ADS1287 [TI]

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 单通道 Δ-Σ ADC;
ADS1287
型号: ADS1287
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 单通道 Δ-Σ ADC

文件: 总63页 (文件大小:1662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
配备可编程增益放大器的 ADS1287 低功耗、1000SPS、宽带宽  
模数转换器  
1 特性  
3 说明  
1
可选择工作模式  
高分辨率模式:  
ADS1287 器件是一款低功耗模数转换器 (ADC),配备  
集成式可编程增益放大器 (PGA) 和有限脉冲响应 (FIR)  
数字滤波器。该 ADC 可满足地震监测设备的严苛要  
求,这种设备需要在功耗较低的情况下实现高精度数字  
化。  
SNR113dB1000SPS,增益 = 1)  
功耗:4.5mW  
低功耗模式:  
SNR110dB1000SPS,增益 = 1)  
功耗:2.4mW  
ADC 配备 可编程增益的高阻抗互补金属氧化物半  
导体 (CMOS) 放大器,适用于通过范围较广的输入信  
号(±2.5V ±0.156V)将地震检波器和水听器传感器  
直接连接到 ADC。  
THD-115dB  
CMRR115dB  
高阻抗 CMOS PGA  
ADC 包含内在稳定的四阶 Delta-Sigma (ΔΣ) 调制  
器。调制器数字输出由内部的 FIR 数字滤波器过滤和  
抽取,以生成 ADC 转换结果。  
增益:1248 16  
数据传输速率:62.5SPS 1000SPS  
灵活的数字滤波器:  
正弦 + 有限脉冲响应 (FIR) + 无限脉冲响应  
(IIR)(可选)  
FIR 数字滤波器的数据速率高达每秒 1000 个样本  
(SPS)。高通滤波器 (HPF) 可从转换结果中移除直流和  
低频率分量。片上增益和偏移调节寄存器支持系统校  
准。  
线性和最小相位响应  
可编程高通滤波器  
偏移和增益校准  
在高分辨率模式下,放大器、调制器和数字滤波器共消  
4.5mW(低功耗模式下为 2.4mW)。该 ADC 采用  
紧凑型 5mm × 4mm VQFN 封装。该 ADC 的完全额  
定工作温度范围为 –40°C +85°C。  
同步控制  
SPI 兼容的接口  
模拟电源:5V ±2.5V  
数字电源:2.5V 3.3V  
器件信息(1)  
2 应用  
器件型号  
ADS1287  
封装  
VQFN (24)  
封装尺寸(标称值)  
能量勘探  
5.00mm × 4.00mm  
无源地震监测  
便携式仪表  
(1) 要了解所有可用封装,请参阅数据表末尾的封装选项附录。  
空白  
功能方框图  
AVDD  
REFP REFN  
CLK SYNC RESET  
Control  
DVDD  
PWDN  
DRDY  
ADS1287  
CS  
AINP  
AINN  
DIN  
DOUT  
SCLK  
Serial  
Interface  
Digital  
Filter  
ûADC  
PGA  
VCOM  
AVSS  
DGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS778  
 
