ADS1285IRHBR [TI]

用于地震探测和地球空间探测的 32 位高分辨率双通道 Δ-Σ ADC | RHB | 32 | -40 to 85;
ADS1285IRHBR
型号: ADS1285IRHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于地震探测和地球空间探测的 32 位高分辨率双通道 Δ-Σ ADC | RHB | 32 | -40 to 85

文件: 总63页 (文件大小:2348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS1285  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
ADS1285 适用于地震应用32 Δ-Σ ADC  
1 特性  
3 说明  
• 可选择分辨率-功率模式  
ADS1285 是一款 32 位低功耗模数转换器 (ADC)具  
有一个可编程增益放大器 (PGA) 和一个有限脉冲响应  
(FIR) 滤波器。该 ADC 可满足地震监测设备的低噪声  
精密数字化和更长电池运行时间的严苛要求。  
– 动态范围2ms11.5mW 134dB  
– 动态范围2ms4.8mW 129dB  
• 灵活的数字滤波器:  
– 可选的正+ FIR + IIR  
– 线性或最小相位  
– 高通滤波器  
低噪声 PGA 允许直接连接地震检波器和变压器耦合水  
听器无需外部放大器。  
ADC 包含一个高分辨率 Δ-Σ 调制器和一个具有可  
编程相位响应的 FIR 滤波器。高通滤波器可从信号中  
移除直流和低频成分。时钟频率误差由分辨率为 7ppb  
的采样率转换器进行补偿。  
THD< -120dB  
CMRR125dB  
• 数据速率125SPS 4000SPS  
• 可编程增益1 64  
PGA 旁路选项  
SYNC 输入  
• 时钟误差补偿  
通过选择功率模式可优化动态范围和功耗。PGA 旁路  
运行可进一步降低功耗。  
ADC 采用紧凑的 5mm × 5mm VQFN 封装额定工  
作状态下的环境温度范围40°C +85°C。  
• 双通道多路转接器  
• 偏移和增益校准  
封装信息(1)  
• 通用数I/O  
• 模拟电源供电5V3.3V ±2.5V  
• 基准电压选项5V4.096V 2.5V  
封装尺寸标称值)  
器件型号  
ADS1285  
封装  
RHBVQFN325.00mm × 5.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
• 能量勘探  
• 无源地震监测  
• 地球科学和地质学  
• 精密仪表  
IOVDD  
AVDD1  
AVDD2  
CLK  
ADS1285  
DRDY  
AIN1P  
AIN1N  
CS  
Serial  
Interface  
Sample  
Rate  
Converter  
SCLK  
DOUT  
DIN  
Digital  
Filter  
PGA  
BUF  
MUX  
Modulator  
AIN2P  
AIN2N  
PWDN  
RESET  
SYNC  
Control  
Noise/Offset  
Test  
AVSS  
REFN  
GPIO0  
GND  
AGND  
REFP  
GPIO1  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS559  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
Table of Contents  
8.1 Overview...................................................................26  
8.2 Functional Block Diagram.........................................27  
8.3 Feature Description...................................................28  
8.4 Device Functional Modes..........................................41  
8.5 Programming............................................................ 46  
8.6 Register Map.............................................................51  
9 Application and Implementation..................................56  
9.1 Application Information............................................. 56  
9.2 Typical Application.................................................... 56  
9.3 Power Supply Recommendations.............................58  
9.4 Layout....................................................................... 59  
10 Device and Documentation Support..........................60  
10.1 接收文档更新通知................................................... 60  
10.2 支持资源..................................................................60  
10.3 Trademarks.............................................................60  
10.4 Electrostatic Discharge Caution..............................60  
10.5 术语表..................................................................... 60  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements: 1.65 V IOVDD 1.95  
V and 2.7 V IOVDD 3.6 V...................................10  
6.7 Switching Characteristics: 1.65V IOVDD ≤  
1.95V and 2.7 V IOVDD 3.6 V............................10  
6.8 Timing Diagrams....................................................... 11  
6.9 Typical Characteristics..............................................13  
7 Parameter Measurement Information..........................24  
7.1 Noise Performance................................................... 24  
8 Detailed Description......................................................26  
Information.................................................................... 60  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (May 2022) to Revision A (December 2022)  
Page  
• 首次公开发布将文档状态从预告信更改为量产数................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
5 Pin Configuration and Functions  
AIN1P  
AIN1N  
AIN2P  
AIN2N  
CAPP  
1
24  
23  
22  
21  
20  
19  
18  
17  
DOUT  
DIN  
2
3
4
5
6
7
8
SCLK  
CS  
Thermal pad  
CLK  
CAPN  
IOVDD  
DGND  
CAPD  
CAPBP  
CAPBN  
Not to scale  
5-1. RHB Package, 32-Pin, 5-mm × 5-mm VQFN (Top View)  
5-1. Pin Functions  
PIN  
NAME  
FUNCTION  
DESCRIPTION  
NO.  
1
AIN1P  
AIN1N  
AIN2P  
AIN2N  
CAPP  
CAPN  
CAPBP  
CAPBN  
CAPC  
AVSS  
AVDD1  
AVDD2  
AGND  
CAPI  
Analog input  
Analog input  
Analog input  
Analog input  
Analog internal  
Analog internal  
Analog internal  
Analog internal  
Analog internal  
Analog supply  
Analog supply  
Analog supply  
Analog ground  
Analog internal  
Digital I/O  
Channel 1 positive input  
2
Channel 1 negative input  
3
Channel 2 positive input  
4
Channel 2 negative input  
5
PGA positive capacitor. Connect a 10-nF C0G capacitor across CAPP and CAPN.  
PGA negative capacitor. Connect a 10-nF C0G capacitor across CAPP and CAPN.  
Buffer positive capacitor. Connect a 47-nF C0G capacitor to AVSS.  
Buffer negative capacitor. Connect a 47-nF C0G capacitor to AVSS.  
Charge-pump capacitor. Connect a 4.7-nF, minimum 10-V rated capacitor to AGND.  
PGA negative analog supply. See the Analog Power Supplies section for details.  
PGA positive analog supply. See the Analog Power Supplies section for details.  
Modulator analog supply. See the Analog Power Supplies section for details.  
Analog ground  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Input bias capacitor. Connect a 100-nF ceramic capacitor to AGND.  
General-purpose I/O  
GPIO0  
GPIO1  
CAPD  
DGND  
IOVDD  
CLK  
Digital I/O  
General-purpose I/O  
Analog output  
Ground  
Digital low-dropout regulator (LDO) output. Connect a 220-nF ceramic capacitor to DGND.  
Digital ground  
Digital supply  
Digital input  
Digital I/O power supply. See the IOVDD Power Supply section for details.  
ADC clock input  
CS  
Digital input  
Serial interface select, active low  
SCLK  
DIN  
Digital input  
Serial interface clock  
Digital input  
Serial interface data in  
DOUT  
DRDY  
SYNC  
RESET  
PWDN  
REFN  
REFP  
CAPR  
AVSS  
Digital output  
Digital output  
Digital input  
Serial interface data out  
Data ready, active low  
ADC synchronization, active high  
Digital input  
ADC reset, active low  
Digital input  
ADC power down, active low  
Analog input  
Analog input  
Analog internal  
Analog supply  
Negative reference input. See the Voltage Reference Input section for details.  
Positive reference input. See the Voltage Reference Input section for details.  
Reference bias capacitor. Connect a 100-nF ceramic capacitor to AVSS.  
PGA negative supply  
Connect the thermal pad to AVSS. Thermal vias placed in the printed circuit board (PCB) land are optional for placement of bottom  
side components.  
Thermal pad  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
AVDD1 to AVSS  
AVSS to AGND  
5.5  
0.3  
2.8  
AVDD2 to AGND  
Power supply voltages  
5.5  
0.3  
V
AVDD2 to AVSS  
5.5  
0.3  
IOVDD to DGND  
3.9  
0.3  
IOVDD to DGND (IOVDD connected to CAPD)  
2.2  
0.3  
0.3  
Grounds  
AGND to DGND  
V
V
0.3  
Analog input voltage  
Digital input voltage  
Input current  
AIN1P, AIN1N, AIN2P, AIN2N, REFP, REFN  
CLK, DIN, SCLK, CS, GPIO0, GPIO1, SYNC, RESET, PWDN  
Continuous, any digital or analog pin (2)  
Junction, TJ  
AVDD1 + 0.3  
IOVDD + 0.3  
10  
AVSS 0.3  
DGND 0.3  
10  
V
mA  
°C  
°C  
150  
Temperature  
Storage, Tstg  
150  
60  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional this may affect device reliability, functionality, performance, and shorten the device  
lifetime.  
(2) Analog input pins AIN1P, AIN1N, AIN2P, AIN2N, REFP and REFN are diode-clamped to AVDD1 and AVSS. Limit the input current to  
10 mA in the event the analog input voltage exceeds AVDD1 + 0.3 V or AVSS 0.3 V. Digital input pins are clamped to IOVDD and  
DGND. Limit the input current if the digital input voltage exceeds IOVDD + 0.3 V or DGND 0.3 V.  
6.2 ESD Ratings  
VALUE  
2000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD1 to AVSS  
3
2.375  
5.25  
V
AVDD1 to AGND  
AVSS to AGND  
Analog power supplies  
0
5.25  
5.25  
3.6  
2.625  
2.375  
V
V
AVDD2 to AGND  
AVDD2 to AVSS  
IOVDD to DGND  
IOVDD connected to CAPD  
2.7  
Digital power supply  
ANALOG INPUTS  
1.65  
1.95  
Reference voltage = 5 V  
Reference voltage = 4.096 V  
Reference voltage = 2.5 V  
Buffer operation  
±VREF / (2 × Gain)  
±VREF / (1.6384 × Gain)  
±VREF / Gain  
Differential input voltage  
VIN = VAINP VAINN  
VIN  
V
V
AVSS + 0.1  
AVSS + 1.1  
AVDD1 0.1  
AVDD1 0.85  
Absolute input voltage  
PGA operation  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.3 Recommended Operating Conditions (continued)  
over operating ambient temperature range (unless otherwise noted)  
MIN  
AVSS + 0.1  
AVSS + 0.15  
NOM  
MAX  
AVDD1 0.1  
AVDD1 0.15  
6%  
UNIT  
V
Buffer operation  
Absolute output voltage  
PGA operation  
Calibration range (1)  
FSR  
VOLTAGE REFERENCE INPUT  
VREFN  
VREFP  
Negative reference input  
Positive reference input  
V
V
V
V
V
AVSS 0.05  
AVDD1 + 0.1  
Reference voltage = 5 V  
Reference voltage = 4.096 V  
Reference voltage = 2.5 V  
4.9  
4.0  
2.4  
5
4.096  
2.5  
AVDD1 AVSS + 0.1  
VREF  
VREF = VREFP VREFN  
4.2  
2.6  
DIGITAL INPUTS  
VINL  
VINH  
Low-level input voltage  
0.2 × IOVDD  
V
V
High-level input voltage  
0.8 × IOVDD  
High-power mode  
Mid-power mode  
Low-power mode  
6
6
3
8.192  
8.192  
4.096  
8.3  
8.3  
fCLK  
Clock input frequency  
MHz  
4.15  
TEMPERATURE  
TA Ambient temperature  
Operational  
Specification  
85  
85  
50  
40  
°C  
(1) Calibration range is the sum of the offset and gain error correction.  
6.4 Thermal Information  
ADS1285  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
30  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.4  
10.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
10.8  
ψJB  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics  
minimum and maximum specifications over 40°C to +85°C; typical specifications are at 25°C; all specifications are at  
AVDD1 = 5 V, AVDD2 = 2.5 V to 5 V, AVSS = 0 V, IOVDD = 1.8 V, VREFP = 4.096 V, VREFN = 0 V, VCM = 2.5 V, PGA gain = 1,  
fCLK = 8.192 MHz (4.096 MHz low-power mode) and fDATA = 500 SPS (unless otherwise noted)  
PARAMETER  
ANALOG INPUTS  
Input mux on-resistance  
PGA OPERATION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input 1 to input 2 cross connection  
60  
IB  
PGA Input bias current  
PGA Input offset current  
PGA Gain  
High-power mode  
High-power mode  
45  
±3  
nA  
nA  
IOS  
1, 2, 4, 8, 16, 32, 64  
V/V  
High-power mode  
5.5  
7
en-PGA  
PGA Input voltage noise density Mid-power mode  
Low-power mode  
PGA Gain = 16  
nV/Hz  
7
in-PGA  
PGA Input current noise density Differential  
Antialias filter frequency  
2.5  
30  
pA/Hz  
kHz  
BUFFER OPERATION  
High-power mode  
Mid-power mode  
Low-power mode  
±1.2  
±1.2  
±0.3  
IB  
Input current  
VIN = 2.5 V  
µA  
DC PERFORMANCE  
en  
Noise  
See Noise Performance section for details  
PGA operation  
Buffer operation  
After calibration  
PGA operation  
Buffer operation  
±30/gain + 5  
350/gain + 10  
600  
350/gain - 10  
600  
VOS  
Offset error  
µV  
±50  
±1  
0.5/gain  
1
Offset error drift  
Gain error  
µV/°C  
ppm  
PGA operation, gain = 1  
After calibration  
Buffer operation  
Relative to PGA gain = 1  
All PGA gains  
±0.02%  
2
0.05%  
0.05%  
±0.05%  
±0.06%  
2
0.07%  
0.2%  
0.07%  
0.2%  
Gain match  
Gain drift  
ppm/°C  
dB  
CMRR  
PSRR  
Common-mode rejection ratio  
f = 60 Hz  
104  
80  
120  
AVDD2  
95  
dB  
Power-supply rejection ratio  
AVSS, AVDD1  
IOVDD  
At dc  
85  
110  
dB  
100  
120  
dB  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics (continued)  
minimum and maximum specifications over 40°C to +85°C; typical specifications are at 25°C; all specifications are at  
AVDD1 = 5 V, AVDD2 = 2.5 V to 5 V, AVSS = 0 V, IOVDD = 1.8 V, VREFP = 4.096 V, VREFN = 0 V, VCM = 2.5 V, PGA gain = 1,  
fCLK = 8.192 MHz (4.096 MHz low-power mode) and fDATA = 500 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
en-MOD  
Modulator voltage noise density VREF = 4.096 V  
25  
123  
119  
125  
124  
123  
125  
122  
120  
125  
124  
123  
125  
124  
122  
124  
125  
123  
124  
119  
119  
125  
122  
118  
117  
125  
119  
119  
125  
124  
119  
117  
124  
123  
121  
124  
125  
122  
121  
123  
115  
nV/Hz  
Buffer operation  
PGA gain = 2  
-114  
-116  
-116  
-113  
-118  
-115  
-117  
-116  
-115  
High-power mode,  
VREF = 2.5 V,  
AVDD1 = 3.3 V,  
AVSS = 0 V,  
fIN = 31.25 Hz,  
VIN = 0.5 dBFS  
PGA gain = 4  
dB  
dB  
dB  
PGA gain = 8  
PGA gain = 16  
PGA gain = 32 and 64  
Buffer operation  
PGA gain = 2  
Mid-power mode,  
VREF = 2.5 V,  
AVDD1 = 3.3 V,  
AVSS = 0 V,  
fIN = 31.25 Hz,  
VIN = 0.5 dBFS  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA gain = 32 and 64  
Buffer operation  
PGA gain = 2  
Low-power mode,  
VREF = 2.5 V,  
AVDD1 = 3.3 V,  
AVSS = 0 V,  
fIN = 31.25 Hz,  
VIN = 0.5 dBFS  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA gain = 32 and 64  
Buffer operation  
PGA gain = 1  
-114  
-111  
THD  
Total harmonic distortion  
High-power mode,  
PGA gain = 2  
VREF = 4.096 V,  
AVDD1 = 5 V,  
AVSS = 0 V,  
fIN = 31.25 Hz,  
VIN = 0.5 dBFS  
PGA gain = 4  
-114  
-111  
dB  
dB  
dB  
PGA gain = 8  
PGA gain = 16  
PGA gain = 32 and 64  
Buffer operation  
PGA gain = 1  
-112  
-111  
Mid-power mode,  
VREF = 4.096 V,  
AVDD1 = 5 V,  
AVSS = 0 V,  
fIN = 31.25 Hz,  
PGA gain = 2  
PGA gain = 4  
-115  
-111  
PGA gain = 8  
VIN = 0.5 dBFS  
PGA gain = 16  
PGA gain = 32 and 64  
Buffer operation  
PGA gain = 1  
-117  
-115  
Low-power mode,  
VREF = 4.096 V,  
AVDD1 = 5 V,  
AVSS = 0 V,  
fIN = 31.25 Hz,  
PGA gain = 2  
PGA gain = 4  
-115  
-113  
PGA gain = 8  
VIN = 0.5 dBFS  
PGA gain = 16  
PGA gain = 32 and 64  
SFDR  
Spurious-free dynamic range  
Crosstalk  
dB  
dB  
fIN = 31.25 Hz, VIN = 0.5 dBFS  
fIN = 31.25 Hz, VIN = 0.5 dBFS  
140  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics (continued)  
minimum and maximum specifications over 40°C to +85°C; typical specifications are at 25°C; all specifications are at  
AVDD1 = 5 V, AVDD2 = 2.5 V to 5 V, AVSS = 0 V, IOVDD = 1.8 V, VREFP = 4.096 V, VREFN = 0 V, VCM = 2.5 V, PGA gain = 1,  
fCLK = 8.192 MHz (4.096 MHz low-power mode) and fDATA = 500 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE REFERENCE INPUT  
High-power mode  
110  
110  
80  
Reference input current  
Mid-power mode  
Low-power mode  
µA/V  
FIR DIGITAL FILTER  
High-power mode  
Mid-power mode  
Low-power mode  
250  
250  
4000  
4000  
2000  
0.003  
fDATA  
Data rate  
SPS  
125  
Pass-band ripple  
dB  
Hz  
Hz  
Hz  
dB  
0.003  
0.375 × fDATA  
0.413 × fDATA  
0.5 × fDATA  
Pass-band (0.01 dB)  
Bandwidth (3 dB)  
Stop band  
Stop-band attenuation (1)  
135  
Minimum phase filter, at dc  
