ADS5296A [TI]

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC;
ADS5296A
型号: ADS5296A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10 位、200MSPS、4 或 8 通道/12 位、80MSPS、8 通道 ADC

文件: 总106页 (文件大小:3152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
10 位,200 每秒百万次采样 (MSPS) 12 位,80MSPS8 通道  
模数转换器  
查询样片: ADS5296A  
1
特性  
描述  
2
可配置的运转模式:  
ADS5296A 是一款低功耗,12 位,8 通道,模数转换  
(ADC),其采样速率高达 80MSPS。 然而,此器件  
也可被配置成运行为一个 4 通道 ADC,通过交错两个  
ADC 通道的数据运行在 2 倍采样速率上。 在交错模式  
下,此器件接受一个双倍频率输入时钟。 每对中的  
ADC 2 倍输入时钟的交替上升边沿上转换一个常见  
模拟输入信号。 此器件能够被配置为一个采样速率高  
200MSPS 10 位,4 通道 ADC,或者一个采样  
速率高达 160MSPS 12 位,4 通道 ADC。  
10 位, 200MSPS4 通道模数转换器 (ADC)  
12 位, 160MSPS4 通道 ADC  
10 位, 100MSPS8 通道 ADC  
12 位, 80MSPS8 通道 ADC  
针对低功耗而设计:  
80MSPS 时,每通道为 65mW  
12 位,8 通道)  
200MSPS 时,每通道为 150mW  
10 位,4 通道)  
交错对内的每个 ADC 的数据在一条最大数据速率高达  
1Gbps100MSPS 10 位)的 LVDS 对上以串行格  
式输出。 当交错被禁用时,ADS5296A 可运行为一个  
采样速率高达 100MSPS 8 通道,10 位器件。  
12 位,80MSPS:  
信噪比 (SNR)70.3dBFS  
10 位,200MSPS:  
信噪比 (SNR)61.3dBFS  
系统中常用的几种数字功能也包含在器件中。 这些功  
能包括一个低频噪声抑制 (LFNS) 模式,数字滤波选项  
LVDS 输出引脚与模拟输入通道的可编程映射。  
交错杂散信号:90MHz 时大于 60dB  
串行低压差分信令 (LVDS) 单线制接口:  
每导线高达 1000Mbps 数据速率的 10 倍串行  
对于低输入频率应用,LFNS 模式可实现低频状态下的  
噪声抑制并将直流附近 1MHz 波段内的信噪比 (SNR)  
提升大约 3dB。 数字滤波选项包括低通、高通和带通  
数字滤波器,以及直流偏移消除滤波器。  
每导线高达 960Mbps 数据速率的 12 倍串行化  
数字处理块:  
可编程有限脉冲响应 (FIR) 抽取滤波器和过采样  
以大大减少谐波干扰  
低功耗和小型封装内集成的多通道使得此器件成为高通  
道数量数据采集系统的理想选择。 此器件采用紧凑型  
9mm x 9mm QFN-64 封装。 ADS5296A 额定运行温  
度范围为 -40°C +85°C。  
可编程无限脉冲响应 (IIR) 高通滤波器以最大限  
度地减少直流偏移  
可编程数字增益:0dB 12dB  
低频噪声抑制模式  
ADC 输入通道与 LVDS 输出引脚间的可编程映射  
通道均衡模式  
多种 LVDS 测试模式以验证  
现场可编程栅极阵列 (FPGA) 或接收器的数据捕捉  
封装:9mm x 9mm 四方扁平无引线 (QFN)-64 封  
应用范围  
超声波成像  
通信应用  
多通道数据采集  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
版权 © 2013, Texas Instruments Incorporated  
English Data Sheet: SBAS631  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
PRODUCT  
PACKAGE-LEAD  
PACKAGE DESIGNATOR  
SPECIFIED TEMPERATURE RANGE  
ADS5296A  
QFN-64  
RGC  
–40°C to +85°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
PARAMETER  
AVDD  
VALUE  
–0.3 to 2.2  
UNIT  
V
Supply voltage range  
Voltage between:  
LVDD  
–0.3 to 2.2  
V
AGND and LGND  
–0.3 to 0.3  
V
AVDD to LVDD (when AVDD leads LVDD)  
LVDD to AVDD (when LVDD leads AVDD)  
IN_p, IN_n  
0 to 2.2  
V
0 to 2.2  
V
–0.3 to min (2.2, AVDD + 0.3)  
–0.3 to 3.6  
V
RESET, SCLK, SDATA, CS, PD, SYNC  
CLKP, CLKN(2)  
V
Voltage applied to:  
–0.3 to min (2.2, AVDD + 0.3)  
–0.3 to min (2.2, LVDD + 0.3)  
–40 to +85  
V
Digital outputs  
V
Operating free-air, TA  
°C  
°C  
°C  
V
Temperature range  
Operating junction, TJ  
+105  
Storage, Tstg  
–55 to +150  
Electrostatic discharge (ESD) rating  
Human body model (HBM)  
2000  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP and CLKN is less than |0.3 V|.  
This setting prevents the ESD protection diodes at the clock input pins from turning on.  
THERMAL INFORMATION  
ADS5296  
THERMAL METRIC(1)  
QFN (RGC)  
64 PINS  
22.8  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.9  
2.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.4  
θJCbot  
0.2  
(1) 有关传统和全新热度量的更多信息,请参阅 IC 封装热度量 应用报告 (文献号:ZHCA543。  
2
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
RECOMMENDED OPERATING CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage  
Digital supply voltage  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
LVDD  
ANALOG INPUTS  
VID  
Differential input voltage range  
Input common-mode voltage  
External reference mode, top  
External reference mode, bottom  
Common-mode voltage output  
2
VCM ± 0.05  
1.45  
VPP  
V
REFT  
V
REFB  
0.45  
V
VCM  
0.95  
V
CLOCK INPUT  
4-channel, 10-bit ADC with interleaving  
4-channel, 12-bit ADC with interleaving  
8-channel, 10-bit ADC without interleaving  
8-channel,12-bit ADC without interleaving  
Sine-wave, ac-coupled  
20  
20  
200  
160  
100  
80  
MSPS  
MSPS  
MSPS  
MSPS  
VPP  
Input clock frequency (1 / tC)  
10  
10  
0.2  
0.2  
0.2  
1.5  
1.6  
Input clock amplitude differential  
(VCLKP – VCLKN)  
LVPECL, ac-coupled  
VPP  
LVDS, ac-coupled  
0.7  
VPP  
VIL with < 0.1-mA current sink  
VIH  
< 0.3  
> 1.5  
50  
V
Input clock CMOS single-ended  
(VCLKP)  
V
Input clock duty cycle  
35  
65  
%
DIGITAL OUTPUTS  
1x  
ADCLKP and ADCLKN outputs (LVDS)  
LCLKP and LCLKN outputs (LVDS)  
MHz  
MHz  
(sample rate in MSPS)  
6x or 5x  
(sample rate in MSPS)  
12x serialization  
10x serialization  
960  
Mbps  
Mbps  
Output data rate  
1000  
Copyright © 2013, Texas Instruments Incorporated  
3
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS: General  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and  
LVDD = 1.8 V.  
8-CHANNEL, 12-BIT  
(Non-Interleaving)  
4-CHANNEL, 10-BIT  
(Interleaving)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
UNIT  
RESOLUTION  
Resolution  
ANALOG INPUTS  
12  
10  
Bits  
Differential input voltage range  
(0-dB gain)  
2.0  
2.0  
VPP  
Differential input resistance  
Differential input capacitance  
Analog input bandwidth  
At dc  
At dc  
> 1  
2.2  
> 1  
2.2  
kΩ  
pF  
> 500  
> 500  
MHz  
Analog input common-mode current  
(per input pin)  
1
1
µA/MSPS  
VCM  
Common-mode output voltage  
VCM output current capability  
0.95  
5
0.95  
5
V
mA  
DYNAMIC ACCURACY  
EO  
Offset error  
–20  
20  
–20  
20  
mV  
Resulting from internal  
reference inaccuracy alone  
EGREF  
EGCHAN  
–1.5  
1.5  
–1.5  
1.5  
%FS  
Gain error  
Of channel itself  
0.5  
0.5  
%FS  
EGCHAN temperature coefficient  
POWER SUPPLY  
< 0.01  
< 0.01  
Δ%FS/°C  
80 MSPS, non-interleaving  
200 MSPS, interleaving  
176  
111  
mA  
mA  
IAVDD  
ILVDD  
AVDD  
LVDD  
Analog supply current  
207  
125  
227  
148  
80 MSPS with 100-Ω external  
termination  
mA  
mA  
Output buffer supply current  
Analog power  
200 MSPS with 100-Ω external  
termination  
80 MSPS, non-interleaving  
200 MSPS, interleaving  
317  
199  
mW  
mW  
372 408.6  
225 266.4  
80 MSPS with 100-Ω external  
termination  
mW  
mW  
mW  
mW  
Digital power  
200 MSPS with 100-Ω external  
termination  
80 MSPS with 100-Ω external  
termination  
516  
Total power  
200 MSPS with 100-Ω external  
termination  
597  
190  
675  
40  
Global power-down  
Standby power  
40  
mW  
mW  
175  
4
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
ELECTRICAL CHARACTERISTICS: Dynamic Performance  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, maximum rated input clock frequency, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and  
LVDD = 1.8 V.  
8-CHANNEL, 12-BIT  
(Non-Interleaving)  
4-CHANNEL, 10-BIT  
(Interleaving)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
70.3  
70.1  
68.7  
70.1  
69.7  
67.9  
11.3  
83  
MAX  
MIN  
TYP  
61.3  
61  
MAX UNIT  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
LSBs  
dBc  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 5 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 5 MHz  
fIN = 30 MHz  
fIN = 90 MHz  
66  
59.9  
SNR  
Signal-to-noise ratio(1)  
60.3  
61.3  
60.8  
59.8  
9.8  
83  
Signal-to-noise and distortion  
ratio  
SINAD  
ENOB Effective number of bits  
73  
71  
73  
73  
75  
70.5  
67.5  
70.5  
70.5  
Spurious-free dynamic  
SFDR  
80  
79  
dBc  
range(1)  
76  
72.5  
81  
dBc  
81  
dBc  
THD  
HD2  
HD3  
Total harmonic distortion  
Second-harmonic distortion  
Third-harmonic distortion  
78  
77.5  
70  
dBc  
74  
dBc  
90  
86  
dBc  
88  
84  
dBc  
85  
83  
dBc  
83  
83  
dBc  
80  
79  
dBc  
76  
72.5  
79  
dBc  
93  
65  
60  
dBc  
Worst spur  
(other than second and third  
92  
74  
dBc  
(2)  
harmonics)  
90  
71  
dBc  
Two-tone intermodulation  
distortion  
IMD  
f1 = 8 MHz, f2 = 10 MHz, each tone at –7 dBFS  
83  
dBc  
With a full-scale, 10-MHz  
aggressor signal applied and  
no input on victim channel  
Adjacent channel  
Far channel  
86  
95  
dBc  
dBc  
Crosstalk  
110  
110  
Recovery to < 1% of full-scale after a 6-dB input  
overload  
Clock  
cycle  
Overload recovery  
1
1
AC power-supply rejection  
ratio  
For a 50-mVPP signal on AVDD supply, up to 10  
MHz, no signal applied to analog inputs  
PSRR  
> 50  
> 50  
dB  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
fIN = 5 MHz  
fIN = 5 MHz  
–0.8  
±0.3  
±0.2  
+0.95  
±1.1  
LSBs  
LSBs  
(1) In the 4-channel interleaving mode, this parameter does not include interleaving spur. Spur is specified separately as part of the worst  
spur parameter.  
(2) In the 4-channel interleaving mode, worst spur includes interleaving spur. Also see Figure 44, which shows interleaving spur across  
input frequency.  
Copyright © 2013, Texas Instruments Incorporated  
5
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
DIGITAL CHARACTERISTICS  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level '0' or '1'. AVDD = 1.8 V and DRVDD = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, CS, SYNC, PDN, INTERLEAVE_MUX)  
All pins support 1.8-V and 3.3-V CMOS logic  
levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All pins support 1.8-V and 3.3-V CMOS logic  
levels  
0.4  
IIH  
IIL  
High-level input current  
Low-level input current  
CS, SDATA, SCLK(1)  
CS, SDATA, SCLK(1)  
VHIGH = 1.8 V  
VLOW = 0 V  
6
µA  
µA  
0.1  
DIGITAL OUTPUTS (CMOS INTERFACE: SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
AVDD – 0.1  
V
V
0.1  
DIGITAL OUTPUTS (LVDS INTERFACE: OUT1_p, OUT1_n to OUT8_p, OUT8_n, ADCLKp, ADCLKn, LCLKp, LCLKn)  
VODH  
VODL  
VOCM  
High-level output differential voltage(2)  
Low-level output differential voltage(2)  
Output common-mode voltage  
340  
–560  
0.93  
560  
–340  
1.2  
mV  
mV  
mV  
(1) CS, SDATA, and SCLK have an internal 220-kΩ pull-down resistor.  
(2) With an external 100-Ω termination.  
6
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TIMING REQUIREMENTS(1)  
Typical values are at +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 200 MSPS, sine-wave input clock, CLOAD  
= 5 pF, and RLOAD = 100 Ω, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and  
LVDD = 1.7 V to 1.9 V, with decimation filters DISABLED.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tA  
Aperture delay  
4
ns  
Aperture delay matching  
Variation of aperture delay  
Aperture jitter  
Between any two channels of the same device  
±200  
ps  
Between two devices at the same temperature and  
AVDD supply  
±1  
ns  
tJ  
Sample uncertainty  
300  
6
fs rms  
µs  
Time to valid data after coming out of standby  
Wake-up time  
ADC latency(2)  
Time to valid data after coming out of global power-  
down mode  
100  
12  
µs  
Input clock  
cycles  
Interleaving disabled  
Interleaving enabled  
Input clock  
cycles  
24  
10x SERIALIZATION  
tSU Data setup time  
tH  
Data valid to LCLKP zero-crossing  
0.200  
0.160  
ns  
ns  
Data hold time  
LCLKP zero-crossing to data becoming invalid  
Input clock rising edge crossover to output clock  
rising edge crossover  
tPDI = (4 / 5)  
× tS + tDELAY  
tPDI  
Clock propagation delay  
Delay time  
ns  
ns  
ns  
tDELAY  
7.8  
11.8  
Between two devices at the same temperature and  
LVDD supply  
Variation of tDELAY  
±0.8  
50  
Duty cycle of differential clock  
(LCLKP – LCLKN)  
LVDS bit clock duty cycle  
%
ACROSS ALL SERIALIZATION MODES  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
tFALL  
Data fall time  
0.13  
0.13  
0.13  
0.13  
ns  
ns  
ns  
ns  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
tRISE  
Data rise time  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
tCLKRISE  
tCLKFALL  
Output clock rise time  
Output clock fall time  
Rise time measured from –100 mV to +100 mV,  
10 MSPS sampling frequency 100 MSPS  
(1) Timing parameters are ensured by design and characterization, but are not tested in production.  
(2) At higher frequencies, tPDI is greater than one clock period. Overall latency = ADC latency + 1.  
Copyright © 2013, Texas Instruments Incorporated  
7
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 1. 12x Serialization with Decimation Filters Disabled(1)(2)  
tPDI = (9 / 12) × tS  
+
tDELAY  
(Where tDELAY is  
specified as below,  
ns)  
INPUT CLOCK FREQUENCY (MHz)  
NON-  
SETUP TIME (ns)(3)  
HOLD TIME (ns)(3)  
INTERLEAVED  
MODE  
INTERLEAVED  
OUTPUT DATA  
RATE (Mbps)  
MODE(4)  
MIN  
3.80  
1.60  
0.80  
0.38  
0.22  
TYP  
MAX  
MIN  
3.80  
1.80  
0.69  
0.19  
0.14  
TYP  
MAX  
MIN  
8
TYP  
MAX  
13  
10  
20  
40  
65  
80  
20  
40  
120  
240  
480  
780  
960  
8
13  
80  
8
13  
130  
160  
8
13  
8
13  
(1) Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and LVDD =  
1.7 V to 1.9 V.  
(2) All timing specifications are taken with default output clock and data delay settings (0 ps). Refer to the Programmable LVDS Output  
Clock and Data Edges section in the Application Information for additional output clock and data delay options.  
(3) When decimation filters are enabled, the minimum setup and minimum hold time further reduce by 100 ps compared to their values with  
the filters disabled (at the same output data rate).  
Example: At an 80-MHz input clock frequency, with decimation by 2 enabled, output data rate = 480 Mbps. At 480 Mbps, as per Table 1,  
the setup time with the decimation disabled is 0.80 ns. Therefore, the set-up time with filter enabled is 100 ps lower (0.8 – 0.1 = 0.7).  
Similarly, the hold time with filter enabled is 0.59 ns.  
(4) Refer to the Interleaving Mode section in the Application Information for details on interleaving mode.  
Table 2. 10x Serialization with Decimation Filters Disabled(1)(2)  
tPDI = (8 / 10) × tS + tDELAY  
(Where tDELAY is specified as  
INPUT CLOCK FREQUENCY (MHz)  
NON-  
SETUP TIME (ns)(3)  
HOLD TIME (ns)(3)  
below, ns)  
OUTPUT  
DATA RATE  
(Mbps)  
INTERLEAVED  
MODE  
INTERLEAVED  
MODE(4)  
MIN  
0.85  
0.52  
0.33  
0.2  
TYP MAX  
MIN  
1
TYP MAX  
MIN  
7.8  
7.8  
7.8  
7.8  
TYP  
MAX  
11.8  
11.8  
11.8  
11.8  
40  
65  
80  
400  
650  
130  
160  
200  
0.35  
0.19  
0.16  
80  
800  
100  
1000  
(1) Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and LVDD =  
1.7 V to 1.9 V.  
(2) All timing specifications are taken with default output clock and data delay settings (0 ps). Refer to the Programmable LVDS Output  
Clock and Data Edges section in the Application Information for additional output clock and data delay options.  
(3) When decimation filters are enabled, the minimum setup and minimum hold time further reduce by 100 ps compared to their values with  
the filters disabled (at the same output data rate).  