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 34  
8.5 Programming........................................................... 40  
8.6 Register Map........................................................... 45  
Application and Implementation ........................ 51  
9.1 Application Information............................................ 51  
9.2 Typical Applications ................................................ 51  
9.3 Initialization Set Up ................................................. 54  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 8  
6.7 Switching Characteristics.......................................... 8  
6.8 Typical Characteristics............................................ 12  
Parameter Measurement Information ................ 18  
7.1 Noise Performance ................................................. 18  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
9
10 Power Supply Recommendations ..................... 55  
10.1 Analog Power Supplies......................................... 55  
10.2 Digital Power Supply............................................. 55  
10.3 Power-Supply Sequence....................................... 55  
11 Layout................................................................... 55  
11.1 Layout Guidelines ................................................. 55  
12 器件和文档支持 ..................................................... 56  
12.1 接收文档更新通知 ................................................. 56  
12.2 社区资源................................................................ 56  
12.3 ....................................................................... 56  
12.4 静电放电警告......................................................... 56  
12.5 Glossary................................................................ 56  
13 机械、封装和可订购信息....................................... 57  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2017) to Revision B  
Page  
已更改 将文档更改为面向 Web 的完整发布........................................................................................................................ 1  
Changes from Original (June 2017) to Revision A  
Page  
Added second row to tc(SC) parameter .................................................................................................................................... 8  
Changed tw(SCH) and tw(SCL) parameters to be merged together, added second row to tw(SCH), tw(SCL) parameter .................. 8  
Changed td(CLSY) unit from 1 / fCLK to ns.................................................................................................................................. 8  
Added unit to tp(RSDR) and tp(PWDR) parameters of Switching Characteristics table.................................................................. 9  
已更改 sinc filter block of Digital Filter and Output Code Processing figure from Decimate by 8 to 128 to Decimate  
by 4 to 128 to include low-power mode setting.................................................................................................................... 25  
已添加 fMOD = fCLK / 8 for low-power mode to first paragraph of Sinc Filter Stage section................................................... 26  
已添加 sinc decimation ratio for low-power mode column and added high-resolution mode column header to Sinc  
Filter Data Rates table.......................................................................................................................................................... 26  
已更改 fMOD description in Equation 9................................................................................................................................... 26  
已添加 sinc decimation ratio for low-power mode column and added high-resolution mode column header to FIR  
Filter Data Rates table ......................................................................................................................................................... 27  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
5 Pin Configuration and Functions  
RHF Package  
5-mm × 4-mm, 24-Pin VQFN  
Top View  
DRDY  
DOUT  
DIN  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
RESET  
PWDN  
REFP  
REFN  
AVSS  
AVDD  
AINN  
Thermal  
Pad  
CS  
SYNC  
NC  
DGND  
Not to scale  
Pin Functions  
PIN  
FUNCTION  
DESCRIPTION  
NO.  
1
NAME  
DRDY  
DOUT  
DIN  
Digital output Data ready, active low  
Digital output Serial data output  
2
3
Digital input  
Digital input  
Digital input  
Serial data input  
4
CS  
Serial interface select, active low  
Synchronize, active high  
No connection  
5
SYNC  
NC  
6
7
DGND  
CAPN  
CAPP  
NC  
Ground  
Digital ground  
8
Analog output PGA negative output; connect a 10-nF C0G capacitor from CAPP to CAPN  
Analog output PGA positive output; connect a 10-nF C0G capacitor from CAPP to CAPN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
No connection  
No connection  
NC  
AINP  
AINN  
AVDD  
AVSS  
REFN  
REFP  
PWDN  
RESET  
DVDD  
DGND  
BYPAS  
CLK  
Analog input Positive analog input  
Analog input Negative analog input  
Analog  
Analog  
Positive analog power supply  
Negative analog power supply  
Analog input Negative reference input  
Analog input Positive reference input  
Digital input  
Digital input  
Digital  
Power-down, active low  
Reset, active low  
Digital power supply  
Ground  
Digital ground (tie to digital ground plane)  
Analog output Sub-regulator bypass; connect a 1-µF capacitor to DGND  
Digital input  
Digital input  
Master clock input (1.024 MHz)  
Serial interface clock input  
SCLK  
Electrically float the thermal pad. The thermal pad must be soldered to the PCB for optimum  
mechanical strength. PCB layout vias are optional.  
Thermal pad  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–2.8  
–0.3  
MAX  
6
UNIT  
AVDD to AVSS  
Power-supply voltage  
AVSS to DGND  
DVDD to DGND  
AINx, REFx, CAPx  
0.3  
3.9  
V
Analog input voltage  
Digital input voltage  
Input current  
AVSS – 0.3 AVDD + 0.3  
V
V
CS, SCLK, DIN, DOUT, DRDY, SYNC, RESET, CLK, PWDN,  
BYPAS  
DGND – 0.3 DVDD + 0.3  
Continuous  
Junction, TJ  
Storage, Tstg  
10  
mA  
150  
Temperature  
°C  
–60  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
POWER SUPPLY  
AVSS to DGND  
Analog power supply  
–2.6  
4.75  
2.25  
0
V
AVDD to AVSS  
5.25  
Digital power supply  
DVDD to DGND  
3.6  
V
PGA INPUT AND OUTPUT  
VIN  
Differential input voltage  
Absolute input voltage(1)  
Absolute output voltage  
VIN = V(AINP) – V(AINN)  
–VREF / Gain  
AVSS + 1  
VREF / Gain  
AVDD – 1.25  
AVDD – 0.4  
V
V
V
V(AINx)  
V(CAPx)  
AVSS + 0.4  
VOLTAGE REFERENCE INPUT  
VREF  
Differential reference input voltage  
VREF = V(REFP) – V(REFN)  
2.45  
AVSS – 0.1  
2.5  
2.55  
V(REFP) – 2.45  
AVDD + 0.1  
V
V
V
V(REFN)  
V(REFP)  
Negative reference input voltage  
Positive reference input voltage  
V(REFN) + 2.45  
CLOCK INPUT  
f(CLK)  
External clock frequency  
0.4  
DGND  
–45  
1.024  
1.05  
DVDD  
125  
MHz  
V
DIGITAL INPUTS  
Input voltage  
TEMPERATURE RANGE  
Operating ambient temperature  
°C  
(1) Absolute input voltage is the signal voltage plus the common-mode voltage; see the Programmable Gain Amplifier (PGA) section.  
6.4 Thermal Information  
ADS1287  
THERMAL METRIC(1)  
RHF (VQFN)  
24 PINS  
30.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27.5  
8.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.6  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
maximum and minimum specifications apply from –40°C to +85°C; typical specifications are at 25°C; all specifications are at  
AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, f(CLK) = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-resolution  
and low-power modes, chop enabled, and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Chop disabled  
10  
50  
50  
100  
20  
20  
5
Input current  
pA  
Chop enabled  
Common-mode, chop disabled  
Differential-mode, chop disabled  
Differential-mode, chop enabled  
Common-mode  
Input resistance  
GΩ  
pF  
Input capacitance  
Differential-mode  
PGA  
High-resolution mode  
Low-power mode  
Chop disabled  
15  
25  
25  
Voltage noise density  
nV/Hz  
1/f noise corner  
Gain factors  
Hz  
V/V  
kΩ  
1, 2, 4, 8, 16  
Nominal  
1.7  
10  
Differential output impedance  
PGA output capacitor  
Tolerance  
–15%  
31  
15%  
nF  
ADC  
Resolution  
FIR filter mode  
Bits  
nV/Hz  
SPS  
High-resolution mode  
Low-power mode  
FIR filter mode  
190  
275  
Voltage noise density  
Data rate  
fDATA  
62.5, 125, 250, 500, 1000  
SYSTEM PERFORMANCE  
High-resolution mode, gain = 1  
High-resolution mode, gain = 2  
High-resolution mode, gain = 4  
High-resolution mode, gain = 8  
High-resolution mode, gain = 16  
Low-power mode, gain = 1  
Gain = 1  
110  
113  
113  
110  
108  
107  
105  
106  
113  
Signal-to-noise ratio  
SNR  
dB  
(see 1 through 4)  
112  
110  
110  
–115  
–115  
115  
–105  
300  
THD  
Total harmonic distortion(1)  
Spurious-free dynamic range  
dB  
dB  
Gain = 2, 4, 8, and 16  
SFDR  
TA = 25°C  
–300  
±50  
VIO  
Input offset voltage  
Chop disabled, TA = 25°C  
After calibration(2)  
±300  
±1  
µV  
0.05  
1
Input offset voltage drift  
Gain error  
µV/°C  
Chop disabled  
High-resolution mode, TA = 25°C  
Low-power mode, TA = 25°C  
–0.8%  
–0.6%  
–0.3%  
–0.1%  
0.0005%  
1
0.2%  
0.4%  
Gain error after calibration(2)  
Gain drift  
All gains  
ppm/°C  
Gain match  
Calibration margin(3)  
All gains relative to gain = 1  
–0.5%  
–106%  
±0.1%  
0.5%  
106%  
(1) Test signal: 31.25 Hz, –0.5 dBFS.  
(2) Calibration accuracy is on the level of noise reduced by four (calibration averages 16 readings).  
(3) Calibration margin is the maximum allowed input voltage range after calibration operations.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Electrical Characteristics (continued)  
maximum and minimum specifications apply from –40°C to +85°C; typical specifications are at 25°C; all specifications are at  
AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, f(CLK) = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-resolution  
and low-power modes, chop enabled, and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SYSTEM PERFORMANCE, continued  
High-resolution mode, DC to 60 Hz  
Low-resolution mode, DC to 60 Hz  
Analog supplies, DC to 60 Hz  
Digital supply, DC to 60 Hz  
100  
95  
115  
110  
90  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
dB  
75  
90  
105  
VOLTAGE REFERENCE INPUT  
High-resolution mode  
Low-power mode  
320  
640  
Input impedance  
kΩ  
DIGITAL FILTER RESPONSE  
Pass-band ripple  
±0.003  
10  
dB  
Hz  
Hz  
Hz  
dB  
Hz  
Pass band (–0.01 dB)  
Bandwidth (–3 dB)  
0.375 × f(DATA)  
0.413 × f(DATA)  
High-pass filter corner  
Stop-band attenuation(4)  
Stop band  
0.1  
135  
0.500 × fDATA  
5 / fDATA  
Minimum phase filter  
Linear phase filter  
Minimum phase filter  
Linear phase filter  
Group delay  
s
s
31 / fDATA  
62 / fDATA  
62 / fDATA  
Settling time (latency)  
DIGITAL INPUT/OUTPUTS  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
Input current  
DGND  
0.8 × DVDD  
DGND  
0.2 × DVDD  
DVDD  
V
V
VIH  
VOL  
VOH  
IOL = 1 mA  
0.2 × DVDD  
DVDD  
V
IOH = 1 mA  
0.8 × DVDD  
–10  
V
0 VDIGITAL IN DVDD  
10  
μA  
POWER SUPPLY  
High-resolution mode  
Low-power mode  
Standby mode  
750  
330  
1
1100  
480  
IAVDD,  
IAVSS  
Analog supply current  
µA  
µA  
Power-down mode  
High-resolution mode  
Low-power mode  
Standby mode(5)  
Power-down mode(5)  
High-resolution mode  
Low-power mode  
Standby mode(5)  
1
240  
220  
25  
1
320  
300  
IDVDD  
Digital supply current  
Power dissipation  
4.5  
2.4  
90  
10  
6.6  
3.4  
mW  
µW  
PD  
Power-down mode(5)  
(4) Input frequencies are in the range of N × f(CLK) / 1024 ± f(DATA) / 2 (where N = 1, 2, 3, and so forth) intermodulated with the modulator  
chopper clock. At these frequencies, intermodulation components are –120 dBFS (typ).  
(5) CLK input stopped.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
6.6 Timing Requirements  
over operating ambient temperature range and DVDD = 2.25 V to 3.6 V (unless otherwise noted)  
MIN  
MAX  
UNIT  
SERIAL INTERFACE  
td(CSSC)  
Delay time, CS falling edge to first SCLK rising edge  
SCLK period  
40  
250  
2
ns  
ns  
tc(SC)  
SCLK period specific to SYNC and RESET commands  
Pulse duration, SCLK high and low(1)  
1 / fCLK  
ns  
100  
0.8  
50  
tw(SCH), tw(SCL)  
Pulse duration, SCLK high and low specific to SYNC and RESET commands  
Setup time, DIN valid before SCLK rising edge  
Hold time, DIN valid after SCLK rising edge  
Pulse duration, CS high  
1 / fCLK  
ns  
tsu(DI)  
th(DI)  
50  
ns  
tw(CSH)  
td(SCCS)  
td(CMBT)  
100  
24  
ns  
Delay time, last SCLK rising edge to CS rising edge  
Delay time, after each byte within and between command sequences(2)  
1 / fCLK  
1 / fCLK  
24  
SYNCHRONIZATION  
td(CLSY)  
Delay time, CLK rising edge to SYNC rising edge(3)  
30  
2
–30  
ns  
tw(SYH), tw(SYL) Pulse duration, SYNC high or SYNC low  
1 / fCLK  
RESET  
tsu(RSCL)  
tw(RSL)  
Setup time, RESET rising edge to a specific CLK rising edge  
Pulse duration, RESET low  
10  
2
ns  
1 / fCLK  
(1) Holding SCLK low for 64 DRDY periods forces a serial interface reset.  
(2) When reading conversion data, the byte-to-byte delay is not required (td(CMBT)).  
(3) SYNC rising edge to CLK rising edge must not occur within the specified time window.  
6.7 Switching Characteristics  
over operating ambient temperature range, DVDD = 2.25 V to 3.6 V, and DOUT loading = 20 pF || 100 kΩ (unless otherwise  
noted)  
PARAMETER  
SERIAL INTERFACE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time,  
DRDY falling edge to valid data DOUT  
tp(DRDO)  
tp(CSDOD)  
tp(SCDO1)  
tp(SCDO2)  
100  
60  
ns  
ns  
ns  
ns  
Propagation delay time,  
CS falling edge to DOUT driven  
Propagation delay time,  
SCLK falling edge to valid new DOUT  
100  
Propagation delay time,  
SCLK falling edge to valid old DOUT  
0
0
Propagation delay time,  
CS rising edge to DOUT Hi-z  
tp(CSDOZ)  
tw(DRH)  
40  
1
ns  
Pulse duration, DRDY high  
4
1 / fCLK  
1 / fDATA  
Propagation delay time, RDATA  
command to DRDY low (see 60)  
tp(CMDR)  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Switching Characteristics (continued)  
over operating ambient temperature range, DVDD = 2.25 V to 3.6 V, and DOUT loading = 20 pF || 100 kΩ (unless otherwise  
noted)  
PARAMETER  
SYNCHRONIZATION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-resolution mode, 62.5 SPS  
High-resolution mode, 125 SPS  
High-resolution mode, 250 SPS  
High-resolution mode, 500 SPS  
High-resolution mode, 1000 SPS  
Low-power mode, 62.5 SPS  
Low-power mode, 125 SPS  
Low-power mode, 250 SPS  
Low-power mode, 500 SPS  
Low-power mode, 1000 SPS  
1008.145  
504.301  
252.379  
126.419  
63.438  
1008.390  
504.548  
252.625  
126.665  
63.684  
Propagation delay time, SYNC rising  
edge to DRDY falling edge  
tp(SYDR)  
ms(1)  
Sinc filter and high-resolution mode,  
2000 SPS  
2.755  
1.630  
0.942  
0.599  
0.427  
Sinc filter and high-resolution mode,  
4000 SPS  
Sinc filter and high-resolution mode,  
8000 SPS  
Sinc filter and high-resolution mode,  
16000 SPS  
Sinc filter and high-resolution mode,  
32000 SPS  
RESET  
Propagation delay time, RESET pin or  
reset command to DRDY falling edge  
tp(RSDR)  
252.379  
252.379(2)  
216  
ms  
ms  
POWER-DOWN MODE and STANDBY MODE WAKEUP  
Propagation delay time, exit power-down  
tp(PWDR)  
or standby mode to first data ready  
POWER-UP  
Propagation delay time, power-on  
tp(PUCM)  
fCLK  
threshold voltage to communication ready  
Propagation delay time, power-on  
tp(PUDR)  
216 / fCLK + 252.379  
ms(1)  
threshold voltage to first data ready  
(1) fCLK = 1.024 MHz.  
(2) The exit power-down mode default setting is 250 SPS with the FIR filter mode. Subtract two fCLK cycles for a WAKEUP command. The  
WAKEUP command is timed from the rising CLK edge after the eighth rising SCLK edge.  
tw(CSH)  
CS  
td(CSSC)  
td(SCCS)  
tc(SC)  
tw(SCH)  
SCLK  
DIN  
tw(SCL)  
tsu(DI)  
th(DI)  
B3  
B2  
B6  
B5  
B4  
B1  
B0  
B7  
1. Serial Interface Timing Requirements  
版权 © 2017–2019, Texas Instruments Incorporated  
9
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
Command  
Byte  
Command  
Byte  
DIN  
SCLK  
td(CMBT)  
2. Serial Interface Command Timing Requirements  
DRDY  
CS  
tp(DRDO)  
tp(CSDOD)  
SCLK  
DOUT  
tp(CSDOZ)  
tp(SCDO1)  
DATA  
OLD  
th(SCDO2)  
3. Serial Interface Switching Characteristics  
td(CLSY)  
CLK  
tp(SYDR)  
SYNC  
tw(SYH)  
tw(SYL)  
DRDY  
(Pulse-sync mode)  
tw(DRH)  
DOUT  
(Pulse-sync mode)  
DRDY  
(Continuous-sync mode)  
tw(DRH)  
DOUT  
(Continuous-sync mode)  
4. Synchronization Timing  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Settled  
Data  
DRDY  
CLK  
tp(RSDR)  
tSU(RSCL)  
RESET Pin  
or  
tw(RSL)  
RESET Command  
5. Reset Timing  
DRDY  
tp(PWDR)  
PWDN  
Wakeup  
Command  
6. Power-Down and Standby Wake-Up Timing  
DVDD  
1 V nom  
1 V nom  
VBYPAS  
AVDD - AVSS  
3.5 V nom  
All voltages reach thresholds and CLK applied  
ADC  
Communication  
disabled  
tp(PUCM)  
enabled  
DRDY  
tp(PUDR)  
7. Power-Up Timing  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, fCLK = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-  
resolution and low-power modes, chop enabled, offset disabled, and fDATA = 1000 SPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D005  
D006  
Shorted input, high-resolution mode,  
gain = 1, 8192 points, SNR = 113.2 dB  
Shorted input, high-resolution mode,  
gain = 8, 8192 points, SNR = 111.8 dB  
8. Output Spectrum  
9. Output Spectrum  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D009  
D007  
Shorted input, chop disabled, high-resolution mode,  
gain = 8, 8192 points, SNR = 111.3 dB  
Shorted input, low-power mode, offset enabled,  
gain = 1, 8192 points, SNR = 110.1 dB  
10. Output Spectrum  