Linear phase filter  
5 / fDATA  
31/ fDATA  
62 / fDATA  
62 / fDATA  
Group delay  
s
s
Minimum phase filter  
Linear phase filter  
Settling time (latency)  
IIR DIGITAL FILTER  
High-pass corner frequency  
SAMPLE RATE CONVERTER  
Clock compensation range  
0.1  
10  
Hz  
244 ppm of fCLK  
ppb of fCLK  
244  
Resolution  
7.45  
DIGITAL INPUT/OUTPUT  
VOH  
VOL  
Ilkg  
High-level output voltage  
IOH = 1 mA  
0.8 × IOVDD  
V
Low-level output voltage  
Input leakage  
0.2 × IOVDD  
V
IOL = 1 mA  
1
1  
μA  
POWER SUPPLY  
PGA operation  
1.4  
0.25  
0.85  
0.25  
0.8  
High-power mode  
AVDD1 = 3.3 V  
mA  
mA  
mA  
mA  
mA  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
Mid-power mode  
AVDD1 = 3.3 V  
Low-power mode  
AVDD1 = 3.3 V  
0.2  
IAVDD1  
IAVSS  
,
AVDD1, AVSS current  
1.5  
1.85  
0.45  
1.2  
0.45  
1.1  
0.45  
5
High-power mode  
AVDD1 = 5 V  
0.35  
0.9  
Mid-power mode  
AVDD1 = 5 V  
0.35  
0.85  
0.25  
1
Low-power mode  
AVDD1 = 5 V  
mA  
µA  
Power-down mode  
High-power mode  
Mid-power mode  
Low-power mode  
Power-down mode  
1.2  
1.5  
1.5  
0.85  
5
1.2  
mA  
µA  
IAVDD2  
AVDD2 current  
AVDD2 = 2.5 V  
0.7  
1
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics (continued)  
minimum and maximum specifications over 40°C to +85°C; typical specifications are at 25°C; all specifications are at  
AVDD1 = 5 V, AVDD2 = 2.5 V to 5 V, AVSS = 0 V, IOVDD = 1.8 V, VREFP = 4.096 V, VREFN = 0 V, VCM = 2.5 V, PGA gain = 1,  
fCLK = 8.192 MHz (4.096 MHz low-power mode) and fDATA = 500 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.43  
0.43  
0.24  
1
MAX  
0.6  
0.6  
0.4  
10  
UNIT  
High-power mode  
Mid-power mode  
Low-power mode  
Power-down mode  
Standby mode  
mA  
IOVDD current  
IIOVDD  
μA  
200  
1.2  
High-power mode  
Mid-power mode  
Low-power mode  
Sample rate converter  
operation  
IOVDD additional current  
1.2  
mA  
0.6  
High-power mode  
AVDD1 = 3.3 V  
AVDD2 = 2.5 V  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
PGA operation  
Buffer operation  
8.3  
mW  
mW  
mW  
mW  
mW  
mW  
4.5  
6.5  
4.5  
4.8  
2.8  
11.5  
5.3  
8.3  
5.3  
6.4  
3.4  
Mid-power mode  
AVDD1 = 3.3 V  
AVDD2 = 2.5 V  
Low-power mode  
AVDD1 = 3.3 V  
AVDD2 = 2.5 V  
Pd  
Power dissipation (2)  
High-power mode  
AVDD1 = 5 V  
AVDD2 = 2.5 V  
14.1  
6.7  
Mid-power mode  
AVDD1 = 5 V  
AVDD2 = 2.5 V  
10.8  
6.7  
Low-power mode  
AVDD1 = 5 V  
AVDD2 = 2.5 V  
8.4  
5.1  
(1) Input frequencies at N × 32 kHz (16 kHz low-power mode) ± fDATA / 2 (where N = 1, 2, 3...) intermodulate with the chopper clock. At  
these frequencies stop band attenuation = 90 dBFS (typ).  
(2) Excluding current consumed by the voltage reference input or by sample rate converter operation. See voltage reference input current  
and IOVDD current of sample rate converter operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.6 Timing Requirements: 1.65 V IOVDD 1.95 V and 2.7 V IOVDD 3.6 V  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
ns  
CLOCK  
High-power mode  
Mid-power mode  
Low-power mode  
High-power mode  
Mid-power mode  
Low-power mode  
High-power mode  
Mid-power mode  
Low-power mode  
120.5  
120.5  
241  
55  
122.07  
122.07  
244.14  
166  
166  
332  
tc(CLK)  
CLK period  
tw(CLKH)  
Pulse duration, CLK high  
Pulse duration, CLK low  
55  
ns  
110  
55  
tw(CLKL)  
55  
ns  
110  
SERIAL INTERFACE  
tw(CSH)  
Pulse duration, CS high  
Delay time, first SCLK rising edge after CS falling edge  
20  
20  
ns  
ns  
td(CSSC)  
tc(SCLK)  
tw(SCH)  
SCLK period  
120  
50  
ns  
Pulse duration, SCLK high  
ns  
tw(SCL)  
Pulse duration, SCLK low  
50  
ns  
tsu(DI)  
Setup time, DIN valid before SCLK rising edge  
Hold time, DIN valid after SCLK rising edge  
Setup time, SRC[1:0] register write before DRDY falling edge  
10  
ns  
th(DI)  
10  
ns  
tsu(SRC-W)  
SYNC  
256  
1 / f(CLK)  
tw(SYNL)  
tw(SYNH)  
tsu(SYNCLK)  
th(SYNCLK)  
RESET  
tw(RSTL)  
tsu(RSTCLK)  
th(RSTCLK)  
Pulse duration, SYNC low  
2
2
1 / f(CLK)  
1 / f(CLK)  
ns  
Pulse duration, SYNC high  
Setup time, SYNC high before CLK rising edge  
Hold time, SYNC high after CLK rising edge  
10  
10  
ns  
Pulse duration, RESET low  
2
10  
10  
1 / f(CLK)  
ns  
Setup time, RESET high before CLK rising edge  
Hold time, RESET high after CLK rising edge  
ns  
6.7 Switching Characteristics: 1.65V IOVDD 1.95V and 2.7 V IOVDD 3.6 V  
over operating ambient temperature range and CLOAD = 20pF (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
SERIAL INTERFACE  
tw(DRH)  
Pulse duration, DRDY high  
8
50  
50  
1 / f(CLK)  
tp(CSDO)  
tp(SCDO)  
th(SCDO)  
SYNC  
Propagation delay time, CS falling edge to DOUT driven valid  
Propagation delay time, SCLK falling edge to new DOUT valid  
Propagation delay time, SCLK falling edge to DOUT invalid  
ns  
ns  
ns  
5
tp(SYNDR)  
RESET  
tp(RSTDR)  
PWDN  
Propagation delay time, SYNC rising edge to valid data DRDY falling edge  
Propagation delay time, RESET rising edge to DRDY falling edge  
Propagation delay time, PWDN rising edge to DRDY falling edge  
Propagation delay time, power supply and CLK applied to first DRDY pulse  
62.98145 / fDATA + 930 / fCLK  
516,874  
s
1/ fCLK  
tp(PDDR)  
POWER UP  
tp(SUPDR)  
62.98145 / fDATA + 946 / f(CLK)  
650,000  
s
1 / fCLK  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.8 Timing Diagrams  
tc(CLK)  
tw(CLKL)  
CLK  
tw(CLKH)  
6-1. Clock Timing Requirements  
tw(CSH)  
CS  
td(CSSC)  
tc(SCLK)  
tw(SCH)  
SCLK  
tsu(DI)  
tw(SCL)  
DIN  
th(DI)  
6-2. Serial Interface Timing Requirements  
tw(DRH)  
DRDY  
CS  
SCLK  
tp(CSDO)  
th(SCDO)  
MSB  
LSB  
DOUT  
0
tp(SCDO)  
6-3. Serial Interface Switching Characteristics  
CLK  
th(SYNCLK)  
tsu(SYNCLK)  
SYNC  
tw(SYNL)  
tw(SYNH)  
DRDY  
(settled data)  
tp(SYNDR)  
(Pulse sync mode)  
(settled data)  
DRDY  
(Continuous sync mode)  
6-4. SYNC Timing Requirements and Switching Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
CLK  
th(RSTCLK)  
tsu(RSTCLK)  
RESET  
tw(RSTL)  
tp(RSTDR)  
DRDY  
6-5. RESET Timing Requirements and Switching Characteristics  
PWDN  
DRDY  
tp(PDDR)  
6-6. PWDN Switching Characteristics  
DRDY  
SRC[1:0] Register Write  
SPI  
tsu(SCR-W)  
6-7. Sample Rate Converter Register-Write Timing Requirements  
AVDD1 – AVSS  
1.65 V typ.  
+
AVDD2 – AGND  
1.65 V typ.  
+
CAPD – DGND  
1.35 V typ.  
+
CLK  
DRDY  
tp(SUPDR)  
6-8. Power-Up Switching Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
0
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
Shorted input, PGA gain = 1  
Shorted input, PGA gain = 8  
6-9. High-Power Mode FFT Spectrum  
6-10. High-Power Mode FFT Spectrum  
0
-20  
0
-20  
Buffer operation  
PGA gain = 1 operation  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Frequency (Hz)  
Shorted input, PGA gain = 1, VREF = 2.5 V, AVDD1 = 3.3 V  
RS = 1 kΩ  
6-11. High-Power Mode FFT Spectrum  
6-12. High-Power Mode FFT Spectrum  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 1  
6-13. High-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 20 dBFS, PGA gain = 1  
6-14. High-Power Mode FFT Spectrum  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 0.5 dBFS, buffer operation  
6-15. High-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 2, VREF = 2.5 V,  
AVDD1 = 3.3 V, 2048 data points  
6-16. High-Power Mode FFT Spectrum  
0
-20  
0
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 8  
6-17. High-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 20 dBFS, PGA gain = 8  
6-18. High-Power Mode FFT Spectrum  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
Shorted input, PGA gain = 1  
Shorted input, PGA gain = 8  
6-19. Mid-Power Mode FFT Spectrum  
6-20. Mid-Power Mode FFT Spectrum  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
Shorted input, PGA gain = 1, VREF = 2.5 V, AVDD1 = 3.3 V  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 1  
6-22. Mid-Power Mode FFT Spectrum  
6-21. Mid-Power Mode FFT Spectrum  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 20 dBFS, PGA gain = 1  
6-23. Mid-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 2, VREF = 2.5 V,  
AVDD1 = 3.3 V, 2048 data points  
6-24. Mid-Power Mode FFT Spectrum  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
0
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 8  
6-25. Mid-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 20 dBFS, PGA gain = 8  
6-26. Mid-Power Mode FFT Spectrum  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
Shorted input, PGA gain = 1  
Shorted input, PGA gain = 8  
6-27. Low-Power Mode FFT Spectrum  
6-28. Low-Power Mode FFT Spectrum  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
Shorted input, PGA gain = 1, VREF = 2.5 V, AVDD1 = 3.3 V  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 1  
6-30. Low-Power Mode FFT Spectrum  
6-29. Low-Power Mode FFT Spectrum  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 20 dBFS, PGA gain = 1  
6-31. Low-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 2, VREF = 2.5 V,  
AVDD1 = 3.3 V, 2048 data points  
6-32. Low-Power Mode FFT Spectrum  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
fIN = 31.25 Hz, VIN = 0.5 dBFS, PGA gain = 8  
6-33. Low-Power Mode FFT Spectrum  
fIN = 31.25 Hz, VIN = 20 dBFS, PGA gain = 8  
6-34. Low-Power Mode FFT Spectrum  
0
-20  
140  
135  
130  
125  
120  
115  
110  
105  
TA = -40C  
TA = 25C  
TA = 85C  
Buffer Operation  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (Hz)  
1
10  
100  
PGA Gain (V/V)  
AIN1 = fIN = 31.25 Hz, 0.5-dBFS signal, AIN2 = shorted  
6-35. Channel-to-Channel Crosstalk  
High-power mode  
6-36. Dynamic Range vs PGA Gain  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
140  
135  
130  
125  
120  
115  
110  
105  
140  
135  
130  
125  
120  
115  
110  
105  
TA = -40C  
TA = 25C  
TA = 85C  
TA = -40C  
TA = 25C  
TA = 85C  
Buffer operation  
Bufferoperation
1
10  
100  
1
10  
100  
PGA Gain (V/V)  
PGA Gain (V/V)  
Mid-power mode  
Low-power mode  
6-37. Dynamic Range vs PGA Gain  
6-38. Dynamic Range vs PGA Gain  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PGA gain = 1  
PGA gain = 8  
Buffer operation  
PGA gain = 1  
PGA gain = 8  
Buffer operation  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Offset Error (V)  
Offset Drift (V/C)  
30 units  
30 units  
6-39. Offset Error Distribution  
6-40. Offset Drift Distribution  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PGA gain = 1  
PGA gain = 2  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16, 32 and 64  
Buffer operation  
Gain Error (ppm)  
30 units  
Gain Error (ppm)  
30 units  
6-41. Gain Error Distribution  
6-42. Gain Error Distribution  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PGA gain = 1  
PGA gain = 2  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16, 32 and 64  
Buffer operation  
Gain Drift (ppm/C)  
Gain Drift (ppm/C)  
30 units  
30 units  
6-43. Gain Drift Distribution  
6-44. Gain Drift Distribution  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain Match (%)  
30 units  
VREF = 2.5 V, AVDD1 = 3.3 V, fIN = 31.25 Hz, VIN = 0.5  
dBFS  
6-45. Gain Match Distribution  
6-46. High-Power Mode THD vs PGA Gain  
-105  
-105  
TA = -40C  
TA = 25C  
TA = 85C  
TA = -40C  
TA = 25C  
TA = 85C  
-110  
-115  
-120  
-125  
-130  
-110  
-115  
-120  
-125  
-130  
Buffer operation  
Buffer operation  
1
10  
100  
1
10  
100  
PGA Gain (V/V)  
PGA Gain (V/V)  
VREF = 2.5 V, AVDD1 = 3.3 V, fIN = 31.25 Hz, VIN = 0.5  
VREF = 2.5 V, AVDD1 = 3.3 V, fIN = 31.25 Hz, VIN = 0.5  
dBFS  
dBFS  
6-47. Mid-Power Mode THD vs PGA Gain  
6-48. Low-Power Mode THD vs PGA Gain  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
-105  
TA = -40C  
TA = 25C  
TA = 85C  
-110  
Buffer operation  
-115  
-120  
-125  
-130  
1
10  
100  
PGA Gain (V/V)  
VREF = 4.096 V, AVDD1 = 5 V, fIN = 31.25 Hz, VIN = 0.5  
VREF = 4.096 V, AVDD1 = 5 V, fIN = 31.25 Hz, VIN = 0.5  
dBFS  
dBFS  
6-49. High-Power Mode THD vs PGA Gain  
6-50. Mid-Power Mode THD vs PGA Gain  
-105  
-70  
TA = -40C  
TA = 25C  
TA = 85C  
PGA gain = 1  
PGA gain = 4  
PGA gain = 16  
Buffer operation  
-80  
-90  
-110  
-115  
-120  
-125  
-130  
-100  
-110  
-120  
-130  
Buffer operation  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
PGA Gain (V/V)  
Input Frequency (Hz)  
VREF = 4.096 V, AVDD1 = 5 V, fIN = 31.25 Hz, VIN = 0.5  
VREF = 4.096 V, AVDD1 = 5 V, fIN = 31.25 Hz, VIN = 0.5  
dBFS  
dBFS  
6-51. Low-Power Mode THD vs PGA Gain  
6-52. High- and Mid-Power Mode THD vs Input Frequency  
-70  
PGA gain = 1  
PGA gain = 4  
PGA gain = 16  
Buffer operation  
-80  
-90  
-100  
-110  
-120  
-130  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Frequency (Hz)  
High-speed mode  
VREF = 4.096 V, AVDD1 = 5 V, fIN = 31.25 Hz, VIN = 0.5  
dBFS  
6-54. PGA Input Current vs Input Voltage  
6-53. Low-Power Mode THD vs Input Frequency  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
33  
30  
27  
24  
21  
18  
15  
12  
9
6
3
0
PGA Input Current Noise Density (pA/Hz)  
High- and mid-power modes  
6-55. PGA Input Current Noise Distribution  
6-56. Buffer Input Current vs Input Voltage  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
High-power mode  
Mid-power mode  
Low-power mode  
High- and mid-power modes  
Low-power mode  
-40  
-20  
0
20  
40  
60  
80  
Temperature (C)  
Reference Input Current (A)  
30 units  
6-57. Reference Input Current vs Temperature  
6-58. Reference Input Current Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
High-power mode, PGA operation  
Mid-power mode, PGA operation  
Low-power mode, PGA operation  
60  
PGA gain = 1  
Buffer operation  
40  
10  
100  
1000  
10000  
100000  
1000000  
Common-Mode Input Frequency (Hz)  
AVDD1 Current (mA)  
30 units  
6-59. CMRR vs Common-Mode Input Frequency  
6-60. AVDD1 Current Distribution  
100  
2
1.6  
1.2  
0.8  
0.4  
High-power mode, buffer  
Mid-power mode, buffer  
Low-power mode, buffer  
High-power mode, PGA operation  
Mid-power mode, PGA operation  
Low-power mode, PGA operation  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40  
-20  
0
20  
40  
60  
80  
Temperature (C)  
AVDD1 Current (mA)  
30 units  
6-61. AVDD1 Current Distribution  
6-62. AVDD1 Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD1 = 5 V, AVSS = 0 V, AVDD2 = 2.5 V, IOVDD = 1.8 V, fCLK = 8.192 MHz (4.096 MHz low-power mode),  
VREFP = 4.096 V, VREFN = 0 V, PGA gain = 1, VCM = 2.5 V, fDATA = 500 SPS (unless otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
High-power mode, PGA operation  
Mid-power mode, PGA operation  
Low-power mode, PGA operation  
High-power mode  
Mid-power mode  
Low-power mode  
-40  
-20  
0
20  
40  
60  
80  
Temperature (C)  
AVDD2 Current (mA)  
30 units  
6-63. AVDD1 Current vs Temperature  