Example: At an 80-MHz input clock frequency, with decimation by 2 enabled, output data rate = 400 Mbps. At 400 Mbps, as per Table 2,  
the setup time with the decimation disabled is 0.85 ns. Therefore, the set-up time with filter enabled is 100 ps lower (0.85 – 0.10 = 0.75).  
Similarly ,the hold time with filter enabled is 0.90 ns.  
(4) Refer to the Interleaving Mode section in the Application Information for details on interleaving mode.  
8
Copyright © 2013, Texas Instruments Incorporated  
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 3. 14x Serialization with Decimation by two filter enabled (Data Rate = 0.5x)(1)(2)(3)  
OUTPUT  
DATA  
SETUP TIME (ns)  
HOLD TIME (ns)  
SAMPLING FREQUENCY  
(MSPS)  
RATE  
(Mbps)  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
65  
80  
455  
560  
700  
0.73  
0.54  
0.32  
0.75  
0.50  
0.25  
100  
(1) Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and LVDD =  
1.7 V to 1.9 V.  
(2) All timing specifications are taken with default output clock and data delay settings (0 ps).  
(3) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for additional output clock and  
data delay options.  
Table 4. 14x Serialization with Decimation by four filter enabled (Data Rate = 0.25x)(1)(2)(3)  
OUTPUT  
DATA  
SETUP TIME (ns)  
HOLD TIME (ns)  
SAMPLING FREQUENCY  
(MSPS)  
RATE  
(Mbps)  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
65  
80  
227.5  
280  
1.7  
1.3  
0.9  
1.9  
1.45  
1.1  
100  
350  
(1) Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and LVDD =  
1.7 V to 1.9 V.  
(2) All timing specifications are taken with default output clock and data delay settings (0 ps).  
(3) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for additional output clock and  
data delay options.  
(1)(2)(3)  
Table 5. 14x Serialization with Decimation by eight filter enabled (Data Rate = 0.125x)  
OUTPUT  
DATA  
SETUP TIME (ns)  
HOLD TIME (ns)  
SAMPLING FREQUENCY  
(MSPS)  
RATE  
(Mbps)  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
65  
80  
113.75  
140  
3.8  
3
3.8  
3
100  
175  
2.2  
2.2  
(1) Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and LVDD =  
1.7 V to 1.9 V.  
(2) All timing specifications are taken with default output clock and data delay settings (0 ps).  
(3) Refer to the Programmable LVDS Output Clock and Data Edges section in the Application Information for additional output clock and  
data delay options.  
Copyright © 2013, Texas Instruments Incorporated  
9
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
PARAMETRIC MEASUREMENT INFORMATION  
Figure 1 shows a timing diagram of the LVDS output voltage levels.  
OUTP  
Logic 0  
VODL = -350 mV(1)  
Logic 1  
VODH = +350 mV(1)  
OUTN  
VOCM  
GND  
(1) With an external 100-Ω termination.  
Figure 1. LVDS Output Voltage Levels  
Figure 2 shows the latency timing diagram.  
Sample  
N + 11  
Sample  
N + 12  
Sample  
N + 13  
Sample  
N
Input Signal  
tA  
CLKN  
CLKP  
Input Clock  
Frequency = fS  
Latency = 12 Clocks  
tPDI  
LCLKP  
LCLKN  
Bit Clock  
Frequency = 6x fS  
OUTP  
OUTN  
Output Data  
Rate = 12x fS  
D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D1  
D0  
D3  
D2  
D11 D10 D9 D8  
Sample N-1  
Sample N  
ADCLKN  
ADCLKP  
Frame Clock  
Frequency = 1x fS  
Figure 2. Latency Timing Diagram  
10  
Copyright © 2013, Texas Instruments Incorporated  
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
PARAMETRIC MEASUREMENT INFORMATION (continued)  
LVDS OUTPUT TIMING  
Figure 3 shows the output timing described in the Timing Requirements table.  
CLKN  
Input  
Clock  
CLKP  
tPDI  
ADCLKN  
Frame  
Clock  
ADCLKP  
tSU  
tH  
LCLKP  
Bit  
Clock  
LCLKN  
tSU  
tH  
tSU  
tH  
OUT1, OUT2,  
OUT3, OUT4,  
OUT5, OUT6,  
OUT7, OUT8  
Output  
Data  
Dn(1)  
Dn+1(1)  
(1) n = 0 to 11.  
Figure 3. LVDS Output Timing  
Copyright © 2013, Texas Instruments Incorporated  
11  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
PIN DESCRIPTION  
RGC PACKAGE  
QFN-64  
(Top View)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
IN1_p  
1
2
3
4
5
6
7
8
9
48 IN8_n  
47 IN8_p  
46 AGND  
45 IN7_n  
44 IN7_p  
43 AGND  
42 IN6_n  
41 IN6_p  
40 AGND  
39 IN5_n  
38 IN5_p  
37 AGND  
36 LGND  
35 LVDD  
34 OUT8_n  
33 OUT8_p  
IN1_n  
AGND  
IN2_p  
IN2_n  
AGND  
IN3_p  
IN3_n  
AGND  
Thermal Pad  
IN4_p 10  
IN4_n 11  
LGND 12  
PDN 13  
LGND 14  
OUT1_p 15  
OUT1_n 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
12  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
PIN DESCRIPTIONS  
NAME  
ADCLKN  
ADCLKP  
AGND  
AVDD  
CLKN  
NO.  
FUNCTION(1)  
DESCRIPTION  
24  
DO  
DO  
G
Differential LVDS frame clock, negative  
Differential LVDS frame clock, positive  
Analog ground pin  
23  
3, 6, 9, 37, 40, 43, 46  
50, 57, 60  
S
Analog supply pin, 1.8 V  
59  
58  
61  
AI  
Differential clock input, negative  
Differential clock input, positive  
CLKP  
AI  
CS  
DI  
Serial enable chip select; active low digital input  
Control input to select conversion of odd channels (1, 3, 5, and 7) or  
even channels (2, 4, 6, and 8).  
INTERLEAVE_MUX  
56  
DI  
IN1_n  
IN1_p  
2
1
AI  
AI  
Differential analog input for channel 1, negative  
Differential analog input for channel 1, positive  
Differential analog input for channel 2, negative  
Differential analog input for channel 2, positive  
Differential analog input for channel 3, negative  
Differential analog input for channel 3, positive  
Differential analog input for channel 4, negative  
Differential analog input for channel 4, positive  
Differential analog input for channel 5, negative  
Differential analog input for channel 5, positive  
Differential analog input for channel 6, negative  
Differential analog input for channel 6, positive  
Differential analog input for channel 7, negative  
Differential analog input for channel 7, positive  
Differential analog input for channel 8, negative  
Differential analog input for channel 8, positive  
LVDS differential bit clock output pins (6x), negative  
LVDS differential bit clock output pins (6x), positive  
Digital ground pin  
IN2_n  
5
AI  
IN2_p  
4
AI  
IN3_n  
8
AI  
IN3_p  
7
AI  
IN4_n  
11  
10  
39  
38  
42  
41  
45  
44  
48  
47  
26  
25  
12, 14, 36  
35  
51  
16  
15  
18  
17  
20  
19  
22  
21  
28  
27  
30  
29  
32  
31  
34  
33  
13  
AI  
IN4_p  
AI  
IN5_n  
AI  
IN5_p  
AI  
IN6_n  
AI  
IN6_p  
AI  
IN7_n  
AI  
IN7_p  
AI  
IN8_n  
AI  
IN8_p  
AI  
LCLKN  
LCLKP  
LGND  
DO  
DO  
G
LVDD  
S
Digital and I/O power supply, 1.8 V  
NC  
Do not connect  
OUT1_n  
OUT1_p  
OUT2_n  
OUT2_p  
OUT3_n  
OUT3_p  
OUT4_n  
OUT4_p  
OUT5_n  
OUT5_p  
OUT6_n  
OUT6_p  
OUT7_n  
OUT7_p  
OUT8_n  
OUT8_p  
PDN  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
Channel 1 differential LVDS negative data output  
Channel 1 differential LVDS positive data output  
Channel 2 differential LVDS negative data output  
Channel 2 differential LVDS positive data output  
Channel 3 differential LVDS negative data output  
Channel 3 differential LVDS positive data output  
Channel 4 differential LVDS negative data output  
Channel 4 differential LVDS positive data output  
Channel 5 differential LVDS negative data output  
Channel 5 differential LVDS positive data output  
Channel 6 differential LVDS negative data output  
Channel 6 differential LVDS positive data output  
Channel 7 differential LVDS negative data output  
Channel 7 differential LVDS positive data output  
Channel 8 differential LVDS negative data output  
Channel 8 differential LVDS positive data output  
Power-down control input pin  
(1) Pin functionality: AI = analog input; DI = digital input; DO = digital output; G = ground; and S = supply.  
Copyright © 2013, Texas Instruments Incorporated  
13  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
PIN DESCRIPTIONS (continued)  
NAME  
NO.  
FUNCTION(1)  
DESCRIPTION  
Negative reference input and output.  
Internal reference mode: Reference bottom voltage (0.45 V) is  
output on this pin. A decoupling capacitor is not required on this pin.  
External reference mode: Reference bottom voltage (0.45 V) must  
be externally applied to this pin.  
REFB  
54  
AI  
Positive reference input and output.  
Internal reference mode: Reference top voltage (1.45 V) is output  
on this pin. A decoupling capacitor is not required on this pin.  
External reference mode: Reference top voltage (1.45 V) must be  
externally applied to this pin.  
REFT  
55  
AI  
RESET  
SCLK  
64  
63  
62  
52  
DI  
DI  
Active high RESET input  
Serial clock input  
SDATA  
SDOUT  
DI  
Serial data input  
DO  
Serial data output  
Control input pin to synchronize test patterns and decimation filters  
across devices  
SYNC  
VCM  
49  
53  
DI  
AI  
Common-mode voltage output pin, 0.95 V.  
14  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
FUNCTIONAL BLOCK DIAGRAMS  
IN1_p  
IN1_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
OUT1_p  
Serializer  
Serializer  
Serializer  
Serializer  
OUT1_n  
IN2_p  
IN2_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
OUT2_p  
OUT2_n  
IN3_p  
IN3_n  
OUT3_p  
OUT3_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
IN4_p  
IN4_n  
OUT4_p  
OUT4_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
LCLKP  
LCLKN  
CLKP  
CLKN  
CLOCKGEN  
PLL  
ADCLKP  
ADCLKN  
SYNC  
IN5_p  
IN5_n  
OUT5_p  
OUT5_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
Serializer  
Serializer  
Serializer  
Serializer  
IN6_p  
IN6_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
OUT6_p  
OUT6_n  
IN7_p  
IN7_n  
OUT7_p  
OUT7_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
IN8_p  
IN8_n  
OUT8_p  
OUT8_n  
12-Bit ADC  
Digital Processing  
Block  
Sampling  
Circuit  
Reference  
Control Interface  
Device  
Figure 4. 10- and 12-Bit, 8-Channel ADC, Non-Interleaving Mode  
Copyright © 2013, Texas Instruments Incorporated  
15  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
OUT1_p  
OUT1_n  
12-Bit ADC  
Sampling  
Circuit  
Digital Processing Block  
Digital Processing Block  
Digital Processing Block  
Serializer  
Serializer  
Serializer  
Serializer  
IN1_p  
IN1_n  
IN2_p  
IN2_n  
OUT2_p  
OUT2_n  
12-Bit ADC  
Sampling  
Circuit  
OUT3_p  
OUT3_n  
12-Bit ADC  
Sampling  
Circuit  
IN3_p  
IN3_n  
IN4_p  
IN4_n  
OUT4_p  
OUT4_n  
Sampling  
Circuit  
12-Bit ADC  
Digital Processing Block  
0
180  
LCLKP  
LCLKN  
CLKP  
CLKN  
Divide-  
by-2  
CLOCKGEN  
PLL  
ADCLKP  
ADCLKN  
180  
0
SYNC  
OUT5_p  
OUT5_n  
12-Bit ADC  
Sampling  
Circuit  
Digital Processing Block  
Digital Processing Block  
Digital Processing Block  
Serializer  
Serializer  
Serializer  
Serializer  
IN5_p  
IN5_n  
IN6_p  
IN6_n  
12-Bit ADC  
Sampling  
Circuit  
OUT6_p  
OUT6_n  
12-Bit ADC  
OUT7_p  
OUT7_n  
Sampling  
Circuit  
IN7_p  
IN7_n  
IN8_p  
IN8_n  
12-Bit ADC  
OUT8_p  
OUT8_n  
Sampling  
Circuit  
Digital Processing Block  
Reference  
Control Interface  
Device  
Figure 5. 10- and 12-Bit, 4-Channel ADC, Interleaving Mode  
16  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Non-Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
0
−10  
0
−10  
SNR = 70.4 dBFS  
SINAD = 70.2 dBFS  
SFDR = 82.8 dBc  
THD = 82.5 dBc  
SNR = 70.3 dBFS  
SINAD = 70.1 dBFS  
SFDR = 82.1 dBc  
THD = 81.7 dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
G001  
G002  
Figure 6. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 80 MSPS)  
Figure 7. FFT FOR 15-MHz INPUT SIGNAL  
(Sample Rate = 80 MSPS)  
0
−10  
0
−10  
SNR = 69.4 dBFS  
SINAD = 68.8 dBFS  
SFDR = 77.1 dBc  
THD = 76.3 dBc  
SNR = 70.7 dBFS  
SINAD = 70.4 dBFS  
SFDR = 82.6 dBc  
THD = 82.4 dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
10  
20  
30  
40  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
G003  
G004  
Figure 8. FFT FOR 70-MHz INPUT SIGNAL  
(Sample Rate = 80 MSPS)  
Figure 9. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 40 MSPS)  
Copyright © 2013, Texas Instruments Incorporated  
17  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
0
0
SNR = 70.7 dBFS  
SINAD = 70.5 dBFS  
SFDR = 83.6 dBc  
THD = 83.4 dBc  
SNR = 69.7 dBFS  
SINAD = 68.7 dBFS  
SFDR = 75 dBc  
−10  
−10  
−20  
−20  
THD = 74.5 dBc  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 10. FFT FOR 15-MHz INPUT SIGNAL  
(Sample Rate = 40 MSPS)  
Figure 11. FFT FOR 70-MHz INPUT SIGNAL  
(Sample Rate = 40 MSPS)  
0
−10  
71  
70.5  
70  
fIN1 = 8 MHz  
fIN2 = 10 MHz  
Each Tone at −7−dBFS Amplitude  
Two−Tone IMD = −90 dBFS  
−20  
−30  
−40  
−50  
−60  
−70  
69.5  
69  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
68.5  
68  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency (MHz)  
Input Signal Frequency (MHz)  
G007  
G008  
Figure 12. FFT WITH TWO-TONE SIGNAL  
Figure 13. SIGNAL-TO-NOISE RATIO vs  
INPUT SIGNAL FREQUENCY  
18  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
86  
84  
82  
80  
78  
76  
74  
72  
74  
70  
66  
62  
58  
Input Frequency = 10 MHz  
Input Frequency = 70 MHz  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Input Signal Frequency (MHz)  
Digital Gain (dB)  
G009  
G010  
Figure 14. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT SIGNAL FREQUENCY  
Figure 15. SIGNAL-TO-NOISE RATIO vs  
DIGITAL GAIN  
120  
110  
100  
90  
73  
90  
86  
82  
78  
74  
70  
SNR  
SFDR (dBc)  
SFDR (dBFS)  
Input Frequency = 5 MHz  
Input Frequency = 10 MHz  
Input Frequency = 70 MHz  
72.5  
72  
71.5  
71  
80  
70  
70.5  
70  
60  
50  
69.5  
69  
40  
30  
68.5  
68  
20  
−50 −45 −40 −35 −30 −25 −20 −15 −10 −5  
Input amplitude (dBFS)  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
G012  
Digital Gain (dB)  
G011  
Figure 16. SPURIOUS-FREE DYNAMIC RANGE vs  
DIGITAL GAIN  
Figure 17. PERFORMANCE vs INPUT AMPLITUDE  
Copyright © 2013, Texas Instruments Incorporated  
19  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
83  
82.5  
82  
73  
83  
82.5  
82  
73  
Input Frequency = 5 MHz  
SFDR  
SNR  
Input Frequency = 5 MHz  
THD  
SNR  
72.5  
72  
72.5  
72  
81.5  
81  
71.5  
71  
81.5  
81  
71.5  
71  
80.5  
80  
70.5  
70  
80.5  
80  
70.5  
70  
79.5  
69.5  
79.5  
79  
69.5  
69  
79  
69  
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
35  
40  
45  
50  
55  
60  
65  
Input Clock Duty Cycle (%)  
Input Clock Amplitude, differential (VPP  
)
G013  
G014  
Figure 18. PERFORMANCE vs INPUT CLOCK AMPLITUDE  
Figure 19. PERFORMANCE vs INPUT CLOCK DUTY CYCLE  
86  
84  
82  
80  
78  
76  
74  
72  
72  
Input Frequency = 5 MHz  
SFDR  
SNR  
Input Frequency = 5 MHz  
AVDD = 1.7 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
71.5  
71  
71.5  
71  
70.5  
70  
70.5  
70  
69.5  
69  
69.5  
69  
68.5  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
68  
Analog Input Common−Mode Voltage (V)  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
G015  
G016  
Figure 20. PERFORMANCE vs  
INPUT COMMON-MODE VOLTAGE  
Figure 21. SIGNAL-TO-NOISE RATIO vs  
AVDD AND TEMPERATURE  
20  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
84  
83.5  
83  
120  
115  
110  
105  
100  
95  
Input Frequency = 5 MHz  
AVDD = 1.7 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
Adjacent Channel  
Near Channel  
Far Channel  
82.5  
82  
90  
85  
80  
75  
81.5  
81  
70  
65  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
10  
20  
30  
40  
50  
60  
70  
Frequency of Aggressor Channel (MHz)  
G017  
G018  
(1)  
Figure 22. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD AND TEMPERATURE  
Figure 23. CROSSTALK vs FREQUENCY  
0.2  
0.1  
0.4  
0.3  
0.2  
0.1  
0
0
−0.1  
−0.2  
−0.3  
−0.1  
−0.2  
−0.3  
−0.4  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500 1000 1500 2000 2500 3000 3500 4000  
Output Codes (LSB)  
Output Codes (LSB)  
G020  
G021  
Figure 24. INTEGRAL NONLINEARITY  
Figure 25. DIFFERENTIAL NONLINEARITY  
(1) Adjacent channel: Neighboring channels on the immediate left and right of the channel of interest.  
