ADS1283AIRHFR [TI]

用于地震监测和能源勘探且具有 PGA 的超高分辨率 4kSPS 2 通道 Δ-Σ ADC | RHF | 24 | -40 to 85;
ADS1283AIRHFR
型号: ADS1283AIRHFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于地震监测和能源勘探且具有 PGA 的超高分辨率 4kSPS 2 通道 Δ-Σ ADC | RHF | 24 | -40 to 85

转换器
文件: 总68页 (文件大小:2237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
ADS1283 高分辨率模数转换器  
1 特性  
3 说明  
1
高分辨率:  
ADS1283 是一款性能极高的单芯片模数转换器  
(ADC),配备集成式低噪声可编程增益放大器 (PGA)  
和双通道输入多路复用器 (MUX)ADS1283 可满足地  
震监测设备的严苛要求。  
SNR130 dB250 SPSPGA = 1)  
高精度:  
THD–122dB  
低功耗:  
此转换器使用一个固有稳定性的四阶 Δ-Σ 调制器来获  
得出色的抗噪性能和线性性能。调制器数字输出由片上  
数字滤波器进行数字过滤和抽取,以生成 ADC 转换结  
果。  
18mWPGA = 124 8)  
停机模式:10μW  
低噪声 PGA5nV/Hz  
双通道输入多路复用器  
输入多路复用器可灵活提供附加的外部输入,用于测量  
以及内部自检输入连接。PGA 具有 出色的低噪声  
(5nV/Hz) 和极高的输入阻抗,便于轻松连接到具有宽  
增益范围的地震检波器和水听器。  
固有稳定性的调制器,具有快速响应超范围检测器  
灵活的数字滤波器:  
正弦 + 有限脉冲响应 (FIR) + 无限脉冲响应  
(IIR)(可选)  
线性或最小相位响应  
可编程的高通滤波器  
数字滤波器提供 250SPS 4000SPS 的可选数据速  
率。高通滤波器 (HPF) 具有 可调节的角频率。片上增  
益和偏移调节寄存器支持系统校准。  
可选择 FIR 数据速率:  
250SPS 4kSPS  
同步输入 (SYNC) 可用来使多个 ADS1283 器件的转换  
同步。  
偏移和增益校准引擎  
SYNC 输入  
模拟电源:5V ±2.5V  
数字电源:1.8V 3.3V  
ADS1283 采用紧凑的 24 引线 5mm x 4 mm VQFN 封  
装,完全额定工作温度为 –40°C +85°C,最大工作  
温度范围为 –50°C +125°C。  
2 应用  
器件信息(1)  
能量勘探  
器件型号  
ADS1283  
封装  
封装尺寸(标称值)  
地震监测  
高精度仪器  
ADS1283A  
ADS1283B  
VQFN (24)  
5.00mm × 4.00mm  
简化电路原理图  
AVDD  
VREFN  
DVDD  
VREFP  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
CLK  
CS  
4th-Order  
û  
Modulator  
Programmable  
Digital  
Filter  
Input 1  
Input 2  
SCLK  
DOUT  
DIN  
Serial  
Interface  
器件比较  
Calibration  
PGA  
THD(典型  
VCOM  
器件型号  
ADS1283  
失调电压选项  
增益  
值)  
–122dB  
–118dB  
–122dB  
DRDY  
SYNC  
Overrange  
Control  
100mV  
1 64  
1416  
1 64  
RESET  
PWDN  
ADS1283  
ADS1283A  
ADS1283B  
100mV  
AVSS  
DGND  
75mV100mV  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS565  
 
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 32  
8.5 Programming........................................................... 44  
8.6 Register Maps......................................................... 48  
Application and Implementation ........................ 52  
9.1 Application Information............................................ 52  
9.2 Typical Applications ................................................ 52  
9.3 Initialization Set Up ................................................. 55  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings .................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements............................................... 9  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 14  
7.1 Noise Performance ................................................. 14  
Detailed Description ............................................ 15  
9
10 器件和文档支持 ..................................................... 56  
10.1 接收文档更新通知 ................................................. 56  
10.2 社区资源................................................................ 56  
10.3 ....................................................................... 56  
10.4 静电放电警告......................................................... 56  
10.5 Glossary................................................................ 56  
11 机械、封装和可订购信息....................................... 57  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2017) to Revision C  
Page  
已更改 将文档更改为面向 Web 的完整发布........................................................................................................................ 1  
Changes from Revision A (May 2015) to Revision B  
Page  
已添加 ADS1283B 器件及相关内容添加到产品说明书 ........................................................................................................... 1  
已添加 器件信息器件比较................................................................................................................................................ 1  
Added Recommended Operating Conditions table; content moved from Electrical Characteristics table. No values  
changed.................................................................................................................................................................................. 5  
Deleted ADS1283A text from test condition in Electrical Characteristic table........................................................................ 6  
Added new row for ADS1283B test condition to Offset parameter in the Electrical Characteristics table............................. 7  
Added Switching Characteristics table; content moved from Timing Requirements table. No values changed.................... 9  
Changed text in Offset section for 75-mV option ................................................................................................................. 22  
Changed Figure 45 to include CLK to SYNC timing ............................................................................................................ 32  
Deleted tCSHD and tSCSU from Table 12 ................................................................................................................................ 32  
Added CLK to SYNC timing to Table 12 .............................................................................................................................. 32  
Changed text in last paragraph of Pulse-Sync Mode section ............................................................................................. 33  
Changed pulse-sync timing text to include CLK to SYNC timing ........................................................................................ 33  
Changed Figure 46 to include CLK to SYNC timing ........................................................................................................... 33  
Changed opcode text of WREG command from 001 to 010 ............................................................................................... 47  
Added new OFFSET control bit to ID_CFG (register 00h) for ADS1283B device; no change to ADS1283 and  
ADS1283A functionality........................................................................................................................................................ 48  
Changed format of register description tables ..................................................................................................................... 48  
2
版权 © 2014–2019, Texas Instruments Incorporated  
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Changes from Original (January 2014) to Revision A  
Page  
已添加 ADS1283A 器件及相关内容添加到产品说明书 ........................................................................................................... 1  
Added text regarding CS high to Read Data Requirement section. .................................................................................... 44  
Added text regarding CS high to SDATAC: Stop Read Data Continuous section............................................................... 45  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
RHF Package  
5-mm × 4-mm 24-Pin VQFN  
Top View  
DRDY  
DOUT  
DIN  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
RESET  
PWDN  
VREFP  
VREFN  
AVSS  
Thermal  
Pad  
CS  
SYNC  
MFLAG  
DGND  
AVDD  
AINN1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AINN1  
AINN2  
AINP1  
AINP2  
AVDD  
AVSS  
BYPAS  
CAPN  
CAPP  
CLK  
NO.  
13  
11  
12  
10  
14  
15  
22  
8
Analog input  
Analog input  
Analog input  
Analog input  
Analog supply  
Analog supply  
Analog  
Negative analog input 1  
Negative analog input 2  
Positive analog input 1  
Positive analog input 2  
Positive analog power supply  
Negative analog power supply  
1.8-V sub-regulator output: connect 1-μF capacitor to DGND  
PGA output: connect 10-nF capacitor from CAPP to CAPN  
PGA output: connect 10-nF capacitor from CAPP to CAPN  
Master clock input (4.096 MHz)  
Analog  
9
Analog  
23  
4
Digital input  
Digital input  
Ground  
CS  
Serial interface chip select, active low  
Digital ground (tie to digital ground plane)  
Digital ground (tie to digital ground plane)  
Serial interface data input  
DGND  
DGND  
DIN  
7
21  
3
Ground  
Digital input  
Digital output  
Digital output  
Digital supply  
Digital output  
Digital input  
Digital input  
Digital input  
Digital input  
Analog input  
Analog input  
DOUT  
DRDY  
DVDD  
MFLAG  
PWDN  
RESET  
SCLK  
SYNC  
VREFN  
VREFP  
2
Serial Interface data output  
1
Data ready output: active low  
20  
6
Digital power supply: 1.65 V to 3.6 V  
Modulator overrange flag: 0 = normal, 1 = modulator overrange  
Power-down input, active low  
18  
19  
24  
5
Reset input, active low  
Serial interface shift clock input  
Synchronize input, rising edge active  
Negative reference input  
16  
17  
Positive reference input  
Do not electrically connect the thermal pad. The thermal pad must be soldered to PCB.  
Thermal pad vias are optional and can be removed.  
Thermal pad  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
–0.3  
MAX  
5.5  
UNIT  
V
AVDD to AVSS  
AVSS to DGND  
–2.8  
0.3  
V
DVDD to DGND  
–0.3  
3.9  
V
Analog input voltage  
Digital input voltage to DGND  
Input current, continuous  
Operating temperature  
Junction temperature  
Storage temperature, Tstg  
AVSS – 0.3  
–0.3  
AVDD + 0.3  
DVDD + 0.3  
10  
V
V
–10  
mA  
°C  
°C  
°C  
–50  
125  
150  
–60  
150  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVSS  
AVDD  
DVDD  
Negative analog supply (relative to DGND)  
–2.6  
AVSS + 4.75  
1.65  
0
AVSS + 5.25  
3.6  
V
V
V
Positive analog supply (relative to AVSS)  
Digital supply (relative to DGND)  
ANALOG INPUTS  
FSR  
Full-scale input voltage range (VIN = AINP – AINN)  
±VREF / (2 × PGA)  
V
Calibration margin(1)  
106  
%FSR  
AINP or  
AINN  
Absolute input voltage range  
AVSS + 0.7  
AVDD – 1.25  
V
VOLTAGE REFERENCE INPUTS  
Reference input voltage (VREF = VREFP – VREFN)  
Negative reference input  
Positive reference input  
1
AVSS – 0.1  
VREFN + 1  
5
(AVDD – AVSS) + 0.2  
VREFP – 1  
V
V
V
VREFN  
VREFP  
AVDD + 0.1  
DIGITAL INPUTS  
VIH  
High-level input voltage  
0.8 × DVDD  
DVDD  
0.2 × DVDD  
4.096  
V
VIL  
Low-level input voltage  
Clock input  
DGND  
1
V
fCLK  
fSCLK  
MHz  
MHz  
Serial clock rate  
fCLK / 2  
TEMPERATURE  
Specified temperature  
–40  
85  
°C  
(1) Calibration margin is the maximum allowable input voltage after user calibration of offset and gain errors.  
Copyright © 2014–2019, Texas Instruments Incorporated  
5
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
6.4 Thermal Information  
ADS1283  
RHF (VQFN)  
24 PINS  
30.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27.5  
8.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.6  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
maximum and minimum specifications over –40°C to +85°C; typical specifications at 25°C, AVDD = 2.5 V, AVSS = –2.5 V,  
fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, OFFSET bit = 1 (enabled), CHOP bit = 1  
(enabled), and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
PGA input voltage noise density  
Differential input impedance(1)  
5
1
nV/Hz  
GΩ  
CHOP enabled  
CHOP disabled  
100  
1
Common-mode input impedance  
Input bias current  
GΩ  
nA  
dB  
IIB  
1
Crosstalk  
f = 31.25 Hz  
Each switch  
–135  
30  
Mux switch on-resistance  
PGA OUTPUT (CAPP, CAPN)  
Absolute output range  
AVSS + 0.4  
AVDD – 0.4  
100  
V
PGA differential output impedance  
600  
±10%  
10  
Output impedance tolerance  
External bypass capacitance  
nF  
Modulator differential input impedance  
55  
kΩ  
AC PERFORMANCE  
SNR  
Signal-to-noise ratio(2)  
120  
124  
dB  
dB  
dB  
PGA =  
1, 2, 4, 8, 16  
–122  
–114  
–110  
ADS1283,  
ADS1283B  
Total harmonic distortion(3)  
Spurious-free dynamic range  
PGA = 32  
–117  
–114  
–118  
123  
THD  
PGA = 64  
ADS1283A  
PGA = 1, 4, 16  
–106  
SFDR  
(1) PGA chop feature is disabled by setting CHOP bit = '0'. See Table 4  
(2) Inputs shorted; see Table 1.  
(3) Input signal = 31.25 Hz, –0.5 dBFS.  
6
Copyright © 2014–2019, Texas Instruments Incorporated  
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Electrical Characteristics (continued)  
maximum and minimum specifications over –40°C to +85°C; typical specifications at 25°C, AVDD = 2.5 V, AVSS = –2.5 V,  
fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, OFFSET bit = 1 (enabled), CHOP bit = 1  
(enabled), and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC PERFORMANCE  
Resolution  
Data rate  
31  
250  
Bits  
FIR filter mode  
4000  
128,000  
±200  
fDATA  
SPS  
Sinc filter mode  
8000  
OFFSET disabled  
±50  
300  
µV  
OFFSET disabled, CHOP disabled  
Offset(4)  
95 / PGA  
70 / PGA  
100 / PGA  
75 / PGA  
1
105 / PGA  
80 / PGA  
OFFSET  
enabled  
mV  
μV  
ADS1283B only  
Offset after calibration(5)  
Offset drift  
CHOP enabled  
CHOP disabled  
0.03  
μV/°C  
0.5  
Gain error(6)  
Gain error after calibration(5)  
–1.5%  
–1.0%  
0.0002%  
2
–0.5%  
0.8%  
PGA = 1  
Gain drift  
ppm/°C  
PGA = 16  
9
Gain matching(7)  
0.3%  
110  
(8)  
CMR  
PSR  
Common-mode rejection  
fCM = 60 Hz, 1.25 VPP  
95  
80  
90  
dB  
dB  
AVDD, AVSS  
90  
fPS = 60 Hz, 100  
Power-supply rejection  
(8)  
mVPP  
DVDD  
115  
VOLTAGE REFERENCE INPUTS  
Reference input impedance  
DIGITAL FILTER RESPONSE  
Pass-band ripple  
85  
kΩ  
±0.003  
10  
dB  
Hz  
Hz  
Hz  
dB  
Hz  
Pass band (–0.01dB)  
Bandwidth (–3dB)  
0.375 × fDATA  
0.413 × fDATA  
High-pass filter corner  
Stop band attenuation(9)  
Stop band  
0.1  
135  
0.500 × fDATA  
5 / fDATA  
Minimum phase filter(10)  
Linear phase filter  
Group delay  
s
s
31 / fDATA  
62 / fDATA  
62 / fDATA  
Minimum phase filter  
Linear phase filter  
Settling time (latency)  
(4) Offset specification is input referred. The offset scales by the reference voltage (VREF).  