6-64. AVDD2 Current Distribution  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
140  
High- and mid-power modes  
Low-power mode  
120  
100  
80  
60  
AVDD1  
AVDD2  
IOVDD  
40  
20  
10  
-40  
-20  
0
20  
40  
60  
80  
100  
1000  
10000  
100000  
1000000  
Temperature (C)  
Power Supply Frequency (Hz)  
6-65. AVDD2 Current vs Temperature  
6-66. PSRR vs Power-Supply Frequency  
0.6  
High- and mid-power modes  
Low-power mode  
0.5  
0.4  
0.3  
0.2  
0.1  
100  
500  
1000  
5000  
Data Rate (SPS)  
6-67. IOVDD Current vs Data Rate  
Product Folder Links: ADS1285  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
7 Parameter Measurement Information  
7.1 Noise Performance  
The ADS1285 is a 32-bit ADC providing three power-resolution modes, allowing optimization of noise  
performance verses device power consumption. The four determining factors of noise performance are the  
power mode, output data rate, PGA gain setting, and reference voltage selection. The high-power mode  
operates the PGA and modulator sampling rate at the highest capacity for best overall noise performance. The  
mid-power mode scales down the PGA quiescent current to reduce power consumption but results in increased  
PGA noise. The low-power mode reduces both the modulator sampling rate and PGA quiescent current. The  
result is the low-power mode has the lowest power consumption but the highest level of overall noise.  
For all power modes, decreasing the output data rate reduces signal bandwidth, and therefore decreases total  
noise. Increasing the PGA gain reduces noise when noise is referred to the input. Dynamic range performance  
decreases when PGA gain is increased because the ratio of input voltage range to input-referred noise also  
decreases.  
Noise performance also depends on the reference voltage. Operation with VREF = 4.096 V or 5 V provides the  
best noise performance. Operation with VREF = 2.5 V (required when operating AVDD1 = 3.3 V) reduces noise  
performance.  
Dynamic range and input noise are equivalent parameters that describe the available resolution of the ADC. 方  
1 derives dynamic range from the input-referred noise data:  
1.768 V  
Gain × en  
Dynamic Range (dB) = 20×log  
(1)  
where:  
en = Input-referred voltage noise (RMS)  
7-1 and 7-2 show dynamic range performance at fDATA = 500 SPS for operation with VREF = 4.096 V and  
VREF = 2.5 V.  
140  
135  
130  
125  
120  
115  
110  
105  
140  
High-power mode  
Mid-power mode  
Low-power mode  
High-power mode  
Mid-power mode  
Low-power mode  
Buffer operation  
135 Buffer operation (gain = 1)  
130  
125  
120  
115  
110  
105  
1
1
10  
100  
10  
PGA Gain (V/V)  
100  
PGA Gain (V/V)  
fDATA = 500 SPS, VREF = 4.096 V  
fDATA = 500 SPS, VREF = 2.5 V  
7-1. Dynamic Range vs PGA Gain  
7-2. Dynamic Range vs PGA Gain  
7-1 through 7-3 list dynamic range and input-referred noise performance with VREF = 4.096 V and AVDD1  
= 5 V, tested with input source resistance (RS) = 0 . 7-4 through 7-6 list dynamic range and input noise  
performance with VREF = 2.5 V and AVDD1 = 3.3 V, tested with RS = 0 . Noise data are at TA = 25°C and are  
representative of typical ADC performance. The data are the standard deviation of 4096 consecutive ADC  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
conversion results with the ADC inputs shorted, measured over the 0.413 × fDATA bandwidth. Because of the  
statistical nature of noise, repeated measurements can yield varying noise performance results.  
7-1. High-Power Mode Noise Performance (VREF = 4.096 V, AVDD1 = 5 V, RS = 0 )  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
fDATA  
250  
135  
137  
136  
134  
130  
126  
120  
114  
500  
1000  
129  
131  
130  
128  
124  
120  
114  
108  
2000  
4000  
123  
125  
124  
122  
118  
114  
108  
102  
250  
0.31  
0.25  
0.14  
0.09  
0.07  
0.06  
0.06  
0.06  
500  
0.44  
0.35  
0.20  
0.12  
0.10  
0.08  
0.08  
0.08  
1000  
0.63  
0.50  
0.28  
0.18  
0.14  
0.11  
0.11  
0.11  
2000  
0.89  
0.70  
0.39  
0.25  
0.20  
0.16  
0.16  
0.16  
4000  
1.25  
0.99  
0.56  
0.35  
0.28  
0.22  
0.22  
0.22  
1
1
Buffer  
132  
134  
133  
131  
127  
123  
117  
111  
126  
128  
127  
125  
121  
117  
111  
105  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
2
4
8
16  
32  
64  
7-2. Mid-Power Mode Noise Performance (VREF = 4.096 V, AVDD1 = 5 V, RS = 0 )  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
fDATA  
1000  
0.63  
0.50  
0.31  
0.20  
0.18  
0.16  
0.16  
0.16  
250  
135  
137  
135  
133  
128  
123  
117  
111  
500  
1000  
129  
131  
129  
127  
122  
117  
111  
2000  
126  
128  
126  
124  
119  
114  
108  
102  
4000  
123  
125  
123  
121  
116  
111  
105  
99  
250  
0.31  
0.25  
0.16  
0.10  
0.09  
0.08  
0.08  
0.08  
500  
0.44  
0.35  
0.22  
0.14  
0.12  
0.11  
0.11  
0.11  
2000  
0.89  
0.70  
0.44  
0.28  
0.25  
0.22  
0.22  
0.22  
4000  
1.25  
0.99  
0.63  
0.39  
0.35  
0.31  
0.31  
0.31  
1
1
Buffer  
132  
134  
132  
130  
125  
120  
114  
108  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
2
4
8
16  
32  
64  
105  
7-3. Low-Power Mode Noise Performance (VREF = 4.096 V, AVDD1 = 5 V, RS = 0 )  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
fDATA  
125  
135  
138  
137  
135  
131  
126  
120  
114  
250  
500  
129  
132  
131  
129  
125  
120  
114  
108  
1000  
126  
129  
128  
126  
122  
117  
111  
2000  
123  
126  
125  
123  
119  
114  
108  
102  
125  
0.31  
0.22  
0.12  
0.08  
0.06  
0.06  
0.06  
0.06  
250  
0.44  
0.31  
0.18  
0.11  
0.09  
0.08  
0.08  
0.08  
500  
0.63  
0.44  
0.25  
0.16  
0.12  
0.11  
0.11  
0.11  
1000  
0.89  
0.63  
0.35  
0.22  
0.18  
0.16  
0.16  
0.16  
2000  
1.25  
0.89  
0.50  
0.31  
0.25  
0.22  
0.22  
0.22  
1
1
Buffer  
132  
135  
134  
132  
128  
123  
117  
111  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
2
4
8
16  
32  
64  
105  
7-4. High-Power Mode Noise Performance (VREF = 2.5 V, AVDD1 = 3.3 V, RS = 0 )  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
fDATA  
1000  
0.63  
0.70  
0.39  
0.22  
0.16  
0.12  
0.12  
250  
135  
128  
133  
132  
129  
125  
119  
500  
1000  
129  
122  
127  
126  
123  
119  
113  
2000  
126  
119  
124  
123  
120  
116  
110  
4000  
123  
116  
121  
120  
117  
113  
107  
250  
0.31  
0.35  
0.20  
0.11  
0.08  
0.06  
0.06  
500  
0.44  
0.50  
0.28  
0.16  
0.11  
0.09  
0.09  
2000  
0.89  
0.99  
0.56  
0.31  
0.22  
0.18  
0.17  
4000  
1.25  
1.40  
0.79  
0.44  
0.31  
0.25  
0.25  
1
1(1)  
2
Buffer  
132  
125  
130  
129  
126  
122  
116  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
4
8
16  
32  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
7-4. High-Power Mode Noise Performance (VREF = 2.5 V, AVDD1 = 3.3 V, RS = 0 ) (continued)  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
fDATA  
250  
500  
110  
1000  
2000  
4000  
250  
500  
1000  
2000  
4000  
64  
PGA  
113  
107  
104  
101  
0.06  
0.09  
0.12  
0.17  
0.25  
7-5. Mid-Power Mode Noise Performance (VREF = 2.5 V, AVDD1 = 3.3 V, RS = 0 )  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
fDATA  
250  
135  
128  
133  
131  
127  
123  
117  
111  
500  
1000  
129  
122  
127  
125  
121  
117  
111  
2000  
126  
119  
124  
122  
118  
114  
108  
102  
4000  
123  
116  
121  
119  
115  
111  
105  
99  
250  
0.31  
0.35  
0.20  
0.12  
0.10  
0.08  
0.08  
0.08  
500  
0.44  
0.50  
0.28  
0.18  
0.14  
0.11  
0.11  
0.11  
1000  
0.63  
0.70  
0.39  
0.25  
0.20  
0.16  
0.16  
0.16  
2000  
0.89  
0.99  
0.56  
0.35  
0.28  
0.22  
0.22  
0.22  
4000  
1.25  
1.40  
0.79  
0.50  
0.39  
0.31  
0.31  
0.31  
1
1(1)  
2
Buffer  
132  
125  
130  
128  
124  
120  
114  
108  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
4
8
16  
32  
64  
105  
7-6. Low-Power Mode Noise Performance (VREF = 2.5 V, AVDD1 = 3.3 V, RS = 0 )  
DYNAMIC RANGE (dB)  
en, INPUT-REFERRED NOISE (μVRMS  
)
GAIN  
MODE  
fDATA  
500  
129  
123  
128  
127  
124  
119  
113  
107  
fDATA  
125  
135  
129  
134  
133  
130  
125  
119  
113  
250  
132  
126  
131  
130  
127  
122  
116  
110  
1000  
126  
120  
125  
124  
121  
116  
110  
104  
2000  
123  
117  
122  
121  
118  
113  
107  
101  
125  
0.31  
0.31  
0.18  
0.10  
0.07  
0.06  
0.06  
0.06  
250  
0.44  
0.44  
0.25  
0.14  
0.10  
0.09  
0.09  
0.09  
500  
0.63  
0.83  
0.35  
0.20  
0.14  
0.12  
0.12  
0.12  
1000  
0.89  
0.89  
0.50  
0.28  
0.20  
0.17  
0.17  
0.17  
2000  
1.25  
1.25  
0.70  
0.39  
0.28  
0.25  
0.25  
0.25  
1
1(1)  
2
Buffer  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
4
8
16  
32  
64  
(1) Because of the limited input headroom with AVDD1 = 3.3 V operation, the available input range with PGA gain operation = 1 is ±1.35  
VPP. The dynamic range data for PGA gain = 1 and AVDD1 = 3.3 V reflects the reduced input range.  
8 Detailed Description  
8.1 Overview  
The ADS1285 is a high-resolution, low-power analog-to-digital converter (ADC) designed for applications in  
energy exploration, geology, and seismic monitoring where low-power consumption and high resolution are  
required. The converter provides 32 bits of resolution spanning data rates from 125 SPS to 4000 SPS. The  
programmable gain amplifier (PGA) expands the system dynamic range by accepting signals ranging from ±2.5  
VPP to ±0.039 VPP  
.
As illustrated in the Functional Block Diagram, the ADC consists of the following sections: input multiplexer  
(MUX), programmable gain amplifier (PGA), unity-gain buffer, delta-sigma (ΔΣ) modulator, sample rate  
converter, infinite impulse response (IIR) high-pass filter (HPF), finite impulse response (FIR) low-pass filter  
(LPF), and an SPI-compatible serial interface used for both device configuration and conversion data readback.  
The input multiplexer selects between inputs 1 and 2, and internal options designed for self-test, including an  
input-short option used to test offset and noise.  
The input multiplexer is followed by a low-noise PGA. The PGA gain range is 1 to 16, with gains 32 and 64  
provided as digital gains. The PGA is chopper-stabilized to reduce 1/f noise and input offset voltage. The PGA  
output connects to a buffer which drives the modulator. An external 10-nF capacitor, connected to PGA output  
pins CAPP and CAPN, provides an antialias filter for the input signal.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
The PGA can be disabled to lower device power consumption by operating the ADC with the unity-gain buffer.  
External 47-nF capacitors connected to each buffer output filters the modulator sampling pulses.  
The ΔΣ modulator measures the differential input signal (VIN) against the differential reference voltage (VREF).  
The modulator provides three reference voltage options (2.5 V, 4.096 V, or 5 V). The reference voltage is  
programmed by the user.  
Modulator data are processed by the digital filter providing the final conversion result. The digital filter consists of  
a sinc filter followed by a programmable phase, FIR low-pass filter, and an IIR high-pass filter. The high-pass  
filter removes dc and low-frequency components from the data.  
The sample rate converter (SRC) compensates clock frequency error by resampling the output data. The clock  
frequency compensation range is ±244 ppm with 7-ppb resolution.  
User-programmable gain and offset calibration registers correct offset and gain errors.  
The SYNC pin synchronizes the ADC. Synchronization has two modes of operation: pulse synchronization and  
continuous synchronization. The RESET pin resets the ADC, including user configuration settings. The pins are  
noise-resistant, Schmitt-trigger inputs to increase reliability in high-noise environments.  
The PWDN pin powers down the ADC when not in use. The software power-down mode (STANDBY) is available  
through the serial interface  
The 4-wire, SPI-compatible, serial interface reads conversion data and reads or writes device register data.  
Two general-purpose digital I/Os are available for system level control.  
Power for the PGA and buffer is supplied by AVDD1 and AVSS. A charge pump voltage regulator increases the  
input voltage range of the buffer that follows the PGA. Power for the modulator is supplied by AVDD2. IOVDD  
supplies the digital logic core through a 1.8-V low-dropout regulator (LDO). IOVDD is the digital I/O supply.  
8.2 Functional Block Diagram  
AVDD1  
CAPC CAPBP CAPBN AVDD2  
CAPD IOVDD  
LDO  
1.8 V  
(digital core)  
Charge  
Pump  
AVDD1  
CLK  
DRDY  
AIN1P  
AIN1N  
CS  
Serial  
Interface  
Sample  
Rate  
Converter  
SCLK  
DOUT  
DIN  
û  
Modulator  
Digital  
Filter  
PGA  
BUF  
MUX  
AIN2P  
AIN2N  
AVSS  
PWDN  
RESET  
SYNC  
GPIO  
Control  
2 x 400  
VCM  
AGND  
AVSS  
CAPI REFP  
CAPP CAPN  
REFN CAPR GPIO1 GPIO0  
DGND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.3 Feature Description  
8.3.1 Analog Input  
8-1 shows the analog input circuit and input multiplexer.  
AVDD1  
S1  
S2  
S3  
AIN1P  
ESD Diodes  
(+)  
AIN2P  
400  
AVSS  
To PGA  
To Buffer  
AVDD1 + AVSS  
2
S7  
AVDD1  
400 ꢀ  
S4  
S5  
S6  
(-)  
AIN1N  
ESD Diodes  
AIN2N  
AVSS  
8-1. Analog Input and Multiplexer  
Electrostatic discharge (ESD) diodes are incorporated to protect the ADC inputs from ESD events that occur  
during device manufacturing and printed circuit board (PCB) assembly process when assembled in an ESD-  
controlled environment. For system-level protection, consider using external ESD protection devices to protect  
the input that are exposed to ESD events.  
If the inputs are driven below AVSS 0.3 V, or above AVDD1 + 0.3 V, the protection diodes can conduct. If  
these conditions are possible, use external clamp diodes, series resistors, or both to limit input current to the  
specified maximum value. Overdriving an unused input channel can affect the conversion results of the active  
input channel. Clamp the overdriven voltage with Schottky diodes to prevent channel crosstalk.  
The ADC incorporates two differential input channels The multiplexer selects between the two differential inputs  
for measurement. A test mode to measure noise and offset is also provided by the multiplexer. The shorted input  
test configuration is available with or without the 400-Ω resistors to simulate the thermal noise generated by an  
800-Ωgeophone. 8-1 summarizes the multiplexer configurations.  
8-1. Input Multiplexer Modes  
MUX[2:0] BITS SWITCHES  
DESCRIPTION  
000  
001  
010  
011  
100  
101  
S1, S5  
Input AIN1P, AIN1N connection  
S2, S6  
Input AIN2P, AIN2N connection  
S3, S4  
400-input-short test mode for offset and noise test.  
Cross-connection test mode. Inputs AIN1P, AIN2P and AIN2P, AIN2N are connected  
Reserved  
S1, S5,S2, S6  
S3,S4,S7  