Near channel: Channels on the same side of the package, except the immediate neighbors.  
Far channel: Channels on the opposite side of the package.  
Copyright © 2013, Texas Instruments Incorporated  
21  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS:  
Digital Processing (8-Channel, 12-Bit, Non-Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
20  
10  
40  
30  
Low−Pass  
High−Pass  
Low−Pass  
Band−Pass 1  
Band−Pass 2  
High−Pass  
20  
0
10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fIN fS)  
Normalized Frequency (fIN fS)  
G021  
G022  
Figure 26. DIGITAL FILTER RESPONSE  
(Decimate-by-2)  
Figure 27. DIGITAL FILTER RESPONSE  
(Decimate-by-4)  
0
−10  
0
−10  
SNR = 75.4 dBFS  
SINAD = 75 dBFS  
SFDR = 85.7 dBc  
THD = 85.5 dBc  
SNR = 74.9 dBFS  
SINAD = 74.2 dBFS  
SFDR = 84.3 dBc  
THD = 81.5 dBc  
−20  
−20  
−30  
−30  
Decimate−by−2 Filter Enabled  
2 Channels Averaged  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
5
10  
15  
20  
0
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
G023  
G024  
Figure 28. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 80 MSPS, Decimation Filter = 2)  
Figure 29. FFT FOR 5-MHz INPUT SIGNAL  
(1)  
(Sample Rate = 80 MSPS by Averaging Two Channels)(1)  
(1) 14x serialization is used to capture data.  
22  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS:  
Digital Processing (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 80 MSPS, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
0
0
SNR = 76.7 dBFS  
SINAD = 76.6 dBFS  
SFDR = 93.9 dBc  
THD = 98.6 dBc  
Decimate−by−4 Filter  
Enabled  
SNR = 75.8 dBFS  
SINAD = 73.8 dBFS  
SFDR = 77.5 dBc  
THD = 76.9 dBc  
−10  
−10  
−20  
−20  
−30  
−30  
4 Channels Averaged  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
5
10  
0
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
G025  
G026  
Figure 30. FFT FOR 5-MHz INPUT SIGNAL  
(Sample Rate = 80 MSPS, Decimation Filter = 4)  
Figure 31. FFT FOR 5-MHz INPUT SIGNAL  
(2)  
(Sample Rate = 80 MSPS by Averaging Four Channels)(2)  
3
0
HPF_DISABLED  
HPF_ENABLED (K = 2)  
0
−3  
−10  
−20  
−30  
−6  
−9  
−40  
−12  
−15  
−18  
−21  
−24  
−27  
−30  
−33  
−36  
−39  
−42  
−45  
−50  
−60  
−70  
−80  
K = 2  
K = 3  
K= 4  
K = 5  
K = 6  
K = 7  
K = 8  
K = 9  
−90  
−100  
−110  
−120  
−130  
−140  
K = 10  
0.02  
0.1  
1
10 15  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Frequency (MHz)  
Frequency (MHz)  
G027  
G032  
Figure 32. DIGITAL HIGH-PASS FILTER RESPONSE  
Figure 33. FFT WITH HPF ENABLED AND DISABLED  
(No Signal)  
(2) 14x serialization is used to capture data.  
Copyright © 2013, Texas Instruments Incorporated  
23  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS:  
Power Consumption (8-Channel, 12-Bit, Non-Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
330  
300  
270  
240  
210  
180  
150  
120  
275  
250  
225  
200  
175  
150  
125  
100  
One−Wire  
One−Wire, Decimate−By−2  
One−Wire, Decimate−By−4  
One−Wire  
One−Wire, Decimate−By−2  
One−Wire, Decimate−By−4  
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G032  
G033  
Figure 34. ANALOG SUPPLY POWER  
Figure 35. DIGITAL SUPPLY POWER  
180  
160  
140  
120  
100  
80  
150  
130  
110  
90  
One−Wire  
One−Wire, Decimate−By−2  
One−Wire, Decimate−By−4  
One−Wire  
One−Wire, Decimate−By−2  
One−Wire, Decimate−By−4  
70  
50  
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G034  
G035  
Figure 36. ANALOG SUPPLY CURRENT  
Figure 37. DIGITAL SUPPLY CURRENT  
24  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS:  
Power Consumption (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
65  
60  
55  
50  
45  
40  
35  
30  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MHz)  
G036  
Figure 38. TOTAL POWER PER CHANNEL  
Copyright © 2013, Texas Instruments Incorporated  
25  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: Contour (8-Channel, 12-Bit, Non-Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
80  
70  
60  
50  
40  
30  
20  
70.3  
70.4  
69.7  
70  
69.4  
69.1  
70.5  
70.3  
70.4  
70  
69.7  
69.4  
68.8  
69.1  
70.6  
70.5  
70.3  
70.4  
69.1  
69.4  
69.7  
70  
68.5  
68.2  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Frequency, MHz  
68  
68.5  
69  
69.5  
70  
70.5  
Figure 39. SIGNAL-TO-NOISE RATIO vs INPUT AND SAMPLING FREQUENCIES  
26  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: Contour (8-Channel, 12-Bit, Non-Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
80  
78  
80  
82  
70  
78  
60  
80  
78  
50  
76  
82  
74  
40  
30  
20  
80  
78  
82  
76  
84  
74  
80  
78  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Frequency, MHz  
74  
76  
78  
80  
82  
84  
Figure 40. SPURIOUS-FREE DYNAMIC RANGE vs INPUT AND SAMPLING FREQUENCIES  
Copyright © 2013, Texas Instruments Incorporated  
27  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: General (4-Channel, 10-Bit, Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 200 MSPS, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
0
−10  
0
−10  
SNR = 61.5 dBFS  
SINAD = 61.5 dBFS  
SFDR = 86.6 dBc  
THD = 85.4 dBc  
SNR = 61.4 dBFS  
SINAD = 61.3 dBFS  
SFDR = 75.6 dBc  
THD = 84.9 dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−100  
−110  
−120  
−130  
−140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency (MHz)  
Frequency (MHz)  
G037  
G038  
Figure 41. FFT FOR 5-MHz INPUT SIGNAL  
Figure 42. FFT FOR 15-MHz INPUT SIGNAL  
0
−10  
62  
61.75  
61.5  
61.25  
61  
SNR = 61.1 dBFS  
SINAD = 61.03 dBFS  
SFDR = 74.1 dBc  
THD = 77.2 dBc  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
60.75  
60.5  
60.25  
60  
−90  
−100  
−110  
−120  
−130  
−140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency (MHz)  
Input Signal Frequency (MHz)  
G039  
G040  
Figure 43. FFT FOR 70-MHz INPUT SIGNAL  
Figure 44. SIGNAL-TO-NOISE RATIO vs  
INPUT SIGNAL FREQUENCY  
28  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: General (4-Channel, 10-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 200 MSPS, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
88  
85  
82  
79  
76  
73  
70  
80  
78  
76  
74  
72  
70  
68  
Normal Mode  
Mux Mode  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Signal Frequency (MHz)  
Input Signal Frequency (MHz)  
G041  
G042  
Figure 45. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT SIGNAL FREQUENCY  
Figure 46. INTERLEAVING SPUR (fS / 2 – fIN  
)
vs INPUT SIGNAL FREQUENCY  
63  
62  
61  
60  
59  
58  
57  
56  
94  
90  
86  
82  
78  
74  
Input Frequency = 10 MHz  
Input Frequency = 70 MHz  
Input Frequency = 10 MHz  
Input Frequency = 70 MHz  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Digital Gain (dB)  
Digital Gain (dB)  
G043  
G044  
Figure 47. SIGNAL-TO-NOISE RATIO vs  
DIGITAL GAIN  
Figure 48. SPURIOUS-FREE DYNAMIC RANGE vs  
DIGITAL GAIN  
Copyright © 2013, Texas Instruments Incorporated  
29  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: General (4-Channel, 10-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 200 MSPS, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
68  
66  
64  
62  
60  
58  
56  
54  
52  
85  
82.5  
80  
SNR  
SFDR (dBc)  
SFDR (dBFS)  
Input Frequency = 5 MHz  
Normal Mode − Input Frequency = 10 MHz  
Normal mode − Input Frequency = 70 MHz  
Mux mode − Input Frequency = 10 MHz  
Mux mode − Input Frequency = 70 MHz  
77.5  
75  
72.5  
70  
67.5  
65  
−50 −45 −40 −35 −30 −25 −20 −15 −10 −5  
Input amplitude (dBFS)  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
G046  
Digital Gain (dB)  
G045  
Figure 49. INTERLEAVING SPUR (fS / 2 – fIN  
)
Figure 50. PERFORMANCE vs INPUT AMPLITUDE  
vs DIGITAL GAIN  
62  
61.9  
61.8  
61.7  
61.6  
61.5  
61.4  
61.3  
61.2  
61.1  
61  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
Input Frequency = 5 MHz  
AVDD = 1.7 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
Input Frequency = 5 MHz  
AVDD = 1.7 V  
AVDD = 1.8 V  
AVDD = 1.9 V  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
G047  
G048  
Figure 51. SIGNAL-TO-NOISE RATIO vs  
AVDD AND TEMPERATURE  
Figure 52. SPURIOUS-FREE DYNAMIC RANGE vs  
AVDD AND TEMPERATURE  
30  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: General (4-Channel, 10-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 200 MSPS, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
82  
Normal Mode − AVDD = 1.7 V  
Normal mode − AVDD = 1.8 V  
Normal Mode − AVDD = 1.9 V  
Mux Mode − AVDD = 1.7V  
Mux Mode − AVDD = 1.8V  
Mux Mode − AVDD = 1.9V  
81  
80  
79  
78  
77  
76  
75  
Input Frequency = 5 MHz  
−40 −27.5 −15 −2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (°C)  
G049  
Figure 53. INTERLEAVING SPUR (fS / 2 – fIN) vs  
AVDD AND TEMPERATURE  
Copyright © 2013, Texas Instruments Incorporated  
31  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS:  
Power Consumption (4-Channel, 10-Bit, Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
390  
360  
330  
300  
270  
240  
210  
180  
150  
120  
240  
220  
200  
180  
160  
140  
120  
100  
20  
40  
60  
80  
100 120 140 160 180 200  
20  
40  
60  
80  
100 120 140 160 180 200  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G050  
G051  
Figure 54. ANALOG SUPPLY POWER  
Figure 55. DIGITAL SUPPLY POWER  
220  
200  
180  
160  
140  
120  
100  
80  
125  
110  
95  
80  
65  
50  
20  
40  
60  
80  
100 120 140 160 180 200  
20  
40  
60  
80  
100 120 140 160 180 200  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G052  
G053  
Figure 56. ANALOG SUPPLY CURRENT  
Figure 57. DIGITAL SUPPLY CURRENT  
32  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS:  
Power Consumption (4-Channel, 10-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
20  
40  
60  
80  
100 120 140 160 180 200  
Sampling Frequency (MHz)  
G054  
Figure 58. TOTAL POWER PER CHANNEL  
Copyright © 2013, Texas Instruments Incorporated  
33  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: Contour (4-Channel, 10-Bit, Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
200  
61  
61.1  
60.9  
61.4  
61.3  
61.2  
180  
160  
140  
120  
100  
61.1  
61.4  
61.3  
61.2  
61.1  
61.4  
61.3  
61.2  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Frequency, MHz  
60.9  
61  
61.1  
61.2  
61.3  
61.4  
Figure 59. SIGNAL-TO-NOISE RATIO vs INPUT AND SAMPLING FREQUENCIES  
34  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: Contour (4-Channel, 10-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
200  
76  
80  
82  
78  
74  
180  
76  
80  
72  
78  
78  
160  
140  
120  
100  
82  
80  
78  
74  
76  
78  
78  
78  
76  
76  
74  
80  
10  
20  
30  
40  
50  
60  
70  
80  
90  
82  
Input Frequency, MHz  
72  
74  
76  
78  
80  
Figure 60. SPURIOUS-FREE DYNAMIC RANGE vs INPUT AND SAMPLING FREQUENCIES  
Copyright © 2013, Texas Instruments Incorporated  
35  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 160 MSPS, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
70  
69.5  
69  
94  
90  
86  
82  
78  
74  
70  
68.5  
68  
67.5  
67  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Signal Frequency (MHz)  
Input Signal Frequency (MHz)  
G058  
G059  
Figure 61. SIGNAL-TO-NOISE RATIO vs  
INPUT SIGNAL FREQUENCY  
Figure 62. SPURIOUS-FREE DYNAMIC RANGE vs  
INPUT SIGNAL FREQUENCY  
82  
80  
78  
76  
74  
72  
0.2  
0.1  
Normal Mode  
Mux Mode  
0
−0.1  
−0.2  
−0.3  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
500 1000 1500 2000 2500 3000 3500 4000  
Input Signal Frequency (MHz)  
Output Codes (LSB)  
G060  
G061  
Figure 63. INTERLEAVING SPUR (fS / 2 – fIN  
)
Figure 64. INTEGRAL NONLINEARITY  
vs INPUT SIGNAL FREQUENCY  
36  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: General (8-Channel, 12-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, input clock frequency = 160 MSPS, 50% clock duty cycle,  
and –1-dBFS differential analog input, unless otherwise noted.  
0.4  
0.3  
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
−0.4  
0
500 1000 1500 2000 2500 3000 3500 4000  
Output Codes (LSB)  
G062  
Figure 65. DEFERENTIAL NONLINEARITY  
Copyright © 2013, Texas Instruments Incorporated  
37  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS:  
Power Consumption (8-Channel, 12-Bit, Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
330  
300  
270  
240  
210  
180  
150  
120  
220  
200  
180  
160  
140  
120  
100  
20  
40  
60  
80  
100  
120  
140  
160  
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G063  
G064  
Figure 66. ANALOG SUPPLY POWER  
Figure 67. DIGITAL SUPPLY POWER  
180  
160  
140  
120  
100  
80  
120  
110  
100  
90  
80  
70  
60  
20  
40  
60  
80  
100  
120  
140  
160  
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
G065  
G066  
Figure 68. ANALOG SUPPLY CURRENT  
Figure 69. DIGITAL SUPPLY CURRENT  
38  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS:  
Power Consumption (8-Channel, 12-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
140  
130  
120  
110  
100  
90  
80  
70  
60  
20  
40  
60  
80  
100  
120  
140  
160  
Sampling Frequency (MHz)  
G067  
Figure 70. TOTAL POWER PER CHANNEL  
Copyright © 2013, Texas Instruments Incorporated  
39  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS: Contour (8-Channel, 12-Bit, Interleaving Mode)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
160  
68.4  
68.2  
68.6  
68.8  
69  
69.1  
150  
140  
130  
120  
110  
100  
68  
69.1  
68.4  
68.2  
68.6  
68.8  
69  
69.2  
69.1  
68.6  
68.4  
68.2  
68.8  
69  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Frequency, MHz  
68  
68.2  
68.4  
68.6  
68.8  
69  
69.2  
Figure 71. SIGNAL-TO-NOISE RATIO vs INPUT AND SAMPLING FREQUENCIES  
40  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
TYPICAL CHARACTERISTICS: Contour (8-Channel, 12-Bit, Interleaving Mode) (continued)  
Typical values are at TA = +25°C, AVDD = 1.8 V, LVDD = 1.8 V, 50% clock duty cycle, and –1-dBFS differential analog input,  
unless otherwise noted.  
160  
79  
80  
78  
75  
74  
150  
140  
130  
120  
110  
100  
73  
76  
78  
77  
79  
75  
74  
77  
78  
76  
77  
76  
74  
75  
78  
10  
20  
30  
40  
50  
60  
70  
80  
90  
80  
Input Frequency, MHz  
73  
74  
75  
76  
77  
78  
79  
Figure 72. SPURIOUS-FREE DYNAMIC RANGE vs INPUT AND SAMPLING FREQUENCIES  
Copyright © 2013, Texas Instruments Incorporated  
41  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
DEVICE CONFIGURATION  
SERIAL INTERFACE  
The device has a set of internal registers that can be accessed by the serial interface formed by the CS (serial  
interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins.  
Register Initialization  
After power-up, the internal registers must be initialized to default values. This initialization can be accomplished  
in one of two ways:  
1. Either through a hardware reset by applying a low pulse on the RESET pin (of widths greater than 50 ns),  
see Figure 74; or  
2. By applying a software reset. When using the serial interface, set the RST bit (register 00h, bit D0) high. This  
setting initializes the internal registers to default values and then self-resets the RST bit low. In this case, the  
RESET pin is kept high (inactive).  
Reset Timing  
Figure 73 shows a timing diagram for the reset function.  
Power Supply  
AVDD, LVDD  
t1  
RESET  
t2  
t3  
SEN  
Figure 73. Reset Timing Diagram  
Table 6. Timing Characteristics for Figure 73(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from AVDD and LVDD power-up to active  
RESET pulse  
t1  
Power-on delay  
1
ms  
t2  
t3  
Reset pulse width  
Pulse width of active RESET signal  
50  
ns  
ns  
Register write delay  
Delay from RESET disable to CS active  
100  
(1) Typical values are at TA = +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to  
TMAX = +85°C, unless otherwise noted.  
(2) A low pulse on the RESET pin is required when initialization is done via a hardware reset.  
Serial Interface Write Operation  
Serial shifting of bits into the device is enabled when CS is low. Serial data (on the SDATA pin) are latched at  
every SCLK rising edge when CS is active (low). Serial data are loaded into the register at every 24th SCLK  
rising edge when CS is low. When the word length exceeds a multiple of 24 bits, the excess bits are ignored (the  
excess bits being the last bits clocked). Data can be loaded in multiples of 24-bit words within a single active CS  
pulse. The first eight bits form the register address and the remaining 16 bits are the register data.  