11. Output Spectrum  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D008  
D010  
Shorted input, low-power mode, offset enabled,  
gain = 8, 8192 points, SNR = 108.4 dB  
Shorted input, low-power mode, chop disabled,  
gain = 8, 8192 points, SNR = 108.0 dB  
12. Output Spectrum  
13. Output Spectrum  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, fCLK = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-  
resolution and low-power modes, chop enabled, offset disabled, and fDATA = 1000 SPS (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D001  
D002  
fIN = 31.25 Hz, –0.5 dB, high-resolution mode,  
gain = 1, 8192 points  
fIN = 31.25 Hz, –20 dB, high-resolution mode,  
gain = 1, 8192 points  
14. Output Spectrum  
15. Output Spectrum  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D003  
D004  
fIN = 31.25 Hz, –0.5 dB, high-resolution mode,  
gain = 8, 8192 points  
fIN = 31.25 Hz, –20 dB, high-resolution mode,  
gain = 8, 8192 points  
16. Output Spectrum  
17. Output Spectrum  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D011  
D012  
fIN = 31.25 Hz, –0.5 dB, low-power mode,  
gain = 1, 8192 points  
fIN = 31.25 Hz, –20 dB, low-power mode,  
gain = 1, 8192 points  
18. Output Spectrum  
19. Output Spectrum  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, fCLK = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-  
resolution and low-power modes, chop enabled, offset disabled, and fDATA = 1000 SPS (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
D013  
D014  
fIN = 31.25 Hz, –0.5 dB, low-power mode,  
gain = 8, 8192 points  
fIN = 31.25 Hz, –20 dB, low-power mode,  
gain = 8, 8192 points  
20. Output Spectrum  
21. Output Spectrum  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
0
25  
50 75  
Input Frequency (Hz)  
100  
125  
0
25  
50 75  
Input Frequency (Hz)  
100  
125  
D015  
D016  
High-resolution mode, VIN = –0.5 dB  
Low-power mode, VIN = –0.5 dB  
22. THD vs Input Frequency  
23. THD vs Input Frequency  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
fIN = 31.25 Hz, –0.5 dB, high-resolution mode  
fIN = 31.25 Hz, –0.5 dB, low-power mode  
24. THD vs Temperature  
25. THD vs Temperature  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, fCLK = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-  
resolution and low-power modes, chop enabled, offset disabled, and fDATA = 1000 SPS (unless otherwise noted)  
116  
114  
112  
110  
108  
106  
104  
102  
100  
114  
112  
110  
108  
106  
104  
102  
100  
98  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D019  
D020  
Shorted input, high-resolution mode  
Shorted input, low-power mode  
26. SNR vs Temperature  
27. SNR vs Temperature  
116  
114  
112  
110  
108  
106  
104  
102  
100  
140  
130  
120  
110  
100  
90  
80  
70  
High-resolution mode  
Low-power mode  
Gain = 1  
Gain = 8  
60  
50  
0.4  
0.5  
0.6  
0.7  
0.8  
Clock Frequency (MHz)  
0.9  
1
1.1  
1
10  
100  
1000  
Input Frequency (Hz)  
10000 100000 1000000  
D027  
D021  
Shorted input  
High-resolution mode  
28. SNR vs Clock Frequency  
29. CMRR vs Frequency  
140  
130  
120  
110  
100  
90  
120  
110  
100  
90  
80  
70  
80  
60  
70  
50  
Gain = 1  
Gain = 8  
High-resolution mode  
Low-power mode  
60  
50  
40  
1
10  
100  
1000  
Input Frequency (Hz)  
10000 100000 1000000  
1
10  
100  
1000  
Input Frequency (Hz)  
10000 100000 1000000  
D022  
D023  
Low-power mode  
30. CMRR vs Frequency  
31. Analog Supply PSRR vs Frequency  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, fCLK = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-  
resolution and low-power modes, chop enabled, offset disabled, and fDATA = 1000 SPS (unless otherwise noted)  
100  
20  
15  
10  
5
80  
60  
40  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-5  
-10  
-15  
-20  
P Input, T = 25èC  
N Input, T = 25èC  
P Input, T = 85èC  
N Input, T = 85èC  
P Input, T = 25èC  
N Input, T = 25èC  
P Input, T = 85èC  
N Input, T = 85èC  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
Differential Input Voltage (V)  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
Differential Input Voltage (V)  
1
1.5  
2
2.5  
D028  
D029  
Chop enabled, gain = 1, high-resolution mode  
Chop disabled, gain = 1, high-resolution mode  
32. Input Current vs Input Voltage  
33. Input Current vs Input Voltage  
20  
18  
16  
14  
12  
10  
8
12  
10  
8
High-resolution mode  
Low-power mode  
High-resolution mode  
Low-power mode  
6
4
6
4
2
2
0
0
D034  
D033  
Offset (mV)  
Offset (mV)  
Chop enabled, gain = 1, 30 units  
Chop disabled, gain = 1, 30 units  
34. Offset Error Histogram  
35. Offset Error Histogram  
20  
10  
9
8
7
6
5
4
3
2
1
0
High-resolution mode  
Low-power mode  
15  
10  
5
0
D035  
Offset Drift (nV/èC)  
D036  
Offset (mV)  
Offset enabled (50 mV), low-power mode,  
gain = 1, 30 units  
Chop enabled, gain = 1, 30 units  
37. Offset Temperature Drift Histogram  
36. Offset Error Histogram  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 2.5 V, AVSS = –2.5 V, DVDD = 3.3 V, fCLK = 1.024 MHz, V(REFP) = 0 V, V(REFN) = –2.5 V, gain = 1, high-  
resolution and low-power modes, chop enabled, offset disabled, and fDATA = 1000 SPS (unless otherwise noted)  
18  
16  
14  
12  
10  
8
160  
140  
120  
100  
80  
High-resolution mode  
Low-power mode  
60  
6
40  
4
2
20  
0
0
D031  
D032  
Gain Error (ppm)  
Gain Drift (ppm/èC)  
Gain = 1, 30 units  
Gain = 1, 2, 4, 8 and 16 combined; 30 units;  
combined high-resolution and low-power modes  
38. Gain Error Histogram  
39. Gain Drift Histogram  
10  
9
8
7
6
5
4
3
2
1
0
800  
700  
600  
500  
400  
300  
200  
High-resolution mode  
Low-power mode  
-50  
-25  
0
25  
50  
75  
100  
125  
D030  
Temperature (èC)  
D025  
Gain Match (ppm)  
Gain = 2, 4, 8, 16 match to gain = 1;  
30 units  
41. Reference Input Impedance vs Temperature  
40. Gain Match Error Histogram  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.25  
0.2  
0.15  
0.1  
1000 SPS  
500 SPS  
250 SPS  
125 SPS  
62.5 SPS  
0.05  
High-resolution mode  
Low-power mode  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D024  
D026  
High-resolution mode  
43. Digital Supply Current vs Temperature  
42. Analog Supply Current vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Noise Performance  
SNR and input-referred noise are related parameters that define the ADC effective resolution. Use 公式 1 to  
calculate SNR from the input-referred noise data:  
FSRRMS  
SNR = 20log  
NRMS  
where:  
FSRRMS = Full-scale range, root-mean-square = 2.5 V / (2 · Gain)  
NRMS = Input-referred noise voltage  
(1)  
1 through 4 list SNR and noise performance data. Noise performance data are listed for high-resolution  
and low-power modes, with and without chop enabled. The noise performance data are representative of typical  
ADC performance at TA = 25°C. The data are the standard deviation of consecutive ADC conversion results with  
the ADC inputs shorted over the signal bandwidth of 0.1 Hz to 0.413 fDATA. Repeated noise measurements can  
yield higher or lower noise results because of the statistical nature of noise.  
Noise performance depends on several ADC operating parameters: high-resolution or low-power mode, data  
rate, PGA gain, and chop mode. Best noise performance is achieved by operating the ADC in high-resolution  
mode. Noise performance also depends on the data rate. For example, as the data rate decreases, the ADC  
bandwidth and thus total noise decreases. Using higher gain factors improves input-referred noise, but the  
calculated SNR decreases because of a 6-dB decrease of input range for each gain step. Chop mode improves  
noise performance by removing 1/f noise from the PGA. Chop mode is particularly important for lowest noise  
operation when used with low data rates or high gain. Chop mode is the recommended mode for geophone  
sensors.  
1. High-Resolution Mode Noise Performance (Chop Enabled)(1)  
SNR (dB)  
GAIN  
4
INPUT-REFERRED NOISE (µVRMS  
)
fDATA (SPS)  
GAIN  
1
2
8
16  
1
2
4
8
16  
62.5  
125  
125  
122  
119  
116  
113  
125  
122  
119  
116  
113  
125  
124  
121  
118  
115  
112  
122  
119  
116  
113  
110  
0.96  
1.36  
1.90  
2.70  
3.85  
0.49  
0.68  
0.97  
1.36  
1.95  
0.25  
0.35  
0.50  
0.71  
1.00  
0.14  
0.19  
0.28  
0.39  
0.55  
0.09  
0.13  
0.18  
0.25  
0.36  
122  
250  
119  
500  
116  
1000  
113  
(1) Typical performance data at TA = 25°C. SNR data are rounded. Measurement bandwidth: 0.1 Hz to 0.413 fDATA  
.
2. High-Resolution Mode Noise Performance (Chop Disabled)(1)  
SNR (dB)  
GAIN  
4
INPUT-REFERRED NOISE (µVRMS  
)
fDATA (SPS)  
GAIN  
1
2
8
16  
1
2
4
8
16  
62.5  
125  
125  
122  
119  
116  
113  
125  
122  
119  
116  
113  
123  
120  
119  
116  
114  
111  
114  
114  
113  
111  
109  
0.99  
1.36  
1.90  
2.70  
3.85  
0.52  
0.70  
0.97  
1.38  
1.95  
0.31  
0.39  
0.54  
0.73  
1.03  
0.23  
0.26  
0.34  
0.43  
0.60  
0.23  
0.22  
0.26  
0.32  
0.41  
121  
250  
118  
500  
116  
1000  
113  
(1) Typical performance data at TA = 25°C. SNR data are rounded. Measurement bandwidth: 0.1 Hz to 0.413 fDATA  
.
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
3. Low-Power Mode Noise Performance (Chop Enabled, Offset Enabled)(1)  
SNR (dB)  
GAIN  
4
INPUT-REFERRED NOISE (µVRMS  
)
fDATA (SPS)  
GAIN  
1
2
8
16  
1
2
4
8
16  
62.5  
125  
123  
120  
117  
113  
110  
123  
119  
116  
113  
110  
122  
121  
118  
115  
112  
109  
118  
115  
112  
109  
106  
1.33  
1.86  
2.65  
3.81  
5.50  
0.66  
0.96  
1.36  
1.91  
2.79  
0.36  
0.50  
0.70  
1.01  
1.48  
0.20  
0.29  
0.41  
0.58  
0.84  
0.14  
0.20  
0.29  
0.40  
0.58  
119  
250  
116  
500  
113  
1000  
110  
(1) Typical performance data at TA = 25°C. SNR data are rounded. Measurement bandwidth: 0.1 Hz to 0.413 fDATA  
.
(1)  
4. Low-Power Mode Noise Performance (Chop Disabled, Offset Enabled)  
SNR (dB)  
GAIN  
4
INPUT-REFERRED NOISE (µVRMS  
)
fDATA (SPS)  
GAIN  
1
2
8
16  
1
2
4
8
16  
62.5  
125  
122  
119  
116  
113  
110  
122  
119  
116  
113  
110  
121  
118  
116  
114  
111  
108  
113  
112  
110  
108  
105  
1.36  
1.90  
2.67  
3.75  
5.53  
0.71  
0.97  
1.38  
1.93  
2.80  
0.40  
0.53  
0.74  
1.02  
1.48  
0.29  
0.36  
0.46  
0.62  
0.88  
0.24  
0.29  
0.35  
0.46  
0.62  
118  
250  
115  
500  
113  
1000  
110  
(1) Typical performance data at TA = 25°C. SNR data are rounded. Measurement bandwidth: 0.1 Hz to 0.413 fDATA  
.
8 Detailed Description  
8.1 Overview  
The ADS1287 is a low-power, high-resolution analog-to-digital converter (ADC) intended for energy exploration,  
low-power seismic-data acquisition nodes, and other exacting applications that require very low power  
consumption. The converter provides 31-bit resolution over data rates 62.5 SPS to 1000 SPS, and  
programmable gains of 1 to 16 that expand the measurement resolution; see the Functional Block Diagram  
section.  
The ADC consists of an input multiplexer (MUX), a low-noise complementary metal oxide semiconductor (CMOS)  
programmable gain amplifier (PGA), a fourth order delta-sigma (ΔΣ) modulator, an infinite impulse response (IIR)  
high-pass filter (HPF), a finite-impulse-response (FIR) low-pass filter (LPF), and an SPI-compatible serial  
interface used for both device configuration and conversion data readback.  
The signal multiplexer selects between the external input or internal short (via 400-Ω resistors). The internal short  
is used for offset calibration and to verify the ADC offset and noise performance. The input multiplexer is followed  
by a programmable-gain, CMOS PGA, featuring low noise. The available PGA gains are 1 V/V, 2 V/V, 4 V/V,  
8 V/V, and 16 V/V. The PGA is chopped to reduce 1/f noise and input offset voltage. The PGA output is routed to  
the modulator and to the CAPP and CAPN pins. An external 10-nF capacitor connected to these pins filters the  
modulator sampling pulses and provides the ADC antialias filter.  
The inherently-stable, fourth-order, ΔΣ modulator measures the differential input signal VIN = V(AINP) – V(AINN)  
against the differential reference VREF = V(REFP) – V(REFN). The ADC requires an external 2.5-V voltage reference.  
The modulator output data are processed by an integrated digital filter to provide the final conversion result.  
The digital filter consists of a sinc filter followed by a programmable-phase, FIR low-pass filter and  
programmable-frequency, IIR high-pass filter. The HPF removes DC and low-frequency components from the  
conversion result.  
Programmable gain and offset data registers calibrate the conversion result to remove offset and gain errors.  
The SYNC input pin synchronizes the ADC. Synchronization has two programable modes of operation: pulse-  
synchronization and continuous-synchronization that accepts a synchronizing-clock input. The RESET input  
resets the ADC including the register settings.  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
Overview (接下页)  
The PWDN input powers-down the ADC. The low-power STANDBY mode is engaged by software command.  
RESET and SYNC control inputs are noise-resistant, Schmitt-trigger inputs to increase reliability in high-noise  
environments.  
The ADC has an SPI-compatible serial interface. The interface is 4-wire and is used to read conversion data and  
to read and write device registers.  
Power to the analog section is provided through AVDD and AVSS. DVDD is the digital and I/O supply. DVDD is  
sub-regulated to 1.8 V by an integrated, low-dropout regulator (LDO) to supply the digital core. The BYPAS pin is  
the LDO output and requires a 1-µF bypass capacitor.  
8.2 Functional Block Diagram  
+1.8 V  
(Digital)  
LDO  
CLK  
840  
840 ꢀ  
CS  
AINP  
AINN  
SCLK  
DIN  
Serial  
Interface  
Calibration  
ûModulator  
Digital Filter  
PGA  
DOUT  
2 x  
400  
DRDY  
PWDN  
Control  
SYNC  
VCOM  
ADS1287  
RESET  
AVSS  
DGND  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.3 Feature Description  
8.3.1 Analog Input and Multiplexer  
44 shows a diagram of the analog input circuit and multiplexer.  
AVDD  
AINP  
400 Ω  
+
_
PGA  
AINN  
400 Ω  
VCOM = (AVDD + AVSS) / 2  
AVSS  
44. Analog Input and Multiplexer  
Electrostatic discharge (ESD) diodes are incorporated to protect the ADC inputs from ESD exposure that can  
occur during device manufacturing and printed circuit board (PCB) assembly process when assembled in an  
ESD-controlled environment. For system-level ESD protection, external ESD protection devices are  
recommended to protect device inputs or outputs that may be exposed to ESD events.  
If either input is taken below AVSS – 0.3 V, or above AVDD + 0.3 V, the internal protection diodes can conduct.  
If these conditions are possible, use external clamp diodes, series resistors, or both to limit the maximum input  
current to the specified value.  
The input multiplexer selects between the external input or the internal (shorted) input. The internal short is via  
two 400-Ω resistors to analog mid-supply voltage (VCOM). The thermal noise of the resistors is equivalent to the  
noise produced by common geophones. Use the internal short connection to verify the ADC offset voltage and  
noise performance, and to provide an input to calibrate the ADC offset voltage. 5 summarizes the register  
selections of the multiplexer configurations related to 44.  
5. Input Multiplexer Modes  
MUX[1:0] REGISTER BITS  
DESCRIPTION  
00  
01  
10  
11  
External input (default)  
Reserved  
Internal short; PGA input connected to internal VCOM voltage via 400-resistors  
Reserved  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.3.2 Programmable Gain Amplifier (PGA)  
The ADC incorporates a low-noise PGA in order to extend the ADC dynamic range. The PGA is a CMOS,  
differential-input and differential-output amplifier. The gain factor is programmable from 1 V/V to 16 V/V and is  
controlled by the GAIN[2:0] register bits. The PGA differentially drives the modulator via two 840-internal  
resistors. Connect a 10-nF, C0G-dielectric capacitor between the CAPP and CAPN pins. The capacitor filters the  
modulator sampling glitches and also functions as a first-order antialias filter. 公式 2 gives the corner frequency  
of the antialias filter:  
fC = 1/ (2π · 2 · 1.7 kΩ ·10 nF) = 9.3 kHz  
(2)  
As shown in 45, the PGA is composed of two amplifiers. The amplifiers are chopper-stabilized in order to  
reduce the PGA 1/f noise, offset, and offset drift. The PGA chop mode can be disabled when used with certain  
types of high-impedance sensors, such as hydrophones; see the Chop Mode section for more details.  
AVDD  
840  
+
MUX(+)  
CAPP  
œ
external  
Chop  
To ADC  
Modulator  
Gain Control  
PGA[2:0] bits  
10 nF  
840 ꢀ  
œ
CAPN  
+
MUX(-)  
Chop bit  
AVSS  
45. PGA Block Diagram  
The PGA gain factors are programmable from 1 to 16 V/V. 6 shows the register bit setting for the PGA gain  
and corresponding input voltage range.  
6. PGA Gain Factors  
GAIN[2:0] REGISTER BITS  
GAIN (V/V)  
DIFFERENTIAL INPUT RANGE  
000  
001  
1
±2.5 V  
±1.25 V  
±0.625 V  
±0.3125 V  
±0.15625 V  
2
010  
4
011  
8
16  
100  
101 - 111  
Reserved  
To maintain linear operation, observe the specified PGA input and PGA output voltage range requirements. The  
absolute voltage is defined as the sum of the signal component plus offset voltage (common-mode voltage). 公式  
3 shows the specified absolute input voltage range:  
AVSS + 1 V < V(AINP) and V(AINN) < AVDD – 1.25 V  
(3)  
公式 4 shows the specified absolute PGA output voltage range:  
AVSS + 0.4 V < V(CAPP) and V(CAPN) < AVDD – 0.4 V  
(4)  
公式 5 shows that the PGA output voltage is equal to the absolute PGA input voltage plus and minus the  
differential input voltage times half the PGA gain factor minus 1:  
PGA output voltage = V(CAPx) = V(AINx) ± VIN· (Gain – 1) / 2  
(5)  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.3.3 Modulator  