0-input-short test mode for offset and noise test.  
To test geophone THD performance, apply a test signal to the test channel through series resistors. The series  
resistors are typically half the value of the geophone impedance. Select the multiplexer for the cross-connection  
test mode (MUX[2:0] = 011b). In cross-connection mode, the test signal is cross-fed to the geophone input.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
Geophone THD test performance can be affected by the nonlinear on-resistance of the multiplexer (RSW). 8-2  
shows a model of the input multiplexer resistance for the geophone THD test. 8-3 shows THD performance  
versus a test resistor (RLOAD) used to simulate geophone resistance. Small amplitude test signals (such as, VIN  
= 0.221 V), shows less THD performance degradation for geophone resistance < 500 .  
-100  
½ RLOAD  
PGA gain = 1, VIN = 1.77 VRMS  
PGA gain = 8, VIN = 0.221 VRMS  
Test  
Signal  
Input2  
-105  
-110  
-115  
-120  
-125  
½ RLOAD  
RSW  
PGA  
RSW  
RSW  
RSW  
RLOAD  
Input1  
0
2000  
4000  
6000  
8000  
10000  
Resistive Load ()  
8-3. THD Performance vs RLOAD  
8-2. THD versus RLOAD Test Circuit  
8.3.2 PGA and Buffer  
8-4 shows the simplified PGA and buffer block diagram.  
4.7 nF  
10 nF, C0G  
AGND  
CAPC  
AVDD1  
CAPP  
CAPN  
AVDD1  
Charge  
Pump  
MUX(+)  
CAPBP  
+
47 nF, C0G  
AVSS  
GAIN[2:0] bits  
of register CONFIG1  
(address = 02h)  
Buffer mode  
GAIN[2:0] = 111b  
Modulator  
CAPBN  
47 nF, C0G  
AVSS  
+
MUX(-)  
AVSS  
AVSS  
8-4. PGA and Buffer Block Diagram  
The device can be operated with the PGA or the unity-gain buffer. Buffer operation disables the PGA bias,  
reducing device power consumption. Because of the limited input headroom for PGA gain = 1 when operating  
with AVDD1 = 3.3 V, the buffer must be used under this condition.  
8.3.2.1 Programmable Gain Amplifier (PGA)  
The PGA is a low-noise, chopper-stabilized differential amplifier that extends the ADC dynamic range  
performance. The PGA provides analog gains from 1 to 16, with gains of 32 and 64 provided by digital scaling.  
The PGA output signal is routed to the CAPP and CAPN pins through 270-resistors. Connect an external 10-  
nF, C0G-dielectric capacitor across these pins. An antialias filter is formed by these components to attenuate the  
signal level at the modulator aliasing frequency (fMOD).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
As shown in 8-4, the buffer is used between the PGA and the modulator. Connect two 47-nF, C0G-dielectric  
capacitors from each buffer output to AVSS (CAPBP and CAPBN). A voltage charge pump increases the buffer  
input voltage headroom. Connect an external 4.7-nF capacitor between CAPC and AGND for charge pump  
operation.  
The PGA gain is programmed by the GAIN[2:0] bits of the CONFIG1 register. 8-2 shows the PGA gain  
settings and buffer selection. The PGA gains and input signal range are irrespective of the voltage reference.  
8-2. PGA Gains  
GAIN[2:0] REGISTER BITS  
PGA GAIN  
INPUT SIGNAL RANGE (VPP)  
000  
001  
010  
011  
100  
101  
110  
111  
1
±2.5  
±1.25  
2
4
±0.625  
8
±0.3125  
±0.15625  
±0.078125  
±0.0390625  
±2.5  
16  
32  
64  
Buffer mode, gain = 1  
Observe the PGA input and output voltage headroom specification. 8-5 shows the input and output voltage  
headroom when operating with AVDD1 = 5 V, an input common-mode voltage (VCM) = 2.5 V, a differential input  
voltage = ±2.5 VPP, and at gain = 1. The absolute minimum and maximum PGA input voltage (1.25 V and 3.75  
V) is ±1/2 of the differential signal voltage plus the common-mode voltage. The PGA provides 0.15-V input  
voltage margin at the negative peak and 0.4-V input voltage margin at the positive peak. As shown in the figure,  
the PGA gain increases by × 1.5 when the ADC is operated with 4.096-V or 5-V voltage references. The PGA  
provides 0.475-V output voltage margin at the positive and negative peaks.  
PGA Input Headroom  
PGA Output Headroom  
AVDD1  
AVDD1 - 0.15 V  
AVDD1  
VCM + 1.875 V  
AVDD1 - 0.85 V  
VCM + 1.25 V  
VCM = 2.5 V  
VCM - 1.25 V  
AVSS + 1.1 V  
VCM - 1.875 V  
AVSS + 0.15 V  
AVSS  
AVSS  
8-5. PGA Headroom (AVDD1 = 5 V, PGA Gain = 1)  
When operating with AVDD1 = 3.3 V, the PGA cannot support ±2.5-VPP input signals. Use the buffer for ±2.5-VPP  
input signals. For ±1.25-VPP input signals (PGA gain = 2), the input headroom is increased by increasing the  
common-mode voltage by 0.1 V to AVSS + 1.75 V. 8-6 illustrates the input and output operating headroom for  
AVDD1 = 3.3 V, VCM = 1.75 V, input signal = ±1.25 VPP, and gain = 2. The PGA uses normal gain scaling when  
VREF = 2.5 V.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
PGA Input Headroom  
PGA Output Headroom  
AVDD1  
AVDD1 - 0.15 V  
AVDD1  
VCM + 1.25 V  
AVDD1 - 0.85 V  
VCM + 0.6125 V  
VCM = 1.75 V  
VCM - 0.6125 V  
AVSS + 1.1 V  
VCM - 1.25 V  
AVSS + 0.15 V  
AVSS  
AVSS  
8-6. PGA Headroom (AVDD1 = 3.3 V, Gain = 2)  
8.3.2.2 Buffer Operation (PGA Bypass)  
The ADC provides a buffer option, bypassing the PGA. Bypassing the PGA reduces device power consumption.  
Use the buffer for ±2.5-VPP input signals when operating AVDD1 at 3.3 V. Buffer operation is enabled by setting  
the GAIN[2:0] bits = 111b of the CONFIG1 register.  
8-7 shows the buffer voltage headroom with AVDD1 = 3.3 V, VCM = 1.65 V, and the input signal = ±2.5 VPP  
.
The buffer has sufficient voltage headroom for ±2.5-VPP input signals when operating with AVDD1 = 3.3 V.  
Buffer Input Headroom  
Buffer Output Headroom  
AVDD1  
AVDD1  
AVDD1 - 0.1 V  
AVDD1 - 0.1 V  
VCM + 1.25 V  
V
CM + 1.25 V  
VCM = 1.65 V  
VCM - 1.25 V  
AVSS + 0.1 V  
AVSS  
VCM - 1.25 V  
AVSS + 0.1 V  
AVSS  
8-7. Buffer Headroom (3.3-V Operation Shown)  
Regardless of PGA or buffer operation, connect two 47-nF, C0G-dielectric capacitors from each buffer output to  
AVSS (CAPBP and CAPBN). The voltage charge pump increases the buffer input operating headroom. Connect  
an external 4.7-nF capacitor between CAPC and AGND for the charge pump operation.  
8.3.3 Voltage Reference Input  
The ADC requires a reference voltage for operation. The reference voltage input is differential, defined as the  
voltage between the REFP and REFN pins: VREF = VREFP VREFN. Because of the differential input, the  
VREFN trace can be routed to the voltage reference ground terminal to avoid ground noise pickup.  
The device offers the choice of three reference voltages: 5 V, 4.096 V, or 2.5 V. Maximum dynamic range  
performance is achieved using VREF = 5 V or 4.096 V, which requires AVDD1 = 5 V for operation. If AVDD1 = 3.3  
V, the reference voltage is limited to 2.5 V. Program the reference voltage to match the physical voltage by the  
REF[1:0] bits of the CONFIG1 register. Use a precision voltage reference with low noise, optimally less than 0.5  
μVRMS over the measurement bandwidth.  
8-8 illustrates a simplified reference input circuit. Similar to the analog inputs, the reference inputs are  
protected by ESD diodes. If the reference inputs are driven below AVSS 0.3 V or above AVDD1 + 0.3 V, the  
protection diodes can conduct. If these conditions are possible, use external clamp diodes, series resistors, or  
both to limit the reference input current to the specified value.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
AVDD1  
CREF  
REFP  
REFN  
AVSS  
8-8. Simplified Voltage Reference Input Circuit  
The ADC samples the reference voltage by an internal capacitor (CREF) and then discharges the capacitor at the  
modulator sampling frequency (fMOD). The sampling operation results in transient current flow into the reference  
inputs. The transient current is filtered by a 0.1-µF ceramic capacitor placed directly at the reference pins with a  
larger 10-μF to 47-μF capacitor at the voltage reference output. In applications where the voltage reference  
drives multiple ADCs, use 0.1-µF capacitors at each ADC.  
The external capacitor filters the current transients, resulting in an average reference current. The average  
reference current is 110 μA/V for high- and mid-power operating modes and 80 μA/V for low-power operating  
mode. For example, with VREF = 4.096 V, the reference input current is 110 μA / V × 4.096 V = 451 μA.  
8.3.4 IOVDD Power Supply  
The IOVDD digital supply operates in two voltage ranges: 1.65 V to 1.95 V and 2.7 V to 3.6 V. If operating  
IOVDD in the 1.65-V to 1.95-V range, connect IOVDD directly to the CAPD pin. 8-9 shows the required  
connection if IOVDD is operating in the 1.65-V to 1.95-V range. Otherwise, if operating IOVDD in the 2.7-V to  
3.6-V range, do not connect these pins together.  
1.65 V to 1.95 V  
IOVDD  
2.7 V to 3.6 V  
Connect IOVDD to CAPD if IOVDD 1.65 V to 1.95 V.  
Otherwise, do not connect these pins together.  
CAPD  
8-9. IOVDD Power-Supply Connection  
8.3.5 Modulator  
The modulator is a multibit delta-sigma architecture featuring low power and outstanding dynamic range  
performance with very low levels of spurious tones in the frequency spectrum. The modulator shapes the  
quantization noise of the internal quantizer to an out-of-band frequency range where the noise is removed by the  
digital filter. Noise remaining within the pass-band region is thermal noise with constant density (white noise).  
The integrated noise within the pass band is determined by the digital filter OSR.  
8.3.5.1 Modulator Overdrive  
The modulator is an inherently stable design and, therefore exhibits predictable recovery from input overdrive. If  
the modulator is overdriven at the peaks of the input signal, the filter output data may or may not clip depending  
on the duration of the signal overdrive resulting from the data averaging of the digital filter. If the modulator is  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
heavily overdriven, then the likelihood of clipped conversion data increases. Be aware the group delay of the  
digital filter delays the occurrence of an input overdrive event from appearing in the output data.  
8.3.6 Digital Filter  
The digital filter decimates and filters the modulator data to provide the high-resolution output data. By adjusting  
the amount of filtering though the OSR, trade-offs can be made between total noise and bandwidth. Increasing  
the OSR lowers total noise while decreasing the signal bandwidth.  
As shown in 8-10, the sample rate converter (SRC) receives data from the modulator prior to input to the  
digital filter block. See the Sample Rate Converter section for details.  
SRC Bypass  
IIR Bypass  
Final Output Data  
Sinc Filter  
Variable decimation  
(8 to 128)  
FIR Filter  
Fixed decimation  
(32)  
IIR Filter  
No decimation  
User calibration  
and code clip  
From Modulator  
SRC  
FILTR[1:0] bits 1,0 CONFIG0  
(register address = 01h)  
00: Reserved  
01: Sinc filter  
10: FIR filter (default)  
11: FIR and IIR filter  
8-10. Digital Filter Block Diagram  
The digital filter is comprised of three sections: a variable-decimation sinc filter; a variable-coefficient, fixed-  
decimation FIR filter; and a programmable high-pass filter (IIR). The desired filter path is selected by the  
FILTER[1:0] bits of the CONFIG0 register. The sinc filter provides partially filtered data, bypassing the FIR and  
HPF filters and user calibration. For fully filtered data, select the FIR filter option. The IIR filter stage removes dc  
and low-frequency data The FIR and the combined FIR + IIR filter are routed to the user calibration block and  
output code clipping block. See the Offset and Gain Calibration section for details of user calibration.  
8.3.6.1 Sinc Filter Section  
The first section of the digital filter is a variable-decimation, fifth-order sinc filter (sinx/x). Modulator data are  
passed through the sample rate converter to the sinc filter at the nominal rate of fMOD = fCLK / 4 = 2.048 MHz  
(1.024-MHz low-power mode). The sinc filter partially filters the data for the FIR filter that produces the final  
frequency response. The sinc filter data are intended to be used with post-processing filters to shape the final  
frequency response.  
8-3 shows the decimation ratio and the resulting output data rate of the sinc filter. The sinc filter data rate is  
programmed by the DR[2:0] bits of the CONFIG0 register.  
8-3. Sinc Filter Data Rates  
DATA RATE (SPS)  
DR[2:0] BITS  
SINC DECIMATION RATIO (N)  
HIGH- AND MID-POWER MODES  
LOW-POWER MODE  
4,000  
000  
001  
010  
011  
100  
256  
128  
64  
8,000  
16,000  
32,000  
64,000  
128,000  
8,000  
16,000  
32  
32,000  
16  
64,000  
方程2 shows the Z-domain transfer function of the sinc filter.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
5
-N  
1 - Z  
-1  
N(1 - Z )  
H(Z) =  
(2)  
where:  
N = Decimation ratio of 8-3  
方程3 shows the frequency domain transfer function of the sinc filter.  
5
pN ´ f  
sin  
fMOD  
½H(f)½ =  
p ´ f  
N sin  
fMOD  
(3)  
where:  
N = Decimation ratio shown in 8-3  
f = Input signal frequency  
fMOD = Modulator sampling frequency = fCLK / 4 (sample rate converter disabled)  
The sinc filter frequency response has notches (or zeros) occurring at the output data rate and multiples thereof.  
At these frequencies, the filter has zero gain. 8-11 shows the wide-band frequency response of the sinc filter  
and 8-12 shows details of the 3-dB response.  
0
-20  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-40  
-60  
-80  
-100  
-120  
-140  
0
1
2
3
4
5
0
0.05  
0.10  
0.15  
0.20  
Normalized Frequency (fIN/fDATA  
)
Normalized Frequency (fIN/fDATA  
)
8-11. Sinc Filter Frequency Response  
8-12. Sinc Filter 3-dB Response  
8-13 illustrates the sinc filter frequency response at fDATA = 32 kSPS. The tones at 1 kHz and harmonics are  
the result of dither added to the modulator input to suppress idle tones. The frequency of the dither signal is fMOD  
divided by the combined decimation ratio shown in 8-4. The rise of the noise floor at 2 kHz is resultant of  
modulator noise shaping. For sinc filter decimation N = 64 (data rate = 32 kSPS), the usable bandwidth by the  
use of external post filtering is 500 Hz.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
2
4
6
8
10  
12  
14  
16  
Frequency (kHz)  
8-13. FFT Output of the Sinc Filter (fDATA = 32 kSPS)  
The sinc filter data bypasses the data scaling, clip stage, and user calibration, and as a result, the sinc filter data  
are scaled differently compared to the FIR filter. See the Conversion Data Format section for details of sinc filter  
data scaling.  
8.3.6.2 FIR Filter Section  
The second section of the digital filter is a multistage, FIR low-pass filter. Partially filtered data from the sinc filter  
are input to the FIR filter. The FIR filter determines the final frequency and phase response of the data. 8-14  
shows that the FIR filter consists of four stages.  
