ADS4229_14 [TI]

Dual-Channel, 12-Bit, 250-MSPS Ultralow-Power ADC;
ADS4229_14
型号: ADS4229_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Dual-Channel, 12-Bit, 250-MSPS Ultralow-Power ADC

文件: 总104页 (文件大小:3808K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC  
Check for Samples: ADS4222, ADS4225, ADS4226, ADS4242, ADS4245, ADS4246  
1
FEATURES  
APPLICATIONS  
23  
Ultralow Power with Single 1.8V Supply,  
CMOS Output:  
Wireless Communications Infrastructure  
Software Defined Radio  
Power Amplifier Linearization  
183mW total power at 65MSPS  
277mW total power at 125MSPS  
332mW total power at 160MSPS  
DESCRIPTION  
High Dynamic Performance:  
The ADS424x/422x are low-speed variants of the  
ADS42xx ultralow-power family of dual-channel,  
14-bit/12-bit analog-to-digital converters (ADCs).  
Innovative design techniques are used to achieve  
88dBc SFDR at 170MHz  
71.4dBFS SNR at 170MHz  
Crosstalk: > 90dB at 185MHz  
Programmable Gain up to 6dB for  
SNR/SFDR Trade-off  
DC Offset Correction  
Output Interface Options:  
high-dynamic  
performance,  
while  
consuming  
extremely low power with 1.8V supply. This topology  
makes the ADS424x/422x well-suited for multi-carrier,  
wide-bandwidth communications applications.  
The ADS424x/422x have gain options that can be  
used to improve SFDR performance at lower  
full-scale input ranges. These devices include a dc  
offset correction loop that can be used to cancel the  
ADC offset. Both DDR (double data rate) LVDS and  
parallel CMOS digital output interfaces are available  
in a compact QFN-64 PowerPADpackage.  
1.8V parallel CMOS interface  
Double data rate (DDR) LVDS with  
programmable swing:  
Standard swing: 350mV  
Low swing: 200mV  
Supports Low Input Clock Amplitude  
Down to 200mVPP  
Package: QFN-64 (9mm × 9mm)  
The devices include internal references while the  
traditional reference pins and associated decoupling  
capacitors have been eliminated. All devices are  
specified over the industrial temperature range  
(40°C to +85°C).  
ADS424x/422x FAMILY COMPARISON(1)  
250MSPS  
160MSPS  
125MSPS  
65MSPS  
ADS424x  
14-bit family  
ADS4249  
ADS4246  
ADS4245  
ADS4242  
ADS422x  
12-bit family  
ADS4229  
ADS4226  
ADS4225  
ADS4222  
(1) See for details on migrating from the ADS62P49 family.  
PERFORMANCE SUMMARY  
ADS4246  
86  
ADS4245  
ADS4242  
ADS4226  
ADS4225  
88  
ADS4222  
SFDR (dBc), fIN = 20MHz  
SFDR (dBc), fIN = 170MHz  
SNR (dBFS), fIN = 20MHz  
SNR (dBFS), fIN = 170MHz  
Total power (mW/channel)  
88  
91  
86  
82  
91  
85  
82  
88  
85  
88  
72.8  
70.4  
166  
73.4  
71.4  
138  
73.6  
71.2  
91  
70.5  
69.5  
166  
70.8  
69.9  
138  
70.9  
69.9  
91  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
2
3
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
 