46 shows that the ΔΣ modulator is an inherently-stable, fourth-order, 2 + 2 pipelined structure. The modulator  
shapes the quantization noise to an area outside of the pass band, where the noise is removed by the digital  
filter.  
fCLK/4  
fMOD =  
1st-Stage  
(2nd-Order û)  
Analog  
Signal  
Digital  
Filter  
Math  
Block  
2nd-Stage  
(2nd-Order  
û)  
46. Modulator  
The first stage of the modulator converts the analog input voltage into a pulse-code modulated (PCM) stream.  
When the input voltage to the modulator is equal to the reference voltage (VREF), the density of the PCM data  
stream is at the highest 1 density. When the input voltage is zero, the PCM 1 density is 50%. At the FS and –FS  
inputs, the 1 density of the PCM streams is approximately 90% and 10%, respectively.  
The modulator second stage produces a digital data stream designed to cancel the quantization noise of the first  
stage. The data streams of the two stages are mathematically combined to reduce overall quantization noise.  
The combined data are the input to the digital filter block.  
8.3.3.1 Modulator Overrange  
The ADS1287 modulator is inherently stable, and therefore, has predictable input overdrive recovery. If the input  
is overdriven to cause the modulator to produce a 1 density output in the range of 90% to 100% (10% and 0% for  
negative overdrive), the output codes may or may not clip resulting from the effect of the digital filter integration.  
Clipping depends on the duration of the input overdrive. When the input returns to the normal range from a long-  
duration overdrive (worst case), the modulator returns immediately to the normal 1 density range, but the action  
of the digital filter delays the return to the normal reading range because of the filter group delay.  
In the extreme case of input overdrive (where the overdriven input exceeds the analog supply voltage + VESD  
diode drop), the internal ESD diodes begin to conduct, thus clipping the input signal. When the input overdrive is  
removed, the diodes recover quickly. Be sure to limit the input current to 10 mA (transient or continuous duty) if  
an overvoltage condition is possible.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.3.4 Voltage Reference Inputs (REFP, REFN)  
The ADC requires an external reference voltage for operation. The specified reference voltage is 2.5 V and is  
defined by 公式 6 as the voltage between the REFP and REFN pins:  
VREF = V(REFP) – V(REFN)  
(6)  
47 shows the reference input circuit. The ADC samples the reference voltage to an internal capacitor. The  
sampled voltage is used in the ADC process. The constant sampling of the reference inputs results in transient  
currents that must be filtered by an external capacitor. Place a 0.1-µF ceramic capacitor directly between the  
REFP and REFN pins to filter the transient currents.  
The input impedance of the reference input is determined by the average value of the transient currents. In  
applications where one voltage reference drives multiple ADCs, use individual capacitors at each ADC reference  
input. Reference voltage noise can degrade the overall noise performance. Therefore, the selection of the  
voltage reference must include the evaluation of noise.  
AVDD  
REFP  
CEFF  
REFN  
AVSS  
47. Simplified Reference Input Circuit  
The ADC reference inputs are protected by internal ESD diodes. The voltage of reference inputs must stay within  
the range shown in 公式 7 in order to prevent these diodes from conducting:  
AVSS – 300 mV < VREFP or VREFN < AVDD + 300 mV  
(7)  
If the voltage on the reference inputs exceeds this range, limit the reference input current to 10 mA or less. See  
the Electrical Characteristics section for the specified reference voltage range.  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.3.5 Digital Filter  
The digital filter performs decimation and filtering of the modulator output to provide the final data output. By  
adjusting the amount of filtering, tradeoffs can be made between resolution and data rate. Lower data rates yield  
lower overall noise resulting from the reduction of bandwidth.  
The digital filter is comprised of three filter stages, as shown in 48: a variable-decimation, sinc filter; a fixed-  
decimation FIR filter; and a programmable frequency high-pass, IIR filter (HPF).  
Filter Mode  
(Register Select)  
Filter  
MUX  
To Output Register  
Sinc Filter  
(Decimate by  
4 to 128)  
Coefficient Filter  
(FIR)  
(Decimate by 32)  
High-Pass Filter  
(IIR)  
Code  
Clip  
CAL  
Block  
From Modulator  
48. Digital Filter and Output Code Processing  
The output data can be taken from one of the three filter blocks. The sinc filter option provides partially filtered  
data. The partially filtered sinc data are intended for use with external decimation filters. For complete internal  
filtering, activate both the sinc filter and FIR filter stages. The HPF can also be included to remove DC and low  
frequencies from the data. 7 shows the filter options.  
7. Digital Filter Selection  
FILTR[1:0] REGISTER BITS  
DIGITAL FILTERS SELECTION  
00  
01  
10  
11  
Reserved  
Low-pass filter: sinc only  
Low-pass filter: sinc + FIR (default)  
Low-pass and high-pass filter: sinc + FIR + IIR  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.3.5.1 Sinc Filter Stage  
The sinc filter (sinx/x) is a variable-decimation, fifth-order, low-pass filter. Data are supplied to this filter from the  
modulator at the rate of fMOD = fCLK / 4 (high-resolution mode), fCLK / 8 (low-power mode). The sinc filter  
attenuates the high-frequency noise of the modulator. The sinc filter provides down-sampled, partially-filtered  
data to the FIR filter. The decimation ratio of the sinc filter is variable and determines the overall data rate. 8  
shows that the decimation ratio of the sinc filter is programmed by the DR[2:0] register bits.  
8. Sinc Filter Data Rates  
SINC DECIMATION RATIO (N)  
DR[2:0] REGISTER BITS  
HIGH-RESOLUTION MODE  
LOW-POWER MODE  
SINC DATA RATE (SPS)  
000  
001  
128  
64  
2,000  
4,000  
64  
32  
010  
32  
16  
8,000  
011  
16  
8
8
4
16,000  
32,000  
Reserved  
100  
101 - 111  
Reserved  
Reserved  
公式 8 shows the scaled Z-domain transfer function of the sinc filter.  
5
-N  
1 - Z  
-1  
N(1 - Z )  
H(Z) =  
where  
N = decimation ratio  
(8)  
公式 9 shows the frequency domain transfer function of the sinc filter.  
5
pN ´ f  
sin  
fMOD  
½H(f)½ =  
p ´ f  
N sin  
fMOD  
where  
N = Decimation ratio (see 8)  
f = Input signal frequency  
fMOD = Modulator sampling frequency = fCLK / 4 (high resolution mode), fCLK / 8 (low-power mode)  
(9)  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
The frequency response of the sinc filter contains notches (or zeros) that occur at the output data rate frequency  
and multiples thereof. At these frequencies, the filter has zero gain. 49 shows the wide-band frequency  
response of the sinc filter and 50 shows the –3-dB response.  
0
-20  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-40  
-60  
-80  
-100  
-120  
-140  
0
1
2
3
4
5
0
0.05  
0.10  
0.15  
0.20  
Normalized Frequency (fIN/fDATA  
)
Normalized Frequency (fIN/fDATA  
)
49. Sinc Filter Frequency Response  
50. Sinc Filter –3-dB Response  
8.3.5.2 FIR Filter Stage  
The second stage of the ADS1287 digital filter is the FIR low-pass filter. Data are supplied to the FIR stage from  
the pre-filter, sinc stage. The FIR filter performs the final frequency response shaping. 51 shows that the FIR  
filter is composed of four sub-stages.  
FIR Stage 1  
Decimate by 2  
FIR Stage 2  
Decimate by 2  
FIR Stage 3  
Decimate by 4  
FIR Stage 4  
Decimate by 2  
Sinc  
Filter  
Output  
Coefficients  
Linear  
Minimum  
PHASE Select  
51. FIR Filter  
The first two FIR stages are half-band filters with fixed decimation ratios equal to 2. The third stage decimates by  
a ratio equal to 4, and the fourth stage decimates by ratio equal to 2. The overall decimation ratio of the FIR  
stage is 32. Two coefficient sets are selectable by register bits for the third and fourth sections, one for the linear  
phase and one for the minimum phase response. 9 lists the data rates and combined decimation ratios of the  
sinc and FIR stage. 10 lists the filter coefficients that correspond to each FIR stage.  
9. FIR Filter Data Rates  
COMBINED DECIMATION RATIO (N)  
DR[2:0] REGISTER BITS  
HIGH-RESOLUTION MODE  
LOW-POWER MODE  
FIR DATA RATE (SPS)  
000  
001  
4096  
2048  
2048  
1024  
62.5  
125  
010  
1024  
512  
250  
011  
512  
256  
500  
100  
256  
128  
1000  
Reserved  
101–111  
Reserved  
Reserved  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
10. FIR Stage Coefficients  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
LINEAR MINIMUM  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b0  
PHASE PHASE  
3
0
–10944  
0
0
819  
8211  
–132  
–432  
11767  
133882  
b1  
0
b2  
–25  
0
103807  
0
–73  
44880  
–75  
769961  
b3  
–874  
174712  
536821  
1372637  
3012996  
5788605  
9852286  
14957445  
20301435  
24569234  
26260385  
24247577  
18356231  
9668991  
327749  
–7171917  
–10926627  
–10379094  
–6505618  
–1333678  
2972773  
5006366  
4566808  
2505652  
126331  
–1496514  
–1933830  
–1410695  
–502731  
245330  
565174  
492084  
231656  
–9196  
2481  
2940447  
8262605  
17902757  
30428735  
40215494  
39260213  
23325925  
–1757787  
–21028126  
–21293602  
–3886901  
14396783  
16314388  
1518875  
–12979500  
–11506007  
2769794  
12195551  
6103823  
–6709466  
–9882714  
–353347  
8629331  
5597927  
–4389168  
–7594158  
–428064  
6566217  
4024593  
–3679749  
–5572954  
332589  
b4  
150  
256  
150  
0
–507903  
0
–4648  
6692  
b5  
–16147  
–41280  
–80934  
–120064  
–118690  
–18203  
224751  
580196  
893263  
891396  
293598  
–987253  
–2635779  
–3860322  
–3572512  
–822573  
4669054  
12153698  
19911100  
25779390  
27966862  
25779390  
19911100  
12153698  
4669054  
–822573  
–3572512  
–3860322  
–2635779  
–987253  
293598  
891396  
893263  
580196  
224751  
–18203  
–118690  
–120064  
–80934  
–41280  
–16147  
–4648  
7419  
b6  
2512192  
4194304  
2512192  
0
–266  
b7  
–10663  
–8280  
b8  
–25  
0
b9  
10620  
b10  
b11  
b12  
b13  
b14  
b15  
b16  
b17  
b18  
b19  
b20  
b21  
b22  
b23  
b24  
b25  
b26  
b27  
b28  
b29  
b30  
b31  
b32  
b33  
b34  
b35  
b36  
b37  
b38  
b39  
b40  
b41  
b42  
b43  
b44  
b45  
b46  
b47  
b48  
3
–507903  
0
22008  
348  
103807  
0
–34123  
–25549  
33460  
–10944  
61387  
–7546  
–94192  
–50629  
101135  
134826  
–56626  
–220104  
–56082  
263758  
231231  
–215231  
–430178  
34715  
580424  
283878  
–588382  
–693209  
366118  
1084786  
132893  
–1300087  
–878642  
1162189  
1741565  
–522533  
–2490395  
–688945  
2811738  
2425494  
–2338095  
–4511116  
641555  
6661730  
5136333  
2351253  
–3357202  
–3767666  
1087392  
3847821  
919792  
–125456  
–122207  
–61813  
–4445  
22484  
22245  
10775  
–2918303  
–2193542  
1493873  
2595051  
–79991  
940  
–2953  
–2599  
–1052  
–874  
–43  
–2260106  
–963855  
–73  
214  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
10. FIR Stage Coefficients (接下页)  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b49  
b50  
b51  
b52  
b53  
b54  
b55  
b56  
b57  
b58  
b59  
b60  
b61  
b62  
b63  
b64  
b65  
b66  
b67  
b68  
b69  
b70  
b71  
b72  
b73  
b74  
b75  
b76  
b77  
b78  
b79  
b80  
b81  
b82  
b83  
b84  
b85  
b86  
b87  
b88  
b89  
b90  
b91  
b92  
b93  
b94  
b95  
b96  
b97  
0
0
0
132  
33  
0
2950811  
–8538057  
–10537298  
9818477  
41426374  
56835776  
41426374  
9818477  
–10537298  
–8538057  
2950811  
6661730  
641555  
1482337  
1480417  
–586408  
–1497356  
–168417  
1166800  
644405  
–675082  
–806095  
211391  
740896  
141976  
–527673  
–327618  
278227  
363809  
–70646  
–304819  
–63159  
205798  
124363  
–107173  
–131357  
31104  
–4511116  
–2338095  
2425494  
2811738  
–688945  
–2490395  
–522533  
1741565  
1162189  
–878642  
–1300087  
132893  
107182  
15644  
1084786  
366118  
–71728  
–36319  
38331  
–693209  
–588382  
283878  
38783  
580424  
–13557  
–31453  
–1230  
34715  
–430178  
–215231  
231231  
20983  
7729  
263758  
–11463  
–8791  
–56082  
–220104  
–56626  
4659  
7126  
134826  
–732  
101135  
–4687  
–50629  
–976  
–94192  
2551  
–7546  
1339  
61387  
–1103  
33460  
–1085  
–25549  
314  
–34123  
681  
348  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
29  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
10. FIR Stage Coefficients (接下页)  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
LINEAR MINIMUM  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
PHASE PHASE  
b98  
b99  
22008  
10620  
–8280  
–10663  
–266  
7419  
6692  
2481  
–75  
–349  
–96  
144  
78  
–46  
–42  
9
b100  
b101  
b102  
b103  
b104  
b105  
b106  
b107  
b108  
b109  
16  
0
–432  
–132  
0
–4  
0
0
As shown in 52, the FIR frequency response provides a flat pass-band response (±0.003 dB) to 0.375 fDATA  
.
53 shows the transition band beginning from the edge of the pass band and ending at the beginning of the  
stop band. The stop-band response is typically –135 dB above the Nyquist frequency.  
As with all oversampled systems, the pass-band response repeats at the underlying ADC sample rate. In this  
case, the response repeats at multiples of the modulator frequency (N·fMOD – f0 and N·fMOD + f0, where N = 1, 2,  
and so on, and f0 = filter pass band). These image frequencies, if not filtered and otherwise present in the signal,  
fold back (or alias) into the pass band causing errors. A low-pass input filter reduces aliasing. For many  
applications, the single-pole filter provided at the PGA output is sufficient to suppress the aliased frequencies.  
2.0  
1.5  
20  
0
-20  
1.0  
-40  
0.5  
-60  
0
-80  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
-160  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
Normalized Input Frequency (fIN/fDATA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Normalized Input Frequency (fIN/fDATA  
)
)
53. FIR Filter Transition Band Magnitude Response  
52. FIR Filter Pass-Band Magnitude Response  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.3.5.3 Group Delay and Step Response  
The FIR filter has selectable linear or minimum phase response. The pass-band, transition band, and stop-band  
responses of the linear and minimum phase filters are similar but differ in the respective phase response.  
8.3.5.3.1 Linear Phase Response  
Linear phase filters have the property that the input-to-output delay is constant across all input frequencies (that  
is, constant group delay). The constant delay property is independent of the nature of the input signal (pulsed or  
swept-tone). This filter provides low phase linearity error across frequency when analyzing multi-tone input  
signals. However, as shown in 54, the associated group delay is longer than that of the minimum phase filter.  
The specified number of conversions to result in fully settled data is the same for the linear and minimum filter  
profiles.  
1.4  
Minimum Phase Filter  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Linear Phase Filter  
0
-0.2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Time Index (1/fDATA  
)
54. FIR Step Response  
8.3.5.3.2 Minimum Phase Response  
Compared to the linear phase filter, the minimum phase filter provides a shorter delay from the arrival of an input  
event to the event appearing in the data output. As shown in 55, the relationship (phase) is not constant  
versus frequency. 11 shows that the filter phase is selected by the PHS bit.  
35  
Linear Phase Filter  
30  
25  
20  
15  
10  
Minimum Phase Filter  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
55. FIR Group Delay (fDATA = 500 SPS)  
11. FIR Phase Selection  
PHS REGISTER BIT  
FILTER PHASE  
Linear  
0
1
Minimum  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.3.5.4 HPF Stage  
The last stage of the digital filter is a high-pass filter (HPF) implemented as a first-order, IIR structure. This filter  
stage blocks DC signals and rolls off low-frequency components below the cutoff frequency. 公式 10 shows the  
transfer function for the filter:  
-1  
2 - a  
1 - Z  
HPF(Z) =  
´
-1  
2
1 - bZ  
where  
b is calculated as shown in 公式 11:  
(10)  
(11)  
1 + (1 - a)2  
b =  
2
The high-pass filter corner frequency is programmed by the HPF[1:0] register bits, in hexadecimal. 公式 12 is  
used to set the high-pass filter corner frequency. 12 lists example values for the high-pass filter.  
cos wN + sin wN - 1  
HPF[1:0] = 65,536 1 -  
1 - 2  
cos wN  
where  
HPF = High-pass filter register value (converted to hexadecimal)  
ωN = 2πfHP / fDATA (normalized frequency, radians)  
fHP = High-pass filter corner frequency (Hz)  
fDATA = Data rate (Hz)  
(12)  
12. High-Pass Filter Value Examples  
HPF1, HPF0  
0337h  
fHP (Hz)  
0.5  
DATA RATE (SPS)  
250  
500  
0337h  
1.0  
019Ah  
1.0  
1000  
32  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
公式 13 shows the HPF frequency domain transfer function. The HPF results in a small gain error that depends  
on the ratio of fHP / fDATA. For many common values of (fHP / fDATA), the gain error is negligible. 56 shows the  
gain error of the HPF.  
0
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
0.0001  
0.001  
0.01  
0.1  
Frequency Ratio (fHP/fDATA  
)
56. HPF Gain Error  
cos wN + sin wN - 1  
cos wN  
1 +  
1 - 2  
HPF Gain =  
cos wN + sin wN - 1  
cos wN  
2 -  
(13)  
57 shows the first-order amplitude and phase response of the HPF. In the case of applied step input or after  
synchronizing, make sure to take the settling time of the filter into account.  
0
-7.5  
90  
75  
60  
45  
30  
-15.0  
-22.5  
-30.0  
-37.5  
-45.0  
Amplitude  
Phase  
15  
0
0.01  
0.1  
1
10  
100  
Normalized Frequency (f/fC)  
57. HPF Amplitude and Phase Response  
版权 © 2017–2019, Texas Instruments Incorporated  
33  
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.3.6 Reset (RESET Pin and Reset Command)  
The ADC is reset in one of three ways: at power-up, by the RESET pin, or by the RESET command. By pin,  
drive RESET low for at least 2 fCLK cycles to force a reset. The ADC is held in reset until the pin is released high.  
By command, reset takes effect on the next rising fCLK edge occurring after the eighth rising edge of SCLK. In  
order to ensure a functional reset by command, the SPI interface may itself require reset; see the Serial Interface  
section for details. When the ADC is reset, registers are reset to default values and the conversions are  
synchronized on the next rising edge of CLK. Reset timing is illustrated in 5, the Timing Requirements table,  
and the Switching Characteristics table.  
8.3.7 Master Clock Input (CLK)  
The ADC requires an external clock for operation. The nominal clock frequency is 1.024 MHz. The clock is  
applied to the CLK pin with an amplitude equal to the DVDD supply. As with many precision data converters, a  
high-quality clock free from glitches is essential to achieve rated performance. A crystal- or MEMS-type clock  
source is recommended because of good temperature stability and low jitter. Make sure to avoid ringing on the  
clock input; keep the clock PCB trace as short as possible and routed away from the analog inputs, the PGA  
output pins (CAPP, CAPN), and associated analog components. Use a 50-series resistor to terminate the PCB  
trace impedance with the resistor placed close to the clock buffer.  
8.4 Device Functional Modes  
8.4.1 Operational Mode  
The ADC has two modes of operation: high resolution and low power. High-resolution mode provides the lowest  
noise (maximum SNR performance), whereas low-power mode offers lower power consumption at the expense  
of increased noise. 13 summarizes noise performance, power consumption, and associated register setting for  
each mode. The three register bits, located in the ID/CFG and CONFIG0 registers, must all be set to the same  
value (all 0s or all 1s).  
13. High-Resolution, Low-Power Modes  
REGISTER BITS MODE2, MODE1, MODE0  
OPERATIONAL MODE  
High resolution  
SNR (dB)(1)  
POWER (mW)  
111  
000  
113  
4.5  
2.4  
Low power  
110  
(1) SNR at gain = 1, fDATA = 1000 SPS.  
8.4.2 Chop Mode  
The chop mode modulates the PGA offset and 1/f noise to a frequency outside the ADC pass band where the  
offset and 1/f noise residue is removed by the digital filter. Small transient currents occur on the PGA inputs  
because of the stray capacitance associated with the internal chop switches. Although the average value of the  
transient currents results in high input impedance (> 20 GΩ), in some cases, the transient currents can interact  
with high-impedance sensors leading to degraded performance. For these applications, disable the chop mode.  
For common types of geophone sensors, chop mode is recommended. Chop mode is enabled by the CHOP bit  
of the CONFIG1 register (default is chop enabled).  
8.4.3 Offset  
As with most ΔΣ modulators, the ADC can produce low-level idle tones (typically 140 dB below the full-scale  
amplitude). The idle tones appear as low-frequency components in the output data when either no- or low-level  
signals are present. Typically, idle tones do not occur when high-level signals are present. The ADC incorporates  
an internal offset option that is intended to reduce the amplitudes of the tone. The offset is recommended for the  
low-power mode operation only and is not recommended for the high-resolution mode operation. Use the  
external offset circuit illustrated in the Application Information section for idle tone reduction in high-resolution  
mode operation.  
The offset is enabled by the OFFSET bit of the ID_CFG register. The offset voltage is 50 mV. The 50-mV offset  
leads to 2% reduction of the input range that is restored by calibrating the offset voltage by use of the offset  
calibration registers. Offset correction is accomplished by performing offset calibration, or to provide nominal  
correction, write 029700h to the calibration registers.  
34  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.4.4 Power-Down Mode  
Power the ADC down by driving the PWDN pin low. In power-down mode, the ADC is powered off, including the  
internal LDO. In addition, the LDO output (BYPAS pin) connects to DVDD in order to prevent internal floating  
circuit nodes to ensure the ADC draws very low leakage current from the supplies. When powered down, the  
device outputs remain powered and the device inputs must not be allowed to float, otherwise DVDD leakage  
current can occur. The ADC register settings are reset in power-down mode; see 6 for power-down mode  
timing details.  
8.4.5 Standby Mode  
Standby is the software power-down mode. In standby mode, the analog and most of the digital circuit blocks are  
powered down while the serial interface and the register banks remain active. See the Electrical Characteristics  
table for the DVDD supply current in STANDBY mode. To engage standby mode, send the STANDBY command.  
To exit standby mode, send the WAKEUP command. 6 and the Switching Characteristics table show the  
timing. Standby mode is exited whenever CS is high.  
The STANDBY, WAKEUP command sequence restores the previous synchronization timing that is lost as a  
result of register write operations (continuous-sync mode). See the Continuous-Sync Mode section for details on  
how to restore synchronization.  
8.4.6 Synchronization  
The ADC is synchronized by either the SYNC pin or by the SYNC command. Synchronization by pin occurs on  
the next rising edge of CLK after the rising edge of SYNC. Synchronization by command occurs on the next  
rising edge of CLK after the eighth bit of the command is received. The ADS1287 has two functional  
synchronization modes: pulse sync and continuous sync.  
8.4.6.1 Pulse-Sync Mode  
In pulse-sync mode, the ADC unconditionally synchronizes on the rising edge of SYNC. When the ADC  
synchronizes, the conversion in progress is stopped and a new conversion is started. The internal filter memory  
is reset at the start of the new conversion. As a result of the computational latency of the digital filter, the ADC  
suppresses the first 63 conversion results until the digital filter is fully settled. 4, the Timing Requirements  
table, and the Switching Characteristics table illustrate the SYNC input timing and conversion propagation  
delays.  
The ADC also synchronizes at the occurrence of a register write operation and the previous synchronization is  
lost. To re-synchronize, pulse the SYNC pin (or send the SYNC command) at the desired time, after the register  
write operation.  
8.4.6.2 Continuous-Sync Mode  
In continuous-sync mode, the ADC synchronizes on the first rising edge of the SYNC pin after configuring the  
ADC to the continuous-sync mode. On the subsequent rising edges of SYNC, the ADC re-synchronizes only if  
the SYNC input period is not equal to an integer multiple of the data rate period by at least ±1 / fCLK (that is, the  
SYNC period N /fDATA ± 1 /fCLK, where N = 1, 2, 3, and so forth). The period of SYNC can be indefinite. If the  
periods are not divisible by an integer, the ADC re-synchronizes. In this mode, a periodic synchronizing clock can  
be applied to the ADC, resulting in autonomous synchronization.  
版权 © 2017–2019, Texas Instruments Incorporated  
35  
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
When synchronization occurs, DRDY continues to pulse but the ADC forces the data to zero until the data are  
settled (approximately 63 DRDY periods later). At the 63rd conversion, valid data are output. See 4 for an  
illustration of DRDY behavior. The phase relationship between SYNC and DRDY also depends on the data rate  
because of the slight dependence of filter group delay to data rate. 58 shows an example of the phase  
relationship between SYNC and DRDY. The SYNC pin only can be used to control continuous-sync mode.  
N / fDATA  
SYNC  
1 / fDATA  
DRDY  
58. Continuous-Sync Mode  
The ADC synchronizes at the occurrence of a register write operation resulting in loss of the previous  
synchronization. To re-establish the previous synchronization (in continuous-sync mode), send the STANDBY,  
WAKEUP command sequence. The re-synchronization sequence is valid provided the time between the  
STANDBY and WAKEUP commands is not equal to the data rate period by at least ± 1 / fCLK period.  
8.4.7 Reading Data  
The ADC has two modes to read conversion data: read-data-continuous (RDATAC mode) and read-data-by-  
command (SDATAC mode).  
8.4.7.1 Read-Data-Continuous Mode (RDATAC)  
In read-data-continuous mode, conversion data are read without the need of a read data command. When DRDY  
asserts low (indicating new data), the MSB of data appears on DOUT. Read data by applying the serial interface  
clock on SCLK; see 3 for DRDY to DOUT timing.  
As shown in 59, conversion data are read by first driving CS low and then shifting the data by applying the  
serial interface clock to SCLK. Latch the data on the rising edge of SCLK. On the first falling edge of SCLK, the  
ADC returns DRDY high. After all 32 bits of conversion data are read, further SCLK transitions result in DOUT  
driven low. If desired, the read operation can be stopped after 24 bits. A new read cycle is started when new  
conversion data are available. The data read operation must be completed four CLK periods prior to the next  
DRDY falling edge, otherwise the data are overwritten with new conversion data.  
(1)  
CS  
DRDY  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 25 26 27 28 29 30 31 32  
SCLK  
DOUT  
DIN  
Data Byte 1 (MSB)  
Data Byte 2 (MSB - 1)  
Data Byte 4 (LSB)  
(1) DOUT is in tri-state mode when CS is high. SCLK arrows indicate when the data are latched.  
59. Read-Data-Continuous Mode  
36  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.4.7.2 Stop-Read-Data-Continuous-Mode (SDATAC)  
In SDATAC mode, a command is required in order to read conversion data. Send the SDATAC command to first  
engage the mode. Send an RDATA command, as shown in 60, for each data retrieval operation. After the  
eighth SCLK rising edge of the RDATA command, conversion data are ready when the ADC drives DRDY low  
(see the Switching Characteristics table for tP(CMDR) timing). tP(CMDR) is dependent on the timing of the command  
relative to the conversion phase. When DRDY goes low, MSB conversion data appear on DOUT and the data  
shift operation can begin (see 3 for DRDY to DOUT timing). The RDATA command must be sent at least as  
often as the data rate or data are lost. Driving CS high cancels the SDATAC mode; therefore, the SDATAC mode  
must be reset if CS is taken high prior to each RDATA operation.  
(1)  
tp(CMDR)  
CS  
DRDY  
SCLK  
td(CMBT)  
17 18 19 20 21 22 23 24  
41 42 43 44 45 46 47 48  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
DIN  
RDATA  
SDATAC  
DOUT  
Data Byte 1 (MSB)  
Data Byte 4 (LSB)  
Don't Care  
(1) If CS taken high, send the SDATAC command prior to the RDATA command. SCLK arrows indicate when the data  
are latched.  
60. Read Data By Command Mode  
8.4.8 Conversion Data Format  
As shown in 14, the conversion data are 32 bits in binary two's complement format. The LSB of the data is a  
redundant sign bit: 0 for positive numbers and 1 for negative numbers. However, when the data are clipped to  
FS, the LSB = 1 and when the data are clipped to –FS, the LSB = 0. If desired, the data readback can be  
stopped after 24 bits. In sinc-filter mode, the data are numerically scaled by half.  
14. Ideal Output Code Versus Input Signal  
32-BIT IDEAL OUTPUT CODE(1)  
INPUT SIGNAL VIN  
> VREF / Gain  
FIR FILTER  
7FFFFFFFh  
7FFFFFFEh  
00000002h  
00000000h  
FFFFFFFFh  
80000001h  
80000000h  
SINC FILTER(2)  
(3)  
VREF / Gain  
3FFFFFFFh  
00000001h  
00000000h  
FFFFFFFFh  
C0000000h  
VREF / (Gain · 230  
)
0
–VREF / (Gain · 230  
)
–VREF / (Gain · (230/ (230 – 1)))  
< –VREF / (Gain · (230/ (230 – 1)))  
(3)  
(1) Excludes effects of noise, linearity, offset, and gain errors.  
(2) As a result of the reduction in oversampling ratio (OSR) related to high data rates of the sinc filter mode, the available ADC resolution  
correspondingly reduces.  
(3) When the full-scale range is exceeded in sinc filter mode, the conversion data exceeds half-scale code (3FFFFFFFh and C0000000h).  
版权 © 2017–2019, Texas Instruments Incorporated  
37  
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.4.9 Offset and Full-Scale Calibration Registers  
Offset and gain errors are corrected by the offset and full-scale calibration registers. As shown in 61, the  
conversion result is first subtracted by the offset register (OFC) and then multiplied by the correction factor  
derived from the full-scale register (FSC). These operations occur before the 32-bit clip stage. 公式 14 shows the  
offset and full-scale correction.  
FSC[2:0]  
Final Output Data = (Input - OFC[2:0]) ´  
400000h  
(14)  
AINP  
AINN  
+
Output Data  
Clipped to 32 Bits  
Digital  
Filter  
´
Final Output  
Modulator  
S
-
OFC  
Register  
FSC Register  
400000h  
61. Calibration Block Diagram  
The offset and full-scale registers are written directly by the user, or the values are determined automatically as a  
result of calibration operations. One set of offset and full-scale registers apply for all gain factors. Unique values,  
depending on system accuracy requirements, may be required for each gain to improve the gain-matching  
performance. The calibration operation is bypassed in the sinc filter mode.  
8.4.9.1 OFC[2:0] Registers  
15 shows that the offset calibration register is a 24-bit word composed of three 8-bit registers. The offset  
register is left-justified in order to align with the 32-bit conversion data. The offset value is in two's complement  
format with a maximum positive value of 7FFFFFh and a maximum negative value of 800000h. The register data  
are subtracted from the conversion data. Register data equal to 00000h perform no offset correction (default).  
15. Offset Calibration Word  
REGISTER  
OFC0  
BYTE  
LSB  
BIT ORDER  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
OFC1  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
OFC2  
MSB  
B23 (MSB)  
B17  
B16  
Although the offset calibration register can accommodate values from –FS to FS (as shown in 16), the post-  
calibrated input voltage cannot exceed 106% of the nominal input range.  
16. Offset Calibration Values  
OFC[2:0] REGISTERS  
00007Fh  
FINAL OUTPUT CODE(1)  
FFFF8100h  
000001h  
FFFFFF00h  
000000h  
00000000h  
FFFFFFh  
00000100h  
FFFF7Fh  
00008100h  
(1) Ideal post-calibration value with zero voltage input.  
38  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.4.9.2 FSC[2:0] Registers  
17 shows that the full-scale calibration register is a 24-bit word, composed of three 8-bit registers. The full-  
scale calibration value is 24-bit, straight-offset binary, normalized to a scale factor of 1.0 for a register value of  
400000h.  
17. Full-Scale Calibration Word  
REGISTER  
FSC0  
BYTE  
LSB  
BIT ORDER  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
FSC1  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
FSC2  
MSB  
B23 (MSB)  
B17  
B16  
18 summarizes the scaling of the full-scale calibration register. A register value equal to 400000h (default  
value) yields a unity-gain scale factor. Although the full-scale calibration register value can be used to correct  
gain errors > 1 (gain scale factor < 1), the post-calibrated input voltage cannot exceed 106% of the nominal input  
range.  
18. Full-Scale Calibration Register Values  
FSC[2:0] REGISTERS  
433333h  
SCALE FACTOR  
1.05  
1.00  
0.95  
400000h  
3CCCCCh  
8.4.10 Calibration Command  
The calibration commands (OFSCAL or GANCAL) perform calibration on demand. These commands compute  
the offset and gain correction register factors, respectively. The appropriate calibration voltage must be applied  
for calibration. Low data rates are able to provide more consistent calibration results resulting from lower noise  
compared to high data rates. If calibrating at system power-on, be sure the reference voltage is fully settled.  
Calibration is not available when operating in the sinc filter mode.  
62 shows the calibration command sequence. Apply the appropriate calibration voltage to the ADC. After the  
input voltage stabilizes, send the SDATAC, SYNC, and RDATAC commands in sequence (allow 24 / fCLK gaps  
between commands). DRDY is then driven low 64 data periods later. After DRDY is driven low, send the  
SDATAC command, then the calibration command (OFSCAL or GANCAL), followed by the RDATAC command.  
After 16 data periods, calibration completion is indicated when DRDY is driven low. The calibrated conversion  
data are available at this time. The SYNC input must remain high during the calibration sequence.  
VIN  
Fully stable input and reference voltage.  
OFSCAL or  
Commands  
SDATAC  
SYNC  
RDATAC  
SDATAC  
RDATAC  
GANCAL  
Calibration  
Complete  
16 Data  
Periods  
DRDY  
SYNC  
64 Data Periods  
62. Calibration Command Sequence  
8.4.10.1 OFSCAL Command  
The OFSCAL command performs the offset calibration. To calibrate, apply a zero voltage input to the ADC or  
select the internal shorted input channel via the input multiplexer and allow the inputs to stabilize. Send the  
command sequence as illustrated in 62. The ADC averages 16 readings to reduce the effects of noise and  
then writes the 24-bit truncated result to the OFC register. During offset calibration, the full-scale correction is  
bypassed. The optional 50-mV internal offset can be calibrated using the calibration command in order to restore  
the full input voltage range.  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
 
 
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.4.10.2 GANCAL Command  
The GANCAL command performs gain calibration. To calibrate, apply a positive full-scale DC input to the ADC  
and allow the inputs to stabilize. Send the command sequence as illustrated in 62. The ADC averages 16  
readings to reduce the effects of noise and then computes a 24-bit scale factor value. This value is written to the  
FSC register.  
8.4.11 User Calibration  
ADC calibration can be performed by the user without using calibration commands. This procedure requires the  
user to apply the appropriate calibration voltage as with using calibration commands, but in this case the user  
computes the calibration values based on the conversion result and then writes the value to the calibration  
registers. The procedure for user calibration is as follows:  
1. Set the OFSCAL[2:0] register = 0h, and GANCAL[2:0] = 400000h. These values set the offset and gain  
factors to 0 and 1, respectively.  
2. Apply zero voltage or short the inputs (example: set the ADC mux to internal short). Wait for the input voltage  
and the ADC to settle for a minimum of 63 conversions and then begin averaging of a number of conversion  
results. Averaging conversions results in a more accurate calibration. Write the 24-bit averaged value to the  
OFC register.  
3. Apply a DC or AC calibration voltage at least 5% below full-scale. Be sure not to be near or exceed 100%  
FSR otherwise the conversion data clips, resulting in erroneous calibration. Wait for the calibration voltage  
and the ADC to settle for a minimum of 63 conversions. Use 公式 15 or 公式 16 to compute the scale factor  
value.  
公式 15 shows the DC calibration voltage. Use the average value of the ADC data.  
Expected Output Code  
FSC[2:0] = 400000h ´  
Actual Output Code  
(15)  
公式 16 shows the AC calibration voltage. Use an RMS value of the ADC data.  
Expected RMS Value  
FSC[2:0] = 400000h ´  
Actual RMS Value  
(16)  
8.5 Programming  
8.5.1 Serial Interface  
The serial interface is used to read conversion data and to read or write control register data. The interface is  
SPI compatible and consists of the following signals: CS, SCLK, DIN, and DOUT.  
8.5.1.1 Chip Select (CS)  
Chip select is an active-low input that enables the ADC serial interface for communication. CS must remain low  
for the duration of the ADC data transfer. When CS is high, SCLK activity is ignored, in-progress data transfer or  
commands are terminated, and DOUT (data output pin) enters a high-impedance state. When CS is driven high,  
the ADC terminates standby mode and also resets the mode to read data continuous (RDATAC); see the Stop-  
Read-Data-Continuous-Mode (SDATAC) section for more information.  
8.5.1.2 Serial Clock (SCLK)  
The serial interface clock (SCLK) is an input that is used to shift data into and out of the ADC. The ADC latches  
data on DIN at the rising edge of SCLK. Data are shifted out on DOUT at the falling edge of SCLK. Keep SCLK  
low when not active. The SCLK pin is a noise-resistant, Schmitt-trigger input that reduces the possibility of noise-  
induced false edges. However, keep SCLK as clean as possible to prevent possible glitches from inadvertently  
shifting the data.  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Programming (接下页)  
8.5.1.3 Data Input (DIN)  
The data input pin (DIN) is used to input register data and commands to the ADC. The ADC latches input data  
on the rising edge of SCLK. In read-data-continuous mode, keep DIN low when clocking out conversion data.  
The exception to keeping DIN low is to interrupt the read-data-continuous mode by sending the SDATAC  
command.  
8.5.1.4 Data Output (DOUT)  
The data output pin (DOUT) provides the ADC output data. Data are shifted out on the falling edge of SCLK and  
are read by the user on the following rising edge of SCLK. Keep the DOUT trace length to minimum to reduce  
the effects of inter-symboling noise effects within the ADC. When CS is high, DOUT is forced to hi-Z.  
8.5.1.5 Serial Interface Timeout  
When CS is low, the serial interface times-out (resets) if SCLK is held low for 64 DRDY cycles. Reset of the  
serial interface terminates commands in progress. When reset, the next SCLK pulse starts a new communication  
cycle. To prevent timeout and reset of the serial interface, provide at least one SCLK pulse for every 64 DRDY  
pulses.  
8.5.1.6 Data Ready (DRDY)  
DRDY is an output that indicates when new conversion data are ready. DRDY is always actively driven  
regardless whether CS is high or low. When reading data in the read data continuous mode, the read operation  
must be completed four CLK periods prior to the next DRDY falling edge, or the data are overwritten by new  
conversion data.  
During data readback, DRDY is driven high on the first falling edge of SCLK. 63 and 64 show the function  
of DRDY with and without data readback, respectively. If data are not retrieved (no SCLK provided), as shown in  
64, DRDY pulses high for four fCLK periods during the update time.  
Data Updating  
4/fCLK  
DRDY  
DOUT  
SCLK  
DRDY  
Bit 31  
Bit 30  
Bit 29  
63. DRDY With Data Retrieval  
64. DRDY With No Data Retrieval  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
Programming (接下页)  
8.5.2 Commands  
The commands listed in 19 control ADC operation. Most commands are stand-alone (that is, one byte in  
length); the register read and write command lengths are two bytes, plus additional data bytes that represent the  
actual register data.  
19. Command Descriptions  
COMMAND  
WAKEUP  
STANDBY  
SYNC  
TYPE  
Control  
Control  
Control  
Control  
Control  
Control  
Data  
DESCRIPTION  
Wake-up from standby mode  
Enter standby mode  
1ST COMMAND BYTE(1)(2)  
0000 000X (00h or 01h)  
0000 001X (02h or 03h)  
0000 010X (04h or 5h)  
0000 011X (06h or 07h)  
0001 0000 (10h)  
2ND COMMAND BYTE(3)  
Synchronize ADC conversions  
Reset the ADC  
RESET  
RDATAC  
SDATAC  
RDATA  
Read data continuous mode  
Stop read data continuous mode  
Read data by command(4)  
Read nnnnn registers at address rrrrr(4)  
Write nnnnn registers at address rrrrr  
0001 0001 (11h)  
0001 0010 (12h)  
RREG  
Register  
Register  
001r rrrr (20h + 000r rrrr)  
010r rrrr (40h + 000r rrrr)  
0110 0000 (60h)  
000n nnnn (00h + n nnnn)  
000n nnnn (00h + n nnnn)  
WREG  
OFSCAL  
GANCAL  
Calibration Offset calibration  
Calibration Gain calibration  
0110 0001 (61h)  
(1) X = don't care.  
(2) rrrrr = starting address for register read and write commands.  
(3) nnnnn = number of registers to be read from or written to – 1. For example, to read from or write to three registers, set nnnnn = 2  
(00010).  
(4) Required to cancel read-data-continuous mode before sending a command.  
CS must remain low for the duration of the command-byte sequence. Provide a 24 / fCLK delay between  
commands, between bytes within a command, and from the last byte of a command prior to returning CS high.  
The required delay starts from the last SCLK rising edge of the preceding byte to the first SCLK rising edge of  
the following byte; see 2. The delay between data bytes is not necessary when reading conversion data.  
8.5.2.1 WAKEUP: Wake Up Command  
The WAKEUP command is used to exit standby mode and to resume normal operation. The STANDBY,  
WAKEUP sequence is illustrated in 65. 6 illustrates the time for new conversion data. After writing the ADC  
registers, the ADC restarts the filter cycle and, as a consequence, results in loss of the previous synchronization.  
In continuous synchronization mode, use the STANDBY, WAKEUP command sequence to restore the previous  
synchronization; see the Continuous-Sync Mode section for details.  
8.5.2.2 STANDBY: Standby Mode Command  
The STANDBY command engages standby mode. In standby, ADC conversions are stopped and the ADC  
enters a low-power mode. The register settings are retained in this mode. The ADC remains in standby mode  
until CS is taken high or the WAKEUP command is sent. For complete device shutdown, take the PWDN pin low.  
65 shows the operation of the STANDBY, WAKEUP sequence.  
0000 001X  
(STANDBY)  
0000 000X  
(WAKEUP)  
DIN  
SCLK  
Operating  
Standby Mode  
Operating  
65. STANDBY Command Sequence  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.5.2.3 SYNC: Synchronize ADC Conversions  
The SYNC command synchronizes the analog-to-digital conversion. Upon receiving the SYNC command, the  
read in progress is cancelled and the conversion process is restarted. In order to synchronize multiple ADCs, the  
command must be sent simultaneously to all devices. The SYNC pin must be held high when this command  
used. The SYNC command is also required in the calibration command sequence.  
8.5.2.4 RESET: Reset Command  
The RESET command resets the ADC. RESET sets the registers back to default, restarts the conversion  
process, and engages read-data-continuous mode. The RESET command is functionally equivalent to using the  
RESET pin, however toggle the CS pin prior to the RESET command to ensure that the serial interface is reset.  
See 5 for the RESET command timing.  
8.5.2.5 RDATAC: Read Data Continuous Mode Command  
The RDATAC command programs the read-data-continuous mode (default mode). In this mode, conversion data  
can be read directly by applying serial interface clocks (no read data command is necessary). Each time DRDY  
transitions low, new data are available to read; see the Read-Data-Continuous Mode (RDATAC) section for more  
details.  
8.5.2.6 SDATAC: Stop Read Data Continuous Mode Command  
The SDATAC command stops read-data-continuous mode. This mode is required before sending register read or  
write commands and before issuing the data read command (RDATA). CS high cancels the SDATAC mode.  
Send the RDATAC command to cancel SDATAC mode; see the Stop-Read-Data-Continuous-Mode (SDATAC)  
section for more details.  
8.5.2.7 RDATA: Read Data Command  
The RDATA command is necessary to read the conversion data in SDATAC mode. The RDATA command must  
be sent for each read of conversion data; see the Stop-Read-Data-Continuous-Mode (SDATAC) section for  
details.  
8.5.2.8 RREG: Read Register Data Command  
The RREG command is used to read a single register byte or to read multiple register bytes. The command  
consists of a two-byte argument followed by the output of register data. The first byte of the command is the  
register starting address, and the second byte specifies the number of registers to read minus one.  
First command byte: 001r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers to read minus one.  
In the read register data example sequence shown in 66, with the 24th falling edge of SCLK, the first register  
data bit appears on DOUT. Read the first bit of register data on the 25th SCLK rising edge.  
See the Timing Requirements table for the specification of the td(CMBT) parameter.  
CS  
td(CMBT)  
td(CMBT)  
35  
36  
td(CMBT)  
td(CMBT)  
37  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
25 26 27 28 29 30 31 32  
33 34  
SCLK  
DIN  
RREG Byte 1  
Don't Care  
SDATAC  
RREG Byte 2  
DOUT(1)  
Register Data 5  
Register Data 6  
Example: Read six registers, starting at register 05h (OFC0)  
RREG Byte 1 = 0010 0101  
RREG Byte 2 = 0000 0101  
(1) DOUT is in tri-state when CS is high.  
66. Read Register Data  
版权 © 2017–2019, Texas Instruments Incorporated  
43  
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
In read-data-continuous mode, the output data shift register is written with new conversion data just before  
DRDY transitions low. To avoid conflicting data between conversion data and register data, send the SDATAC  
command before reading register data. The SDATAC command disables loading of conversion data into the  
output data shift register. Keep CS low between the SDATAC command and the read register command because  
CS high cancels the SDATAC mode.  
8.5.2.9 WREG: Write Register Data Command  
The WREG command writes a single register byte or writes multiple register bytes. The command consists of a  
two-byte argument followed by the register data to write. The first byte of the argument is the register starting  
address and the second byte specifies the number of registers to write minus one.  
First command byte: 010r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers to write minus one.  
Data bytes: one or more register data bytes, depending on the number of registers specified.  
67 shows the WREG command. See the Timing Requirements table for the specification of the td(CMBT)  
parameter.  
CS  
td(CMBT)  
td(CMBT)  
35  
36  
td(CMBT)  
td(CMBT)  
37  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
25 26 27 28 29 30 31 32  
33 34  
SCLK  
DIN  
SDATAC  
WREG Byte 1  
Register Data 5  
Register Data 6  
WREG Byte 2  
DOUT(1)  
Don't Care  
Example: Write six registers, starting at register 05h (OFC0)  
WREG Byte 1 = 0100 0101  
WREG Byte 2 = 0000 0101  
(1) DOUT is in tri-state when CS is high.  
67. Write Register Data  
After writing to the ADC registers, the ADC synchronizes at the time of the write operation. ADC synchronization  
is re-established in pulse-sync mode by pulsing the SYNC pin at the desired time mark. In continuous-sinc mode,  
the previous synchronization is restored at any time by sending the STANDBY, WAKEUP command sequence;  
see the Continuous-Sync Mode section for details.  
8.5.2.10 OFSCAL: Offset Calibration Command  
The OFSCAL command performs an offset calibration. The inputs to the system (or ADC) must be zeroed and  
allowed to stabilize before sending this command. The offset calibration register is updated after this operation;  
see the Calibration Command section for more details.  
8.5.2.11 GANCAL: Gain Calibration Command  
The GANCAL command performs a gain calibration. The inputs to the system (or ADC) is a full-scale, DC  
calibration voltage. The gain calibration register is updated after the operation completes; see the Calibration  
Command section for more details.  
44  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.6 Register Map  
Collectively, the registers contain all the information needed to configure the device (such as data rate, filter  
mode, calibration, and so on). The registers are accessed by the read and write register commands (RREG and  
WREG, respectively). The registers are accessed either individually, or as a block by sending or receiving  
consecutive register data bytes. After the register write operation is completed, the conversion cycle restarts.  
Restart results in loss of the previous synchronization. Re-synchronize after writing the device registers; see the  
Synchronization section for details. 20 lists the ADS1287 registers.  
20. Register Map  
RESET  
ADDRESS  
00h  
REGISTER  
ID/CFG  
CONFIG0  
CONFIG1  
HPF0  
VALUE  
X0h  
52h  
08h  
32h  
03h  
00h  
00h  
00h  
00h  
00h  
40h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ID[3:0]  
MODE[2:1](1)  
OFFSET  
RESERVED  
01h  
SYNC  
BIAS(2)  
MODE[0](1)  
DR[2:0]  
PHASE  
FILTR[1:0]  
GAIN[2:0]  
02h  
RESERVED  
MUX[1:0]  
CHOP  
03h  
HPF[7:0]  
04h  
HPF1  
HPF[15:8]  
OFC[7:0]  
05h  
OFC0  
06h  
OFC1  
OFC[15:8]  
OFC[23:16]  
FSC[7:0]  
07h  
OFC2  
08h  
FSC0  
09h  
FSC1  
FSC[15:8]  
FSC[23:16]  
0Ah  
FSC2  
(1) The MODE[2:1] and MODE[0] bits must be set to all 1s or all 0s; see the Operational Mode section.  
(2) The BIAS bit must be written to 1 after power-on or after reset.  
8.6.1 Register Descriptions  
21 lists the register access types for the ADS1287 registers.  
21. ADS1287 Access Type Codes  
Access Type  
Code  
R
Description  
Read  
R
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default  
value  
版权 © 2017–2019, Texas Instruments Incorporated  
45  
 
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.6.1.1 ID/CFG: ID, Configuration Register (address = 00h) [reset = x0h]  
68. ID/CFG Register  
7
6
5
4
3
2
1
0
ID[3:0]  
R-x  
MODE[2:1]  
R/W-0h  
OFFSET  
R/W-0h  
RESERVED  
R/W-0h  
22. ID/CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
ID[3:0]  
R
---  
Factory-programmed identification bits (read-only).  
The ID bits are subject to change without notification.  
3:2  
MODE[2:1]  
R/W  
0h  
Operating mode.  
These bits must be set the same as the MODE[0] bit; see the  
CONFIG0 register.  
00: Low-power mode  
01: Reserved  
10: Reserved  
11: High-resolution mode  
1
0
OFFSET  
R/W  
R/W  
0h  
0h  
50-mV offset option.  
See the Offset section.  
0: Offset disabled (default)  
1: Offset enabled  
RESERVED  
Reserved.  
Always write 0.  
46  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.6.1.2 CONFIG0: Configuration Register 0 (address = 01h) [reset = 52h]  
69. CONFIG0 Register  
7
6
5
4
3
2
1
0
SYNC  
R/W-0h  
MODE[0]  
R/W-1h  
DR[2:0]  
R/W-2h  
PHASE  
R/W-0h  
FILTR[1:0]  
R/W-2h  
23. CONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC  
R/W  
0h  
Synchronization mode configuration bit.  
0: Pulse-sync mode (default)  
1: Continuous-sync mode  
6
MODE[0]  
DR[2:0]  
R/W  
R/W  
1h  
2h  
Operating mode bit.  
This bit must be set in coordination with MODE2 and MODE1  
bits; see 22.  
0: Low-power mode  
1: High-resolution mode  
5:3  
Data rate bits.  
000: 62.5 SPS  
001: 125 SPS  
010: 250 SPS (default)  
011: 500 SPS  
100: 1000 SPS  
2
PHASE  
R/W  
R/W  
0h  
2h  
FIR phase response bit.  
0: Linear phase (default)  
1: Minimum phase  
1:0  
FILTR[1:0]  
Digital filter configuration bits.  
00: Reserved  
01: LPF sinc filter only  
10: LPF sinc + LPF FIR filter (default)  
11: LPF sinc + LPF FIR + HPF filter  
版权 © 2017–2019, Texas Instruments Incorporated  
47  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.6.1.3 CONFIG1: Configuration Register 1 (address = 02h) [reset = 08h]  
70. CONFIG1 Register  
7
6
5
4
3
2
1
0
BIAS  
RESERVED  
R/W-0h  
MUX[1:0]  
R/W-0h  
CHOP  
R/W-1h  
PGA[2:0]  
R/W-0h  
R/W-0h  
24. CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BIAS  
R/W  
0h  
ADC bias.  
Always write 1 to this bit.  
0: Bias disabled (default)  
1: Bias enabled (always write 1)  
6
RESERVED  
MUX[1:0]  
R/W  
R/W  
0h  
0h  
Reserved.  
Always write 0.  
5:4  
Input MUX select bits.  
00: External input (default)  
01: Reserved  
10: Internal input short connection to VCOM  
11: Reserved  
3
CHOP  
R/W  
R/W  
1h  
0h  
Chop enable bit.  
See the Chop Mode section.  
0: Chop disabled  
1: Chop enabled (default)  
2:0  
PGA[2:0]  
PGA gain select bits.  
000: Gain = 1 V/V (default)  
001: Gain = 2 V/V  
010: Gain = 4 V/V  
011: Gain = 8 V/V  
100: Gain = 16 V/V  
101–111: Reserved  
48  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
8.6.1.4 High-Pass Filter Corner Frequency (HPFx) Registers (address = 03h, 04h) [reset = 32h, 03h]  
71. HPF0 Register  
7
7
6
5
4
3
2
2
1
1
0
0
HPF[7:0]  
R/W-32h  
72. HPF1 Register  
6
5
4
3
HPF[15:8]  
R/W-03h  
25. HPF0, HPF1 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
High-pass filter corner frequency registers.  
7:0  
HPF[15:0]  
R/W  
0332h  
These two registers program the corner frequency of the high-  
pass filter; see the HPF Stage section for details.  
8.6.1.5 Offset Calibration (OFCx) Registers (address = 05h, 06h, 07h) [reset = 00h, 00h, 00h]  
73. OFC0 Register  
7
7
7
6
6
6
5
5
5
4
3
2
2
2
1
1
1
0
0
0
OFC[7:0]  
R/W-00h  
74. OFC1 Register  
4
3
OFC[15:8]  
R/W-00h  
75. OFC2 Register  
4
3
OFC[23:16]  
R/W-00h  
26. OFC0, OFC1, OFC2 Registers Field Description  
Bit  
Field  
Type  
Reset  
Description  
7:0  
OFC[23:0]  
R/W  
000000h  
Offset calibration registers.  
These three registers are the 24-bit offset calibration word. The  
offset calibration is in two's complement format. The ADC  
subtracts the offset value from the conversion result prior to the  
full-scale operation.  
版权 © 2017–2019, Texas Instruments Incorporated  
49  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
8.6.1.6 Full-Scale Calibration (FSCx) Registers (address = 08h, 09h, 0Ah) [reset = 00h, 00h, 40h]  
76. FSC0 Register  
7
7
7
6
6
6
5
5
5
4
3
2
2
2
1
1
1
0
0
0
FSCAL[7:0]  
R/W-00h  
77. FSC1 Register  
4
3
FSCAL[15:8]  
R/W-00h  
78. FSC2 Register  
4
3
FSCAL[23:16]  
R/W-40h  
27. FSC0, FSC1, FSC2 Registers Field Description  
Bit  
Field  
FSCAL[23:0]  
Type  
Reset  
Description  
7:0  
R/W  
400000h  
Full-scale calibration registers.  
These three registers are the 24-bit, full-scale calibration word.  
The full-scale calibration is in straight binary format. The ADC  
divides the register value by 400000h, then multiplies the  
conversion data. The scaling operation occurs after the offset  
operation.  
50  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ADS1287 is a high-resolution ADC optimized for low-power operation in seismic data acquisition equipment.  
Optimum performance requires special attention to the support circuitry and printed-circuit board (PCB) layout.  
As much as possible, locate noisy digital components (such as microcontrollers, oscillators, and so forth) in a  
PCB area away from the ADC and analog front-end components. Locating the digital components close to the  
power-entry point keeps the digital current return path short and separated from sensitive analog components.  
9.2 Typical Applications  
9.2.1 Geophone Application  
79 illustrates a typical geophone application circuit. The application shows the ADC operating on a bipolar  
±2.5-V analog supply voltage. The power-supply voltages are provided by low-dropout (LDO) regulators to  
provide well-regulated, low-noise supply voltages to the ADC. The ADC also operates using with a unipolar 5-V  
analog supply voltage. The 6-V zener diode between AVDD and AVSS clamps the ADC supply voltage if the  
inputs are driven when the ADC supply voltage is off.  
Resistors R1 and R2 bias the floating geophone to mid-supply. The resistors also provide a return path for the  
ADC input current. To prevent pickup of PCB ground-related noise, connect the resistors together first, then  
connect to ground. For unipolar-supply operation, make this connection to a low-impedance 2.5-V voltage.  
The geophone signal is filtered both differentially, by components C3 and R3 through R6, and common-mode  
filtered by components C1, C2 and R3, R4. The differential filter removes normal-mode noise. The common-mode  
filters remove noise that is common to both inputs. The differential filter high-cut frequency is 10 times lower to  
minimize the effects of component mismatch of the common-mode filter that otherwise can lead to degraded  
differential-filter performance. Adjust the filter components according to the application requirements. The  
protection diodes protect the ADC inputs from system-level ESD transients and signal overrange events.  
A low-noise, low-power, 2.5-V voltage reference drives the ADC reference input. The voltage reference ground  
terminal is connected to –2.5 V. R9 and C5 form an optional 2-Hz noise filter to reduce voltage reference noise.  
Capacitor C6 filters the reference sampling glitches. Place the capacitor directly at the ADC pins. Multiple ADCs  
can share a single reference but place a 0.1-µF capacitor at each ADC reference input.  
Capacitor C4 (10 nF), located at the CAPP and CAPN pins, filters modulator sampling glitches. The capacitor  
also provides a antialiasing filter with a high cutoff corner frequency of approximately 9.5 kHz. Resistors R7 and  
R8 provide an offset voltage to the modulator for idle tone reduction when operating in high-resolution mode. Use  
the internal offset in low-power mode operation. The resistors are not needed in this case.  
版权 © 2017–2019, Texas Instruments Incorporated  
51  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
Typical Applications (接下页)  
3 V  
-3 V  
2.5 V  
- 2.5 V  
2.5 V  
LDO  
-2.5 V  
LDO  
6 V  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
C7  
1 mF  
AVSS  
2.5 V  
AVDD  
R3  
R5  
(1)  
100  
100 Ω  
AINP  
C1  
R1  
C3  
1000 pF  
C0G  
100 pF, C0G  
20 kΩ  
ADS1287  
Geophone  
R2  
R4  
R6  
C2  
20 kΩ 100 Ω  
100 Ω  
100 pF, C0G  
AINN  
(1) Optional Protection Diodes, See Text  
-2.5 V  
(2) Optional Offset, See Text  
R7  
R8  
100 kΩ  
100 kΩ  
CAPP  
CAPN  
C4  
10 nF  
C0G  
R9  
(2)  
2 kΩ  
2.5 V  
Reference  
REFP  
REFN  
2.5 V  
C5  
47 µF  
C
+
6
1 mF  
1 mF  
0.1 mF  
-
2.5 V  
(3) Optional Reference Noise Filter,  
See Text  
DGND  
79. Geophone Analog Interface  
52  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
Typical Applications (接下页)  
9.2.2 Digital Interface  
80 shows the digital connections to a controller, such as a field programmable gate array (FPGA) or  
microcontroller. Place the digital bypass capacitors on DVDD and the LDO output (BYPAS) close to the device  
pins and directly to the ground plane. Connections to the RESET and PWDN pins are optional. If not used, tie  
the inputs to DVDD. Avoid ringing on the digital inputs of the ADC. For long PCB traces, use 47-series  
termination resistors to help reduce ringing by controlling the trace impedance. Place the resistors at the source  
(output driver).  
1.024 MHz  
Clock  
SYNC  
Control  
47  
ADS1287  
Controller  
47 Ω  
2.5 V œ 3.3 V  
CLK  
DVDD  
SYNC  
1 µF  
47 Ω  
47 Ω  
47 Ω  
BYPAS  
CS  
SS  
1 µF  
SCLK  
SCLK  
MOSI  
MISO  
DIN  
47 Ω  
DOUT  
47 Ω  
IRQ  
DRDY  
47 Ω  
47 Ω  
RESET  
PWDN  
Output  
Output  
DGND  
DGND  
DGND  
80. Digital Connections  
版权 © 2017–2019, Texas Instruments Incorporated  
53  
 
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
9.3 Initialization Set Up  
After reset or power-on, configure the ADC using the following procedure:  
1. Reset the serial interface. Before beginning communication to the ADC, the serial interface may have to be  
recovered (undefined I/O power-up sequencing can cause a false SCLK to occur). To reset the interface,  
toggle the CS pin high to low, or toggle the RESET pin.  
2. Configure the registers. For proper operation, the MODE[2:0] bits and the BIAS bit must be programmed  
appropriately; see the MODE[2:0] bits in 20.  
3. Verify register data. For verification of device communications, read back the register data.  
4. Set the data mode. After register configuration, configure the device for read-data-continuous mode by  
sending the RDATAC command.  
5. Synchronize readings. After power-on, the ADCs are unsynchronized and conversions freely run. To  
synchronize the conversions in pulse-sync mode, take SYNC low and then high. In continuous-sync mode,  
apply the synchronizing clock to the SYNC pin under the operating constraint that the SYNC input period is  
equal to integer multiples of the ADC conversion period.  
6. Read data. In read-data-continuous mode, the data are read after DRDY falls by shifting the data out directly  
(no command). If the stop-read-data-continuous mode is selected, read the data by sending the RDATA  
command. The RDATA command must be sent in this mode for each conversion result.  
54  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
10 Power Supply Recommendations  
The ADC has three power supplies: AVDD, AVSS, and DVDD.  
10.1 Analog Power Supplies  
The analog power supply can be either bipolar ±2.5 V (AVDD and AVSS) or unipolar 5 V (AVDD) with AVSS tied  
to ground.  
10.2 Digital Power Supply  
The DVDD supply range is 2.25 V to 3.6 V. DVDD is the I/O voltage and is also sub-regulated by the internal  
1.8-V LDO to power the digital circuitry. The LDO output is the BYPAS pin. Connect a 1-µF capacitor from  
BYPAS to DGND and a 1-µF capacitor from DVDD to DGND. Make no other connection or load to the BYPAS  
pin.  
10.3 Power-Supply Sequence  
The power supplies can be sequenced in any order. At power-on, the difference of (AVDD – AVSS) and DVDD  
are monitored by internal comparators that are logical AND'd to produce the internal reset signal. After the power  
supplies have crossed the respective thresholds, 216 fCLK cycles are counted before the ADC exits the reset state  
and is ready for communication. New conversion data are available; see 7 and the Switching Characteristics  
table.  
11 Layout  
11.1 Layout Guidelines  
In most cases, a single continuous ground plane connecting the analog and digital components is preferred. Use  
wide, low-impedance PCB traces or dedicated layers for the power-supply connections because the analog  
supply current is partially modulated by the input signal. Also use wide PCB traces or dedicated layers for REFP  
and REFN. If REFN and AVSS are connected together, use a Kelvin connection at the voltage regulator ground  
terminal. These practices help maintain good THD performance and minimal crosstalk errors when multiple  
ADCs are used.  
版权 © 2017–2019, Texas Instruments Incorporated  
55  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
56  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
57  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
58  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS1287  
www.ti.com.cn  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
版权 © 2017–2019, Texas Instruments Incorporated  
59  
ADS1287  
ZHCSK67B JUNE 2017REVISED AUGUST 2019  
www.ti.com.cn  
60  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS1287IRHFR  
ADS1287IRHFT  
VQFN  
VQFN  
RHF  
RHF  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.3  
4.3  
5.3  
5.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS1287IRHFR  
ADS1287IRHFT  
VQFN  
VQFN  
RHF  
RHF  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS1287D

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 2 通道(同步)Δ-Σ ADC
TI

ADS1287DIRHBR

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 2 通道(同步)Δ-Σ ADC | RHB | 32 | -40 to 85
TI

ADS1287DIRHBT

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 2 通道(同步)Δ-Σ ADC | RHB | 32 | -40 to 85
TI

ADS1287IRHFR

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 单通道 Δ-Σ ADC | RHF | 24 | -40 to 85
TI

ADS1287IRHFT

用于地震监测和能源勘探且具有 PGA 的低功耗 1kSPS 单通道 Δ-Σ ADC | RHF | 24 | -40 to 85
TI

ADS1291

Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements
TI

ADS1291I

Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements
TI

ADS1291IPBS

Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements
TI

ADS1291IPBSR

Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements
TI

ADS1291IRSMR

适用于 ECG 应用的 24 位、单通道、低功耗模拟前端 (AFE) | RSM | 32 | -40 to 85
TI

ADS1291IRSMT

适用于 ECG 应用的 24 位、单通道、低功耗模拟前端 (AFE) | RSM | 32 | -40 to 85
TI

ADS1292

Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements
TI