FIR Filter 1  
2
FIR Filter 2  
2
FIR Filter 3  
4
FIR Filter 4  
2
From sinc filter  
To user calibration  
PHASE bit 2 of CONFIG0  
(register address = 01h)  
0: Linear phase coefficients (default)  
1: Minimum phase coefficients  
8-14. FIR Filter  
The first two FIR stages are half-band filters with decimation = 2 for each stage. The third and fourth FIR stages  
determine the final frequency and phase response. Decimation is 4 and 2, for FIR stages three and four. The  
overall decimation ratio of the FIR filter is 32. Unique coefficient sets in stage 3 and 4 determine linear and  
minimum phase filter response. The phase response is selected by the PHASE bit of the CONFIG0 register. 表  
8-4 lists the combined decimation ratio of the sinc and FIR filter stages and the corresponding FIR filter data  
rate.  
8-4. FIR Filter Data Rate  
DATA RATE (SPS)  
DR[2:0] BITS  
COMBINED DECIMATION RATIO  
HIGH- AND MID-POWER MODES  
LOW-POWER MODE  
000  
001  
010  
011  
100  
8192  
4096  
2048  
1024  
512  
250  
500  
125  
250  
1000  
2000  
4000  
500  
1000  
2000  
8-5 lists the FIR filter coefficients and the data scaling for the linear and minimum phase coefficients.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8-5. FIR Filter Coefficients  
STAGE 1  
STAGE 2  
STAGE 3  
STAGE 4  
SCALE = 1/134217728  
COEFFICIENT  
SCALE = 1/512  
SCALE = 1/8388608  
SCALE = 1/134217728  
LINEAR PHASE  
LINEAR PHASE  
LINEAR PHASE  
MINIMUM PHASE  
819  
LINEAR PHASE  
132  
MINIMUM PHASE  
b0  
3
0
0
0
11767  
133882  
10944  
b1  
0
103807  
0
8211  
432  
b2  
44880  
769961  
25  
0
73  
75  
b3  
174712  
2481  
2940447  
874  
b4  
150  
256  
150  
0
536821  
6692  
8262605  
507903  
0
4648  
b5  
1372637  
3012996  
5788605  
9852286  
14957445  
20301435  
24569234  
26260385  
24247577  
18356231  
9668991  
327749  
7419  
17902757  
30428735  
40215494  
39260213  
23325925  
1757787  
21028126  
21293602  
3886901  
14396783  
16314388  
1518875  
16147  
41280  
80934  
120064  
118690  
18203  
224751  
b6  
2512192  
4194304  
2512192  
0
266  
b7  
10663  
8280  
b8  
25  
0
b9  
10620  
b10  
b11  
b12  
b13  
b14  
b15  
b16  
b17  
b18  
b19  
b20  
b21  
b22  
b23  
b24  
b25  
b26  
b27  
b28  
b29  
b30  
b31  
b32  
b33  
b34  
b35  
b36  
b37  
b38  
b39  
b40  
b41  
b42  
b43  
b44  
b45  
b46  
b47  
b48  
b49  
b50  
3
22008  
507903  
0
348  
103807  
0
580196  
34123  
25549  
33460  
893263  
891396  
10944  
293598  
61387  
987253  
2635779  
3860322  
3572512  
822573  
4669054  
12153698  
19911100  
25779390  
27966862  
25779390  
7546  
7171917  
10926627  
10379094  
6505618  
1333678  
2972773  
5006366  
4566808  
2505652  
126331  
94192  
50629  
101135  
12979500  
11506007  
2769794  
134826  
56626  
220104  
56082  
263758  
231231  
215231  
430178  
34715  
12195551  
6103823  
6709466  
9882714  
353347  
8629331  
5597927  
19911100  
12153698  
4669054  
822573  
3572512  
3860322  
2635779  
987253  
293598  
1496514  
1933830  
1410695  
502731  
245330  
4389168  
7594158  
428064  
6566217  
4024593  
3679749  
5572954  
332589  
580424  
283878  
588382  
693209  
366118  
565174  
492084  
231656  
1084786  
132893  
1300087  
878642  
1162189  
1741565  
522533  
2490395  
688945  
2811738  
2425494  
2338095  
4511116  
641555  
6661730  
2950811  
8538057  
5136333  
2351253  
3357202  
3767666  
1087392  
3847821  
919792  
9196  
891396  
125456  
122207  
61813  
4445  
893263  
580196  
224751  
22484  
18203  
118690  
120064  
80934  
41280  
16147  
4648  
874  
22245  
10775  
2918303  
2193542  
1493873  
2595051  
940  
2953  
2599  
1052  
79991  
2260106  
963855  
1482337  
1480417  
43  
214  
73  
0
132  
0
33  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8-5. FIR Filter Coefficients (continued)  
STAGE 1  
STAGE 2  
STAGE 3  
STAGE 4  
COEFFICIENT  
SCALE = 1/512  
LINEAR PHASE  
SCALE = 1/8388608  
LINEAR PHASE  
SCALE = 1/134217728  
SCALE = 1/134217728  
LINEAR PHASE  
MINIMUM PHASE  
LINEAR PHASE  
MINIMUM PHASE  
586408  
1497356  
168417  
1166800  
644405  
675082  
806095  
211391  
b51  
b52  
b53  
b54  
b55  
b56  
b57  
b58  
b59  
b60  
b61  
b62  
b63  
b64  
b65  
b66  
b67  
b68  
b69  
b70  
b71  
b72  
b73  
b74  
b75  
b76  
b77  
b78  
b79  
b80  
b81  
b82  
b83  
b84  
b85  
b86  
b87  
b88  
b89  
b90  
b91  
b92  
b93  
b94  
b95  
b96  
b97  
b98  
b99  
b100  
b101  
0
0
10537298  
9818477  
41426374  
56835776  
41426374  
9818477  
10537298  
8538057  
2950811  
740896  
141976  
527673  
327618  
278227  
363809  
70646  
304819  
63159  
205798  
124363  
107173  
131357  
31104  
6661730  
641555  
4511116  
2338095  
2425494  
2811738  
688945  
2490395  
522533  
1741565  
1162189  
878642  
1300087  
132893  
107182  
15644  
1084786  
366118  
71728  
36319  
38331  
693209  
588382  
283878  
580424  
34715  
38783  
13557  
31453  
1230  
430178  
215231  
231231  
20983  
7729  
263758  
11463  
8791  
56082  
220104  
56626  
134826  
101135  
50629  
94192  
7546  
61387  
4659  
7126  
732  
4687  
976  
2551  
1339  
1103  
1085  
314  
33460  
25549  
34123  
348  
681  
16  
22008  
10620  
349  
96  
144  
8280  
78  
10663  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8-5. FIR Filter Coefficients (continued)  
STAGE 1  
STAGE 2  
STAGE 3  
STAGE 4  
SCALE = 1/134217728  
COEFFICIENT  
SCALE = 1/512  
LINEAR PHASE  
SCALE = 1/8388608  
LINEAR PHASE  
SCALE = 1/134217728  
LINEAR PHASE  
MINIMUM PHASE  
LINEAR PHASE  
MINIMUM PHASE  
b102  
b103  
b104  
b105  
b106  
b107  
b108  
b109  
266  
7419  
6692  
2481  
75  
432  
132  
0
46  
42  
9
16  
0
4  
0
0
8-15 shows the FIR pass-band frequency response to 0.375 × fDATA with ±0.003-dB pass-band ripple. 8-16  
shows the pass-band, transition-band, and stop-band performance from 0 Hz to fDATA. The filter is designed for  
135-dB stop-band attenuation at the Nyquist frequency.  
2.0  
1.5  
20  
0
-20  
1.0  
-40  
0.5  
-60  
0
-80  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
-160  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
Normalized Input Frequency (fIN/fDATA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Normalized Input Frequency (fIN/fDATA  
)
)
8-16. FIR Filter Transition Band Response  
8-15. FIR Filter Pass-Band Response  
As with many sampled systems, the filter response repeats at multiples of the modulator sample rate (fMOD). The  
filter response repeats at frequencies = N × fMOD ± f0, where N = 1, 2, and so on, and f0 = filter pass-band).  
These frequencies, if not filtered and are otherwise present in the signal, fold back (or alias) into the pass-band  
causing errors. A low-pass input filter reduces the aliasing error. For a band-limited signal typical of many  
geophones, a single-pole filter at the PGA output is sufficient to suppress the aliasing frequencies.  
8.3.6.3 Group Delay and Step Response  
The FIR filter offers linear and minimum phase filter options. The pass-band, transition band, and stop-band  
responses of the linear and minimum phase filters are the same but differ in phase and step response behavior.  
8.3.6.3.1 Linear Phase Response  
A linear phase filter has the unique property that the delay from input to output is constant across all input  
frequencies (that is, constant group delay). The constant delay property is independent of the nature of the input  
signal (impulse or swept-tone), and therefore the phase is linear across frequency, which can be important when  
analyzing multitone signals. However, as depicted in 8-17, the group delay is longer for the linear phase filter  
compared to minimum phase. For both the linear and minimum filters, fully settled data are available 62  
conversions after a step input change occurs.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Minimum Phase Filter  
Linear Phase Filter  
-0.2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Time Index (1/fDATA  
)
8-17. FIR Step Response  
8.3.6.3.2 Minimum Phase Response  
The minimum phase filter provides a short group delay for data from filter input to filter output. 8-18 shows the  
group delay for minimum and linear phase filters. The group delay of the minimum phase filter is a function of  
signal frequency. The PHASE bit of the CONFIG0 register programs the filter phase.  
35  
Linear Phase Filter  
30  
25  
20  
15  
10  
Minimum Phase Filter  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
8-18. FIR Group Delay (fDATA = 500 SPS)  
8.3.6.4 HPF Stage  
The last stage of the digital filter is the high-pass filter (HPF). The high-pass filter is implemented as a first-order,  
IIR filter. The high-pass filter removes dc and low frequencies from the data. The HPF is enabled by  
programming the FILTR[1:0] bits = 11b of the CONFIG0 register.  
方程4 shows the z-domain transfer function of the filter:  
2 - a  
2
1 - z-1  
1 - (1 - a)z-1  
H(z) =  
(4)  
where:  
a =  
2sin(&N)  
cos(&N) + sin(&N)  
• ωN = π× fC / fDATA (normalized corner frequency, radians)  
fC = Corner frequency (Hz)  
fDATA = Output data rate (Hz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
Be aware the corner frequency programming is a function of fDATA. As shown by 方程式 5, the value written to  
the HPF1, HPF0 registers is value a, computed by 方程4, × 216.  
HPF[15:0] = a × 216  
(5)  
8-6 shows examples of the high-pass filter programming.  
8-6. High-Pass Filter Value Examples  
HPF[15:0]  
0332h  
fC (Hz)  
fDATA (SPS)  
250  
0.5  
1.0  
1.0  
0332h  
500  
019Ah  
1000  
The HPF accumulates data to perform the high-pass function. Similar to the operation of an analog HPF after a  
dc step change is applied to the input, the filter takes time to accumulate data to remove dc from the signal. The  
lower the corner frequency, the longer the filter takes to settle.  
To shorten the HPF settling time, the offset register is used as a seed value for the HPF accumulator. The  
accumulator is loaded with the offset register each time the HPF state is changed from disabled to enabled. The  
offset register can be preset with an estimated value, or a calibrated value if the dc level is known. To improve  
accuracy, scale the offset value by the inverse value of GAIN[3:0] / 400000h. The normal offset operation is  
disabled when the HPF is enabled.  
To initialize the HPF accumulator with the OFFSET[2:0] registers:  
1. Disable the HPF.  
2. Write the desired value to the OFFSET[2:0] registers.  
3. Enable the HPF. OFFSET[2:0] is loaded to the HPF data accumulator.  
4. The HPF tracks the remaining dc value from the signal.  
Subsequent writes to the OFFSET[2:0] registers are ignored. To reload the contents of the OFFSET[2:0]  
registers to the HPF, disable and re-enable the HPF.  
8.3.7 Clock Input  
A clock signal is required for operation. The clock signal is applied to the CLK pin at fCLK = 8.192 MHz for high-  
and mid-power modes and 4.096 MHz for low-power mode. As with many precision data converters, a low-jitter  
clock is required to achieve data sheet performance. Avoid the use of R-C clock oscillators. A crystal-based  
clock source is recommended. Avoid ringing on the clock signal by placing a series resistor in the clock PCB  
trace to source-terminate. Keep the clock signal routed away from other clock signals, input pins, and analog  
components.  
8.3.8 GPIO  
The ADC provides two general-purpose I/O (GPIO) pins that can be used as digital inputs or outputs. The GPIO  
voltage levels are IOVDD and DGND. 8-19 illustrates the GPIO block diagram.  
The GPIOs are programmed by the GPIO register. The GPIOs are programmed as an input or output by the  
GPIOx_DIR bits. The GPIO state is read or written by the GPIOx_DAT bits. When programmed as an output,  
reading the GPIOx_DAT bits returns the register bit value previously written. If the GPIOs are unused, terminate  
the GPIOs with pulldown resistors to prevent the pins from floating.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
IOVDD  
GPIO0_DIR bit 1 of GPIO  
(register address = 0Bh)  
0: GPIO0 is an input (default)  
1: GPIO0 is an output  
SW  
Write  
GPIO0_DAT bit 3 of GPIO  
(register address = 0Bh)  
GPIO0  
0: GPIO0 data is low  
1: GPIO0 data is high  
100 k  
Read  
GPIO1_DIR bit 2 of GPIO  
(register address = 0Bh)  
0: GPIO1 is an input (default)  
1: GPIO1 is an output  
SW  
Write  
GPIO1_DAT bit 4 of GPIO  
GPIO0  
(register address = 0Bh)  
0: GPIO1 data is low  
1: GPIO1 data is high  
100 k  
Read  
Read  
DGND  
8-19. GPIO Operation  
8.4 Device Functional Modes  
8.4.1 Power Modes  
There are three power-resolution modes offering trade-offs between power consumption and dynamic range.  
The modes are high power, mid power, and low power. See the Noise Performance section for details of noise  
performance. The MODE[1:0] bits of the CONFIG0 register selects the power mode. The clock frequency for  
low-power mode is 4.096 MHz (half-speed clock); therefore, the output data rates are also scaled by one half.  
8.4.2 Power-Down Mode  
Power-down is engaged by taking the PWDN pin low, or by software control, by sending the STANDBY  
command. To exit power-down, take PWDN high or send the WAKEUP command to exit software power-down  
(with the clock running). Power-down disables the analog circuit; however, the digital LDO (CAPD pin) remains  
biased, drawing a small bias current from IOVDD. In comparison, software power-down draws larger IOVDD  
bias current. In both power-down modes, the ac signals of the digital outputs are stopped but remain driven high  
or low. The digital inputs must not be allowed to float; otherwise, leakage current can flow from the IOVDD  
supply. Reset the ADC if the clock is interrupted in power-down. Synchronization is lost in power-down;  
therefore, resynchronize the ADC.  
8.4.3 Reset  
The ADC is reset by three methods: power-on reset (POR), the RESET pin, or the RESET command. Power-on  
reset occurs when the power-supply voltages cross the respective thresholds. See Power-Up Switching  
Characteristics for details. To reset the ADC by pin, drive RESET low for at least two fCLK cycles and return high  
for reset. By command, reset takes effect on the next rising fCLK edge after the eighth rising edge of SCLK of the  
reset command. At reset, the filter is restarted and the user registers reset to default. Reset timing is illustrated in  
6-5.  
8.4.4 Synchronization  
The ADC is synchronized by the SYNC pin or by the SYNC command, resulting in restart of the digital filter  
cycle. Synchronization by the pin occurs on the next rising edge of CLK after SYNC is taken high on the falling  
edge of CLK. Synchronization by the SYNC command occurs on the rising edge of CLK following the eighth bit  
of the command.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS1285  
 
 
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
The following results in loss of synchronization:  
Power-up cycle, ADC reset, or when hardware or software power down modes are entered  
The following mode changes:  
DR[2:0] (data rate)  
PHASE (filter phase)  
MODE[1:0] (power mode)  
SYNC (synchronization mode)  
SRC[1:0] (sample rate converter enabled or disabled)  
There are two synchronization control modes: pulse sync and continuous sync. The synchronization mode is  
programmed by the SYNC bit of the ID/SYNC register.  
8.4.4.1 Pulse-Sync Mode  
The pulse-sync mode unconditionally synchronizes the ADC on the rising edge of SYNC. When synchronized,  
the internal filter memory is reset, DRDY goes high, and the filter cycle restarts. The following 63 DRDY periods  
are disabled to allow for digital filter settling. DRDY asserts low when the conversion data are ready. See 6-4  
for synchronization timing details.  
8.4.4.2 Continuous-Sync Mode  
The continuous-sync mode offers the option of accepting a continuous clock signal to the SYNC pin. The ADC  
compares the period of the SYNC clock signal to N periods of the DRDY signal to qualify resynchronization.  
Initially, the first SYNC positive edge synchronizes the ADC. Resynchronization occurs only when the time  
period between rising edges of SYNC over N multiple DRDY periods differ by at least ± one fCLK cycle, where N  
= 1, 2, 3 and so on. Otherwise, the SYNC clock period is in synchronization with the existing DRDY pulses, so  
no resynchronization occurs. Be aware the continuous sync mode cannot be used when the sample rate  
converter is enabled.  
After synchronization, DRDY continues to pulse; however, data are held low for 63 data periods to allow for the  
digital filter to settle. See 6-4 for the DRDY behavior. Because of the initial delay of the digital filter, the SYNC  
input signal and the DRDY pulses exhibit an offset time. The offset time is a function of the data rate.  
8.4.5 Sample Rate Converter  
The sample rate converter (SRC) compensates clock frequency error by resampling the modulator data at a new  
rate set by the compensation factor written to the SRC registers. The frequency compensation range is ±244  
ppm with 7.45-ppb (1 / 227) resolution.  
Clock frequency error is compensated by writing a value to the SCR0 and SRC1 registers. The register value is  
in 2's-complement format for positive and negative frequency error compensation. Positive register data values  
decrease the data rate frequency (increases the period). The new data rate frequency is observed by the  
frequency of the DRDY signal.  
8-7 shows example values of frequency compensation. 8000h disables the sample rate converter. 0000h  
passes the data through with no compensation but adds an 8 / fCLK delay to the time delay of SYNC input to the  
DRDY pulses.  
8-7. Example SRC Values  
SRC[15:0] VALUE  
7FFFh  
COMPENSATION FACTOR  
(1 32,767 / 227) × fDATA  
(1 1 / 227) × fDATA  
1 × fDATA  
0001h  
0000h  
7FFFh  
(1 + 1 / 227) × fDATA  
8001h  
(1 + 32,767 / 227) × fDATA  
8000h  
1 × fDATA (SRC disabled)  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
Resynchronize the ADC after the sample rate converter is enabled or disabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS1285  
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
Because the SRC is a digital function, operation is deterministic without error. The SRC trim value can be written  
all at the same time, or written incrementally up to a target value to minimize the step change of frequency. Use  
the multibyte command operation to write to the SRC registers and complete the write operation 256 CLK cycles  
before the DRDY falling edge. This procedure loads the high and low bytes simultaneously before they are  
internally processed. See 6-7 for details.  
8.4.6 Offset and Gain Calibration  
The ADC integrates calibration registers to correct offset and gain errors. As shown in 方程式 6 and 8-20, the  
24-bit offset value (OFFSET[23:0]) is subtracted from the filter data before multiplication by the 24-bit gain value  
(GAIN[23:0]), divided by 400000h. The data are clipped to 32 bits to yield the final output. The offset operation is  
bypassed when the high-pass filter is enabled.  
GAIN[23:0]  
Output =  
(Input - OFFSET[23:0])  
400000h  
(6)  
offset bypassed in HPF mode  
output data  
clipped to 32 bits  
+
from digital filter  
X
final output  
-
OFFSET[23:0]  
GAIN[23:0]  
400000h  
8-20. Calibration Block Diagram  
8.4.6.1 OFFSET Register  
Offset correction is by a 24-bit word consisting of three 8-bit registers (high address is the MSB). The offset  
value is left-justified to align to the 32-bit data. The offset value is 2's-complement coding with a maximum  
positive value of 7FFFFFh and a maximum negative value of 800000h. OFFSET is subtracted from the  
conversion data; see 8-8. Offset error is corrected by the offset calibration command with the input-short  
multiplexer option, or by collecting shorted-input ADC data and writing the value to the registers.  
Although the offset correction range is from FS to +FS, the sum of offset and gain correction must not exceed  
106% of the uncalibrated range.  
When the high-pass filter is enabled, offset correction is disabled. The offset value is used instead as a starting  
value to shorten the high-pass filter settling time. To reload the offset value to the HPF, disable and re-enable the  
high-pass filter. See the HPF Stage section for more details.  
8-8. Offset Calibration Values  
OFFSET[31:0]  
CALIBRATED OUTPUT CODE (1)  
00007Fh  
FFFF8100h  
000000h  
00000000h  
FFFF7Fh  
00008100h  
(1) Ideal code value with no offset error.  
8.4.6.2 GAIN Register  
Gain correction is through a 24-bit word, consisting of three 8-bit registers (high address = MSB). The gain value  
is 24 bits, coded in straight binary and normalized to 1.0 for GAIN[23:0] equal to 400000h. With a calibration  
signal applied, gain error is calibrated by either the gain calibration command, or by collecting ADC data and  
writing a computed value to the gain registers. 8-9 lists examples of the GAIN[23:0] register values. Although  
the range of gain values can be much greater or less than 1, the sum of offset and gain correction must not  
exceed 106% of the uncalibrated range.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8-9. Gain Calibration Values  
GAIN[31:0]  
GAIN CORRECTION FACTOR  
433333h  
1.05  
400000h  
1.00  
0.95  
3CCCCCh  
8.4.6.3 Calibration Procedure  
ADC calibration can be performed using the ADC calibration commands or by performing manual calibration.  
The calibration procedure is as follows:  
1. Select the PGA or buffer operation, input channel, and PGA gain condition for calibration.  
2. Preset the OFFSET register = 000000h and the GAIN register = 400000h.  
3. Disable the high-pass filter for offset calibration. Short the inputs to the system, or use the input MUX to  
provide the input short. A system-level input short can yield more accurate calibration. After the input settles,  
either send the OFSCAL command or perform a manual calibration.  
a. OFSCAL command. After the command is sent, DRDY is driven low 81 conversion periods later to  
indicate calibration is complete. The OFFSET register is updated with the new calibration value. As  
shown in 8-21, the first data output uses the new OFFSET value.  
b. Manual calibration. Wait at least 64 conversions for the digital filter to settle then average a number of  
data points to improve calibration accuracy. Write the value to the 24-bit OFFSET register.  
4. Apply a gain calibration voltage. After the input settles, either send the GANCAL command or perform a  
manual calibration.  
a. GANCAL command. Apply a positive dc full-scale calibration voltage. After the command is sent, DRDY  
is driven low 81 conversion periods later to indicate calibration is complete. The ADC calculates GAIN  
such that the full-scale code is equal to the applied calibration signal. As shown in 8-21, the first data  
output uses the new GAIN value.  
b. Manual calibration. Apply an ac signal coherent to the sample rate or dc calibration signal that are  
slightly below full-scale (for example, 2.4 V for gain = 1). Using a calibration signal less than full-scale  
range prevents clipped output codes that otherwise lead to incorrect calibration. Wait 64 conversions for  
the digital filter to settle then average a number of data points to improve calibration accuracy. For ac-  
signal calibration, use a number of coherent signal periods to compute the RMS value.  
方程7 computes the value of GAIN for manual calibration.  
Expected Output Code  
GAIN[23:0] = 400000h ‡  
Actual Output Code  
(7)  
DRDY  
81 conversion periods  
CS  
8
SCLK  
DIN  
CAL Command  
DOUT  
00h  
8-21. Calibration Command  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.5 Programming  
8.5.1 Serial Interface  
Conversion data are read and ADC configuration is made through the SPI-compatible serial interface. The  
interface consists of four signals: CS, SCLK, DIN, and DOUT. DRDY asserts low when conversion data are  
ready. The serial interface is passive (peripheral mode), where the serial clock (SCLK) is an input. The ADC  
operates in SPI mode 0, where CPOL = 0 and CPHA = 0. In mode 0, SCLK idles low and data are updated on  
the SCLK falling edges and are read on the SCLK rising edges.  
8.5.1.1 Chip Select (CS)  
CS is an active-low input that selects the serial interface for communication. A communication frame is started  
by taking CS low and is ended by taking CS high. Because only one command per frame is permitted, toggle CS  
between commands. Taking CS high before the command is completed resets the operation and blocks further  
SCLK inputs. CS high forces DOUT to a high-impedance state. DRDY remains active regardless of the state of  
CS.  
8.5.1.2 Serial Clock (SCLK)  
SCLK is the serial clock input that shifts data into and out of the ADC. The ADC latches DIN data on the rising  
edge of SCLK. DOUT data are shifted out on the falling edge of SCLK. Keep SCLK low when not active. The  
SCLK pin is a Schmidt-trigger input that reduces sensitivity to SCLK noise. However, keep the SCLK signal as  
noise free as possible to prevent inadvertent shifting of the data.  
8.5.1.3 Data Input (DIN)  
DIN is used to input data to the ADC. DIN data are latched on the rising edge of SCLK.  
8.5.1.4 Data Output (DOUT)  
DOUT is the data output pin. Data are shifted out on the falling edge of SCLK and are latched by the host on the  
rising edge. Because the conversion data MSB is on DOUT when CS is driven low (DRDY low), the MSB of the  
data is read on the first rising edge of SCLK. Minimize trace length to reduce load capacitance on the pin. Place  
a series termination resistor close to the pin to terminate the PCB trace impedance. Taking CS high forces  
DOUT to a high-impedance state.  
8.5.1.5 Data Ready (DRDY)  
DRDY is an active-low output that indicates conversion data are ready. DRDY is active regardless of the state of  
CS. DRDY is driven high on the first falling edge of SCLK, regardless if data is being read or a command is  
input. As shown in 8-22, if data are not retrieved, DRDY pulses high for eight fCLK periods.  
Dara Updating  
8/fCLK  
DRDY  
8-22. DRDY With No Data Retrieval  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.5.2 Conversion Data Format  
As listed in 8-10, the conversion data are coded in 32-bit, 2's-complement format to represent positive and  
negative numbers. If desired, the data read operation can be shortened to 24 bits by taking CS high. Data  
scaling from the Sinc filter is dependent on the value of VREF and whether PGA or buffer operation.  
8-10. Output Data Format  
CONVERSION CODES(1)  
FIR FILTER  
VREF = 2.5 V, 4.096 V or 5 V  
7FFFFFFFh  
SINC FILTER(2)  
VREF = 4.096 V  
3A980000h  
VIN (V)  
2.5 V × (231 1) / 231 / Gain  
2.5 V / (Gain × (231 1))  
0
VREF = 2.5 V  
3FFFFFFFh  
<00000001h  
00000000h  
>FFFFFFFFh  
C0000000h  
VREF = 5 V  
30000000h  
<00000001h  
00000000h  
>FFFFFFFFh  
D0000000h  
<00000001h  
00000000h  
00000001h  
00000000h  
2.5 V / (Gain × 231  
2.5 V / Gain  
)
>FFFFFFFFh  
C5680000h  
FFFFFFFFh  
80000000h  
(1) Excluding the effects of reference voltage error, noise, linearity, offset, and gain errors.  
(2) In buffer operation when VREF = 4.096 V or 5 V, the data from the sinc filter are scaled 66.6% compared to PGA mode. Because of the  
relatively low value of OSR, full 32-bit resolution is not available in sinc filter operation. When overdriven, the sinc filter continues to  
output code values beyond nominal ± full-scale until the point of modulator saturation.  
8.5.3 Commands  
8-11 lists the commands for the ADC. Most commands are one byte in length. However, the number of bytes  
for the register read and write commands depend on the amount of register data specified in the command.  
8-11. Command Descriptions  
MNEMONIC  
WAKEUP  
STANDBY  
SYNC  
TYPE  
DESCRIPTION  
BYTE 1(1)  
BYTE 2  
Control  
Control  
Control  
Control  
Data  
Wake from standby mode or NOP  
Enter standby (software power-down mode)  
Synchronize  
0000 000x (00h or 01h)  
0000 001x (02h or 03h)  
0000 010x (04h or 5h)  
0000 011x (06h or 07h)  
0001 0010 (12h)  
RESET  
Reset  
RDATA  
Read conversion data  
RREG  
Register  
Register  
Calibration  
Calibration  
Read nnnn registers beginning at address rrrr 0010 rrrr (20h + rrrr)(2)  
Write nnnn registers beginning at address rrrr 0100 rrrr (40h + rrrr)(2)  
0000 nnnn (00h + nnnn)(3)  
WREG  
0000 nnnn (00h + nnnn)(3)  
OFSCAL  
GANCAL  
Offset calibration  
Gain calibration  
0110 0000 (60h)  
0110 0001 (61h)  
(1) x = Don't care.  
(2) rrrr = Starting address for register read and write commands.  
(3) nnnn = Number of registers to be read or written 1. For example, to read or write three registers, nnnn = 2.  
8.5.3.1 Single Byte Command  
8-23 shows the general format of a single byte command (for the response bytes of the RDATA command,  
see the RDATA command).  
CS  
8
SCLK  
DIN  
Command  
8-23. Single Byte Command Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS1285  
 