(5) Calibration accuracy is on the level of noise reduced by four (calibration averages 16 readings).  
(6) The PGA output impedance and the modulator input impedance results in –1% systematic gain error.  
(7) Gain match relative to gain = 1.  
(8) fCM is the input common-mode frequency. fPS is the power-supply frequency.  
(9) Input frequencies in the range of NfCLK / 1024 ± fDATA / 2 (where N = 1, 2, 3...) can intermodulate with the modulator chopper clock (and  
N multiples). At these frequencies, intermodulation = –120 dB, typ.  
(10) At dc; see Figure 42.  
Copyright © 2014–2019, Texas Instruments Incorporated  
7
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
maximum and minimum specifications over –40°C to +85°C; typical specifications at 25°C, AVDD = 2.5 V, AVSS = –2.5 V,  
fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, OFFSET bit = 1 (enabled), CHOP bit = 1  
(enabled), and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS/OUTPUTS  
VOH  
VOL  
Ilkg  
High-level output voltage  
Low-level output voltage  
Input leakage  
IOH = 1 mA  
0.8 × DVDD  
V
V
IOL = 1 mA  
0.2 × DVDD  
±10  
0 < VDIGITAL IN < DVDD  
μA  
POWER SUPPLY  
Operating PGA = 1, 2, 4, 8  
Operating PGA = 16, 32, 64  
Standby mode  
3.2  
4
5.5  
6
|mA|  
AVDD, AVSS current  
1
15  
|μA|  
mA  
μA  
Power-down mode  
Operating  
1
15  
0.6  
25  
1
0.8  
50  
DVDD current  
Standby mode  
Power-down mode(11)  
Operating PGA = 1, 2, 4, 8  
Operating PGA = 16, 32, 64  
Standby mode  
15  
18  
22  
90  
10  
30  
mW  
33  
Power dissipation  
250  
125  
μW  
Power-down mode  
(11) CLK input stopped.  
8
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
6.6 Timing Requirements  
at TA = –40°C to +85°C and DVDD = 1.65 V to 3.6 V (unless otherwise noted)  
MIN  
40  
MAX  
UNIT  
ns  
tCSSC  
tSCLK  
tSPWH, L  
tDIST  
CS low to SCLK high: setup time  
SCLK period  
SCLK pulse duration, high and low(1)  
DIN valid to SCLK high: setup time  
Valid DIN to SCLK high: hold time  
CS high pulse  
2
16  
10  
1 / fCLK  
1 / fCLK  
ns  
0.8  
50  
tDIHD  
50  
ns  
tCSH  
100  
24  
ns  
tSCCS  
SCLK high to CS high  
1/fCLK  
(1) Holding SCLK low for 64 DRDY falling edges resets the serial interface.  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CS low to DOUT driven: propagation  
delay  
tCSDOD  
tDOPD  
60  
ns  
SCLK low to valid new DOUT:  
propagation delay  
Load on DOUT = 20 pF || 100 kΩ  
100  
ns  
SCLK low to DOUT invalid: hold  
time  
tDOHD  
0
ns  
ns  
tCSDOZ  
CS high to DOUT tristate  
40  
tSPWH  
tSCLK  
tCSH  
CS  
tSPWL  
tCSSC  
tSCCS  
SCLK  
tDIST  
B7  
DIN  
B6  
tDIHD  
B5  
B4  
B3  
B2  
B1  
B0  
tDOPD  
DOUT  
B7  
tDOHD  
tCSDOD  
tCSDOZ  
Figure 1. Serial Interface Timing Diagram  
Copyright © 2014–2019, Texas Instruments Incorporated  
9
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, OFFSET enabled,  
CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted). For ADS1283A, the electrical characteristics apply at PGA = 1, 4, and 16  
only.  
0
œ20  
0
œ20  
8192-Point FFT  
Shorted Input  
PGA = 8  
8192-Point FFT  
Shorted Input  
PGA = 1  
œ40  
œ40  
SNR = 121.1 dB  
SNR = 123.7 dB  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
0
0
0
50 100 150 200 250 300 350 400 450 500  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C003  
C002  
Figure 3. Output Spectrum  
Figure 2. Output Spectrum  
0
œ20  
0
œ20  
8192-Point FFT  
Shorted Input  
PGA = 8  
CHOP Disabled  
SNR = 117.5 dB  
8192-Point FFT  
Shorted Input  
PGA = 1  
CHOP DIsabled  
SNR = 123.5 dB  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C004  
C005  
Figure 4. Output Spectrum  
Figure 5. Output Spectrum  
0
œ20  
0
œ20  
8192-Point FFT  
V IN = 31.25 Hz, -0.5 dBFS  
PGA = 1  
8192-Point FFT  
V IN = 31.25 Hz, -0.5 dBFS  
PGA = 8  
œ40  
œ40  
THD = -124 dB  
THD = -125 dB  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C002  
C002  
Figure 6. Output Spectrum  
Figure 7. Output Spectrum  
10  
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted). For ADS1283A, the electrical  
characteristics apply at PGA = 1, 4, and 16 only.  
0
0
8192-Point FFT  
V IN = 31.25 Hz, -20 dBFS  
PGA = 1  
8192-Point FFT  
V IN = 31.25 Hz, -20 dBFS  
PGA = 8  
œ20  
œ20  
œ40  
œ40  
THD = -122 dB  
THD = -121 dB  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C002  
C002  
Figure 8. Output Spectrum  
Figure 9. Output Spectrum  
œ100  
œ105  
œ110  
œ115  
œ120  
œ125  
œ130  
œ100  
œ105  
œ110  
œ115  
œ120  
œ125  
œ130  
PGA = 1  
PGA = 1  
VIN = 31.25 Hz, -0.5 dBFS  
V IN = -0.5 dBFS  
PGA = 4  
PGA = 16  
PGA = 64  
PGA = 4  
PGA = 16  
PGA = 64  
œ55 œ35 œ15  
5
25  
45  
65  
85  
105 125  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Temperature (°C)  
Signal Frequency (Hz)  
C007  
C002  
Figure 11. THD vs Temperature  
Figure 10. THD vs Signal Frequency  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
PGA = 1  
60  
40  
DVDD  
AVDD  
AVSS  
80  
20  
PGA = 1  
PGA = 8  
70  
0
10  
100  
1000  
10000  
100000  
1000000  
10  
100  
1000  
10000  
100000  
1000000  
Common Mode Frequency (Hz)  
Power Supply Frequency (Hz)  
C007  
C007  
Figure 12. CMR vs Common-Mode Frequency  
Figure 13. PSR vs Power-Supply Frequency  
Copyright © 2014–2019, Texas Instruments Incorporated  
11  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted). For ADS1283A, the electrical  
characteristics apply at PGA = 1, 4, and 16 only.  
100  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PGA = 1  
PGA = 8  
30 Units  
OFFSET Enabled  
30 units based on  
20 C intervals  
over the range  
-40C to +85 C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Offset Drift (nV/°C)  
Offset (mV)  
C010  
C010  
C010  
C010  
Figure 14. Offset-Voltage Histogram  
Figure 15. Offset-Voltage Drift Histogram  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
140  
130  
120  
110  
100  
90  
PGA = 1,2,4  
PGA = 16  
30 Units  
PGA = 1  
30 units based on 20C intervals  
over the range -40°C to +85°C  
PGA = 8,32,64  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain Drift (ppm/°C)  
Gain Error (%)  
C010  
Figure 16. Gain-Error Histogram  
Figure 17. Gain-Error Drift Histogram  
125  
120  
115  
110  
105  
100  
95  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Worst case gain match  
30 units, relative PGA = 1  
over -40 °C to +85°C range  
PGA = 1  
PGA = 4  
PGA = 16  
Shorted Input  
PGA = 64  
œ55 œ35 œ15  
90  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
C008  
Gain Match (%)  
Figure 19. SNR vs Temperature  
Figure 18. Gain-Match Histogram  
12  
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted). For ADS1283A, the electrical  
characteristics apply at PGA = 1, 4, and 16 only.  
0
25  
20  
15  
10  
5
8192-Point FFT (IN1)  
IN1: Shorted  
IN2: 31.25 Hz, -0.5 dBFS  
PGA = 8  
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
PGA = 1,2,4,8  
PGA = 16,32,64  
0
0
50 100 150 200 250 300 350 400 450 500  
œ55 œ35 œ15  
5
25  
45  
65  
85  
105 125  
Frequency (Hz)  
C005  
Temperature (°C)  
C009  
Figure 20. Crosstalk Output Spectrum  
Figure 21. Power vs Temperature  
2.0  
1.5  
2.0  
1.5  
P Input, T = 25°C  
P Input, T = 25°C  
CHOP Enabled  
PGA = 1  
CHOP Disabled  
PGA = 1  
N Input, T = 25°C  
P Input, T = 85°C  
N Input, T = 85°C  
N Input, T = 25°C  
P Input, T = 85°C  
N Input, T = 85°C  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5 œ2.0 œ1.5 œ1.0 œ0.5 0.0 0.5 1.0 1.5 2.0 2.5  
œ2.5 œ2.0 œ1.5 œ1.0 œ0.5 0.0 0.5 1.0 1.5 2.0 2.5  
Differential Input Voltage (V)  
Differential Input Voltage (V)  
C002  
C002  
Figure 22. Input Bias Current vs Input Voltage  
Figure 23. Input Bias Current vs Input Voltage  
86  
84  
82  
80  
78  
76  
œ55 œ35 œ15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
C002  
Figure 24. Reference Input Impedance vs Temperature  
Copyright © 2014–2019, Texas Instruments Incorporated  
13  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Noise Performance  
The ADS1283 offers outstanding signal-to-noise ratio (SNR). The SNR depends on the ADC data rate and the  
PGA gain selected. As the bandwidth is reduced by decreasing the data rate, the SNR improves  
correspondingly. Similarly, as gain is increased, the input-referred noise decreases. The PGA noise is  
independent of gain; therefore, as the gain increases, the input range correspondingly decreases, resulting in  
decreased SNR.  
The ADS1283 provides a chop feature that reduces the PGA 1/f noise. See the Programmable Gain Amplifier  
(PGA) section for more information about chopping. Table 1 summarizes the SNR and input noise voltage with  
the CHOP bit enabled. Disabling the CHOP bit results in increased low-frequency noise, particularly evident with  
high PGA gains and lower sample rates. Table 2 summarizes SNR and input noise voltage with CHOP disabled.  
Table 1. Signal-to-Noise Ratio (dB) and Input Noise (µV), CHOP Bit Enabled  
PGA (SNR, dB)(1)  
PGA (Input-Referred Noise, µV RMS)  
DATA RATE  
(SPS)  
1
2
4
8
16  
32  
64  
1
2
4
8
16  
32  
64  
250  
500  
130  
127  
124  
121  
117  
129  
126  
123  
120  
117  
129  
126  
123  
120  
117  
127  
124  
121  
118  
115  
125  
122  
119  
116  
113  
119  
116  
113  
110  
107  
114  
111  
108  
105  
102  
0.59  
0.84  
1.19  
1.68  
2.40  
0.30  
0.43  
0.60  
0.86  
1.22  
0.16  
0.23  
0.32  
0.46  
0.66  
0.10  
0.14  
0.20  
0.28  
0.40  
0.07  
0.09  
0.13  
0.18  
0.26  
0.06  
0.09  
0.12  
0.17  
0.25  
0.06  
0.08  
0.11  
0.16  
0.23  
1000  
2000  
4000  
(1) Typical values at T = +25°C and VREF = 5 V. SNR values rounded to the nearest dB. Number of ADC conversions used in the analysis  
varied to maintain measurement bandwidth = 0.1 Hz to 0.413 × data rate. Note that SNR and input noise data of ADS1283A applies to  
PGA = 1, 4, and 16 only.  
Table 2. Signal-to-Noise Ratio (dB) and Input Noise (µV), CHOP Bit Disabled  
PGA (SNR, dB)(1)  
PGA (Input-Referred Noise, µV RMS)  
DATA RATE  
(SPS)  
1
2
4
8
16  
32  
64  
1
2
4
8
16  
32  
64  
250  
500  
129  
126  
123  
120  
117  
128  
125  
123  
120  
117  
125  
123  
121  
119  
116  
120  
119  
117  
116  
114  
116  
114  
114  
112  
111  
110  
108  
108  
107  
105  
104  
103  
102  
101  
99  
0.63  
0.87  
1.20  
1.69  
2.41  
0.37  
0.47  
0.65  
0.91  
1.24  
0.26  
0.31  
0.39  
0.51  
0.70  
0.21  
0.25  
0.30  
0.37  
0.46  
0.18  
0.21  
0.22  
0.26  
0.33  
0.17  
0.21  
0.22  
0.25  
0.31  
0.18  
0.20  
0.22  
0.25  
0.30  
1000  
2000  
4000  
(1) Typical values at T = +25°C and VREF = 5 V. SNR values rounded to the nearest dB. Number of ADC conversions used in the analysis  
varied to maintain measurement bandwidth = 0.1 Hz to 0.413 × data rate. Note that SNR and input noise data of ADS1283A applies to  
PGA = 1, 4, and 16 only.  
Input-referred noise is related to SNR by Equation 1:  
FSRRMS  
SNR = 20log  
NRMS  
where  
FSRRMS = Full-scale range RMS = VREF / (2 × 2 × PGA)  
NRMS = Noise (RMS, input-referred)  
(1)  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8 Detailed Description  
8.1 Overview  
The ADS1283 is a high-performance analog-to-digital converter (ADC) intended for energy exploration, seismic  
monitoring, chromatography, and other exacting performance applications. The converter provides 31-bit  
resolution in data rates from 250 SPS to 4000 SPS. See the Functional Block Diagram section for a block  
diagram of the ADS1283.  