 
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
LEAD/BALL  
FINISH  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
PRODUCT  
ECO PLAN(2)  
TRANSPORT MEDIA  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
ADS4246IRGCT  
ADS4246IRGCR  
ADS4245IRGCT  
ADS4245IRGCR  
ADS4242IRGCT  
ADS4242IRGCR  
ADS4226IRGCT  
ADS4226IRGCR  
ADS4225IRGCT  
ADS4225IRGCR  
ADS4222IRGCT  
ADS4222IRGCR  
GREEN (RoHS, no  
Sb/Br)  
ADS4246  
QFN-64  
QFN-64  
QFN-64  
QFN-64  
QFN-64  
QFN-64  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Cu/NiPdAu  
Cu/NiPdAu  
Cu/NiPdAu  
Cu/NiPdAu  
Cu/NiPdAu  
Cu/NiPdAu  
AZ4246  
AZ4245  
AZ4242  
AZ4226  
AZ4225  
AZ4222  
GREEN (RoHS, no  
Sb/Br)  
ADS4245  
ADS4242  
ADS4226  
ADS4225  
ADS4222  
GREEN (RoHS, no  
Sb/Br)  
GREEN (RoHS, no  
Sb/Br)  
GREEN (RoHS, no  
Sb/Br)  
GREEN (RoHS, no  
Sb/Br)  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
(2) Eco Plan is the planned eco-friendly classification. Green (RoHS, no Sb/Br): TI defines Green to mean Pb-Free (RoHS compatible) and  
free of Bromine- (Br) and Antimony- (Sb) based flame retardants. Refer to the Quality and Lead-Free (Pb-Free) Data web site for more  
information.  
The ADS424x/422x are pin-compatible with the previous generation ADS62P49 family of data converters; this  
architecture enables easy migration. However, there are some important differences between the two device  
generations, summarized in Table 1.  
Table 1. Migrating from the ADS62P49  
ADS62P49 FAMILY  
ADS424x/422x FAMILY  
PINS  
Pin 22 is NC (not connected)  
Pins 38 and 58 are DRVDD  
Pins 39 and 59 are DRGND  
SUPPLY  
Pin 22 is AVDD  
Pins 38 and 58 are NC (do not connect, must be floated)  
Pins 39 and 59 are NC (do not connect, must be floated)  
AVDD is 3.3V  
AVDD is 1.8V  
No change  
DRVDD is 1.8V  
INPUT COMMON-MODE VOLTAGE  
VCM is 1.5V  
VCM is 0.95V  
SERIAL INTERFACE  
No change in protocol  
New serial register map  
Protocol: 8-bit register address and 8-bit register data  
EXTERNAL REFERENCE  
Supported  
Not supported  
2
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
ABSOLUTE MAXIMUM RATINGS(1)  
ADS424x/422x  
MIN  
0.3  
0.3  
0.3  
2.4  
2.4  
MAX  
2.1  
2.1  
0.3  
2.4  
2.4  
UNIT  
Supply voltage range, AVDD  
V
V
V
V
V
Supply voltage range, DRVDD  
Voltage between AGND and DRGND  
Voltage between AVDD to DRVDD (when AVDD leads DRVDD)  
Voltage between DRVDD to AVDD (when DRVDD leads AVDD)  
Minimum  
(1.9, AVDD + 0.3)  
INP_A, INM_A, INP_B, INM_B  
CLKP, CLKM(2)  
0.3  
0.3  
0.3  
40  
V
V
V
Voltage applied to input pins  
AVDD + 0.3  
RESET, SCLK, SDATA, SEN,  
CTRL1, CTRL2, CTRL3  
3.9  
Operating free-air temperature range, TA  
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
ESD rating  
+85  
+125  
+150  
2
°C  
°C  
°C  
kV  
65  
Human body model (HBM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3V|).  
This configuration prevents the ESD protection diodes at the clock input pins from turning on.  
THERMAL INFORMATION  
ADS42xx  
THERMAL METRIC(1)  
RGC  
64 PINS  
23.9  
10.9  
4.3  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
4.4  
θJCbot  
0.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
Over operating free-air temperature range, unless otherwise noted.  
ADS424x/422x  
PARAMETER  
MIN NOM MAX  
UNIT  
SUPPLIES  
Analog supply voltage, AVDD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
Digital supply voltage, DRVDD  
ANALOG INPUTS  
Differential input voltage range  
2
VPP  
V
Input common-mode voltage  
VCM ± 0.05  
400  
Maximum analog input frequency with 2VPP input amplitude(1)  
Maximum analog input frequency with 1VPP input amplitude(1)  
CLOCK INPUT  
MHz  
MHz  
600  
Input clock sample rate (ADS4242/ADS4222)  
Low-speed mode enabled (by default after reset)  
Input clock sample rate (ADS4245/ADS4225)  
Low-speed mode enabled(2)  
Low-speed mode disabled(2) (by default after reset)  
Input clock sample rate (ADS4246/ADS4226)  
Low-speed mode enabled(2)  
1
1
65  
MSPS  
80  
MSPS  
MSPS  
80  
125  
1
80  
80  
MSPS  
MSPS  
VPP  
Low-speed mode disabled(2) (by default after reset)  
160  
Sine wave, ac-coupled  
0.2  
1.5  
1.6  
0.7  
1.5  
LVPECL, ac-coupled  
VPP  
Input clock amplitude differential  
(VCLKP VCLKM  
)
LVDS, ac-coupled  
VPP  
LVCMOS, single-ended, ac-coupled  
V
Input clock duty cycle  
Low-speed mode disabled  
Low-speed mode enabled  
DIGITAL OUTPUTS  
35  
40  
50  
50  
65  
60  
%
%
Maximum external load capacitance from each output pin to DRGND, CLOAD  
Differential load resistance between the LVDS output pairs (LVDS mode), RLOAD  
Operating free-air temperature, TA  
5
pF  
Ω
100  
40  
+85  
°C  
(1) See the Theory of Operation section in the Application Information.  
(2) See the Serial Interface Configuration section for details on programming the low-speed mode.  
HIGH-PERFORMANCE MODES(1)(2)  
PARAMETER  
High-performance mode  
DESCRIPTION  
Set the HIGH PERF MODE register bit to obtain best performance across sample clock and  
input signal frequencies.  
Register address = 03h, data = 03h  
Set the HIGH FREQ MODE CH A and HIGH FREQ MODE CH B register bits for high input  
signal frequencies greater than 200MHz.  
Register address = 4Ah, data = 01h  
High-frequency mode  
Register address = 58h, data = 01h  
(1) It is recommended to use these modes to obtain best performance.  
(2) See the Serial Interface Configuration section for details on register programming.  
4
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
ELECTRICAL CHARACTERISTICS: ADS4246/ADS4245/ADS4242  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, LVDS  
interface, and 0dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:  
TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4246 (160MSPS)  
ADS4245 (125MSPS)  
ADS4242 (65MSPS)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
Bits  
Resolution  
14  
14  
14  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
72.8  
72.5  
72.2  
71.2  
69.4  
72.6  
72.1  
71.7  
70.8  
68  
73.4  
72.9  
72.6  
71.4  
69.3  
73.2  
72.6  
72.3  
71.2  
68.5  
88  
73.6  
72.5  
72.3  
70.4  
69.4  
73.5  
72.3  
72.1  
70.2  
68.2  
91  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
70  
69.5  
Signal-to-noise ratio  
SNR  
SINAD  
SFDR  
THD  
69  
69  
73.5  
72  
68.5  
73.5  
72  
Signal-to-noise and  
distortion ratio  
67.5  
86  
84  
86  
88  
dBc  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
82  
85  
87  
dBc  
72  
82  
88  
85  
dBc  
78  
78  
74  
dBc  
84  
86  
88  
dBc  
81  
84  
85  
dBc  
81  
83  
85  
dBc  
70  
80  
84  
82  
dBc  
76  
75  
73  
dBc  
86  
88  
91  
dBc  
84  
73.5  
73.5  
78  
86  
73.5  
73.5  
79  
88  
dBc  
HD2  
82  
85  
87  
dBc  
72  
82  
88  
85  
dBc  
78  
78  
74  
dBc  
92  
93  
95  
dBc  
86  
89  
90  
dBc  
Third-harmonic distortion  
HD3  
93  
89  
96  
dBc  
72  
94  
90  
87  
dBc  
80  
81  
81  
dBc  
90  
95  
98  
dBc  
92  
94  
97  
dBc  
Worst spur  
(other than second and third harmonics)  
89  
93  
95  
dBc  
77  
89  
91  
93  
dBc  
91  
89  
92  
dBc  
f1 = 46MHz, f2 = 50MHz,  
each tone at 7dBFS  
96  
83  
96  
92  
98  
92  
dBFS  
dBFS  
Two-tone intermodulation  
distortion  
IMD  
f1 = 185MHz, f2 = 190MHz,  
each tone at 7dBFS  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS4246/ADS4245/ADS4242 (continued)  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, LVDS  
interface, and 0dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:  
TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4246 (160MSPS)  
ADS4245 (125MSPS)  
ADS4242 (65MSPS)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
20-MHz full-scale signal on  
channel under observation;  
170-MHz full-scale signal on  
other channel  
Crosstalk  
95  
95  
95  
dB  
Recovery to within 1%  
(of full-scale) for 6dB overload  
with sine-wave input  
Clock  
cycle  
Input overload recovery  
1
> 30  
11.5  
1
> 30  
11.5  
1
> 30  
11.4  
AC power-supply rejection  
ratio  
For 100mVPP signal on AVDD  
supply, up to 10MHz  
PSRR  
ENOB  
dB  
fIN = 70MHz  
(ADS4245, ADS4242)  
fIN = 170MHz (ADS4246)  
Effective number of bits  
Differential nonlinearity  
Integrated nonlinearity  
LSBs  
fIN = 70MHz  
(ADS4245, ADS4242)  
fIN = 170MHz (ADS4246)  
DNL  
INL  
0.97  
±0.5  
±2  
1.7  
0.97  
±0.5  
±2  
1.7  
0.97  
±0.5  
±2  
1.7  
LSBs  
LSBs  
fIN = 70MHz  
(ADS4245, ADS4242)  
fIN = 170MHz (ADS4246)  
±5  
±5  
±5  
6
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
ELECTRICAL CHARACTERISTICS: ADS4226/ADS4225/ADS4222  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, LVDS  
interface, and 0dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:  
TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4226 (160MSPS)  
ADS4225 (125MSPS)  
ADS4222 (65MSPS)  
PARAMETER  
TEST CONDITIONS  
MIN  
67.5  
66.5  
70  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
Bits  
Resolution  
12  
12  
12  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
fIN = 20MHz  
fIN = 70MHz  
fIN = 100MHz  
fIN = 170MHz  
fIN = 300MHz  
70.5  
70.3  
70.1  
69.5  
68.2  
70.4  
70.1  
69.8  
69.3  
67.6  
86  
70.8  
70.5  
70.3  
69.9  
68.1  
70.7  
70.3  
70.1  
69.5  
67.5  
88  
70.9  
70.3  
70.2  
69.9  
68.2  
70.8  
70.2  
70.1  
68.7  
67.2  
91  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
68.0  
68.0  
Signal-to-noise ratio  
SNR  
SINAD  
SFDR  
THD  
67.0  
72.5  
70.0  
72.5  
72.5  
76.0  
67.0  
72.5  
71.0  
72.5  
72.5  
77.0  
Signal-to-noise and  
distortion ratio  
84  
86  
88  
dBc  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
82  
85  
87  
dBc  
82  
88  
85  
dBc  
78  
78  
74  
dBc  
84  
86  
88  
dBc  
81  
84  
85  
dBc  
81  
83  
85  
dBc  
68  
80  
84  
82  
dBc  
76  
75  
73  
dBc  
86  
88  
91  
dBc  
84  
86  
88  
dBc  
HD2  
82  
85  
87  
dBc  
70  
82  
88  
85  
dBc  
78  
78  
74  
dBc  
92  
93  
95  
dBc  
86  
89  
90  
dBc  
Third-harmonic distortion  
HD3  
93  
89  
96  
dBc  
70  
94  
90  
87  
dBc  
80  
81  
81  
dBc  
90  
95  
98  
dBc  
92  
94  
97  
dBc  
Worst spur  
89  
93  
95  
dBc  
(other than second and third harmonics)  
75  
89  
91  
93  
dBc  
91  
89  
92  
dBc  
f1 = 46MHz, f2 = 50MHz,  
each tone at 7dBFS  
96  
83  
96  
92  
98  
92  
dBFS  
dBFS  
Two-tone intermodulation  
distortion  
IMD  
f1 = 185MHz, f2 = 190MHz,  
each tone at 7dBFS  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: ADS4226/ADS4225/ADS4222 (continued)  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, 1dBFS differential analog input, LVDS  
interface, and 0dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:  
TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4226 (160MSPS)  
ADS4225 (125MSPS)  
ADS4222 (65MSPS)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
20MHz full-scale signal on  
channel under observation;  
170MHz full-scale signal on  
other channel  
Crosstalk  
95  
95  
95  
dB  
Recovery to within 1%  
(of full-scale) for 6dB overload  
with sine-wave input  
Clock  
cycle  
Input overload recovery  
1
30  
1
30  
1
30  
AC power-supply rejection  
ratio  
For 100mVPP signal on AVDD  
supply, up to 10MHz  
PSRR  
ENOB  
dB  
fIN = 70MHz  
(ADS4225, ADS4222)  
fIN = 170MHz (ADS4226)  
Effective number of bits  
Differential nonlinearity  
Integrated nonlinearity  
11.2  
11.3  
11.1  
LSBs  
fIN = 70MHz  
(ADS4225, ADS4222)  
fIN = 170MHz (ADS4226)  
DNL  
INL  
0.8  
±0.13  
±0.5  
1.5  
0.8  
±0.13  
±0.5  
1.5  
0.8  
±0.13  
±0.5  
1.2  
LSBs  
LSBs  
fIN = 70MHz  
(ADS4225, ADS4222)  
fIN = 170MHz (ADS4226)  
±3.5  
±3.5  
±2.5  
8
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
ELECTRICAL CHARACTERISTICS: GENERAL  
Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, and 1dBFS differential analog input,  
unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = 40°C to TMAX = +85°C,  
AVDD = 1.8V, and DRVDD = 1.8V.  
ADS4246/ADS4226 (160MSPS)  
ADS4245/ADS4225 (125MSPS)  
ADS4242/ADS4222 (65MSPS)  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Differential input voltage range (0dB gain)  
Differential input resistance (at 200MHz)  
Differential input capacitance (at 200MHz)  
2
0.75  
3.7  
2
0.75  
3.7  
2
0.75  
3.7  
VPP  
kΩ  
pF  
Analog input bandwidth  
(with 50Ω source impedance, and 50Ω termination)  
550  
1.5  
550  
1.5  
550  
1.5  
MHz  
Analog input common-mode current  
(per input pin of each channel)  
µA/MSPS  
Common-mode output voltage  
VCM output current capability  
DC ACCURACY  
VCM  
0.95  
4
0.95  
4
0.95  
4
V
mA  
Offset error  
15  
2  
2.5  
15  
15  
2  
2.5  
15  
2
15  
2  
2.5  
15  
mV  
Temperature coefficient of offset error  
0.003  
0.003  
0.003  
mV/°C  
Gain error as a result of internal  
reference inaccuracy alone  
EGREF  
2
2
%FS  
Gain error of channel alone  
Temperature coefficient of EGCHAN  
POWER SUPPLY  
EGCHAN  
±0.1  
1  
±0.1  
±0.1  
1  
%FS  
0.002  
0.002  
0.002  
Δ%/°C  
IAVDD  
Analog supply current  
123  
111  
150  
135  
105  
99  
130  
73  
78  
85  
mA  
mA  
IDRVDD  
Output buffer supply current  
LVDS interface, 350mV swing with 100Ω external  
120  
95  
termination, fIN = 2.5MHz  
IDRVDD  
Output buffer supply current  
CMOS interface, no load capacitance(1)  
fIN = 2.5MHz  
61  
49  
28  
mA  
Analog power  
222  
199  
189  
179  
133  
131  
mW  
mW  
Digital power  
LVDS interface, 350mV swing with 100Ω external  
termination, fIN = 2.5MHz  
Digital power  
CMOS interface, no load capacitance(1)  
fIN = 2.5MHz  
109  
88  
50  
mW  
mW  
Global power-down  
25  
25  
25  
(1) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the  
supply voltage (see the CMOS Interface Power Dissipation section in the Application Information).  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
DIGITAL CHARACTERISTICS  
At AVDD = 1.8V and DRVDD = 1.8V, unless otherwise noted. DC specifications refer to the condition where the digital  
outputs do not switch, but are permanently at a valid logic level '0' or '1'.  
ADS424x/422x  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3)(1)  
High-level input voltage  
1.3  
V
All digital inputs support 1.8V  
and 3.3V CMOS logic levels  
Low-level input voltage  
0.4  
V
SDATA, SCLK(2)  
SEN(3)  
VHIGH = 1.8V  
VHIGH = 1.8V  
VLOW = 0V  
10  
0
µA  
µA  
µA  
µA  
High-level input current  
SDATA, SCLK  
SEN  
0
Low-level input current  
VLOW = 0V  
10  
DIGITAL OUTPUTS, CMOS INTERFACE (DA[13:0], DB[13:0], CLKOUT, SDOUT)  
High-level output voltage  
DRVDD 0.1  
DRVDD  
0
V
V
Low-level output voltage  
0.1  
Output capacitance (internal to device)  
pF  
DIGITAL OUTPUTS, LVDS INTERFACE  
High-level output  
differential voltage  
With an external  
100Ω termination  
VODH  
270  
350  
430  
mV  
Low-level output  
differential voltage  
With an external  
100Ω termination  
VODL  
VOCM  
430  
350  
270  
mV  
V
Output common-mode voltage  
0.9  
1.05  
1.25  
(1) SCLK, SDATA, and SEN function as digital input pins in serial configuration mode.  
(2) SDATA, SCLK have internal 150kΩ pull-down resistor.  
(3) SEN has an internal 150kΩ pull-up resistor to AVDD. Because the pull-up is weak, SEN can also be driven by 1.8V or 3.3V CMOS  
buffers.  
DAn_P  
DBn_P  
Logic 0  
VODL = -350mV(1)  
Logic 1  
ODH = +350mV(1)  
V
DAn_M  
DBn_M  
VOCM  
GND  
(1) With external 100Ω termination.  
Figure 1. LVDS Output Voltage Levels  
10  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
PIN CONFIGURATION: LVDS MODE  
RGC PACKAGE(2)  
QFN-64  
(TOP VIEW)  
DRVDD  
DB4M  
DB4P  
1
2
3
4
5
6
7
8
9
48 DRVDD  
47 DA6P  
46 DA6M  
45 DA4P  
44 DA4M  
43 DA2P  
42 DA2M  
41 DA0P  
40 DA0M  
39 NC  
DB6M  
DB6P  
DB8M  
DB8P  
DB10M  
DB10P  
Thermal Pad  
(Connected to DRGND)  
DB12M 10  
DB12P 11  
RESET 12  
SCLK 13  
SDATA 14  
SEN 15  
38 NC  
37 CTRL3  
36 CTRL2  
35 CTRL1  
34 AVDD  
33 AVDD  
AVDD 16  
(2) The PowerPAD is connected to DRGND.  
NOTE: NC = do not connect; must float.  
Figure 2. ADS4246/ADS4245/ADS4242 LVDS Mode  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
RGC PACKAGE(3)  
QFN-64  
(TOP VIEW)  
DRVDD  
DB2M  
DB2P  
DB4M  
DB4P  
DB6M  
DB6P  
DB8M  
DB8P  
1
2
3
4
5
6
7
8
9
48 DRVDD  
47 DA4P  
46 DA4M  
45 DA2P  
44 DA2M  
43 DA0P  
42 DA0M  
41 NC  
Thermal Pad  
(Connected to DRGND)  
40 NC  
DB10M 10  
DB10P 11  
RESET 12  
SCLK 13  
SDATA 14  
SEN 15  
39 NC  
38 NC  
37 CTRL3  
36 CTRL2  
35 CTRL1  
34 AVDD  
33 AVDD  
AVDD 16  
(3) The PowerPAD is connected to DRGND.  
NOTE: NC = do not connect; must float.  
Figure 3. ADS4226/ADS4225/ADS4222 LVDS Mode  
12  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Pin Descriptions: LVDS Mode  
PIN NUMBER  
PIN NAME  
# OF PINS  
FUNCTION  
DESCRIPTION  
1, 48  
DRVDD  
2
Input  
Output buffer supply  
Serial interface RESET input.  
When using the serial interface mode, the internal registers must be initialized  
through a hardware RESET by applying a high pulse on this pin or by using the  
software reset option; refer to the Serial Interface Configuration section.  
In parallel interface mode, the RESET pin must be permanently tied high. SCLK  
and SEN are used as parallel control pins in this mode. This pin has an internal  
150kΩ pull-down resistor.  
12  
RESET  
1
Input  
This pin functions as a serial interface clock input when RESET is low. It controls  
the low-speed mode selection when RESET is tied high; see Table 5 for detailed  
information. This pin has an internal 150kΩ pull-down resistor.  
13  
14  
SCLK  
1
1
Input  
Input  
SDATA  
Serial interface data input; this pin has an internal 150kΩ pull-down resistor.  
This pin functions as a serial interface enable input when RESET is low. It  
controls the output interface and data format selection when RESET is tied high;  
see Table 6 for detailed information. This pin has an internal 150kΩ pull-up  
resistor to AVDD.  
15  
SEN  
1
Input  
16, 22, 33, 34  
AVDD  
AGND  
4
8
Input  
Input  
Analog power supply  
Analog ground  
17, 18, 21, 24,  
27, 28, 31, 32  
19  
20  
INP_B  
INM_B  
1
1
Input  
Input  
Differential analog positive input, channel B  
Differential analog negative input, channel B  
This pin outputs the common-mode voltage (0.95V) that can be used externally to  
bias the analog input pins  
23  
VCM  
1
Output  
25  
26  
CLKP  
CLKM  
1
1
1
1
1
1
1
2
1
1
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Differential clock positive input  
Differential clock negative input  
29  
INP_A  
Differential analog positive input, channel A  
Differential analog negative input, channel A  
Digital control input pins. Together, they control the various power-down modes.  
Digital control input pins. Together, they control the various power-down modes.  
Digital control input pins. Together, they control the various power-down modes.  
Output buffer ground  
30  
INM_A  
35  
CTRL1  
36  
CTRL2  
37  
CTRL3  
49, PAD  
56  
DRGND  
CLKOUTM  
CLKOUTP  
Differential output clock, complement  
57  
Differential output clock, true  
This pin functions as a serial interface register readout when the READOUT bit is  
enabled. When READOUT = 0, this pin is in high-impedance state.  
64  
SDOUT  
1
2
Output  
Output  
Refer to  
Figure 2 and  
Figure 3  
DA0P, DA0M  
Channel A differential output data pair, D0 and D1 multiplexed  
Channel A differential output data D2 and D3 multiplexed  
Channel A differential output data D4 and D5 multiplexed  
Channel A differential output data D6 and D7 multiplexed  
Channel A differential output data D8 and D9 multiplexed  
Channel A differential output data D10 and D11 multiplexed  
Channel A differential output data D12 and D13 multiplexed (ADS424x only)  
Channel B differential output data pair, D0 and D1 multiplexed  
Channel B differential output data D2 and D3 multiplexed  
Refer to  
Figure 2 and  
Figure 3  
DA2P, DA2M  
DA4P, DA4M  
DA6P, DA6M  
DA8P, DA8M  
DA10P, DA10M  
DA12P, DA12M  
DB0P, DB0M  
DB2P, DB2M  
2
2
2
2
2
2
2
2
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Pin Descriptions: LVDS Mode (continued)  
PIN NUMBER  
PIN NAME  
# OF PINS  
FUNCTION  
DESCRIPTION  
Refer to  
Figure 2 and  
Figure 3  
DB4P, DB4M  
2
2
2
2
2
Output  
Channel B differential output data D4 and D5 multiplexed  
Refer to  
Figure 2 and  
Figure 3  
DB6P, DB6M  
DB8P, DB8M  
Output  
Output  
Output  
Output  
Channel B differential output data D6 and D7 multiplexed  
Channel B differential output data D8 and D9 multiplexed  
Channel B differential output data D10 and D11 multiplexed  
Refer to  
Figure 2 and  
Figure 3  
Refer to  
Figure 2 and  
Figure 3  
DB10P, DB10M  
DB12P, DB12M  
Refer to  
Figure 2 and  
Figure 3  
Channel B differential output data D12 and D13 multiplexed (ADS424x only)  
Do not connect, must be floated  
Refer to  
Figure 38,  
Figure 39,  
Figure 56, and  
Figure 57  
8 (ADS422x)  
4 (ADS424x)  
NC  
14  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
PIN CONFIGURATION: CMOS MODE  
RGC PACKAGE(4)  
QFN-64  
(TOP VIEW)  
DRVDD  
DB4  
1
2
3
4
5
6
7
8
9
48 DRVDD  
47 DA7  
46 DA6  
45 DA5  
44 DA4  
43 DA3  
42 DA2  
41 DA1  
40 DA0  
39 NC  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
Thermal Pad  
(Connected to DRGND)  
DB12 10  
DB13 11  
RESET 12  
SCLK 13  
SDATA 14  
SEN 15  
38 NC  
37 CTRL3  
36 CTRL2  
35 CTRL1  
34 AVDD  
33 AVDD  
AVDD 16  
(4) The PowerPAD is connected to DRGND.  
NOTE: NC = do not connect; must float.  
Figure 4. ADS4246/ADS4245/ADS4242 CMOS Mode  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
RGC PACKAGE(5)  
QFN-64  
(TOP VIEW)  
DRVDD  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
1
2
3
4
5
6
7
8
9
48 DRVDD  
47 DA5  
46 DA4  
45 DA3  
44 DA2  
43 DA1  
42 DA0  
41 NC  
Thermal Pad  
(Connected to DRGND)  
40 NC  
DB10 10  
DB11 11  
RESET 12  
SCLK 13  
SDATA 14  
SEN 15  
39 NC  
38 NC  
37 CTRL3  
36 CTRL2  
35 CTRL1  
34 AVDD  
33 AVDD  
AVDD 16  
(5) The PowerPAD is connected to DRGND.  
NOTE: NC = do not connect; must float.  
Figure 5. ADS4226/ADS4225/ADS4222 CMOS Mode  
16  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Pin Descriptions: CMOS Mode  
# OF  
PINS  
PIN NUMBER  
PIN NAME  
FUNCTION  
DESCRIPTION  
1, 48  
DRVDD  
2
Input  
Output buffer supply  
Serial interface RESET input.  
When using the serial interface mode, the internal registers must be initialized through a  
hardware RESET by applying a high pulse on this pin or by using the software reset  
option; refer to the Serial Interface Configuration section.  
12  
RESET  
1
Input  
In parallel interface mode, the RESET pin must be permanently tied high. SDATA and  
SEN are used as parallel control pins in this mode. This pin has an internal 150kΩ  
pull-down resistor.  
This pin functions as a serial interface clock input when RESET is low. It controls the  
low-speed mode when RESET is tied high; see Table 5 for detailed information. This pin  
has an internal 150kΩ pull-down resistor.  
13  
SCLK  
SDATA  
SEN  
1
1
1
Input  
Input  
Input  
14  
15  
Serial interface data input; this pin has an internal 150kΩ pull-down resistor.  
This pin functions as a serial interface enable input when RESET is low. It controls the  
output interface and data format selection when RESET is tied high; see Table 6 for  
detailed information. This pin has an internal 150kΩ pull-up resistor to AVDD.  
16, 22, 33, 34  
AVDD  
AGND  
4
8
Input  
Input  
Analog power supply  
Analog ground  
17, 18, 21, 24, 27, 28,  
31, 32  
19  
20  
INP_B  
INM_B  
1
1
Input  
Input  
Differential analog positive input, channel B  
Differential analog negative input, channel B  
This pin outputs the common-mode voltage (0.95V) that can be used externally to bias  
the analog input pins  
23  
VCM  
1
Output  
25  
26  
CLKP  
CLKM  
1
1
1
1
1
1
1
2
1
1
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Differential clock positive input  
Differential clock negative input  
29  
INP_A  
Differential analog positive input, channel A  
Differential analog negative input, channel A  
Digital control input pins. Together, they control various power-down modes.  
Digital control input pins. Together, they control various power-down modes.  
Digital control input pins. Together, they control various power-down modes.  
Output buffer ground  
30  
INM_A  
CTRL1  
CTRL2  
CTRL3  
DRGND  
UNUSED  
CLKOUT  
35  
36  
37  
49, PAD  
56  
This pin is not used in the CMOS interface  
CMOS output clock  
57  
Output  
This pin functions as a serial interface register readout when the READOUT bit is  
enabled. When READOUT = 0, this pin is in high-impedance state.  
64  
SDOUT  
1
Output  
Refer to Figure 4 and  
Figure 5  
DA0 to DA11  
DA12 to DA13  
DB0 to DB11  
12  
2
Output  
Output  
Output  
Channel A ADC output data bits, CMOS levels  
Refer to Figure 4  
Channel A ADC output data bits, CMOS levels (ADS424x only)  
Channel B ADC output data bits, CMOS levels  
Refer to Figure 4 and  
Figure 5  
12  
Refer to Figure 4  
DB12 to DB13  
NC  
2
1
Output  
Channel B ADC output data bits, CMOS levels (ADS424x only)  
Do not connect, must be floated  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AGND  
DRVDD DRGND  
LVDS Interface  
DA0P  
DA0M  
DA2P  
DA2M  
DA4P  
INP_A  
Digital and  
DDR  
Serializer  
DA4M  
DA6P  
14-Bit  
ADC  
Sampling  
Circuit  
INM_A  
DA6M  
DA8P  
DA8M  
DA10P  
DA10M  
DA12P  
DA12M  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
Output  
Clock Buffer  
CLOCKGEN  
DB0P  
DB0M  
DB2P  
DB2M  
DB4P  
INP_B  
INM_B  
Digital and  
DDR  
Serializer  
DB4M  
DB6P  
14-Bit  
ADC  
Sampling  
Circuit  
DB6M  
DB8P  
DB8M  
DB10P  
DB10M  
DB12P  
DB12M  
Control  
Interface  
VCM  
Reference  
SDOUT  
ADS424x  
Figure 6. ADS4246/45/42 Block Diagram  
18  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
AVDD  
AGND  
DRVDD DRGND  
LVDS Interface  
DA0P  
DA0M  
DA2P  
DA2M  
DA4P  
INP_A  
INM_A  
Digital and  
DDR  
Serializer  
DA4M  
DA6P  
12-Bit  
ADC  
Sampling  
Circuit  
DA6M  
DA8P  
DA8M  
DA10P  
DA10M  
CLKP  
CLKM  
CLKOUTP  
CLKOUTM  
Output  
Clock Buffer  
CLOCKGEN  
DB0P  
DB0M  
DB2P  
DB2M  
DB4P  
INP_B  
INM_B  
Digital and  
DDR  
Serializer  
DB4M  
DB6P  
12-Bit  
ADC  
Sampling  
Circuit  
DB6M  
DB8P  
DB8M  
DB10P  
DB10M  
Control  
Interface  
VCM  
Reference  
SDOUT  
ADS422x  
Figure 7. ADS4226/25/22 Block Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TIMING CHARACTERISTICS: LVDS AND CMOS MODES(1)  
Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8V, sampling frequency = 160MSPS, sine wave input clock, 1.5VPP  
clock amplitude, CLOAD = 5pF(2), and RLOAD = 100Ω(3), unless otherwise noted. Minimum and maximum values are across the  
full temperature range: TMIN = 40°C to TMAX = +85°C, AVDD = 1.8V, and DRVDD = 1.7V to 1.9V.  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
0.8  
MAX  
UNIT  
ns  
tA  
Aperture delay  
0.5  
1.1  
Aperture delay matching  
Between the two channels of the same device  
±70  
ps  
Between two devices at the same temperature and  
DRVDD supply  
Variation of aperture delay  
Aperture jitter  
±150  
140  
50  
ps  
fS rms  
µs  
tJ  
Time to valid data after coming out of STANDBY  
mode  
100  
500  
Wakeup time  
Time to valid data after coming out of GLOBAL  
power-down mode  
100  
16  
µs  
Clock  
cycles  
Default latency after reset  
ADC latency(4)  
Clock  
cycles  
Digital functions enabled (EN DIGITAL = 1)  
24  
DDR LVDS MODE(5)  
tSU Data setup time  
Data valid(6) to zero-crossing of CLKOUTP  
1.5  
2.0  
0.6  
ns  
ns  
Zero-crossing of CLKOUTP to data becoming  
invalid(6)  
tH  
Data hold time  
0.35  
Input clock rising edge cross-over to output clock  
rising edge cross-over  
tPDI  
Clock propagation delay  
LVDS bit clock duty cycle  
5.0  
6.1  
49  
7.5  
ns  
%
Duty cycle of differential clock,  
(CLKOUTP-CLKOUTM)  
Rise time measured from 100mV to +100mV  
Fall time measured from +100mV to 100mV  
1MSPS Sampling frequency 160MSPS  
tRISE  
tFALL  
,
Data rise time,  
Data fall time  
0.13  
0.13  
ns  
ns  
Rise time measured from 100mV to +100mV  
Fall time measured from +100mV to 100mV  
1MSPS Sampling frequency 160MSPS  
tCLKRISE  
tCLKFALL  
,
Output clock rise time,  
Output clock fall time  
PARALLEL CMOS MODE  
tSU  
tH  
Data setup time  
Data hold time  
Data valid(7) to zero-crossing of CLKOUT  
Zero-crossing of CLKOUT to data becoming invalid(7)  
1.6  
2.3  
2.5  
2.7  
ns  
ns  
Input clock rising edge cross-over to output clock  
rising edge cross-over  
tPDI  
Clock propagation delay  
Output clock duty cycle  
4.5  
6.4  
46  
8.5  
ns  
%
Duty cycle of output clock, CLKOUT  
1MSPS Sampling frequency 160MSPS  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
1MSPS Sampling frequency 160MSPS  
tRISE  
tFALL  
,
Data rise time,  
Data fall time  
1
1
ns  
ns  
Rise time measured from 20% to 80% of DRVDD  
Fall time measured from 80% to 20% of DRVDD  
1MSPS Sampling frequency 160MSPS  
tCLKRISE  
tCLKFALL  
,
Output clock rise time  
Output clock fall time  
(1) Timing parameters are ensured by design and characterization and not tested in production.  
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground  
(3) RLOAD is the differential load resistance between the LVDS output pair.  
(4) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.  
(5) Measurements are done with a transmission line of 100Ω characteristic impedance between the device and the load. Setup and hold  
time specifications take into account the effect of jitter on the output data and clock.  
(6) Data valid refers to a logic high of +100mV and a logic low of 100mV.  
(7) Data valid refers to a logic high of 1.26V and a logic low of 0.54V  
20  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Table 2. LVDS Timings at Lower Sampling Frequencies  
tPDI, CLOCK PROPAGATION  
DELAY (ns)  
SAMPLING  
FREQUENCY  
(MSPS)  
SETUP TIME (ns)  
HOLD TIME (ns)  
MIN  
5.9  
4.5  
3.1  
2.3  
1.7  
TYP  
6.6  
5.2  
3.6  
2.9  
2.2  
MAX  
MIN  
0.35  
0.35  
0.35  
0.35  
0.35  
TYP  
0.6  
0.6  
0.6  
0.6  
0.6  
MAX  
MIN  
5.0  
5.0  
5.0  
5.0  
5.0  
TYP  
6.1  
6.1  
6.1  
6.1  
6.1  
MAX  
7.5  
7.5  
7.5  
7.5  
7.5  
65  
80  
105  
125  
150  
Table 3. CMOS Timings at Lower Sampling Frequencies  
TIMINGS SPECIFIED WITH RESPECT TO CLKOUT  
SAMPLING  
FREQUENCY  
(MSPS)  
tPDI, CLOCK PROPAGATION  
DELAY (ns)  
SETUP TIME (ns)  
HOLD TIME (ns)  
MIN  
6.1  
4.7  
3.4  
2.7  
1.9  
TYP  
7.2  
5.8  
4.3  
3.6  
2.8  
MAX  
MIN  
6.7  
5.3  
3.8  
3.1  
2.5  
TYP  
7.1  
5.8  
4.3  
3.6  
2.9  
MAX  
MIN  
4.5  
4.5  
4.5  
4.5  
4.5  
TYP  
6.4  
6.4  
6.4  
6.4  
6.4  
MAX  
8.5  
8.5  
8.5  
8.5  
8.5  
65  
80  
105  
125  
150  
CLKM  
CLKP  
Input  
Clock  
tPDI  
Output  
Clock  
CLKOUT  
tSU  
tH  
DAn,  
DBn  
Output  
Data  
Dn(1)  
(1) Dn = bits D0, D1, D2, etc. of channels A and B.  
Figure 8. CMOS Interface Timing Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
N + 4  
N + 18  
N + 3  
N + 17  
N + 2  
N + 16  
N + 1  
Sample  
N
Input  
Signal  
tA  
CLKP  
CLKM  
Input  
Clock  
CLKOUTM  
CLKOUTP  
tPDI  
tH  
DDR  
LVDS  
tSU  
O
16 Clock Cycles(1)  
Output Data(2)  
DAnP/M, DBnP/M  
O
E
O
E
O
E
O
E
O
E
O
E
O
E
E
O
E
O
E
O
N - 16  
N - 15  
N - 14  
N - 13  
N - 12  
N - 1  
N
N + 1  
tPDI  
CLKOUT  
tSU  
Parallel  
CMOS  
tH  
16 Clock Cycles(1)  
N - 14  
N - 13  
Output Data  
DAn, DBn  
N - 16  
N - 15  
N - 1  
N
N + 1  
(1) ADC latency after reset. At higher sampling frequencies, tPDI is greater than one clock cycle, which then makes the overall latency = ADC  
latency + 1.  
(2) E = even bits (D0, D2, D4, etc.); O = odd bits (D1, D3, D5, etc.).  
Figure 9. Latency Timing Diagram  
22  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
CLKOUTM  
CLKOUTP  
DA0, DB0  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
DA2, DB2  
DA4, DB4  
DA6, DB6  
DA8, DB8  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
DA10, DB10  
DA12, DB12  
D10  
D12  
D11  
D13  
D10  
D12  
D11  
D13  
Sample N  
Sample N + 1  
Figure 10. ADS4246/45/42 LVDS Interface Timing Diagram  
CLKOUTM  
CLKOUTP  
DA0, DB0  
DA2, DB2  
DA4, DB4  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
DA6, DB6  
DA8, DB8  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
DA10, DB10  
D10  
D11  
D10  
D11  
Sample N  
Sample N + 1  
Figure 11. ADS4226/25/22 LVDS Interface Timing Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
DEVICE CONFIGURATION  
The ADS424x/422x can be configured independently using either parallel interface control or serial interface  
programming.  
PARALLEL CONFIGURATION ONLY  
To put the device into parallel configuration mode, keep RESET tied high (AVDD). Then, use the SEN, SCLK,  
CTRL1, CTRL2, and CTRL3 pins to directly control certain modes of the ADC. The device can be easily  
configured by connecting the parallel pins to the correct voltage levels (as described in Table 4 to Table 7).  
There is no need to apply a reset and SDATA can be connected to ground.  
In this mode, SEN and SCLK function as parallel interface control pins. Some frequently-used functions can be  
controlled using these pins. Table 4 describes the modes controlled by the parallel pins.  
Table 4. Parallel Pin Definition  
PIN  
CONTROL MODE  
SCLK  
SEN  
Low-speed mode selection  
Output data format and output interface selection  
CTRL1  
CTRL2  
CTRL3  
Together, these pins control the power-down modes  
SERIAL INTERFACE CONFIGURATION ONLY  
To enable this mode, the serial registers must first be reset to the default values and the RESET pin must be  
kept low. SEN, SDATA, and SCLK function as serial interface pins in this mode and can be used to access the  
internal registers of the ADC. The registers can be reset either by applying a pulse on the RESET pin or by  
setting the RESET bit high. The Serial Register Map section describes the register programming and the register  
reset process in more detail.  
USING BOTH SERIAL INTERFACE AND PARALLEL CONTROLS  
For increased flexibility, a combination of serial interface registers and parallel pin controls (CTRL1 to CTRL3)  
can also be used to configure the device. To enable this option, keep RESET low. The parallel interface control  
pins CTRL1 to CTRL3 are available. After power-up, the device is automatically configured according to the  
voltage settings on these pins (see Table 7). SEN, SDATA, and SCLK function as serial interface digital pins and  
are used to access the internal registers of the ADC. The registers must first be reset to the default values either  
by applying a pulse on the RESET pin or by setting the RESET bit to '1'. After reset, the RESET pin must be kept  
low. The Serial Register Map section describes register programming and the register reset process in more  
detail.  
24  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
PARALLEL CONFIGURATION DETAILS  
The functions controlled by each parallel pin are described in Table 5, Table 6, and Table 7. A simple way of  
configuring the parallel pins is shown in Figure 12.  
Table 5. SCLK Control Pin  
VOLTAGE APPLIED ON SCLK  
DESCRIPTION  
Low  
Low-speed mode is disabled  
Low-speed mode is enabled(1)  
High  
(1) Low-speed mode is enabled in the ADS4222/42 by default.  
Table 6. SEN Control Pin  
VOLTAGE APPLIED ON SEN  
DESCRIPTION  
0
Twos complement and parallel CMOS output  
(+50mV/0mV)  
(3/8) AVDD  
(±50mV)  
Offset binary and parallel CMOS output  
Offset binary and DDR LVDS output  
(5/8) 2AVDD  
(±50mV)  
AVDD  
(0mV/50mV)  
Twos complement and DDR LVDS output  
Table 7. CTRL1, CTRL2, and CTRL3 Pins  
CTRL1  
CTRL2  
CTRL3  
Low  
DESCRIPTION  
Low  
Low  
Low  
Low  
High  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
Normal operation  
Not available  
High  
Low  
Not available  
High  
Low  
Not available  
Global power-down  
High  
Low  
Channel A standby, channel B is active  
Not available  
MUX mode of operation, channel A and B data are  
multiplexed and output on the DB[13:0] pins.  
High  
High  
High  
AVDD  
(5/8) AVDD  
3R  
2R  
3R  
(5/8) AVDD  
(3/8) AVDD  
GND  
AVDD  
(3/8) AVDD  
To Parallel Pin  
Figure 12. Simple Scheme to Configure the Parallel Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
SERIAL INTERFACE DETAILS  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. Serial shift of bits into the  
device is enabled when SEN is low. Serial data SDATA are latched at every SCLK falling edge when SEN is  
active (low). The serial data are loaded into the register at every 16th SCLK falling edge when SEN is low. When  
the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in multiples of  
16-bit words within a single active SEN pulse. The first eight bits form the register address and the remaining  
eight bits are the register data. The interface can work with SCLK frequencies from 20MHz down to very low  
speeds (of a few hertz) and also with non-50% SCLK duty cycle.  
Register Initialization  
After power-up, the internal registers must be initialized to the default values. Initialization can be accomplished  
in one of two ways:  
1. Either through hardware reset by applying a high pulse on the RESET pin (of width greater than 10ns), as  
shown in Figure 13; or  
2. By applying a software reset. When using the serial interface, set the RESET bit high. This setting initializes  
the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET  
pin is kept low.  
Register Address  
Register Data  
SDATA  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
tDH  
D1  
D0  
tSCLK  
tDSU  
tSLOADS  
tSLOADH  
SEN  
RESET  
Figure 13. Serial Interface Timing  
Table 8. Serial Interface Timing Characteristics(1)  
PARAMETER  
SCLK frequency (equal to 1/tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
MIN  
> DC  
25  
TYP  
MAX  
UNIT  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
)
20  
MHz  
ns  
25  
ns  
25  
ns  
tDH  
SDATA hold time  
25  
ns  
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = 40°C to TMAX = +85°C,  
AVDD = 1.8V, and DRVDD = 1.8V, unless otherwise noted.  
Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back. This readback mode  
may be useful as a diagnostic check to verify the serial interface communication between the external controller  
and the ADC. To use readback mode, follow this procedure:  
1. Set the READOUT register bit to '1'. This setting disables any further writes to the registers.  
2. Initiate a serial interface cycle specifying the address of the register (A7 to A0) whose content has to be  
read.  
3. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin (pin 64).  
4. The external controller can latch the contents at the SCLK falling edge.  
5. To enable register writes, reset the READOUT register bit to '0'.  
The serial register readout works with both CMOS and LVDS interfaces on pin 64.  
26  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
When READOUT is disabled, the SDOUT pin is in high-impedance state. If serial readout is not used, the  
SDOUT pin must float.  
Register Address A[7:0] = 00h  
Register Data D[7:0] = 01h  
SDATA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SCLK  
SEN  
The SDOUT pin is in high-impedance state.  
SDOUT  
a) Enable serial readout (READOUT = 1)  
Register Address A[7:0] = 45h  
A4 A2  
A5 A3  
Register Data D[7:0] = XX (don’t care)  
D4 D2 D1  
D6 D5 D3  
SDATA  
SCLK  
A7  
A6  
A1  
A0  
D7  
D0  
SEN  
0
0
0
0
0
1
0
0
SDOUT  
The SDOUT pin functions as serial readout (READOUT = 1).  
b) Read contents of Register 45h. This register has been initialized with 04h (device is put into global power-down mode.)  
Figure 14. Serial Readout Timing Diagram  
Table 9. Reset Timing (Only when Serial Interface is Used)(1)  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNIT  
Delay from AVDD and DRVDD power-up to active RESET  
pulse  
1
ms  
t1  
Power-on delay  
10  
ns  
t2  
t3  
Reset pulse width  
Active RESET signal pulse width  
1
µs  
Register write delay  
Delay from RESET disable to SEN active  
100  
ns  
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = 40°C to TMAX = +85°C, unless  
otherwise noted.  
Power Supply  
AVDD, DRVDD  
t1  
RESET  
t2  
t3  
SEN  
NOTE: A high pulse on the RESET pin is required in the serial interface mode when initialized through a hardware reset. For parallel  
interface operation, RESET must be permanently tied high.  
Figure 15. Reset Timing Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
SERIAL REGISTER MAP  
Table 10 summarizes the functions supported by the serial interface.  
Table 10. Serial Interface Register Map(1)  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
A[7:0] (Hex)  
D7  
D6  
D5  
D2  
D1  
RESET  
0
D0  
READOUT  
0
00  
01  
03  
25  
29  
2B  
0
0
0
0
0
0
LVDS SWING  
0
0
0
0
0
0
0
0
0
0
0
HIGH PERF MODE  
CH A GAIN  
CH B GAIN  
CH A TEST PATTERNS  
DATA FORMAT  
0
0
0
0
CH B TEST PATTERNS  
ENABLE  
OFFSET  
CORR  
3D  
0
0
0
0
0
0
0
0
3F  
40  
41  
42  
CUSTOM PATTERN D[13:8]  
CUSTOM PATTERN D[7:0]  
LVDS CMOS  
CMOS CLKOUT STRENGTH  
CLKOUT RISE POSN  
0
0
0
DIS OBUF  
CLKOUT FALL POSN  
LVDS  
EN DIGITAL  
0
0
0
0
LVDS DATA  
0
45  
STBY  
CLKOUT  
STRENGTH  
0
PDN GLOBAL  
STRENGTH  
HIGH FREQ  
4A  
58  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MODE CH B(2)  
HIGH FREQ  
MODE CH A(2)  
BF  
C1  
CH A OFFSET PEDESTAL  
CH B OFFSET PEDESTAL  
0
0
0
0
FREEZE  
OFFSET  
CORR  
CF  
DB  
EF  
0
0
0
OFFSET CORR TIME CONSTANT  
0
0
0
0
LOW SPEED  
0
0
0
0
0
0
0
0
MODE CH B(3)  
EN LOW  
SPEED  
0
0
0
MODE(3)  
F1  
F2  
0
0
0
0
0
0
0
0
0
0
EN LVDS SWING  
LOW SPEED  
0
0
MODE CH A(3)  
(1) Multiple functions in a register can be programmed in a single write operation. All registers default to '0' after reset.  
(2) These bits improve SFDR on high frequencies. The frequency limit is 200MHz.  
(3) Low-speed mode is not applicable for the ADS4242 and ADS4222.  
28  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
DESCRIPTION OF SERIAL REGISTERS  
Register Address 00h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
RESET  
READOUT  
Bits[7:2]  
Bit 1  
Always write '0'  
RESET: Software reset applied  
This bit resets all internal registers to the default values and self-clears to 0 (default = 1).  
READOUT: Serial readout  
Bit 0  
This bit sets the serial readout of the registers.  
0 = Serial readout of registers disabled; the SDOUT pin is placed in high-impedance state.  
1 = Serial readout enabled; the SDOUT pin functions as a serial data readout with CMOS logic  
levels running from the DRVDD supply. See the Serial Register Readout section.  
Register Address 01h (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
LVDS SWING  
Bits[7:2]  
LVDS SWING: LVDS swing programmability  
These bits program the LVDS swing. Set the EN LVDS SWING bit to '1' before programming  
swing.  
000000 = Default LVDS swing; ±350mV with external 100termination  
011011 = LVDS swing increases to ±410mV  
110010 = LVDS swing increases to ±465mV  
010100 = LVDS swing increases to ±570mV  
111110 = LVDS swing decreases to ±200mV  
001111 = LVDS swing decreases to ±125mV  
Bits[1:0]  
Always write '0'  
Register Address 03h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
HIGH PERF MODE  
Bits[7:2]  
Bits[1:0]  
Always write '0'  
HIGH PERF MODE: High-performance mode  
00 = Default performance  
01 = Do not use  
10 = Do not use  
11 = Obtain best performance across sample clock and input signal frequencies  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Register Address 25h (Default = 00h)  
7
6
5
4
3
2
1
0
CH A GAIN  
0
CH A TEST PATTERNS  
Bits[7:4]  
CH A GAIN: Channel A gain programmability  
These bits set the gain programmability in 0.5dB steps for channel A.  
0000 = 0dB gain (default after reset)  
0001 = 0.5dB gain  
0010 = 1dB gain  
0011 = 1.5dB gain  
0100 = 2dB gain  
0101 = 2.5dB gain  
0110 = 3dB gain  
0111 = 3.5dB gain  
1000 = 4dB gain  
1001 = 4.5dB gain  
1010 = 5dB gain  
1011 = 5.5dB gain  
1100 = 6dB gain  
Bit 3  
Always write '0'  
Bits[2:0]  
CH A TEST PATTERNS: Channel A data capture  
These bits verify data capture for channel A.  
000 = Normal operation  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern.  
For the ADS424x, output data D[13:0] are an alternating sequence of 10101010101010 and  
01010101010101.  
For the ADS422x, the output data D[11:0] are an alternating sequence of 101010101010 and  
010101010101.  
100 = Outputs digital ramp.  
For the ADS424x, output data increment by one LSB (14-bit) every clock cycle from code 0 to code  
16383.  
For the ADS422x, output data increment by one LSB (12-bit) every fourth clock cycle from code 0  
to code 4095.  
101 = Outputs custom pattern; use registers 3Fh and 40h to set the custom pattern  
110 = Unused  
111 = Unused  
Register Address 29h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
DATA FORMAT  
Bits[7:5]  
Bits[4:3]  
Always write '0'  
DATA FORMAT: Data format selection  
00 = Twos complement  
01 = Twos complement  
10 = Twos complement  
11 = Offset binary  
Bits[2:0]  
Always write '0'  
30  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Register Address 2Bh (Default = 00h)  
7
6
5
4
3
2
1
0
CH B GAIN  
0
CH B TEST PATTERNS  
Bits[7:4]  
CH B GAIN: Channel B gain programmability  
These bits set the gain programmability in 0.5dB steps for channel B.  
0000 = 0dB gain (default after reset)  
0001 = 0.5dB gain  
0010 = 1dB gain  
0011 = 1.5dB gain  
0100 = 2dB gain  
0101 = 2.5dB gain  
0110 = 3dB gain  
0111 = 3.5dB gain  
1000 = 4dB gain  
1001 = 4.5dB gain  
1010 = 5dB gain  
1011 = 5.5dB gain  
1100 = 6dB gain  
Bit 3  
Always write '0'  
Bits[2:0]  
CH B TEST PATTERNS: Channel B data capture  
These bits verify data capture for channel B.  
000 = Normal operation  
001 = Outputs all 0s  
010 = Outputs all 1s  
011 = Outputs toggle pattern.  
For the ADS424x, output data D[13:0] are an alternating sequence of 10101010101010 and  
01010101010101.  
For the ADS422x, the output data D[11:0] are an alternating sequence of 101010101010 and  
010101010101.  
100 = Outputs digital ramp.  
For the ADS424x, output data increment by one LSB (14-bit) every clock cycle from code 0 to code  
16383.  
For the ADS422x, output data increment by one LSB (12-bit) every fourth clock cycle from code 0  
to code 4095.  
101 = Outputs custom pattern; use registers 3Fh and 40h to set the custom pattern  
110 = Unused  
111 = Unused  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Register Address 3Dh (Default = 00h)  
7
0
6
0
5
4
3
2
0
1
0
0
0
ENABLE OFFSET CORR  
0
0
Bits[7:6]  
Bit 5  
Always write '0'  
ENABLE OFFSET CORR: Offset correction setting  
This bit enables the offset correction.  
0 = Offset correction disabled  
1 = Offset correction enabled  
Bits[4:0]  
Always write '0'  
Register Address 3Fh (Default = 00h)  
7
0
6
0
5
4
3
2
1
0
CUSTOM  
PATTERN D13  
CUSTOM  
PATTERN D12  
CUSTOM  
PATTERN D11  
CUSTOM  
PATTERN D10  
CUSTOM  
PATTERN D9  
CUSTOM  
PATTERN D8  
Bits[7:6]  
Bits[5:0]  
Always write '0'  
CUSTOM PATTERN D[13:8]  
These are the six upper bits of the custom pattern available at the output instead of ADC data.  
Note that for the ADS424x, the custom pattern is 14-bit. The ADS422x custom pattern is 12-bit.  
Register Address 40h (Default = 00h)  
7
6
5
4
3
2
1
0
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
CUSTOM  
PATTERN D7  
PATTERN D6  
PATTERN D5  
PATTERN D4  
PATTERN D3  
PATTERN D2  
PATTERN D1  
PATTERN D0  
Bits[7:0]  
CUSTOM PATTERN D[7:0]  
These are the eight upper bits of the custom pattern available at the output instead of ADC data.  
Note that for the ADS424x, the custom pattern is 14-bit. The ADS422x custom pattern is 12-bit;  
use the CUSTOM PATTERN D[13:2] register bits.  
32  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Register Address 41h (Default = 00h)  
7
6
5
4
3
2
0
1
0
LVDS CMOS  
CMOS CLKOUT STRENGTH  
0
DIS OBUF  
Bits[7:6]  
LVDS CMOS: Interface selection  
These bits select the interface.  
00 = DDR LVDS interface  
01 = DDR LVDS interface  
10 = DDR LVDS interface  
11 = Parallel CMOS interface  
Bits[5:4]  
CMOS CLKOUT STRENGTH  
These bits control the strength of the CMOS output clock.  
00 = Maximum strength (recommended)  
01 = Medium strength  
10 = Low strength  
11 = Very low strength  
Bits[3:2]  
Bits[1:0]  
Always write '0'  
DIS OBUF  
These bits power down data and clock output buffers for both the CMOS and LVDS output  
interface. When powered down, the output buffers are in 3-state.  
00 = Default  
01 = Power-down data output buffers for channel B  
10 = Power-down data output buffers for channel A  
11 = Power-down data output buffers for both channels as well as the clock output buffer  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Register Address 42h (Default = 00h)  
7
6
5
4
3
2
0
1
0
0
0
CLKOUT FALL POSN  
CLKOUT RISE POSN  
EN DIGITAL  
Bits[7:6]  
CLKOUT FALL POSN  
In LVDS mode:  
00 = Default  
01 = The falling edge of the output clock advances by 450 ps  
10 = The falling edge of the output clock advances by 150 ps  
11 = The falling edge of the output clock is delayed by 550 ps  
In CMOS mode:  
00 = Default  
01 = The falling edge of the output clock is delayed by 150 ps  
10 = Do not use  
11 = The falling edge of the output clock advances by 100 ps  
Bits[5:6]  
CLKOUT RISE POSN  
In LVDS mode:  
00 = Default  
01 = The rising edge of the output clock advances by 450 ps  
10 = The rising edge of the output clock advances by 150 ps  
11 = The rising edge of the output clock is delayed by 250 ps  
In CMOS mode:  
00 = Default  
01 = The rising edge of the output clock is delayed by 150 ps  
10 = Do not use  
11 = The rising edge of the output clock advances by 100 ps  
Bit 3  
EN DIGITAL: Digital function enable  
0 = All digital functions disabled  
1 = All digital functions (such as test patterns, gain, and offset correction) enabled  
Bits[2:0]  
Always write '0'  
34  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Register Address 45h (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
LVDS CLKOUT  
STRENGTH  
LVDS DATA  
STRENGTH  
STBY  
0
0
PDN GLOBAL  
Bit 7  
Bit 6  
Bit 5  
STBY: Standby setting  
0 = Normal operation  
1 = Both channels are put in standby; wakeup time from this mode is fast (typically 50µs).  
LVDS CLKOUT STRENGTH: LVDS output clock buffer strength setting  
0 = LVDS output clock buffer at default strength to be used with 100Ω external termination  
1 = LVDS output clock buffer has double strength to be used with 50Ω external termination  
LVDS DATA STRENGTH  
0 = All LVDS data buffers at default strength to be used with 100Ω external termination  
1 = All LVDS data buffers have double strength to be used with 50Ω external termination  
Bits[4:3]  
Bit 2  
Always write '0'  
PDN GLOBAL  
0 = Normal operation  
1 = Total power down; all ADC channels, internal references, and output buffers are powered  
down. Wakeup time from this mode is slow (typically 100µs).  
Bits[1:0]  
Always write '0'  
Register Address 4Ah (Default = 00h)  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
HIGH FREQ MODE CH B  
Bits[7:1]  
Bit 0  
Always write '0'  
HIGH FREQ MODE CH B: High-frequency mode for channel B  
0 = Default  
1 = Use this mode for high input frequencies  
Register Address 58h (Default = 00h)  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
HIGH FREQ MODE CH A  
Bits[7:1]  
Bit 0  
Always write '0'  
HIGH FREQ MODE CH A: High-frequency mode for channel A  
0 = Default  
1 = Use this mode for high input frequencies  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Register Address BFh (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
CH A OFFSET PEDESTAL  
Bits[7:2]  
CH A OFFSET PEDESTAL: Channel A offset pedestal selection  
When the offset correction is enabled, the final converged value after the offset is corrected is the  
ADC midcode value. A pedestal can be added to the final converged value by programming these  
bits. See the Offset Correction section. Channels can be independently programmed for different  
offset pedestals by choosing the relevant register address.  
For the ADS424x, the pedestal ranges from 32 to +31, so the output code can vary from  
midcode-32 to midcode+32 by adding pedestal D7-D2.  
For the ADS422x, the pedestal ranges from 8 to +7, so the output code can vary from midcode-8  
to midcode+7 by adding pedestal D7-D4.  
ADS422x (Program Bits D[7:4])  
ADS424x (Program Bits D[7:2])  
0111 = Midcode+7  
0110 = Midcode+6  
0101 = Midcode+5  
011111 = Midcode+31  
011110 = Midcode+30  
011101 = Midcode+29  
0000 = Midcode  
1111 = Midcode-1  
1110 = Midcode-2  
1101 = Midcode-3  
000000 = Midcode  
111111 = Midcode-1  
111110 = Midcode-2  
111101 = Midcode-3  
1000 = Midcode-8  
100000 = Midcode-32  
Bits[1:0]  
Always write '0'  
36  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Register Address C1h (Default = 00h)  
7
6
5
4
3
2
1
0
0
0
CH B OFFSET PEDESTAL  
Bits[7:2]  
CH B OFFSET PEDESTAL: Channel B offset pedestal selection  
When offset correction is enabled, the final converged value after the offset is corrected is the ADC  
midcode value. A pedestal can be added to the final converged value by programming these bits;  
see the Offset Correction section. Channels can be independently programmed for different offset  
pedestals by choosing the relevant register address.  
For the ADS424x, the pedestal ranges from 32 to +31, so the output code can vary from  
midcode-32 to midcode+32 by adding pedestal D[7:2]. For the ADS422x, the pedestal ranges  
from 8 to +7, so the output code can vary from midcode-8 to midcode+7 by adding pedestal  
D[7:4].  
ADS422x (Program Bits D[7:4])  
ADS424x (Program Bits D[7:2])  
0111 = Midcode+7  
0110 = Midcode+6  
0101 = Midcode+5  
011111 = Midcode+31  
011110 = Midcode+30  
011101 = Midcode+29  
0000 = Midcode  
1111 = Midcode-1  
1110 = Midcode-2  
1101 = Midcode-3  
000000 = Midcode  
111111 = Midcode-1  
111110 = Midcode-2  
111101 = Midcode-3  
1000 = Midcode-8  
100000 = Midcode-32  
Bits[1:0]  
Always write '0'  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Register Address CFh (Default = 00h)  
7
6
0
5
4
3
2
1
0
0
0
FREEZE OFFSET CORR  
OFFSET CORR TIME CONSTANT  
Bit 7  
FREEZE OFFSET CORR: Freeze offset correction setting  
This bit sets the freeze offset correction estimation.  
0 = Estimation of offset correction is not frozen (the EN OFFSET CORR bit must be set)  
1 = Estimation of offset correction is frozen (the EN OFFSET CORR bit must be set); when frozen,  
the last estimated value is used for offset correction of every clock cycle. See the Offset Correction  
section.  
Bit 6  
Always write '0'  
Bits[5:2]  
OFFSET CORR TIME CONSTANT  
The offset correction loop time constant in number of clock cycles. Refer to the Offset Correction  
section.  
Bits[1:0]  
Always write '0'  
Register Address DBh (Default = 00h)  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
LOW SPEED MODE CH B  
Bits[7:1]  
Bit 0  
Always write '0'  
LOW SPEED MODE CH B: Channel B low-speed mode enable  
This bit enables the low-speed mode for channel B. Set the EN LOW SPEED MODE bit to '1'  
before using this bit.  
0 = Low-speed mode is disabled for channel B  
1 = Low-speed mode is enabled for channel B  
Register Address EFh (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
EN LOW SPEED MODE  
0
Bits[7:5]  
Bit 4  
Always write '0'  
EN LOW SPEED MODE: Enable control of low-speed mode through serial register bits  
(ADS42x5 and ADS42x6 only)  
This bit enables the control of the low-speed mode using the LOW SPEED MODE CH B and LOW  
SPEED MODE CH A register bits.  
0 = Low-speed mode is disabled  
1 = Low-speed mode is controlled by serial register bits  
Bits[3:0]  
Always write '0'  
38  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Register Address F1h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
EN LVDS SWING  
Bits[7:2]  
Bits[1:0]  
Always write '0'  
EN LVDS SWING: LVDS swing enable  
These bits enable LVDS swing control using the LVDS SWING register bits.  
00 = LVDS swing control using the LVDS SWING register bits is disabled  
01 = Do not use  
10 = Do not use  
11 = LVDS swing control using the LVDS SWING register bits is enabled  
Register Address F2h (Default = 00h)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
LOW SPEED MODE CH A  
Bits[7:4]  
Bit 3  
Always write '0'  
LOW SPEED MODE CH A: Channel A low-speed mode enable  
This bit enables the low-speed mode for channel A. Set the EN LOW SPEED MODE bit to '1'  
before using this bit.  
0 = Low-speed mode is disabled for channel A  
1 = Low-speed mode is enabled for channel A  
Bits[2:0]  
Always write '0'  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4246  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89.8dBc  
SFDR = 89.8dBc  
SINAD = 72.8dBFS  
SNR = 72.9dBFS  
THD = 87.9dBc  
SINAD = 71.3dBFS  
SNR = 71.2dBFS  
THD = 88.2dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Frequency (MHz)  
Frequency (MHz)  
Figure 16.  
Figure 17.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 76.5dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 185.1MHz  
fIN2 = 190.1MHz  
SINAD = 68.4dBFS  
SNR = 69.3dBFS  
THD = 74.5dBc  
Two−Tone IMD = 83.6dBFS  
SFDR = 95.1dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Frequency (MHz)  
Frequency (MHz)  
Figure 18.  
Figure 19.  
40  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4246 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
90  
85  
80  
75  
70  
65  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 46.1MHz  
fIN2 = 50.1MHz  
Two−Tone IMD = 96.2dBFS  
SFDR = 103.2dBFS  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
Figure 20.  
Figure 21.  
SNR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY (CMOS)  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Figure 22.  
Figure 23.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4246 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
SFDR vs GAIN AND INPUT FREQUENCY  
SINAD vs GAIN AND INPUT FREQUENCY  
90  
86  
82  
78  
74  
70  
66  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
Figure 24.  
Figure 25.  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs INPUT AMPLITUDE  
120  
110  
100  
90  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
120  
110  
100  
90  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
30  
30  
20  
−70  
20  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Figure 26.  
Figure 27.  
42  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4246 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
88  
75  
120  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
87  
86  
85  
84  
83  
82  
81  
80  
74.5  
74  
73.5  
73  
72.5  
72  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
71.5  
SFDR  
SNR  
71  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
Input CommonMode Voltage (V)  
Amplitude (dBFS)  
Figure 28.  
Figure 29.  
SFDR vs TEMPERATURE AND AVDD SUPPLY  
SNR vs TEMPERATURE AND AVDD SUPPLY  
91  
89  
87  
85  
83  
81  
79  
77  
75  
73  
71  
72  
71.5  
71  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
70.5  
70  
AVDD = 1.65  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
AVDD = 1.65  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
69.5  
69  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 30.  
Figure 31.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4246 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs DRVDD SUPPLY VOLTAGE  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
86  
85  
84  
83  
82  
81  
73  
88  
87  
86  
85  
84  
83  
82  
74.5  
Input Frequency = 150MHz  
Input Frequency = 40MHz  
74  
72.5  
72  
73.5  
73  
71.5  
71  
72.5  
72  
SFDR  
SNR  
70.5  
SFDR  
SNR  
71.5  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 32.  
Figure 33.  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
85  
84  
83  
82  
81  
80  
79  
78  
77  
75  
88.5  
88  
74  
Input Frequency = 150MHz  
Input Frequency = 10MHz  
74  
73  
72  
71  
70  
69  
73.5  
73  
87.5  
87  
72.5  
72  
86.5  
86  
71.5  
68  
SFDR  
SNR  
THD  
71  
SNR  
67  
85.5  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 34.  
Figure 35.  
44  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4246 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
OUTPUT NOISE HISTOGRAM  
INTEGRATED NONLINEARITY  
(WITH INPUTS SHORTED TO VCM)  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1.2  
74.11  
Input Frequency=20MHz  
RMS Noise = 1.17LSB  
0.9  
0.6  
51.98  
0.3  
43.17  
0
−0.3  
−0.6  
−0.9  
−1.2  
−1.5  
13.88  
13.08  
1.69  
1.33  
0.01 0.11  
0.06  
0
4000  
8000  
12000  
16000  
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220  
Output Code (LSB)  
Output Code (LSB)  
Figure 36.  
Figure 37.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4245  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89.7dBc  
SFDR = 86.7dBc  
SINAD = 73dBFS  
SNR = 73.1dBFS  
THD = 88.4dBc  
SINAD = 71.2dBFS  
SNR = 71.4dBFS  
THD = 83.8dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 38.  
Figure 39.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 73.4dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 =185MHz  
fIN2 =190MHz  
SINAD = 67.7dBFS  
SNR = 69.2dBFS  
THD = 72.3dBc  
Two−Tone IMD = 94dBFS  
SFDR = 92.8dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 40.  
Figure 41.  
46  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4245 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
90  
85  
80  
75  
70  
65  
Each Tone at  
−7dBFS Amplitude  
fIN1 =46MHz  
fIN2 =50MHz  
Two−Tone IMD = 96.9dBFS  
SFDR = 105.3dBFS  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
10  
20  
30  
40  
50  
60  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
Figure 42.  
Figure 43.  
SNR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY (CMOS)  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Figure 44.  
Figure 45.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4245 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
SFDR vs GAIN AND INPUT FREQUENCY  
SINAD vs GAIN AND INPUT FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
Figure 46.  
Figure 47.  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs INPUT AMPLITUDE  
110  
100  
90  
76.5  
76  
110  
100  
90  
77  
76  
75  
74  
73  
72  
71  
70  
69  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
75.5  
75  
80  
80  
70  
74.5  
74  
70  
60  
60  
50  
73.5  
73  
50  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
40  
40  
30  
−70  
72.5  
30  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Figure 48.  
Figure 49.  
48  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4245 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
90  
73.8  
73.7  
73.6  
73.5  
73.4  
73.3  
73.2  
73.1  
73  
89  
73  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
89  
88  
87  
86  
85  
84  
83  
82  
87  
85  
83  
81  
79  
77  
75  
73  
72.75  
72.5  
72.25  
72  
71.75  
71.5  
71.25  
71  
SFDR  
SNR  
SFDR  
SNR  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input CommonMode (V)  
Input CommonMode Voltage (V)  
Figure 50.  
Figure 51.  
SFDR vs TEMPERATURE AND AVDD SUPPLY  
SNR vs TEMPERATURE AND AVDD SUPPLY  
91  
89  
87  
85  
83  
81  
79  
77  
75  
73  
71  
73  
72.5  
72  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
71.5  
71  
AVDD = 1.65  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
AVDD = 1.65  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.9  
AVDD = 1.95  
70.5  
70  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 52.  
Figure 53.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4245 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs DRVDD SUPPLY VOLTAGE  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
88  
87  
86  
85  
84  
83  
82  
73  
90  
89  
88  
87  
86  
85  
84  
74.5  
Input Frequency = 150MHz  
Input Frequency = 40MHz  
72.5  
72  
74  
73.5  
73  
71.5  
71  
72.5  
70.5  
72  
SFDR  
SNR  
70  
SFDR  
SNR  
71.5  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 54.  
Figure 55.  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
75  
Input Frequency = 150MHz  
74  
89  
88  
87  
86  
85  
84  
83  
75  
Input Frequency = 10MHz  
74.5  
74  
73  
72  
71  
70  
69  
68  
67  
66  
73.5  
73  
72.5  
65  
64  
SFDR  
SNR  
SNR  
THD  
72  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 56.  
Figure 57.  
50  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4245 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
OUTPUT NOISE HISTOGRAM  
INTEGRATED NONLINEARITY  
(WITH INPUTS SHORTED TO VCM)  
40  
35  
30  
25  
20  
15  
10  
5
1.5  
1.2  
RMS Noise = 1.1LSB  
Input Frequency=20MHz  
33.31  
0.9  
28.49  
0.6  
0.3  
0
18.26  
−0.3  
−0.6  
−0.9  
−1.2  
−1.5  
12.23  
4.52  
2.46  
0.47  
0.01 0.23  
0
0
4000  
8000  
12000  
16000  
8212 8213 8214 8215 8216 8217 8218 8219 8220 8221  
Output Code (LSB)  
Output Code (LSB)  
Figure 58.  
Figure 59.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4242  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 91.6dBc  
SFDR = 88.6dBc  
SINAD = 73.2dBFS  
SNR = 73.3dBFS  
THD = 88.9dBc  
SINAD = 71.2dBFS  
SNR = 71.4dBFS  
THD = 84.2dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 60.  
Figure 61.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 76.7dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 =185MHz  
fIN2 =190MHz  
SINAD = 68.8dBFS  
SNR = 69.4dBFS  
THD = 76.3dBc  
Two−Tone IMD = 92.2dBFS  
SFDR = 93.4dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 62.  
Figure 63.  
52  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4242 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
95  
90  
85  
80  
75  
70  
65  
Each Tone at  
−7dBFS Amplitude  
fIN1 =46MHz  
fIN2 =50MHz  
Two−Tone IMD = 98dBFS  
SFDR = 102.7dBFS  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
5
10  
15  
20  
25  
30 32.5  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
Figure 64.  
Figure 65.  
SNR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY (CMOS)  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Figure 66.  
Figure 67.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4242 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
SFDR vs GAIN AND INPUT FREQUENCY  
SINAD vs GAIN AND INPUT FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
72  
71  
70  
69  
68  
67  
66  
65  
64  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
Figure 68.  
Figure 69.  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs INPUT AMPLITUDE  
120  
110  
100  
90  
77  
120  
110  
100  
90  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
76.5  
76  
75.5  
75  
80  
80  
70  
74.5  
74  
70  
60  
60  
50  
73.5  
73  
50  
40  
40  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
30  
72.5  
72  
30  
20  
−70  
20  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Figure 70.  
Figure 71.  
54  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4242 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
91  
74.2  
74.1  
74  
85  
72  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
90.5  
90  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
71.9  
71.8  
71.7  
71.6  
71.5  
71.4  
71.3  
71.2  
71.1  
71  
89.5  
89  
73.9  
73.8  
73.7  
73.6  
73.5  
73.4  
73.3  
73.2  
88.5  
88  
87.5  
87  
86.5  
SFDR  
SNR  
SFDR  
SNR  
86  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input CommonMode Voltage (V)  
Input CommonMode Voltage (V)  
Figure 72.  
Figure 73.  
SFDR vs TEMPERATURE AND AVDD SUPPLY  
SNR vs TEMPERATURE AND AVDD SUPPLY  
88  
86  
84  
82  
80  
78  
76  
72  
71.5  
71  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
70.5  
70  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
69.5  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 74.  
Figure 75.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4242 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs DRVDD SUPPLY VOLTAGE  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
87  
86  
85  
84  
83  
82  
81  
75  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
77  
Input Frequency = 150MHz  
Input Frequency = 40MHz  
76  
75  
74  
73  
72  
71  
70  
74  
73  
72  
71  
70  
69  
SFDR  
SNR  
69  
SFDR  
SNR  
68  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 76.  
Figure 77.  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
PERFORMANCE ACROSS INPUT CLOCK DUTY CYCLE  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
75  
91  
75  
Input Frequency = 150MHz  
Input Frequency = 10MHz  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
90  
89  
88  
87  
86  
85  
74.5  
74  
73.5  
73  
72.5  
72  
SFDR  
63  
SNR  
THD  
SNR  
62  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 78.  
Figure 79.  
56  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4242 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
OUTPUT NOISE HISTOGRAM  
INTEGRATED NONLINEARITY  
(WITH INPUTS SHORTED TO VCM)  
40  
35  
30  
25  
20  
15  
10  
5
1.5  
1.2  
RMS Noise = 1.1LSB  
33.31  
0.9  
28.49  
0.6  
0.3  
0
18.26  
−0.3  
−0.6  
−0.9  
−1.2  
−1.5  
12.23  
4.52  
0.23  
0.47  
0.01  
0
0
4000  
8000  
12000  
16000  
8212 8213 8214 8215 8216 8217 8218 8219 8220 8221  
Output Code (LSB)  
Output Code (LSB)  
Figure 80.  
Figure 81.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4226  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89.7dBc  
SFDR = 90.1dBc  
SINAD = 70.5dBFS  
SNR = 70.6dBFS  
THD = 80.0dBc  
SINAD = 69.5dBFS  
SNR = 69.6dBFS  
THD = 88.1dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Frequency (MHz)  
Frequency (MHz)  
Figure 82.  
Figure 83.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 76.2dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 185.1MHz  
fIN2 = 190.1MHz  
SINAD = 67.3dBFS  
SNR = 67.9dBFS  
THD = 74.4dBc  
Two−Tone IMD = 86.5dBFS  
SFDR = 92.1dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Frequency (MHz)  
Frequency (MHz)  
Figure 84.  
Figure 85.  
58  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4226 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
90  
85  
80  
75  
70  
65  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 46.1MHz  
fIN2 = 50.1MHz  
Two−Tone IMD = 98.2dBFS  
SFDR = 101.7dBFS  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
Figure 86.  
Figure 87.  
SNR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY (CMOS)  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Figure 88.  
Figure 89.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4226 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
SFDR vs GAIN AND INPUT FREQUENCY  
SINAD vs GAIN AND INPUT FREQUENCY  
90  
86  
82  
78  
74  
70  
66  
70  
69  
68  
67  
66  
65  
64  
63  
62  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
Figure 90.  
Figure 91.  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs INPUT AMPLITUDE  
110  
100  
90  
73  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
73  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
72.5  
72.5  
72  
72  
71.5  
71  
80  
71.5  
71  
70  
70.5  
70  
60  
70.5  
70  
50  
69.5  
69  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
40  
69.5  
69  
30  
−70  
68.5  
−60  
−50  
−40  
−30  
−20  
−10  
0
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Figure 92.  
Figure 93.  
60  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4226 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
88  
73  
84  
72  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
87  
86  
85  
84  
83  
82  
81  
80  
72.5  
72  
83  
82  
81  
80  
79  
78  
77  
76  
71.5  
71  
71.5  
71  
70.5  
70  
70.5  
70  
69.5  
69  
69.5  
68.5  
SFDR  
SNR  
SFDR  
SNR  
69  
1.1  
68  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
0.8  
0.85  
0.9  
0.95  
1
1.05  
Input CommonMode Voltage (V)  
Input CommonMode Voltage (V)  
Figure 94.  
Figure 95.  
SFDR vs TEMPERATURE AND AVDD SUPPLY  
SNR vs TEMPERATURE AND AVDD SUPPLY  
91  
89  
87  
85  
83  
81  
79  
77  
75  
73  
71  
70  
69.8  
69.6  
69.4  
69.2  
69  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
68.8  
68.6  
68.4  
68.2  
68  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 96.  
Figure 97.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4226 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs DRVDD SUPPLY VOLTAGE  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
87  
86  
85  
84  
83  
82  
81  
71.5  
88  
87  
86  
85  
84  
83  
82  
72  
Input Frequency = 150MHz  
Input Frequency = 40MHz  
71  
71.5  
71  
70.5  
70  
70.5  
70  
69.5  
69  
69.5  
SFDR  
SNR  
68.5  
SFDR  
SNR  
69  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 98.  
Figure 99.  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
71.5  
88  
88  
87  
86  
86  
86  
85  
84  
84  
73  
Input Frequency = 150MHz  
Input Frequency = 10MHz  
71  
72.5  
72  
70.5  
70  
71.5  
71  
69.5  
69  
68.5  
68  
70.5  
70  
67.5  
69.5  
SNR  
THD  
69  
67  
SFDR  
SNR  
66.5  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 100.  
Figure 101.  
62  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4225  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 89.7dBc  
SFDR = 86.8dBc  
SINAD = 70.6dBFS  
SNR = 72.6dBFS  
THD = 89.2dBc  
SINAD = 69.5dBFS  
SNR = 69.6dBFS  
THD = 83.7dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 102.  
Figure 103.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 73.5dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 185.1MHz  
fIN2 = 190.1MHz  
SINAD = 66.9dBFS  
SNR = 67.9dBFS  
THD = 72.7dBc  
Two−Tone IMD = 93.4dBFS  
SFDR = 91.1dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
Figure 104.  
Figure 105.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4225 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
90  
85  
80  
75  
70  
65  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 46.1MHz  
fIN2 = 50.1MHz  
Two−Tone IMD = 96.2dBFS  
SFDR = 101.9dBFS  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
10  
20  
30  
40  
50  
60  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
Figure 106.  
Figure 107.  
SNR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY (CMOS)  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Figure 108.  
Figure 109.  
64  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4225 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
SFDR vs GAIN AND INPUT FREQUENCY  
SINAD vs GAIN AND INPUT FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
71  
70  
68  
66  
64  
62  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
Figure 110.  
Figure 111.  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs INPUT AMPLITUDE  
120  
110  
100  
90  
74  
120  
110  
100  
90  
73.5  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
73.5  
73  
73  
72.5  
72  
72.5  
72  
80  
80  
71.5  
71  
70  
71.5  
71  
70  
60  
60  
70.5  
70  
50  
70.5  
70  
50  
40  
40  
69.5  
69  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
30  
69.5  
69  
30  
20  
−70  
20  
−70  
68.5  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Figure 112.  
Figure 113.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4225 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
94  
72  
89  
72  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
92  
90  
88  
86  
84  
82  
80  
78  
71.8  
71.5  
71.2  
71  
87  
85  
83  
81  
79  
77  
75  
73  
71.5  
71  
70.5  
70  
70.8  
70.5  
70.2  
70  
69.5  
69  
68.5  
SFDR  
SNR  
SFDR  
SNR  
68  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
Input CommonMode (V)  
Input CommonMode Voltage (V)  
Figure 114.  
Figure 115.  
SFDR vs TEMPERATURE AND AVDD SUPPLY  
SNR vs TEMPERATURE AND AVDD SUPPLY  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
70.5  
70.2  
70  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
69.8  
69.5  
69.2  
69  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
68.8  
68.5  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 116.  
Figure 117.  
66  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4225 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs DRVDD SUPPLY VOLTAGE  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
88  
87  
86  
85  
84  
83  
82  
72  
90  
89  
88  
87  
86  
85  
84  
72  
Input Frequency = 150MHz  
Input Frequency = 40MHz  
71.5  
71  
71.5  
71  
70.5  
70  
70.5  
70  
69.5  
69.5  
SFDR  
SNR  
69  
SFDR  
SNR  
69  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 118.  
Figure 119.  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
72  
90  
89  
88  
87  
86  
85  
84  
83  
82  
73  
Input Frequency = 40MHz  
Input Frequency = 10MHz  
71.5  
71  
72.5  
72  
70.5  
70  
69.5  
69  
71.5  
71  
68.5  
68  
67.5  
67  
70.5  
70  
66.5  
66  
65.5  
65  
69.5  
THD  
SNR  
69  
SFDR  
SNR  
64.5  
64  
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 120.  
Figure 121.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4222  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR 20MHz INPUT SIGNAL  
FFT FOR 170MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 90.9dBc  
SFDR = 88.2dBc  
SINAD = 70.8dBFS  
SNR = 70.9dBFS  
THD = 88.1dBc  
SINAD = 69.5dBFS  
SNR = 69.7dBFS  
THD = 84.9dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 122.  
Figure 123.  
FFT FOR 300MHz INPUT SIGNAL  
FFT FOR TWO-TONE INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 88.8dBc  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 185.1MHz  
fIN2 = 190.1MHz  
SINAD = 72.6dBFS  
SNR = 72.6dBFS  
THD = 89.2dBc  
Two−Tone IMD = 91.6dBFS  
SFDR = 94.9dBFS  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30 32.5  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
Frequency (MHz)  
Figure 124.  
Figure 125.  
68  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4222 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
FFT FOR TWO-TONE INPUT SIGNAL  
SFDR vs INPUT FREQUENCY  
0
−20  
95  
90  
85  
80  
75  
70  
65  
Each Tone at  
−7dBFS Amplitude  
fIN1 = 46.1MHz  
fIN2 = 50.1MHz  
Two−Tone IMD =  
98.9 dBFS  
SFDR = 100.4 dBFS  
−40  
−60  
−80  
−100  
−120  
Gain = 0dB  
Gain = 6dB  
0
5
10  
15  
20  
25  
30 32  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Frequency (MHz)  
Figure 126.  
Figure 127.  
SNR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY (CMOS)  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Gain = 0dB  
Gain = 6dB  
Gain = 0dB  
Gain = 6dB  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Figure 128.  
Figure 129.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4222 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
SFDR vs GAIN AND INPUT FREQUENCY  
SINAD vs GAIN AND INPUT FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
71  
70  
69  
68  
67  
66  
65  
64  
63  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
150MHz  
170MHz  
220MHz  
300MHz  
400MHz  
470MHz  
Input Frequency = 150MHz  
3.5 4.5 5.5 6  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
4
5
Digital Gain (dB)  
Digital Gain (dB)  
Figure 130.  
Figure 131.  
PERFORMANCE vs INPUT AMPLITUDE  
PERFORMANCE vs INPUT AMPLITUDE  
120  
110  
100  
90  
73.5  
120  
110  
100  
90  
73.5  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
73  
73  
72.5  
72  
72.5  
72  
80  
80  
71.5  
71  
70  
71.5  
71  
70  
60  
60  
70.5  
70  
50  
50  
70.5  
70  
40  
40  
69.5  
69  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
SFDR(dBc)  
SFDR(dBFS)  
SNR  
30  
30  
20  
−70  
69.5  
20  
−70  
68.5  
−60  
−50  
−40  
−30  
−20  
−10  
0
−60  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
Figure 132.  
Figure 133.  
70  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: ADS4222 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
PERFORMANCE vs INPUT COMMON-MODE VOLTAGE  
92  
72  
85  
70.8  
70.6  
70.4  
70.2  
70  
Input Frequency = 40MHz  
Input Frequency = 150MHz  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
71.8  
71.6  
71.4  
71.2  
71  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
69.8  
69.6  
69.4  
69.2  
69  
70.8  
70.6  
70.4  
70.2  
70  
SFDR  
SNR  
SFDR  
SNR  
68.8  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.8  
0.85  
0.9  
0.95  
1
1.05  
Input Common−Mode Voltage (V)  
Input Common−Mode Voltage (V)  
Figure 134.  
Figure 135.  
SFDR vs TEMPERATURE AND AVDD SUPPLY  
SNR vs TEMPERATURE AND AVDD SUPPLY  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
70  
69.8  
69.5  
69.2  
69  
Input Frequency = 150MHz  
Input Frequency = 150MHz  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
AVDD = 1.7  
AVDD = 1.75  
AVDD = 1.80  
AVDD = 1.85  
AVDD = 1.90  
AVDD = 1.95  
68.8  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 136.  
Figure 137.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: ADS4222 (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
PERFORMANCE vs DRVDD SUPPLY VOLTAGE  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
87  
86  
85  
84  
83  
82  
71  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
72.5  
Input Frequency = 150MHz  
Input Frequency = 40MHz  
72  
70.5  
70  
71.5  
71  
70.5  
70  
69.5  
69  
69.5  
69  
68.5  
68  
SFDR  
SNR  
68.5  
SFDR  
SNR  
67.5  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
DRVDD Supply (V)  
Differential Clock Amplitude (VPP  
)
Figure 138.  
Figure 139.  
PERFORMANCE vs INPUT CLOCK AMPLITUDE  
PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
71  
Input Frequency = 150MHz  
70  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
72  
Input Frequency = 10MHz  
71.5  
71  
69  
68  
67  
66  
65  
64  
63  
62  
70.5  
70  
69.5  
69  
68.5  
68  
67.5  
SNR  
THD  
67  
61  
60  
SFDR  
SNR  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (VPP  
)
Figure 140.  
Figure 141.  
72  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: General  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
CMRR vs TEST SIGNAL FREQUENCY  
PSRR vs TEST SIGNAL FREQUENCY  
0
−5  
0
−5  
Input Frequency = 40MHz  
50mVPP Signal Superimposed  
on Input Common−Mode Voltage 0.95V  
Input Frequency = 10MHz  
50mVPP Signal Superimposed on AVDD Supply  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Frequency of Input Common−Mode Signal (MHz)  
Frequency of Signal on Supply (MHz)  
Figure 142.  
Figure 143.  
ANALOG POWER vs SAMPLING FREQUENCY  
DIGITAL POWER LVDS CMOS  
240  
220  
200  
180  
160  
140  
120  
100  
80  
240  
220  
200  
180  
160  
140  
120  
100  
80  
fIN = 2.5 MHz  
AVDD = 1.8V  
Input Frequency = 2.5MHz  
60  
40  
LVDS, 350mV Swing  
CMOS  
20  
60  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100 120  
140  
160  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
Figure 144.  
Figure 145.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: General (continued)  
At TA = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5VPP differential  
clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR  
LVDS output interface, and 32k point FFT, unless otherwise noted.  
DIGITAL POWER IN VARIOUS MODES (LVDS)  
260  
Default  
EN Digital = 1  
EN Digital = 1, Offset Correction Enabled  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Speed (MSPS)  
Figure 146.  
74  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: Contour  
All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock. 1.5VPP  
differential clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB  
gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.  
SPURIOUS-FREE DYNAMIC RANGE (0dB Gain)  
160  
79  
76  
83  
73  
150  
140  
130  
120  
110  
100  
90  
83  
87  
87  
87  
79  
76  
73  
87  
87  
79  
83  
76  
80  
83  
73  
73  
83  
87  
100  
70  
65  
91  
10  
50  
150  
200  
250  
300  
350  
400  
450  
90  
Input Frequency (MHz)  
80  
75  
85  
70  
SFDR (dBc)  
Figure 147.  
SPURIOUS-FREE DYNAMIC RANGE (6dB Gain)  
160  
150  
140  
130  
120  
110  
100  
90  
77  
79  
83  
81  
83  
86  
83  
86  
86  
79  
81  
83  
83  
79  
86  
83  
89  
79  
89  
79  
81  
80  
89  
83  
86  
79  
70  
65  
79  
92  
10  
50  
100  
150  
200  
250  
300  
86  
350  
400  
450  
Input Frequency (MHz)  
84  
80  
82  
88  
90  
92  
78  
SFDR (dBc)  
Figure 148.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
TYPICAL CHARACTERISTICS: Contour (continued)  
All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock. 1.5VPP  
differential clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB  
gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.  
ADS424x SIGNAL-TO-NOISE RATIO (0dB Gain)  
160  
150  
71  
73  
72  
70  
69  
67  
68  
68  
140  
130  
120  
110  
100  
90  
73  
71  
72  
70  
69  
67  
71  
72  
73  
68  
70  
80  
67  
69  
70  
65  
10  
50  
100  
150  
200  
250  
300  
350  
400  
72  
450  
Input Frequency (MHz)  
70  
68  
69  
71  
73  
67  
SNR (dBFS)  
Figure 149.  
ADS424x SIGNAL-TO-NOISE RATIO (6dB Gain)  
160  
150  
140  
130  
120  
110  
100  
90  
67  
64.5  
65  
65  
65  
66.5  
66.75  
67  
65.5  
66  
66.25  
66.25  
67  
67.25  
66.75  
66  
65.5  
66.5  
67.25  
67  
67.5  
66.75  
66  
66.25  
65.5  
66.5  
80  
67.25  
64.5  
67  
67.5  
50  
70  
65  
10  
100  
150  
200  
250  
300  
350  
400  
67  
450  
Input Frequency (MHz)  
66  
65  
65.5  
66.5  
67.5  
64.5  
SNR (dBFS)  
Figure 150.  
76  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
TYPICAL CHARACTERISTICS: Contour (continued)  
All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock. 1.5VPP  
differential clock amplitude, 50% clock duty cycle, 1dBFS differential analog input, High-Performance Mode disabled, 0dB  
gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.  
ADS422x SIGNAL-TO-NOISE RATIO (0dB Gain)  
160  
70  
67  
150  
140  
130  
120  
110  
100  
90  
70.5  
69  
67.5  
68  
66.5  
68.5  
69.5  
69.5  
70  
67  
68  
67.5  
68.5  
69  
66  
66.5  
70.5  
67  
69.5  
150  
69  
80  
70  
66.5  
68.5  
70.5  
67.5  
68  
66  
69  
70  
65  
10  
50  
100  
200  
250  
300  
350  
400  
450  
Input Frequency (MHz)  
66.5  
67  
67.5  
68  
68.5  
69  
69.5  
70  
70.5  
66  
SNR (dBFS)  
Figure 151.  
ADS422x SIGNAL-TO-NOISE RATIO (6dB Gain)  
160  
150  
140  
130  
120  
110  
100  
90  
65.75  
66  
66.25  
65.75  
65.75  
65.5  
64.5  
64.5  
65  
66.25  
66.5  
66  
65.5  
66.5  
65  
66  
66.25  
65.5  
80  
66.75  
65  
64.5  
400  
65.75  
66.5  
70  
65  
10  
64  
50  
100  
150  
200  
250  
300  
350  
66  
450  
Input Frequency (MHz)  
65.5  
64.5  
65  
66.5  
SNR (dBFS)  
Figure 152.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS424x/422x belong to TI's ultralow-power family of dual-channel 12-bit and 14-bit analog-to-digital  
converters (ADCs). At every rising edge of the input clock, the analog input signal of each channel is  
simultaneously sampled. The sampled signal in each channel is converted by a pipeline of low-resolution stages.  
In each stage, the sampled/held signal is converted by a high-speed, low-resolution, flash sub-ADC. The  
difference between the stage input and the quantized equivalent is gained and propagates to the next stage. At  
every clock, each succeeding stage resolves the sampled input with greater accuracy. The digital outputs from all  
stages are combined in a digital correction logic block and digitally processed to create the final code after a data  
latency of 16 clock cycles. The digital output is available as either DDR LVDS or parallel CMOS and coded in  
either straight offset binary or binary twos complement format. The dynamic offset of the first stage sub-ADC  
limits the maximum analog input frequency to approximately 400MHz (with 2VPP amplitude) or approximately  
600MHz (with 1VPP amplitude).  
ANALOG INPUT  
The analog input consists of a switched-capacitor based, differential sample-and-hold (S/H) architecture. This  
differential topology results in very good ac performance even for high input frequencies at high sampling rates.  
The INP and INM pins must be externally biased around a common-mode voltage of 0.95V, available on the  
VCM pin. For a full-scale differential input, each input pin (INP and INM) must swing symmetrically between  
VCM + 0.5V and VCM 0.5V, resulting in a 2VPP differential input swing. The input sampling circuit has a high  
3dB bandwidth that extends up to 550MHz (measured from the input pins to the sampled voltage). Figure 153  
shows an equivalent circuit for the analog input.  
Sampling  
Switch  
LPKG  
Sampling  
Capacitor  
2nH  
10W  
RCR Filter  
INP  
RON  
CBOND  
1pF  
CPAR2  
1pF  
CSAMP  
2pF  
100W  
15W  
RESR  
3pF  
200W  
CPAR1  
0.5pF  
RON  
10W  
3pF  
LPKG  
2nH  
CSAMP  
2pF  
100W  
RON  
10W  
15W  
INM  
CBOND  
1pF  
CPAR2  
1pF  
Sampling  
Capacitor  
RESR  
Sampling  
Switch  
200W  
Figure 153. Analog Input Equivalent Circuit  
78  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This operation improves the  
common-mode noise immunity and even-order harmonic rejection. A 5Ω to 15Ω resistor in series with each input  
pin is recommended to damp out ringing caused by package parasitics.  
SFDR performance can be limited as a result of several reasons, including the effects of sampling glitches;  
nonlinearity of the sampling circuit; and nonlinearity of the quantizer that follows the sampling circuit. Depending  
on the input frequency, sample rate, and input amplitude, one of these factors plays a dominant part in limiting  
performance. At very high input frequencies (greater than approximately 300MHz), SFDR is determined largely  
by the device sampling circuit nonlinearity. At low input amplitudes, the quantizer nonlinearity usually limits  
performance.  
Glitches are caused by the opening and closing of the sampling switches. The driving circuit should present a  
low source impedance to absorb these glitches. Otherwise, glitches could limit performance, primarily at low  
input frequencies (up to approximately 200MHz). It is also necessary to present low impedance (less than 50Ω)  
for the common-mode switching currents. This configuration can be achieved by using two resistors from each  
input terminated to the common-mode voltage (VCM).  
The device includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the  
sampling glitches inside the device itself. The cutoff frequency of the R-C filter involves a trade-off. A lower cutoff  
frequency (larger C) absorbs glitches better, but it reduces the input bandwidth. On the other hand, with a higher  
cutoff frequency (smaller C), bandwidth support is maximized. However, the sampling glitches now must be  
supplied by the external drive circuit. This tradeoff has limitations as a result of the presence of the package  
bond-wire inductance.  
In the ADS424x/422x, the R-C component values have been optimized while supporting high input bandwidth (up  
to 550MHz). However, in applications with input frequencies up to 200MHz to 300MHz, the filtering of the glitches  
can be improved further using an external R-C-R filter; see Figure 156 and Figure 157.  
In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency  
range and matched impedance to the source. Furthermore, the ADC input impedance must be considered.  
Figure 154 and Figure 155 show the impedance (ZIN = RIN || CIN) looking into the ADC input pins.  
100  
5
4.5  
4
10  
3.5  
3
1
2.5  
2
0.1  
0.01  
1.5  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Input Frequency (GHz)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Input Frequency (GHz)  
1
Figure 154. ADC Analog Input Resistance (RIN)  
Across Frequency  
Figure 155. ADC Analog Input Capacitance (CIN)  
Across Frequency  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Driving Circuit  
Two example driving circuit configurations are shown in Figure 156 and Figure 157one optimized for low  
bandwidth (low input frequencies) and the other one for high bandwidth to support higher input frequencies. Note  
that both of the drive circuits have been terminated by 50Ω near the ADC side. The termination is accomplished  
by a 25Ω resistor from each input to the 1.5V common-mode (VCM) from the device. This architecture allows the  
analog inputs to be biased around the required common-mode voltage.  
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order  
harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch;  
good performance is obtained for high-frequency input signals. An additional termination resistor pair may be  
required between the two transformers, as shown in Figure 156, Figure 157, and Figure 158. The center point of  
this termination is connected to ground to improve the balance between the P and M sides. The values of the  
terminations between the transformers and on the secondary side must be chosen to obtain an effective 50Ω (in  
the case of 50Ω source impedance).  
0.1mF  
15W  
INx_P  
T1  
T2  
0.1mF  
25W  
25W  
25W  
0.1mF  
3.3pF  
25W  
RIN  
CIN  
INx_M  
VCM  
1:1  
1:1  
15W  
0.1mF  
ADS42xx  
Figure 156. Drive Circuit with Low Bandwidth (for Low Input Frequencies Less Than 150MHz)  
0.1mF  
5W  
INx_P  
T1  
T2  
0.1mF  
25W  
25W  
50W  
0.1mF  
3.3pF  
50W  
RIN  
CIN  
INx_M  
VCM  
1:1  
1:1  
5W  
0.1mF  
ADS42xx  
Figure 157. Drive Circuit with High Bandwidth (for High Input Frequencies Greater Than 150MHz and  
Less Than 270MHz)  
0.1mF  
5W  
INx_P  
T1  
T2  
0.1mF  
25W  
25W  
0.1mF  
RIN  
CIN  
INx_M  
VCM  
1:1  
1:1  
5W  
0.1mF  
ADS42xx  
Figure 158. Drive Circuit with Very High Bandwidth (Greater than 270MHz)  
80  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
All of these examples show 1:1 transformers being used with a 50Ω source. As explained in the Drive Circuit  
Requirements section, this configuration helps to present a low source impedance to absorb the sampling  
glitches. With a 1:4 transformer, the source impedance is 200Ω. The higher source impedance is unable to  
absorb the sampling glitches effectively and can lead to degradation in performance (compared to using 1:1  
transformers).  
In almost all cases, either a band-pass or low-pass filter is required to obtain the desired dynamic performance,  
as shown in Figure 159. Such filters present low source impedance at the high frequencies corresponding to the  
sampling glitch and help avoid the performance loss with the high source impedance.  
5W  
INx_P  
T1  
100W  
Band-Pass  
or  
0.1mF  
0.1mF  
Differential  
Input Signal  
RIN  
CIN  
Low-Pass  
Filter  
100W  
INx_M  
VCM  
1:4  
5W  
ADS42xx  
Figure 159. Drive Circuit with a 1:4 Transformer  
CLOCK INPUT  
The ADS424x/422x clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended  
(LVCMOS), with little or no difference in performance between them. The common-mode voltage of the clock  
inputs is set to VCM using internal 5kΩ resistors. This setting allows the use of transformer-coupled drive circuits  
for sine-wave clock or ac-coupling for LVPECL and LVDS clock sources are shown in Figure 160, Figure 161  
and Figure 162. The internal clock buffer is shown in Figure 163.  
(1) RT = termination resister, if necessary.  
0.1mF  
0.1mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100W  
0.1mF  
CLKM  
ADS42xx  
0.1mF  
Zo  
CLKM  
ADS42xx  
Figure 160. Differential Sine-Wave Clock Driving  
Circuit  
Zo  
Figure 161. LVDS Clock Driving Circuit  
0.1mF  
CLKP  
150W  
Typical LVPECL  
Clock Input  
100W  
0.1mF  
Zo  
CLKM  
ADS42xx  
150W  
Figure 162. LVPECL Clock Driving Circuit  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Clock Buffer  
LPKG  
2nH  
20W  
CLKP  
CBOND  
CEQ  
CEQ  
5kW  
1pF  
RESR  
100W  
2pF  
VCM  
LPKG  
2nH  
5kW  
20W  
CLKM  
CBOND  
1pF  
RESR  
100W  
NOTE: CEQ is 1pF to 3pF and is the equivalent input capacitance of the clock buffer.  
Figure 163. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1μF  
capacitor, as shown in Figure 164. For best performance, the clock inputs must be driven differentially, thereby  
reducing susceptibility to common-mode noise. For high input frequency sampling, it is recommended to use a  
clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There  
is no change in performance with a non-50% duty cycle clock input.  
0.1mF  
CMOS  
Clock Input  
CLKP  
VCM  
0.1mF  
CLKM  
ADS42xx  
Figure 164. Single-Ended Clock Driving Circuit  
82  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
DIGITAL FUNCTIONS  
The device has several useful digital functions (such as test patterns, gain, and offset correction). These  
functions require extra clock cycles for operation and increase the overall latency and power of the device. These  
digital functions are disabled by default after reset and the raw ADC output is routed to the output data pins with  
a latency of 16 clock cycles. Figure 165 shows more details of the processing after the ADC. In order to use any  
of the digital functions, the EN DIGITAL bit must be set to '1'. After this, the respective register bits must be  
programmed as described in the following sections and in the Serial Register Map section.  
Output  
Interface  
12-/14-Bit  
ADC  
12-Bit (ADS422x)  
14-Bit (ADS424x)  
Digital Functions  
(Gain, Offset Correction, Test Patterns)  
DDR LVDS  
or CMOS  
EN DIGITAL Bit  
Figure 165. Digital Processing Block  
GAIN FOR SFDR/SNR TRADE-OFF  
The ADS424x/422x include gain settings that can be used to get improved SFDR performance (compared to no  
gain). The gain is programmable from 0dB to 6dB (in 0.5dB steps). For each gain setting, the analog input  
full-scale range scales proportionally, as shown in Table 11.  
The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades  
approximately between 0.5dB and 1dB. The SNR degradation is reduced at high input frequencies. As a result,  
the gain is very useful at high input frequencies because the SFDR improvement is significant with marginal  
degradation in SNR. Therefore, the gain can be used as a trade-off between SFDR and SNR. Note that the  
default gain after reset is 0dB.  
Table 11. Full-Scale Range Across Gains  
GAIN (dB)  
TYPE  
FULL-SCALE (VPP)  
0
1
2
3
4
5
6
Default after reset  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
Fine, programmable  
2
1.78  
1.59  
1.42  
1.26  
1.12  
1
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
OFFSET CORRECTION  
The ADS424x/422x have an internal offset corretion algorithm that estimates and corrects dc offset up to ±10mV.  
The correction can be enabled using the ENABLE OFFSET CORR serial register bit. Once enabled, the  
algorithm estimates the channel offset and applies the correction every clock cycle. The time constant of the  
correction loop is a function of the sampling clock frequency. The time constant can be controlled using the  
OFFSET CORR TIME CONSTANT register bits, as described in Table 12.  
After the offset is estimated, the correction can be frozen by setting FREEZE OFFSET CORR = 0. Once frozen,  
the last estimated value is used for the offset correction of every clock cycle. Note that offset correction is  
disabled by default after reset.  
Table 12. Time Constant of Offset Correction Algorithm  
TIME CONSTANT, TCCLK  
(Number of Clock Cycles)  
OFFSET CORR TIME CONSTANT  
TIME CONSTANT, TCCLK × 1/fS (ms)(1)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1M  
2M  
7
13  
4M  
26  
8M  
52  
16M  
105  
210  
419  
839  
1678  
3355  
6711  
13422  
32M  
64M  
128M  
256M  
512M  
1G  
2G  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Sampling frequency, fS = 160MSPS.  
POWER-DOWN  
The ADS424x/422x have two power-down modes: global power-down and channel standby. These modes can  
be set using either the serial register bits or using the control pins CTRL1 to CTRL3 (as shown in Table 13).  
Table 13. Power-Down Settings  
CTRL1  
Low  
CTRL2  
Low  
CTRL3  
Low  
DESCRIPTION  
Default  
Low  
Low  
High  
Low  
Not available  
Not available  
Not available  
Global power-down  
Low  
High  
High  
Low  
Low  
High  
Low  
High  
High  
High  
Low  
High  
Low  
Channel A powered down, channel B is active  
Not available  
High  
MUX mode of operation, channel A and B data is  
multiplexed and output on DB[10:0] pins  
High  
High  
High  
84  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Global Power-Down  
In this mode, the entire chip (including ADCs, internal reference, and output buffers) are powered down, resulting  
in reduced total power dissipation of approximately 20mW when the CTRL pins are used and 3mW when the  
PDN GLOBAL serial register bit is used. The output buffers are in high-impedance state. The wake-up time from  
global power-down to data becoming valid in normal mode is typically 100µs.  
Channel Standby  
In this mode, each ADC channel can be powered down. The internal references are active, resulting in a quick  
wake-up time of 50µs. The total power dissipation in standby is approximately 200mW at 160MSPS.  
Input Clock Stop  
In addition to the previous modes, the converter enters a low-power mode when the input clock frequency falls  
below 1MSPS. The power dissipation is approximately 160mW.  
DIGITAL OUTPUT INFORMATION  
The ADS424x/422x provide 14-bit/12-bit digital data for each channel and an output clock synchronized with the  
data.  
Output Interface  
Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. They can be  
selected using the serial interface register bit or by setting the proper voltage on the SEN pin in parallel  
configuration mode.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
DDR LVDS Outputs  
In this mode, the data bits and clock are output using low-voltage differential signal (LVDS) levels. Two data bits  
are multiplexed and output on each LVDS differential pair, as shown in Figure 166.  
Pins  
CLKOUTP  
Output  
Clock  
CLKOUTM  
DB0_P  
Data Bits  
D0, D1  
DB0_M  
DB2_P  
Data Bits  
D2, D3  
DB2_M  
DB4_P  
Data Bits  
D4, D5  
14-Bit ADC Data,  
Channel B  
DB4_M  
DB6_P  
DB6_M  
Data Bits  
D6, D7  
DB8_P  
DB8_M  
Data Bits  
D8, D9  
DB10_P  
DB10_M  
Data Bits  
D10, D11  
DB12_P  
DB12_M  
Data Bits  
D12, D13  
Figure 166. LVDS Interface  
86  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Even data bits (D0, D2, D4, etc.) are output at the CLKOUTP rising edge and the odd data bits (D1, D3, D5, etc.)  
are output at the CLKOUTP falling edge. Both the CLKOUTP rising and falling edges must be used to capture all  
the data bits, as shown in Figure 167.  
CLKOUTM  
CLKOUTP  
DA0P/M, DB0P/M  
DA2P/M, DB2P/M  
DA4P/M, DB4P/M  
D0  
D2  
D4  
D1  
D3  
D5  
D0  
D2  
D4  
D1  
D3  
D5  
DA6P/M, DB6P/M  
DA8P/M, DB8P/M  
D6  
D8  
D7  
D9  
D6  
D8  
D7  
D9  
DA10P/M, DB10P/M  
DA12P/M, DB12P/M  
D10  
D12  
D11  
D13  
D10  
D12  
D11  
D13  
Sample N  
Sample N + 1  
Figure 167. DDR LVDS Interface Timing  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
LVDS Buffer  
The equivalent circuit of each LVDS output buffer is shown in Figure 168. After reset, the buffer presents an  
output impedance of 100Ω to match with the external 100Ω termination.  
VDIFF  
High  
Low  
OUTP  
OUTM  
External  
100W Load  
VOCM  
ROUT  
VDIFF  
High  
Low  
NOTE: Default swing across 100Ω load is ±350mV. Use the LVDS SWING bits to change the swing.  
Figure 168. LVDS Buffer Equivalent Circuit  
The VDIFF voltage is nominally 350mV, resulting in an output swing of ±350mV with 100Ω external termination.  
The VDIFF voltage is programmable using the LVDS SWING register bits from ±125mV to ±570mV.  
Additionally, a mode exists to double the strength of the LVDS buffer to support 50Ω differential termination, as  
shown in Figure 169. This mode can be used when the output LVDS signal is routed to two separate receiver  
chips, each using a 100Ω termination. The mode can be enabled using the LVDS DATA STRENGTH and LVDS  
CLKOUT STRENGTH register bits for data and output clock buffers, respectively.  
The buffer output impedance behaves in the same way as a source-side series termination. By absorbing  
reflections from the receiver end, it helps to improve signal integrity.  
Receiver Chip # 1  
(for example, GC5330)  
DAnP/M  
CLKIN1  
100W  
CLKOUTP  
CLKOUTM  
CLKIN2  
100W  
DBnP/M  
Receiver Chip # 2  
ADS42xx  
Make LVDS CLKOUT STRENGTH = 1  
Figure 169. LVDS Buffer Differential Termination  
88  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Parallel CMOS Interface  
In the CMOS mode, each data bit is output on separate pins as CMOS voltage level, every clock cycle, as  
Figure 170 shows. The rising edge of the output clock CLKOUT can be used to latch data in the receiver. It is  
recommended to minimize the load capacitance of the data and clock output pins by using short traces to the  
receiver. Furthermore, match the output data and clock traces to minimize the skew between them.  
DB0  
DB1  
DB2  
14-Bit ADC Data,  
Channel B  
DB11  
DB12  
DB13  
SDOUT  
CLKOUT  
DA0  
DA1  
DA2  
14-Bit ADC Data,  
Channel A  
DA11  
DA12  
DA13  
Figure 170. CMOS Outputs  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
CMOS Interface Power Dissipation  
With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every  
output pin. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every clock  
cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined  
by the average number of output bits switching, which is a function of the sampling frequency and the nature of  
the analog input signal. This relationship is shown by the formula:  
Digital current as a result of CMOS output switching = CL × DRVDD × (N × FAVG),  
where CL = load capacitance, N × FAVG = average number of output bits switching.  
Multiplexed Mode of Operation  
In this mode, the digital outputs of both channels are multiplexed and output on a single bus (DB[13:0] pins), as  
shown in Figure 171. The channel A output pins (DA[13:0]) are in 3-state. Because the output data rate on the  
DB bus is effectively doubled, this mode is recommended only for low sampling frequencies (less than 80MSPS).  
This mode can be enabled using the POWER-DOWN MODE register bits or using the CTRL[3:1] parallel pins.  
CLKM  
Input  
Clock  
CLKP  
tPDI  
Output  
CLKOUT  
Clock  
tSU  
tH  
Channel A  
DAn(2)  
Channel B  
DBn(2)  
Channel A  
DAn(2)  
Output  
Data  
DBn(1)  
(1) In multiplexed mode, both channels outputs come on the channel B output pins.  
(2) Dn = bits D0, D1, D2, etc.  
Figure 171. Multiplexed Mode Timing Diagram  
Output Data Format  
Two output data formats are supported: twos complement and offset binary. The format can be selected using  
the DATA FORMAT serial interface register bit or by controlling the DFS pin in parallel configuration mode.  
In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive  
overdrive, the output code is FFFh for the ADS422x and 3FFFh for the ADS424x in offset binary output format;  
the output code is 7FFh for the ADS422x and 1FFFh for the ADS424x in twos complement output format. For a  
negative input overdrive, the output code is 0000h in offset binary output format and 800h for the ADS422x and  
2000h for the ADS424x in twos complement output format.  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (Jitter) The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
90  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
Maximum Conversion Rate The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) An ideal ADC exhibits code transitions at analog input values spaced exactly  
1LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) The INL is the deviation of the ADC transfer function from a best fit line determined  
by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy (EGREF) and error as a result of the channel (EGCHAN). Both errors are specified  
independently as EGREF and EGCHAN  
To a first-order approximation, the total gain error is ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1 0.5/100) x FSideal to (1 + 0.5/100) x FSideal  
.
.
.
Offset Error The offset error is the difference, given in number of LSBs, between the ADC actual average idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX TMIN  
.
Signal-to-Noise Ratio SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at dc and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(1)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter  
full-scale range.  
Signal-to-Noise and Distortion (SINAD) SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(2)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter  
full-scale range.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Effective Number of Bits (ENOB) ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(3)  
Total Harmonic Distortion (THD) THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(4)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1 f2 or 2f2 f1. IMD3 is either given  
in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB  
to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
DC Power-Supply Rejection Ratio (DC PSRR) DC PSSR is the ratio of the change in offset error to a change  
in analog supply voltage. The dc PSRR is typically given in units of mV/V.  
AC Power-Supply Rejection Ratio (AC PSRR) AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the  
ADC output code (referred to the input), then:  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(5)  
Voltage Overload Recovery The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6 dB positive and  
negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.  
Common-Mode Rejection Ratio (CMRR) CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(6)  
Crosstalk (only for multi-channel ADCs) This is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. It is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually  
measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the  
coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. It is typically expressed in dBc.  
92  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. See the ADS4226 Evaluation Module (SLAU333) for details on layout and  
grounding.  
Supply Decoupling  
Because the ADS424x/422x already include internal decoupling, minimal external decoupling can be used  
without loss in performance. Note that decoupling capacitors can help filter external power-supply noise; thus,  
the optimum number of capacitors depends on the actual application. The decoupling capacitors should be  
placed very close to the converter supply pins.  
Exposed Pad  
In addition to providing a path for heat dissipation, the PowerPAD is also electrically connected internally to the  
digital ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and  
electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and  
QFN/SON PCB Attachment (SLUA271).  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Routing Analog Inputs  
It is advisable to route differential analog input pairs (INP_x and INM_x) close to each other. To minimize the  
possibility of coupling from a channel analog input to the sampling clock, the analog input pairs of both channels  
should be routed perpendicular to the sampling clock. See the ADS4226 Evaluation Module (SLAU333) for  
reference routing. Figure 172 shows a snapshot of the PCB layout from the ADS424x EVM.  
Figure 172. ADS42xx EVM PCB Layout  
94  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
 
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
www.ti.com  
SBAS533C MARCH 2011REVISED JUNE 2011  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (May 2011) to Revision C  
Page  
Changed device status from Mixed Status to Production Data ............................................................................................ 1  
Changed 125MSPS sub-bullet of first Features bullet .......................................................................................................... 1  
Changed sub-bullets of second Features bullet ................................................................................................................... 1  
Changed status of ADS4222 and ADS4225 from Product Preview to Production Data ...................................................... 2  
Moved High-Performance Modes into separate table .......................................................................................................... 4  
Changed ADS4246 fIN = 170MHz Worst spur typical spcification in the ADS4246/ADS4245/ADS4242 Electrical  
Characteristics table ............................................................................................................................................................. 5  
Added ADS4225/ADS4222 fIN = 70MHz SNR, SINAD, SFDR, THD, HD2, HD3, and Worst spur minimum and typical  
spcifications in the ADS4226/ADS4225/ADS4222 Electrical Characteristics table .............................................................. 7  
Added ADS4225/ADS4222 DNL minimum and maximum spcifications in the ADS4226/ADS4225/ADS4222  
Electrical Characteristics table .............................................................................................................................................. 8  
Added ADS4225/ADS4222 INL maximum spcifications in the ADS4226/ADS4225/ADS4222 Electrical  
Characteristics table ............................................................................................................................................................. 8  
Changed ADS4242/ADS4222 Power Supply, Digital power LVDS interface typical specification in Electrical  
Characteristics: General table .............................................................................................................................................. 9  
Changed ADS4245/ADS4225 Power Supply, Digital power CMOS interface typical specification in Electrical  
Characteristics: General table .............................................................................................................................................. 9  
Changed description of pin 64 in Pin Descriptions: LVDS Mode table .............................................................................. 13  
Changed description of pin 64 in Pin Descriptions: CMOS Mode table ............................................................................. 17  
Changed description of READOUT disabled in Serial Register Readout section .............................................................. 27  
Updated Figure 14 .............................................................................................................................................................. 27  
Changed READOUT desciption in Register Address 00h section ..................................................................................... 29  
Changed CLKOUT FALL POSN and CLKOUT RISE POSN description in Register Address 42h section ....................... 34  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
ADS4222, ADS4225, ADS4226  
ADS4242, ADS4245, ADS4246  
SBAS533C MARCH 2011REVISED JUNE 2011  
www.ti.com  
Changes from Revision A (May 2011) to Revision B  
Page  
Changed sub-bullets of first Features bullet ......................................................................................................................... 1  
Changed last row of Performance Summary table ............................................................................................................... 1  
Updated ADS424x/422x Family Pins section in Table 1 ...................................................................................................... 2  
Changed ENOB, DNL, and INL test conditions in the Electrical Characteristics: ADS4246/ADS4245/ADS4242 table ...... 6  
Deleted INL minimum specifications from Electrical Characteristics: ADS4246/ADS4245/ADS4242 table ......................... 6  
Changed INL maximum specifications in the Electrical Characteristics: ADS4246/ADS4245/ADS4242 table .................... 6  
Changed ENOB, DNL, and INL test conditions in the Electrical Characteristics: ADS4226/ADS4225/ADS4222 table ...... 8  
Changed ADS4226 INL maximum specification in the Electrical Characteristics: ADS4226/ADS4225/ADS4222 table ..... 8  
Changed Power Supply, IDRVDD and Digital power CMOS interface rows in the Electrical Characteristics: General  
table ...................................................................................................................................................................................... 9  
Updated Figure 2 NC note .................................................................................................................................................. 11  
Updated Figure 3 NC note .................................................................................................................................................. 12  
Updated description of NC pin in LVDS Pin Descriptions table ......................................................................................... 14  
Updated Figure 4 NC note .................................................................................................................................................. 15  
Updated Figure 5 NC note .................................................................................................................................................. 16  
Updated description of NC pin in CMOS Pin Descriptions table ........................................................................................ 17  
Changed 111110 and 001111 LVDS SWING description in Register Address 01h .......................................................... 29  
Updated Figure 26 .............................................................................................................................................................. 42  
Updated Figure 28 .............................................................................................................................................................. 43  
Updated Figure 48 and Figure 49 ....................................................................................................................................... 48  
Updated Figure 50 and Figure 51 ....................................................................................................................................... 49  
Updated Figure 70 and Figure 71 ....................................................................................................................................... 54  
Updated Figure 72 and Figure 73 ....................................................................................................................................... 55  
Updated Figure 92 and Figure 93 ....................................................................................................................................... 60  
Updated Figure 94 and Figure 95 ....................................................................................................................................... 61  
Updated Figure 113 ............................................................................................................................................................ 65  
Updated Figure 114 and Figure 115 ................................................................................................................................... 66  
Updated Figure 133 ............................................................................................................................................................ 70  
Updated Figure 145 ............................................................................................................................................................ 73  
Changed title of Figure 146 ................................................................................................................................................ 74  
96  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ADS4222IRGCR  
ADS4222IRGCT  
ADS4225IRGC25  
ADS4225IRGCR  
ADS4225IRGCT  
ADS4226IRGC25  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
2000  
250  
25  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
2000  
250  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
ADS4226IRGCR  
ADS4226IRGCT  
ADS4242IRGCR  
ADS4242IRGCT  
ADS4245IRGC25  
ADS4245IRGCR  
ADS4245IRGCT  
ADS4246IRGC25  
ADS4246IRGCR  
ADS4246IRGCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
2000  
250  
25  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
250  
25  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2011  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Jun-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS4226IRGCR  
ADS4226IRGCT  
ADS4242IRGCR  
ADS4242IRGCT  
ADS4245IRGCR  
ADS4245IRGCT  
ADS4246IRGCR  
ADS4246IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2000  
250  
2000  
250  
2000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Jun-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS4226IRGCR  
ADS4226IRGCT  
ADS4242IRGCR  
ADS4242IRGCT  
ADS4245IRGCR  
ADS4245IRGCT  
ADS4246IRGCR  
ADS4246IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
333.2  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
345.9  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
2000  
250  
2000  
250  
2000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

ADS4229_15

Dual-Channel, 12-Bit, 250-MSPS Ultralow-Power ADC
TI

ADS4242

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC
TI

ADS4242IRGCR

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4242IRGCT

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4245

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC
TI

ADS4245-EP

双通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品
TI

ADS4245IRGC25

14 bit 125MSPS Dual Low Power ADC 64-VQFN -40 to 85
TI

ADS4245IRGCR

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4245IRGCT

Dual-Channel, 14-/12-Bit, 160/125/65MSPS Ultralow-Power ADC
TI

ADS4245MRGC25EP

双通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | RGC | 64 | -55 to 125
TI

ADS4246

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC
TI

ADS4246IRGC25

Programmable Gain up to 6dB for SNR/SFDR Trade-off
TI