 
 
 
 
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.5.3.2 WAKEUP: Wake Command  
The WAKEUP command exits standby mode to resume normal operation. If the ADC is already powered, the  
command is no operation (NOP). When exiting standby mode, the ADC requires resynchronization. See the  
Power-Down Mode section for details of power-down mode.  
8.5.3.3 STANDBY: Software Power-Down Command  
The STANDBY command enters the software power-down mode. The ADC exits software power-down mode by  
the WAKEUP command. See the Power-Down Mode section for details of power-down mode.  
8.5.3.4 SYNC: Synchronize Command  
The SYNC command synchronizes the ADC. Synchronization occurs at the eighth bit of the SYNC command  
byte. When synchronized, the current conversion is stopped and restarted. In order to synchronize multiple  
ADCs by software command, send the command simultaneously to all devices. The SYNC pin must be high  
when using the command. See the Synchronization section for details of synchronization.  
8.5.3.5 RESET: Reset Command  
The RESET command resets the ADC. See the Reset section for details of the reset operation.  
8.5.3.6 Read Data Direct  
There are two methods in which to read conversion data: read data direct and read data by command.  
Read data direct does not require a command, instead after DRDY falls low, simply apply SCLK to read the data.  
8-24 shows the read data direct operation. When DRDY falls low, take CS low to start the read operation. CS  
low causes DOUT to transition from tri-state mode to the output of the data MSB. Data are read on the rising  
edge of SCLK and updated on the falling edge of SCLK. DRDY returns high on the first falling edge of SCLK.  
DOUT is low after 32 data bits are read. To read the same data again before new data are available, use the  
RDATA command.  
Keep DIN low when reading conversion data. If the RDATA (read conversion data) or RREG (read register data)  
command is sent, output data are interrupted in response to the command. If DRDY falls low during the read  
operation, the new data are lost unless a minimum of three bytes of the old data are read.  
DRDY  
CS  
16  
8
24  
32  
SCLK  
DIN  
00h  
00h  
00h  
00h  
DOUT  
MSB-2 Data  
MSB Data  
MSB-1 Data  
LSB Data  
8-24. Read Data Direct  
8.5.3.7 RDATA: Read Conversion Data Command  
The RDATA command (8-25) is useful to re-read data within the same conversion period or to read data  
interrupted by a read register command. In both cases, DRDY is high because DRDY is driven high on the first  
SCLK of the previous operation. If DRDY is high, the first output byte is zero followed by data. If low, the first  
output byte is byte 1 of the conversion data, which is restarted for output byte 2.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
DRDY  
CS  
16  
40  
8
24  
32  
SCLK  
DIN  
12h  
00h  
00h  
00h  
00h  
00h  
DOUT  
MSB-1 Data  
MSB Data  
MSB-2 Data  
LSB Data  
8-25. Read Conversion Data by Command  
8.5.3.8 RREG: Read Register Command  
The RREG command reads register data. The command is comprised of two bytes followed by output of the  
designated number of register bytes. The ADC auto-increments the address up to the number of registers  
specified in byte 2 of the command. The incrementing address does not wrap. The first byte of the command is  
the opcode added to the register starting address, and the second byte is the number of registers to read minus  
one.  
First command byte: 0010 rrrr, where rrrr is the starting register address  
Second command byte: 0000 nnnn, where nnnn is the number of registers to read minus one  
8-26 shows an example of a three-register read operation starting at register address 01h. The first register  
data appears on DOUT at the 16th falling edge of SCLK. The data are latched on the rising edge of SCLK.  
CS  
16  
40  
8
24  
32  
SCLK  
DIN  
21h  
00h  
00h  
00h  
02h  
DOUT  
don‘t care  
Reg 01h Data  
don‘t care  
Reg 02h Data  
Reg 03h Data  
8-26. Read Register Data  
8.5.3.9 WREG: Write Register Command  
The WREG command is used to write register data. The command is two bytes followed by the designated  
number of register bytes to be written. The ADC auto-increments the address up to the number of registers  
specified in the command. The incrementing address does not wrap. The first byte of the command is the  
opcode added to the register starting address, and the second byte is the number of registers to write minus  
one.  
First command byte: 0100 rrrr, where rrrr is the starting address of the first register.  
Second command byte: 0000 nnnn, where nnnn is the number of registers to write minus one.  
Data bytes: Depending on the number of registers specified.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8-27 shows an example of a three-register write operation starting at register address 01h.  
CS  
16  
40  
8
24  
32  
SCLK  
DIN  
Reg 01h Data  
41h  
02h  
Reg 02h Data  
Reg 03h Data  
8-27. Write Register Data  
8.5.3.10 OFSCAL: Offset Calibration Command  
The OFSCAL command performs offset calibration. See the Calibration Procedure section for details of  
operation.  
8.5.3.11 GANCAL: Gain Calibration Command  
The GANCAL command performs a gain calibration. See the Calibration Procedure section for details of  
operation.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.6 Register Map  
Collectively, the registers contain all the information needed to configure the device (such as data rate, filter  
mode, specific reference voltage, and so on). The registers are accessed by the read and write commands  
(RREG and WREG). Registers can be accessed individually, or accessed in multiples given by the number of  
registers specified in the command field.  
Changes made to certain register bits result in a filter reset, thus requiring resynchronization of the ADC. See the  
Synchronization section for details.  
8-12. Register Map  
ADDRESS  
00h  
REG LINK  
ID/SYNC  
CONFIG0  
CONFIG1  
HPF0  
RESET  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
DEVID[2:0]  
PHASE  
BIT 1  
BIT 0  
xxxx0000b  
00010010b  
00000000b  
00110010h  
00000011b  
00000000b  
00000000b  
00000000b  
00000000b  
00000000b  
01000000b  
000xx000b  
00000000b  
10000000b  
REVID[3:0]  
SYNC  
01h  
MODE[1:0]  
DR[2:0]  
FILTR[1:0]  
GAIN[2:0]  
02h  
MUX[2:0]  
REF[1:0]  
HPF[7:0]  
03h  
04h  
HPF1  
HPF[15:8]  
OFFSET[7:0]  
OFFSET[15:8]  
OFFSET[23:16]  
GAIN[7:0]  
05h  
OFFSET0  
OFFSET1  
OFFSET2  
GAIN0  
06h  
07h  
08h  
09h  
GAIN1  
GAIN[15:8]  
0Ah  
0Bh  
0Ch  
0Dh  
GAIN2  
GAIN[23:16]  
GPIO  
RESERVED  
GPIO1_DAT GPIO0_DAT GPIO1_DIR GPIO0_DIR RESERVED  
SRC0  
SRC[7:0]  
SRC1  
SRC[15:8]  
8.6.1 Register Descriptions  
8-13 shows the register access codes for the ADS1285 registers.  
8-13. ADS1285 Access Codes  
Access Type  
Code  
R
Description  
R
Read  
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.6.1.1 ID/SYNC: Device ID, SYNC Register (Address = 00h) [Reset = xxxx0000b]  
8-28. ID/SYNC Register  
7
6
5
4
3
2
1
0
REVID[3:0]  
R-xxxxb  
DEVID[2:0]  
R-000b  
SYNC  
R/W-0b  
8-14. ID/SYNC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
REVID[3:0]  
R
xxxxb  
Factory-programmed die revision.  
These bits identify the revision of the die. The die revision is  
subject to change without notification.  
3:1  
0
DEVID[2:0]  
SYNC  
R
000b  
0b  
Factory-programmed device identification.  
These bits identify the ADC.  
000b = ADS1285  
R/W  
Synchronization mode selection.  
See the Synchronization section for details.  
0b = Pulse-sync mode  
1b = Continuous-sync mode  
8.6.1.2 CONFIG0: Configuration Register 0 (Address = 01h) [Reset = 12h]  
8-29. CONFIG0 Register  
7
6
5
4
3
2
1
0
MODE[1:0]  
R/W-00b  
DR[2:0]  
R/W-010b  
PHASE  
R/W-0b  
FILTR[1:0]  
R/W-10b  
8-15. CONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
MODE[1:0]  
R/W  
00b  
Power mode selection.  
See the Power Modes section for details.  
00b = High  
01b = Mid  
10b = Low  
11b = Reserved  
5:3  
DR[2:0]  
R/W  
010b  
Data rate selection.  
See the Digital Filter section for details.  
000b = 250 SPS (125 SPS in low-power mode)  
001b = 500 SPS (250 SPS in low-power mode)  
010b = 1000 SPS (500 SPS in low-power mode)  
011b = 2000 SPS (1000 SPS in low-power mode)  
100b = 4000 SPS (2000 SPS in low-power mode)  
101b111b = Reserved  
2
PHASE  
R/W  
R/W  
0b  
FIR filter phase selection.  
See the Digital Filter section for details.  
0b = Linear phase  
1b = Minimum phase  
1:0  
FILTR[1:0]  
10b  
Digital filter configuration.  
See the Digital Filter section for details.  
00b = Reserved  
01b = Sinc filter output  
10b = FIR filter output  
11b = FIR + IIR filter output  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.6.1.3 CONFIG1: Configuration Register 1 (Address = 02h) [Reset = 00h]  
8-30. CONFIG1 Register  
7
6
5
4
3
2
1
0
MUX[2:0]  
R/W-000b  
REF[1:0]  
R/W-00b  
GAIN[2:0]  
R/W-000b  
8-16. CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
MUX[2:0]  
R/W  
000b  
Input MUX selection.  
See the Analog Input section for details.  
000b = Input 1  
001b = Input 2  
010b = Internal short with a 400-Ωresistor  
011b = Input 1 and input 2  
100b = Reserved  
101b = Internal short with a 0-Ωresistor  
110b, 111b = Reserved  
4:3  
2:0  
REF[1:0]  
R/W  
R/W  
00b  
Select reference voltage operation.  
See the Voltage Reference Input section for details.  
00b = 5 V  
01b = 4.096 V  
10b = 2.5 V  
11b = Reserved  
GAIN[2:0]  
000b  
PGA gain selection.  
See the PGA and Buffer section for details.  
000b = 1  
001b = 2  
010b = 4  
011b = 8  
100b = 16  
101b = 32  
110b = 64  
111b = Buffer operation  
8.6.1.4 HPF0, HPF1: High-Pass Filter Registers (Address = 03h, 04h) [Reset = 32h, 03h]  
8-31. HPF0 Register  
7
6
5
4
3
2
2
1
0
0
HPF[7:0]  
R/W-32h  
8-32. HPF1 Register  
7
6
5
4
3
1
HPF[15:8]  
R/W-03h  
8-17. HPF0, HPF1 Registers Field Description  
Bit  
15:0  
Field  
Type  
Reset  
Description  
HPF[15:0]  
R/W  
0332h  
High-pass filter programming.  
These registers program the corner frequency of the high-pass  
filter. See the HPF Stage section for details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.6.1.5 OFFSET0, OFFSET1, OFFSET2: Offset Calibration Registers  
(Address = 05h, 06h, 07h) [Reset = 00h, 00h, 00h]  
8-33. OFFSET0 Register  
7
7
7
6
6
6
5
5
5
4
3
2
2
2
1
1
1
0
0
0
OFFSET[7:0]  
R/W-00h  
8-34. OFFSET1 Register  
4
3
OFFSET[15:8]  
R/W-00h  
8-35. OFFSET2 Register  
4
3
OFFSET[23:16]  
R/W-00h  
8-18. OFFSET0, OFFSET1, OFFSET2 Registers Field Description  
Bit  
23:0  
Field  
Type  
Reset  
Description  
OFFSET[23:0]  
R/W  
000000h  
Offset calibration.  
These bits are the 24-bit offset calibration word. The format is  
2's-complement coding. The ADC subtracts the value of offset  
from the conversion result prior to the gain calibration operation.  
See the Offset and Gain Calibration section for details.  
8.6.1.6 GAIN0, GAIN1, GAIN2: Gain Calibration Registers  
(Address = 08h, 09h, 0Ah) [Reset = 00h, 00h, 40h]  
8-36. GAIN0 Register  
7
7
7
6
6
6
5
5
5
4
3
2
2
2
1
1
1
0
0
0
GAIN[7:0]  
R/W-00h  
8-37. GAIN1 Register  
4
3
GAIN[15:8]  
R/W-00h  
8-38. GAIN2 Register  
4
3
GAIN[23:16]  
R/W-40h  
8-19. GAIN0, GAIN1, GAIN2 Registers Field Description  
Bit  
23:0  
Field  
Type  
Reset  
Description  
GAIN[23:0]  
R/W  
400000h  
Gain calibration.  
These bits are the 24-bit, gain calibration word. Gain calibration  
is straight binary coding. The register value is divided by  
400000h (222) and multiplied with the conversion data. The gain  
operation occurs after the offset operation. See the Offset and  
Gain Calibration section for details.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
8.6.1.7 GPIO: Digital Input/Output Register (Address = 0Bh) [Reset = 000xx000b]  
8-39. GPIO Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000b  
GPIO1_DAT  
R/W-xb  
GPIO0_DAT  
R/W-xb  
GPIO1_DIR  
R/W-0b  
GPIO0_DIR  
R/W-0b  
RESERVED  
R/W-0b  
8-20. GPIO Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
000b  
xb  
Description  
7:5  
4
RESERVED  
GPIO1_DAT  
Always write 000b.  
GPIO1 data.  
See the GPIO section for details.  
0b = GPIO1 is low  
1b = GPIO1 is high  
3
2
1
0
GPIO0_DAT  
GPIO1_DIR  
GPIO0_DIR  
RESERVED  
R/W  
R/W  
R/W  
R/W  
xb  
0b  
0b  
0b  
GPIO0 data.  
0b = GPIO0 is low  
1b = GPIO0 is high  
GPIO1 direction.  
0b = GPIO1 is an input  
1b = GPIO1 is an output  
GPIO0 direction.  
0b = GPIO0 is an input  
1b = GPIO0 is an output  
Always write 0b.  
8.6.1.8 SRC0, SRC1: Sample Rate Converter Registers (Address = 0Ch, 0Dh) [Reset = 00h, 80h]  
8-40. SRC0 Register  
7
6
5
4
3
2
1
0
0
SRC[7:0]  
R/W-00h  
8-41. SRC1 Register  
7
6
5
4
3
2
1
SRC[15:8]  
R/W-80h  
8-21. SRC0, SRC1 Registers Field Description  
Bit  
15:0  
Field  
Type  
Reset  
Description  
SRC[15:0]  
R/W  
8000h  
Sample rate converter.  
These registers program the sample rate converter. See the  
Sample Rate Converter section for details of operation.  
8000h = SRC function is disabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The ADS1285 is a high-resolution ADC designed for low-power seismic data acquisition equipment. Optimizing  
performance requires special attention to the support circuitry and printed-circuit board (PCB) layout. As much  
as possible, locate noisy circuit components (such as microcontrollers, oscillators, switching regulators, and so  
forth) away from the ADC input circuit components, reference voltage, and the ADC clock signal.  
9.2 Typical Application  
2.5 V  
5 V  
1 F  
0.1 F  
0.1 F  
1 F  
11  
12  
AVDD2  
AVDD1  
3.3 V  
ADS1285  
19  
17  
20  
IOVDD  
1 F  
5 V  
0.1 F  
1
2
CAPD  
AINP1  
AINN1  
CAPI  
0.22 F  
DAC SPI  
DAC1282  
CLK  
Clock Input  
21  
23  
BAS70  
14  
CS  
DIN  
0.1 µF  
ADC SPI  
5 V  
24  
22  
DOUT  
SCLK  
R5  
100  
R3  
100  
3
25  
AINP2  
DRDY  
SYNC  
R1  
20 k  
C1  
26  
27  
C3  
1000 pF  
C0G  
100 pF C0G  
Geophone  
RESET  
Control  
R4  
100  
R2  
20 k  
R6  
100  
28  
15  
16  
C2  
PWDN  
GPIO0  
GPIO1  
100 pF C0G  
4
5
AINN2  
CAPP  
100 k  
Optional ESD  
Protection  
100 k  
7
CAPBP  
10 nF  
C0G  
6
47 nF  
C0G  
CAPN  
CAPR  
TVS0701  
0.1 µF  
5 V  
+
8
31  
0.1 µF  
CAPBN  
1.69 M  
2.5 V  
47 nF  
C0G  
0.1 µF  
OPA391  
1 M  
9
R7  
100  
5 V  
CAPC  
30  
29  
VIN  
4.7 nF  
REF6241SF  
REFP  
REFN  
EN  
SS  
C4  
+
FLT  
10 F  
1 F  
THERMAL  
PAD  
68 µF  
0.1 F  
1 F  
60 m  
10  
32  
AVSS  
120 k  
Optional Reference Voltage  
Noise Filter  
AGND  
13  
DGND  
18  
9-1. Geophone Input Application Example  
9.2.1 Design Requirements  
9-1 depicts a typical application of a geophone input circuit. The application shows the ADC operating with a  
5-V power supply and a 2.5-V level-shift voltage applied to the ADC inputs. The goal of this evaluation is to  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
analyze the effect of noise resulting from source resistance. The source resistance is the sum of the series input  
resistors and the geophone output resistance.  
9.2.2 Detailed Design Procedure  
Referring to 9-1, Schottky diodes (BAS70 or equivalent) protect the ADC inputs from voltage overloads. The  
ADC inputs are protected from ESD events by the optional ESD protection diodes (TVS0701). The geophone  
signal is level-shifted to mid-supply by driving the input termination resistors (R1 and R2) common point to 2.5 V.  
The level-shift voltage is derived from the reference voltage and is buffered by the OPA391 op amp. The input  
termination resistors also provide the input bias current return path for the ADC inputs.  
The input signal is filtered to reduce out-of-band noise. The filter is comprised of common-mode and differential  
sections. The common-mode section filters noise common to both inputs, consisting of R3, R4, C1, and C2. The  
differential section filters differential noise, consisting of R3 through R6 and C3. The resistor values are kept low  
to reduce thermal noise.  
The REF6241 4.096-V voltage reference is used. The ADC must be programmed to match the value of the  
reference voltage. The optional noise filter consisting of R7 and C3 reduces reference noise. Resistor R7  
increases gain error resulting from the impedance of the reference input.  
The AVDD1 power supply voltage = 5 V, with AVSS connected to AGND. The AVDD2 voltage is 2.5 V to  
minimize power consumption. If IOVDD = 1.8V, connect the CAPD pin to IOVDD.  
Besides the power supply pins, place additional capacitors at certain pins. Capacitors are required between  
CAPP CAPN, REFP REFN, and at the CAPBP, CAPBN, CAPI, CAPR, CAPC, and CAPD pins with the  
capacitance values given in 9-1. The CAPP CAPN, CAPBP, and CAPBN capacitors are C0G type.  
The DAC1282 provides a low-distortion signal to test THD performance, and through the DAC1282 dc test  
mode, test geophone impulse response. Increase the value of the DAC1282 capacitors CAPP and CAPN to 10  
nF to optimize the ADS1285 THD test performance. See the DAC1282 data sheet for additional circuit details.  
9.2.3 Application Curves  
9-1 lists the effect of source resistance (RS) and device input current noise on dynamic range performance.  
Selected values of RS and input current noise, obtained from the input current noise distribution of 9-2 (1.5  
pA/Hz and 3 pA/Hz), are evaluated. Thermal noise voltage of the source resistance, input current noise ×  
source resistance, and ADC input-referred noise voltage are summed as RMS values to derive the total noise.  
Dynamic range is calculated from the total noise result.  
33  
30  
27  
24  
21  
18  
15  
12  
9
6
3
0
PGA Input Current Noise Density (pA/Hz)  
9-2. PGA Input Current Noise Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS1285  
 
ADS1285  
www.ti.com.cn  
DR (dB)  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
9-1. Source Resistance Noise  
GAIN  
in NOISE  
(pA/Hz)  
RS ()  
RS NOISE (μV) in × RS NOISE (μV) ADC SELF-NOISE (μV) TOTAL NOISE (μV)  
1.5  
3
0
0.44  
132.1  
132.1  
120.1  
120.1  
132.0  
132.0  
118.8  
118.4  
131.5  
130.8  
114.8  
112.0  
1
0.44  
0.11  
0.44  
0.11  
0.44  
0.11  
0
0.44  
0
0
1.5  
3
0
0.11  
16  
1
0
0.11  
1.5  
3
0.024  
0.048  
0.024  
0.048  
0.11  
0.22  
0.11  
0.21  
0.445  
0.446  
0.127  
0.134  
0.472  
0.508  
0.202  
0.277  
1000  
5000  
0.06  
0.13  
1.5  
3
16  
1
1.5  
3
1.5  
3
16  
Data for the analysis is shown for low-power mode operation over a 206-Hz noise bandwidth (fDATA = 500 SPS).  
For PGA gain = 1, 5000-source resistance has a minor effect on dynamic range performance. However, at  
PGA gain = 16, dynamic range performance can degrade from 5 dB to 8 dB depending on the level of  
device input current noise. 1000-source resistance has 1.6-dB degradation at gain = 16 for input current noise  
density = 3 pA/Hz.  
9.3 Power Supply Recommendations  
The ADC has four power supplies: AVDD1, AVDD2, AVSS, and IOVDD. Among the power-supply options, the  
number of power supplies can be reduced to a single 3.3-V supply used for AVDD1, AVDD2, and IOVDD, with  
AVSS connected to ground. Be aware that 3.3-V operation limits the reference voltage to 2.5 V and requires  
using the buffer for gain = 1.  
The power supplies can be sequenced in any order. The ADC is held in reset until the power supplies have  
crossed the retrospective power-on voltage thresholds and the clock signal is applied (see 6-8 for details of  
the voltage thresholds).  
9.3.1 Analog Power Supplies  
The ADC has three analog power supplies, AVDD1, AVDD2, and AVSS, all of which must be well regulated and  
free from switching power-supply noise (voltage ripple < 1 mV). The AVDD1 power-supply voltage is relative to  
AVSS and powers the PGA and buffer. AVSS is the negative power supply. The ADC can be configured for  
single-supply operation with AVDD1 = 5 V or 3.3 V with AVSS connected to ground. Because the minimum  
voltage of AVDD1 to AGND = 2.375 V, dual-supply operation is only possible when AVDD1 AVSS = ±2.5 V.  
Single-power supply operation requires a level-shift voltage at the geophone input through the input termination  
resistors. The level-shift voltage is typically equal to AVDD1 / 2. Bypass AVDD1 with 1-μF and 0.1-μF parallel  
capacitors to AVSS.  
The AVDD2 power supply powers the modulator. To simplify system power management, AVDD2 can be  
connected AVDD1, regardless whether AVDD1 and AVSS are configured for single- or dual-supply operation  
(AVDD2 voltage range is 2.375 V to 5.25 V with respect to AGND). Bypass AVDD2 with 1-μF and 0.1-μF  
parallel capacitors to AGND.  
9.3.2 Digital Power Supply  
IOVDD is the digital power supply. IOVDD is the digital pin I/O voltage and also powers the digital core by an  
1.8-V low-dropout regulator (LDO). The LDO output is the CAPD pin and is bypassed with a 0.22-µF capacitor to  
DGND. Do not externally load the CAPD voltage output. Bypass the IOVDD pin with 1-μF and 0.1-μF parallel  
capacitors to DGND.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
If IOVDD is in the range of 1.65 V to 1.95 V, tie the IOVDD and CAPD pins together. This connection forces the  
internal LDO off, thereby the IOVDD voltage now directly powers the digital core. Pay close attention to the  
absolute maximum voltage rating of IOVDD driving the CAPD pin to avoid damaging the device.  
9.3.3 Grounds  
The ADC has two ground pins, AGND and DGND. Connect the AGND and DGND pins together at the ADC to a  
single ground plane using short direct connections.  
9.3.4 Thermal Pad  
The thermal pad does not carry device current but must be soldered and connected to the most negative power-  
supply voltage (AVSS). Because of the low power dissipation, PCB thermal vias can be omitted to provide space  
for bottom layer components under the device.  
9.4 Layout  
9.4.1 Layout Guidelines  
9-3 shows the layout of the geophone input application example of 9-1. In most cases, a single unbroken  
ground plane connecting the grounds of the analog and digital components is preferred. A four-layer PCB is  
used, with the inner layers dedicated for ground and power-supply planes. Low resistance power-supply planes  
are necessary to maintain THD performance.  
Connect the REFN pin of the ADC directly to the ground terminal of the voltage reference to avoid ground noise  
coupling. Similarly, avoid ground noise between the tie-points of termination resistors R1 and R2 by connecting  
the resistors together first, then connect to ground (dual-supply operation).  
Place the smaller of the parallel power-supply bypass capacitors closest to the device supply pins. The thermal  
pad of the package connects to the most negative power-supply voltage (AVSS). 9-3 shows single-supply  
operation, with AVSS tied to AGND. In this case, the thermal pad connects to AGND. For dual-supply operation,  
connect the thermal pad to AVSS.  
9.4.2 Layout Example  
5 V  
REF6241  
DAC1282  
Test Signal  
5 V  
BAS70  
5 V  
PWDN  
RESET  
SYNC  
TVS0701  
DRDY  
-
DOUT  
DIN  
Signal  
ADS1285  
SCLK  
Input  
CS  
CLK  
3.3 V  
IOVDD  
TVS0701  
GPIO1  
GPIO0  
BAS70  
5 V  
5 V  
2.5 V  
AVDD1  
AVDD2  
9-3. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS1285  
 
 
ADS1285  
www.ti.com.cn  
ZHCSQZ8A MAY 2022 REVISED DECEMBER 2022  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS1285  
 
 
 
 
 
 
 
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1285IRHBR  
ADS1285IRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS1285IRHBR  
ADS1285IRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS1285IRHBT

用于地震探测和地球空间探测的 32 位高分辨率双通道 Δ-Σ ADC | RHB | 32 | -40 to 85
TI

ADS1286

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
TI

ADS1286A

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286B

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286C

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286K

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286L

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286P

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286P

12-Bit Micro-Power Sampling Analog-to-Digital Converter (ADC) 8-PDIP -40 to 85
TI

ADS1286PA

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
BB

ADS1286PA

12-Bit Micro Power Sampling ANALOG-TO-DIGITAL CONVERTER
TI