42  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
CS  
tCS_SU  
Data Latched On  
Rising Edge of SCLK  
tSCLK_L  
tSCLK  
tCS_HO  
SCLK  
tSCLK_H  
tDSU  
tDH  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
RESET  
Figure 74. Serial Interface Write Timing Diagram  
Table 7. Timing Characteristics for Figure 74 and Figure 76(1)  
PARAMETER  
MIN  
> dc  
50  
TYP  
MAX  
UNIT  
fSCLK  
SCLK frequency (equal to 1 / tSCLK  
)
20  
MHz  
ns  
tSCLK  
SCLK period  
tSCLK_H  
tSCLK_L  
tDSU  
SCLK high time  
20  
ns  
SCLK low time  
20  
ns  
SDATA setup time  
SDATA hold time  
25  
ns  
tDHO  
25  
ns  
tCS_SU  
tCS_HO  
CS fall to SCLK rise  
25  
ns  
Time between last SCLK rising edge to CS rising edge  
Delay from SCLK falling edge to SDOUT valid  
25  
ns  
(2)  
tOUT_DV  
15  
19  
23  
ns  
(1) Typical values are at TA = +25°C, minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX  
=
+85°C, unless otherwise noted.  
(2) See Figure 76.  
Serial Interface Read Operation  
The device includes a mode where the contents of the internal registers can be read back on the SDOUT pin.  
This readback mode may be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC.  
By default, the SDOUT pin is in 3-state after a device power-up or reset. When the readout mode is enabled  
using the EN_READOUT register bit, SDOUT serially outputs the contents of the selected register. The following  
steps describe how to achieve this functionality:  
1. Set the EN_READOUT register bit to '1'; see Figure 75(a). This setting puts the device in serial readout  
mode. This mode prevents any further writes to the internal registers, except for at register 01h. Note that the  
EN_READOUT bit is also located in register 01h. The device can exit readout mode by setting the  
EN_READOUT bit to '0'. Note that only the contents of register 01h are unable to be read in register readout  
mode.  
2. Initiate a serial interface cycle specifying the address of the register (A[7:0]) whose content must be read.  
3. The device serially outputs the contents (D[15:0]) of the selected register on the SDOUT pin; see  
Figure 75(b).  
4. The external controller can latch the contents at the SCLK rising edge.  
Copyright © 2013, Texas Instruments Incorporated  
43  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
To exit serial readout mode, reset the EN_READOUT register bit to '0', which enables writes to all device  
registers. At this point, the SDOUT pin is in 3-state. A detailed timing diagram for the serial readout mode is  
shown in Figure 76.  
Register Address (A[7:0]) = 01h  
Register Data (D[15:0]) = 0001  
SDATA  
SCLK  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
The SDOUT pin becomes active and is forced low.  
CS  
SDOUT  
The SDOUT Pin is in 3-State  
a) Enable Serial Readout (READOUT = 1)  
Register Address (A[7:0]) = 0Fh  
Register Data (D[15:0]) = XXXX (don’t care)  
SDATA  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SDOUT  
SDOUT outputs the contents of register 0Fh in the same cycle, MSB first.  
b) Read contents of register 0Fh. This register is initialized with 0200 (the device was previously put in global power-down).  
Figure 75. Serial Readout Functional Diagram  
CS  
SCLK  
tOUT_DV  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SDATA  
Figure 76. Serial Interface Read Timing Diagram  
44  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
SERIAL INTERFACE REGISTERS MAP  
Table 8 lists the ADS5296A registers.  
Table 8. Register Map  
REGISTER  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RST(1)  
EN_HIGH_  
ADDRS  
EN_  
READOUT  
01  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN_MUX_R EN_INTER  
EG LEAVE  
07  
0A  
0F  
14  
1C  
0
RAMP_PAT_RESET_VAL  
PDN_PIN_  
CFG  
PDN_  
COMPLETE  
PDN_  
PARTIAL  
0
0
0
0
0
0
0
0
0
0
0
0
0
PDN_CH[8:1]  
0
0
0
LFNS_CH[8:1]  
EN_FRAME  
_PAT  
ADCLKOUT[11:0]  
23  
24  
PRBS_SEED[15:0]  
0
PRBS_SEED[22:16]  
INVERT_CH[8:1]  
PRBS_  
SEED_  
FROM_REG  
TP_HARD_  
SYNC  
PRBS_  
MODE_2  
PRBS_  
TP_EN  
TP_SOFT_  
SYNC  
25  
0
0
0
0
0
TEST_PATT[2:0]  
BITS_CUSTOM2[11:10]  
BITS_CUSTOM1[11:10]  
26  
27  
BITS_CUSTOM1[9:0]  
BITS_CUSTOM2[9:0]  
0
0
0
0
0
0
0
0
0
0
0
0
GLOBAL_E  
N_  
FILTER  
EN_  
CHANNEL_  
AVG  
29  
0
0
0
0
0
0
0
0
0
0
0
0
0
2A  
2B  
2C  
2D  
GAIN_CH4[3:0]  
GAIN_CH5[3:0]  
GAIN_CH3[3:0]  
GAIN_CH2[3:0]  
GAIN_CH7[3:0]  
GAIN_CH1[3:0]  
GAIN_CH8[3:0]  
AVG_OUT1[1:0]  
0 AVG_OUT5[1:0]  
GAIN_CH6[3:0]  
AVG_OUT4[1:0]  
AVG_OUT8[1:0]  
0
0
0
0
0
0
0
0
0
0
0
AVG_OUT3[1:0]  
AVG_OUT7[1:0]  
0
0
AVG_OUT2[1:0]  
AVG_OUT6[1:0]  
0
0
(1) Shaded cells indicate used bits.  
Copyright © 2013, Texas Instruments Incorporated  
45  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 8. Register Map (continued)  
REGISTER  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
USE_  
FILTER_  
CH1  
HPF_EN_  
CH1  
SEL_ODD_  
TAP_CH1  
2E  
0
HPF_CORNER_CH1[3:0]  
HPF_CORNER_CH2[3:0]  
HPF_CORNER_CH3[3:0]  
HPF_CORNER_CH4[3:0]  
HPF_CORNER_CH5[3:0]  
HPF_CORNER_CH6[3:0]  
HPF_CORNER_CH7[3:0]  
HPF_CORNER_CH8[3:0]  
FILTER_TYPE_CH1[2:0]  
DEC_RATE_CH1  
0
0
USE_  
FILTER_  
CH2  
HPF_EN_  
CH2  
SEL_ODD_  
TAP_CH2  
2F  
30  
31  
32  
33  
34  
35  
0
0
0
0
0
0
0
FILTER_TYPE_CH2[2:0]  
FILTER_TYPE_CH3[2:0]  
FILTER_TYPE_CH4[2:0]  
FILTER_TYPE_CH5[2:0]  
FILTER_TYPE_CH6[2:0]  
FILTER_TYPE_CH7[2:0]  
DEC_RATE_CH2  
DEC_RATE_CH3  
DEC_RATE_CH4  
DEC_RATE_CH5  
DEC_RATE_CH6  
DEC_RATE_CH7  
0
0
0
0
0
0
0
0
0
0
0
0
0
USE_  
FILTER_  
CH3  
HPF_EN_  
CH3  
SEL_ODD_  
TAP_CH3  
USE_  
FILTER_  
CH4  
HPF_EN_  
CH4  
SEL_ODD_  
TAP_CH4  
USE_  
FILTER_  
CH5  
HPF_EN_  
CH5  
SEL_ODD_  
TAP_CH5  
USE_  
FILTER_  
CH6  
HPF_EN_  
CH6  
SEL_ODD_  
TAP_CH6  
USE_  
FILTER_  
CH7  
HPF_EN_  
CH7  
SEL_ODD_  
TAP_CH7  
USE_  
FILTER_  
CH8  
HPF_EN_  
CH8  
SEL_ODD_  
TAP_CH8  
FILTER_TYPE_CH8[2:0]  
0
DEC_RATE_CH8  
0
0
0
38  
40  
0
0
0
0
0
0
0
0
0
0
0
DATA_RATE[1:0]  
ENABLE 40  
ODD_EVEN_SEL  
EN_PHASE  
DDR  
PHASE_  
DDR1  
PHASE_  
DDR0  
42  
45  
46  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN_SDR  
0
0
PAT_DESKEW_SYNC[1:0]  
EN_MSB_  
FIRST  
ENABLE 46  
FALL_SDR  
EN_BIT_SER  
MAP_Ch1234_to_OUT2  
BTC_MODE  
0
0
50  
51  
52  
53  
54  
55  
ENABLE 50  
ENABLE 51  
ENABLE 52  
ENABLE 53  
ENABLE 54  
ENABLE 55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MAP_Ch1234_to_OUT1  
0
0
0
0
0
0
0
0
0
0
0
0
MAP_Ch1234_to_OUT3  
0
0
0
0
0
0
0
0
0
0
0
0
MAP_Ch1234_to_OUT4  
MAP_Ch5678_to_OUT5  
0
0
MAP_Ch5678_to_OUT7  
MAP_Ch5678_to_OUT6  
0
0
0
0
MAP_Ch5678_to_OUT8  
0
0
46  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 8. Register Map (continued)  
REGISTER  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_  
CUSTOM_  
FILT_CH1  
5A to 65  
66 to 71  
72 to 7D  
7E to 89  
8A to 95  
96 to A1  
A2 to AD  
AE to B9  
0
0
0
COEFFn_SET_CH1(2)  
COEFFn_SET_CH2(2)  
COEFFn_SET_CH3(2)  
COEFFn_SET_CH4(2)  
COEFFn_SET_CH5(2)  
COEFFn_SET_CH6(2)  
COEFFn_SET_CH7(2)  
COEFFn_SET_CH8(2)  
EN_  
CUSTOM_  
FILT_CH2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN_  
CUSTOM_  
FILT_CH3  
EN_  
CUSTOM_  
FILT_CH4  
EN_  
CUSTOM_  
FILT_CH5  
EN_  
CUSTOM_  
FILT_CH6  
EN_  
CUSTOM_  
FILT_CH7  
EN_  
CUSTOM_  
FILT_CH8  
EN_LVDS  
_PROG  
BE  
F0  
0
0
0
0
0
0
0
0
0
0
DELAY_DATA_R  
DELAY_LCLK_R  
DELAY_DATA_F  
DELAY_LCLK_F  
0
EN_EXT_  
REF  
0
0
0
0
0
0
0
0
0
(2) n = 0 to 11.  
Copyright © 2013, Texas Instruments Incorporated  
47  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
DESCRIPTION OF SERIAL INTERFACE REGISTERS  
Table 9. Register 00h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
RST  
All bits default to '0' after reset.  
Bits D[15:1]  
Bit D0  
Must write '0'  
RST  
0 = Normal operation (default)  
1 = Self-clearing software RESET; after reset, this bit is set to '0'  
Table 10. Register 01h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
D3  
0
D2  
0
D1  
0
D0  
EN_HIGH_  
ADDRS  
EN_READOUT  
All bits default to '0' after reset.  
Bits D[15:5]  
Bit D4  
Must write '0'  
EN_HIGH_ADDRS  
0 = Access to register F0h disabled (default)  
1 = Access to register F0h enabled  
Bits D[3:1]  
Bit D0  
Must write '0'  
EN_READOUT  
0 = Normal operation (default)  
1 = READOUT of registers mode using the SDOUT pin enabled  
48  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 11. Register 07h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
0
0
D1  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D0  
EN_  
INTERLEAVE  
EN_MUX_REG  
All bits default to '0' after reset.  
Bits D[15:2]  
Bit D1  
Must write '0'  
EN_MUX_REG  
Enables mux mode interleaving using register bit.  
0 = Enables mux mode interleaving using the ODD_EVEN_SEL register bits (default)  
1 = Enables mux mode interleaving using the INTERLEAVE_MUX pin.  
For more details on this bit, see the Interleaving Mode section.  
Bit D0  
EN_INTERLEAVE  
Enables interleaving of adjacent channel pairs.  
0 = Interleaving disabled (default)  
1 = Interleaving enabled  
For more details on this bit, see the Interleaving Mode section.  
Table 12. Register 0Ah  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
RAMP_PAT_RESET_VAL  
D4 D3  
RAMP_PAT_RESET_VAL  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
All bits default to '0' after reset.  
Bits D[15:0] RAMP_PAT_RESET_VAL  
The starting value of the digital ramp test pattern can be programmed using these register  
bits. By default, the starting value is 0000h after reset.  
Copyright © 2013, Texas Instruments Incorporated  
49  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 13. Register 0Fh  
D15  
0
D14  
D13  
0
D12  
D11  
D10  
D9  
D8  
PDN_  
COMPLETE  
0
0
0
PDN_PIN_CFG  
PDN_PARTIAL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PDN_CH[8:1]  
All bits default to '0' after reset.  
Bits D[15:11]  
Bit D10  
Must write '0'  
PDN_PIN_CFG  
0 = PD pin configured for complete power-down mode  
1 = PD pin configured for partial power-down mode  
Bit D9  
PDN_COMPLETE  
0 = Normal operation  
1 = Register mode for complete power-down; slow recovery from power-down  
Bit D8  
PDN_PARTIAL  
0 = Normal operation  
1 = Partial power-down mode; fast recovery from power-down  
Bits D[7:0]  
PDN_CH[8:1]  
0 = Normal operation  
1 = Individual channel ADC power-down mode  
Table 14. Register 14h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LFNS_CH[8:1]  
All bits default to '0' after reset.  
Bits D[15:8]  
Bits D[7:0]  
Must write '0'  
LFNS_CH[8:1]  
0 = Low-frequency noise suppression (LFNS) mode disabled (default)  
1 = LFNS mode enabled for individual channels  
50  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 15. Register 1Ch  
D15  
0
D14  
D13  
0
D12  
D11  
D10  
ADCLKOUT[11:0]  
D2 D1  
D9  
D8  
D0  
EN_FRAME_  
PAT  
0
D7  
D6  
D5  
D4  
D3  
ADCLKOUT[11:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
EN_FRAME_PAT  
0 = Normal operation on frame clock (default)  
1 = Enables output frame clock to be programmed through a pattern specified by the  
ADCCLKOUT register bits  
Bits D[13:12]  
Bits D[11:0]  
Must write '0'  
ADCLKOUT[11:0]  
These bits create the 12-bit pattern for the frame clock on the ADCLKP, ADCLKN pins.  
Table 16. Register 23h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
PRBS_SEED[15:0]  
D4  
D3  
PRBS_SEED[15:0]  
All bits default to '0' after reset.  
Bits D[15:0]  
PRBS_SEED[15:0]  
These bits are the lower 16 bits of the PRBS pattern starting seed value.  
The starting seed value of the PRBS test pattern can be specified using these register bits.  
Table 17. Register 24h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
0
PRBS_SEED[22:16]  
D4  
D3  
D0  
INVERT_CH[8:1]  
All bits default to '0' after reset.  
Bits D[15:9]  
PRBS_SEED[22:16]  
These bits are the seven upper bits of the PRBS seed starting value.  
Bit D8  
Must write '0'  
Bits D[7:0]  
INVERT_CH[8:1]  
0 = Normal configuration  
Normally, the IN_p pin represents the positive analog input pin and IN_n represents the  
complementary negative input.  
1 = The polarity of the analog input pins is electrically swapped  
Setting the INVERT_CH[8:1] bits causes the inputs to be swapped. IN_n now represents the  
positive input and IN_p represents the negative input.  
Copyright © 2013, Texas Instruments Incorporated  
51  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 18. Register 25h  
D15  
D14  
D13  
D12  
D11  
D10  
0
D9  
0
D8  
TP_HARD_  
SYNC  
PRBS_SEED_  
FROM_REG  
PRBS_  
MODE_2  
TP_SOFT_  
SYNC  
PRBS_TP_EN  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TEST_PATT[2:0]  
BITS_CUSTOM2[11:10]  
BITS_CUSTOM1[11:10]  
All bits default to '0' after reset.  
Bit D15  
TP_HARD_SYNC  
0 = Inactive  
1 = The external SYNC feature is enabled for syncing test patterns  
Bit D14  
PRBS_SEED_FROM_REG  
0 = Disabled  
1 = The PRBS seed can be chosen from registers 23h and 24h  
Bit D13  
Bit D12  
PRBS_MODE_2  
The PRBS 9-bit LFSR (23-bit LFSR) is the default mode.  
PRBS_TP_EN  
0 = PRBS test pattern disabled  
1 = PRBS test pattern enabled  
Bits D[11:9]  
Bit D8  
Must write '0'  
TP_SOFT_SYNC  
0 = No sync  
1 = Software sync bit for the test patterns on all eight channels  
Bit D7  
Bit D6  
Must write '0'  
TEST_PATT2  
0 = Normal operation  
1 = A repeating full-scale ramp pattern is enabled on the outputs; ensure that bits D4 and  
D5 are '0'  
Bit D5  
Bit D4  
TEST_PATT1  
0 = Normal operation  
1 = Enables a mode where the output toggles between two defined codes; ensure that bits  
D4 and D6 are '0'  
TEST_PATT0  
0 = Normal operation  
1 = Enables a mode where the output is a constant specified code; ensure that bits D5 and  
D6 are '0'  
Bits D[3:2]  
Bits D[1:0]  
BITS_CUSTOM2[11:10]  
These bits are the two MSBs for the second code of the dual custom patterns.  
BITS_CUSTOM1[11:10]  
These bits are the two MSBs for the single custom pattern (and for the first code of the dual  
custom patterns).  
52  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 19. Register 26h  
D15  
D7  
D14  
D6  
D13  
D12  
D11  
D10  
D9  
D8  
BITS_CUSTOM1[9:0]  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
BITS_CUSTOM1[9:0]  
All bits default to '0' after reset.  
Bits D[15:6]  
BITS_CUSTOM1[9:0]  
These bits are the 10 lower bits for the single custom pattern (and for the first code of the  
dual custom pattern).  
Bits D[5:0]  
Must write '0'  
Table 20. Register 27h  
D15  
D7  
D14  
D6  
D13  
D12  
D11  
D10  
D9  
D8  
BITS_CUSTOM2[9:0]  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
BITS_CUSTOM2[9:0]  
All bits default to '0' after reset.  
Bits D[15:6]  
Bits D[5:0]  
BITS_CUSTOM2[9:0]  
These bits are the 10 lower bits for the second code of the dual custom pattern.  