The ADS1283A device is functionally equivalent to the ADS1283, except that the ADS1283A supports PGA  
gains of 1, 4, and 16 only. The ADS1283A also relaxes the THD specification of these gains. See the Electrical  
Characteristics section for more details. The ADS1283B provides equivalent performance to the ADS1283, but  
provides two offset voltage options, 75 mV and 100 mV. See Offset for details.  
The two-channel input mux allows five configurations:  
1. Input 1  
2. Input 2  
3. Input 1 and input 2 shorted together  
4. Input 1 and input 2 disconnected and PGA input internally shorted with two 400-Ω resistors  
5. Input 1 and input 2 shorted to perform input common-mode test  
See the Analog Inputs and Multiplexer section for more details.  
The input mux is followed by a continuous-time PGA, featuring very low noise of 5 nV/Hz. The PGA is  
controlled by register settings, allowing gains from 1 to 64 for the ADS1283 and ADS1283B, and gains of 1, 4,  
and 16 for the ADS1283A.  
The inherently-stable, fourth-order, delta-sigma modulator measures the differential input signal  
(VIN = AINP – AINN) against the differential reference (VREF = VREFP – VREFN). A digital output (MFLAG)  
indicates that the modulator is in overload as a result of an overdrive condition. The modulator connects to the  
on-chip digital filter that provides the output codes.  
The digital filter consists of a variable decimation rate, fifth-order sinc filter, followed by a variable phase,  
decimate-by-32, finite-impulse response (FIR) low-pass filter with programmable phase, and then by an  
adjustable high-pass filter for dc removal of the output code. The output of the digital filter can be taken from the  
sinc or the FIR low-pass, with the FIR option of the infinite impulse response (IIR) high-pass section.  
Gain and offset registers scale the digital filter output to produce the final code value. The scaling feature can be  
used for calibration and sensor gain matching.  
The SYNC input resets the operation of both the digital filter and the modulator, allowing synchronization  
conversions of multiple ADS1283 devices to an external event. The SYNC input supports a continuously-toggled  
input mode that accepts an external data frame clock locked to the conversion rate.  
The RESET input resets the register settings and also restarts the conversion process.  
The PWDN input sets the device into a micro-power state. Note that register settings are not retained in PWDN  
mode. Use the STANDBY command in its place if it is desired to retain register settings (the quiescent current in  
standby mode is slightly higher).  
Noise-immune Schmitt-trigger and clock-qualified inputs (RESET and SYNC) provide increased reliability in high-  
noise environments. The SPI™-compatible serial interface is used to read conversion data, in addition to reading  
from and writing to the configuration registers.  
The device allows either unipolar and bipolar analog power-supply operation. The analog supplies may be set to  
+5 V for unipolar signals (with the inputs level shifted externally), or set to ±2.5 V to accept true bipolar input  
signals (ground referenced). The digital supply is separate and accepts voltages from 1.8 V to 3.3 V,  
independent of the analog power supplies used.  
An internal subregulator is used to supply the digital core from DVDD. BYPAS (pin 28), is the subregulator output  
and requires a 1-μF capacitor for noise reduction. Note that the regulated output voltage on BYPAS is not  
available to drive external circuitry.  
Copyright © 2014–2019, Texas Instruments Incorporated  
15  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.2 Functional Block Diagram  
AVDD  
BYPAS DVDD  
CLK  
+1.8 V  
(Digital core)  
LDO  
AINP2  
AINN2  
AINP1  
AINN1  
300  
300  
W
W
CS  
4th-Order  
û  
Modulator  
SCLK  
DIN  
Programmable  
Digital Filter  
Serial  
PGA  
Calibration  
Interface  
DOUT  
Overrange  
Detection  
DRDY  
SYNC  
400  
400 Ω  
Control  
RESET  
PWDN  
AVDD + AVSS  
2
AVSS  
MFLAG  
DGND  
8.3 Feature Description  
8.3.1 Analog Inputs and Multiplexer  
A diagram of the input multiplexer is shown in Figure 25.  
AVDD  
S1  
S2  
AINP1  
ESD Diodes  
AINP2  
(+)  
400W  
S3  
S7  
AVSS  
To PGA  
AVDD + AVSS  
AVDD  
2
400W  
S4  
S5  
S6  
AINN1  
AINN2  
(-)  
ESD Diodes  
AVSS  
Figure 25. Analog Inputs and Multiplexer  
ESD diodes protect the multiplexer inputs. If either input is taken below AVSS – 0.3 V, or above AVDD + 0.3 V,  
the ESD protection diodes can turn on. If these conditions are possible, use external clamp diodes, series  
resistors, or both to limit the input current to safe values (see the Absolute Maximum Ratings table).  
16  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Feature Description (continued)  
Also, overdriving one unused input can affect the conversions of the other input. If an overdriven input interacts  
with the measured input, clamp the overdriven signal with external Schottky diodes.  
The specified input operating range of the PGA is shown in Equation 2:  
AVSS + 0.7V < (AINN or AINP) < AVDD - 1.25V  
(2)  
For best operation, maintain absolute input levels (input signal level and common-mode level) within these limits.  
The multiplexer connects one of the two external differential inputs to the preamplifier inputs, in addition to  
internal connections for various self-test modes. Table 3 summarizes the multiplexer configurations for Figure 25.  
Table 3. Multiplexer Modes  
MUX[2:0]  
000  
SWITCHES  
S1, S5  
DESCRIPTION  
AINP1 and AINN1 connected to preamplifier  
001  
S2, S6  
AINP2 and AINN2 connected to preamplifier  
010  
S3, S4  
Preamplifier inputs shorted together through 400-internal resistors  
AINP1, AINN1 and AINP2, AINN2 connected together and to the preamplifier  
External short, preamplifier inputs shorted to AINN2 (common-mode test)  
011  
S1, S5, S2, S6  
S6, S7  
100  
The typical on-resistance (RON) of the multiplexer is 30 (each switch). When the multiplexer is used to drive an  
external load on one input by a signal generator on the other input, on-resistance and on-resistance amplitude  
dependency can lead to measurement errors. Figure 26 shows THD versus load resistance and amplitude. THD  
improves with high-impedance loads and with lower-amplitude drive signals. The data are measured with the  
circuit from Figure 27 with MUX[2:0] = 011.  
0
PGA = 1  
PGA = 2  
PGA = 4  
PGA = 8  
-20  
-40  
PGA = 16  
PGA = 32  
PGA = 64  
-60  
-80  
-100  
-120  
-140  
0.1k  
1k  
10k  
100k  
1M  
10M  
RLOAD (W)  
Figure 26. THD vs External Load and Signal Magnitude (PGA); See Figure 27  
500 Ω  
Input 1  
Test Signal  
500 W  
Input 2  
RLOAD  
Figure 27. Driving an External Load Through the Multiplexer  
Copyright © 2014–2019, Texas Instruments Incorporated  
17  
 
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.3.2 Programmable Gain Amplifier (PGA)  
The PGA of the ADS1283 is a low-noise, continuous-time, differential-in and differential-out CMOS amplifier. The  
gain is set by register bits PGA[2:0], and is programmable from 1 to 64 for the ADS1283, or can be set to 1, 4,  
and 16 for the ADS1283A. The PGA differentially drives the modulator through 300-internal resistors. A C0G  
capacitor (10-nF C0G or film dielectric) must be connected to CAPP and CAPN to filter modulator sampling  
glitches. The external capacitor also serves as an antialias filter. The corner frequency is given in Equation 3:  
1
fP =  
6.3 ´ 600 ´ C  
(3)  
The ADS1283 PGA provides a chop feature. As shown in Figure 28, amplifiers A1 and A2 are chopper stabilized  
to remove the offset, offset drift, and 1/f noise. Chopper stabilization (or chopping) moves the offset and noise to  
fCLK / 1024 (4 kHz, fCLK = 4.096 MHz ), which is located safely out of the pass-band frequency. Chopping can be  
disabled by setting the CHOP bit = 0. When chopping is disabled, the PGA input impedance increases (see  
Differential Input Impedance parameter in the Electrical Characteristics). As shown in Figure 29, chopping  
maintains flat noise density, leaving predominantly white noise. However, if chopping is disabled, the PGA input  
noise results in a rising 1/f noise profile.  
AVDD  
MUX (+)  
300W  
A1  
CAPP  
CHOP  
Gain Control  
10nF  
PGA[2:0] Bits  
(55kW, typ  
Modulator  
Effective  
Impedance  
)
CAPN  
300W  
A2  
MUX (-)  
Chopping Control CHOP Bit  
AVSS  
(1) Modulator input impedance scales with clock rate.  
Figure 28. PGA Block Diagram  
100  
PGA CHOP Off  
PGA CHOP On  
10  
1
1
10  
100  
Frequency (Hz)  
1k  
Figure 29. PGA Noise  
18  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
As a result of the stray capacitance of the input chopping switches, low-level transient currents flow through the  
inputs when chopping is enabled. The average value of the transient currents versus the input voltage results in  
an effective input impedance. The effective input impedance depends on the PGA gain, as shown in Table 4.  
Despite the relatively high input impedance, carefully evaluate applications with high-impedance sensors or high-  
impedance termination resistors when chopping is enabled. Table 4 shows the PGA differential input impedance  
with CHOP enabled.  
Table 4. Differential Input Impedance (CHOP Enabled)  
PGA  
1
DIFFERENTIAL INPUT IMPEDANCE (G)  
7
7
2
4
4
8
3
16  
32  
64  
2
1
0.5  
The PGA has programmable gains from 1 to 64. Table 5 shows the register bit setting for the PGA and resulting  
full-scale differential range.  
Table 5. PGA Gain Settings  
DIFFERENTIAL INPUT RANGE  
PGA[2:0]  
000  
GAIN(1)  
(V)(2)  
±2.5  
1
2
001  
±1.25  
010  
4
±0.625  
±0.312  
±0.156  
±0.078  
±0.039  
011  
8
100  
16  
32  
64  
101  
110  
(1) The ADS1283A supports gains of 1, 4, and 16 only.  
(2) VREF = 5 V. The input range scales with VREF  
.
The specified range of the PGA output is shown in Equation 4:  
AVSS + 0.4V < (CAPN or CAPP) < AVDD - 0.4V  
(4)  
For best performance, maintain PGA output levels (signal + common-mode) within these limits.  
Copyright © 2014–2019, Texas Instruments Incorporated  
19  
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.3.3 Analog-to-Digital Converter (ADC)  
The ADC block of the ADS1283 is composed of two sections: a high-accuracy modulator and a programmable  
digital filter.  
8.3.3.1 Modulator  
The high-performance modulator is an inherently-stable, fourth-order, ΔΣ, 2 + 2 pipelined structure, as Figure 30  
shows. The modulator shifts the quantization noise to a higher frequency (out of the pass band), where the noise  
can be easily removed by digital filtering. The modulator data can either be completely filtered by the on-chip  
digital filter or partially filtered by the onboard sinc filter in conjunction with external, post-processing filters.  
fCLK/4  
fMOD =  
1st-Stage  
(2nd-Order û)  
Analog  
Signal  
Digital  
Filter  
Math  
Block  
2nd-Stage  
(2nd-Order  
û)  
Figure 30. Fourth-Order Modulator  
The modulator performance is optimized for input signals over the dc to 2-kHz bandwidth. As Figure 31 shows,  
the effect of PGA and modulator chop result in spectral artifacts at the chop frequency (4 kHz) and related odd-  
order harmonics to the chop frequency. When using the sinc filter mode in conjunction with an external post-  
decimation filter, design the external digital filter to suppress the modulator chopping artifacts.  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
0
4000 8000 12000 16000 20000 24000 28000 32000  
Frequency (Hz)  
C001  
Figure 31. Sinc Output FFT (64 kSPS)  
8.3.3.1.1 Modulator Overrange  
The ADS1283 modulator is inherently stable, and therefore, has predictable recovery behavior resulting from an  
input overdrive condition. The modulator does not exhibit self-reset cycles, which often results in an unstable  
output data stream. The ADS1283 modulator outputs a data stream with 90% duty cycle of ones-to-zeroes  
density with the positive full-scale input signal applied (10% duty cycle with the negative full-scale signal). If the  
input is overdriven past 90% modulation, but below 100% modulation (10% and 0% for negative overdrive,  
respectively), the modulator remains stable and continues to output the 1s density data stream. The digital filter  
may or may not clip the output codes to +FS or –FS, depending on the duration of the overdrive. When the input  
returns to the normal range from a long-duration overdrive (worst case), the modulator returns immediately to the  
normal range, but the group delay of the digital filter delays the return of the conversion result to within the linear  
range (31 readings for linear phase FIR). An additional 31 readings (62 total) are required for completely-settled  
data.  
20  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
If the inputs are sufficiently overdriven to drive the modulator to full duty cycle (that is, all 1s or all 0s), the  
modulator enters a stable saturated state. The digital output code may clip to +FS or –FS, again depending on  
the duration. A small-duration overdrive condition may not always clip the output code. When the input returns to  
the normal range, the modulator requires up to 12 modulator clock cycles (fMOD) to exit saturation and return to  
the linear region. The digital filter requires an additional 62 conversions for fully-settled data (linear-phase FIR).  
In the extreme case of input overrange (where either overdriven input exceeds the voltage of the analog supply  
voltage plus an internal ESD diode drop), the internal diodes begin to conduct, thus clipping the input signal.  
When the input overdrive is removed, the diodes recover quickly. Make sure to limit the input current to 10 mA  
(continuous duty) if an overvoltage condition is possible.  
8.3.3.1.2 Modulator Input Impedance  
The modulator samples the buffered input voltage with an internal capacitor to perform conversions. The  
charging of the input sampling capacitor draws a transient current from the PGA output. Use the average value  
of the current to calculate an effective input impedance, as shown in Equation 5:  
REFF = 1 / (fMOD × CS)  
where  
fMOD = Modulator sample frequency = CLK / 4  
CS = Input sampling capacitor = 17 pF (typ)  
(5)  
The resulting modulator input impedance is 55 k(CLK = 4.096 MHz). The modulator input impedance and the  
internal PGA 300-Ω output resistors result in a systematic gain error of –1%. The modulator CS can vary ±20%  
over production lots, affecting the nominal gain error.  
8.3.3.1.3 Modulator Overrange Detection (MFLAG)  
The ADS1283 has a fast-responding, overrange detection that indicates when the differential input exceeds  
100% or –100% full-scale. The threshold tolerance is ±2.5%.The MFLAG output pin asserts high when in an  
overrange condition. As Figure 32 and Figure 33 illustrate, the absolute differential input is compared to 100% of  
range. The output of the comparator is sampled at the rate of fMOD / 2, yielding the MFLAG output. The minimum  
detectable MFLAG pulse duration is fMOD / 2.  
AINP  
å
IABSI  
P
100% FS  
AINN  
Q
MFLAG  
Pin  
fMOD/2  
Figure 32. Modulator Overrange Block Diagram  
+100  
(AINP - AINN)  
0
Time  
-100  
MFLAG  
Pin  
Figure 33. Modulator Overrange Flag Operation  
Copyright © 2014–2019, Texas Instruments Incorporated  
21  
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.3.3.1.4 Offset  
The ADC modulator can produce low-level idle tones that appear in the spectrum when there is no signal input or  
when low-level signal inputs are present to the ADC. The ADC provides an optional dc offset voltage designed to  
shift the idle tones to the stop band of digital filter response, where the idle tones are reduced. The internal offset  
is applied to the modulator input; therefore, the offset voltage amplitude is independent of PGA gain. For all  
ADS1283 versions, the offset option is 100 mV. For the ADS1283B, a second offset option is 75 mV. The 75-mV  
offset optimally reduces idle tones under various gain, data rate, and chop mode settings.  
The offset is enabled by the OFFSET1 and OFFSET0 bits (default is off). The offset voltage reduces the  
available input range 4% (3% for the 75 mV value) before the onset of clipped codes. The offset voltage can be  
calibrated by using the offset calibration register (OFC[2:0]). Use the offset calibration register to compensate the  
offset voltage, thereby restoring the full input voltage range. See Offset and Full-Scale Calibration Registers and  
Calibration Commands (OFSCAL and GANCAL) sections for more details.  
8.3.3.1.5 Voltage Reference Inputs (VREFP, VREFN)  
The voltage reference for the ADS1283 is the differential voltage between VREFP and VREFN:  
VREF = VREFP – VREFN  
(6)  
The reference inputs use a structure similar to that of the analog inputs with the circuitry of the reference inputs  
shown in Figure 34. The average load presented by the switched-capacitor reference input can be modeled with  
an effective differential impedance of:  
REFF = tSAMPLE / CIN (tSAMPLE = 1 / fMOD).  
(7)  
Note that the effective impedance of the reference inputs loads the external reference.  
AVDD  
fMOD = fCLK/4  
ESD  
Diodes  
1
REFF  
=
f
MOD x 11.5 pF  
VREFP  
VREFN  
REFF : 85 kΩ  
11.5pF  
ESD  
Diodes  
AVSS  
Figure 34. Simplified Reference Input Circuit  
Place a 0.1-µF ceramic capacitor directly between the ADC VREFP and VREFN pins. Multiple ADC applications  
can share a single voltage reference, but must have individual capacitors placed for each ADC.  
The ADS1283 reference inputs are protected by ESD diodes. In order to prevent these diodes from turning on,  
the voltage on either input must stay within the range shown in Equation 8:  
AVSS - 300mV < (VREFP or VREFN) < AVDD + 300mV  
(8)  
The minimum valid input for VREFN is AVSS – 0.1 V, and the maximum valid input for VREFP is AVDD + 0.1 V.  
To achieve the best performance from the ADS1283, use a high-quality 5-V reference voltage. A 4-V or 4.5-V  
reference voltage can be used; however, this lower reference voltage reduces the signal input range with a  
corresponding decrease of SNR. Noise and drift on the reference degrade overall system performance. To  
achieve optimum performance, make sure to give special care to the circuitry generating the reference voltages.  
See the Application Information section for reference recommendations.  
22  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.3.3.2 Digital Filter  
The digital filter receives the modulator output and decimates the data stream. By adjusting the amount of  
filtering, tradeoffs can be made between resolution and data rate: filter more for higher resolution, filter less for  
higher data rate.  
The digital filter is comprised of three cascaded filter stages: a variable-decimation, fifth-order sinc filter; a fixed-  
decimation FIR, low-pass filter (LPF) with selectable phase; and a programmable, first-order, high-pass filter  
(HPF), as shown in Figure 35.  
Filter Mode  
(Register Select)  
Filter  
MUX  
To Output Register  
Sinc Filter  
(Decimate by  
8 to 128)  
Coefficient Filter  
(FIR)  
(Decimate by 32)  
High-Pass Filter  
(IIR)  
Code  
Clip  
CAL  
Block  
From Modulator  
Figure 35. Digital Filter and Output Code Processing  
The output can be taken from one of the three filter blocks, as Figure 35 shows. For partial filtering by the  
ADS1283, select the sinc filter output. For complete on-chip filtering, activate both the sinc + FIR stages. The  
HPF can then be included to remove dc and low frequencies from the data. Table 6 shows the filter options.  
Table 6. Digital Filter Selection  
FILTR[1:0] BITS  
DIGITAL FILTERS SELECTED  
Reserved (not used)  
Sinc  
00  
01  
10  
Sinc + FIR  
Sinc + FIR + HPF  
(low-pass and high-pass)  
11  
Copyright © 2014–2019, Texas Instruments Incorporated  
23  
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.3.3.2.1 Sinc Filter Stage (sinx / x)  
The sinc filter is a variable decimation rate, fifth-order, low-pass filter. Data are supplied to this section of the filter  
from the modulator at the rate of fMOD (fCLK / 4). The sinc filter attenuates the high-frequency noise of the  
modulator, then decimates the data stream into parallel data. The decimation rate affects the overall data rate of  
the converter, and is set by the DR[2:0] register bits, as shown in Table 7.  
Table 7. Sinc Filter Data Rates  
DR[2:0] REGISTER  
DECIMATION RATIO (N)  
DATA RATE (SPS)  
8,000  
000  
001  
010  
011  
100  
128  
64  
32  
16  
8
16,000  
32,000  
64,000  
128,000  
Equation 9 shows the scaled Z-domain transfer function of the sinc filter.  
5
-N  
1 - Z  
-1  
N(1 - Z )  
H(Z) =  
where  
N = decimation ratio  
(9)  
Equation 10 shows the frequency domain transfer function of the sinc filter.  
5
pN ´ f  
sin  
fMOD  
½H(f)½ =  
p ´ f  
N sin  
fMOD  
where  
N = decimation ratio (see Table 7)  
(10)  
The sinc filter has notches (or zeros) that occur at the output data rate and multiples thereof. At these  
frequencies, the filter has zero gain. Figure 36 shows the frequency response of the sinc filter and Figure 37  
shows the roll-off of the sinc filter.  
0
-20  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-40  
-60  
-80  
-100  
-120  
-140  
0
1
2
3
4
5
0
0.05  
0.10  
0.15  
0.20  
Normalized Frequency (fIN/fDATA  
)
Normalized Frequency (fIN/fDATA  
)
Figure 36. Sinc Filter Frequency Response  
(N = 32)  
Figure 37. Sinc Filter Roll-Off  
24  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.3.3.2.2 FIR Stage  
The second stage of the ADS1283 digital filter is an FIR low-pass filter. Data are supplied to this stage from the  
sinc filter. The FIR stage is segmented into four substages, as shown in Figure 38.  
FIR Stage 1  
Decimate by 2  
FIR Stage 2  
Decimate by 2  
FIR Stage 3  
Decimate by 4  
FIR Stage 4  
Decimate by 2  
Sinc  
Filter  
Output  
Coefficients  
Linear  
Minimum  
PHASE Select  
Figure 38. FIR Filter Substages  
The first two substages are half-band filters with decimation ratios of two. The third substage decimates by four,  
and the fourth substage decimates by two. The overall decimation of the FIR stage is 32. Note that two  
coefficient sets are used for the third and fourth sections, depending on the phase selection. Table 8 lists the  
data rates and overall decimation ratio of the FIR stage. See Table 9 for the FIR filter coefficients.  
Table 8. FIR Filter Data Rates  
DR[2:0] REGISTER  
DECIMATION RATIO (N)  
FIR DATA RATE (SPS)  
000  
001  
010  
011  
100  
4096  
2048  
1024  
512  
250  
500  
1000  
2000  
4000  
256  
Table 9. FIR Stage Coefficients  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b0  
b1  
3
0
–10944  
0
0
819  
–132  
–432  
11767  
0
8211  
133882  
b2  
–25  
0
103807  
0
–73  
44880  
–75  
769961  
b3  
–874  
174712  
2481  
2940447  
b4  
150  
256  
150  
0
–507903  
0
–4648  
536821  
6692  
8262605  
b5  
–16147  
–41280  
–80934  
–120064  
–118690  
–18203  
224751  
580196  
893263  
891396  
293598  
–987253  
–2635779  
–3860322  
–3572512  
1372637  
3012996  
5788605  
9852286  
14957445  
20301435  
24569234  
26260385  
24247577  
18356231  
9668991  
327749  
7419  
17902757  
30428735  
40215494  
39260213  
23325925  
–1757787  
–21028126  
–21293602  
–3886901  
14396783  
16314388  
1518875  
b6  
2512192  
4194304  
2512192  
0
–266  
b7  
–10663  
–8280  
10620  
22008  
348  
b8  
–25  
0
b9  
b10  
b11  
b12  
b13  
b14  
b15  
b16  
b17  
b18  
b19  
3
–507903  
0
103807  
0
–34123  
–25549  
33460  
61387  
–7546  
–94192  
–50629  
101135  
–10944  
–7171917  
–10926627  
–10379094  
–12979500  
–11506007  
2769794  
Copyright © 2014–2019, Texas Instruments Incorporated  
25  
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
Table 9. FIR Stage Coefficients (continued)  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b20  
b21  
b22  
b23  
b24  
b25  
b26  
b27  
b28  
b29  
b30  
b31  
b32  
b33  
b34  
b35  
b36  
b37  
b38  
b39  
b40  
b41  
b42  
b43  
b44  
b45  
b46  
b47  
b48  
b49  
b50  
b51  
b52  
b53  
b54  
b55  
b56  
b57  
b58  
b59  
b60  
b61  
b62  
b63  
b64  
–822573  
4669054  
12153698  
19911100  
25779390  
27966862  
25779390  
19911100  
12153698  
4669054  
–822573  
–3572512  
–3860322  
–2635779  
–987253  
293598  
891396  
893263  
580196  
224751  
–18203  
–118690  
–120064  
–80934  
–41280  
–16147  
–4648  
–6505618  
–1333678  
2972773  
5006366  
4566808  
2505652  
126331  
–1496514  
–1933830  
–1410695  
–502731  
245330  
565174  
492084  
231656  
–9196  
134826  
–56626  
12195551  
6103823  
–6709466  
–9882714  
–353347  
8629331  
5597927  
–4389168  
–7594158  
–428064  
6566217  
4024593  
–3679749  
–5572954  
332589  
–220104  
–56082  
263758  
231231  
–215231  
–430178  
34715  
580424  
283878  
–588382  
–693209  
366118  
1084786  
132893  
5136333  
2351253  
–3357202  
–3767666  
1087392  
3847821  
919792  
–125456  
–122207  
–61813  
–4445  
–1300087  
–878642  
1162189  
1741565  
–522533  
–2490395  
–688945  
2811738  
2425494  
–2338095  
–4511116  
641555  
22484  
22245  
10775  
–2918303  
–2193542  
1493873  
2595051  
–79991  
940  
–2953  
–2599  
–1052  
–874  
–43  
–2260106  
–963855  
1482337  
1480417  
–586408  
–1497356  
–168417  
1166800  
644405  
–73  
214  
6661730  
2950811  
–8538057  
–10537298  
9818477  
41426374  
56835776  
41426374  
9818477  
–10537298  
–8538057  
2950811  
6661730  
641555  
0
132  
0
33  
0
0
–675082  
–806095  
211391  
740896  
141976  
–527673  
–327618  
278227  
–4511116  
–2338095  
2425494  
363809  
26  
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Table 9. FIR Stage Coefficients (continued)  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b65  
2811738  
–688945  
–2490395  
–522533  
1741565  
1162189  
–878642  
–1300087  
132893  
1084786  
366118  
–693209  
–588382  
283878  
580424  
34715  
–70646  
–304819  
–63159  
205798  
124363  
–107173  
–131357  
31104  
107182  
15644  
–71728  
–36319  
38331  
38783  
–13557  
–31453  
–1230  
20983  
7729  
–11463  
–8791  
4659  
7126  
–732  
–4687  
–976  
2551  
1339  
–1103  
–1085  
314  
b66  
b67  
b68  
b69  
b70  
b71  
b72  
b73  
b74  
b75  
b76  
b77  
b78  
b79  
b80  
b81  
–430178  
–215231  
231231  
263758  
–56082  
–220104  
–56626  
134826  
101135  
–50629  
–94192  
–7546  
b82  
b83  
b84  
b85  
b86  
b87  
b88  
b89  
b90  
b91  
b92  
b93  
61387  
b94  
33460  
b95  
–25549  
–34123  
348  
b96  
681  
b97  
16  
b98  
22008  
–349  
–96  
b99  
10620  
b100  
b101  
b102  
b103  
b104  
b105  
b106  
b107  
b108  
b109  
–8280  
144  
–10663  
–266  
78  
–46  
7419  
–42  
6692  
9
2481  
16  
–75  
0
–432  
–4  
–132  
0
0
0
Copyright © 2014–2019, Texas Instruments Incorporated  
27  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
As shown in Figure 39, the FIR frequency response provides a flat pass band to 0.375 of the data rate  
(±0.003 dB pass-band ripple). Figure 40 shows the transition from pass band to stop band.  
2.0  
1.5  
20  
0
-20  
1.0  
-40  
0.5  
-60  
0
-80  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
-160  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
Normalized Input Frequency (fIN/fDATA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Normalized Input Frequency (fIN/fDATA  
)
)
Figure 40. FIR Transition Band Magnitude Response  
Figure 39. FIR Pass-Band Magnitude Response (fDATA  
500 Hz)  
=
Although not shown in Figure 40, the pass-band response repeats at multiples of the modulator frequency  
(NfMOD – f0 and NfMOD + f0, where N = 1, 2, and so on, and f0 = pass band). These image frequencies, if present  
in the signal and not externally filtered, fold back (or alias) into the pass band and cause errors. A low-pass  
signal filter reduces the effect of aliasing. Often, the RC low-pass filter provided by the PGA output resistors and  
the external capacitor connected to CAPP and CAPN provide sufficient signal attenuation.  
8.3.3.2.3 Group Delay and Step Response  
The FIR block is implemented as a multistage FIR structure with selectable linear or minimum phase response.  
The pass band, transition band, and stop band responses of the filters are nearly identical but differ in the  
respective phase responses.  
8.3.3.2.3.1 Linear Phase Response  
Linear phase filters exhibit constant delay time versus input frequency (that is, constant group delay). Linear  
phase filters have the property that the time delay is constant from any instant of the input signal to the same  
instant of the output data, and is independent of the signal nature. This filter behavior results in essentially zero  
phase error when analyzing multitone signals. However, the group delay and settling time of the linear phase  
filter are somewhat larger than the minimum phase filter, as shown in Figure 41.  
1.4  
Minimum Phase Filter  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Linear Phase Filter  
0
-0.2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Time Index (1/fDATA  
)
Figure 41. FIR Step Response  
28  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.3.3.2.3.2 Minimum Phase Response  
The minimum phase filter provides a short delay from the arrival of an input signal to the output, but the  
relationship (phase) is not constant versus frequency, as shown in Figure 42. The filter phase is selected by the  
PHS bit, as Table 10 shows.  
35  
Linear Phase Filter  
30  
25  
20  
15  
10  
Minimum Phase Filter  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
Figure 42. FIR Group Delay (fDATA = 500Hz)  
Table 10. FIR Phase Selection  
PHS BIT  
FILTER PHASE  
Linear  
0
1
Minimum  
Copyright © 2014–2019, Texas Instruments Incorporated  
29  
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.3.3.2.4 HPF Stage  
The last stage of the ADS1283 filter block is a first-order HPF implemented as an IIR structure. This filter stage  
blocks dc signals, and rolls off low-frequency components below the cutoff frequency. The transfer function for  
the filter is shown in Equation 11:  
-1  
2 - a  
1 - Z  
HPF(Z) =  
´
-1  
2
1 - bZ  
where  
b is calculated as shown in Equation 12  
(11)  
(12)  
1 + (1 - a)2  
b =  
2
The high-pass corner frequency is programmed by registers HPF[1:0], in hexadecimal. Equation 13 is used to set  
the high-pass corner frequency. Table 11 lists example values for the high-pass filter.  
cos wN + sin wN - 1  
HPF[1:0] = 65,536 1 -  
1 - 2  
cos wN  
where  
HPF = High-pass filter register value (converted to hexadecimal)  
ωN = 2πfHP / fDATA (normalized frequency, radians)  
fHP = High-pass corner frequency (Hz)  
fDATA = Data rate (Hz)  
(13)  
Table 11. High-Pass Filter Value Examples  
fHP (Hz)  
0.5  
DATA RATE (SPS)  
HPF[1:0]  
0337h  
250  
500  
1.0  
0337h  
1.0  
1000  
019Ah  
30  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
The HPF causes a small gain error, in which case the magnitude of the error depends on the ratio of fHP / fDATA  
.
For many common values of (fHP / fDATA), the gain error is negligible. Figure 43 shows the gain error of the HPF.  
0
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
0.0001  
0.001  
0.01  
0.1  
Frequency Ratio (fHP/fDATA  
)
Figure 43. HPF Gain Error  
The gain error factor is illustrated in Equation 14:  
cos wN + sin wN - 1  
1 +  
1 - 2  
cos wN  
HPF Gain =  
cos wN + sin wN - 1  
cos wN  
2 -  
(14)  
Figure 44 shows the first-order amplitude and phase response of the HPF. In the case of applying step inputs or  
synchronizing, make sure to take the settling time of the filter into account.  
0
90  
75  
60  
45  
30  
-7.5  
-15.0  
-22.5  
-30.0  
-37.5  
-45.0  
Amplitude  
Phase  
15  
0
0.01  
0.1  
1
10  
100  
Normalized Frequency (f/fC)  
Figure 44. HPF Amplitude and Phase Response  
8.3.4 Master Clock Input (CLK)  
The ADS1283 requires a clock for operation. The nominal clock frequency is 4.096 MHz. The clock is applied to  
the CLK pin. The ADC data rates scale with CLK frequency, however there is no benefit in noise by reducing the  
CLK frequency.  
As with any high-speed data converter, a high-quality, low-jitter clock is essential for optimum performance.  
Crystal clock oscillators are the recommended clock source. Make sure to avoid excess ringing on the clock  
input; keep the clock trace as short as possible and use a 50-series resistor close to the source.  
Copyright © 2014–2019, Texas Instruments Incorporated  
31  
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Synchronization (SYNC PIN and SYNC Command)  
The ADS1283 can be synchronized to an external event, as well as to other ADS1283 devices if the  
synchronization is applied simultaneously.  
The ADS1283 has two sources for synchronization: the SYNC input pin and the SYNC command. The ADS1283  
also has two synchronizing modes: pulse-sync and continuous-sync. In pulse-sync mode, the ADS1283  
synchronizes to a single synchronization. In continuous-sync mode, either a single synchronization is used to  
synchronize conversions, or a continuous clock is applied to the pin with a period equal to integer multiples of the  
data rate. When the periods of the SYNC input and the DRDY output do not match, the ADS1283 resynchronizes  
and conversions are restarted.  
8.4.1.1 Pulse-Sync Mode  
In pulse-sync mode, when a synchronization occurs (by pin or command), the ADS1283 unconditionally stops  
and restarts the conversion process. When the ADC synchronizes, the device resets the internal filter memory,  
DRDY goes high, and after the digital filter has settled, new conversion data are available as shown in Figure 45  
and Table 12.  
tCSDL  
CLK  
tDR  
SYNC  
tSPWH  
tSPWL  
New Data Ready  
DRDY  
(Pulse-sync mode)  
DOUT  
(Pulse-sync mode)  
New Data Ready  
DRDY  
(Continuous-sync mode)  
DOUT  
(Continuous-sync mode)  
Figure 45. Pulse-Sync and Continuous-Sync Timing With Single Synchronization  
Table 12. Pulse-Sync Timing for Figure 45 and Figure 46  
PARAMETER  
CLK rising edge to SYNC rising edge(1)  
SYNC clock period(2)  
MIN  
30  
1
MAX  
–30  
UNIT  
ns  
tCSDL  
tSYNC  
Infinite  
n / fDATA  
1 / fCLK  
tSPWH, L  
SYNC pulse width, high or low  
Time for data ready (SINC filter)  
Time for data ready (FIR filter)  
2
See Table 13  
tDR  
62.98046875 / fDATA + 468 / fCLK  
(1) CLK rising edge to SYNC rising edge timing must not occur within the specified time window.  
(2) Continuous-sync mode; a free-running clock applied to the SYNC input without causing resynchronization. See Figure 46  
32  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Table 13. tDR Time for Data Ready (Sinc Filter)  
fDATA (kSPS)  
fCLK CYCLES(1)  
128  
64  
32  
16  
8
440  
616  
968  
1672  
2824  
(1) For SYNC and WAKEUP commands, number of fCLK cycles from next rising CLK edge directly after  
eighth rising SCLK edge to DRDY falling edge. For WAKEUP command only, subtract two fCLK cycles.  
Table 13 is referenced by Table 12 and Table 15.  
Observe the timing restriction of SYNC rising edge to CLK rising edge as shown in Figure 45 and Table 12.  
Synchronization occurs on the next rising CLK edge after the rising edge of the SYNC, or after the eighth rising  
SCLK edge when synchronized by command. To synchronize multiple ADCs, broadcast the command to the  
ADCs simultaneously.  
8.4.1.2 Continuous-Sync Mode  
In continuous-sync mode, either a single synchronization pulse or a continuous clock may be applied. When a  
single synchronization pulse is applied (rising edge), the device resynchronizes as it does in pulse-sync mode.  
ADC resynchronization occurs only under the condition that the time from the previous rising edge of SYNC is  
not a multiple of the conversion period. When resynchronization occurs in continuous-sync mode, DRDY  
continues to toggle unaffected, and the DOUT output is held low until data are ready (63 DRDY periods later). At  
the 63rd reading, conversion data are valid (when the conversion data are non-zero), as shown in Figure 45.  
When a continuous clock is applied to the SYNC pin, the period must be an integral multiple of the output data  
rate or the device resynchronizes. Note that synchronization results in the restarting of the digital filter and an  
interruption of 63 readings (as shown in Table 12).  
If a SYNC clock is applied to the ADC, the device resynchronizes only under the condition tSYNC N / fDATA  
,
where N = 1, 2, 3, and so on. DRDY continues to output, but DOUT is held low until the new data are ready. If a  
SYNC clock is applied and the clock period matches an integral multiple of the output data rate, the device freely  
runs without resynchronization. Note that the phase of the applied clock and output data rate (DRDY) are not  
aligned because of the initial delay of DRDY after the SYNC clock is first applied. Figure 46 shows the timing for  
continuous-sync mode.  
tCSDL  
CLK  
tSPWH  
SYNC  
tSPWL  
tSYNC  
DRDY  
1/fDATA  
Figure 46. Continuous-Sync Timing With SYNC Clock  
Apply a SYNC clock input after the continuous-sync mode is set. The first rising edge of SYNC then causes a  
synchronization. Note that subsequent writes to any ADC register results in resynchronization at the time of the  
register write operation. The resynchronization leads to loss of the SYNC-pin controlled synchronization  
performed previously. Send the STANDBY command followed by the WAKEUP command to reestablish the  
SYNC-pin synchronization. Resynchronization to the SYNC pin occurs as long as the time between the  
STANDBY and WAKEUP commands is not a multiple integer of the conversion period by at least one clock  
cycle.  
Copyright © 2014–2019, Texas Instruments Incorporated  
33  
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.4.2 Reset (RESET Pin and Reset Command)  
The ADS1283 can be reset in two ways: toggle the RESET pin low, or send a RESET command. When using  
the RESET pin, take it low and hold for at least 2 / fCLK to force a reset. The ADS1283 is held in reset until the  
pin is released. By command, reset takes effect on the next rising edge of fCLK after the eighth rising edge of  
SCLK of the command. In order to make certain that the RESET command can function, the SPI interface may  
need to be reset; see the Serial Interface section.  
When the ADS1283 is reset, registers are set to default and the conversions are synchronized on the next rising  
edge of CLK. New conversion data are available, as shown in Figure 47 and Table 14.  
Settled  
Data  
DRDY  
tDR  
tCRHD  
System Clock  
(fCLK)  
tRCSU  
tRST  
RESET Pin  
or  
RESET Command  
Figure 47. Reset Timing  
Table 14. Reset Timing for Figure 47  
PARAMETER  
MIN  
UNIT  
ns  
tCRHD  
tRCSU  
tRST  
CLK to RESET hold time  
RESET to CLK setup time  
RESET low  
10  
10  
ns  
2
1 / fCLK  
s
tDR  
Time for data ready  
62.98046875 / fDATA + 468 / fCLK  
34  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.4.3 Power-Down (PWDN Pin and STANDBY Command)  
There are two ways to power-down the ADS1283: take the PWDN pin low, or send a STANDBY command.  
When the PWDN pin is pulled low, the internal circuitry is disabled to minimize power and the contents of the  
register settings are reset.  
When in a power-down state, the device outputs remain active and the device inputs must not float. When the  
STANDBY command is sent, the SPI port and the configuration registers are kept active. Figure 48 and Table 15  
show the timing. Standby mode is cancelled when CS is taken high.  
PWDN Pin  
Wakeup  
Command  
DRDY  
tDR  
Figure 48. PWDN Pin and Wake-Up Command Timing  
(Table 15 shows tDR  
)
Table 15. Power-On, PWDN Pin, and Wake-Up Command Timing for New Data  
PARAMETER  
FILTER MODE  
See Table 13  
SINC(1)  
Time for data ready 216 CLK cycles after power-on;  
and new data ready after PWDN pin or WAKEUP command  
tDR  
62.98046875 / fDATA + 468 / fCLK  
FIR  
(2)  
(1) Supply power-on and PWDN pin default is 1000 SPS FIR.  
(2) Subtract two CLK cycles for the WAKEUP command. The WAKEUP command is timed from the next rising edge of CLK to after the  
eighth rising edge of SCLK during command to DRDY falling.  
8.4.4 Power-On Sequence  
The ADS1283 has three power supplies: AVDD, AVSS, and DVDD. Figure 49 shows the power-on sequence of  
the ADS1283. The power supplies can be sequenced in any order. The supplies [the difference of (AVDD –  
AVSS) and DVDD] generate signals that are ANDed together for the internal reset. After the supplies have  
crossed the minimum thresholds, 216 fCLK cycles are counted before releasing the internal reset. After the internal  
reset is released, new conversion data are available, as shown in Figure 49 and Table 15.  
3.5V nom  
AVDD - AVSS  
1V nom  
DVDD  
CLK  
16  
2
fCLK  
Internal Reset  
DRDY  
tDR  
Figure 49. Power-On Sequence  
Copyright © 2014–2019, Texas Instruments Incorporated  
35  
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.4.5 DVDD Power Supply  
The DVDD supply operates over the range of 1.65 V to 3.6 V. If operating DVDD at less than 2.25 V, connect the  
DVDD pin to the BYPAS pin. Otherwise, do not connect these pins together. Figure 50 shows this connection.  
1.65 V to 3.6 V  
DVDD  
1 µF  
Connect DVDD to BYPAS if DVDD is < 2.25 V.  
Otherwise, do not connect these pins together.  
BYPAS  
1 µF  
Figure 50. DVDD Power  
8.4.6 Serial Interface  
A serial interface is used to read both the conversion data and to access the configuration registers. The  
interface is SPI-compatible and consists of four signals: CS, SCLK, DIN, and DOUT. A minimum of 16 ADCs  
converting at 4 kSPS can share a common serial bus when operating SCLK at 2 MHz.  
8.4.6.1 Chip Select (CS)  
Chip select (CS) is an active-low input that enables the ADC serial interface for data transfer. When CS is low,  
the serial interface is enabled for communication. When CS is high, the serial interface is disabled. When the  
serial interface is disabled, the DOUT (output data pin) is high impedance (tristate or Hi-Z). When CS is high,  
SCLK activity is ignored, and data transfers or commands in progress are reset. CS must remain low for the  
duration of the data transfer with the ADC. CS can be tied low, which permanently enables the ADC serial  
interface. When CS goes high, the ADC idles (STANDBY) and stop read data continuous (SDATAC) modes are  
cancelled. See the SDATAC Requirements section for more information about SDATAC mode.  
8.4.6.2 Serial Clock (SCLK)  
The serial clock (SCLK) is an input pin that is used to clock data into (DIN) and out of (DOUT) the ADC. SCLK is  
a Schmitt-trigger input that has a high degree of noise immunity. However, keep SCLK as clean as possible to  
prevent possible glitches from inadvertently shifting the data.  
Data are shifted into DIN on the rising edge of SCLK and data are shifted out of DOUT on the falling edge of  
SCLK. Keep SCLK low when not active. SCLK is ignored when CS is high.  
8.4.6.3 Data Input (DIN)  
The data input pin (DIN) is used to input register data and commands to the ADS1283. Keep DIN low when  
reading conversion data in the read-data-continuous mode (except when issuing a SDATAC command). Data on  
DIN are shifted into the converter on the rising edge of SCLK.  
8.4.6.4 Data Output (DOUT)  
The data output pin (DOUT) is used to output data from the ADS1283. Data are shifted out on the falling edge of  
SCLK. When CS is high, the DOUT pin is in tristate.  
36  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.4.6.5 Serial Port Auto Timeout  
The serial interface is reset each time CS is taken high. However, for applications that tie CS low, the serial port  
cannot be reset by taking CS high; reset of the serial interface is no longer possible by using CS. The ADS1283  
provides a feature that automatically recovers the interface when a transmission is stopped or interrupted, or if an  
inadvertent glitch appears on SCLK. To reset the serial interface, hold SCLK low for 64 DRDY cycles. The reset  
of the serial interface results in termination of data transfer or commands in progress. After serial port reset  
occurs, the next SCLK pulse starts a new communication cycle. To prevent automatic reset from occurring, pulse  
SCLK at least once for every 64 DRDY pulses.  
8.4.6.6 Data Ready (DRDY)  
DRDY is an output that is driven low when new conversion data are ready, as shown in Figure 51. When reading  
data in continuous mode, the read operation must be completed before four CLK periods before the next falling  
DRDY goes low again, or the data are overwritten with new conversion data. When reading data in command  
mode, the read operation can overlap the occurrence of the next DRDY without data corruption.  
DRDY  
DOUT  
SCLK  
Bit 31  
Bit 30  
Bit 29  
Figure 51. DRDY With Data Retrieval  
DRDY resets high on the first falling edge of SCLK. Figure 51 and Figure 52 show the function of DRDY with and  
without data readback, respectively.  
If data are not retrieved (no SCLK provided), DRDY pulses high for four fCLK periods during the update time, as  
shown in Figure 52.  
DRDY remains active when CS is high.  
Data Updating  
4/fCLK  
DRDY  
Figure 52. DRDY With No Data Retrieval  
Copyright © 2014–2019, Texas Instruments Incorporated  
37  
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.4.7 Data Format  
The ADS1283 output data is 32-bits in binary twos complement format, as shown in Table 16. The LSB of the  
data is a redundant sign bit: 0 for positive numbers and 1 for negative numbers. However, when the output is  
clipped to +FS, the LSB = 1, and when the output is clipped to –FS, the LSB = 0. If desired, the data readback  
can be stopped at 24 bits. Note that in sinc-filter mode, the output data are scaled by ½.  
Table 16. Ideal Output Code Versus Input Signal  
32-BIT IDEAL OUTPUT CODE(1)  
INPUT SIGNAL VIN  
(AINP – AINN)  
FIR FILTER  
SINC FILTER(2)  
VREF  
(3)  
>
7FFFFFFFh  
See note  
2 x PGA  
VREF  
2 x PGA  
7FFFFFFEh  
3FFFFFFFh  
VREF  
2PGA ´ (230 - 1)  
00000002h  
00000000h  
FFFFFFFFh  
00000001h  
00000000h  
FFFFFFFFh  
0
-VREF  
2PGA ´ (230 - 1)  
230  
-VREF  
´
80000001h  
80000000h  
C0000000h  
230 - 1  
2PGA  
230  
-VREF  
(3)  
<
´
See note  
230 - 1  
2PGA  
(1) Excludes effects of noise, linearity, offset, and gain errors.  
(2) Due to the reduction in oversampling ratio (OSR) related to high data rates of the sinc filter, full resolution may not be available.  
(3) In sinc-filter mode, the output does not clip at half-scale code when the full-scale range is exceeded.  
38  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.4.8 Reading Data  
The ADS1283 provides two modes to read conversion data: read-data-continuous and read-data-by-command.  
8.4.8.1 Read-Data-Continuous Mode  
In the read-data-continuous mode, the conversion data are shifted out directly from the device without the need  
for sending a read command. This mode is the default mode at power-on. This mode is also enabled by the  
RDATAC command. When DRDY goes low, indicating that new data are available, the MSB of data appears on  
DOUT, as shown in Figure 53. The data are normally read on the rising edge of SCLK, at the occurrence of the  
first falling edge of SCLK, DRDY returns high. After 32 bits of data have been shifted out, further SCLK  
transitions cause DOUT to go low. If desired, the read operation may be stopped at 24 bits. The data shift  
operation must be completed within four CLK periods before DRDY falls again or the data may be corrupted.  
When a SDATAC command is issued, the DRDY output is blocked but the ADS1283 continues conversions. In  
stop continuous mode, the data can only be read by command.  
CS(1)  
DRDY  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 25 26 27 28 29 30 31 32  
SCLK  
DOUT(2)  
DIN  
Data Byte 1 (MSB)  
tDDPD  
Data Byte 2 (MSB - 1)  
Data Byte 4 (LSB)  
(1) DOUT is in tristate when CS is high. CS can be tied low. See Figure 1 for CS low to valid DOUT propagation time.  
Figure 53. Read Data Continuous  
Table 17. Timing Data for Figure 53  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tDDPD  
DRDY to valid MSB on DOUT propagation delay(1)  
100  
ns  
(1) DOUT is in tristate when CS is high. Load on DOUT = 20 pF || 100 k.  
8.4.8.2 Read-Data-By-Command Mode  
Read-data-continuous mode is stopped by the SDATAC command and put into read-data-by-command mode. In  
read-data-by-command mode, an RDATA command must be sent to the device for each data conversion (as  
shown in Figure 54). When the read data command is received (on the eighth SCLK rising edge), data are  
available to read only when DRDY goes low (tDR). When DRDY goes low, conversion data appear on DOUT. The  
data may be read on the rising edge of SCLK.  
CS(1)  
DRDY  
tDR  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 33 34 35 36 37 38 39 40  
SCLK  
DOUT(2)  
DIN  
Don't Care  
Command Byte (0001 0010)  
Data Byte 1 (MSB)  
tDDPD  
Date Byte 4 (LSB)  
(1) DOUT is in tristate when CS is high.CS can be tied low. See Figure 1 for CS low to SCLK rising edge time.  
Figure 54. Read Data By Command, RDATA (tDDPD timing is given in Table 17)  
Table 18. Read Data Timing for Figure 54  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
tDR  
Time for new data after data read command  
0
1
fDATA  
Copyright © 2014–2019, Texas Instruments Incorporated  
39  
 
 
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.4.9 One-Shot Operation  
The ADS1283 can perform very power-efficient, one-shot conversions using the STANDBY command while  
under software control. Figure 55 shows this sequence. First, issue the STANDBY command to set the standby  
mode.  
When ready to make a measurement, issue the WAKEUP command. When DRDY goes low, the fully-settled  
conversion data are ready and can be read directly in read-data-continuous mode. Afterwards, issue another  
STANDBY command. When ready for the next measurement, repeat the cycle starting with another WAKEUP  
command.  
ADC Status  
Standby  
Performing One-Shot Conversion  
Standby  
CS  
DRDY  
(1)  
STANDBY  
WAKEUP  
DIN  
STANDBY  
DOUT  
Settled  
Data  
See Figure 48 and Table 15 for time to new data.  
Figure 55. One-Shot Conversions Using the STANDBY Command  
8.4.10 Offset and Full-Scale Calibration Registers  
The conversion data can be scaled for offset and gain before yielding the final output code. As shown in  
Figure 56, the output of the digital filter is first subtracted by the offset register (OFC) and then multiplied by the  
full-scale register (FSC). Equation 15 shows the scaling:  
FSC[2:0]  
Final Output Data = (Input - OFC[2:0]) ´  
400000h  
(15)  
The values of the offset and full-scale registers are set by writing to them directly, or they are set automatically  
by the calibration commands.  
The offset and full-scale calibrations apply to specific PGA settings. When the PGA is changed, these registers  
generally require recalculation. Calibration is bypassed in the sinc filter mode.  
AINP  
AINN  
+
Output Data  
Clipped to 32 Bits  
Digital  
Filter  
´
Final Output  
S
Modulator  
-
OFC  
Register  
FSC Register  
400000h  
Figure 56. Calibration Block Diagram  
40  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.4.10.1 OFC[2:0] Registers  
The 24-bit offset calibration word is composed of three 8-bit registers, as shown in Table 19. The offset register  
is left-justified to align with the 32 bits of conversion data. The offset is in twos complement format with a  
maximum positive value of 7FFFFFh and a maximum negative value of 800000h. This value is subtracted from  
the conversion data. A register value of 00000h has no offset correction (default value).  
Table 19. Offset Calibration Word  
REGISTER  
OFC0  
BYTE  
LSB  
BIT ORDER  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
OFC1  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
OFC2  
MSB  
B23 (MSB)  
B17  
B16  
Although the offset calibration register value can correct offsets ranging from –FS to +FS (as shown in Table 20),  
in order to avoid input overload, do not exceed the maximum input voltage range of 106% FSR (including  
calibration).  
Table 20. Offset Calibration Values  
OFC REGISTER  
7FFFFFh  
FINAL OUTPUT CODE(1)  
80000000h  
000001h  
FFFFFF00h  
000000h  
00000000h  
FFFFFFh  
800000h  
00000100h  
7FFFFF00h  
(1) Full 32-bit final output code with zero code input.  
8.4.10.2 FSC[2:0] Registers  
The full-scale calibration is a 24-bit word, composed of three 8-bit registers, as shown in Table 21. The full-scale  
calibration value is 24-bit, straight offset binary, normalized to 1.0 at code 400000h.  
Table 21. Full-Scale Calibration Word  
REGISTER  
FSC0  
BYTE  
LSB  
BIT ORDER  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
FSC1  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
FSC2  
MSB  
B23 (MSB)  
B17  
B16  
Table 22 summarizes the scaling of the full-scale register. A register value of 400000h (default value) has no  
gain correction (gain = 1). Although the full-scale calibration register value corrects gain errors above one (gain  
correction < 1), the full-scale range of the analog inputs must not exceed 106% FSR (including calibration) in  
order to avoid input overload.  
Table 22. Full-Scale Calibration Register Values  
FSC REGISTER  
800000h  
GAIN CORRECTION  
2.0  
1.0  
0.5  
0
400000h  
200000h  
000000h  
Copyright © 2014–2019, Texas Instruments Incorporated  
41  
 
 
 
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.4.11 Calibration Commands (OFSCAL and GANCAL)  
Use the calibration commands (OFSCAL or GANCAL) to calibrate the conversion data. The values of the offset  
and gain calibration registers are internally written to perform calibration. The appropriate input signals must be  
applied to the ADS1283 inputs before sending the commands. Use slower data rates to achieve more consistent  
calibration results; this effect is a byproduct of the lower noise that these data rates provide. Also, if calibrating at  
power-on, be sure the reference voltage is fully settled.  
Figure 57 shows the calibration command sequence. After the analog input voltage (and reference) have  
stabilized, send the SDATAC command, followed by the SYNC and RDATAC commands. DRDY goes low after  
64 data periods. After DRDY goes low, send the SDATAC command, then the calibrate command (OFSCAL or  
GANCAL), followed by the RDATAC command. After 16 data periods, calibration is complete and conversion  
data can be read at this time. The SYNC input must remain high during the calibration sequence.  
VIN  
Fully stable input and reference voltage.  
OFSCAL or  
Commands  
SDATAC  
SYNC  
RDATAC  
SDATAC  
RDATAC  
GANCAL  
Calibration  
Complete  
16 Data  
Periods  
DRDY  
SYNC  
64 Data Periods  
Figure 57. Offset and Gain Calibration Timing  
The calibration commands apply to specific PGA settings. If the PGA is changed, recalibration is necessary.  
Calibration is bypassed in the sinc filter mode.  
8.4.11.1 OFSCAL Command  
The OFSCAL command performs an offset calibration. Before sending the OFSCAL command sequence  
(Figure 57), a zero input signal must be applied to the ADS1283 and the inputs allowed to stabilize. When the  
command sequence (Figure 57) is sent, the ADS1283 averages 16 readings, and then writes this value to the  
OFC register. The contents of the OFC register can be subsequently read or written. During offset calibration, the  
full-scale correction is bypassed. Use the OFSCAL command to calibrate the optional 100-mV offset.  
8.4.11.2 GANCAL Command  
The GANCAL command performs a gain calibration. Before sending the GANCAL command sequence  
(Figure 57), a dc input must be applied (typically full-scale input, but not to exceed 106% full-scale). After the  
signal has stabilized, the command sequence can be sent. The ADS1283 averages 16 readings, then computes  
a gain value that scales the applied calibration voltage to full-scale. The gain value is written to the FSC register,  
where the contents are subsequently read or written.  
42  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.4.12 User Calibration  
System calibration of the ADS1283 can be performed without using the calibration commands. This procedure  
requires the calibration values to be externally calculated and then written to the calibration registers. The steps  
for this procedure are:  
1. Set the OFSCAL[2:0] register = 0h, and GANCAL[2:0] = 400000h. These values set the offset and gain  
registers to 0 and 1, respectively.  
2. Apply a zero differential input to the input of the system. Wait for the system to settle and then average the  
output readings. Higher numbers of averaged readings result in more consistent calibration. Write the  
averaged value to the OFC register.  
3. Apply a differential dc signal, or an ac signal (typically full-scale, but do not exceed 106% FSR). Wait for the  
system to settle and then average the output readings.  
The value written to the FSC registers is calculated by Equation 16 or Equation 17.  
DC-signal calibration is shown in Equation 16. The expected output code is based on 31-bit output data.  
Expected Output Code  
FSC[2:0] = 400000h ´  
Actual Output Code  
(16)  
For ac-signal calibration, use an RMS value of collected data, as shown in Equation 17:  
Expected RMS Value  
FSC[2:0] = 400000h ´  
Actual RMS Value  
(17)  
Copyright © 2014–2019, Texas Instruments Incorporated  
43  
 
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.5 Programming  
8.5.1 Commands  
The commands listed in Table 23 control the operation of the ADS1283. Most commands are stand-alone (that  
is, one byte in length); the register read and write commands are two bytes long in addition to the actual register  
data bytes.  
Table 23. Command Descriptions  
COMMAND  
WAKEUP  
STANDBY  
SYNC  
TYPE  
Control  
Control  
Control  
Control  
Control  
Control  
Data  
DESCRIPTION  
Wake-up from standby mode  
1st COMMAND BYTE(1)(2)  
0000 000X (00h or 01h)  
0000 001X (02h or 03h)  
0000 010X (04h or 5h)  
0000 011X (06h or 07h)  
0001 0000 (10h)  
2nd COMMAND BYTE(3)  
Enter standby mode  
Synchronize the analog-to-digital conversion  
Reset registers to default values  
Enter read data continuous mode  
Stop read data continuous mode  
Read data by command(4)  
RESET  
RDATAC  
SDATAC  
RDATA  
0001 0001 (11h)  
0001 0010 (12h)  
RREG  
Register  
Register  
Read nnnnn register(s) at address rrrrr(4)  
001r rrrr (20h + 000r rrrr)  
010r rrrr (40h + 000r rrrr)  
0110 0000 (60h)  
000n nnnn (00h + n nnnn)  
000n nnnn (00h + n nnnn)  
WREG  
Write nnnnn register(s) at address rrrrr  
OFSCAL  
GANCAL  
Calibration Offset calibration  
Calibration Gain calibration  
0110 0001 (61h)  
(1) X = don't care.  
(2) rrrrr = starting address for register read and write commands.  
(3) nnnnn = number of registers to be read from or written to – 1. For example, to read from or write to three registers, set nnnnn = 2  
(00010).  
(4) Required to cancel read-data-continuous mode before sending a command.  
CS must remain low for duration of the command-byte sequence. A delay of 24 fCLK cycles between commands  
and between bytes within a command is required, starting from the last SCLK rising edge of one command to the  
first SCLK rising edge of the following command. The required delay is shown in Figure 58.  
CS  
Command  
Byte  
Command  
Byte  
DIN  
SCLK  
(1)  
(1)  
tSCLKDLY  
tSCLKDLY  
(1) tSCLKDLY = 24 / fCLK (min).  
Figure 58. Consecutive Commands  
8.5.1.1 SDATAC Requirements  
In read-data-continuous mode, the ADS1283 places conversion data on the DOUT pin as SCLK is applied. As a  
result of the potential conflict between conversion data and register data placed on DOUT resulting from a RREG  
or RDATA operation, it is necessary to send a stop-read-data-continuous (SDATAC) command before a RREG  
or RDATA command. The SDATAC command disables the direct output of conversion data on the DOUT pin.  
CS = 1 cancels SDATAC mode; therefore, keep CS held low after sending the SDATAC command to the next  
RREG or RDATA command.  
44  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.5.1.2 WAKEUP: Wake-Up From Standby Mode  
The WAKEUP command is used to exit the standby mode. After sending this command, the time for the first data  
to be ready is illustrated in Figure 48 and Table 16. Sending this command during normal operation has no  
effect; for example, reading data by the read-data-continuous mode with DIN held low.  
8.5.1.3 STANDBY: Standby Mode  
The STANDBY command places the ADS1283 into standby mode. In standby, the device enters a reduced  
power state where a low quiescent current remains to keep the register settings and serial interface active. The  
ADC remains in standby mode until CS is taken high or the WAKEUP command is sent. For complete device  
shutdown, take the PWDN pin low (register settings are not saved). The operation of standby mode is shown in  
Figure 59.  
0000 001X  
(STANDBY)  
0000 000X  
(WAKEUP)  
DIN  
SCLK  
Operating  
Standby Mode  
Operating  
Figure 59. STANDBY Command Sequence  
8.5.1.4 SYNC: Synchronize the Analog-to-Digital Conversion  
The SYNC command synchronizes the analog-to-digital conversion. Upon receiving the command, the reading in  
progress is cancelled and the conversion process is restarted. In order to synchronize multiple ADS1283s, the  
command must be sent simultaneously to all devices. The SYNC pin must be held high during this command.  
8.5.1.5 RESET: Reset the Device  
The RESET command resets the registers to default values, enables read-data-continuous mode, and restarts  
the conversion process. The RESET command is functionally equivalent to taking the RESET pin low. See  
Figure 47 for the RESET command timing.  
8.5.1.6 RDATAC: Read Data Continuous  
The RDATAC command enables read-data-continuous mode (default mode). In this mode, conversion data is  
read from the device directly without the need to supply a data read command. Each time DRDY falls low, new  
data are available to read. See the Read-Data-Continuous Mode section for more details.  
8.5.1.7 SDATAC: Stop Read Data Continuous  
The SDATAC command stops read-data-continuous mode. Exit read-data-continuous mode before sending  
register and data read commands. The SDATAC command suppresses the DRDY output, but the ADS1283  
continues conversions. Take CS high to cancel SDATAC mode.  
Copyright © 2014–2019, Texas Instruments Incorporated  
45  
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.5.1.8 RDATA: Read Data by Command  
The RDATA command reads the conversion data. See the Read-Data-By-Command Mode section for more  
details.  
8.5.1.9 RREG: Read Register Data  
The RREG command is used to read single- or multiple-register data. The command consists of a two-byte  
opcode argument, followed by the output of register data. The first byte of the opcode includes the starting  
address, and the second byte specifies the number of registers to read minus one.  
First command byte: 001r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers to read minus one.  
Starting with the 16th falling edge of SCLK, the register data appear on DOUT. Read the data on the 17th SCLK  
rising edge.  
The RREG command is illustrated in Figure 60.  
A delay of 24 fCLK cycles is required between each byte transaction.  
CS(1)  
tDLY  
tDLY  
tDLY  
25 26  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
Command Byte 1  
Command Byte 2  
DOUT(2)  
Don't Care  
Register Data 5  
Register Data 6  
Example: Read six registers, starting at register 05h (OFC0)  
Command Byte 1 = 0010 0101  
Command Byte 2 = 0000 0101  
(1) DOUT is in tristate when CS is high. CS can be tied low. See Figure 1 for CS low to SCLK rising edge time.  
Figure 60. Read Register Data (Table 24 shows tDLY  
)
Table 24. tDRY Value  
PARAMETER  
MIN  
tDLY  
24 / fCLK  
46  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.5.1.10 WREG: Write to Register  
The WREG command writes single- or multiple-register data. The command consists of a two-byte op-code  
argument followed by the input of register data. The first byte of the op-code contains the starting address and  
the second byte specifies the number of registers to write minus one.  
First command byte: 010r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers to write minus one.  
Data byte(s): one or more register data bytes, depending on the number of registers specified.  
Figure 61 illustrates the WREG command.  
A delay of 24 fCLK cycles is required between each byte transaction.  
CS(1)  
tDLY  
tDLY  
tDLY  
25 26  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
Register Data 6  
Command Byte 1  
Command Byte 2  
Register Data 5  
Example: Write six registers, starting at register 05h (OFC0)  
Command Byte 1 = 0100 0101  
Command Byte 2 = 0000 0101  
(1) CS can be tied low. See Figure 1 for CS low to SCLK rising edge time.  
Figure 61. Write Register Data (Table 24 shows tDLY  
)
8.5.1.11 OFSCAL: Offset Calibration  
The OFSCAL command performs an offset calibration. The inputs to the converter (or the inputs to the external  
preamplifier) should be zeroed and allowed to stabilize before sending this command. The offset calibration  
register updates after this operation. See the Calibration Commands section for more details.  
8.5.1.12 GANCAL: Gain Calibration  
The GANCAL command performs a gain calibration. The inputs to the converter should have a stable dc input  
(typically full-scale, but not to exceed 106% full-scale). The gain calibration register updates after this operation.  
See the Calibration Commands section for more details.  
Copyright © 2014–2019, Texas Instruments Incorporated  
47  
 
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.6 Register Maps  
Collectively, the registers contain all the information needed to configure the device, such as data rate, filter  
selection, calibration, and more. The registers are accessed by the RREG and WREG commands. The registers  
can be accessed individually or as a block of registers by sending or receiving consecutive bytes. After a register  
write operation, the ADC resets, resulting in an interruption of 63 readings.  
Table 25. Register Map  
RESET  
ADDRESS  
00h  
REGISTER  
ID_CFG  
CONFIG0  
CONFIG1  
HPF0  
VALUE  
X0h  
52h  
08h  
32h  
03h  
00h  
00h  
00h  
00h  
00h  
40h  
BIT 7  
ID3  
BIT 6  
ID2  
BIT 5  
ID1  
BIT 4  
ID0  
BIT 3  
0
BIT 2  
0
BIT 1  
OFFSET1  
FILTR1  
PGA1  
BIT 0  
OFFSET0  
FILTR0  
PGA0  
01h  
SYNC  
0
1
DR2  
DR1  
DR0  
PHASE  
PGA2  
HPF02  
HPF10  
OFC02  
OFC10  
OFC18  
FSC02  
FSC10  
FSC18  
02h  
MUX2  
HPF06  
HPF14  
OFC06  
OFC14  
OFC22  
FSC06  
FSC14  
FSC22  
MUX1  
HPF05  
HPF13  
OFC05  
OFC13  
OFC21  
FSC05  
FSC13  
FSC21  
MUX0  
HPF04  
HPF12  
OFC04  
OFC12  
OFC20  
FSC04  
FSC12  
FSC20  
CHOP  
HPF03  
HPF11  
OFC03  
OFC11  
OFC19  
FSC03  
FSC11  
FSC19  
03h  
HPF07  
HPF15  
OFC07  
OFC15  
OFC23  
FSC07  
FSC15  
FSC23  
HPF01  
HPF09  
OFC01  
OFC09  
OFC17  
FSC01  
FSC09  
FSC17  
HPF00  
HPF08  
OFC00  
OFC08  
OFC16  
FSC00  
FSC08  
FSC16  
04h  
HPF1  
05h  
OFC0  
06h  
OFC1  
07h  
OFC2  
08h  
FSC0  
09h  
FSC1  
0Ah  
FSC2  
8.6.1 Register Descriptions  
8.6.1.1 ID_CFG: ID_Configuration Register (address = 00h) [reset =x0h]  
Figure 62. ID_CFG Register  
7
6
5
4
3
0
2
0
1
0
ID3  
R-xh  
ID2  
R-xh  
ID1  
R-xh  
ID0  
R-xh  
OFFSET1  
R/W-0h  
OFFSET0  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit[7:4]  
ID[3:0]  
Factory-programmed identification bits (read-only). The ID bits are subject to change  
without notification.  
Bit[3:2]  
Bit[1:0]  
Reserved  
Always write 00  
OFFSET[1:0] (see Offset section)  
00: Disables offset (default)  
01: Reserved  
10: Offset = 100/PGA mV (all ADS1283 versions)  
11: Offset = 75/PGA mV (ADS1283B only)  
48  
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.6.1.2 CONFIG0: Configuration Register 0 (address = 01h) [reset = 52h]  
Figure 63. CONFIG0 Register  
7
6
1
5
4
3
2
1
0
SYNC  
R/W-0h  
DR2  
DR1  
DR0  
PHASE  
R/W-0h  
FILTR1  
R/W -1h  
FILTR0  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit[7]  
SYNC  
Synchronization mode bit.  
0: Pulse-sync mode (default)  
1: Continuous-sync mode  
Bit[6]  
RESERVED  
Always write 1  
DR[2:0]  
Bit[5:3]  
Data rate select bits.  
000: 250 SPS  
001: 500 SPS  
010: 1000 SPS (default)  
011: 2000 SPS  
100: 4000 SPS  
Bit[2]  
PHASE  
FIR phase response bit.  
0: Linear phase (default)  
1: Minimum phase  
Bit[1:0]  
FILTR[1:0]  
Digital filter configuration bits.  
00: Reserved  
01: Sinc filter block only  
10: Sinc + LPF filter blocks (default)  
11: Sinc + LPF + HPF filter blocks  
Copyright © 2014–2019, Texas Instruments Incorporated  
49  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
8.6.1.3 CONFIG1: Configuration Register 1 (address = 02h) [reset = 08h]  
Figure 64. CONFIG1 Register  
7
0
6
5
4
3
2
1
0
MUX2  
R/W-0h  
MUX1  
R/W-0h  
MUX0  
R/W-0h  
CHOP  
R/W-1h  
PGA2  
R/W-0h  
PGA1  
R/W-0h  
PGA0  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit[7]  
Reserved  
Always write 0  
MUX[2:0]  
Bit[6:4]  
MUX select bits.  
000: AINP1 and AINN1 (default)  
001: AINP2 and AINN2  
010: Internal short through 400-resistor  
011: AINP1 and AINN1 connected to AINP2 and AINN2  
100: External short to AINN2  
Bit[3]  
CHOP  
PGA chopping enable bit.  
0: PGA chopping disabled  
1: PGA chopping enabled (default)  
Bit[2:0]  
PGA[2:0]  
PGA gain select bits. Note that ADS1283A supports PGA gains of 1, 4, and 16 only.  
000: G = 1 (default)  
001: G = 2 (ADS1283 and ADS1283B only)  
010: G = 4  
011: G = 8 (ADS1283 and ADS1283B only)  
100: G = 16  
101: G = 32 (ADS1283 and ADS1283B only)  
110: G = 64 (ADS1283 and ADS1283B only)  
8.6.1.4 HPF0 and HPF1 Registers  
These two bytes (high-byte and low-byte, respectively) set the corner frequency of the high-pass filter.  
8.6.1.4.1 HPF0: High-Pass Filter Corner Frequency, Low Byte (address = 03h) [reset = 32h]  
Figure 65. HPF0 Register  
7
6
5
4
3
2
1
0
HPF07  
R/W-0h  
HPF06  
R/W-0h  
HPF05  
R/W-1h  
HPF04  
R/W-1h  
HPF03  
R/W-0h  
HPF02  
R/W-0h  
HPF01  
R/W-1h  
HPF00  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.4.2 HPF1: High-Pass Filter Corner Frequency, High Byte (address = 04h) [reset = 03h]  
Figure 66. HPF1 Register  
7
6
5
4
3
2
1
0
HPF15  
R/W-0h  
HPF14  
R/W-0h  
HPF13  
R/W-0h  
HPF12  
R/W-0h  
HPF11  
R/W-0h  
HPF10  
R/W-0h  
HPF09  
R/W-1h  
HPF08  
1R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
50  
Copyright © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
8.6.1.5 OFC0, OFC1, OFC2 Registers  
These three bytes set the offset calibration value.  
8.6.1.5.1 OFC0: Offset Calibration, Low Byte (address = 05h) [reset = 00h]  
Figure 67. OFC0 Register  
7
6
5
4
3
2
1
0
OFC07  
R/W-0h  
OFC06  
R/W-0h  
OFC05  
R/W-0h  
OFC04  
R/W-0h  
OFC03  
R/W-0h  
OFC02  
R/W-0h  
OFC01  
R/W-0h  
OFC00  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.5.2 OFC1: Offset Calibration, Mid Byte (address = 06h) [reset = 00h]  
Figure 68. OFC1 Register  
7
6
5
4
3
2
1
0
OFC15  
R/W-0h  
OFC14  
R/W-0h  
OFC13  
R/W-0h  
OFC12  
R/W-0h  
OFC11  
R/W-0h  
OFC10  
R/W-0h  
OFC09  
R/W-0h  
OFC08  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.5.3 OFC2: Offset Calibration, High Byte (address = 07h) [reset = 00h]  
Figure 69. OFC2 Register  
7
6
5
4
3
2
1
0
OFC23  
R/W-0h  
OFC22  
R/W-0h  
OFC21  
R/W-0h  
OFC20  
R/W-0h  
OFC19  
R/W-0h  
OFC18  
R/W-0h  
OFC17  
R/W-0h  
OFC16  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.6 FSC0, FSC1, FSC2 Registers  
These three bytes set the full-scale calibration value.  
8.6.1.6.1 FSC0: Full-Scale Calibration, Low Byte (address = 08h) [reset = 00h]  
Figure 70. FSC0 Register  
7
6
5
4
3
2
1
0
FSC07  
R/W-0h  
FSC06  
R/W-0h  
FSC05  
R/W-0h  
FSC04  
R/W-0h  
FSC03  
R/W-0h  
FSC02  
R/W-0h  
FSC01  
R/W-0h  
FSC00  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.6.2 FSC1: Full-Scale Calibration, Mid Byte (address = 09h) [reset = 00h]  
Figure 71. FSC1 Register  
7
6
5
4
3
2
1
0
FSC15  
R/W-0h  
FSC14  
R/W-0h  
FSC13  
R/W-0h  
FSC12  
R/W-0h  
FSC11  
R/W-0h  
FSC10  
R/W-0h  
FSC09  
R/W-0h  
FSC08  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.6.3 FSC2: Full-Scale Calibration, High Byte (address = 0Ah) [reset = 40h]  
Figure 72. FSC2 Register  
7
6
5
4
3
2
1
0
FSC23  
R/W-0h  
FSC22  
R/W-1h  
FSC21  
R/W-0h  
FSC20  
R/W-0h  
FSC19  
R/W-0h  
FSC18  
R/W-0h  
FSC17  
R/W-0h  
FSC16  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2014–2019, Texas Instruments Incorporated  
51  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ADS1283 is a very high-resolution ADC. Optimal performance requires giving special attention to the  
support circuitry and printed circuit board (PCB) design. Locate noisy digital components (such as  
microcontrollers, oscillators, and so on) in an area of the PCB away from the converter and front-end  
components. Keep the digital current path short and separate from sensitive analog components by placing the  
digital components close to the power-entry point.  
9.2 Typical Applications  
9.2.1 Geophone Interface  
A typical geophone front-end application is shown in Figure 73. The application diagram shows the ADS1283  
operation with dual ±2.5-V analog supplies. The ADS1283 can also operate with a single 5-V analog supply.  
+2.5V  
-
2.5V  
1 mF  
AVDD  
AVSS  
AINP2  
AINN2  
Test  
Signal  
+2.5V  
(1)  
R1  
R3  
100  
100 Ω  
AINP1  
AINN1  
C2  
R5  
C4  
10nF  
C0G  
1 nF, C0G  
20 kΩ  
Geophone  
R6  
R2  
R4  
C3  
20 k100 Ω  
100 Ω  
1 nF, C0G  
ADC  
-2.5V  
CAPP  
CAPN  
C6  
10 nF  
C0G  
+3.3V  
R7  
1 kΩ  
(2)  
1 mF  
VREFP  
VREFN  
REF5050  
+
NR  
C5  
100 mF  
C7  
0.1 mF  
1 mF  
1 mF  
DGND  
-
2.5V  
(1) Optional external diode clamps.  
(2) Optional reference noise filter.  
Figure 73. Geophone Interface Application  
52  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
Typical Applications (continued)  
The geophone input signal is filtered by both a differential filter (components C4 and R1 to R4) and by common-  
mode filters (components C2, C3 and R1, R2). The differential filter removes high-frequency normal-mode  
components from the input signal. The common-mode filters remove high-frequency components that are  
common to both input leads. The input filters are not required for all applications; check the system requirements  
for each application.  
Resistors R5 and R6 bias the signal input to the midsupply point (ground). For single-supply operation, set the  
bias to a low impedance midsupply point (AVDD / 2 = 2.5 V).  
Optional diode clamps protect the ADS1283 inputs from high-level voltage transients and overloads. The diodes  
provide additional protection if possible high-level input transients and surges exceed the ADC internal ESD  
diode rating.  
The REF5050 5-V reference provides the reference to the ADC. An optional filter network (R7 and C5) reduces  
the in-band reference noise for improved dynamic performance. However, the RC filter network increases the  
filter settling-time (from seconds to possibly minutes) depending on the dielectric absorption properties of  
capacitor C5. Capacitor C7 is mandatory and provides high-frequency bypassing of the reference inputs; place C7  
as close as possible to the ADS1283 pins. Resistor R7 (1 k) results in a 1% systematic gain error. Multiple  
ADCs can share a single reference, but if shared, use independent reference filters for each ADC.  
As an alternative, the REF5045 (4.5 V) reference can be used. The REF5045 reference has the advantage of  
operating directly from the 5-V (total) power supply; however, the 4.5-V reference reduces signal range by 10%  
and results in a 1-dB loss of SNR.  
Capacitor C6 (10 nF) filters the PGA output glitches caused by sampling of the modulator. This capacitor also  
forms an antialias filter with a low-pass cutoff frequency of 26 kHz.  
Copyright © 2014–2019, Texas Instruments Incorporated  
53  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
Typical Applications (continued)  
9.2.2 Digital Interface  
Figure 74 shows the digital connection to a controller (field programmable gate array or microcontroller). In this  
example, two ADCs are shown connected to one controller. The ADCs share the same serial interface (SCLK,  
DIN, and DOUT). The ADC is selected for communication by strobing each CS low. The DRDY output from both  
ADCs can be used; however, when the devices are synchronized, the DRDY output from only one device is  
sufficient.  
Clock  
ADC #1  
Controller  
47  
(1)  
+3.3V  
DVDD  
CLK  
CLK (input)  
47 Ω  
47 Ω  
RESET (output)  
1 µF  
1 µF  
RESET  
SYNC  
SYNC (output)  
SS1 (output)  
47 Ω  
47 Ω  
47 Ω  
BYPAS  
CS  
SCLK (output)  
SCLK  
DIN  
DOUT  
MOSI (output)  
MISO (input)  
47 Ω  
47 Ω  
47 Ω  
MFLAG  
MFLAG1 (input)  
MFLAG2 (input)  
DGND  
ADC #2  
47 Ω  
47 Ω  
SS2 (output)  
DRDY (input)  
(1)  
DVDD  
CLK  
RESET  
SYNC  
+3.3V  
1 µF  
1 µF  
BYPAS  
CS  
SCLK  
DIN  
DOUT  
MFLAG  
DRDY  
DGND  
(1) For DVDD < 2.25 V, tie DVDD and BYPASS together. see the DVDD Power Supply section.  
Figure 74. Controller Interface with Dual ADCs  
The modulator overrange flag (MFLAG) from each device ties to the controller input. For synchronization,  
connect all ADCs to the same SYNC signal. For reset, either connect all ADCs to the same RESET signal or  
connect the ADCs to individual RESET signals.  
Avoid ringing on the digital inputs to the ADCs. Place 47-resistors in series with the digital traces to help  
reduce ringing by controlling impedances. Place the resistors at the source (driver) end of the trace. Do not float  
unused digital inputs; tie them to DVDD or GND.  
54  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
9.3 Initialization Set Up  
After reset or power-on, configure the registers using the following procedure:  
1. Reset the serial interface. Before using the serial interface, it may be necessary to recover the serial  
interface (undefined I/O power-up sequencing may cause a false SCLK to occur). To reset the interface,  
toggle the CS pin high then low, or toggle the RESET pin high then low, or when in read-data-continuous  
mode, hold SCLK low for 64 DRDY periods.  
2. Configure the registers. The registers are configured by either writing to them individually or as a group,  
and can be configured in either mode. To cancel read-data-continuous mode, send the SDATAC command  
before register read and write operations .  
3. Verify register data. For verification of device communications, read back the register.  
4. Set the data mode. After register configuration, configure the device for read-data-continuous mode by  
executing the RDATAC command, or configure for read-data-by-command mode (set in step 2, by the  
SDATAC command).  
5. Synchronize readings. Whenever SYNC is high, the ADS1283 freely runs the data conversions. To  
resynchronize the conversions in pulse-sync mode, take SYNC low and then high. In continuous-sync mode,  
apply the synchronizing clock to the SYNC pin with a clock period equal to multiples of the ADC conversion  
period.  
6. Read data. If read-data-continuous mode is active, the data are read directly after DRDY falls by applying  
SCLK pulses. If the read-data-continuous mode is inactive, the data can only be read by executing the  
RDATA command. The RDATA command must be sent in this mode to read each conversion result.  
版权 © 2014–2019, Texas Instruments Incorporated  
55  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
10 器件和文档支持  
10.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
10.3 商标  
E2E is a trademark of Texas Instruments.  
SPI is a trademark of Motorola Inc.  
All other trademarks are the property of their respective owners.  
10.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
56  
版权 © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2019, Texas Instruments Incorporated  
57  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
58  
版权 © 2014–2019, Texas Instruments Incorporated  
ADS1283  
www.ti.com.cn  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
版权 © 2014–2019, Texas Instruments Incorporated  
59  
ADS1283  
ZHCSK66C JANUARY 2014REVISED AUGUST 2019  
www.ti.com.cn  
60  
版权 © 2014–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1283AIRHFR  
ADS1283AIRHFT  
ADS1283BIRHFR  
ADS1283BIRHFT  
ADS1283IRHFR  
ADS1283IRHFT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHF  
24  
24  
24  
24  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
ADS  
1283A  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RHF  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ADS  
1283A  
RHF  
ADS  
1283B  
RHF  
ADS  
1283B  
RHF  
ADS  
1283  
RHF  
ADS  
1283  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1283AIRHFR  
ADS1283AIRHFT  
ADS1283BIRHFR  
ADS1283BIRHFT  
ADS1283IRHFR  
ADS1283IRHFT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHF  
RHF  
RHF  
RHF  
RHF  
RHF  
24  
24  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS1283AIRHFR  
ADS1283AIRHFT  
ADS1283BIRHFR  
ADS1283BIRHFT  
ADS1283IRHFR  
ADS1283IRHFT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHF  
RHF  
RHF  
RHF  
RHF  
RHF  
24  
24  
24  
24  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHF0024A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.65 0.1  
2X 2  
(0.1) TYP  
12  
EXPOSED  
8
THERMAL PAD  
20X 0.5  
7
13  
3.65 0.1  
2X  
3
25  
SYMM  
SEE TERMINAL  
DETAIL  
19  
1
0.30  
0.18  
24X  
0.1  
C B A  
PIN 1 ID  
(OPTIONAL)  
24  
20  
SYMM  
0.05  
0.5  
0.3  
24X  
4219064 /A 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.65)  
SYMM  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(3.65)  
(1.575)  
20X (0.5)  
25  
SYMM  
(4.8)  
(0.62)  
TYP  
(R0.05)  
TYP  
13  
7
(
0.2) TYP  
VIA  
8
12  
(1.025)  
TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219064 /A 04/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (1.17)  
(0.685) TYP  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(1.24)  
TYP  
20X (0.5)  
SYMM  
(4.8)  
25  
6X (1.04)  
13  
(R0.05) TYP  
7
METAL  
TYP  
12  
8
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219064 /A 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY