
TOUT_DEL  
SPI_TOUT  
CS_ENB  
CRCB  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0 = SPI timeout delay set to 216 tCLK  
1 = SPI timeout delay set to 214 tCLK  
.
.
SPI Timeout Enable  
This bit enables or disables the SPI timeout function.  
0 = Disable SPI timeout  
1 = Enable SPI timeout  
Status Word Enable  
This bit enables or disables the status word that is present  
following the 24-bit data output.  
0 = Enable status word  
1 = Disable status word  
Status Word Contents  
This bit sets the contents used in the status word.  
0 = CRC-4 and 4 bits of ADC diagnostics  
1 = CRC-8  
54  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.6.3 OFC0: System Offset Calibration Register 0 (address = 02h) [reset = 00h]  
This register contains the least significant byte for the system offset calibration. The system offset calibration is a  
total of three bytes or 24 bits.  
Figure 97. OFC0 Register  
7
6
5
4
3
2
1
0
OFC_B[7:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. OFC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Offset Correction Bits  
These bits set the system offset error correction.  
7:0  
OFC_B[7:0]  
R/W  
00h  
8.6.4 OFC1: System Offset Calibration Register 1 (address = 03h) [reset = 00h]  
This register contains the middle byte for the system offset calibration. The system offset calibration is a total of  
three bytes or 24 bits.  
Figure 98. OFC1 Register  
7
6
5
4
3
2
1
0
OFC_B[15:8]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. OFC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Offset Correction Bits  
These bits set the system offset error correction.  
7:0  
OFC_B[15:8]  
R/W  
00h  
8.6.5 OFC2: System Offset Calibration Register 2 (address = 04h) [reset = 00h]  
This register contains the most significant byte for the system offset calibration. The system offset calibration is a  
total of three bytes or 24 bits.  
Figure 99. OFC2 Register  
7
6
5
4
3
2
1
0
OFC_B[23:16]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. OFC2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Offset Correction Bits  
These bits set the system offset error correction.  
7:0  
OFC_B[23:16]  
R/W  
00h  
Copyright © 2016, Texas Instruments Incorporated  
55  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.6.6 FSC0: System Gain Calibration Register 0 (address = 05h) [reset = 00h]  
This register contains the least significant byte for the system gain calibration. The system gain calibration is a  
total of two bytes or 16 bits.  
Figure 100. FSC0 Register  
7
6
5
4
3
2
1
0
FSC_B[7:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. FSC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Gain Correction Bits  
These bits set the system gain calibration value.  
7:0  
FSC_B[7:0]  
R/W  
00h  
8.6.7 FSC1: System Gain Calibration Register 1 (address = 06h) [reset = 80h]  
This register contains the most significant byte for the system gain calibration. The system gain calibration is a  
total of two bytes or 16 bits.  
Figure 101. FSC1 Register  
7
6
5
4
3
2
1
0
FSC_B[15:8]  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. FSC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Gain Correction Bits  
These bits set the system gain calibration value.  
7:0  
FSC_B[15:8]  
R/W  
80h  
56  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
8.6.8 MODE: Mode Settings (address = 07h) [reset = xxh]  
This register displays the hardware bit settings.  
Figure 102. MODE Register  
7
0
6
5
4
3
2
1
0
HR  
OSR[1:0]  
FILTER[1:0]  
FORMAT  
R-xh  
FSMODE  
R-xh  
R-0h  
R-xh  
R-xh  
R-xh  
R-xh  
R-xh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Always reads 0  
7
RESERVED  
R
0h  
High-Resolution Setting  
This bit shows the readback status of HR (pin 29)  
0 = LP Mode  
1 = HR mode  
6
HR  
R
xh  
OSR Setting  
This bit shows the readback status of OSR1 (pin 15) and OSR2  
(pin 16)  
If FILTER[1:0] = 00 or 01 (Wideband filters):  
00 = 32  
01 = 64  
5:4  
OSR[1:0]  
R
xh  
10 = 128  
11 = 256  
If FILTER[1:0] = 10 (Low-latency filter):  
00 = 32  
01 = 128  
10 = 512  
11 = 2048  
Filter Option Setting  
This bit shows the readback status of FILTER1 (pin 12) and  
FILTER0 (pin 13)  
Digital-filter mode select:  
00 = Wideband 1 filter  
3:2  
FILTER[1:0]  
R
xh  
01 = Wideband 2 filter  
10 = Low-latency filter (SINC5 and SINC)  
11 = Reserved  
Interface Mode Setting  
This bit shows the readback status of FORMAT (pin 30)  
0 = SPI interface mode  
1 = Frame-sync interface mode  
1
0
FORMAT  
FSMODE  
R
R
xh  
xh  
Frame-sync mode setting  
This bit shows the readback status of FSMODE (pin 14)  
0 = Frame-sync slave interface mode  
1 = Frame-sync master interface mode  
Copyright © 2016, Texas Instruments Incorporated  
57  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Unused Inputs and Outputs  
Do not float unused digital inputs because excessive power-supply leakage current might result.  
The DIN and CS pins are only used in SPI interface mode. Tie DIN (pin 21) and CS (pin 23) directly to DGND  
when in frame-sync master mode or frame-sync slave mode.  
If not daisy-chaining devices, tie DAISYIN directly to DGND.  
In SPI interface mode, leave the unused DRDY/FSYNC pin floating, or tie the unused pin to DVDD through high  
impedance resistors.  
9.1.2 Multiple Device Configuration  
The ADS127L01 provides configuration flexibility when multiple devices are connected in a system:  
SPI interface mode supports two methods to synchronize multiple devices: cascaded or daisy-chain.  
Frame-sync slave interface mode also supports the same two methods to synchronize multiple devices:  
cascaded or daisy-chain.  
Frame-sync master interface mode only supports the cascaded method to synchronize multiple devices.  
Daisy-chain configuration is not available in frame-sync master mode.  
9.1.2.1 Cascaded Configuration  
Two or more ADS127L01 devices can be cascaded together when using either SPI interface mode or Frame-  
Sync interface mode. Cascading devices allows multiple devices to share the same interface bus and reduces  
pin connections to the host processor.  
58  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Application Information (continued)  
9.1.2.1.1 SPI interface Mode  
In SPI interface mode, CLK, SCLK, DIN, and DOUT from each device are shared with independent CS signals.  
Monitor the DRDY signal from only one device. Leave the remaining DRDY pins floating. Figure 103 shows the  
required connections for cascading multiple devices in SPI interface mode.  
CLK  
CS  
SCLK  
DIN  
GPIO1  
SCLK  
MOSI  
MISO  
INT  
START  
ADS127L01  
(Device 0)  
DOUT  
HOST  
PROCESSOR  
DRDY/FSYNC  
DAISYIN  
GPIO2  
CLK  
CS  
START  
SCLK  
DIN  
ADS127L01  
(Device 1)  
DOUT  
DRDY/FSYNC  
DAISYIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 103. Cascaded Devices in SPI Interface Mode  
The host processor must use a separate GPIO to control the CS pins on each ADS127L01 device. When CS is  
driven to a logic 1, the DOUT of that device is high-impedance. This structure allows another device to take  
control of the DOUT bus. The SCLK frequency must be high enough to read all of the data from each device  
before the next DRDY pulse arrives. Alternatively, tie the DOUT pin from each device to a separate pin on the  
host processor to collect data from multiple devices in parallel.  
Equation 9 calculates the maximum number of devices that can share the same bus in a cascaded configuration  
in terms of data rate, SCLK frequency, and total number of bits per device.  
Number of Devices (tDATA – tCSDO – tCSDOZ) / (n × tSCLK  
)
where  
n = 24 or 32 bits  
(9)  
Copyright © 2016, Texas Instruments Incorporated  
59  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Application Information (continued)  
9.1.2.1.2 Frame-Sync interface Mode  
In frame-sync interface mode, the CS pin is unused and must be tied to DGND. CLK, SCLK, DIN, and FSYNC  
from each device are shared with independent DOUT signals. Connect the DOUT pin from each device to a  
separate input pin on the host processor to read the data from multiple devices in parallel. Figure 104 shows the  
required connections for cascading multiple devices in frame-sync interface mode.  
CLK  
CS  
SCLK  
DIN  
SCLK  
MOSI  
MISO1  
INT  
START  
ADS127L01  
(Device 0)  
DOUT  
HOST  
PROCESSOR  
DRDY/FSYNC  
DAISYIN  
MISO2  
CLK  
CS  
START  
SCLK  
DIN  
ADS127L01  
(Device 1)  
DOUT  
DRDY/FSYNC  
DAISYIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 104. Cascaded Devices in Frame-Sync Mode  
Only one device can be configured in frame-sync master mode; remaining devices must be configured in frame-  
sync slave mode. Otherwise, configure all devices in frame-sync slave mode.  
Equation 10 calculates the maximum number of devices that can be daisy-chained for SPI and frame-sync slave  
mode in terms of data rate, SCLK frequency, and total number of bits to read from each device.  
Number of Devices (tDATA) / (n × tSCLK  
)
where  
n = 24 or 32 bits  
(10)  
9.1.2.2 Daisy-Chain Configuration  
Two or more ADS127L01 devices can be daisy-chained together in either SPI interface mode or frame-sync  
slave mode. Frame-sync master mode does not support daisy-chain configurations. For both SPI and frame-sync  
slave mode, connect the DOUT pin of the first device in the chain to an input pin on the host processor. Connect  
the DOUT pin of the remaining devices to the DAISYIN pin of the next device. Connect the DAISYIN pin on the  
last device to DGND.  
Equation 11 calculates the maximum number of devices that can share the same bus in a cascaded  
configuration in terms of data rate, SCLK frequency, and total number of bits per device.  
Number of Devices (tDATA) / (n × tSCLK  
)
where  
n = 32 bits  
(11)  
60  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Application Information (continued)  
9.1.2.2.1 Daisy-Chain Operation Using SPI interface Mode  
In SPI interface mode, CLK, SCLK, DIN and CS are shared. Monitor only the DRDY signal from one device.  
Leave the remaining DRDY pins floating. The SCLK frequency must be high enough to read all the data from  
each device before the next DRDY pulse arrives. Figure 105 shows the required connections for daisy-chaining  
multiple devices in SPI interface mode.  
CLK  
CS  
SCLK  
DIN  
GPIO  
SCLK  
MOSI  
MISO  
INT  
START  
ADS127L01  
(Device 0)  
DOUT  
HOST  
PROCESSOR  
DRDY/FSYNC  
DAISYIN  
CLK  
CS  
START  
SCLK  
DIN  
ADS127L01  
(Device 1)  
DOUT  
DRDY/FSYNC  
DAISYIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 105. Daisy-Chained Devices in SPI Mode  
All data from Device 0 is shifted into Device 1 on the DAISYIN pin. The MSB from the Device 0 data immediately  
follows the LSB from Device 1 on the DOUT pin of Device 0. Figure 106 illustrates the timing relationship for  
daisy-chaining devices in SPI interface mode.  
Device 1  
MSB  
Device 1  
LSB  
DAISYIN  
SCLK  
Device 0  
MSB  
Device 0  
LSB  
Device 1  
MSB  
Device 1  
LSB  
MISO  
Figure 106. Daisy-Chain Timing in SPI interface Mode  
Copyright © 2016, Texas Instruments Incorporated  
61  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Application Information (continued)  
9.1.2.2.2 Daisy-Chain Operation Using Frame-Sync interface Mode  
In frame-sync slave mode, CLK, SCLK, DIN and FSYNC are shared. The CS pin is unused and must be tied to  
DGND. The SCLK frequency must be high enough to read all the data from each device before the next frame  
begins. Figure 107 shows the required connections for daisy-chaining multiple devices in frame-sync slave mode.  
CLK  
CS  
SCLK  
DIN  
SCLK  
MOSI  
MISO  
INT  
START  
ADS127L01  
(Device 0)  
DOUT  
HOST  
PROCESSOR  
DRDY/FSYNC  
DAISYIN  
CLK  
CS  
START  
SCLK  
DIN  
ADS127L01  
(Device 1)  
DOUT  
DRDY/FSYNC  
DAISYIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 107. Daisy-Chained Devices in Frame-Sync Slave Mode  
All data from Device 1 are shifted into Device 0 on the DAISYIN pin. The MSB from the Device 1 data  
immediately follows the LSB from Device 0 on the DOUT pin of Device 1. Figure 108 illustrates the timing  
relationship for daisy-chaining devices in frame-sync slave mode.  
Device 1  
MSB  
Device 1  
LSB  
DAISYIN  
SCLK  
Device 0  
MSB  
Device 0  
LSB  
Device 1  
MSB  
Device 1  
LSB  
MISO  
Figure 108. Daisy-Chain Timing in Frame-Sync Slave Mode  
62  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Application Information (continued)  
9.1.2.3 Synchronizing Devices  
Use the START pin or the RESET/PWDN pin to synchronize multiple devices. The START pin does not reset the  
device registers to the default settings. The RESET/PWDN pin resets the device to the factory default settings,  
and resets the interface when in frame-sync master mode. The delay from the START signal high to the first data  
ready is fixed for a given data rate (see the Start Pin (START) section for more details on the delay times).  
An alternate way to synchronize multiple devices is using the RESET/PWDN pin. The RESET/PWDN pin resets  
the digital interface in addition to the digital filters and registers, making it the recommended synchronization  
method for frame-sync master mode. The delay from the RESET/PWDN pin high to the first data ready is fixed  
for a given data rate (see the Reset and Power-Down Pin (RESET/PWDN) section for more details on the delay  
times). The RESET/PWDN pin is also used to synchronize multiple devices in SPI interface mode or frame-sync  
slave mode.  
When synchronizing multiple devices, the master clock, fclk, must be shared from the same signal source.  
9.1.3 ADC Input Driver  
The input driver circuit for a high-precision delta-sigma ADC consists of two parts: a driving amplifier and a low-  
pass, antialiasing filter. The amplifier is used to condition the input signal voltage and provide a low output-  
impedance buffer between the signal source and the switched-capacitor inputs of the ADC. The low-pass  
antialiasing filter, comprised of series resistors and a differential capacitor, helps to attenuate the voltage  
transients created by the ADC switched-capacitor input stage, and also serves to band-limit the wideband noise  
contributed by the front-end circuit. Careful design of the input driver circuit is critical to take advantage of the  
linearity and noise performance of the ADS127L01.  
9.1.3.1 Antialiasing Filter  
Signal aliasing in data-acquisition systems occurs when continuous-time signals are discretely sampled at a  
constant rate. To properly represent an analog signal in the digital domain, the system must sample the input at  
a sampling rate greater than twice the maximum frequency content, known as the Nyquist rate. Frequencies that  
are greater than one-half the sampling rate are not represented properly in the digital domain and appear as  
aliases of the original input instead.  
Delta-sigma ADCs exhibit two Nyquist frequencies, as shown in Figure 109. The first Nyquist frequency occurs in  
the analog domain at one-half the modulator sampling rate (fMOD / 2). The second Nyquist frequency occurs in  
the digital domain at one-half the decimated output data rate (fDATA / 2). Frequency content repeats at multiples  
of fMOD and fDATA. Both Nyquist frequencies allow for out-of-band signals to alias into the ADC pass band,  
including noise from the front-end driver circuit. This aliasing increases the in-band noise level of the system and  
degrades overall performance if not adequately filtered.  
ADC INPUT  
ûMODULATOR  
DIGITAL FILTER  
DECIMATION  
H(z)  
+
Analog Domain  
Aliasing  
Digital Domain  
Aliasing  
Copyright © 2016, Texas Instruments Incorporated  
Figure 109. Delta-Sigma ADC Internal Signal Chain  
Copyright © 2016, Texas Instruments Incorporated  
63  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Application Information (continued)  
Figure 110 and Figure 111 illustrate the two aliasing domains in delta-sigma ADCs. Figure 110 shows a higher-  
frequency, out-of-band signal aliasing around the modulator Nyquist frequency (fMOD / 2) into the pass band.  
Figure 111 shows a lower-frequency, out-of-band signal aliasing around the data rate Nyquist frequency (fDATA  
2) into the pass band after being attenuated by the digital filter.  
/
Digital Domain  
Aliasing  
Analog Domain  
Aliasing  
fDATA/2 fDATA  
fMOD/2  
fMOD  
DC  
fMOD/2  
fMOD  
DC  
Frequency (Hz)  
Frequency (Hz)  
Figure 111. Digital Domain Aliasing Around fDATA / 2  
Figure 110. Analog Domain Aliasing Around fMOD / 2  
To prevent signals from aliasing, use a low-pass antialiasing filter to attenuate the out-of-band signals. The  
simplest antialiasing filter is a discrete first-order, low-pass, RC filter. To achieve a higher level of attenuation at  
the Nyquist frequency requires a higher-order filter response, usually before the last amplifier stage.  
The digital filter in delta-sigma ADCs reduces the attenuation requirement of the antialiasing filter by providing a  
high stop-band attenuation between fDATA / 2 and fMOD. At multiples of fMOD, the digital filter response returns to 0  
dB and repeats. This portion of the digital filter response is the sensitive frequency band where an antialiasing  
filter is needed. Figure 112 overlays a digital filter response with first-, second-, and third-order antialiasing filters,  
attenuating both out-of-band signals.  
First-Order Antialiasing Filter  
Second-Order Antialiasing Filter  
Third-Order Antialiasing Filter  
Digital Filter  
DC fDATA/2 fDATA  
fMOD/2  
fMOD  
Frequency (Hz)  
Figure 112. Antialiasing and Digital Filters  
64  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Application Information (continued)  
The antialiasing RC filter also helps to attenuate the voltage transients from the sampling network at the ADC  
inputs. Figure 113 shows a simplified switch-capacitor circuit at the inputs of an ADC modulator. The sampling  
network, described in Figure 60, places a transient load on the external drive circuit. The differential capacitor in  
the RC filter, CDIFF, acts as a charge reservoir and transfers charge to the internal sampling capacitor, CSAMPLE  
,
while S1 is closed. The input driver circuit must restore the charge at the input nodes (AINP and AINN) so that  
the voltage settles before S1 opens. After S1 opens, S2 closes, discharging the CSAMPLE capacitor. The faster the  
modulator sampling rate, the less time the input voltage has to settle. An amplifier with a gain-bandwidth product  
(GBP) that is too low fails to provide adequate settling because of the higher output impedance over frequency,  
and results in increased distortion.  
S1  
RFLT  
AINP  
+
œ
CSAMPLE  
CDIFF  
S2  
+
œ
AINN  
RFLT  
S1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 113. Delta-Sigma Modulator Sampling Network  
The sampling capacitors of the ADS127L01 have an equivalent capacitance of 8 pF. Scale CDIFF to be at least  
100 times larger than CSAMPLE. Connect CDIFF directly across the ADC input pins to help provide adequate charge  
with each ADC sample. CDIFF must be C0G or NP0 dielectric type because these components have a high-Q,  
low-temperature coefficient, and stable electrical characteristics to withstand varying voltages and frequencies.  
Common-mode capacitors, CCM, can also be added at each input to ground to attenuate common-mode noise  
and sampling glitches. Size the common-mode capacitors to be one order of magnitude smaller than CDIFF in  
order to maintain system common-mode rejection (CMR).  
Figure 114 shows an example of the voltage transient created by the ADC sampling event at the inputs of an  
unbuffered delta-sigma ADC. The larger transients mark the moment when S1 closes to connect CSAMPLE to the  
external front-end circuitry. The smaller transient occurs when the S1 switch opens passing the charge through  
the modulator. The sequence repeats at 1 / fMOD. The data were recorded using a passive 10x probe on the  
AINP pin only. The same transient is observed on AINN as well. The differential transient voltage is more than an  
order of magnitude smaller.  
160  
140  
120  
100  
80  
9
AINP (mV)  
CLK (V)  
7.5  
6
4.5  
3
60  
1.5  
0
40  
20  
-1.5  
-3  
0
-20  
-40  
-60  
-80  
-4.5  
-6  
-7.5  
-9  
Time  
D001  
Figure 114. ADC Input During Sampling  
Copyright © 2016, Texas Instruments Incorporated  
65  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Application Information (continued)  
When S1 opens, the input signal is sampled and converted by the modulator. Increasing CDIFF provides a larger  
charge reservoir to the ADC, and reduces the initial voltage droop. For ADCs with a faster sampling frequency,  
there is less time for this voltage transient to fully settle before the next sample. The ADC input relies on a driver  
amplifier with sufficient bandwidth and low output impedance at high frequencies to provide recovery charge and  
fully settle the voltage transient before S1 opens.  
9.1.3.2 Input Driver Selection  
Selection criteria for the input amplifiers are highly dependent on the input signal type, as well as the  
performance goals of the data-acquisition system. Consider the following amplifier specifications when selecting  
the appropriate driver amplifier for the application:  
Noise. The output noise density of the front-end amplifiers must be kept as low as possible to prevent any  
degradation in system SNR performance. The total noise from the input stage is determined by the –3-dB  
bandwidth of the ADS127L01 digital filter. Make sure that the total output noise is less than 20% of the input-  
referred noise of the ADC, as explained in Equation 12:  
SNR(dB)  
-
«
÷
VREF  
2
1
5
20  
eo _RMS ì f-3dB  
Ç
ì
ì10  
where  
eo_RMS = Broadband output noise of the input driver stage in nV/Hz  
f-3dB = –3-dB bandwidth of the ADS127L01 digital filter in Hz  
(12)  
Distortion. Keep the distortion from the front-end drivers as low as possible, especially in the presence of a  
switching load. Harmonics produced by the amplifier are also compounded by harmonics produced by the  
ADC. Minimize the amplifier distortion by using the widest allowable supply voltage and highest output load  
resistance for the application. Select an amplifier with high open-loop gain and at least –10 dB better  
distortion than the ADC distortion in order to prevent any degradation to system THD performance, as  
explained by Equation 13.  
THDAMP £ THDADC -10 dB  
where  
THDAMP = Total harmonic distortion from input driver  
THDADC = Total harmonic distortion specification of the ADC  
(13)  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible,  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive a larger capacitive load with a smaller series  
resistor. For a given low-pass filter cutoff, keep the series resistor as small as possible and increase the  
differential capacitor to minimize gain error and distortion (see the Antialiasing Filter section). Higher  
bandwidth also minimizes harmonic distortion caused by faster settling of the input transients from the ADC  
sampling. The required amplifier bandwidth depends on the size of the sampling capacitor, the sampling  
frequency, and the size of the external differential capacitor. TINA-TI simulations help model the small-signal  
settling behavior and the stability of the input driver circuit for a given load.  
The THS45xx family of fully-differential amplifiers offers the low noise and distortion specifications needed in  
high-performance data-acquisition systems. Table 30 shows the power versus performance tradeoff offered  
between the THS4531A, THS4551, and the highest performing THS4541.  
Table 30. Input Driver Selection  
GAIN BANDWIDTH  
PRODUCT (MHz)  
NOISE DENSITY  
QUIESCENT CURRENT  
Iq (mA)  
NOMINAL RF AND RG  
DRIVER  
THS4531A  
THS4551  
THS4541  
(nV/Hz)  
(Ω)  
36  
10  
3.4  
2.2  
0.23  
1.31  
9.7  
2 k  
1.2 k  
402  
135  
850  
66  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Figure 115 and Figure 116 compare the distortion and noise performance of the THS4531A, THS4541, and  
THS4551 as they drive the inputs of the ADS127L01. Each input driver circuit was configured for a gain of one  
using the nominal feedback resistor values in Table 30. An AP2700 function generator provided a full-scale, sine  
wave input at frequencies of 2 kHz and below, such that at least five harmonics were present in the fast Fourier  
transform (FFT) calculated from 8,192 samples. An Agilent 33522A provided the clock input for the ADS127L01  
(CLK) to set the modulator clock frequency between 100 kHz and 16.384 MHz.  
To quantify the distortion performance of each input driver circuit, the spurious-free dynamic range (SFDR) is  
calculated at each modulator clock frequency. A third-order polynomial, best-fit curve is applied to the raw data to  
show the overall trend for each amplifier.  
Figure 115 illustrates that at slower modulator clock frequencies, a lower power amplifier with less bandwidth can  
be used to achieve similar SFDR performance as higher power amplifiers with more bandwidth. However, faster  
modulator clock frequencies require the use of a wide-bandwidth amplifier to get the best performance out of the  
ADC.  
-80  
Amplifier  
THS4541  
THS4551  
-90  
-100  
-110  
-120  
-130  
-140  
THS4531A  
0
2
4
6
8
10  
12  
14  
16  
18  
fMOD (MHz)  
D015  
Figure 115. SFDR vs fMOD  
In contrast to SFDR, the signal-to-noise ratio (SNR) of a data-acquisition signal chain is more dependent on the  
input amplifier noise density, as well as the ADC output data rate. Figure 116 displays the SNR performance of  
the ADS127L01 measured while driving the inputs with the THS4531A, THS4541, and THS4551. The digital filter  
in the ADS127L01 is configured to use the Wideband 2 transition band and an OSR of 256 throughout the SNR  
measurements. An AP2700 provided a small-signal 1 kHz input sine wave of 100 mVpp. An Agilent 33522A  
provided the clock input (CLK) for the ADS127L01 to set the modulator clock frequency between 100 kHz and  
16.384 MHz. The measured SNR is normalized to full-scale.  
120  
Amplifier  
THS4541  
THS4551  
THS4531A  
115  
110  
105  
0
2
4
6
8
10  
12  
14  
16  
18  
fMOD (MHz)  
D014  
Figure 116. SNR vs fMOD  
Copyright © 2016, Texas Instruments Incorporated  
67  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
The SNR performance is expected to remain relatively constant for all three amplifiers across modulator  
frequencies. However, the improvement in SNR at slower modulator frequencies is because of the reduced  
bandwidth of the digital filter as it scales down with modulator clock, limiting the input source broadband noise. At  
higher frequencies, noise from the input source dominates as the digital-filter bandwidth increases. The  
difference in amplifier noise density, listed in Table 30, has the largest effect on the system noise performance.  
9.1.3.3 Amplifier Stability  
Driving a capacitive load can degrade the phase margin of the input amplifier, and can make the amplifier  
unstable. To prevent the amplifier from becoming unstable, a series isolation resistor (RFLT) is used at the  
amplifier output, as shown in Figure 113. A higher resistance value increases phase margin and makes the  
amplifier more stable, but also increases distortion caused by the interaction with the nonlinear input impedance  
of the ADC modulator. Distortion increases with source output impedance, input-signal frequency, and input-  
signal amplitude.  
The selection of RFLT requires a balance between distortion and the stability of the input driver design. The use of  
1% components is allowed because the CDIFF mitigates the degradation of CMR caused by input imbalances.  
The input amplifier must be selected with a bandwidth higher than the cutoff frequency, fC, of the antialiasing filter  
at the ADC inputs. Use a TINA-TI simulation to confirm that the amplifier has more than 30° of phase margin  
when driving the selected filter to verify stability. Simulation is critical because some amplifiers require more  
bandwidth than others to drive the same filter. If the input amplifier circuit has less than 20° of phase margin,  
consider adding a capacitor at the amplifier inputs to increase phase margin.  
9.1.4 Modulator Saturation  
The ADS127L01 features a third-order modulator and a 5-bit quantizer in order to achieve excellent SNR  
performance, resolution, and linearity. However, as with all high-order, delta-sigma modulators, certain input  
conditions may saturate the modulator and increase the quantization noise. These conditions include input  
signals that are less than full-scale and contain frequency content that falls within the stop band of the digital  
filter. Most notably, a saturated modulator increases the ADC in-band noise floor and degrades SNR  
performance.  
To prevent the ADS127L01 from reaching a saturated condition, use an antialiasing filter at the inputs to  
attenuate out-of-band signals. Table 31 shows the differential input amplitude limits at frequencies from 100 kHz  
to 15 MHz for discrete modulator rates in order to prevent saturation. In general, a multiple-order, low-pass  
response with a –3-dB cutoff placed one decade beyond the pass band is sufficient for most applications.  
Table 31. Differential Input Amplitude Limits (dBFS)  
fMOD  
fIN (MHz)  
4.096 MHz  
8.192 MHz  
12 MHz  
16.384 MHz  
0.1  
0.2  
1
0
0
0
–3  
–2  
–2  
–2  
2
–7  
–6.5  
–18  
–19  
–20  
–3  
–2.5  
–18  
–19  
–20  
8
–18  
–19  
–20  
–18  
–19  
–20  
10  
15  
68  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
9.1.5 ADC Reference Driver  
Design the reference driver to provide a precision, low-drift reference voltage to the ADC for best performance.  
Similar to the input of the ADC, a switched-capacitor circuit samples the reference voltage between REFP and  
REFN. The switched capacitor imposes a transient load on the external reference driver circuit at the modulator  
frequency. A reference buffer is required to restore the charge across the differential capacitor at the reference  
input pins so that the voltage settles before the next acquisition. The integrated broadband reference noise must  
remain significantly less than the ADC integrated noise to minimize SNR degradation. Choose a reference driver  
with relatively low noise density. Reference noise can be heavily filtered with a low-pass filter.  
Below are two options for driving the reference input of the ADS127L01. Option 1 presents a single-chip solution  
with an integrated buffer. Option 2 presents a multichip solution with a precision reference and an external buffer.  
9.1.5.1 Single Chip Solution: REF6xxx  
The REF6xxx is a family of very high-precision, low-noise, and low-drift voltage references. This single-chip  
solution has an integrated high-bandwidth buffer that presents a low output impedance to the ADC reference  
input. The REF6025 outputs a fixed 2.5-V output voltage; however, other devices from the same family are  
available to offer various output voltages and temperature drift specifications  
The ADS127L01 has the ability to maintain a high level of performance at relatively low levels of power  
consumption. The REF6025 only adds 750 μA of typical quiescent current to the system power budget, while still  
showcasing the performance of the ADS127L01 when sampling at full-speed, making it a great fit for low-power  
applications with limited board space.  
Figure 117 shows typical connections for the REF6025 as a reference driver circuit to the ADS127L01. The  
output of the REF6025 uses a Kelvin connection to correct for the voltage drop between the voltage output pins  
and the pads of the output capacitor. A small series resistance is required to keep the reference output stable.  
See the REF60xx device datasheet (SBOS708) for more details on the required connections and component  
values.  
REF6025  
VIN  
EN  
SS  
GND_S  
GND_F  
ADS127L01  
REFP REFN  
47 m  
47 F  
+
10 F  
VOUT_F  
VSUPPLY  
œ
121 kꢁ  
FLT VOUT_S  
0.1 F  
1 F  
Copyright © 2016, Texas Instruments Incorporated  
Figure 117. REF6025 Connection to ADS127L01  
Copyright © 2016, Texas Instruments Incorporated  
69  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9.1.5.2 Multichip Solution: REF50xx + OPA320  
The REF50xx is another family of low-noise, low-drift, high-precision voltage references. The REF5025 outputs a  
fixed 2.5-V output voltage; however, other devices from the same family are available to offer various output  
voltages. Buffer the output of the REF5025 with a low-noise, wide bandwidth amplifier such as the OPA320 to  
achieve the best performance with the ADS127L01.  
The OPA320 is a precision, low-voltage CMOS operational amplifier optimized for low noise and wide bandwidth  
with a typical quiescent current of 1.5 mA. From 0.1 Hz to 10 Hz, the OPA320 features an output noise of 2.8  
µVPP. With a unity gain-bandwidth product of 20 MHz, the OPA320 is able to drive the ADS127L01 reference  
inputs while sampling at full-speed without degrading linear performance of the system.  
Figure 118 shows an example reference circuit using the REF5025 and the OPA320. The output of the REF5025  
is low-pass filtered to less than 2 Hz before the input of the OPA320. The OPA320 is placed in a noninverting  
buffer configuration with dual-feedback to compensate for the large capacitive output load and maintain stability.  
See the respective device data sheets for more details on the required connections and component values.  
1 k  
ADS127L01  
2.2 F  
REFP  
REFN  
REF5025  
VIN VOUT  
œ
220 mꢁ  
0.1 F  
10 kꢁ  
+
47 F  
OPA320  
10 F  
+
TEMP TRIM  
GND  
VSUPPLY  
220 mꢁ  
10 F  
œ
1 F  
22 F  
Copyright © 2016, Texas Instruments Incorporated  
Figure 118. REF5025 + OPA320 Connection to ADS127L01  
Table 32 compares the performance characteristics of the two reference driver solutions discussed in this  
section.  
Table 32. Reference Selection  
TEMPERATURE  
DRIFT TYP (μV/°C)  
TEMPERATURE  
DRIFT MAX (μV/°C)  
TEMPERATURE  
RANGE (°C)  
(1)  
DEVICE  
IQ (μA)  
NOISE (μVPP)  
REF5025 + OPA320  
REF6025  
2300  
750  
8.0  
7.5  
22.9  
12.5  
20  
9.04  
20.53  
20.53  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
REF6125  
750  
10.0  
(1) Total noise for 230 kHz ADC bandwidth simulated from TINA-TI.  
The two reference solutions are capable of driving the ADS127L01 to meet datasheet specifications. While the  
multichip solution has a larger PCB footprint, the multichip solution offers similar noise performance, and allows  
more customization than the REF6x25, including the ability to low-pass filter the broadband noise of the  
REF5025. This multichip solution may provide a lower-cost alternative to the REF6x25 for applications that can  
tolerate a higher component count and power consumption. The REF6x25 has a smaller PCB footprint, and  
offers tighter drift specifications at a fraction of the power.  
70  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
9.1.6 Driving LVDD With an External Supply  
A portion of the ADC modulator in the ADS127L01 is powered from a separate low-voltage analog supply  
(LVDD) to achieve lower overall power consumption. This supply is nominally 1.8 V and can be sourced by either  
an internal LDO (INTLDO = 0) or an external supply (INTLDO = 1). When the internal LDO supply is used, the  
LVDD current is sourced from AVDD.  
While LDOs are known to be smaller and less noisy than other power supply topologies, LDOs are much less  
efficient and can consume large amounts of power. An LDO dissipates excess power as heat in order to regulate  
the output voltage. The higher the dropout voltage is between the supply input and the LDO output, the more  
power is wasted.  
Alternatively, an external switching power supply can drive LVDD. Switching power supplies are much more  
efficient and consume less power; however, a small switching ripple could appear on the output. The frequency  
content from this ripple can appear in the ADC output if:  
The switching frequency falls directly in the ADC pass band.  
The switching frequency aliases into the ADC pass band from an out-of-band frequency.  
Consider carefully when choosing the switching frequency (fSW) in order to maintain the highest system power-  
supply rejection (PSR). The LVDD supply pin offers at least 75 dB of PSR at 60 Hz. Choose an out-of-band  
switching frequency that falls within the stop band of the wideband FIR filter, or within the notches of the low-  
latency sinc filter, as shown in Figure 119 and Figure 120, respectively. If possible, an ideal design synchronizes  
the switching supply frequency to a 1/2n ratio of the modulator clock frequency. Any remaining frequency content  
that is not suppressed by the LVDD PSR will fall into the nulls of the digital filter or fold back to dc.  
fSW  
fSW  
n • fMOD  
(2n + 1) • fMOD / 2  
(n + 1) • fMOD  
n • fMOD  
(2n + 1) • fMOD / 2  
(n + 1) • fMOD  
Frequency (Hz)  
Frequency (Hz)  
Figure 120. Suggested fSW for Low-Latency Filter  
Figure 119. Suggested fSW for Wideband Filters  
Copyright © 2016, Texas Instruments Incorporated  
71  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9.2 Typical Application  
Test and measurement applications interface sensor inputs with a precision data-acquisition signal chain. This  
signal chain must be capable of measuring a wide frequency range with very low noise and minimal harmonic  
distortion. Figure 121 illustrates the main components of a sensor signal chain, consisting of a conditioning stage  
at the sensor output, followed by a high-speed, low-noise amplifier driving a wide-bandwidth, delta-sigma ADC.  
+
œ
+
œ
ADS127L01  
+
+
œ
œ
Sensor Output  
Signal Conditioning  
Differential Driver and ADC  
Copyright © 2016, Texas Instruments Incorporated  
Figure 121. Test and Measurement Block Diagram  
In data-acquisition systems, signal distortion can come from the amplifier, the settling of the switched-capacitor  
load transients, and the ADC. Choose both the differential drive amplifier and the ADC such that neither one  
limits the distortion performance of the signal chain. This section details the design procedure for the fully-  
differential input stage to an ADC optimized for low noise and minimal harmonic distortion.  
9.2.1 Design Requirements  
Table 33. Design Requirements  
DESIGN PARAMETER  
Analog supply voltage  
VALUE  
3.0 V  
Modulator sampling frequency (fMOD  
)
16 MHz  
Filter pass band  
DC to 100 kHz (fDATA = 250 kSPS)  
–100 dB at fMOD  
Antialiasing filter rejection  
Total harmonic distortion (THD)  
–110 dB at –0.5-dBFS input signal amplitude  
70 dB at 100-mV input signal amplitude  
(104 dB normalized to 2.5-V full-scale)  
Signal-to-noise ratio (SNR)  
20 mA (50 mW)  
ADS127L01, input drive amplifier, reference device  
+ drive amplifier  
Power consumption  
9.2.2 Detailed Design Procedure  
The ADS127L01 offers a typical THD level of –110 dB for a modulator frequency of 16.384 MHz. Target the  
distortion from the input driver to be at least 10 dB better than the distortion of the ADC. The THS4551 provides  
exceptional ac performance with extremely low distortion levels near –120 dB. With a 135-MHz gain-bandwidth  
product, the THS4551 can drive the switched-capacitor input stage so that the load transients are mostly settled.  
For higher levels of performance, use a faster amplifier with more bandwidth as long as the increased current  
consumption fits within the system power budget. At 3.4 nV/Hz broadband noise density and 1.35 mA of  
quiescent current, the THS4551 offers an attractive performance versus power tradeoff that is well-suited for  
these applications.  
Single-ended inputs have a varying input common-mode, and can produce larger even harmonics and decrease  
distortion performance. Use a fully-differential input to the ADC to help suppress even harmonics and provide a  
fixed common-mode voltage for the input signal.  
72  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
For this design, the THS4551 is placed in a multiple-feedback (MFB) filter configuration, as shown in Figure 122.  
Nominal resistance values of 1.2 kΩ are used in the amplifier feedback path to optimize power consumption,  
while keeping the added broadband noise of the front-end driver circuit less than that of the ADS127L01. An  
MFB filter produces a second-order, low-pass response.  
1.2 k  
270 pF  
1.2 kꢀ  
1.2 kꢀ  
330 ꢀ  
5 ꢀ  
5 ꢀ  
10 ꢀ  
10 ꢀ  
AP2700  
THS4551  
AINP  
AINN  
+
œ
470 pF  
1 nF  
22 nF  
ADS127L01  
+
œ
330 ꢀ  
270 pF  
1.2 kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 122. Multiple Feedback ADC Drive Circuit  
The discrete low-pass RC filter components (10 Ω and 22 nF) are small enough to increase the antialiasing filter  
rolloff without adding significant distortion or gain error to the system. Combined with the active MFB filter, the  
net result is a third-order antialiasing filter. Figure 123 plots the magnitude response of the front-end driver circuit  
and illustrates how it supplements the Wideband 2 FIR filter in the ADS127L01.  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
MFB Response  
Digital Filter Response  
-160  
-180  
1
2 3 5 710 20 50 100  
1000  
10000  
100000  
Frequency (kHz)  
D001  
Figure 123. THS4551 MFB Filter Magnitude Response  
The response of the third-order antialiasing filter remains flat beyond the digital filter pass band. Signals within  
the bandwidth of interest are left unattenuated by the antialiasing filter. The Wideband 2 filter is used to provide  
an average stop-band attenuation of –116 dB beginning at fDATA / 2. This transition band prevents signals from  
aliasing in the digital domain.  
At fc = 304 kHz, the antialiasing filter reaches –3 dB, and rolls off sharply at a rate of –60 dB per decade. At 16  
MHz, the filter response reaches –100 dB of attenuation, effectively eliminating unwanted frequency content  
around the modulator rate. The antialiasing filter attenuates the frequency content that alias around the  
modulator Nyquist frequency (fMOD / 2). The REF6025 circuit proposed in Figure 117 was selected to drive the  
ADS127L01 reference. This device enables the design to meet the outlined performance goals while remaining  
within the target power budget.  
Copyright © 2016, Texas Instruments Incorporated  
73  
 
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9.2.3 Application Curves  
Figure 124 shows a fast Fourier transform (FFT) of the 32,768 samples collected at 250 kSPS (OSR 64). An  
AP2700 generated a 4-kHz sine wave with a differential amplitude of –0.5 dB below full-scale (±2.36 V). The  
fundamental input frequency at 4 kHz is the dominate tone in the FFT. The first 15 harmonics are used to  
calculate the total harmonic distortion (THD) as –114.4 dB. The input amplifier and the antialiasing filter do not  
degrade the overall distortion performance of the signal chain.  
SNR was measured with a small-signal 100 mVPP (–34 dB from full-scale) input sine wave generated by the  
AP2700. The SNR result is the difference in magnitude between the fundamental frequency and the integrated  
noise of the ADC output up until fDATA / 2. Figure 125 shows the FFT of the 32,768 samples collected at 256  
kSPS (OSR = 64). The result is then normalized to full-scale to yield 106.3 dB.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
140  
Frequency (kHz)  
Frequency (kHz)  
D017  
D018  
fIN = 4 kHz, amplitude = –0.5 dBFS, THD = –114.4 dB  
fIN = 4 kHz, amplitude = 100 mVPP, SNR = 106.3 dB  
(normalized to FS)  
Figure 124. THD Results  
Figure 125. SNR Results  
To verify the effectiveness of an antialiasing filter, input a sine wave at the frequency of interest and measure  
how much that signal is attenuated at the output. In order to measure the attenuation at fMOD = 16 MHz, input a  
signal around or at that frequency and measure the alias of the signal that folds into the ADC pass band.  
Figure 126 shows the FFT results of the 32,768 samples collected at 64 kSPS (OSR 256) for finer frequency bin  
resolution. An Agilent 33522A was used to generate a differential -0.5 dBFS sine wave input at 16.004 MHz.  
Because 16.004 MHz is offset from 16 MHz (fMOD) by 4 kHz, the input signal aliases to 4 kHz. The magnitude of  
the frequency tone is the attenuation level of the antialiasing filter.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Frequency (kHz)  
D023  
fMOD = 16 MHz, fIN= 16.004 MHz, amplitude = –0.5 dBFS, OSR = 256 (64 kSPS)  
Figure 126. Antialiasing Filter Attenuation Results  
74  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Table 34 lists the typical current consumption and power dissipation for the ADS127L01, the THS4551, and the  
REF6025.  
Table 34. Power Consumption  
COMPONENT  
ADS127L01 (AVDD)  
ADS127L01 (DVDD)  
THS4551  
QUIESCENT CURRENT (mA)  
POWER DISSIPATION (mW)  
10.6  
4.4  
31.8  
7.8  
1.3  
3.9  
REF6025  
0.8  
2.3  
TOTAL  
17.1  
45.8  
9.3 Do's and Don'ts  
Do partition the analog, digital, and power supply circuitry into separate sections on the printed circuit board  
(PCB).  
Do use a single ground plane for analog and digital grounds.  
Do place the analog components close to the ADC pins using short, direct connections.  
Do keep the SCLK pin free of glitches and noise.  
Do verify that the analog input voltages are within the specified input voltage range under all input conditions.  
Do tie unused digital input pins to DGND to minimize input leakage current.  
Do use an LDO to reduce voltage ripple generated by switch-mode power supplies.  
Do synchronize clock signals and switching supply frequencies to minimize intermodulation artifacts and  
noise degradation.  
Don't cross analog and digital signals.  
Don't route digital clock traces in the vicinity of the analog inputs or CAP1 and CAP2 analog bias voltages.  
Don't allow the analog and digital power supply voltages to exceed 3.9 V under any condition, including  
during power-up and power-down.  
Don’t use inductive supply or ground connections.  
Don’t isolate analog ground (AGND) from digital ground (DGND).  
Figure 127 illustrates examples of correct and incorrect ADC circuit connections.  
Copyright © 2016, Texas Instruments Incorporated  
75  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Do's and Don'ts (continued)  
1.8 V  
1.8 V  
3 V  
3 V  
CORRECT  
INCORRECT  
Device  
AVDD  
DVDD  
Device  
AVDD  
DVDD  
24-Bit  
ûADC  
24-Bit  
ûADC  
AGND  
DGND  
AGND  
DGND  
Low-impedance supply connections.  
Inductive supply or ground connections.  
1.8 V  
1.8 V  
5 V  
3 V  
3 V  
fSW  
INCORRECT  
Device  
CORRECT  
AVDD  
DVDD  
AVDD  
LVDD  
Device  
÷ 2n  
SCLK  
CLK  
24-Bit  
ûADC  
24-Bit  
ûADC  
AGND  
DGND  
AGND  
DGND  
Isolated AGND and DGND.  
Copyright © 2016, Texas Instruments Incorporated  
Synchronized clocks and switching supplies.  
Figure 127. Correct and Incorrect Circuit Connections  
76  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
9.4 Initialization Setup  
Figure 128 illustrates a general procedure to configure the ADS127L01 to collect data.  
// Start with power off  
Power Off  
// Enable or disable analog 1.8-V internal LDO  
Set INTLDO  
// Pull up or pull down HR, OSR[1:0], FILTER[1:0],  
FSMODE, and FORMAT pins to DVDD or DGND  
Set Hardware Mode Pins  
Power Up  
Analog + Digital Supplies  
// Analog and digital supplies can come up together  
SET  
RESET/PWDN = 1  
// RESET/PWDN can come up with power supply  
// Wait tsu(PWDN) and td(POR) for device to exit POR  
Y
Using SPI  
Interface Mode?  
Write  
Registers  
// Configure ADC registers only if using SPI mode  
N
Set START = 1 or  
Use START Command  
Set START = 1 or  
Use START Command  
// Bring hardware START pin high to begin conversions  
// If using commands to control conversions, use START  
command to begin conversions.  
// Monitor for DRDY output if in SPI interface mode  
// Issue FSYNC input at set data rate if in frame-sync slave interface mode  
// Monitor for FSYNC output at set data rate if in frame-sync master interface mode  
Monitor for  
DRDY  
Issue Frame-Sync or  
Monitor for Frame-Sync  
Collect Data  
Collect Data  
// Wait for settled data to be available and capture on DOUT  
Copyright © 2016, Texas Instruments Incorporated  
Figure 128. ADS127L01 Configuration Sequence  
Copyright © 2016, Texas Instruments Incorporated  
77  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
10 Power Supply Recommendations  
The ADS127L01 requires either two or three power supplies, depending on if the internal LDO is used to supply  
the LVDD analog supply. The AVDD analog supply is referenced to AGND, the LVDD analog supply is  
referenced to AGND, and the DVDD digital supply is referenced to DGND. The analog power supply can only be  
unipolar (for example, AVDD = 3.0 V, AGND = 0 V) and is independent of the digital power supply. If INTLDO =  
0, the LVDD supply is internally generated using the AVDD supply. If INTLDO = 1, the internal LDO is disabled  
and LVDD supply must be externally supplied. The digital supply sets the digital I/O levels.  
10.1 Power-Supply Sequencing  
The power supplies can be sequenced in any order, but in no case must any analog or digital inputs exceed the  
respective analog or digital power-supply voltage limits. Bring the RESET/PWDN pin high after the analog and  
digital supplies are up, or bring the pin high with the DVDD supply (assuming the AVDD and LVDD supplies  
come up with or before DVDD). After all supplies are stabilized, wait for the td(POR) timing for the power-on-reset  
to complete before communicating with the device in order to allow the power-up reset process to complete.  
10.2 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve optimum performance. AVDD, LVDD, and DVDD must be  
decoupled with at least a 1-µF capacitor, as shown in Figure 129. Place the bypass capacitors as close to the  
power-supply pins of the device as possible using low-impedance connections. Use multilayer ceramic chip  
capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for  
power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments,  
avoid the use of vias for connecting the capacitors to the device pins for superior noise immunity. The use of  
multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground planes. Connect  
analog and digital ground together as close to the device as possible.  
3 V  
1.8 V  
1 F  
1 F  
AVDD  
DVDD  
CAP1  
1.8-V External  
INTLDO = 1  
LVDD  
1 F  
1 F  
1 F  
CAP2  
CAP3  
ADS127L01  
REFP  
REFN  
10 F  
0.1 F  
1 F  
AGND  
DGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 129. ADS127L01 Recommended Power-Supply Decoupling  
78  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
11 Layout  
11.1 Layout Guidelines  
TI recommends employing best design practices when laying out a printed-circuit board (PCB) for both analog  
and digital components. This recommendation generally means that the layout separates analog components  
[such as ADCs, amplifiers, references, digital-to-analog converters (DACs), and analog multiplexers] from digital  
components [such as microcontrollers, complex programmable logic devices (CPLDs), field-programmable gate  
arrays (FPGAs), radio-frequency (RF) transceivers, universal serial bus (USB) transceivers, and switching  
regulators]. An example of good component placement is shown in Figure 130. Although Figure 130 provides a  
good example of component placement, the best placement for each application is unique to the geometries,  
components, and PCB fabrication capabilities employed. That is, there is no single layout that is perfect for every  
design, and careful consideration must always be used when designing with any analog component.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC filters  
and  
Interface  
Device  
Microcontroller  
Transceiver  
amplifiers)  
Connector  
or Antenna  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Figure 130. System Component Placement  
The following bullet items outline some basic recommendations for the layout of the ADS127L01 to get the best  
possible performance of the ADC. A good design can be ruined with bad circuit layout.  
Separate analog and digital signals. To start, partition the board into analog and digital sections where the  
layout permits. Route digital traces away from analog traces. This separation prevents digital noise from  
coupling back into analog signals.  
The ground plane can be split into an analog plane (AGND) and digital plane (DGND), but this split is not  
necessary. Place analog signals over the analog plane and digital signals over the digital plane. As a final  
step in the layout, completely remove the split between the analog and digital grounds. If ground plane  
separation is necessary, make the connection between AGND and DGND as close to the ADC as possible.  
Fill void areas on signal layers with ground fill.  
Provide good ground return paths. Signal return currents flow on the path of least impedance. If the ground  
plane is cut or has other traces that block the current from flowing right next to the signal trace, the return  
current must find another path to return to the source and complete the circuit. If the return current is forced  
into a larger path, the chance is increased that the signal will radiate. Sensitive signals are more susceptible  
to EMI interference.  
Use bypass capacitors on power supplies to reduce high-frequency noise. Do not place vias between bypass  
capacitors and the active device. Flow the supply current through the bypass capacitor pins first and then to  
the ADC supply pins. Placing the bypass capacitors on the same layer close to the active device yields the  
best results. If multiple ADCs are on the same PCB, use wide power-supply traces or dedicated power-supply  
planes to minimize the potential of crosstalk between ADCs.  
Consider the resistance and inductance of the routing. Often, traces for the inputs have resistances that react  
with the input bias current and cause an added error voltage. Reducing the loop area enclosed by the source  
signal and the return current reduces the inductance in the path. Reducing the inductance reduces the EMI  
pickup and the high-frequency impedance seen by the device.  
Watch for parasitic thermocouples in the layout. Dissimilar metals going from each analog input to the sensor  
may create a parasitic thermocouple that can add an offset to the measurement. Match the differential inputs  
for both inputs going to the measurement source.  
Analog inputs with differential connections must have a capacitor placed differentially across the inputs. The  
Copyright © 2016, Texas Instruments Incorporated  
79  
 
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Layout Guidelines (continued)  
differential capacitors must be high quality. The best ceramic chip capacitors are C0G (NP0), with both stable  
properties and low noise characteristics.  
When REFN is tied to AGND, run the two traces separately as a star connection back to the AGND pin in  
order to minimize coupling between the power-supply trace and reference-return trace.  
It is important that the clock inputs are free from noise and glitches. Even with relatively slow clock  
frequencies, short digital-signal rise-and-fall times can cause excessive ringing and noise. For best  
performance, keep the digital signal traces short, use termination resistors as needed, and make sure all  
digital signals are routed directly above the ground plane with minimal use of vias.  
11.2 Layout Example  
Figure 131 is an example layout of the ADS127L01, input driver circuit, and reference driver circuit using four  
PCB layers. In this example, the top and bottom layers are used for analog and digital signals. The first inner  
layer is dedicated to the ground plane and the second inner layer is dedicated to the power supplies. The PCB is  
partitioned with analog signals routed on the left, and digital signals routed on the right. Polygon pours are used  
to provide low-impedance connections between the power supplies and the reference voltage for the ADC.  
80  
Copyright © 2016, Texas Instruments Incorporated  
ADS127L01  
www.ti.com.cn  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
Consider adding polygon cutouts on  
internal supply layers underneath  
the amplifier input and output pins  
to reduce parasitic capacitance and  
maintain adequate phase margin.  
Place smaller  
decoupling caps  
closest to the  
device.  
External Clock Input  
Place bypass  
capacitor  
directly  
across ADC  
inputs.  
1. LVDD  
24. CLK  
1. FBœ  
2. IN+  
3. INœ  
4. FB+  
12. PD  
2. CAP1  
3. AINN  
23. CS  
11. OUTœ  
10. OUT+  
9. VCOM  
22. SCLK  
21. DIN  
Differential  
Input  
THS4551  
4. AINP  
ADS127L01  
5. AGND  
6. AVDD  
7. REXT  
8. INTLDO  
20. DOUT  
19. DRDY/FSYNC  
18. DAISYIN  
17. START  
Place bypass  
capacitor  
directly across  
reference inputs.  
Match differential signal path for best  
CMR and THD performance.  
Use multiple vias in parallel to  
reduce inductance.  
Internal plane connected to GND  
(AGND = DGND)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 131. Layout Example  
Copyright © 2016, Texas Instruments Incorporated  
81  
ADS127L01  
ZHCSF11B APRIL 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
THS4541 负轨输入、轨到轨输出、高精度、850MHz 完全差分放大器》(文献编号:SLOS375)  
THS4551 低功耗、高精度 150MHz 全差分放大器》(文献编号:SBOS778)  
THS4531A 超低功耗、轨到轨输出、全差分放大器》(文献编号:SLOS823)  
REF60xx 集成 ADC 驱动器缓冲器的高精度电压基准》(文献编号:SBOS708)  
REF50xx 低噪声、极低漂移、高精度电压基准》(文献编号:SBOS410)  
OPA320  
具有关断功能的高精度、20MHz0.9pA、低噪声、RRIOCMOS  
运算放大器》(文献编  
号:SBOS513)  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
82  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS127L01IPBS  
ADS127L01IPBSR  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PBS  
PBS  
32  
32  
250  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
127L01  
127L01  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS127L01IPBSR  
TQFP  
PBS  
32  
1000  
330.0  
16.4  
7.2  
7.2  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TQFP PBS 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ADS127L01IPBSR  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS127L01IPBS  
PBS  
TQFP  
32  
250  
10 X 25  
150  
315 135.9 7620 12.2  
11.1 11.25  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS127L01IPBS

24 位、512kSPS、单通道、超低功耗、宽带宽 Δ-Σ ADC | PBS | 32 | -40 to 125
TI

ADS127L01IPBSR

24 位、512kSPS、单通道、超低功耗、宽带宽 Δ-Σ ADC | PBS | 32 | -40 to 125
TI

ADS127L11

ADS127L11 400-kSPS, Wide-Bandwidth, 24-Bit, Delta-Sigma ADC
TI

ADS127L11IPWR

ADS127L11 400-kSPS, Wide-Bandwidth, 24-Bit, Delta-Sigma ADC
TI

ADS127L11IPWT

ADS127L11 400-kSPS, Wide-Bandwidth, 24-Bit, Delta-Sigma ADC
TI

ADS127L11IRUKR

具有易驱动输入和宽带或低延迟滤波器的 24 位 400kSPS Δ-Σ ADC | RUK | 20 | -40 to 125
TI

ADS127L11IRUKT

具有易驱动输入和宽带或低延迟滤波器的 24 位 400kSPS Δ-Σ ADC | RUK | 20 | -40 to 125
TI

ADS127L11_V01

ADS127L11 400-kSPS, Wide-Bandwidth, 24-Bit, Delta-Sigma ADC
TI

ADS127L11_V02

ADS127L11 400-kSPS, Wide-Bandwidth, 24-Bit, Delta-Sigma ADC
TI

ADS127L21

具有可编程 IIR 和 FIR 滤波器的 24 位、512kSPS 宽带宽 Δ-Σ ADC
TI

ADS1281

High-Resolution Analog-to-Digital Converter
TI

ADS1281IPW

High-Resolution Analog-to-Digital Converter
TI