Must write '0'  
Copyright © 2013, Texas Instruments Incorporated  
53  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 21. Register 29h  
D15  
0
D14  
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
0
D6  
0
D7  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
GLOBAL_EN  
FILTER  
EN_CHANNEL  
_AVG  
All bits default to '0' after reset.  
Bits D[15:2]  
Bit D1  
Must write '0'  
GLOBAL_EN_FILTER  
0 = Global control digital filter disabled(default)  
1 = Global control digital filter enabled  
Bit D0  
EN_CHANNEL_AVG  
0 = Channel averaging disabled (default)  
1 = Channel averaging enabled and specified by the AVG_OUTn register bits  
Table 22. Register 2Ah  
D15  
D7  
D14  
D13  
D5  
D12  
D11  
D10  
D9  
D1  
D8  
D0  
GAIN_CH4[3:0]  
GAIN_CH3[3:0]  
D6  
D4  
D3  
D2  
GAIN_CH1[3:0]  
GAIN_CH2[3:0]  
All bits default to '0' after reset.  
Bits D[15:12]  
Bits D[11:8]  
Bits D[7:4]  
Bits D[3:0]  
GAIN_CH4[3:0]  
These bits set the programmable gain for channel 4.  
GAIN_CH3[3:0]  
These bits set the programmable gain for channel 3.  
GAIN_CH2[3:0]  
These bits set the programmable gain for channel 2.  
GAIN_CH1[3:0]  
These bits set the programmable gain for channel 1.  
54  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 23. Register 2Bh  
D15  
D7  
D14  
D13  
D5  
D12  
D11  
D10  
GAIN_CH6[3:0]  
D2 D1  
GAIN_CH8[3:0]  
D9  
D8  
D0  
GAIN_CH5[3:0]  
D6  
D4  
D3  
GAIN_CH7[3:0]  
All bits default to '0' after reset.  
Bits D[15:12]  
Bits D[11:8]  
Bits D[7:4]  
Bits D[3:0]  
GAIN_CH5[3:0]  
These bits set the programmable gain for channel 4.  
GAIN_CH6[3:0]  
These bits set the programmable gain for channel 5.  
GAIN_CH7[3:0]  
These bits set the programmable gain for channel 6.  
GAIN_CH8[3:0]  
These bits set the programmable gain for channel 7.  
Table 24. Register 2Ch  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
D9  
D8  
0
AVG_OUT4[1:0]  
D7  
D6  
D5  
0
D4  
D3  
D2  
0
D1  
D0  
AVG_OUT3[1:0]  
AVG_OUT2[1:0]  
AVG_OUT1[1:0]  
All bits default to '0' after reset.  
Bits D[15:11]  
Bits D[10:9]  
Must write '0'  
AVG_OUT4[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT4.  
Bit D8  
Must write '0'  
Bits D[7:6]  
AVG_OUT3[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT3.  
Bit D5  
Must write '0'  
Bits D[4:3]  
AVG_OUT2[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT2.  
Bit D2  
Must write '0'  
Bits D[1:0]  
AVG_OUT1[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT1.  
Copyright © 2013, Texas Instruments Incorporated  
55  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 25. Register 2Dh  
D15  
0
D14  
D13  
0
D12  
0
D11  
0
D10  
D9  
D1  
D8  
0
0
AVG_OUT8[1:0]  
D7  
D6  
D5  
0
D4  
D3  
D2  
0
D0  
AVG_OUT7[1:0]  
AVG_OUT6[1:0]  
AVG_OUT5[1:0]  
All bits default to '0' after reset.  
Bits D[15:11]  
Bits D[10:9]  
Must write '0'  
AVG_OUT8[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT8.  
Bit D8  
Must write '0'  
Bits D[7:6]  
AVG_OUT7[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT7.  
Bit D5  
Must write '0'  
Bits D[4:3]  
AVG_OUT6[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT6.  
Bit D2  
Must write '0'  
Bits D[1:0]  
AVG_OUT5[1:0]  
These bits set the averaging control for data transmitted on the LVDS output OUT5.  
56  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 26. Register 2Eh  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH1  
HPF_CORNER _CH1[3:0]  
FILTER_TYPE_CH1[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH1[2:0]  
SEL_ODD_  
TAP_CH1  
USE_FILTER_  
CH1  
DEC_RATE_CH1[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH1  
This bit enables the HPF filter for channel 1.  
HPF_CORNER _CH1[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 1.  
FILTER_TYPE_CH1[2:0]  
These bits select the type of filter on channel 1.  
DEC_RATE_CH1[2:0]  
These bits set the decimation factor for the filter on channel 1.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH1  
This bit enables the odd tap filter for channel 1.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH1  
This bit enables the filter for channel 1.  
Copyright © 2013, Texas Instruments Incorporated  
57  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 27. Register 2Fh  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH2  
D6  
HPF_CORNER _CH2[3:0]  
FILTER_TYPE_CH2[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH2[2:0]  
SEL_ODD_  
TAP_CH2  
USE_FILTER_  
CH2  
DEC_RATE_CH2[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH2  
This bit enables the HPF filter for channel 2.  
HPF_CORNER _CH2[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 2.  
FILTER_TYPE_CH2[2:0]  
These bits select the type of filter on channel 2.  
DEC_RATE_CH2[2:0]  
These bits set the decimation factor for the filter on channel 2.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH2  
This bit enables the odd tap filter for channel 2.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH2  
This bit enables the filter for channel 2.  
58  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 28. Register 30h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH3  
HPF_CORNER _CH3[3:0]  
FILTER_TYPE_CH3[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH3[2:0]  
SEL_ODD_  
TAP_CH3  
USE_FILTER_  
CH3  
DEC_RATE_CH3[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH3  
This bit enables the HPF filter for channel 3.  
HPF_CORNER _CH3[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 3.  
FILTER_TYPE_CH3[2:0]  
These bits select the type of filter on channel 3.  
DEC_RATE_CH3[2:0]  
These bits set the decimation factor for the filter on channel 3.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH3  
This bit enables the odd tap filter for channel 3.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH3  
This bit enables the filter for channel 3.  
Copyright © 2013, Texas Instruments Incorporated  
59  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 29. Register 31h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH4  
D6  
HPF_CORNER _CH4[3:0]  
FILTER_TYPE_CH4[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH4[2:0]  
SEL_ODD_  
TAP_CH4  
USE_FILTER_  
CH4  
DEC_RATE_CH4[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH4  
This bit enables the HPF filter for channel 4.  
HPF_CORNER _CH4[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 4.  
FILTER_TYPE_CH4[2:0]  
These bits select the type of filter on channel 4.  
DEC_RATE_CH4[2:0]  
These bits set the decimation factor for the filter on channel 4.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH4  
This bit enables the odd tap filter for channel 4.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH4  
This bit enables the filter for channel 4.  
60  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 30. Register 32h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH5  
HPF_CORNER _CH5[3:0]  
FILTER_TYPE_CH5[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH5[2:0]  
SEL_ODD_  
TAP_CH5  
USE_FILTER_  
CH5  
DEC_RATE_CH5[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH5  
This bit enables the HPF filter for channel 5.  
HPF_CORNER _CH5[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 5.  
FILTER_TYPE_CH5[2:0]  
These bits select the type of filter on channel 5.  
DEC_RATE_CH5[2:0]  
These bits set the decimation factor for the filter on channel 5.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH5  
This bit enables the odd tap filter for channel 5.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH5  
This bit enables the filter for channel 5.  
Copyright © 2013, Texas Instruments Incorporated  
61  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 31. Register 33h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH6  
D6  
HPF_CORNER _CH6[3:0]  
FILTER_TYPE_CH6[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH6[2:0]  
SEL_ODD_  
TAP_CH6  
USE_FILTER_  
CH6  
DEC_RATE_CH6[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH6  
This bit enables the HPF filter for channel 6.  
HPF_CORNER _CH6[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 6.  
FILTER_TYPE_CH6[2:0]  
These bits select the type of filter on channel 6.  
DEC_RATE_CH6[2:0]  
These bits set the decimation factor for the filter on channel 6.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH6  
This bit enables the odd tap filter for channel 6.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH6  
This bit enables the filter for channel 6.  
62  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 32. Register 34h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH7  
HPF_CORNER _CH7[3:0]  
FILTER_TYPE_CH7[2:0]  
D7  
D6  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH7[2:0]  
SEL_ODD_  
TAP_CH7  
USE_FILTER_  
CH7  
DEC_RATE_CH7[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH7  
This bit enables the HPF filter for channel 7.  
HPF_CORNER _CH7[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 7.  
FILTER_TYPE_CH7[2:0]  
These bits select the type of filter on channel 7.  
DEC_RATE_CH7[2:0]  
These bits set the decimation factor for the filter on channel 7.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH7  
This bit enables the odd tap filter for channel 7.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH7  
This bit enables the filter for channel 7.  
Copyright © 2013, Texas Instruments Incorporated  
63  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 33. Register 35h  
D15  
0
D14  
D13  
D12  
D11  
D10  
D2  
D9  
D8  
HPF_EN_CH8  
D6  
HPF_CORNER _CH8[3:0]  
FILTER_TYPE_CH8[2:0]  
D7  
D5  
D4  
D3  
0
D1  
0
D0  
FILTER_TYPE  
_CH8[2:0]  
SEL_ODD_  
TAP_CH8  
USE_FILTER_  
CH8  
DEC_RATE_CH8[2:0]  
All bits default to '0' after reset.  
Bit D15  
Bit D14  
Must write '0'  
HPF_EN_CH8  
This bit enables the HPF filter for channel 8.  
HPF_CORNER _CH8[3:0]  
Bits D[13:10]  
Bits D[9:7]  
Bits D[6:4]  
These bits program the HPF corner for channel 8.  
FILTER_TYPE_CH8[2:0]  
These bits select the type of filter on channel 8.  
DEC_RATE_CH8[2:0]  
These bits set the decimation factor for the filter on channel 8.  
Must write '0'  
Bit D3  
Bit D2  
SEL_ODD_TAP_CH8  
This bit enables the odd tap filter for channel 8.  
Must write '0'  
Bit D1  
Bit D0  
USE_FILTER_CH8  
This bit enables the filter for channel 8.  
64  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 34. Register 38h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
0
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
DATA_RATE[1:0]  
All bits default to '0' after reset.  
Bits D[15:2]  
Bits D[1:0]  
Must write '0'  
DATA_RATE[1:0]  
Bits D1 and D0 select the output data rate depending on the type of filter.  
Table 35. Register 40h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
ENABLE 40  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ODD_EVEN_SEL  
All bits default to '0' after reset.  
Bits D15  
Enable 40  
0 = Disable bits D[7:0] of register 40h  
1 = Enable bits D[7:0] of register 40h  
Bits D[14:8]  
Bits D[:0]  
Must write '0'  
ODD_EVEN_SEL[7:0]  
8000 = Input pins IN1, IN3, IN5, and IN7 are interleaved  
80FF = Input pins IN2, IN4, IN6, and IN8 are interleaved  
For more details on this bit, see the Interleaving Mode section.  
Copyright © 2013, Texas Instruments Incorporated  
65  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 36. Register 42h  
D15  
D14  
D13  
0
D12  
D11  
D10  
0
D9  
0
D8  
0
EN_PHASE_  
DDR  
0
0
0
D7  
0
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
PHASE_DDR1 PHASE_DDR0  
All bits default to '0' after reset.  
Bit D15  
EN_PHASE_DDR  
This bit enables LCLK phase programmability.  
0 = Disable bits D[6:5] of register 42h  
1 = Enable bits D[6:5] of register 42h  
Bits D[14:7]  
Bits D[6:5]  
Must write '0'  
PHASE_DDR[1:0]  
These bits control the LCLK output phase relative to data.  
Refer to the Programmable LCLK Phase section.  
Bits D[4:0]  
Must write '0'  
Table 37. Register 45h  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
PAT_DESKEW_SYNC[1:0]  
All bits default to '0' after reset.  
Bits D[15:2]  
Bit D1  
Must write '0'  
PAT_DESKEW_SYNC1  
0 = Inactive  
1 = Sync pattern mode enabled; ensure that D0 is '0'  
Bit D0  
PAT_DESKEW_SYNC0  
0 = Inactive  
1 = Deskew pattern mode enabled; ensure that D1 is '0'  
66  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 38. Register 46h  
D15  
D14  
0
D13  
D12  
0
D11  
D10  
D2  
D9  
D8  
ENABLE 46  
FALL_SDR  
EN_BIT_SER  
D7  
0
D6  
0
D5  
0
D4  
D3  
D1  
0
D0  
0
EN_MSB_  
FIRST  
EN_SDR  
BTC_MODE  
All bits default to '0' after reset. Note that bit D15 must be set to '1' to enable bits D[13:0].  
Bit D15  
ENABLE 46  
0 = Disable bits D13, D[11:8] and D[4:2] of register 46h  
1 = Enable bits D13, D[11:8] and D[4:2] of register 46h  
Bit D14  
Bit D13  
Must write '0'  
FALL_SDR  
0 = The LCLK rising or falling edge comes at the edge of the data window when operating in  
SDR output mode  
1 = The LCLK rising or falling edge comes in the middle of the data window when operating  
in SDR output mode  
Bit D12  
Must write '0'  
EN_BIT_SER  
Bits D[11:8]  
0001 = 10-bit serialization mode enabled  
0010 = 12-bit serialization mode enabled  
0100 = 14-bit serialization mode enabled  
Do not use any other bit combinations.  
Bits D[7:5]  
Bit D4  
Must write '0'  
EN_SDR  
0 = DDR bit clock  
1 = SDR bit clock  
Bit D3  
EN_MSB_FIRST  
0 = LSB first  
1 = MSB first  
Bit D2  
BTC_MODE  
0 = Binary offset (ADC data output format)  
1 = Twos complement (ADC data output format)  
Bit D[1:0]  
Must write '0'  
Copyright © 2013, Texas Instruments Incorporated  
67  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Programmable LVDS Mapping Mode Registers  
Table 39. Register 50h  
D15  
D14  
0
D13  
0
D12  
0
D11  
D10  
MAP_Ch1234_to_OUT2  
D2 D1  
MAP_Ch1234_to_OUT1  
D9  
D8  
D0  
ENABLE 50  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
All bits default to '0' after reset.  
Bit D15  
ENABLE 50  
0 = Disable bits D[11:8] and D[3:0] of register 50h.  
1 = Enable bits D[11:8] and D[3:0] of register 50h.  
Bits D[14:12], D[7:4]  
Bits D[11:8]  
Must write '0'  
MAP_Ch1234_to_OUT2  
These bits set the OUT2 pin pair to the channel data mapping selection.  
MAP_Ch1234_to_OUT1  
Bits D[3:0]  
These bits set the OUT1 pin pair to the channel data mapping selection.  
Table 40. Register 51h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
ENABLE 51  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
MAP_Ch1234_to_OUT3  
All bits default to '0' after reset.  
Bit D15  
ENABLE 51  
0 = Disable bits D[7:4] of register 51h  
1 = Enable bits D[7:4] of register 51h.  
Bits D[14:8], D[3:0]  
Bits D[7:4]  
Must write '0'  
MAP_Ch1234_to_OUT3  
These bits set the OUT3 pin pair to the channel data mapping selection.  
68  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 41. Register 52h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
D8  
0
ENABLE 52  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
MAP_Ch1234_to_OUT4  
All bits default to '0' after reset.  
Bit D15  
ENABLE 52  
0 = Disable bits D[3:0] of register 52h  
1 = Enable bits D[3:0] of register 52h  
Bits D[14:4]  
Bits D[3:0]  
Must write '0'  
MAP_Ch1234_to_OUT4  
These bits set the OUT4 pin pair to the channel data mapping selection.  
Table 42. Register 53h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
ENABLE 53  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
MAP_Ch5678_to_OUT5  
All bits default to '0' after reset.  
Bit D15  
ENABLE 53  
0 = Disable bits D[7:4] of register 53h.  
1 = Enable bits D[7:4] of register 53h.  
Bits D[14:8], D[3:0]  
Bits D[7:4]  
Must write '0'  
MAP_Ch5678_to_OUT5  
These bits set the OUT5 pin pair to the channel data mapping selection.  
Copyright © 2013, Texas Instruments Incorporated  
69  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 43. Register 54h  
D15  
D14  
D13  
0
D12  
0
D11  
D10  
MAP_Ch5678_to_OUT7  
D2 D1  
MAP_Ch5678_to_OUT6  
D9  
D8  
D0  
ENABLE 54  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
All bits default to '0' after reset.  
Bit D15  
ENABLE 54  
0 = Disable bits D[11:8] and D[3:0] of register 54h.  
1 = Enable bits D[11:8] and D[3:0] of register 54h.  
Bits D[14:12], D[7:4]  
Bits D[11:8]  
Must write '0'  
MAP_Ch5678_to_OUT7  
These bits set the OUT7 pin pair to the channel data mapping selection.  
MAP_Ch5678_to_OUT6  
Bits D[3:0]  
These bits set the OUT6 pin pair to the channel data mapping selection.  
Table 44. Register 55h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
ENABLE 55  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
MAP_Ch5678_to_OUT8  
All bits default to '0' after reset.  
Bit D15  
ENABLE 55  
0 = Disable bits D[7:4] of register 55h.  
1 = Enable bits D[7:4] of register 55h.  
Bits D[14:8], D[3:0]  
Bits D[7:4]  
Must write '0'  
MAP_Ch5678_to_OUT8  
These bits set the OUT8 pin pair to the channel data mapping selection.  
70  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Custom Coefficient Registers  
Table 45. Registers 5Ah to 65h(1)  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH1  
0
COEFFn_SET_CH1[11:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
COEFFn_SET_CH1[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 1.  
Bit D15  
EN_CUSTOM_FILT_CH1  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH1[11:0]  
These bits set the custom coefficient n for the channel 1 digital filter.  
Table 46. Registers 66h to 71h(1)  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
COEFFn_SET_CH2[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH2  
0
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH2[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 2.  
Bit D15  
EN_CUSTOM_FILT_CH2  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH2[11:0]  
These bits set the custom coefficient n for the channel 2 digital filter.  
Copyright © 2013, Texas Instruments Incorporated  
71  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 47. Registers 72h to 7Dh(1)  
D15  
D14  
D13  
0
D12  
D11  
D10  
COEFFn_SET_CH3[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH3  
0
0
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH3[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 3.  
Bit D15  
EN_CUSTOM_FILT_CH3  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH3[11:0]  
These bits set the custom coefficient n for the channel 3 digital filter.  
Table 48. Registers 7Eh to 89h(1)  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
COEFFn_SET_CH4[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH4  
0
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH4[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 4.  
Bit D15  
EN_CUSTOM_FILT_CH4  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH4[11:0]  
These bits set the custom coefficient n for the channel 4 digital filter.  
72  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 49. Registers 8Ah to 95h(1)  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH5  
0
COEFFn_SET_CH5[11:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
COEFFn_SET_CH5[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 5.  
Bit D15  
EN_CUSTOM_FILT_CH5  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH5[11:0]  
These bits set the custom coefficient n for the channel 5 digital filter.  
Table 50. Registers 96h to A1h(1)  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
COEFFn_SET_CH6[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH6  
0
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH6[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 6.  
Bit D15  
EN_CUSTOM_FILT_CH6  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH6[11:0]  
These bits set the custom coefficient n for the channel 6 digital filter.  
Copyright © 2013, Texas Instruments Incorporated  
73  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 51. Registers A2h to ADh(1)  
D15  
D14  
D13  
0
D12  
D11  
D10  
COEFFn_SET_CH7[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH7  
0
0
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH7[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 7.  
Bit D15  
EN_CUSTOM_FILT_CH7  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH7[11:0]  
These bits set the custom coefficient n for the channel 7 digital filter.  
Table 52. Registers AEh to B9h(1)  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
COEFFn_SET_CH8[11:0]  
D2 D1  
D9  
D8  
D0  
EN_CUSTOM_  
FILT_CH8  
0
D7  
D6  
D5  
D4  
D3  
COEFFn_SET_CH8[11:0]  
(1) n = 0 to 11.  
All bits default to '0' after reset.  
These registers are the custom coefficient registers for channel 8.  
Bit D15  
EN_CUSTOM_FILT_CH8  
0 = Built-in coefficients are used  
1 = Enables custom coefficients to be used  
Bits D[14:12]  
Bits D[11:0]  
Must write '0'  
COEFFn_SET_CH8[11:0]  
These bits set the custom coefficient n for the channel 8 digital filter.  
74  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 53. Register BEh  
D15  
D14  
0
D13  
0
D12  
D11  
D10  
0
D9  
D8  
EN_LVDS_  
PROG  
0
0
DELAY_DATA_R[1:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DELAY_LCLK_R[2:0]  
DELAY_DATA_F[1:0]  
DELAY_LCLK_F[2:0]  
All bits default to '0' after reset.  
Bit D15  
This bit enables LVDS edge delay programmability.  
Must write '0'  
Bits D[14:10]  
Bits D[9:8]  
Bits D[7:5]  
Bits D[4:3]  
Bits D[2:0]  
Refer to Table 68 for settings.  
Refer to Table 69 for settings.  
Refer to Table 68 for settings.  
Refer to Table 69 for settings.  
Table 54. Register F0h  
D15  
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
EN_EXT_REF  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
All bits default to '0' after reset.  
The EN_HIGH_ADDRS register bit (register 01h, bit D4) must be set to '1' to allow access to this register.  
Bit D15  
EN_EXT_REF  
0 = Internal reference mode (default)  
1 = External reference mode enabled; apply the reference voltages on the REFT and REFB  
pins  
Bits D[14:0]  
Must write '0'  
Copyright © 2013, Texas Instruments Incorporated  
75  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS5296A is a low-power, multichannel, analog-to-digital converter (ADC) that can be operated at sample  
rates up to 200 MSPS from a single 1.8-V supply. At the core, the device consists of eight 12-bit ADCs with  
sample rates up to 80 MSPS. By interleaving every pair of 12-bit ADCs, the effective sample rate can be doubled  
to 160 MSPS. A mode exists to operate the device as a 10-bit ADC, in which the effective sample rate can be  
increased to 200 MSPS with interleaving. In both the interleaving modes (12-bit and 10-bit), the device operates  
as a 4-channel ADC.  
When interleaving is disabled, the device can also be operated as an 8-channel 10-bit ADC up to 100 MSPS for  
systems where the SNR of the 10-bit ADC is sufficient. To summarize, the device can be configured as:  
An 8-channel, 12-bit ADC without interleaving, with sample rates up to 80 MSPS  
An 8-channel, 10-bit ADC without interleaving, with sample rates up to 100 MSPS  
A 4-channel, 12-bit ADC with interleaving, with sample rates up to 160 MSPS  
A 4-channel, 10-bit ADC with interleaving, with sample rates up to 200 MSPS  
ANALOG INPUT  
The analog input consists of a switched-capacitor-based, differential sample-and-hold architecture, as shown in  
Figure 77. This differential topology results in very good ac performance even for high input frequencies at high  
sampling rates. The INP and INM pins must be externally biased around a common-mode voltage of 0.95 V,  
available on the VCM pin. For a full-scale differential input, each input pin (IN_p, IN_n) must swing symmetrically  
between VCM + 0.5 V and VCM – 0.5 V, resulting in a 2-VPP differential input swing. The input sampling circuit  
has a high 3-dB bandwidth that extends up to 500 MHz (measured from the input pins to the sampled voltage).  
S
SZ  
RON  
25 W  
RON  
CPAR3  
100 W  
0.3 pF  
Sampling  
Switch  
LPKG  
2 nH  
S
Sampling  
Capacitor  
15 W  
INP  
RON  
10 W  
CBOND  
0.5 pF  
CPAR2  
1 pF  
CSAMP  
2.6 pF  
1 kW  
RESR  
200 W  
CPAR1  
1.5 pF  
RON  
40 W  
VCM  
LPKG  
2 nH  
1 kW  
CSAMP  
2.6 pF  
RON  
10 W  
15 W  
INN  
CBOND  
0.5 pF  
CPAR2  
1 pF  
Sampling  
Capacitor  
S
RESR  
Sampling  
Switch  
200 W  
RON  
RON  
25 W  
100 W  
CPAR3  
0.3 pF  
S
SZ  
Figure 77. Analog Input Equivalent Circuit  
76  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This architecture improves the  
common-mode noise immunity and even-order harmonic rejection. A small resistor (10 Ω to 20 Ω) in series with  
each input pin is recommended to damp out ringing caused by package parasitics. The drive circuits in Figure 78  
and Figure 79 show an R-C filter across the analog input pins. The purpose of the filter is to absorb the glitches  
caused by the opening and closing of the sampling capacitors. Figure 78 is recommended for driving the analog  
inputs in interleaving mode and Figure 79 can be used for non-interleaving mode .  
The analog input pins of the ADC have an internal 1k-Ω termination resistance connected to VCM voltage (see  
Figure 77 ) which allows external signals to be ac-coupled to the ADC input pins. During the sampling process, a  
common-mode current is drawn from VCM through the 1-kΩ termination. This current scales with sampling  
frequency (approximately 1 µA per MSPS) and results in a drop in the common-mode voltage of the input pins.  
The recommended range of input common-mode voltage is VCM ± 50 mV. Therefore, at higher sample rates, TI  
recommends connecting an external 25-Ω to 100-Ω termination resistor to VCM. Figure 80 and Figure 81 show  
the differential input resistance and capacitance across frequency.  
20  
0.1 PF  
10  
5 ꢀ  
INP  
INP  
100 ꢀ  
25 ꢀ  
VCM  
25 ꢀ  
6.8 pF  
Device  
3.3 pF  
Device  
100 ꢀ  
0.1 PF  
INN  
INN  
20 ꢀ  
10 ꢀ  
5 ꢀ  
Figure 78. DC-Coupled Drive Circuit with RCR  
Figure 79. AC-Coupled Drive Circuit  
2
4
3.5  
3
1.5  
1
2.5  
2
0.5  
1.5  
1
0
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Frequency (MHz)  
G043  
G044  
Figure 80. ADC Differential Input Resistance (RIN)  
vs Frequency  
Figure 81. ADC Differential Input Capacitance (CIN)  
vs Frequency  
Copyright © 2013, Texas Instruments Incorporated  
77  
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Large- and Small-Signal Input Bandwidth  
The small-signal bandwidth of the analog input circuit is high, approximately 500 MHz. When using an amplifier  
to drive the ADS5296A, the total amplifier noise up to the small-signal bandwidth must be considered. The large-  
signal bandwidth of the device depends on the amplitude of the input signal. The ADS5296A supports a 2-VPP  
amplitude for input signal frequencies up to 90 MHz. For higher frequencies, the amplitude of the input signal  
must be decreased proportionally. For example, at 180 MHz, the device supports a maximum 1-VPP signal.  
INTERLEAVING MODE  
The interleaving mode in the device can be used to sample analog inputs at frequencies greater than 100 MSPS.  
A pair of ADCs are used in interleaving mode, both of which sample the same analog input signal. The sampling  
instants of the two ADCs are interleaved in such a way that while one ADC samples the input at every odd edge  
of the device input clock, the second ADC samples the input at every even edge of the input clock, as shown in  
Figure 82.  
Sample  
N + 15  
Sample  
N + 16  
Sample  
N + 17  
Sample  
N + 14  
Sample  
N + 18  
Sample  
N + 13  
Sample  
N + 4  
Sample  
N + 3  
Sample  
N + 12  
Sample  
N + 2  
Sample  
N + 1  
Sample  
N
INP  
CLKP  
Sampling Clock  
ADCn  
Internal  
Signals  
Sampling Clock  
ADCn+1  
N
N + 2  
N + 4  
…………  
…………  
………… ……  
………… ……  
…………  
…………  
…………  
OUTn  
D9  
D9  
D0  
D0  
D9  
D9  
D0  
D0  
D0  
D0  
D9  
D9  
D0  
D0  
D9  
D9  
D0  
D0  
D9  
D9  
D0  
D0  
D1  
D1  
…………  
…………  
…………  
…………  
…………  
OUTn+1  
N + 1  
N + 3  
N + 5  
NOTE: n = 1, 3, 5, or 7.  
Figure 82. Interleaving Mode Latency Timing Diagram  
Note that in this mode, device input clock frequency is actually 2x times the sampling rate of each ADC. For  
example, when a 200-MHz clock input is applied, each ADC in the pair samples at 100 MHz, but the sampling  
instants of both ADCs are staggered (or offset) by one 200-MHz clock cycle. Each ADC converts the sampled  
values and outputs the data over separate LVDS pairs. The receiver used to capture the data from the device  
[either an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA)] must combine  
the data from the two LVDS pairs and reconstruct the data stream at 200 MSPS (see Figure 83). In this mode,  
the device operates as a 4-channel ADC because the interleaving operation requires two ADCs per channel.  
After applying a reset and enabling interleaving mode (EN_INTERLEAVE = 1), the four interleaved ADC  
channels sample the analog inputs at the odd pins (IN1, IN3, IN5, and IN7). A mode exists where the analog  
inputs at the even pins can be sampled by using the ODD_EVEN_SEL register bits. Instead of using the register  
bits, the INTERLEAVE_MUX pin can be used to select between the odd and even input pins (see Table 55).  
As Figure 82 shows, in the interleaving mode, the device input clock is divided by two to generate two sampling  
clocks which are 180° out of phase with each other. The odd ADC (ADC1, ADC3, ADC5, ADC7) in each  
interleaving pair uses one sampling clock while the even ADC (ADC2, ADC4, ADC6, ADC8) in the pair uses the  
other sampling clock. When using multiple ADS5296A devices, ensure that the sampling clock for the odd (and  
even) ADCs in every chip are synchronized. This can be achieved by using the SYNC input signal; see the  
Synchronization Using the SYNC Pin section for a description of the SYNC functionality.  
78  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Table 55. Interleaving Mode  
PIN(1)  
REGISTER BITS  
EN_MUX_REG ODD_EVEN_SEL  
MODE  
EN_  
INTERLEAVE  
INTERLEAVE_MUX  
No interleaving  
8-channel ADC mode  
IN1 OUT1, IN2 OUT2  
Don't care  
Low  
0
0
1
0
1
0
1
0
1
8000h  
Don't care  
80FFh  
IN3 OUT3, IN4 OUT4  
IN5 OUT5, IN6 OUT6  
IN7 OUT7, IN8 OUT8  
0
0
0
1
1
1
1
No interleaving  
8-channel ADC mode  
IN1 OUT2, IN2 OUT1  
Don't care  
High  
IN3 OUT4, IN4 OUT3  
IN5 OUT6, IN6 OUT5  
IN7 OUT8, IN8 OUT7  
Don't care  
8000h  
Interleaving enabled  
4-channel ADC mode  
IN1 OUT1, OUT2  
Don't care  
Low  
IN3 OUT3, OUT4  
IN5 OUT5, OUT6  
IN7 OUT7, OUT8  
Don't care  
80FFh  
Interleaving enabled  
4-channel ADC mode  
IN2 OUT1, OUT2  
Don't care  
High  
IN4 OUT3, OUT4  
IN6 OUT5, OUT6  
IN8 OUT7, OUT8  
Don't care  
(1) INTERLEAVE_MUX has an internal pull-up resistor to supply.  
Copyright © 2013, Texas Instruments Incorporated  
79  
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
The block diagrams for interleaving even input pins and interleaving odd input pins are shown in Figure 83 and  
Figure 84.  
EN_INTERLEAVE Register Bits = 1, EN_MUX_REG = 0, and ODD_EVEN_SEL = 8000h,  
or  
EN_INTERLEAVE Register Bits = 1, EN_MUX_REG = 1, and INTERLEAVE_MUX Pin Low  
OUT1  
IN1  
Sample N  
IN1  
Sample N+2  
ADC 1  
IN1_p, IN1_n  
IN2_p, IN2_n  
OUT2  
ADC 2  
IN1  
Sample N+1  
IN1  
Sample N+3  
OUT3  
OUT4  
IN3  
Sample N  
IN3  
Sample N+2  
IN3_p, IN3_n  
IN4_p, IN4_n  
IN3  
IN3  
Sample N+1  
Sample N+3  
OUT5  
OUT6  
IN5  
Sample N  
IN5  
Sample N+2  
IN5_p, IN5_n  
IN6_p, IN6_n  
IN5  
IN5  
Sample N+1  
Sample N+3  
OUT7  
OUT8  
IN7  
Sample N  
IN7  
Sample N+2  
IN7_p, IN7_n  
IN8_p, IN8_n  
IN7  
IN7  
Sample N+1  
Sample N+3  
Figure 83. Odd Input Pins, Interleaved  
EN_INTERLEAVE Register Bits = 1, EN_MUX_REG = 0, and ODD_EVEN_SEL = 80FFh,  
or  
EN_INTERLEAVE Register Bits = 1, EN_MUX_REG = 1, and INTERLEAVE_MUX Pin High  
OUT1  
OUT2  
IN2  
Sample N  
IN2  
Sample N+2  
ADC 1  
IN1_p, IN1_n  
IN2_p, IN2_n  
ADC 2  
IN2  
Sample N+1  
IN2  
Sample N+3  
OUT3  
OUT4  
IN4  
Sample N  
IN4  
Sample N+2  
IN3_p, IN3_n  
IN4_p, IN4_n  
IN4  
IN4  
Sample N+1  
Sample N+3  
OUT5  
OUT6  
IN6  
Sample N  
IN6  
Sample N+2  
IN5_p, IN5_n  
IN6_p, IN6_n  
IN6  
IN6  
Sample N+1  
Sample N+3  
OUT7  
OUT8  
IN8  
Sample N  
IN8  
Sample N+2  
IN7_p, IN7_n  
IN8_p, IN8_n  
IN8  
IN8  
Sample N+1  
Sample N+3  
Figure 84. Even Input Pins, Interleaved  
80  
Copyright © 2013, Texas Instruments Incorporated  
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
CLOCK INPUT  
The device can operate with both single-ended (CMOS) and differential input clocks (such as sine wave,  
LVPECL, and LVDS). Operating with a low-jitter differential clock is recommended for good SNR performance,  
especially at input frequencies greater than 30 MHz. In differential mode, the clock inputs are internally biased to  
a 0.95-V common-mode voltage. While driving with an external LVPECL or LVDS driver, TI recommends ac-  
coupling the clock signals so that the clock pins are correctly biased to the common-mode voltage (0.95 V). To  
operate using a single-ended clock, connect a CMOS clock source to CLKP and tie CLKN to GND. The device  
automatically detects the presence of a single-ended clock without requiring any configuration and disables  
internal biasing. Typical clock termination schemes are shown in Figure 85, Figure 86, Figure 87, and Figure 88.  
Figure 89 and Figure 90 show the equivalent circuit of the clock pins in both single-ended and differential modes.  
0.1 mF  
0.1 mF  
CLKP  
CLKP  
RTERM  
Differential  
LVPECL  
Clock Input  
Differential  
Sine-Wave  
Clock Input  
0.1 mF  
0.1 mF  
CLKN  
CLKN  
RTERM  
Figure 85. Differential Sine-Wave Clock  
Driving Circuit  
Figure 86. Differential LVPECL Clock  
Driving Circuit  
0.1 mF  
CMOS  
Clock Input  
CLKP  
CLKP  
Differential  
LVDS  
Clock Input  
RTERM  
0.1 mF  
CLKN  
CLKN  
Figure 87. Differential LVDS Clock Driving Circuit  
Figure 88. Single-Ended Clock Driving Circuit  
CLKP  
CLKP  
Internal single ended  
clock buffer  
Internal differential  
clock buffer  
CLKN  
CLKN  
Device  
Device  
Figure 89. Input Clock Equivalent Circuit:  
Single-Ended Mode  
Figure 90. Input Clock Equivalent Circuit:  
Differential Mode  
Copyright © 2013, Texas Instruments Incorporated  
81  
 
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
EXTERNAL REFERENCE MODE OF OPERATION  
For normal operation, the device requires two reference voltages (REFT and REFB) that are generated internally  
by default, as shown in Figure 91. The value of the reference voltage determines the actual ADC full-scale input  
voltage, as shown in Equation 1:  
Full-Scale Input Voltage = 2 ´ (VREFT - VREFB  
)
(1)  
Device  
EN_EXT_REF  
EN_EXT_REF  
Internal  
Reference  
REFT  
REFB  
REF Amp  
ADC  
Figure 91. Reference Equivalent Circuit  
Any error in the reference results in a deviation of the full-scale input range from its ideal value of 2.0 VPP, as  
shown in Equation 2:  
Error in Full-Scale Voltage = 2x [Error in (VREFT – VREFB)]  
(2)  
The reference inaccuracy results in a gain error, which is defined as Equation 3:  
100  
Gain Error (%) = Error in Full-Scale Voltage ´  
Ideal Full-Scale Voltage  
100  
= 2x [Error in (VREFT - VREFB)] ´  
2.0  
(3)  
To minimize gain error, the internal reference voltages are trimmed to an accuracy of ±1.5%. To obtain even  
lower gain error, the device supports an external reference mode of operation. In this mode, the internal  
reference amplifiers are powered down and an external amplifier must force the reference voltages on the REFT  
and REFB pins. For example, this mode can be used to ensure that multiple ADS5296A devices in the system  
have nearly the same full-scale voltage.  
To enable external reference mode, set the register bits as shown in Table 56. These settings power-down the  
internal reference amplifier and the two reference voltages can be forced directly on the REFT and REFB pins as  
VREFT = 1.45 V and VREFB = 0.45 V, respectively.  
Table 56. External Reference Function  
FUNCTION  
EN_HIGH_ADDRS  
EN_EXT_REF  
External reference using the REFT, REFB pins  
1
1
Because the internal reference amplifiers are powered down, the accuracy of the full-scale voltage is determined  
by the accuracy of (VREFT – VREFB), where VREFT is the voltage forced on REFT and VREFB is the voltage forced  
on REFB. Note that although the nominal value of (VREFT – VREFB) = 1.0 V, ensure that Equation 4 is met:  
[(VREFT + VREFB) / 2 = 0.950 V ± 50 mV]  
(4)  
82  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Figure 92 shows an example of driving the reference pins. The 1-µF bypass capacitor helps provide the  
switching current drawn by the REFT and REFB pins. The external amplifier must provide an average current of  
5 mA or less at the maximum sample rate. Performance in the external reference mode depends on sampling  
speed. At low sampling speeds (for instance, 20 MSPS), performance is the same as that of an internal  
reference. At higher speeds, performance degrades because of the effect of parasitic bond-wire inductance of  
the REF pins. Figure 93 highlights the difference in SNR between the external and internal reference modes.  
RS  
+
REFT  
VT  
VB  
-
1 mF  
Precision  
Reference  
Device  
+
RS  
REFB  
-
1 mF  
Figure 92. Driving Reference Inputs in External Reference Mode  
73  
SNR in External Reference  
SNR in Internal Reference  
72  
71  
70  
69  
68  
67  
66  
65  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MSPS)  
G045  
Figure 93. SNR in Internal and External Reference Mode  
Copyright © 2013, Texas Instruments Incorporated  
83  
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
LOW-FREQUENCY NOISE SUPPRESSION  
The low-frequency noise suppression (LFNS) mode is particularly useful in applications where good noise  
performance is desired in the low-frequency band of dc to 1 MHz. By setting this mode, the low-frequency noise  
spectrum band around dc is shifted to a similar band around fS / 2 (or the Nyquist frequency). As a result, the  
noise spectrum from dc to approximately 1 MHz improves significantly, as shown in Figure 94, Figure 95, and  
Figure 96.  
This function can be selectively enabled in each channel using the LFNS_CH register bits. Figure 94, Figure 95,  
and Figure 96 show the effect of this mode on the spectrum.  
0
−10  
0
−10  
SNR = 70.3 dBFS  
SINAD = 70.1 dBFS  
SFDR = 82.7 dBc  
THD = 82.2 dBc  
LF Noise Suppression Enabled  
LF Noise Suppression Disabled  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−80  
−70  
−90  
−80  
−100  
−110  
−120  
−130  
−140  
−90  
−100  
−110  
−120  
0
10  
20  
30  
40  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Frequency (MHz)  
1
Frequency (MHz)  
G029  
G030  
Figure 94. Full-Band FFT, 5-MHz Input  
(80-MHz FS with LFNS Enabled)  
Figure 95. 0-MHz to 1-MHz FFT, 5-MHz Input  
(80-MHz FS with LFNS Enabled)  
0
−10  
LF Noise Suppression Enabled  
LF Noise Suppression Disabled  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
39 39.1 39.2 39.3 39.4 39.5 39.6 39.7 39.8 39.9 40  
Frequency (MHz)  
G031  
Figure 96. 39-MHz to 40-MHz FFT, 5-MHz Input  
(80-MHz FS with LFNS Enabled)  
84  
Copyright © 2013, Texas Instruments Incorporated  
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
DIGITAL PROCESSING BLOCKS  
The device integrates a set of commonly-used digital functions that can be used to ease system design. These  
functions are shown in Figure 97 and are described in the following sections.  
LVDS Outputs  
Test  
Patterns,  
Ramp  
Channel 1 ADC Data  
12-Bit  
ADC  
Channel 1  
Serializer  
Wire 1  
OUT1  
Average of  
2 Channels  
Built-In Coefficients  
Decimate  
By 2 or 4  
24-Tap Filter  
(Even Tap)  
ADC Data:  
Channel 2  
Channel 3  
Channel 4  
Channel 2  
23-Tap Tilter  
(Odd Tap)  
Serializer  
Wire 1  
Average of  
4 Channels  
OUT2  
OUT3  
OUT4  
Mapper  
Custom Coefficients  
Decimate  
By 2, 4,  
or 8  
24-Tap Filter  
(Even Tap)  
4:4  
Multiplexer  
Channel 3  
Gain  
(0 dB to 12 dB,  
in 1-dB steps)  
Serializer  
Wire 1  
23-Tap Filter  
(Odd Tap)  
12-Tap Filter  
Channel 4  
Serializer  
Wire 1  
Digital Processing Block for Channel 1  
Digital Processing Block for Channel 2  
12-Bit  
ADC  
Channel 2 ADC Data  
Channel 3 ADC Data  
12-Bit  
ADC  
Digital Processing Block for Channel 3  
Digital Processing Block for Channel 4  
12-Bit  
ADC  
Channel 4 ADC Data  
1/2 of Device  
Figure 97. Digital Processing Block Diagram  
Digital Gain  
The device includes programmable digital gain settings from 0 dB to 12 dB, in 1-dB steps. The benefit of digital  
gain is obtaining improved SFDR performance. However, SFDR improvement is achieved at the expense of  
SNR; for each gain setting, SNR degrades by approximately 1 dB. Therefore, gain can be used to trade-off  
between SFDR and SNR.  
For each gain setting, the supported analog input full-scale range scales proportionally, as shown in Table 57.  
After reset, the device comes up in 0-dB gain mode. To use other gain settings, program the GAIN_CHn[3:0]  
register bits.  
Table 57. Analog Full-Scale Range Across Gains  
GAIN_CHn[3:0]  
DIGITAL GAIN (dB)  
ANALOG FULL-SCALE INPUT (VPP)  
0000  
0001  
0
2
1
1.78  
1.59  
1.42  
1.26  
1.12  
1
0010  
2
0011  
3
0100  
4
0101  
5
0110  
6
0111  
7
0.89  
0.8  
1000  
8
1001  
9
0.71  
0.63  
0.56  
0.5  
1010  
10  
11  
1011  
1100  
12  
Other combinations  
Do not use  
Copyright © 2013, Texas Instruments Incorporated  
85  
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Digital Filter  
The digital processing block includes the option to filter and decimate the ADC data outputs digitally. Various  
filters and decimation rates are supported: decimation rates of 2, 4, and 8, and low-pass, high-pass, and band-  
pass filters are available.  
The filters are internally implemented as 24-tap symmetric finite impulse response (FIR) filters (even-tap) using  
the predefined coefficients of Equation 5:  
y(n) =  
1
211  
´ [h0.x(n) + h1.x(n-1) + h2.x(n-2) + ... + h11.x(n-11) + h12.x(n-12) + ... + h1.x (n-22) + h0.x(n-23)]  
(5)  
Alternatively, some filters can be configured as 23-tap symmetric FIR filters (odd-tap), as described in  
Equation 6:  
y(n) =  
1
211  
´ [h0.x(n) + h1.x(n-1) + h2.x(n-2) + ... + h10.x(n-10) + h11.x(n-11) + h10.x(n-12) + ... + h1.x (n-21) + h0.x(n-22)]  
(6)  
In Equation 5 and Equation 6, h0 through h11 are 12-bit, signed, twos complement representations of the  
coefficients (–2048 to +2047). x(n) is the filter input data sequence and y(n) is the filter output sequence.  
Details of the registers used for configuring the digital filters are described in the digital filter registers (registers  
29h, 2Eh, 2Fh, 30h, 31h, and 38h) and Table 58. Table 58 gives a summary of the register bits to be used for  
each filter type.  
Table 58. Digital Filters  
USE_  
FILTER_  
CHn  
EN_  
CUSTOM_  
FILT_CHn  
DATA_ DEC_RATE  
RATE  
FILTER_  
TYPE_CHn  
ODD_  
TAP_CHn  
EN_DIG_  
FILTER  
DECIMATION  
TYPE OF FILTER  
_CHn(1)  
Built-in, low-pass, odd-tap filter  
(pass band = 0 to fS / 4)  
01  
000  
000  
001  
010  
011  
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Decimate-by-2  
Built-in, high-pass, odd-tap filter  
(pass band = 0 to fS / 4)  
01  
10  
10  
000  
001  
001  
Built-in, low-pass, even-tap filter  
(pass band = 0 to fS / 8)  
Built-in, first band-pass, even-tap filter  
(pass band = fS / 8 to fS / 4)  
Decimate-by-4  
Built-in, second band-pass,  
even-tap filter  
10  
001  
100  
0
1
0
1
(pass band = fS / 4 to 3 fS / 8)  
Built-in, high-pass, odd-tap filter  
(pass band = 3 fS / 8 to fS / 2)  
10  
01  
10  
11  
00  
001  
000  
001  
100  
011  
101  
000  
000  
000  
000  
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
Custom filter  
(user-programmable coefficients)  
Decimate-by-2  
Decimate-by-4  
Decimate-by-8  
0 or 1  
0 or 1  
0 or 1  
0
Custom filter  
(user-programmable coefficients)  
Custom filter  
(user-programmable coefficients)  
12-tap filter, no Custom filter  
decimation (user-programmable coefficients)  
(1) The DEC_RATE_CHn value must be the same for all channels.  
86  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Predefined Coefficients  
The built-in filter types (low pass, high pass, and band pass) use predefined coefficients. The frequency  
response of the built-in filters is shown in Figure 98 and Figure 99.  
The predefined coefficients for the decimate-by-2 and decimate-by-4 filters are listed in Table 59 and Table 60,  
respectively.  
20  
10  
40  
30  
Low-Pass  
High-Pass  
Low-Pass  
Band-Pass 1  
Band-Pass 2  
High-Pass  
20  
0
10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fIN/fS)  
Normalized Frequency (fIN/fS)  
G024  
G025  
Figure 98. Filter Response (Decimate-by-2)  
Figure 99. Filter Response (Decimate-by-4)  
Table 59. Predefined Coefficients for Decimate-by-2 Filters  
DECIMATE-BY-2 FILTERS  
COEFFICIENTS  
LOW-PASS  
HIGH-PASS  
–22  
h0  
h1  
3
0
–65  
h2  
5
–52  
h3  
1
30  
h4  
–27  
–2  
66  
h5  
–35  
h6  
73  
–107  
38  
h7  
3
h8  
–178  
–4  
202  
h9  
–41  
h10  
h11  
636  
1024  
–644  
1061  
Copyright © 2013, Texas Instruments Incorporated  
87  
 
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
Table 60. Predefined Coefficients for Decimate-by-4 Filters  
DECIMATE-BY-4 FILTERS  
COEFFICIENTS  
LOW-PASS  
–17  
–50  
71  
1st BAND-PASS  
2nd BAND-PASS  
HIGH-PASS  
h0  
h1  
–7  
19  
–34  
–34  
–101  
43  
40  
–15  
–95  
22  
h2  
–47  
127  
73  
h3  
46  
h4  
24  
58  
–8  
h5  
–42  
–100  
–97  
8
0
–28  
–5  
–81  
106  
–62  
–97  
310  
–501  
575  
h6  
86  
h7  
117  
–190  
–464  
–113  
526  
–179  
294  
86  
h8  
h9  
202  
414  
554  
h10  
h11  
–563  
352  
Custom Filter Coefficients  
In addition to the built-in filters described in the Predefined Coefficients section, customers also have the option  
of using their own custom, 12-bit, signed coefficients. Because of the symmetric FIR implementation of the filters,  
only 12 coefficients can be specified with the configurations in Equation 5 or Equation 6. These coefficients (h0  
to h11) must be configured in the custom coefficient registers, as shown in Equation 7:  
Register Content = 12-Bit Signed Representation of (Real Coefficient Value × 211)  
(7)  
The 12 custom coefficients must be loaded into 12 separate registers for each channel (refer to the custom  
coefficient registers, 5Ah to B9h). The MSB bit of each coefficient register determines whether built-in filters or  
custom filters are used. If the EN_CUSTOM_FILT MSB bit is reset to '0', then built-in filter coefficients are used.  
Otherwise, custom coefficients are used.  
Custom Filter without Decimation  
Another mode is available that enables the use of the digital filter without decimation. In this mode, the filter  
behaves similar to a 12-tap symmetric FIR filter, as shown in Equation 8:  
y(n) =  
1
211  
´ [h6.x(n) + h7.x(n-1) + h8.x(n-2) + h9.x(n-3) + h10.x(n-4) + h11.x(n-5) +  
+ h11.x(n-6) + h10.x(n-7) + h9.x(n-8) + h8.x(n-9) + h7.x(n-10) + h6.x (n-11)]  
(8)  
In Equation 8, h6 through h11 are 12-bit, signed, twos complement representations of the coefficients (–2048 to  
+2047). x(n) is the filter input data sequence and y(n) is the filter output sequence.  
In this mode, because the filter is implemented as a 12-tap symmetric FIR, only six custom coefficients must be  
specified and loaded in registers h6 to h11 (refer to the custom coefficient registers, 5Ah to B9h). To enable this  
mode, use the register setting specified in bit 15 of registers AEh to B9h.  
Digital High-Pass Filter  
In addition to the 12 tap filters described previously, the digital processing block also includes a separate high-  
pass filter for each channel. The high-pass corner frequency can be programmed using bits D[14:10] in register  
2Eh.  
88  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Digital Averaging  
The device includes an averaging function where the ADC digital data from two (or four) channels can be  
averaged. The averaged data are output on specific LVDS channels. Table 61 shows the combinations of the  
input channels that can be averaged and the LVDS channels on which the averaged data are available.  
Table 61. Using Channel Averaging  
OUTPUT WHERE  
AVERAGED CHANNELS AVERAGED DATA ARE  
AVAILABLE AT  
REGISTER SETTINGS  
1, 2  
1, 2  
OUT1  
OUT3  
OUT4  
OUT2  
OUT1  
OUT4  
OUT5  
OUT7  
OUT8  
OUT6  
OUT5  
OUT8  
Set AVG_OUT1 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT3 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT4 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT2 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT1 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT4 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT5 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT7 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT8 = 10 and EN_CHANNEL_AVG = 1  
Set AVG_OUT6 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT5 = 11 and EN_CHANNEL_AVG = 1  
Set AVG_OUT8 = 11 and EN_CHANNEL_AVG = 1  
3, 4  
3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
5, 6  
5, 6  
7, 8  
7, 8  
5, 6, 7, 8  
5, 6, 7, 8  
Performance with Digital Processing Blocks  
In applications where higher SNR performance is desired, digital processing blocks (such as averaging and  
decimation filters) can be used advantageously to achieve higher performance. Table 62 shows the improvement  
in SNR that can be achieved compared to the default value, using these modes.  
Table 62. SNR Improvement Using Digital Processing  
TYPICAL IMPROVEMENT IN  
MODE  
TYPICAL SNR (dB)(1)  
SNR (dB)  
Default  
70.4  
75.4  
76.7  
75  
NA  
5
With decimate-by-2 filter enabled  
With decimate-by-4 filter enabled  
With two channels averaged  
With four channels averaged  
6.3  
4.6  
5.4  
75.8  
(1) In all modes (except default), 14x serialization is used to capture data.  
Copyright © 2013, Texas Instruments Incorporated  
89  
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
PROGRAMMABLE MAPPING BETWEEN INPUT CHANNELS AND OUTPUT PINS  
The device has eight pairs of LVDS channel outputs. The mapping of ADC channels to LVDS output channels is  
programmable to allow for flexibility in board layout. Control register mapping is shown in Table 63. The eight  
LVDS channel outputs are split into two groups of four LVDS pairs. Within each group, four ADC input channels  
can be multiplexed to the four LVDS pairs.  
Table 63. Mapping Control Registers  
ADDRESS  
(Hex)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NAME  
1
1
1
1
1
1
1
1
X
X
X
X
MAP_Ch1234_to_OUT1  
MAP_Ch1234_to_OUT2  
MAP_Ch1234_to_OUT3  
MAP_Ch1234_to_OUT4  
MAP_Ch5678_to_OUT5  
MAP_Ch5678_to_OUT6  
MAP_Ch5678_to_OUT7  
MAP_Ch5678_to_OUT8  
50  
X
X
X
X
51  
52  
53  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
54  
55  
X
X
X
X
X
X
X
X
Input channels 1 to 4 can be mapped to any LVDS output (OUT1 to OUT4) using the MAP_CH1234_TO_OUTn  
bits, as shown in Table 64.  
Table 64. Mapping Analog Inputs IN1-IN4 to LVDS Outputs OUT1-4  
MAP_CH1234_TO_OUTN[3:0](1)  
MAPPING  
ADC input channel IN1 to OUTn  
0000  
0010  
0100  
0110  
1xxx  
ADC input channel IN2 to OUTn  
ADC input channel IN3 to OUTn  
ADC input channel IN4 to OUTn  
LVDS output buffer OUTn powered down  
(1) n = 1, 2, 3, or 4.  
90  
Copyright © 2013, Texas Instruments Incorporated  
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Similarly, input channels 5 to 8 can be mapped to any LVDS output (OUT5 to OUT8) using the  
MAP_CH5678_TO_OUTn bits, as shown in Table 65. Both multiplexing options are controlled by registers 50h to  
55h. The channel mapping block diagram is illustrated in Figure 100.  
Table 65. Mapping analog inputs IN8-IN8 to LVDS outputs OUT5-8  
MAP_CH5678_TO_OUTN[3:0](1)  
MAPPING  
ADC input channel IN8 to OUTn  
0000  
0010  
0100  
0110  
1xxx  
ADC input channel IN7 to OUTn  
ADC input channel IN6 to OUTn  
ADC input channel IN5 to OUTn  
LVDS output buffer OUTn powered down  
(1) n = 5, 6, 7, or 8.  
Channel 8 Data  
MAP_CH5678_to_OUTn[3:0] = 0000  
Channel 7 Data  
MAP_CH5678_to_OUTn[3:0] = 0010  
(1)  
OUTn  
Channel 6 Data  
MAP_CH5678_to_OUTn[3:0] = 0100  
MAP_CH5678_to_OUTn[3:0] = 1xxx,  
the unused OUTn LVDS buffer is powered down.  
Channel 5 Data  
MAP_CH5678_to_OUTn[3:0] = 0110  
Channel 4 Data  
MAP_CH1234_to_OUTn[3:0] = 0110  
Channel 3 Data  
MAP_CH1234_to_OUTn[3:0] = 0100  
(1)  
OUTn  
Channel 2 Data  
MAP_CH1234_to_OUTn[3:0] = 0010  
MAP_CH1234_to_OUTn[3:0] = 1xxx,  
the unused OUTn LVDS buffer is powered down.  
Channel 1 Data  
MAP_CH1234_to_OUTn[3:0] = 0000  
(1) For channels 1 to 4, n = 1, 2, 3, 4. For channels 5 to 8, n = 5, 6, 7, 8.  
Figure 100. Channel Mapping  
The default mapping is shown in Table 66.  
Table 66. Default Mapping After Reset  
ANALOG INPUT CHANNEL  
Channel IN1  
LVDS OUTPUT  
OUT1  
Channel IN2  
OUT2  
Channel IN3  
OUT3  
Channel IN4  
OUT4  
Channel IN5  
OUT5  
Channel IN6  
OUT6  
Channel IN7  
OUT7  
Channel IN8  
OUT8  
Copyright © 2013, Texas Instruments Incorporated  
91  
 
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
SYNCHRONIZATION USING THE SYNC PIN  
The SYNC pin can be used to synchronize:  
The data output across channels within the same device or  
The data from channels across multiple devices when decimation filters are used  
The odd and even ADC sampling instants across multiple devices in interleaving mode  
When decimation filters are used (if the decimate-by-2 filter is enabled, for example), then effectively the device  
outputs one digital code for every two analog input samples. If the SYNC pulse is not used, then the filters are  
not synchronized (even within a device). When the filters are not synchronized, one channel may be transmitting  
codes corresponding to input samples N, N+1, and so on, while another channel may be transmitting codes  
corresponding to N+1, N+2, and so on.  
To achieve synchronization across multiple devices, the SYNC pulse must arrive at all ADS5296A devices at the  
same time (as shown in Figure 101). The ADS5296A generates an internal synchronization signal that resets the  
internal clock dividers used by the decimation filter and in the interleaving mode. Using the SYNC signal in this  
manner ensures that all channels output digital codes corresponding to the same set of input samples.  
Synchronizing the filters using the SYNC pin is enabled by default. No register bits are required to be written.  
The TP_HARD_SYNC register bit must be reset to '0' for this mode to function properly. As shown in Figure 101,  
the SYNC rising edge can be positioned anywhere within the window. SYNC width must be at least one clock  
cycle.  
In addition, SYNC can also be used to synchronize the RAMP test patterns across channels. In order to  
synchronize the test patterns, TP_HARD_SYNC must be set to '1'. Setting TP_HARD_SYNC to '1' actually  
disables the sync of the filters.  
0 ns  
tCLK / 2  
ADC Input  
Clock  
-1 ns  
tCLK / 2  
tD = -1 ns < tD < tCLK / 2  
SYNC  
tWIDTH ³ 1 Clock Cycle  
Figure 101. SYNC Timing Diagram  
Synchronizing ADC Sampling Instants (Non-Interleaving mode)  
Note that in the non-interleaved mode, the SYNC cannot be used to synchronize the ADC sampling instants  
across devices. All channels within a single device sample the analog inputs simultaneously. To ensure that  
channels across two devices sample the analog inputs simultaneously, the input clock must be routed to both  
devices with an identical length. This layout ensures that the input clocks arrive at both devices at the same time.  
92  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
DIGITAL OUTPUT INTERFACE  
SERIAL LVDS INTERFACE  
The ADS5296A offers several flexible output options, making the device easy to interface to an application-  
specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Each option can be easily  
programmed using the serial interface. A summary of all available options is listed in Table 67 along with the  
default values after power-up and reset. Following Table 67, each option is described in detail.  
Table 67. Summary of Output Interface Options  
DEFAULT AFTER POWER-  
FEATURE  
OPTIONS  
12x  
UP AND RESET  
BRIEF DESCRIPTION  
12x  
12x  
10x  
Serialization factor  
To be used with digital processing functions, such as  
averaging and decimation filers.  
14x  
DDR bit clock frequency  
Frame clock frequency  
6x, 5x, 7x  
6x  
1x  
For 12x, 10x, and 14x serialization factors respectively.  
1x sample rate  
12x Serialization with DDR Bit Clock and 1x Frame Clock  
The 12-bit ADC data are serialized and output over one LVDS pair per channel along with a 6x bit clock and a 1x  
frame clock, as shown in Figure 102. The output data rate is a 12x sample rate, and maximum data rates up to  
960 Mbps are supported.  
Input Clock  
(CLK Frequency = fS)  
Frame Clock  
(ADCLK Frequency = 1x fS)  
Bit Clock  
(LCLK Frequency = 6x fS)  
Output Data(1)  
(OUTA Data rate = 12x fS)  
D11  
(D0)  
D10  
(D1)  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
D11  
(D0)  
D10  
(D1)  
Sample N  
Sample N+1  
(1) The upper data bit is the MSB-first mode data bit and the lower data bit is the LSB-first mode data bit.  
Figure 102. LVDS Output Interface Timing Diagram (12x Serialization)  
Copyright © 2013, Texas Instruments Incorporated  
93  
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
10x Serialization with DDR Bit Clock and 1x Frame Clock  
The 10 upper bits of the 12-bit ADC data are serialized and output over one LVDS pair per channel along with a  
5x bit clock and a 1x frame clock, as shown in Figure 103. The output data rate is a 10x sample rate, and  
maximum data rate ups to 1 Gbps are supported.  
Input Clock  
(CLK Frequency = fS)  
Frame Clock  
(ADCLK Frequency = 1x fS)  
Bit Clock  
(LCLK Frequency = 5x fS)  
Output Data(1)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9  
D8  
D7  
(OUTA Data rate = 10x fS)  
(D0)  
(D1)  
(D2)  
(D3)  
(D4)  
(D5)  
(D6)  
(D7)  
(D8)  
(D9)  
(D0)  
(D1)  
(D2)  
Sample N  
Sample N+1  
(1) The upper data bit is the MSB-first mode data bit and the lower data bit is the LSB-first mode data bit.  
Figure 103. LVDS Output Interface Timing Diagram (10x Serialization)  
94  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
PROGRAMMABLE LCLK PHASE  
The device enables the edge of the output bit clock (LCLK) to be programmed with the PHASE_DDR register  
bits. The default value of PHASE_DDR after reset is '10'. The default phase is shown in Figure 104.  
The phase can also be changed by changing the value of the PHASE_DDR[1:0] bits, as shown in Figure 105.  
ADCLKP  
LCLKP  
DATA  
OUT  
PHASE_DDR[1:0] = 10  
Figure 104. Default LCLK Phase  
ADCLKP  
LCLKP  
ADCLKP  
LCLKP  
DATA  
OUT  
DATA  
OUT  
PHASE_DDR[1:0] = 10  
PHASE_DDR[1:0] = 00  
ADCLKP  
LCLKP  
ADCLKP  
LCLKP  
DATA  
OUT  
DATA  
OUT  
PHASE_DDR[1:0] = 11  
PHASE_DDR[1:0] = 01  
Figure 105. Programmable LCLK Phases  
Copyright © 2013, Texas Instruments Incorporated  
95  
 
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
PROGRAMMABLE LVDS OUTPUT CLOCK AND DATA DELAYS  
The device enables the edges of the output data and output bit clock to be delayed with the DELAY_DATA and  
DELAY_LCLK register bits.  
Figure 106 details the timing of the output data and clock edge movements. Table 68 and Table 69 show the  
register settings and corresponding delay values for the data and clock edge movements.  
tDF  
DATA  
tDR  
LCLKN  
LCLKP  
tCR  
tCF  
Figure 106. LVDS Interface Output Data and Clock Edge Movement  
Table 68. LVDS Interface Output Data Delay Settings(1)  
DATA DELAY,  
RISING CLOCK EDGE(2)  
(tDR, typical, ps)  
DATA DELAY,  
FALLING CLOCK EDGE(2)  
(tDF, typical, ps)  
DELAY_DATA_R[1:0]  
DELAY_DATA_F[1:0]  
0
0
1
1
0
1
0
1
0
0
0
1
1
0
1
0
1
0
33  
33  
72  
72  
120  
120  
(1) Delay settings are the same for both 10x and 12x serialization modes.  
(2) Positive value indicates that the data edge is delayed with respect to the clock, resulting in lower setup time and higher hold time  
Table 69. LVDS Interface Output Clock Delay Settings(1)  
CLOCK RISING EDGE DELAY(2)  
(tCR, typical, ps)  
CLOCK FALLING EDGE DELAY(2)  
(tCF, typical, ps)  
DELAY_LCLK_R[2:0]  
DELAY_LCLK_F[2:0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-106  
-73  
-34  
14  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-120  
-87  
-48  
0
0
-14  
39  
53  
96  
82  
138  
124  
(1) Delay settings are the same for both 10x and 12x serialization modes.  
(2) Negative value indicates that the clock edge is advanced with respect to the data edge, resulting in lower setup time and higher hold  
time. Positive value indicates that the clock edge is delayed with respect to the data edge, resulting in higher setup time and lower hold  
time  
96  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
LVDS OUTPUT DATA AND CLOCK BUFFERS  
The equivalent circuit of each LVDS output buffer is shown in Figure 107. After reset, the buffer presents an  
output impedance of 100 Ω to match with the external 100-Ω termination.  
The VDIFF voltage is nominally 400 mV, resulting in an output swing of ±400 mV with a 100-Ω external  
termination. The buffer output impedance behaves in the same way as a source-side series termination. By  
absorbing reflections from the receiver end, this impedance helps improve signal integrity.  
VDIFF  
High  
Low  
OUTP  
OUTM  
External  
100-W Load  
VOCM  
(1)  
ROUT  
VDIFF  
High  
Low  
(1) ROUT = 100 Ω.  
Figure 107. LVDS Buffer Equivalent Circuit  
OUTPUT DATA FORMAT  
Two output data formats are supported: twos complement and offset binary. These formats can be selected by  
the BTC_MODE serial interface register bit. In the event of an input voltage overdrive, the digital outputs go to  
the appropriate full-scale level. For a positive overload, the 12-bit output data (D[11:0]) is FFFh in offset binary  
output format and 7FFh in twos complement output format. For a negative input overload, the output data is 000h  
in offset binary output format and 800h in twos complement output format.  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of  
the board are cleanly partitioned. Refer to the EVM User Guide, ADS5295, 8-Channel ADC Evaluation Module,  
(SLAU442) for details on layout and grounding.  
Supply Decoupling  
Minimal external decoupling can be used without loss in performance because the device already includes  
internal decoupling. Note that decoupling capacitors can help filter external power-supply noise; thus, the  
optimum number of capacitors depends on the actual application. The decoupling capacitors should be placed as  
close as possible to the converter supply pins.  
Exposed Pad  
In addition to providing a path for heat dissipation, the pad is also electrically connected to the digital ground  
internally. Therefore, the exposed pad must be soldered to the ground plane for best thermal and electrical  
performance.  
Copyright © 2013, Texas Instruments Incorporated  
97  
 
ADS5296A  
ZHCSBT3 OCTOBER 2013  
www.ti.com.cn  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth: The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low-frequency value.  
Aperture Delay: The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay is different across channels. The maximum variation is specified as  
aperture delay variation (channel-to-channel).  
Aperture Uncertainty (jitter): The sample-to-sample variation in aperture delay.  
Clock Pulse Width (duty cycle): The duty cycle of a clock signal is the ratio of the time that the clock signal  
remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate: The maximum sampling rate at which specified operation is given. All parametric  
testing is performed at this sampling rate, unless otherwise noted.  
Minimum Conversion Rate: The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL): An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL): INL is the deviation of the ADC transfer function from a best-fit line determined by a  
least-squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error: Gain error is the deviation of the actual ADC input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a  
result of reference inaccuracy and error as a result of the channel. Both errors are specified independently as  
EGREF and EGCHAN, respectively. To a first-order approximation, the total gain error is (ETOTAL ~ EGREF + EGCHAN).  
For example, if ETOTAL = ±0.5%, then the full-scale input varies from [(1 – 0.5 / 100) × FSIDEAL] to [(1 + 0.5 / 100)  
× FSIDEAL].  
Offset Error: Offset error is the difference, given in number of LSBs, between the actual average ADC idle  
channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.  
Temperature Drift: The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. Drift is calculated by dividing the maximum  
deviation of the parameter across the TMIN to TMAX range by the difference of TMAX – TMIN  
.
Signal-to-Noise Ratio (SNR): SNR is the ratio of the power of the fundamental (PS) to the noise floor power  
(PN), excluding the power at dc and the first nine harmonics. SNR is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power  
of the fundamental is extrapolated to the converter full-scale range.  
PS  
SNR = 10 Log10  
PN  
(9)  
Signal-to-Noise and Distortion (SINAD): SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components, including noise (PN) and distortion (PD), but excluding dc. SINAD is either  
given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or  
dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
PS  
SINAD = 10 Log10  
PN + PD  
(10)  
Effective Number of Bits (ENOB): ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(11)  
Total Harmonic Distortion (THD): THD is the ratio of the power of the fundamental (PS) to the power of the first  
nine harmonics (PD). THD is typically given in units of dBc (dB to carrier).  
PS  
THD = 10 Log10  
PN  
(12)  
98  
Copyright © 2013, Texas Instruments Incorporated  
ADS5296A  
www.ti.com.cn  
ZHCSBT3 OCTOBER 2013  
Spurious-Free Dynamic Range (SFDR): SFDR is the ratio of power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion (IMD3): IMD3 is the ratio of the power of the fundamental (at frequencies  
f1 and f2) to the power of the worst spectral component at either frequency 2 f1 – f2 or 2 f2 – f1. IMD3 is either  
given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or  
dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.  
AC Power-Supply Rejection Ratio (AC PSRR): AC PSRR is the measure of rejection of variations in the supply  
voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVOUT is the resultant change of the ADC  
output code (referred to the input), then:  
DVOUT  
PSRR = 20 Log10  
(Expressed in dBc)  
DVSUP  
(13)  
Voltage Overload Recovery: The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This recovery is tested by separately applying a sine-wave signal with 6-dB  
positive and negative overload. The deviation of the first few samples after the overload (from the expected  
values) is noted.  
Common-Mode Rejection Ratio (CMRR): CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVCM_IN is the change in the common-mode voltage of the input pins and ΔVOUT is  
the resulting change of the ADC output code (referred to the input), then:  
DVOUT  
CMRR = 20 Log10  
(Expressed in dBc)  
DVCM  
(14)  
CROSSTALK: (only for multichannel ADCs) Crosstalk is a measure of the internal coupling of a signal from an  
adjacent channel into the channel of interest. Crosstalk is specified separately for coupling from the immediate  
neighboring channel (near-channel) and for coupling from a channel across the package (far-channel). Crosstalk  
is usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of  
the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the  
adjacent channel input. Crosstalk is typically expressed in dBc.  
Copyright © 2013, Texas Instruments Incorporated  
99  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS5296ARGCR  
ADS5296ARGCT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
ADS5296  
ADS5296  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGC0064A  
PLASTIC QUADFLAT PACK- NO LEAD  
9.15  
8.85  
A
B
9.15  
8.85  
PIN 1 INDEX AREA  
(0.2)TYP  
(0.1)TYP  
DETAIL 'A'  
DETAIL 'A'  
OPTION1  
OPTION2  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X  
7.5  
EXPOSED  
7.25±0.1  
THERMAL PAD  
32  
17  
16  
33  
SEE DETAIL 'A'  
60X  
0.5  
SYMM  
65  
2X  
7.5  
0.3  
0.18  
64X  
0.1  
C A B  
C
48  
1
0.05  
PIN1 ID  
64  
49  
(OPTIONAL)  
SYMM  
0.5  
0.3  
64X  
4219009/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGC0064A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X(8.8)  
2X(7.5)  
SEE SOLDER MASK  
DETAIL  
64X(0.6)  
(
7.25)  
64  
49  
1
48  
64X(0.24)  
60X(0.5)  
65  
SYMM  
2X  
2X(7.5)  
(8.8)  
4X  
(1.14)  
2X  
(1.1)  
(0.05)  
(TYP)  
33  
16  
45X (Ø0.2)  
(TYP) VIA  
4X  
(1.14)  
SYMM  
32  
17  
2X  
(1.1)  
LAND PATTERN EXAMPLE  
SCALE: 10X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219009/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGC0064A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (8.8)  
2X(7.5)  
SYMM  
36X  
(0.94)  
64x(0.6)  
64  
49  
1
48  
65  
64X(0.24)  
60X(0.5)  
2X(0.57)  
2X(8.8)  
SYMM  
2X(7.5)  
4X(1.14)  
(R0.05)  
TYP  
33  
16  
EXPOSED METAL  
17  
32  
4X(1.14)  
2X(0.57)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
60% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4219009/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY