ADS52J90ZZE [TI]

14 位多通道低功耗高速模数转换器 (ADC) | ZZE | 198 | -40 to 85;
ADS52J90ZZE
型号: ADS52J90ZZE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14 位多通道低功耗高速模数转换器 (ADC) | ZZE | 198 | -40 to 85

转换器 模数转换器
文件: 总153页 (文件大小:4702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
具有 LVDSJESD 输出的 ADS52J90 10 位、12 位、14 位多通道低功耗  
高速 ADC  
1 特性  
3 说明  
1
16 通道 ADC,可配置为转换  
816 32 路输入  
ADS52J90 是一款低功耗、高性能、16 通道的模数转  
换器 (ADC)。每个 ADC 10 位模式下的转换速率最  
高可达 100MSPSADC 分辨率越高,最高转换速率  
越低。  
10 位、12 位和 14 位三种分辨率模式  
最大 ADC 转换速率:  
10 位模式下为 100MSPS  
12 位模式下为 80MSPS  
14 位模式下为 65MSPS  
该器件可配置为接受 816 32 个输入。在 32 位模  
式下,每个 ADC 以值为 ADC 转换速率一半的有效采  
样率对两个不同输入交替进行采样并转换。在 8 位输  
入模式下,两个 ADC 以交错方式对同一输入进行转  
换,这种情况下的有效采样率为 ADC 转换速率的 2  
倍。ADC 设计为根据转换速率调整其功耗。  
16 ADC 经配置可进行下列转换:  
8 个输入,采样率为  
ADC 转换速率的 2 倍  
16 个输入,采样率与  
ADC 转换速率相同  
器件信息  
32 个输入,采样率为  
ADC 转换速率的一半  
器件型号  
ADS52J90  
封装  
封装尺寸(标称值)  
NFBGA (198)  
9.00mm × 15.00mm  
支持 10/12/14/16 倍串行化的低压差分信令 (LVDS)  
输出  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
5Gbps JESD 接口:  
简化原理图  
16 输入和 32 输入模式下受支持  
JESD204B 子类 01 2  
AVDD_1P8  
DVDD_1P2  
DVDD_1P8  
每条 JESD 信道包含 24 8 条通道  
Reference  
VCM  
(1)  
Generator  
ADC 1  
可选的数字 I-Q 解调器  
电源:1.2V1.8V  
DOUTP1  
DOUTM1  
INP1  
INM1  
DOUTP2  
DOUTM2  
2 VPP 差分输入,0.8V 共模  
差分或单端输入时钟  
信噪比 (SNR):  
INP2  
INM2  
DOUTP16  
DOUTM16  
10 位模式下为 61dBFS  
12 位模式下为 70dBFS  
14 位模式下为 73.5dBFS  
INP31  
INM31  
FCLKP  
FCLKM  
ADC 16  
DCLKP  
DCLKM  
INP32  
INM32  
100MSPS 转换速率下的功耗:41mW/通道  
封装:NFBGA-198 (9mm x 15mm)  
无铅(符合 RoHS 标准)绿色  
CML1_OUTP  
CML1_OUTM  
CML8_OUTP  
CML8_OUTM  
2 应用  
超声波成像  
Clock  
Generator  
CLKP  
CLKM  
Serial  
Interface  
便携式仪表  
SYNC  
Generator  
SDOUT  
声纳和雷达  
高速多通道数据采集  
(1) 本文档中未详细介绍。如需详细信息,请联系工厂。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS690  
 
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 73  
8.5 Programming........................................................... 76  
Application and Implementation ........................ 77  
9.1 Application Information............................................ 77  
9.2 Typical Application .................................................. 78  
9.3 Do's and Don'ts....................................................... 90  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 9  
7.1 Absolute Maximum Ratings ...................................... 9  
7.2 ESD Ratings.............................................................. 9  
7.3 Recommended Operating Conditions..................... 10  
7.4 Thermal Information................................................ 10  
7.5 Electrical Characteristics......................................... 11  
7.6 Digital Characteristics ............................................. 13  
7.7 Timing Requirements: Signal Chain ....................... 14  
7.8 Timing Requirements: JESD Interface.................... 15  
7.9 Timing Requirements: Serial Interface.................... 15  
7.10 Typical Characteristics.......................................... 17  
7.11 Typical Characteristics: JESD Interface................ 24  
7.12 Typical Characteristics: Contour Plots.................. 26  
Detailed Description ............................................ 28  
8.1 Overview ................................................................. 28  
8.2 Functional Block Diagrams ..................................... 28  
8.3 Feature Description................................................. 29  
9
10 Power Supply Recommendations ..................... 90  
10.1 Power Sequencing and Initialization..................... 90  
11 Layout................................................................... 92  
11.1 Power Supply, Grounding, and Bypassing ........... 92  
11.2 Layout Guidelines ................................................. 92  
11.3 Layout Example .................................................... 93  
12 Register Map........................................................ 94  
12.1 ADC Registers ...................................................... 94  
12.2 JESD Serial Interface Registers ......................... 134  
13 器件和文档支持 ................................................... 149  
13.1 文档支持.............................................................. 149  
13.2 社区资源.............................................................. 149  
13.3 ..................................................................... 149  
13.4 静电放电警告....................................................... 149  
13.5 术语表 ................................................................. 149  
14 机械、封装和可订购信息..................................... 150  
8
4 修订历史记录  
Changes from Revision B (August 2015) to Revision C  
Page  
已更改 HPF_ROUND_ENABLE register bit (register 15, bit 5) to HPF_ROUND_EN_CH1-8 and  
HPF_ROUND_EN_CH9-16 bits in last paragraph of Digital HPF section ........................................................................... 40  
已更改 Masking of the Various Reset Operations Resulting from SYNC~ or SYSREF table ............................................. 59  
已添加 Interfacing SYNC~ and SYSREF Between the FPGA and ADCs section ............................................................... 65  
已更改 Mapping of Analog Inputs to LVDS Outputs (8-Input Mode, 1X Data Rate) table ................................................... 84  
已更改 Mapping of Analog Inputs to LVDS Outputs (8-Input Mode, 2X Data Rate) table ................................................... 85  
已更改 description for the value 001 in Pattern Mode Bit Description table......................................................................... 99  
已更改 bit 5 from HPF_ROUND_EN to HPF_ROUND_EN_CH1-8 in Register 15 ........................................................... 109  
已更改 bit 5 from 0 to HPF_ROUND_EN_CH9-16 in Register 2Dh .................................................................................. 123  
已更改 description for JESD_RESET1 in Register 70........................................................................................................ 135  
已更改 description of JESD_RESET2 and JESD_RESET3 in Register 74 ....................................................................... 137  
Changes from Revision A (June 2015) to Revision B  
Page  
已更改文档标题以包含 LVDS JESD 输出 .......................................................................................................................... 1  
已添加 JESD 接口 可选解调器和 特性 要点 ........................................................................................................................... 1  
更改简化原理图....................................................................................................................................................................... 1  
已添加 JESD 接口信息至说明 部分中添加了概述......................................................................................................... 4  
Added footnote 1 to Pin Functions table ................................................................................................................................ 6  
Changed description of SPI_DIG_EN pin in Pin Functions table........................................................................................... 8  
Changed title of Current Consumption with LVDS Interface Enabled section of Electrical Characteristics table................ 12  
Changed Current Consumption with JESD Interface Enabled section of Electrical Characteristics table........................... 12  
2
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Added SPI_DIG_EN to Digital Inputs section title of Digital Characteristics table ............................................................... 13  
Changed VOC-CML parameter name in JESD Interface Timing Requirements table.............................................................. 15  
Added 47.......................................................................................................................................................................... 25  
Added LVDS, JESD discussion to second paragraph of Overview section......................................................................... 51  
添加了社区资源部分 ........................................................................................................................................................... 149  
Changes from Original (May 2015) to Revision A  
Page  
已投入量产.............................................................................................................................................................................. 1  
已更改 Circuit to Level-Shift the Common-Mode Voltage From 1.2 V at the Driver Output to 0.7 V at the ADC Input  
figure..................................................................................................................................................................................... 65  
已更改 AC-Coupling Scheme for SYSREF figure ................................................................................................................ 66  
版权 © 2015–2018, Texas Instruments Incorporated  
3
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
5 说明 (续)  
ADC 输出会进行串行化,并与帧时钟和高速位时钟一起通过低压差分信令 (LVDS) 接口输出。  
该器件还具有一个可选的 JESD204B 接口,同时可在 16 输入和 32 输入模式下工作。该接口的运行速率最高可达  
5Gbps。  
ADS52J90 采用间距为 0.8mm 9mm × 15mm NFBGA-198 封装,额定工作温度范围为 –40°C +85°C。  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
6 Pin Configuration and Functions  
ZZE Package  
NFBGA-198 (15 mm × 9 mm)  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
INM2  
INP2  
INP1  
AVDD_1P8  
SDIN  
RESET  
DVDD_1P2  
DVSS  
CML1_OUTP  
CML1_OUTM  
CML2_OUTP  
INM3  
INM5  
INP3  
INP5  
INM1  
INP4  
AVSS  
AVSS  
AVSS  
INP8  
SEN  
SDOUT  
NC  
SPI_DIG_EN  
PDN_FAST  
TX_TRIG  
AVDD_1P8  
AVDD_1P8  
AVDD_1P8  
AVSS  
SCLK  
PDN_GBL  
DVSS  
DVDD_1P2  
DVDD_1P2  
DVDD_1P2  
DVDD_1P8  
DVDD_1P8  
DVDD_1P8  
DVSS  
DOUTP1  
DOUTP2  
DOUTP3  
DOUTP4  
DOUTP5  
DOUTP6  
DOUTP7  
FCLKP  
DOUTM1  
DOUTM2  
DOUTM3  
DOUTM4  
DOUTM5  
DOUTM6  
DOUTM7  
DVDD_1P8  
DVSS  
CML2_OUTM  
CML3_OUTP  
CML3_OUTM  
CML4_OUTP  
CML4_OUTM  
DOUTM8  
INM6  
INP6  
INM4  
INM7  
INP7  
INM8  
NC  
DVSS  
INM9  
INP9  
INM10  
INM12  
INM14  
INM16  
INM18  
INM20  
INM22  
INM24  
INM26  
INM28  
INP28  
INM32  
INP32  
INP10  
INP12  
INP14  
INP16  
INP18  
INP20  
INP22  
INP24  
INP26  
AVSS  
AVSS  
AVSS  
AVDD_1P8  
VCM  
DVDD_1P2  
DVDD_1P2  
DVSS  
G
H
J
INM11  
INM13  
INM15  
INM17  
INM19  
INM21  
INM23  
INM25  
INM27  
INM29  
INM30  
INM31  
INP11  
INP13  
INP15  
INP17  
INP19  
INP21  
INP23  
INP25  
INP27  
INP29  
INP30  
INP31  
AVDD_1P8  
AVSS  
AVSS  
AVSS  
AVSS  
AVDD_1P8  
NC  
DOUTP8  
AVSS  
DVSS  
DVSS  
DCLKP  
K
L
AVSS  
DVSS  
DVSS  
FCLKM  
DCLKM  
AVSS  
DVSS  
DVSS  
DOUTP10  
DOUTP11  
DOUTP12  
DOUTP13  
DOUTP14  
DOUTP15  
DOUTP16  
CML5_OUTP  
DOUTM10  
DOUTM11  
DOUTM12  
DOUTM13  
DOUTM14  
DOUTM15  
DOUTM16  
CML5_OUTM  
DOUTP9  
M
N
P
R
T
AVDD_1P8  
AVDD_1P8  
AVDD_1P8  
DVSS  
DVDD_1P2  
DVDD_1P2  
DVDD_1P8  
DVDD_1P8  
DVDD_1P8  
DVDD_1P2  
DVDD_1P2  
DVDD_1P2  
DVSS  
DOUTM9  
CML8_OUTM  
CML8_OUTP  
CML7_OUTM  
CML7_OUTP  
CML6_OUTM  
CML6_OUTP  
SYNCM_  
SERDES  
NC  
SYNCP_  
SERDES  
AVSS  
AVSS  
CLKM  
CLKP  
SYSREFM_  
SERDES  
DVDD_1P2  
AVSS  
SYSREFP_  
SERDES  
U
V
AVSS  
DVDD_1P2  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Pin Functions(1)  
PIN  
I/O  
DESCRIPTION  
NAME  
AVDD_1P8  
NO.  
A4, E6, F6, G5, G6, M5,  
M6, N6, P6, V4  
P
1.8-V analog supply voltage  
Analog ground  
B4, C4, D4, H5, H6, J5,  
J6, K5, K6, L5, L6, R4, R5,  
T4, T5, U4, U6, V6  
AVSS  
G
CLKM  
U5  
V5  
Differential clock input pins. A single-ended clock is also supported.  
See the Clock Input section for further details.  
I
CLKP  
CML1_OUTM  
CML1_OUTP  
CML2_OUTM  
CML2_OUTP  
CML3_OUTM  
CML3_OUTP  
CML4_OUTM  
CML4_OUTP  
CML5_OUTM  
CML5_OUTP  
CML6_OUTM  
CML6_OUTP  
CML7_OUTM  
CML7_OUTP  
CML8_OUTM  
CML8_OUTP  
DCLKM  
A10  
A9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
JESD output lane 1  
JESD output lane 2  
JESD output lane 3  
JESD output lane 4  
JESD output lane 5  
JESD output lane 6  
JESD output lane 7  
JESD output lane 8  
LVDS bit clock output  
LVDS data lane 1  
LVDS data lane 2  
LVDS data lane 3  
LVDS data lane 4  
LVDS data lane 5  
LVDS data lane 6  
LVDS data lane 7  
LVDS data lane 8  
LVDS data lane 9  
LVDS data lane 10  
LVDS data lane 11  
LVDS data lane 12  
B11  
A11  
D11  
C11  
F11  
E11  
V10  
V9  
U11  
V11  
R11  
T11  
N11  
P11  
K11  
J11  
B10  
B9  
DCLKP  
DOUTM1  
DOUTP1  
DOUTM2  
C10  
C9  
DOUTP2  
DOUTM3  
D10  
D9  
DOUTP3  
DOUTM4  
E10  
E9  
DOUTP4  
DOUTM5  
F10  
F9  
DOUTP5  
DOUTM6  
G10  
G9  
DOUTP6  
DOUTM7  
H10  
H9  
DOUTP7  
DOUTM8  
G11  
H11  
M11  
L11  
L10  
L9  
DOUTP8  
DOUTM9  
DOUTP9  
DOUTM10  
DOUTP10  
DOUTM11  
DOUTP11  
DOUTM12  
DOUTP12  
M10  
M9  
N10  
N9  
(1) If the JESD interface is not used, then do not connect the CMLx, SYNCx, and SYSREFx pins. If the LVDS interface is not used, then do  
not connect DOUTx, DCLKx, and FCLKx.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Pin Functions(1) (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
DOUTM13  
DOUTP13  
DOUTM14  
DOUTP14  
DOUTM15  
DOUTP15  
DOUTM16  
DOUTP16  
NO.  
P10  
P9  
O
LVDS data lane 13  
LVDS data lane 14  
LVDS data lane 15  
LVDS data lane 16  
R10  
R9  
O
T10  
T9  
O
U10  
U9  
O
A7, B8, C8, D8, F7, G7,  
M7, N7, R8, T6, T8, U8,  
V7  
DVDD_1P2  
DVDD_1P8  
DVSS  
P
P
G
1.2-V digital supply voltage  
1.8-V digital supply voltage  
Digital ground  
E8, F8, G8, J10, M8, N8,  
P8  
A8, D7, E7, H7, H8, J7,  
J8, K7, K8, K10, L7, L8,  
R6, V8  
FCLKM  
FCLKP  
INM1  
INP1  
K9  
J9  
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LVDS frame clock output  
B3  
A3  
A1  
A2  
B1  
B2  
D3  
C3  
C1  
C2  
D1  
D2  
E1  
E2  
E3  
E4  
F1  
F2  
F3  
F4  
G1  
G2  
G3  
G4  
H1  
H2  
H3  
H4  
J1  
Differential analog input 1 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM2  
INP2  
Differential analog input 2 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM3  
INP3  
Differential analog input 3 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM4  
INP4  
Differential analog input 4 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM5  
INP5  
Differential analog input 5 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM6  
INP6  
Differential analog input 6 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM7  
INP7  
Differential analog input 7 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM8  
INP8  
Differential analog input 8 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM9  
INP9  
Differential analog input 9 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
INM10  
INP10  
INM11  
INP11  
INM12  
INP12  
INM13  
INP13  
INM14  
INP14  
INM15  
INP15  
INM16  
INP16  
INM17  
INP17  
Differential analog input 10 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
Differential analog input 11 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
Differential analog input 12 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
Differential analog input 13 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
Differential analog input 14 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
Differential analog input 15 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
J2  
J3  
Differential analog input 16 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
J4  
K1  
K2  
Differential analog input 17 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Pin Functions(1) (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
INM18  
INP18  
INM19  
INP19  
INM20  
INP20  
INM21  
INP21  
INM22  
INP22  
INM23  
INP23  
INM24  
INP24  
INM25  
INP25  
INM26  
INP26  
INM27  
INP27  
INM28  
INP28  
INM29  
INP29  
INM30  
INP30  
INM31  
INP31  
INM32  
INP32  
NC  
K3  
Differential analog input 18 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
K4  
L1  
Differential analog input 19 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
L2  
L3  
Differential analog input 20 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
L4  
M1  
Differential analog input 21 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
M2  
M3  
Differential analog input 22 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
M4  
N1  
Differential analog input 23 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
N2  
N3  
Differential analog input 24 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
N4  
P1  
Differential analog input 25 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
P2  
P3  
Differential analog input 26 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
P4  
R1  
Differential analog input 27 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
R2  
R3  
Differential analog input 28 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
T3  
T1  
Differential analog input 29 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
T2  
U1  
Differential analog input 30 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
U2  
V1  
Differential analog input 31 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
V2  
U3  
V3  
Differential analog input 32 pins; see 1 for mapping to external inputs in 8-, 16-, and  
32-input modes  
D5, E5, N5, P5  
I
Do not connect; leave floating.  
Fast power-down control pin (active high) with an internal pulldown resistor of 20 k.  
For active high, a 1.8-V logic level is recommended.  
PDN_FAST  
PDN_GBL  
SPI_DIG_EN  
RESET  
C6  
C7  
B6  
A6  
B7  
A5  
C5  
B5  
Global power-down control input (active high) with an internal pulldown resistor of 20  
k. For active high, a 1.8-V logic level is recommended.  
I
I
Reserved for digital functionality. This pin can be left floating or be connected to the  
1.8-V supply. This pin has an internal pullup resistor of 20 k.  
Hardware reset pin (active high) with an internal pulldown resistor of 20 k. For active  
high, a 1.8-V logic level is recommended.  
I
Serial interface clock input with an internal pulldown resistor of 20 k. For active high,  
a 1.8-V logic level is recommended.  
SCLK  
I
Serial interface data input with an internal pulldown resistor of 20 k. For active high, a  
1.8-V logic level is recommended.  
SDIN  
I
Serial interface data readout. High impedance when readout is disabled. 1.8-V logic  
level is recommended.  
SDOUT  
SEN  
O
I
Serial interface enable with an internal pullup resistor of 20 k. 1.8-V logic level is  
recommended.  
1.8-V logic; a pulse on TX_TRIG must be applied after power-up to ensure that all  
internal clock dividers are synchronized(2).Has an internal pull-down resistor of 20 kΩ  
to ground.  
TX_TRIG  
D6  
I
I
SYNCM_SERDES  
SYNCP_SERDES  
P7  
R7  
Frame synchronization input as per JESD204B standard  
(2) See the Device Synchronization Using TX_TRIG section for more details on synchronization using TX_TRIG.  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Pin Functions(1) (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
T7  
SYSREFM_SERDES  
SYSREFP_SERDES  
Frame clock and local multiframe clock (LMFC) synchronization input as per  
JESD204B, subclass 1 standard  
I
U7  
Common-mode output pin for biasing analog input signals. Connect a 10-µF capacitor  
to ground.  
VCM  
F5  
O
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
AVDD_1P8  
2.2  
Voltage  
DVDD_1P2  
DVDD_1P8  
1.35  
V
2.2  
Analog input pins (INMi, INPi)  
CLKP, CLKM  
Minimum [2.2, (AVDD_1P8 + 0.3)]  
Minimum [2.2, (AVDD_1P8 + 0.3)]  
V
V
PDN_GBL, PDN_FAST, RESET, SCLK, SDIN,  
SEN, TX_TRIG, SPI_DIG_EN,  
SYNCM_SERDES, SYNCP_SERDES,  
SYSREFM_SERDES, SYSREFP_SERDES  
Digital control pins  
–0.3  
Minimum [2.2, (DVDD_1P8 + 0.3)]  
V
Maximum operating junction temperature, TJMax  
Storage temperature, Tstg  
105  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
TEMPERATURE  
TA  
Ambient  
–40  
85  
°C  
SUPPLIES  
V(AVDD_1P8)  
V(DVDD_1P8)  
V(DVDD_1P2)  
ANALOG INPUT  
V(INx)  
1.8-V analog supply voltage  
1.8-V digital supply voltage  
1.2-V digital supply voltage  
1.7  
1.7  
1.8  
1.8  
1.2  
1.9  
1.9  
V
V
V
1.15  
1.25  
Voltage range at analog input pins  
VCM – 0.5  
0.7  
VCM + 0.5  
0.9  
V
V
Input common-mode range at  
analog input pins  
VIN(CM)  
0.8  
2
VIN(FS)  
Input differential full-scale voltage  
Analog input frequency range(1)  
VPP  
FIN  
0
70  
MHz  
ANALOG OUTPUT  
I(VCM)  
External loading on VCM pin  
±50-mV change in VCM  
100  
µA  
CLOCK INPUT  
16-input mode, 10-bit ADC resolution  
16-input mode, 12-bit ADC resolution  
16-input mode, 14-bit ADC resolution  
32-input mode, 10-bit ADC resolution  
32-input mode, 12-bit ADC resolution  
32-input mode, 14-bit ADC resolution  
8-input mode, 10-bit ADC resolution  
Sine-wave, ac-coupled  
5
5
100  
80  
5
65  
fS  
System clock frequency  
5
100  
80  
MSPS  
5
5
65  
10  
0.7  
200  
VCLKP – VCLKM  
Differential clock amplitude  
LVPECL, ac-coupled  
1.6  
0.7  
VPP  
VPP  
LVDS, ac-coupled  
0.35  
40%  
VCLKP  
Single-ended clock amplitude  
Input clock duty cycle  
LVCMOS on CLKP with CLKM grounded  
1.8  
50%  
60%  
DIGITAL INPUTS  
0.75 ×  
DVDD_1P8  
VIH  
Digital input minimum, high level  
Digital input maximum, low level  
1.8  
0
V
V
0.25 ×  
DVDD_1P8  
VIL  
DIGITAL OUTPUT (LVDS)  
RLOAD  
Differential load resistance  
Between DOUTP and DOUTM  
100  
50  
Ω
Ω
DIGITAL OUTPUT (CML)  
RCML  
Load resistance from each CML output to a common mode  
(1) Performance degradation may be seen at high input frequencies.  
7.4 Thermal Information  
ADS52J90  
ZZE (NFBGA)  
198 PINS  
33.7  
THERMAL METRIC(1)  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
4.9  
14.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
14.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
7.5 Electrical Characteristics  
Typical values are across ADC resolution and input modes, unless otherwise specified. Typical values are at 25°C,  
AVDD_1P8 = DVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V. External 100-Ω differential load between LVDS outputs, 4-pF load  
capacitor from each LVDS output to ground, and 1X data rate mode.  
All ADCs are powered up and the input signal is a –1-dBFS tone at 5 MHz applied on one channel at a time.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC  
32-channel input, 16-channel input  
8-channel input  
10  
14  
Nadc  
ADC resolution  
Bits  
10  
16  
Number of ADCs  
ADCs  
CLOCK DOMAINS  
10-bit ADC resolution  
12-bit ADC resolution  
14-bit ADC resolution  
16-input mode  
100  
80  
Conversion rate of each ADC  
(conversion clock frequency)  
fC  
MSPS  
MSPS  
MSPS  
65  
fC  
fC  
System clock frequency in  
terms of fC  
fS  
32-input mode  
8-input mode  
2 × fC  
fC  
16-input mode  
Effective sampling rate of each  
input channel in terms of fC  
fSAMP  
32-input mode  
0.5 × fC  
2 × fC  
8-input mode  
PERFORMANCE  
Same device, across channels  
Same channel, across devices  
±0.1  
±0.1  
GMATCH  
Gain matching  
dB  
Gain drift with temperature over  
full temperature range  
GDRIFT  
VOFF  
0.1  
dB  
Offset error  
–7 to 7  
–0.5 to 0.5  
–0.9 to 0.9  
–1 to 2  
–0.5 to 0.5  
–1 to 1  
–3 to 3  
61.3  
mV  
10-bit resolution  
12-bit resolution  
14-bit resolution  
10-bit resolution  
Differential nonlinearity of the  
ADC  
DNL  
INL  
LSB  
LSB  
Integral nonlinearity of the ADC 12-bit resolution  
14-bit resolution  
10-bit, 16-channel input mode, fSAMP = 100 MSPS  
10-bit, 32-channel input mode, fSAMP = 50 MSPS  
10-bit mode, 8-channel input, fSAMP = 200 MSPS  
10-bit mode, 8-channel input, fSAMP = 130 MSPS  
12-bit mode, 16- channel input, fSAMP = 80 MSPS  
12-bit mode, 32-channel input, fSAMP = 40 MSPS  
12-bit mode, 32-channel input, fSAMP = 20 MSPS  
14-bit mode, 16- channel input, fSAMP = 65 MSPS  
14-bit mode, 16- channel input, fSAMP = 50 MSPS  
14-bit mode, 32-channel input, fSAMP = 32.5 MSPS  
61.3  
56  
60  
58.2  
61  
Signal-to-noise ratio:  
69.5  
excludes first 9 harmonics as  
well as spurs at (fS / 2 ± fIN),  
(fS / 4 ± fIN), fS / 2, and fS / 4  
SNR  
dBFS  
65  
67.5  
65.9  
67.9  
69.5  
70.2  
72.5  
73.5  
73  
Second-order harmonic  
distortion  
HD2  
All input modes and resolutions  
–80  
dBc  
HD3  
THD  
Third-order harmonic distortion All input modes and resolutions  
–80  
–76  
–73  
–62  
dBc  
dBc  
Total harmonic distortion  
All input modes and resolutions  
16-input mode; 10-,12-,14-bit resolutions  
8-input mode, 10-bit resolution  
Magnitude of spur at  
dBc  
(fS / 2 ± fIN  
)
Magnitude of spur at  
8-input mode, 10-bit resolution  
–65  
–80  
dBc  
dBc  
(fS / 4 ± fIN  
)
Input spur on neighboring channel with one channel  
excited at 5 MHz, –1 dBFS  
Crosstalk  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values are across ADC resolution and input modes, unless otherwise specified. Typical values are at 25°C,  
AVDD_1P8 = DVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V. External 100-Ω differential load between LVDS outputs, 4-pF load  
capacitor from each LVDS output to ground, and 1X data rate mode.  
All ADCs are powered up and the input signal is a –1-dBFS tone at 5 MHz applied on one channel at a time.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PERFORMANCE (continued)  
AC power-supply rejection ratio:  
PSRR100kHz  
tone at output relative to tone  
on supply  
100-mVPP, 100-kHz tone on supply  
–70  
dBc  
AC power-supply modulation  
ratio: intermodulation tone at  
output resulting from tones at  
supply and input measured  
relative to input tone  
100-mVPP, 100-kHz tone on supply and –1-dBFS,  
5-MHz tone on input  
PSMR100kHz  
–80  
–40  
dBc  
dBc  
AC common-mode rejection  
ratio: tone at output relative to  
the common-mode tone applied frequency of 5 MHz  
at the analog input pins  
50-mVPP common-mode tone at input pins with a  
CMRR  
TRANSIENT BEHAVIOR  
NOVERLOAD Input overload recovery  
tPDN_GBL  
Conversion  
clock  
5-MHz overload input, 6-dBFS overload  
PDN_GBL from high to low  
1
1
Recovery time from global  
power-down mode  
ms  
Recovery time from fast power-  
down mode (standby mode)  
Conversion  
clocks  
tPDN_FAST  
PDN_FAST from high to low  
15  
CURRENT CONSUMPTION WITH LVDS INTERFACE ENABLED  
AVDD_1P8 current  
3
3
Current consumption in global  
power-down mode  
(PDN_GBL = 1)  
DVDD_1P8 current  
DVDD_1P2 current  
AVDD_1P8 current  
DVDD_1P8 current  
DVDD_1P2 current  
AVDD_1P8 current  
DVDD_1P8 current  
DVDD_1P2 current  
16-channel input mode  
32-channel input mode  
8-channel input mode  
mA  
mA  
25  
80  
Current consumption in standby  
mode (PDN_FAST = 1) at  
fC = 100 MSPS  
35  
70  
190  
100  
110  
41  
Current consumption in active  
mode at fC = 100 MSPS(1)  
mA  
Power dissipation in active  
mode per input channel at  
fC = 100 MSPS  
PCH  
20.5  
82  
mW/channel  
CURRENT CONSUMPTION WITH JESD INTERFACE ENABLED  
AVDD_1P8 current(1)  
170  
260  
40  
Supply currents: JESD204B  
interface enabled, LVDS  
interface disabled at 12-bit, 80-  
MSPS, 4 ADCs per lane mode  
IJESD  
DVDD_1P2 current(1)  
DVDD_1P8 current(1)  
16-channel input mode  
mA  
Power dissipation in active  
mode per input channel: fC = 80  
MSPS, 12-bit mode, LVDS  
interface disabled, JESD  
interface enabled (4 ADCs per  
lane mode)  
43.1  
PJESD_CH  
mW/channel  
32-channel input mode  
21.6  
(1) See the Power Supply Recommendations section for guidelines on designing the supplies.  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
7.6 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. Typical values are at 25°C, AVDD_1P8 = DVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V, and external differential load  
resistance between the LVDS output pair (RLOAD = 100 Ω), unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (PDN_FAST, PDN_GBL, RESET, SCLK, SDIN, SEN, TX_TRIG, SPI_DIG_EN)  
VIH  
VIL  
IIH  
IIL  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
1.35  
V
V
0.45  
150  
150  
4
µA  
µA  
pF  
Ci  
DIGITAL OUTPUTS (SDOUT)  
VOH  
VOL  
zo  
High-level output voltage  
Low-level output voltage  
Output impedance  
1.6  
1.8  
0
V
V
Ω
0.2  
50  
LVDS DIGITAL OUTPUTS (DOUTPI, DOUTMI)(1)  
100-Ω external load connected differentially  
across DOUTPI and DOUTMI  
|VOD  
|
Output differential voltage  
320  
0.9  
400  
480  
mV  
V
Output offset voltage  
(common-mode voltage of  
DOUTPI and DOUTMI)  
100-Ω external load connected differentially  
across DOUTPI and DOUTMI  
VOS  
1.03  
1.15  
(1) All digital specifications are characterized across operating temperature range but are not tested at production.  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
7.7 Timing Requirements: Signal Chain  
Typical values are at 25°C. AVDD_1P8 = DVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V, and external differential load resistance  
between the LVDS output pair (RLOAD= 100 Ω), unless otherwise noted. A capacitive load of 4 pF is on the LVDS outputs.  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
tAP  
Aperture delay  
1.6  
±0.5  
0.5  
ns  
ns  
ps  
Aperture delay variation from device to device  
(at same temperature and supply)  
δtAP  
tAPJ  
Aperture jitter with LVPECL clock as input clock  
ADC TIMING  
Default after reset  
ADC latency  
8.5  
4.5  
Conversion  
clocks  
NLAT  
Low-latency mode  
LVDS TIMING  
16-input and 8-input modes  
Frame clock frequency  
fC  
fC / 2  
50%  
fF  
MHz  
32-input mode  
DFRAME  
NSER  
Frame clock duty cycle  
Number of bits serialization of each ADC word  
10  
16  
Bits  
Mbps  
MHz  
Output rate of serialized data for 1X output data rate  
mode, 16-, 8-. and 32-input modes  
NSER × fC  
1000  
fD  
Output rate of serialized data for 2X output data rate  
mode, 16-input and 8-input modes  
2 × NSER × fC  
1000  
500  
fB  
Bit clock frequency  
Bit clock duty cycle  
Data bit duration  
fD / 2  
50%  
DBIT  
tD  
1
1000 / fD  
6 × tD+ 5  
ns  
ns  
tPROP  
Clock propagation delay(1)  
Clock propagation delay variation from device to device  
(at same temperature and supply)  
δtPROP  
±2  
ns  
ns  
DOUT, DCLK, FCLK rise and fall time, transition time  
between –100 mV and +100 mV  
tORF  
0.2  
tOSU  
tOH  
tDV  
Minimum serial data, serial clock setup time(2)  
Minimum serial data, serial clock hold time(2)  
Minimum data valid window(3)(2)  
tD / 2 – 0.4  
tD / 2 – 0.4  
tD – 0.65  
ns  
ns  
ns  
TX_TRIG TIMING  
tTX_TRIG_DEL  
Delay between TX_TRIG and TX_TRIGD(4)  
(5)  
0.5  
0.4 × tS  
ns  
ns  
Setup time related to latching TX_TRIG relative to the  
rising edge of the system clock  
tSU_TX_TRIGD  
0.6  
0.4  
Hold time related to latching TX_TRIG relative to the  
rising edge of the system clock  
tH_TX_TRIGD  
ns  
(1) See 64 to 68 for the definition of tPROP in various operating modes.  
(2) See 1.  
(3) The specification for the minimum data valid window is larger than the sum of the minimum setup and hold times because there can be  
a skew between the ideal transitions of the serial output data with respect to the transition of the bit clock. This skew can vary across  
channels and across devices. A mechanism to correct this skew can therefore improve the setup and hold timing margins. For example,  
the LVDS_DCLK_DELAY_PROG control can be used to shift the relative timing of the bit clock with respect to the data.  
(4) TX_TRIGD is the internally delayed version of TX_TRIG that gets latched on the rising edge of the system clock.  
(5) tS is the system clock period in ns.  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
7.8 Timing Requirements: JESD Interface  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, differential ADC clock, RLOAD  
=
50 Ω from each CML pin to DVDD_1P2, 12-bit ADC resolution, sample rate, and fC = 80 MSPS, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 85°C. The JESD204B  
interface operates in default mode after setting the JESD_EN bit to 1 (12-bit ADC resolution, 12-bit serialization, 4 ADCs per  
lane, and scrambling disabled).  
MIN  
TYP  
MAX  
UNIT  
TIMING CHARACTERISTICS  
Serial output data rate in terms of F (number of octets per frame)  
and fC (ADC clock frequency in MHz)  
fJESD  
0.01 × F × fC  
Gbps  
UI  
Tj  
Unit interval  
200 1000 / fJESD  
0.27  
2000  
ps  
Total jitter: fJESD = 5 Gbps, PRE_EMP = 7, INC_JESD_VDD = 1  
p-p UI  
Rise and fall time: 20% to 80%, each pin loaded by CLOAD = 1.2 pF  
to DVDD_1P2  
tR, tF  
85  
ps  
SAMPLING TIMING  
tSU_S Setup time for SYSREF with respect to the device clock rising edge  
tH_S  
tSU_T  
tH_T  
JESD LATENCY  
Latency from SYNC~ assertion (falling) edge to start of CGS phase  
3
2
3
2
ns  
ns  
ns  
ns  
Hold time for SYSREF with respect to the device clock rising edge  
Setup time for SYNC~ with respect to the device clock rising edge  
Hold time for SYNC~ with respect to the device clock rising edge  
Device  
clock cycles  
NA_SYNC~  
17  
11  
(K28.5) in subclass 0, 1, and 2  
Latency from the first LMFC boundary after SYNC~ deassertion  
(rising) edge to start of ILA phase (K28.0) in subclass 1  
Device  
clock cycles  
ND_SYNC~  
Latency from the device clock falling edge sampling the analog input  
of ADC1 to the appearance of the corresponding octets on the JESD  
outputs  
Device  
clock cycles  
NLAT_JESD  
14.5  
JESD DIGITAL OUTPUTS  
High-level output voltage of the CML output (CMLx_OUTP,  
CMLx_OUTM)  
VOH-CML  
VOL-CML  
DVDD_1P2  
V
V
Low-level output voltage of the CML output (CMLx_OUTP,  
CMLx_OUTM)  
DVDD_1P2 – 0.4  
|VOD-CML  
VOC-CML  
zOS  
|
Differential output voltage of CMLx_OUT  
0.4  
DVDD_1P2 – 0.2  
50 ± 25%  
V
V
Common-mode output voltage of CMLx_OUTP, CMLx_OUTM  
Single-ended output impedance  
Ω
CCML  
Output capacitance inside device from either CML output to ground  
1
pF  
Transmitter short-circuit current: transmitter terminals shorted to any  
voltage between –0.25 V and 1.45 V  
±100  
mA  
7.9 Timing Requirements: Serial Interface(1)(2)  
MIN  
50  
20  
20  
5
TYP  
MAX  
UNIT  
ns  
tSCLK  
SCLK period  
tSCLK_H  
tSCLK_L  
tDSU  
SCLK high time  
ns  
SCLK low time  
ns  
Data setup time  
ns  
tDHO  
Data hold time  
5
ns  
tSEN_SU  
tSEN_HO  
tOUT_DV  
SEN falling edge to SCLK rising edge  
Time between last SCLK rising edge to SEN rising edge  
SDOUT delay  
8
ns  
8
ns  
12  
20  
28  
ns  
(1) Characterized in lab over operating temperature range, not tested at production testing.  
(2) See 92 and 93.  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
SERIAL_IN1 (D[11:0])  
Frame Clock (FCLK)  
D0  
D2  
D4  
D6  
D8  
DOUT1  
D1  
D3  
D5  
D7  
D9  
D10 D11  
Bit Clock (DCLK)  
tD  
tD  
tOH  
tOSU  
DOUT1  
tB  
Bit Clock (DCLK)  
tDV  
tDV  
1. LVDS Output Signals Timing Diagram in  
16-Input Mode with 12-Bit Serialization, LSB-First, 1X Data Rate Mode  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
7.10 Typical Characteristics  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Frequency (MHz)  
Frequency (MHz)  
fIN = 5 MHz, fC = 100 MSPS, SNR = 61.5 dBFS,  
fIN = 5 MHz, fC = 100 MSPS, SNR = 61.6 dBFS,  
SFDR = 81.9 dBc, HD2 = –86.5 dBc, HD3 = –93.9 dBc  
SFDR = 78.7 dBc, HD2 = –97.6 dBc, HD3 = –92.2 dBc  
2. FFT of 10-Bit, 32-Input Mode  
3. FFT of 10-Bit, 16-Input Mode  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
fIN = 5 MHz, fC = 100 MSPS, SNR = 61.3 dBFS,  
SFDR = 70.8 dBc, HD2 = –94.2 dBc, HD3 = –80.1 dBc  
fIN = 5 MHz, fC = 80 MSPS, SNR = 69.9 dBFS, SFDR = 82.6 dBc,  
HD2 = –82.6 dBc, HD3 = –88.9 dBc  
5. FFT of 12-Bit, 32-Input Mode  
4. FFT of 10-Bit, 8-Input Mode  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
Frequency (MHz)  
Frequency (MHz)  
fIN = 5 MHz, fC = 80 MSPS, SNR = 70.2 dBFS, SFDR = 75.4 dBc,  
HD2 = –109.8 dBc, HD3 = –86.1 dBc  
fIN = 5 MHz, fC = 65 MSPS, SNR = 73.7 dBFS, SFDR = 91.8 dBc,  
HD2 = –96.6 dBc, HD3 = –97.2 dBc  
6. FFT of 12-Bit, 16-Input Mode  
7. FFT of 14-Bit, 32-Input Mode  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
 
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
61.62  
61.58  
61.54  
61.5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
61.46  
61.42  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
0
5
10  
15  
20  
25  
30 32.5  
Frequency (MHz)  
fSAMP = 50 MSPS  
fIN = 5 MHz, fC = 65 MSPS, SNR = 73.4 dBFS, SFDR = 80.2 dBc,  
HD2 = –88.7 dBc, HD3 = –93.9 dBc  
9. Signal-to-Noise Ratio vs fIN in  
8. FFT of 14-Bit, 16-Input Mode  
10-Bit, 32-Input Mode  
61.58  
61.4  
61.35  
61.3  
61.54  
61.5  
61.25  
61.2  
61.46  
61.42  
61.15  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
fSAMP = 100 MSPS  
fSAMP = 200 MSPS  
10. Signal-to-Noise Ratio vs fIN in  
11. Signal-to-Noise Ratio vs fIN in  
10-Bit, 16-Input Mode  
10-Bit, 8-Input Mode  
70.28  
70.08  
69.88  
69.68  
69.48  
69.28  
69.08  
70.2  
70  
69.8  
69.6  
69.4  
69.2  
69  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
fSAMP = 40 MSPS  
fSAMP = 80 MSPS  
12. Signal-to-Noise Ratio vs fIN in  
13. Signal-to-Noise Ratio vs fIN in  
12-Bit, 32-Input Mode  
12-Bit, 16-Input Mode  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Typical Characteristics (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
74  
73.5  
73  
73.7  
73.3  
72.9  
72.5  
72.1  
71.7  
71.3  
72.5  
72  
71.5  
71  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
fSAMP = 32.5 MSPS  
fSAMP = 65 MSPS  
14. Signal-to-Noise Ratio vs fIN in  
15. Signal-to-Noise Ratio vs fIN in  
14-Bit, 32-Input Mode  
14-Bit, 16-Input Mode  
-77  
-80  
-83  
-86  
-89  
-92  
-95  
-82  
-83  
-84  
-85  
-86  
-87  
-88  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
100-MSPS conversion clock  
100-MSPS conversion clock  
16. Third-Order Harmonic Distortion vs fIN  
17. Second-Order Harmonic Distortion vs fIN  
-74  
-46  
-75  
-76  
-77  
-78  
-79  
-80  
-50  
-54  
-58  
-62  
-66  
-70  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
100-MSPS conversion clock  
fSAMP = 200 MSPS  
18. Total Harmonic Distortion vs fIN  
19. Input-Clock Intermodulation Spur at (fS / 2 ± fIN) vs fIN  
in 8-Input Mode  
版权 © 2015–2018, Texas Instruments Incorporated  
19  
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
-65  
-69  
-73  
-77  
-81  
-85  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
fSAMP = 100 MSPS  
fSAMP = 200 MSPS  
20. Input-Clock Intermodulation Spur at (fS / 2 ± fIN) vs fIN  
21. Input-Clock Intermodulation Spur at (fS / 4 ± fIN) vs fIN  
in 16-Input Mode  
in 8-Input Mode  
75.7  
110  
100  
90  
104  
100  
96  
SFDR (dBc)  
SFDR (dBFS)  
75.3  
74.9  
74.5  
74.1  
73.7  
73.3  
80  
92  
70  
88  
60  
84  
50  
80  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
-1  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
-1  
Input Amplitude, AIN (dBFS)  
Input Amplitude, AIN (dBFS)  
16-input mode, 14-bit resolution, fSAMP = 65 MSPS  
32-input mode, 14-bit resolution, fSAMP = 32.5 MSPS  
22. Signal-to-Noise Ratio vs AIN  
23. Spurious-Free Dynamic Range vs AIN  
74  
73.9  
73.8  
73.7  
73.6  
73.5  
73.4  
73.3  
73.2  
73.1  
73  
78  
Input signal frequency = 5 MHz  
Input signal frequency = 50 MHz  
75  
72  
69  
66  
63  
60  
0.6  
0.65  
0.7  
0.75  
0.8  
0.85  
0.9  
0.95  
1
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
Input Common-Mode Voltage, INPCM (V)  
Differential Input Clock Amplitude (VPP  
)
16-input mode, 14-bit resolution, fSAMP = 65 MSPS  
16-input mode, 14-bit resolution, fSAMP = 65 MSPS  
24. Signal-to-Noise Ratio vs  
25. Signal-to-Noise Ratio vs Amplitude of  
Input Common-Mode Voltage (INPCM)  
Differential Sine-Wave Input Clock  
20  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Typical Characteristics (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
-57  
-62  
-67  
-72  
-77  
-82  
-87  
74.2  
74  
73.8  
73.6  
73.4  
73.2  
73  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Frequency, fIN (MHz)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Differential Input Clock Duty Cycle (%)  
32-input mode, 14-bit resolution, fSAMP = 32.5 MSPS, –1-dBFS  
tone applied on one channel and spur on neighboring channel  
measured as crosstalk  
16-input mode, 14-bit resolution, fSAMP = 65 MSPS  
space  
space  
27. Crosstalk vs fIN  
26. Signal-to-Noise Ratio vs Differential Input  
Clock Duty Cycle  
2.8  
2.5  
2
1.8  
0.8  
1.5  
1
-0.2  
-1.2  
-2.2  
-3.2  
0.5  
0
-0.5  
-1  
-1.5  
0
3000  
6000  
9000  
Code  
12000  
15000  
0
3000  
6000  
9000  
Code  
12000  
15000  
32-input mode, 14-bit resolution, fSAMP = 32.5 MSPS  
32-input mode, 14-bit resolution, fSAMP = 32.5 MSPS  
28. Integral Nonlinearity  
29. Differential Nonlinearity  
-58  
-36  
-60  
-62  
-64  
-66  
-68  
-70  
-40  
-44  
-48  
-52  
-56  
-60  
0.1  
0.2 0.3  
0.5 0.7  
1
2
3
4
5
6 7 8 10  
0.1  
0.2 0.3  
0.5 0.7  
1
2
3
4 5 6 7 8 10  
Frequency of Signal on Supply (MHz)  
Frequency of Signal on Supply (MHz)  
32-input mode, 14-bit resolution, fSAMP = 32.5 MSPS, 100-mVPP  
tone on supply  
32-input mode; 14-bit resolution; fSAMP = 32.5 MSPS; 100-mVPP  
tone on supply; 5-MHz, –1-dBFS tone on input; PSMR is  
intermodulation tone referred to input tone amplitude  
31. Power-Supply Modulation Ratio vs  
30. Power-Supply Rejection Ratio vs  
Frequency of Signal on Supply  
Frequency of Signal on Supply  
版权 © 2015–2018, Texas Instruments Incorporated  
21  
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
180  
170  
160  
150  
140  
130  
120  
110  
100  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Conversion Clock Frequency, fC (MHz)  
0.1  
0.2 0.3 0.50.7  
1
2
3
4 5 67 10  
20 30 50 70  
Frequency of Common-Mode Input Signal (MHz)  
32-input mode, 10-bit resolution  
32-input mode, 14-bit resolution, fSAMP = 32.5 MSPS, 50-mVPP  
common-mode tone applied at the inputs, output tone referred to  
the input tone  
33. AVDD_1P8 Current vs  
Conversion Clock Frequency  
32. Common-Mode Rejection Ratio vs  
Frequency of Common-Mode Input Signal  
101  
99  
97  
95  
93  
91  
89  
87  
85  
83  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Conversion Clock Frequency, fC (MHz)  
Conversion Clock Frequency, fC (MHz)  
32-input mode, 10-bit resolution  
32-input mode, 10-bit resolution  
34. DVDD_1P8 Current vs  
35. DVDD_1P2 Current vs  
Conversion Clock Frequency  
Conversion Clock Frequency  
655  
10  
0
620  
585  
550  
515  
480  
445  
410  
375  
-10  
-20  
-30  
-40  
-50  
-60  
HPF_CORNER_ADC* = 2  
HPF_CORNER_ADC* = 3  
HPF_CORNER_ADC* = 4  
HPF_CORNER_ADC* = 5  
HPF_CORNER_ADC* = 6  
HPF_CORNER_ADC* = 7  
HPF_CORNER_ADC* = 8  
HPF_CORNER_ADC* = 9  
HPF_CORNER_ADC* = 10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710 20 50 100 200  
Conversion Clock Frequency, fC (MHz)  
Frequency (MHz)  
32-input mode, 10-bit resolution  
36. Total Power vs Conversion Clock Frequency  
37. Digital High-Pass Filter Response  
22  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Typical Characteristics (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at  
5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. A LVPECL clock is used as the clock source.  
77  
76  
75  
74  
73  
72  
71  
70  
69  
400  
350  
300  
250  
200  
150  
100  
50  
Min  
Typ  
Max  
Chopper Disabled  
Chopper Enabled  
0
1E-5  
0.0001  
0.001  
Frequency (MHz)  
0.01  
0.10.2 0.5 1 2  
1
5
9
13  
17  
21  
25  
29  
32  
Channel Number  
16-input mode, 12-bit resolution  
Statistical values taken over 100 devices in 14-bit, 32-input mode  
at fSAMP = 32.5 MSPS  
38. Signal-to-Noise Ratio Histogram  
39. Low-Frequency Noise With and Without  
Chopper Enabled  
版权 © 2015–2018, Texas Instruments Incorporated  
23  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
7.11 Typical Characteristics: JESD Interface  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, differential ADC clock, RLOAD  
50 Ω from each CML pin to DVDD_1P2, 12-bit ADC resolution, sample rate, and fCLKIN = 80 MSPS, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 85°C. The JESD204B  
interface operates in default mode after setting the JESD_EN bit to 1 (12-bit ADC resolution, 12-bit serialization, 4 ADCs per  
lane, and scrambling disabled).  
=
0.55  
0.5  
0.55  
0.5  
0.45  
0.4  
0.45  
0.4  
0.35  
0.3  
0.35  
0.3  
5 Gbps  
6 Gbps  
6.4 Gbps  
PRE_EMP = 0  
PRE_EMP = 7  
PRE_EMP = 15  
0.25  
0.2  
0.25  
1
3
5
7
9
11  
13  
1
3
5
7
9
11  
13  
Trace Length (inch)  
Trace Length (inch)  
D001  
D002  
PRE_EMP = 15 , across JESD speeds  
40. Total Jitter vs Trace Length  
JESD speed = 5 Gbps, across PRE_EMP settings  
41. Total Jitter vs Trace Length  
0.65  
0.6  
0.65  
PRE_EMP = 0  
PRE_EMP = 7  
PRE_EMP = 15  
0.6  
0.55  
0.5  
0.55  
0.5  
0.45  
0.4  
0.45  
0.4  
PRE_EMP = 0  
PRE_EMP = 7  
PRE_EMP = 15  
0.35  
0.3  
0.35  
1
3
5
7
9
11  
13  
1
3
5
7
9
11  
13  
Trace Length (inch)  
Trace Length (inch)  
D003  
D004  
JESD speed = 6 Gbps, across PRE_EMP settings  
JESD speed = 6.4 Gbps, across PRE_EMP settings  
42. Total Jitter vs Trace Length  
43. Total Jitter vs Trace Length  
175  
320  
ADC Resolution 12 bit  
ADC Resolution 14 bit  
2 ADCs per lane  
4 ADCs per lane  
8 ADCs per lane  
170  
165  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
ADC Sample Rate (MHz)  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
ADC Sample Rate (MHz)  
Across ADC resolutions  
ADC resolution = 12 bits, across lane modes  
44. AVDD_1P8 Current vs ADC Sample Rate  
45. DVDD_1P2 Current vs ADC Sample Rate  
24  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Typical Characteristics: JESD Interface (接下页)  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, differential ADC clock, RLOAD  
=
50 Ω from each CML pin to DVDD_1P2, 12-bit ADC resolution, sample rate, and fCLKIN = 80 MSPS, unless otherwise noted.  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 85°C. The JESD204B  
interface operates in default mode after setting the JESD_EN bit to 1 (12-bit ADC resolution, 12-bit serialization, 4 ADCs per  
lane, and scrambling disabled).  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
45  
40  
35  
30  
25  
20  
15  
10  
2 ADCs per lane  
4 ADCs per lane  
8 ADCs per lane  
10 15 20 25 30 35 40 45 50 55 60 65  
ADC Sample Rate (MHz)  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
ADC Sample Rate (MHz)  
ADC resolution = 14 bits, across lane modes  
ADC resolution = 12, 14 bits; across lane modes  
46. DVDD_1P2 Current vs ADC Sample Rate  
47. DVDD_1P8 Current vs ADC Sample Rate  
版权 © 2015–2018, Texas Instruments Incorporated  
25  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
7.12 Typical Characteristics: Contour Plots  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at 5  
MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. An LVPECL clock is used as the clock source.  
49. Signal-to-Noise Ratio in 10-Bit, 16-Input Mode  
48. Signal-to-Noise Ratio in 10-Bit, 32-Input Mode  
50. Signal-to-Noise Ratio in 10-Bit, 8-Input Mode  
51. Signal-to-Noise Ratio in 12-Bit, 32-Input Mode  
26  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Typical Characteristics: Contour Plots (接下页)  
At 25°C, AVDD_IP8 = DVDD_1P8 = 1.8 V, and DVDD_1P2 = 1.2 V, unless otherwise noted. All LVDS outputs are active with  
100-Ω differential terminations and a 4-pF load capacitor from each LVDS output pin to ground. A –1-dBFS input signal at 5  
MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic  
bins, the fS / 2 and fS / 4 frequency bins as well as the bins corresponding to the intermodulation frequencies between the  
input and the clock. An LVPECL clock is used as the clock source.  
53. Signal-to-Noise Ratio in 14-Bit, 32-Input Mode  
52. Signal-to-Noise Ratio in 12-Bit, 16-Input Mode  
54. Signal-to-Noise Ratio in 14-Bit, 16-Input Mode  
版权 © 2015–2018, Texas Instruments Incorporated  
27  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
A block diagram of the device is shown in 55. 56 illustrates the signal flow for the device while operating  
with the LVDS output interface. The device consists of 16 ADCs configurable to convert 8-, 16-, or 32-inputs. All  
ADCs run off the external clocks (provided on the CLKP, CLKM pins). The references needed for the ADCs are  
internally generated. The reference voltage that can be used to set the common mode voltage of the analog  
input comes out on the VCM pin. The output data from the 16 ADCs are serialized and output on the LVDS  
interface. The device also has an optional JESD204B interface. The device is controlled using an SPI interface.  
8.2 Functional Block Diagrams  
Reference Voltage  
VCM  
and  
Current Generator  
INP1  
INM1  
LVDS  
DOUTP1  
DOUTM1  
ADC 1  
INP2  
INM2  
DOUTP2  
DOUTM2  
INP3  
INM3  
ADC 2  
LVDS Outputs  
INP4  
INM4  
Analog Inputs  
DOUTP16  
DOUTM16  
FCLKP  
FCLKM  
INP31  
INM31  
DCLKP  
DCLKM  
ADC 16  
INP32  
INM32  
CML  
fSAMP  
fC  
CML1_OUTP  
CML1_OUTM  
CML Outputs  
CML8_OUTP  
CML8_OUTM  
Clock  
Generator  
CLKP  
CLKM  
System Clock  
SYNC  
Generator  
Serial Interface  
SDOUT  
fS  
55. Block Diagram  
28  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Functional Block Diagrams (接下页)  
16-, 32-, and  
8-Input Mode  
ADC Resolution:  
10, 12, 14, 16  
Serialization Factor:  
10, 12, 14, 16  
Test Pattern  
Setting  
MSB_FIRST 1X, 2X Mode  
1X, 2X Mode  
Analog  
Inputs  
LVDS  
Outputs  
IN1  
IN2  
AIN1  
ADCIN1  
ADCIN2  
ADCOUT1  
10/12/14  
SERIAL_IN1  
SERIAL_OUT1  
SERIAL_OUT2  
DOUT1  
DOUT2  
DIGOUT1  
16  
DIGRES1  
ADC1  
ADC2  
AIN2  
10, 12, 14, 16  
SERIAL_IN2  
10, 12, 14,  
16  
ADCOUT2  
DIGOUT2  
DIGRES2  
Digital  
Processing  
Input  
Multiplexer  
and Sampler  
Teset Pattern  
Insertion  
Output  
Multiplexer  
Serializer  
Truncation  
(Bypassable)  
DOUT16  
FCLK  
ADCIN16  
ADCOUT16  
DIGOUT16  
DIGRES16  
SERIAL_IN16  
SERIAL_OUT16  
ADC16  
IN32  
DCLK  
AIN32  
A/D Conversion and Digital Processing  
Data Formatting  
Frame Clock, fF  
Sampling Clock, fSAMP  
(Split as Odd and Even  
Conversion Clock, fC  
Sampling Phase for Each ADC)  
Internal Clock Generation  
and Clock Tree  
System Clock, fS  
56. Signal Flow Diagram  
8.3 Feature Description  
The device has 16 synchronously operating ADCs (ADC1 to ADC16) and can be configured to accept and  
convert 8, 16, or 32 active differential external analog inputs (AIN1 to AIN32). The converted digital outputs can  
be made to come out on either 16 pairs of low-voltage differential signaling (LVDS) outputs or compressed into  
eight pairs. The device operates from a single clock input. This input is referred to as the system clock and its  
frequency is denoted by fS. The recommended mode of driving the clock is with a differential low-voltage  
positive-referenced emitter coupled logic (LVPECL) clock. The system clock can be also driven by a differential  
sine-wave or LVDS, or can be driven with a single-ended low voltage complementary metal oxide semiconductor  
(LVCMOS) clock. The various aspects of the signal chain are discussed in the following sections.  
版权 © 2015–2018, Texas Instruments Incorporated  
29  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.1 Connection of the External Inputs to the Input Pins  
The effective conversion rate per input changes depending on the input mode. The methodology of connecting  
the external inputs (AINx) to the input pins (INx) is shown in 1 for the 16-, 32- and 8-channel input modes. In  
1, AIN1 refers to the differential input signal (AINP1, AINM1) and IN1 refers to the input pair (INP1, INM1).  
The voltage that gets sampled and converted by the device is (AINP1-AINM1).  
1. Scheme of Driving the Input Pins (16-, 32-, 8-Channel Input Modes)  
CONNECTION TO THE EXTERNAL ANALOG INPUT SIGNAL  
INPUT PAIR  
16-CHANNEL INPUT MODE(1)(2)  
32-CHANNEL INPUT MODE  
AIN1  
8-CHANNEL INPUT MODE(1)  
IN1  
IN2  
AIN1  
AIN1  
AIN2  
IN3  
AIN2  
AIN3  
AIN1  
IN4  
AIN4  
IN5  
AIN3  
AIN5  
AIN2  
IN6  
AIN6  
IN7  
AIN4  
AIN7  
AIN2  
IN8  
AIN8  
IN9  
AIN5  
AIN9  
AIN3  
IN10  
IN11  
IN12  
IN13  
IN14  
IN15  
IN16  
IN17  
IN18  
IN19  
IN20  
IN21  
IN22  
IN23  
IN24  
IN25  
IN26  
IN27  
IN28  
IN29  
IN30  
IN31  
IN32  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
AIN17  
AIN18  
AIN19  
AIN20  
AIN21  
AIN22  
AIN23  
AIN24  
AIN25  
AIN26  
AIN27  
AIN28  
AIN29  
AIN30  
AIN31  
AIN32  
AIN6  
AIN3  
AIN7  
AIN4  
AIN8  
AIN4  
AIN9  
AIN5  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
AIN6  
AIN13  
AIN7  
AIN14  
AIN7  
AIN15  
AIN8  
AIN16  
AIN8  
(1) — = do not connect.  
(2) To switch ADCx to convert the even numbered inputs, use register control IN_16CH_ADCx.  
8.3.2 Input Multiplexer and Sampler  
The input multiplexer determines the mapping of the input pins (IN1 to IN32) to the inputs that are sampled and  
converted by the ADCs (ADC1 to ADC16). Each ADC has two sets of sampling circuits (termed odd and even)  
and alternately converts the inputs presented to them.  
30  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The sampling windows for the odd and even sampling circuits of each ADC are derived from the system clock. A  
pair of ADCs are used in 57, 58, and 59 to illustrate how the odd and even sampling phases are derived  
for each ADC in each input mode. AIN1 (t1) refers to the AIN1 input sampled at the t1 instant. ADC1o refers to  
the odd sample converted by ADC1 and ADC1e refers to the even sample converted by ADC1. The input  
sampling and conversion schemes for the 32-, 16-, and 8-input modes are illustrated in 57, 58, and 59,  
respectively.  
32-Channel Input Mode  
t1  
t2  
t3  
t4  
Sampling Instants  
Analog input, AIN1  
Analog input, AIN2  
Analog input, AIN3  
Analog input, AIN4  
System Clock, fS  
(External Clock)  
Sampling Clock for Input 1, fSAMP  
(Internal Signal)  
Input to Odd  
Sampling Circuit  
AIN1  
AIN1  
ADCIN1  
Input to Even  
Sampling Circuit  
AIN2  
AIN2  
ADC1o  
AIN1(t1)  
ADC1e  
AIN2(t2)  
ADC1o  
AIN1(t3)  
ADC1e  
AIN2(t4)  
ADC1 Conversion  
Input to Odd  
Sampling Circuit  
AIN3  
AIN3  
ADCIN2  
Input to Even  
Sampling Circuit  
AIN4  
AIN4  
ADC2o  
AIN3(t1)  
ADC2e  
AIN4(t2)  
ADC2o  
AIN3(t3)  
ADC2e  
AIN4(t4)  
ADC2 Conversion  
ADC Conversion Clock, fC  
(Internal Signal)  
57. Input Sampling and Conversion Scheme (32-Input Mode)  
版权 © 2015–2018, Texas Instruments Incorporated  
31  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
16-Channel Input Mode  
Sampling Instants  
Analog input, AIN1  
t2  
t3  
t1  
t4  
Analog input, AIN2  
System Clock, fS  
(External Clock)  
Sampling Clock for Input 1, fSAMP  
(Internal Signal)  
Input to Odd  
Sampling Circuit  
AIN1  
AIN1  
ADCIN1  
Input to Even  
AIN1  
AIN1  
Sampling Circuit  
ADC1o  
ADC1e  
ADC1o  
ADC1e  
AIN1(t3)  
AIN1(t4)  
AIN1(t1)  
AIN1(t2)  
ADC1 Conversion  
Input to Odd  
Sampling Circuit  
AIN2  
AIN2  
ADCIN2  
Input to Even  
Sampling Circuit  
AIN2  
AIN2  
ADC2o  
ADC2e  
ADC2o  
ADC2e  
AIN2(t3)  
AIN2(t4)  
AIN2(t1)  
AIN2(t2)  
ADC2 Conversion  
ADC Conversion Clock, fC  
(Internal Signal)  
58. Input Sampling and Conversion Scheme (16-Input Mode)  
32  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8-Channel Input Mode  
Sampling Instants  
t5  
t7  
t8  
t6  
t1  
t3  
t4  
t2  
Analog input, AIN1  
System Clock, fS  
(External Clock)  
Sampling Clock for Input 1, fSAMP  
(Internal Signal)  
Input to Odd  
Sampling Circuit  
AIN1  
AIN1  
ADCIN1  
Input to Even  
Sampling Circuit  
AIN1  
AIN1  
ADC1o  
ADC1e  
ADC1o  
ADC1e  
AIN1(t5)  
AIN1(t7)  
AIN1(t1)  
AIN1(t3)  
ADC1 Conversion  
Input to Odd  
Sampling Circuit  
AIN1  
AIN1  
ADCIN2  
Input to Even  
Sampling Circuit  
AIN1  
AIN1  
ADC2o  
ADC2e  
ADC2o  
ADC2e  
ADC2 Conversion  
AIN1(t2)  
AIN1(t4)  
AIN1(t6)  
AIN1(t8)  
ADC Conversion Clock, fC  
(Internal Signal)  
59. Input Sampling and Conversion Scheme (8-Input Mode)  
Mapping the inputs of the odd and even sampling circuits of subsequent-numbered ADCs to subsequent-  
numbered sets of input pairs repeats in a similar manner.  
The sampling rate (fSAMP) can be defined as the rate at which the device converts each analog input presented to  
it. The relationship between the sampling rate and the system clock frequency is listed in 2 for the three input  
modes.  
2. Sampling Rate and Input Clock Frequency  
ANALOG INPUT MODE (Number of Input Channels)  
SAMPLING RATE (fSAMP)  
16  
32  
8
fS  
0.5 × fS  
fS  
In 16-input mode, each ADC converts one input at a sampling rate equal to the system clock. In 32-input mode,  
one ADC alternately converts two sets of inputs, each at a sampling rate that is half the system clock. In the 8-  
input mode, two ADCs convert the same input in interleaved manner.  
In 16-input mode, a ping-pong operation exists between two sampling circuits of one ADC that are sampling the  
same input. The mismatch between the two sampling circuit bandwidths can result in an interleaving spur at  
(fS / 2 ± fIN), where fS is the frequency of the system clock and fIN is the frequency of the input signal.  
In 8-input mode, additional interleaving across two adjacent ADCs is present in addition to the ping-pong  
operation between the two sampling circuits of the same ADC. This increased mismatch can result in significant  
interleaving spurs at (fS / 2 ± fIN) and (fS / 4 ± fIN). The offset mismatch between the four sets of sampling circuits  
can result in a spur at fS / 4.  
版权 © 2015–2018, Texas Instruments Incorporated  
33  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
For the 32-input mode, the sampling instants of the even-numbered input signals are offset from the sampling  
instants of the odd-numbered input signals by one system clock period. The magnitude of the interleaving spurs  
increases when the input frequency is increased because the sampling bandwidth mismatch across the different  
sampling circuits results in larger phase error mismatches when the input frequency is increased.  
8.3.3 Analog-to-Digital Converter (ADC)  
The device has 16 synchronous ADCs that provide a digital representation of the input in twos complement  
format. Each ADC converts at a rate of fC using a conversion clock that is internally generated from the system  
clock. Every cycle of a conversion clock corresponds to a new ADC conversion.  
The mapping of the ADC conversions to the analog input is described in 3. See 57, 58, and 59 for the  
naming conventions.  
3. Mapping of the ADC Conversions to the Analog Inputs and Sampling Instants  
INPUT CONVERTED BY THE ADC  
ADC SAMPLE  
16-INPUT MODE  
AIN1 (t1)  
32-INPUT MODE  
AIN1 (t1)  
8-INPUT MODE  
AIN1 (t1)  
ADC1o  
ADC2o  
ADC1e  
ADC2e  
AIN2 (t1)  
AIN3 (t1)  
AIN1 (t2)  
AIN1 (t2)  
AIN2 (t2)  
AIN1 (t3)  
AIN2 (t2)  
AIN4 (t2)  
AIN1 (t4)  
The ADC resolution (the number of bits in the signals marked as ADCOUT1 to ADCOUT16) can be programmed  
as 10, 12, or 14 bits using the ADC_RES bits. The maximum conversion clock of the ADC depends on the ADC  
resolution setting, as shown in 4.  
4. Maximum Conversion Rate of the ADC for Different ADC Resolutions  
ADC RESOLUTION (Bits)  
MAXIMUM CONVERSION CLOCK (fC(max), MSPS)  
10  
12  
14  
100  
80  
65  
The relationship between the system clock and sampling clock rates to the ADC conversion clock is shown in 表  
5. Note that the maximum conversion rate of the ADC is fixed for the three resolution modes. In 5, sampling  
rate refers to the effective rate of sampling each active analog input.  
5. System Clock and Sampling Clock Relationship to the ADC Conversion Clock  
ANALOG INPUT MODE  
(1)  
(Number of Input  
Channels)  
SYSTEM CLOCK RATE (fS)  
SAMPLING RATE (fSAMP  
)
ADC RESOLUTIONS SUPPORTED  
16  
32  
8
fC  
fC  
fC  
10, 12, 14  
10, 12, 14  
10  
0.5 × fC  
2 × fC  
2 × fC  
(1) Sampling rate is also the effective conversion rate of each input channel.  
34  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.4 Device Synchronization Using TX_TRIG  
The device has multiple PLLs and clock dividers that are used to generate the programmable ADC resolutions  
and LVDS synchronization factors as well as to synchronize LVDS test patterns.  
The TX_TRIG input is used to synchronize clock dividers inside the device. The synchronization achieved using  
TX_TRIG also enables multiple parallel devices to operate synchronously.  
For the 32-input mode, the same ADC alternates between converting two inputs. The TX_TRIG signal provides  
the mechanism to determine the sampling instants of the odd and even input signals with respect to the system  
clock, as shown in 60.  
tTX_TRIG_DEL  
TX_TRIG  
tSU_TX_TRIGD  
tH_TX_TRIGD  
tH_TX_TRIGD  
TX_TRIGD  
(Internal signal latched by  
System clock rising edge)  
t2  
t1  
System Clock  
ADC1o  
ADC1e  
AIN2(t2)  
ADC1 Conversion  
AIN1(t1)  
ADC2o  
AIN3(t1)  
ADC2e  
AIN4(t2)  
ADC2 Conversion  
Conversion Clock  
60. Odd- and Even-Channel Sampling Instant Definition Mechanism in  
32-Input Mode with the TX_TRIG Signal  
版权 © 2015–2018, Texas Instruments Incorporated  
35  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
For the 8-input mode, the conversion clock is obtained by dividing the system clock by 2. The phase of the  
division is again determined by the TX_TRIG signal, as shown in 61.  
tTX_TRIG_DEL  
TX_TRIG  
tSU_TX_TRIGD  
tH_TX_TRIGD  
tH_TX_TRIGD  
TX_TRIGD  
(Internal signal latched by  
System clock rising edge)  
t1  
t2  
t3  
t4  
System Clock  
ADC1o  
AIN1(t1)  
ADC1e  
AIN1(t3)  
ADC1 Conversion  
ADC2o  
AIN1(t2)  
ADC2e  
AIN1(t4)  
ADC2 Conversion  
Conversion Clock  
61. Conversion Clock Deriving Mechanism from Division of the Sampling Clock in 8-Input Mode  
Applying a pulse on TX_TRIG is a mandatory part of the power-up and initialization sequence; see the Power  
Sequencing and Initialization section.  
In case a TX_TRIG is not applied, the device can possibly behave in an unexpected manner. The identified  
cases are shown in 6.  
6. Device Behavior Cases: TX_TRIG is Not Applied  
INPUT MODE WHERE ISSUE OCCURS  
(8-, 16-, 32-Channel Input Modes)  
SCENARIO  
ISSUE  
Frame clock across devices is not  
synchronized  
8- and 32-channel input modes  
Multiple devices operating in parallel  
LVDS patterns across devices are not  
synchronized  
8-, 16-, and 32-channel input modes  
8- and 32-channel input modes  
Serialization factor different from ADC  
resolution  
Framing of data words within a frame clock is  
not defined  
The TX_TRIG pulse resets the phase of the test pattern generator, the odd and even sampling phase selection,  
and the phase of the frame clock. As a result of this phase reset operation, the ADC data can be corrupted for  
four to six clocks immediately after applying TX_TRIG. The phase reset from TX_TRIG can be disabled using  
MASK_TX_TRIG.  
36  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.5 Digital Processing  
The ADC outputs go to a digital processing block that can be used to enhance ADC performance. Some of the  
operations done in the digital processing block can enhance the effective signal to noise ratio at its output. For  
this reason, the number of bits at the DIGOUT1 to DIGOUT16 signals are considered to be 16. However, some  
of the LSBs of this 16-bit word may be zero. For example, when the digital processing block is bypassed, the  
number of non-zero bits in DIGOUT is the same as the ADC resolution—the extra LSBs of the 16-bit word are  
zero.  
The digital processing block results in additional latency that can be avoided by using the low latency mode  
(programmed using the LOW_LATENCY_EN bit) that bypasses the entire digital processing block without  
introducing extra latency. The various features available in the digital processing block are shown in 62 and  
are explained in the subsequent sections.  
ADC 2  
Output  
Digital Test Patterns  
ADCOUT  
10b, 12b, 14b  
MUX  
DIGOUT  
16b  
ADC1  
Output  
Digital Average  
Default = No  
Digital Gain  
Default = 0 dB  
Digital HPF  
Default = No  
Digital Offset  
Default = No  
62. ADC Digital Block Diagram  
8.3.5.1 Digital Offset  
Digital functionality provides for channel offset correction. Setting the DIG_OFFSET_EN bit to 1 enables the  
subtraction of the offset value from the ADC output. There are two offset correction modes, as shown in 63.  
DIG_OFFSET_EN  
0
Data Output,  
Bits 13-0  
Bits 13-0  
MUX  
(0s appended as LSBs when in 10-/12-bit resolutions)  
Analog  
Input(s)  
ADCx  
+
1
-
AUTO_OFFSET_REMOVAL_  
ACC_CYCLES  
OFFSET_REMOVAL_SELF  
(Register 4, Bit 15)  
(Register 4, Bits 12:9)  
OFFSET_REMOVAL_START_SEL  
(Register 4, Bit 14)  
Bits  
29-0  
OFFSET_REMOVAL_  
Truncation and  
Rounding Data  
Bits  
Bits 13-0  
1
START_MANUAL  
(Register 4, Bit 13)  
0
Accumulator  
Start  
MUX  
MUX  
1
TX_TRIG Pin  
Bits 9-0  
0
OFFSET_ADC_xo,  
OFFSET_ADC_xe  
Extending Sign  
Bit to 14 Bits  
Bits 13-0  
63. Digital Offset Correction Block Diagram  
版权 © 2015–2018, Texas Instruments Incorporated  
37  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
8.3.5.1.1 Manual Offset Correction  
If the channel offset is known or estimated, it can be written into a 10-bit register and can be subtracted from the  
ADC output. There are 32 sets of manual offset controls. To enable per-channel offset correction in the 32-input  
mode, the offset values for the odd and even data streams of each of the 16 ADCs can be independently  
controlled. The registers OFFSET_ADCxo and OFFSET_ADCxe correspond to the offsets subtracted from the  
odd and even data streams of ADCx. Write the offset values in twos complement format.  
8.3.5.1.2 Auto Offset Correction Mode (Offset Correction using a Built-In Offset Calculation Function)  
The auto offset calculation module can be used to calculate the channel offset that is then subtracted from the  
ADC output. To enable the auto offset correction mode, set the OFFSET_REMOVAL_SELF bit and  
DIG_OFFSET_EN bit to 1.  
In auto offset correction mode the dc component of the ADC output (assumed to be the channel offset) is  
estimated using a digital accumulator. The ADC output sample set used by the accumulator is determined by a  
start time or first sample and number of samples to be used. A high pulse on the TX_TRIG pin or setting the  
OFFSET_REMOVAL_START_MANUAL register can be used to determine the first sample to the accumulator.  
To set the number of samples, the AUTO_OFFSET_REMOVAL_ACC_CYCLES register must be programmed  
according to 7.  
If a pulse on the TX_TRIG pin is used to set the first sample, additional flexibility in setting the first sample is  
provided. A programmable delay between the TX_TRIG pulse and the first sample can be set by writing to the  
OFFSET_CORR_DELAY_FROM_TX_TRIG register.  
The determined offset value can be read out for each channel. Set the channel number in the  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL register and read the offset value for the corresponding channel  
in the AUTO_OFFSET_REMOVAL_VAL_RD register. Note that the offset estimation is done separately for the  
odd and even data streams of each of the 16 ADCs and results in 32 sets of offset estimates that can be read  
out.  
7. Auto Offset Removal Accumulator Cycles  
NUMBER OF SAMPLES USED FOR OFFSET VALUE  
AUTO_OFFSET_REMOVAL_ACC_CYCLES (Bits 3-0)  
EVALUATION  
0
2047  
127  
1
2
255  
3
511  
4
1023  
2045  
4095  
8191  
16383  
32767  
65535  
5
6
7
8
9
10 to 15  
38  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.5.1.3 Digital Averaging  
The data from two adjacent ADCs (ADC1 and ADC2, ADC3 and ADC4, and so forth) can be averaged by  
enabling the AVG_EN bit. A scenario where this feature can be useful is where the same analog input is fed to  
two channels and their outputs are averaged to achieve approximately a 3-dB improvement in SNR. The  
mapping of DIGOUT to the ADC data is shown in 8.  
8. Mapping of the DIGOUT Words to the ADC Outputs when Using Digital Averaging  
LVDS PAIR THE DATA COME OUT ON  
DIGOUT  
RELATIONSHIP TO ADC DATA  
1X DATA RATE MODE  
2X DATA RATE MODE  
DIGOUT1  
DIGOUT2  
DIGOUT3  
DIGOUT4  
DIGOUT5  
DIGOUT6  
DIGOUT7  
DIGOUT8  
DIGOUT9  
DIGOUT10  
DIGOUT11  
DIGOUT12  
DIGOUT13  
DIGOUT14  
DIGOUT15  
DIGOUT16  
Average of ADC1 and ADC2  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT1  
Average of ADC3 and ADC4  
Average of ADC5 and ADC6  
DOUT2  
Average of ADC7 and ADC8  
Ignore  
Ignore  
Ignore  
Ignore  
Average of ADC9 and ADC10  
Average of ADC11 and ADC12  
Average of ADC13 and ADC14  
Average of ADC15 and ADC16  
Ignore  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
DOUT9  
DOUT10  
Ignore  
Ignore  
Ignore  
8.3.5.1.4 Digital Gain  
The digital gain block can be enabled using the DIG_GAIN_EN bit. When enabled, a digital gain programmable  
from 0 dB to 6 dB in steps of 0.2 dB can be applied. To enable individual digital gain control for each input in 32-  
input mode, a separate digital gain control is provided for the odd and even sample of each ADC. Therefore,  
there are 32 gain controls. When using 16-input mode, set the odd and even gain controls of the same ADC to  
the same value. When using 8-input mode, four sets of gain controls are to be set to the same value (the odd  
and even gains of adjacent ADCs; for instance, ADC1 and ADC2).  
8.3.5.1.5 Digital HPF  
A digital high-pass filter (HPF) can be enabled in the path of each ADC word. The enable control is shared  
between sets of four consecutive-numbered ADCs (ADC1-ADC4, ADC5-ADC8, ADC9-ADC12, and ADC13-  
ADC16). For example, DIG_HPF_EN_ADC1-4 enables the HPF in the paths of ADCOUT1, ADCOUT2,  
ADCOUT3, and ADCOUT4. The digital high-pass transfer function is determined by 公式 1:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2
k
+ 1  
(1)  
版权 © 2015–2018, Texas Instruments Incorporated  
39  
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
When DIG_HPF_EN_ADC1-4 is set, the value of K in 公式 1 is set by the HPF_CORNER_ADC1-4 bits. The  
value of K can be programmed from 2 to 10. 9 shows the cutoff frequency as a function of K.  
9. Digital HPF, –1-dB Corner Frequency versus K and fS  
CORNER FREQUENCY (k)  
(HPF_CORNER_ADCx  
Register)  
CORNER FREQUENCY (kHz)  
fS = 40 MSPS  
fS = 50 MSPS  
fS = 65 MSPS  
2
3
2780  
1490  
738  
369  
185  
111  
49  
3480  
1860  
230  
461  
230  
138  
61  
4520  
2420  
1200  
600  
300  
180  
80  
4
5
6
7
8
9
25  
30  
40  
10  
12.  
15  
20  
By default the HPF output is truncated to 14 bits. To enable the rounding operation to map the HPF output to the  
ADC resolution, set the HPF_ROUND_EN_CH1-8 and HPF_ROUND_EN_CH9-16 bits to 1.  
8.3.6 Data Formatting  
The data formatting block does two functions: truncation and test pattern insertion. The serialization block  
following the data formatting block performs a parallel-to-serial conversion of the input word. The serialization  
factor is programmable to 10, 12, 14, or 16. The truncation block truncates the DIGOUT signal to the number of  
bits specified by the serialization factor. The number of bits in DIGRES1 to DIGRES16 is therefore determined by  
the serialization factor. Again, some of the bits in DIGRES may always be zero, depending on the combination of  
ADC resolution, what digital features are enabled or disabled, and the serialization factor that is programmed. To  
aid the FPGA in capturing and deserializing the serial output, the device includes provisions to replace the ADC  
data with test patterns. The SERIAL_IN1 to SERIAL_IN16 signals are the same as the DIGRES1 to DIGRES16  
signals during normal operation. When a test pattern is programmed, the DIGRES signals are replaced with the  
appropriate test pattern. The manner in which a given test pattern actually comes out of the LVDS lines can be  
altered based on the serializer operating mode because the serializer itself has multiple modes (LSB-, MSB-first  
modes and 1X, 2X data rate modes).  
8.3.7 Serializer and LVDS Interface  
By default, each serializer takes in one SERIAL_IN word and performs a parallel-to-serial conversion. This mode  
is referred to as the 1X data rate mode. In the 1X data rate mode, all 16 LVDS pairs are active and each pair  
corresponds to the data coming out of one ADC. In the 2X data rate mode (set using the LVDS_RATE_2X bit),  
the data from a pair of ADCs (two SERIAL_IN words) is packed into the same serial stream. In 2X mode, half the  
LVDS pairs are idle and can be powered down. The 2X data rate mode causes the LVDS interface to run at  
twice the rate but results in power saving. See the Timing Requirements: Signal Chain table for speed  
restrictions when using the 1X and 2X data rate modes.  
The LVDS interface is a clock-data-frame (CDF) format, and has a frame clock and a high-speed bit clock in  
addition to the serial data lines.  
40  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The frequency of the bit clock with respect to the conversion clock frequency depends on the serialization factor  
(set using the SER_DATA_RATE bits), as shown in 10. Note that the serialized data are meant to be captured  
on both the rising and falling edges of the bit clock. Thus, the serialized data rate is twice the bit clock frequency.  
10. Bit Clock Rate Relationship to the Conversion Clock and System Clock Rates  
BIT CLOCK RATE (fB in Terms of fS)  
SERIALIZATION  
FACTOR  
BIT CLOCK RATE  
(fB in Terms of fC)  
DATA RATE MODE  
16-INPUT MODE  
32-INPUT MODE  
5 × fS  
8-INPUT MODE  
1X  
2X  
1X  
2X  
1X  
2X  
1X  
2X  
5 × fC  
10 × fC  
6 × fC  
5 × fS  
10 × fS  
6 × fS  
2.5 × fS  
5 × fS  
3 × fS  
6 × fS  
3.5 × fS  
7 × fS  
4 × fS  
8 × fS  
10  
12  
14  
16  
10 × fS  
6 × fS  
12 × fC  
7 × fC  
12 × fS  
7 × fS  
12 × fS  
7 × fS  
14 × fC  
8 × fC  
14 × fS  
8 × fS  
14 × fS  
8 × fS  
16 × fC  
16 × fS  
16 × fS  
The relationship of the frame clock frequency to the conversion clock frequency for the three input modes is as  
shown in 11. The relationship of the frame clock frequency to the system clock (and conversion clock)  
frequencies is the same between the 1X and 2X data rate modes.  
11. Relation of Frame Clock Rate to the Conversion Clock and System Clock Rates  
ANALOG INPUT MODE  
(Number of Channels)  
FRAME CLOCK RATE  
(fF in Terms of fC)  
FRAME CLOCK RATE  
(fF in Terms of fS)  
DATA RATE MODES  
SUPPORTED  
16  
32  
8
fC  
0.5 × fC  
fC  
fS  
1X, 2X  
1X  
0.5 × fS  
0.5 × fS  
1X, 2X  
The serialization schemes for the various modes are illustrated in 64 to 68. Note that although the signals  
marked ADCx Conversion in 64 to 68 represent a multi-bit digital word, the SERIAL_OUTx signals are  
actually serialized representations of the correspondingly colored signals. For example, the blue-colored section  
in the SERIAL_OUT1 signal in 64 contains the serial stream of data that originated from the word  
corresponding to ADC1o.  
版权 © 2015–2018, Texas Instruments Incorporated  
41  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
AIN1  
t2  
AIN2  
t1  
tAP  
System Clock, fS  
Conversion Clock, fC  
NLAT  
Frame Clock Output, fF  
tPROP  
ADC1e  
ADC1o  
ADC1 Conversion  
SERIAL_OUT1  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN1  
SERIAL_IN1  
AIN1(t1)  
AIN1(t2)  
ADC2o  
ADC2e  
ADC2 Conversion  
SERIAL_OUT2  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN2  
SERIAL_IN2  
AIN2(t1)  
AIN2(t2)  
64. ADC to Output Mapping in 16-Input, 1X Mode in LVDS Interface Mode  
42  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
t4  
t3  
t1  
t2  
AIN1  
tAP  
System Clock, fS  
Conversion Clock, fC  
NLAT  
Frame Clock Output, fF  
tPROP  
ADC1o  
ADC1e  
ADC1 Conversion  
SERIAL_OUT1  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN1  
AIN1(t1)  
SERIAL_IN1  
AIN1(t3)  
ADC2 Conversion  
SERIAL_OUT2  
ADC2o  
ADC2e  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN2  
AIN1(t2)  
SERIAL_IN2  
AIN1(t4)  
65. ADC to Output Mapping in 8-Input, 1X Mode in LVDS Interface Mode  
版权 © 2015–2018, Texas Instruments Incorporated  
43  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
AIN1  
t2  
AIN2  
t1  
tAP  
System Clock, fS  
Conversion Clock, fC  
NLAT  
Frame Clock Output, fF  
ADC1o  
ADC1e  
tPROP  
ADC1 Conversion  
ADC2 Conversion  
ADC2o  
ADC2e  
SERIAL_OUT1  
(SERIAL_OUT2 is Idle)  
SERIAL_IN2  
ADC2o  
SERIAL_IN1  
ADC1e  
SERIAL_IN2  
ADC2e  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN1  
ADC1o  
AIN1(t1)  
AIN2(t1)  
AIN1(t2)  
AIN2(t2)  
66. ADC to Output Mapping in 16-Input, 2X Mode in LVDS Interface Mode  
44  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
t4  
t3  
t1  
t2  
AIN1  
tAP  
System Clock, fS  
Conversion Clock, fC  
NLAT  
Frame Clock Output, fF  
ADC1 Conversion  
tPROP  
ADC1o  
ADC1e  
ADC2o  
ADC2e  
ADC2 Conversion  
SERIAL_OUT1  
(SERIAL_OUT2 is Idle)  
SERIAL_IN2  
ADC2o  
SERIAL_IN1  
ADC1e  
SERIAL_IN2  
ADC2e  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN1  
ADC1o  
AIN1(t1)  
AIN1(t2)  
AIN1(t3)  
AIN1(t4)  
67. ADC to Output Mapping in 8-Input, 2X Mode in LVDS Interface Mode  
版权 © 2015–2018, Texas Instruments Incorporated  
45  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
AIN1  
t1  
t2  
tAP  
AIN2  
tAP  
System Clock, fS  
Conversion Clock, fC  
NLAT  
Frame Clock Output, fF  
tPROP  
tPROP  
ADC1o  
ADC1e  
ADC1 Conversion  
SERIAL_OUT1  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN1  
AIN1(t1)  
SERIAL_IN1  
AIN2(t2)  
ADC2o  
ADC2e  
ADC2 Conversion  
SERIAL_OUT2  
Serialized output of ...  
Corresponding to ...  
SERIAL_IN2  
AIN3(t1)  
SERIAL_IN2  
AIN4(t2)  
68. ADC to Output Mapping in 32-Input, 1X Mode in LVDS Interface Mode  
The mapping of the subsequent-numbered ADC signals to subsequent-numbered SERIAL_OUT signals follows  
the same pattern as indicated previously.  
The serialized stream in SERIAL_OUT is a serialized representation of SERIAL_IN, which is the input word  
coming into the serializer. By default, serialization is done LSB-first. By setting the MSB_FIRST bit, serialization  
can be set to MSB-first.  
The alignment of the frame clock, bit clock, and the serialized output data is illustrated in 1 for 16-input mode  
where the serialization factor is set to 12 bit, serialization is LSB-first, and the data rate is set to 1X mode.  
Another case is shown in 69 for 16-input mode. Here, the serialization factor is set to 14 bit, serialization is  
MSB-first, and the data rate is set to 2X mode.  
SERIAL_IN1 (D[13:0])  
SERIAL_IN2 (D[13:0])  
D13 D12  
D11 D10 D9  
D7  
D5  
D3  
D1  
D13 D12  
D8  
D6  
D4  
D2  
D0  
D11 D10 D9  
D7  
D5  
D3  
D1  
D8  
D6  
D4  
D2  
Data (DOUT)  
D0  
Bit Clock (DCLK)  
Frame Clock (FCLK)  
69. LVDS Output Signals Timing Diagram in 16-Input Mode with  
14-Bit Serialization, MSB-First, 2X Data Rate Mode  
46  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The serialized signals come out on the DOUT pins as indicated in 12. The buffers marked Idle can be  
powered down using the appropriate register bits to save power.  
12. Mapping of the Serialized Outputs to the DOUT Pins  
OUTPUT SIGNAL  
LVDS OUTPUT PIN (DOUT)  
1X DATA RATE MODE  
SERIAL_OUT1  
SERIAL_OUT2  
SERIAL_OUT3  
SERIAL_OUT4  
SERIAL_OUT5  
SERIAL_OUT6  
SERIAL_OUT7  
SERIAL_OUT8  
SERIAL_OUT9  
SERIAL_OUT10  
SERIAL_OUT11  
SERIAL_OUT12  
SERIAL_OUT13  
SERIAL_OUT14  
SERIAL_OUT15  
SERIAL_OUT16  
2X DATA RATE MODE  
SERIAL_OUT1  
SERIAL_OUT3  
SERIAL_OUT5  
SERIAL_OUT7  
Idle  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
Idle  
Idle  
Idle  
SERIAL_OUT9  
SERIAL_OUT11  
SERIAL_OUT13  
SERIAL_OUT15  
Idle  
Idle  
Idle  
Idle  
版权 © 2015–2018, Texas Instruments Incorporated  
47  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
8.3.8 LVDS Buffers  
A graphical representation of the 18 LVDS output buffers is shown in 70.  
LVDS Buffer  
DOUTP1  
DOUTM1  
DOUTP2  
DOUTM2  
Digital Output  
DOUTP16  
DOUTM16  
DCLKP  
DCLKM  
Serial Clock  
Frame Clock  
FCLKP  
FCLKM  
70. LVDS Output  
48  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The equivalent circuit of each LVDS output buffer is shown in 71. The buffer is designed for a differential  
output impedance of 100 (ROUT). The differential outputs can be terminated at the receiver end by a 100-Ω  
termination. The buffer output impedance functions like a source-side series termination. By absorbing reflections  
from the receiver end, the buffer output impedance helps improve signal integrity.  
Device  
OUTP  
+0.4 V  
External  
100-Load  
OUTM  
ROUT  
1.03 V  
-0.4 V  
Switch impedance is  
nominally 50 (ê10%).  
NOTE: When either the high or low switches are closed, differential ROUT = 100 Ω.  
71. LVDS Output Circuit  
8.3.9 JESD204B Interface  
8.3.9.1 Overview  
When operating in 16-input and 32-input modes, the device supports a multi-lane output interface based on the  
JEDEC standard: JESD204B (serial interface for data converters). This interface runs up to 5 Gbps and provides  
a compact way of routing the data from multiple ADCs in the device to the FPGA. Subclasses 0, 1, and 2 of the  
JESD204B interface are supported. The block diagram in 72 illustrates the connections of the JESD interface  
to the rest of the device. After the test pattern insertion block, the parallel data streams SERIAL_IN1 to  
SERIAL_IN16 can be routed to either the LVDS interface or to the JESD interface (or both). The ADC data can  
be sent out using the EN_JESD and DIS_LVDS controls. The LVDS_INx and CML_INx words are the same as  
the SERIAL_INx words.  
版权 © 2015–2018, Texas Instruments Incorporated  
49  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
SER_DATA_RATE  
ADC_RES  
12-, 14-Bits  
SER_DATA_RATE  
12-, 14-, 16-Bits  
Test Pattern  
Setting  
1X, 2X  
Mode  
EN_JESD  
DIS_LVDS  
MSB_  
FIRST  
1X, 2X  
Mode  
SERIAL_  
OUT1  
DOUT1  
SERIAL_  
LVDS_IN1  
DIGOUT1  
16  
ADCOUT1  
IN1  
IN1  
DIGRES1  
12, 14, 16  
ADC1  
12, 14  
12, 14, 16  
LVDS Outputs  
12, 14, 16  
SERIAL_  
IN2  
LVDS  
Serializer  
Output  
Multiplexer  
DIGOUT2  
IN2  
ADCOUT2  
DIGRES2  
ADC2  
DOUT16  
FCLK  
SERIAL_  
OUT16  
LVDS_IN16  
12, 14, 16  
DCLK  
Digital  
Processing  
(Bypassable)  
LVDS,  
JESD  
Selection  
Test Pattern  
Insertion  
Truncation  
Analog  
Inputs  
CML1_OUT  
CML_IN1  
12, 14, 16  
CML Outputs  
JESD Tx Block  
(Transport, Link, and Physical Layers)  
SERIAL_  
IN16  
ADCOUT16  
DIGRES16  
DIGOUT16  
IN16  
CML_IN16  
12, 14, 16  
ADC16  
CML8_OUT  
A/D Conversion and Digital Processing  
Data Formatting  
Frame Clock, fF  
Conversion Clock, fC  
SYNC~,  
SYSREF  
SER_  
DATA_  
RATE  
DATA_  
PACKING  
Sampling Clock,  
fSAMP  
ADC_RES Version,  
Subclass  
8, 4,  
2_LANE  
Internal Clock Generation and  
Clock Tree  
System Clock, fS  
72. JESD Interface Connection to the Digital Processing Output  
50  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The JESD interface can be enabled by setting the EN_JESD bit to 1. When in JESD mode, the LVDS interface  
can be disabled by setting the DIS_LVDS bit to 1. Both the LVDS and JESD interfaces can be simultaneously  
kept active by setting the DIS_LVDS bit to 0 and the EN_JESD bit to 1.  
13 shows the clock rates corresponding to the various clocks mentioned in the JESD204B document. This  
mapping is independent of whether the device operates in 8-, 16-, or 32-input mode.  
13. Mapping of JESD204B Clock Notation to the Clock Rates  
CLOCK NOTATION IN JESD204B DOCUMENT  
CORRESPONDING CLOCK RATE  
Device clock  
Frame clock  
fS  
fC  
fC  
fC  
Conversion clock  
Sample clock  
All mandatory features of the JESD204B interface are supported by the device, and are:  
Breaking up of data from the ADCs into octets.  
Optional scrambling of octets to avoid spectral tones.  
Conversion of (scrambled) octets to 10-bit words using 8b, 10b encoding.  
Parallel-to-serial conversion of octets.  
A code group synchronization (CGS) phase to enable the receiver to synchronize to the frame boundaries.  
An initial lane alignment (ILA) sequence phase to help the receiver align the data from all lanes and also for  
the receiver to read and verify the link configuration parameters.  
Character replacement at frame and multi-frame boundaries during normal data transmission to enable the  
receiver to monitor frame alignment.  
Mechanism to achieve deterministic latency across the link using the SYSREF signal in subclass 1 and the  
SYNC~ signal in subclass 2.  
The Link Configuration section details only the device-specific implementation aspects of the JESD204B  
interface. For additional details related to the standard, see the JEDEC standard 204B (July 2011).  
8.3.9.2 Link Configuration  
The JESD204B link in the device can be configured to operate in different modes using the register controls in 表  
14.  
14. Register Controls Determining Link Configuration Parameters  
REGISTER CONTROL  
DESCRIPTION  
ALLOWED SETTINGS  
NUM_ADC_PER_LANE  
Number of ADC words packed into one lane  
2, 4, 8  
Number of bits resolution in the ADC word input to the JESD  
transmitter block  
ADC_RES  
10, 12, 14, 16  
10, 12, 14, 16  
SER_DATA_RATE  
Serialization factor control  
In addition to the register controls mentioned in 14, the SING_CONV_PER_OCT register bit controls the  
packaging efficiency of the ADC data into octets.  
The link configuration parameters are determined by 15.  
版权 © 2015–2018, Texas Instruments Incorporated  
51  
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
15. Link Configuration Parameters  
LINK CONFIGURATION PARAMETER  
LINK CONFIGURATION FIELD  
CORRESPONDING RELATION OF FIELD TO  
DEFAULT VALUE  
(In Decimal, Unless  
Otherwise Specified)(1)  
LINK CONFIGURATION  
DESCRIPTION  
ALLOWED VALUES  
(Decimal)  
METHOD OF SETTING  
PARAMETER  
FIELD IN ILAS  
PARAMETER  
ADJCNT  
ADJDIR  
BID  
Not relevant  
0
0
0
0
0
0
0
6
0
Forced to 0; not used  
Forced to 0; not used  
BANK_ID register control  
Forced to 0  
ADJCNT[3:0]  
ADJDIR[0]  
BID[3:0]  
CF[4:0]  
Binary value  
Binary value  
Not relevant  
0
Bank ID  
0…15  
Binary value  
CF  
Number of control words per frame  
Number of control bits per sample  
Device ID  
0
Binary value  
CS  
0
0…255  
See 18  
0
Forced to 0  
CS[1:0]  
Binary value  
DID  
DEVICE_ID register control  
Determined by 18  
Forced to 0; not used  
DID[7:0]  
F[7:0]  
Binary value  
F
Number of octets per frame  
High density format  
Binary value minus 1  
Binary value  
HD  
HD[0]  
ENABLE_JESD_VER_CONTROL,  
JESD_VERSION register control; see  
16  
0 = JESD204A  
1 = JESD204B  
JESDV  
JESD204 version  
1
JESDV[2:0]  
Binary value  
Determined by 29; can be changed  
using FORCE_K and  
K_VALUE_TO_FORCE register  
controls  
K
L
Number of frames per multiframe  
Number of lanes  
See 16  
2, 4, 8  
3
K[4:0]  
L[4:0]  
Binary value minus 1  
Binary value minus 1  
Binary value  
4
Determined by 18  
Default (value given in 17) can be  
changed using EN_LANE_ID# and  
LANE_ID# register controls for each  
lane number  
LID  
Lane ID  
1 to 8  
As given in 5  
LID[4:0]  
M
N
Number of ADCs  
ADC resolution  
16  
16  
12  
Forced to 16  
M[7:0]  
N[4:0]  
Binary value minus 1  
Binary value minus 1  
Determined by ADC_RES register  
control  
10, 12, 14, 16  
N’  
PHADJ  
S
Total number of bits per sample  
Not relevant  
See 18  
12  
0
Determined by 18  
Forced to 0; not used  
Forced to 1  
N’[4:0]  
PHADJ[0]  
S[4:0]  
Binary value minus 1  
Binary value  
0
1
Number of samples per ADC per frame  
Scrambler enable or disable  
1
Binary value minus 1  
Binary value  
SCR  
0,1  
0
SCR_EN register control  
SCR[0]  
0 = Subclass 0  
1 = Subclass 1  
2 = Subclass 2  
ENABLE_JESD_VER_CONTROL,  
JESD_SUBCLASS register control;  
see 16  
SUBCLASSV  
Device subclass version  
1
SUBCLASSV[2:0]  
Binary value  
RES1  
RES2  
Reserved field 1  
Reserved field 2  
0
0
0
0
Forced to 0  
Forced to 0  
RES1[7:0]  
RES2[7:0]  
Binary value  
Binary value  
Lane 1 – 32h  
Lane 3 – 34h  
Lane 5 – 36h  
Lane 7 – 38h  
Default value as calculated by device  
can be changed using  
EN_CHECKSUM_LANE# and  
CHECK_SUM# for each lane number  
CHKSUM  
Checksum  
FCHK[7:0]  
Binary value  
(1) Corresponding to ADC_RES set to 12 bits, SER_DATA_RATE set to 12 bits, NUM_ADC_PER_LANE set to four ADCs per lane, SING_CONV_PER_OCT mode disabled, and  
ENABLE_JESD_VER_CONTROL set to 0 (to operate in JESD204B-subclass1).  
52  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.9.3 JESD Version and Subclass  
The interface can be configured to operate either as a JESD204A version or as a JESD204B version.  
Furthermore, when operating as a JESD204B version, the subclass can be configured as subclass 0, 1, or 2.  
The register controls for programming the version and subclass are shown in 16.  
16. JESD Version and Subclass Control  
FIELD VALUE  
ENABLE_JESD_  
VER_CONTROL JESD_VERSION  
JESD_  
SUBCLASS  
SUBCLASS  
VERSION  
JESD VERSION  
JESD204B-subclass1  
JESD204A  
JESD VERSION  
0
1
1
1
1
X(1)  
000  
001  
001  
001  
X
001  
000  
001  
001  
001  
001  
000  
000  
001  
010  
000  
000  
001  
010  
JESD204B-subclass 0  
JESD204B-subclass 1  
JESD204B-subclass 2  
(1) X = don't care.  
8.3.9.4 Transport Layer  
In the JESD204B transport layer, the incoming stream of ADC samples are mapped to one or more parallel lanes  
and grouped into a frame of F octets for transmission on each lane. Additional tail bits can be appended to the  
ADC samples.  
8.3.9.4.1 User Data Format  
The interface can be configured to operate in 2, 4, or 8 lane modes (L = 2, 4, or 8). Depending on the number of  
lanes used, the data from the 16 ADCs comes out in the different lanes as shown in 17.  
17. Lane Mapping to CML Pins(1)  
DEFAULT  
LANE ID  
2 ADCS PER LANE  
(8-Lane Mode)(2)  
4 ADCS PER LANE  
(4-Lane Mode)(2)  
8 ADCS PER LANE  
(2-Lane Mode)(2)  
MAPPING TO THE PINS  
1
2
3
4
5
6
7
8
CML1_OUTP-CML1_OUTM  
CML2_OUTP-CML2_OUTM  
CML3_OUTP-CML3_OUTM  
CML4_OUTP-CML4_OUTM  
CML5_OUTP-CML5_OUTM  
CML6_OUTP-CML6_OUTM  
CML7_OUTP-CML7_OUTM  
CML8_OUTP-CML8_OUTM  
ADC1, ADC2  
ADC3, ADC4  
ADC5, ADC6  
ADC7, ADC8  
ADC9, ADC10  
ADC11, ADC12  
ADC13, ADC14  
ADC15, ADC16  
ADC1…ADC4  
ADC1…ADC8  
ADC5…ADC8  
ADC9…ADC12  
ADC9…ADC16  
ADC13…ADC16  
(1) More accurately, ADC1…ADC16 corresponds to CML_IN1…CML_IN16 as illustrated in 72.  
(2) Determined by the NUM_ADC_PER_LANE register control.  
The unused lanes are automatically powered down.  
The device supports several combinations of ADC resolutions and number of lanes. There are no control bits or  
control words (CF = 0). The device has two modes of data packing: normal packing mode and single converter  
per octet mode. The packing mode can be chosen using the SING_CONV_PER_OCT register control. The  
number of ADCs per lane can be programmed to 8, 4, or 2 using the NUM_ADC_PER_LANE register control.  
The number of ADCs per lane automatically determines the value of L (the number of lanes). The values of N’  
and F for the different modes are described in 18.  
版权 © 2015–2018, Texas Instruments Incorporated  
53  
 
 
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
18. Different JESD204B Interface Modes of Operation  
N(3)  
SINGLE CONVERTER PER  
OCTET MODE(1)  
NORMAL PACKING MODE(1)  
(Resolution of  
ADC Word  
Input to the  
JESD204B  
Transmitter)  
NUMBER OF  
ADCS PER  
LANE, NAL  
SER_DATA_  
RATE,  
ADC_RES,  
NRES  
(Bits)  
L(3)  
(Lanes)  
(1)  
N'(3)  
F(3)  
N'(3)  
F(3)  
(1)  
NSER(1)(2) (Bits)  
(Total Number  
of Bits)  
(Octets per  
Frame)  
(Total Number  
of Bits)  
(Octets per  
Frame)  
SER_DATA_  
RATE  
SER_DATA_  
RATE  
8
4
10, 12, 14, 16  
10, 12, 14, 16  
10, 12, 14, 16  
10, 12, 14, 16  
2
4
ADC_RES  
ADC_RES  
16  
16  
16(5)  
8(5)  
(4)  
SER_DATA_  
RATE(4)  
SER_DATA_  
RATE/2  
10  
12  
14  
16  
10  
ADC_RES  
ADC_RES  
ADC_RES  
ADC_RES  
12  
12  
16  
16  
3(6)  
16  
16  
16  
16  
4(5)  
4(5)  
4(5)  
4(5)  
10, 12  
3
2
8
10, 12, 14  
10, 12, 14, 16  
4(6)  
4
(1) Value or mode is set by programming the appropriate registers.  
(2) SER_DATA_RATE must be greater than or equal to ADC_RES.  
(3) Automatically calculated and set by the device.  
(4) When SER_DATA_RATE > ADC_RES, then each ADC word is additionally padded with the (SER_DATA_RATE – ADC_RES) number  
of zeros on the LSB side to create the‘JESD ADC word. Each JESD ADC word is broken up into nibbles. Incomplete nibbles (if any) are  
stuffed with the starting bits of the subsequent JESD ADC word for maximum data packing.  
(5) Each ADC sample is broken into two octets; the incomplete octet is completed using zeros as tail bits.  
(6) Each ADC sample is broken into nibbles; incomplete nibbles are completed using zeros as tail bits.  
The data packing modes are described in 19 to 24 for different modes of operation. Lane 1 is used for  
illustration purposes in these tables.  
(1)  
19. Data Packing in Normal Packing Mode for NAL = 8 and NRES = NSER  
NRES = 10, NSER = 10  
NRES = 12, NSER = 12  
NRES = 14, NSER = 14  
NRES = 16, NSER = 16  
OCTET  
NIBBLE 1  
NIBBLE 2  
NIBBLE 1  
NIBBLE 2  
NIBBLE 1  
NIBBLE 2  
NIBBLE 1  
NIBBLE 2  
1
2
3
4
5
6
ADC1[9:6]  
ADC1[5:2]  
ADC1[11:8]  
ADC1[7:4]  
ADC1[13:10]  
ADC1[9:6]  
ADC1[15:12]  
ADC1[11:8]  
ADC1[1:0],  
ADC2[9:8]  
ADC1[1:0],  
ADC2[13:12]  
ADC2[7:4]  
ADC3[9:6]  
ADC1[3:0]  
ADC2[7:4]  
ADC3[11:8]  
ADC3[3:0]  
ADC4[7:4]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[7:4]  
ADC4[11:8]  
ADC4[3:0]  
ADC1[5:2]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[9:6]  
ADC1[7:4]  
ADC2[15:12]  
ADC2[7:4]  
ADC1[3:0]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[11:8]  
ADC3[3:0]  
ADC2[3:0]  
ADC3[5:2]  
ADC4[7:4]  
ADC5[9:6]  
ADC2[7:4]  
ADC3[13:10]  
ADC3[5:2]  
ADC3[1:0],  
ADC4[9:8]  
ADC4[3:0]  
ADC3[15:12]  
ADC3[7:4]  
ADC3[1:0],  
ADC4[13:12]  
ADC5[5:2]  
ADC4[11:8]  
ADC5[1:0],  
ADC6[9:8]  
7
8
9
ADC6[7:4]  
ADC7[9:6]  
ADC5[11:8]  
ADC5[3:0]  
ADC6[7:4]  
ADC5[7:4]  
ADC6[11:8]  
ADC6[3:0]  
ADC4[7:4]  
ADC5[13:10]  
ADC5[5:2]  
ADC4[3:0]  
ADC5[9:6]  
ADC4[15:12]  
ADC4[7:4]  
ADC4[11:8]  
ADC4[3:0]  
ADC5[11:8]  
ADC6[3:0]  
ADC7[1:0],  
ADC8[9:8]  
ADC5[1:0],  
ADC6[13:12]  
ADC7[5:2]  
ADC5[15:12]  
ADC5[7:4]  
10  
11  
12  
ADC7[7:4]  
ADC8[3:0]  
ADC7[11:8]  
ADC7[3:0]  
ADC8[7:4]  
ADC7[7:4]  
ADC8[11:8]  
ADC8[3:0]  
ADC6[11:8]  
ADC6[3:0]  
ADC7[9:6]  
ADC6[7:4]  
ADC5[3:0]  
ADC6[11:8]  
ADC6[3:0]  
ADC7[13:10] ADC6[15:12]  
ADC7[5:2]  
ADC6[7:4]  
ADC7[1:0],  
ADC8[13:12]  
13  
ADC8[11:8]  
ADC7[15:12]  
ADC7[11:8]  
14  
15  
16  
ADC8[7:4]  
ADC8[3:0]  
ADC7[7:4]  
ADC8[15:12]  
ADC8[7:4]  
ADC7[3:0]  
ADC8[11:8]  
ADC8[3:0]  
(1) A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 17.  
54  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
OCTET  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
(1)  
20. Data Packing in Normal Packing Mode for NAL = 8 and NSER > NRES  
NRES = 10, NSER = 12  
NIBBLE 1  
NRES = 12, NSER = 14  
NIBBLE 1  
NRES = 14, NSER = 16  
NIBBLE 2  
ADC1[5:2]  
ADC2[9:6]  
ADC2[1:0], 00  
ADC3[5:2]  
ADC4[9:6]  
ADC4[1:0], 00  
ADC5[5:2]  
ADC6[9:6]  
ADC6[1:0], 00  
ADC7[5:2]  
ADC8[9:6]  
ADC8[1:0], 00  
NIBBLE 2  
ADC1[7:4]  
00,ADC2[11:10]  
ADC2[5:2]  
ADC3[11:8]  
ADC3[3:0]  
ADC4[9:6]  
ADC4[1:0],00  
ADC5[7:4]  
00,ADC6[11:10]  
ADC6[5:2]  
ADC7[11:8]  
ADC7[3:0]  
ADC8[9:6]  
ADC8[1:0],00  
NIBBLE 1  
NIBBLE 2  
ADC1[9:6]  
1
2
ADC1[9:6]  
ADC1[1:0], 00  
ADC2[5:2]  
ADC3[9:6]  
ADC3[1:0], 00  
ADC4[5:2]  
ADC5[9:6]  
ADC5[1:0], 00  
ADC6[5:2]  
ADC7[9:6]  
ADC7[1:0], 00  
ADC8[5:2]  
ADC1[11:8]  
ADC1[3:0]  
ADC2[9:6]  
ADC2[1:0],00  
ADC3[7:4]  
00,ADC4[11:10]  
ADC4[5:2]  
ADC5[11:8]  
ADC5[3:0]  
ADC6[9:6]  
ADC6[1:0],00  
ADC7[7:4]  
00,ADC8[11:10]  
ADC8[5:2]  
ADC1[13:10]  
ADC1[5:2]  
ADC1[1:0], 00  
ADC2[9:6]  
3
ADC2[13:10]  
ADC2[5:2]  
4
ADC2[1:0], 00  
ADC3[9:6]  
5
ADC3[13:10]  
ADC3[5:2]  
6
ADC3[1:0], 00  
ADC4[9:6]  
7
ADC4[13:10]  
ADC4[5:2]  
8
ADC4[1:0], 00  
ADC5[9:6]  
9
ADC5[13:10]  
ADC5[5:2]  
10  
11  
12  
13  
14  
15  
16  
ADC5[1:0], 00  
ADC6[9:6]  
ADC6[13:10]  
ADC6[5:2]  
ADC6[1:0], 00  
ADC7[9:6]  
ADC7[13:10]  
ADC7[5:2]  
ADC7[1:0], 00  
ADC8[9:6]  
ADC8[13:10]  
ADC8[5:2]  
ADC8[1:0], 00  
(1) A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 17.  
(1)  
21. Data Packing in Normal Packing Mode for NAL = 4 and NRES = NSER  
NRES = 10, NSER = 10  
NRES = 12, NSER = 12  
NRES = 14, NSER = 14  
NRES = 16, NSER = 16  
OCTET  
NIBBLE 1  
NIBBLE 2  
NIBBLE 1  
NIBBLE 2  
NIBBLE 1  
NIBBLE 2  
NIBBLE 1  
NIBBLE 2  
1
2
3
4
5
6
ADC1[9:6]  
ADC1[5:2]  
ADC1[11:8]  
ADC1[7:4]  
ADC1[13:10]  
ADC1[9:6]  
ADC1[15:12]  
ADC1[11:8]  
ADC1[1:0],  
ADC2[9:8]  
ADC1[1:0],  
ADC2[13:12]  
ADC2[7:4]  
ADC3[9:6]  
ADC1[3:0]  
ADC2[7:4]  
ADC3[11:8]  
ADC3[3:0]  
ADC4[7:4]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[7:4]  
ADC4[11:8]  
ADC4[3:0]  
ADC1[5:2]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[9:6]  
ADC1[7:4]  
ADC2[15:12]  
ADC2[7:4]  
ADC1[3:0]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[11:8]  
ADC3[3:0]  
ADC2[3:0]  
ADC3[5:2]  
ADC4[7:4]  
ADC2[7:4]  
ADC3[13:10]  
ADC3[5:2]  
ADC3[1:0],  
AD4[9:8]  
ADC4[3:0]  
ADC3[15:12]  
ADC3[7:4]  
ADC3[1:0],  
ADC4[13:12]  
ADC4[11:8]  
7
8
ADC4[7:4]  
ADC4[3:0]  
ADC4[15:12]  
ADC4[7:4]  
ADC4[11:8]  
ADC4[3:0]  
(1) A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 17.  
(1)  
22. Data Packing in Normal Packing Mode for NAL = 4 and NSER > NRES  
NRES = 10, NSER = 12  
NIBBLE 1  
NRES = 12, NSER = 14  
NIBBLE 1  
NRES = 14, NSER = 16  
OCTET  
NIBBLE 2  
ADC1[5:2]  
ADC2[9:6]  
ADC2[1:0], 00  
ADC3[5:2]  
ADC4[9:6]  
ADC4[1:0], 00  
NIBBLE 2  
ADC1[7:4]  
00,ADC2[11:10]  
ADC2[5:2]  
ADC3[11:8]  
ADC3[3:0]  
ADC4[9:6]  
ADC4[1:0],00  
NIBBLE 1  
NIBBLE 2  
ADC1[9:6]  
1
2
3
4
5
6
7
8
ADC1[9:6]  
ADC1[1:0], 00  
ADC2[5:2]  
ADC3[9:6]  
ADC3[1:0], 00  
ADC4[5:2]  
ADC1[11:8]  
ADC1[3:0]  
ADC2[9:6]  
ADC2[1:0],00  
ADC3[7:4]  
00,ADC4[11:10]  
ADC4[5:2]  
ADC1[13:10]  
ADC1[5:2]  
ADC1[1:0], 00  
ADC2[9:6]  
ADC2[13:10]  
ADC2[5:2]  
ADC2[1:0], 00  
ADC3[9:6]  
ADC3[13:10]  
ADC3[5:2]  
ADC3[1:0], 00  
ADC4[9:6]  
ADC4[13:10]  
ADC4[5:2]  
ADC4[1:0], 00  
(1) A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 17.  
版权 © 2015–2018, Texas Instruments Incorporated  
55  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
23. Data Packing in Normal Packing Mode for NAL = 2(1)  
NRES = 10, NSER = 10 or 12  
NRES = 12, NSER = 12  
NRES = 14, NSER = 14 or 16  
NRES = 16, NSER = 16  
OCTET  
NIBBLE 1  
ADC1[9:6]  
ADC1[1:0], 00  
ADC2[5:2]  
NIBBLE 2  
ADC1[5:2]  
ADC2[9:6]  
ADC3[1:0], 00  
NIBBLE 1  
ADC1[11:8]  
ADC1[3:0]  
ADC2[7:4]  
NIBBLE 2  
ADC1[7:4]  
ADC2[11:8]  
ADC2[3:0]  
NIBBLE 1  
ADC1[13:10]  
ADC1[5:2]  
NIBBLE 2  
ADC1[9:6]  
NIBBLE 1  
ADC1[15:12]  
ADC1[7:4]  
NIBBLE 2  
ADC1[11:8]  
ADC1[3:0]  
ADC2[11:8]  
ADC2[3:0]  
1
2
3
4
ADC1[1:0], 00  
ADC2[9:6]  
ADC2[13:10]  
ADC2[5:2]  
ADC2[15:12]  
ADC2[7:4]  
ADC2[1:0], 00  
(1) A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 17.  
(1)(2)  
24. Data Packing in Single Converter per Octet Packing Mode for NAL = 8 (Independent of NSER  
)
NRES = 10  
NRES = 12  
NRES = 14  
NRES = 16, NSER = 16  
OCTET  
NIBBLE 1  
NIBBLE 2  
ADC1[5:2]  
0000  
NIBBLE 1  
NIBBLE 2  
ADC1[7:4]  
0000  
NIBBLE 1  
NIBBLE 2  
ADC1[9:6]  
NIBBLE 1  
ADC1[15:12]  
ADC1[7:4]  
NIBBLE 2  
ADC1[11:8]  
ADC1[3:0]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[11:8]  
ADC3[3:0]  
ADC4[11:8]  
ADC4[3:0]  
ADC5[11:8]  
ADC5[3:0]  
ADC6[11:8]  
ADC6[3:0]  
ADC7[11:8]  
ADC7[3:0]  
ADC8[11:8]  
ADC8[3:0]  
1
2
ADC1[9:6]  
ADC1[1:0], 00  
ADC2[9:6]  
ADC1[11:8]  
ADC1[3:0]  
ADC2[11:8]  
ADC2[3:0]  
ADC3[11:8]  
ADC3[3:0]  
ADC4[11:8]  
ADC4[3:0]  
ADC5[11:8]  
ADC5[3:0]  
ADC6[11:8]  
ADC6[3:0]  
ADC7[11:8]  
ADC7[3:0]  
ADC8[11:8]  
ADC8[3:0]  
ADC1[13:10]  
ADC1[5:2]  
ADC1[1:0], 00  
ADC2[9:6]  
3
ADC2[5:2]  
0000  
ADC2[7:4]  
0000  
ADC2[13:10]  
ADC2[5:2]  
ADC2[15:12]  
ADC2[7:4]  
4
ADC2[1:0], 00  
ADC3[9:6]  
ADC2[1:0], 00  
ADC3[9:6]  
5
ADC3[5:2]  
0000  
ADC3[7:4]  
0000  
ADC3[13:10]  
ADC3[5:2]  
ADC3[15:12]  
ADC3[7:4]  
6
ADC3[1:0], 00  
ADC4[9:6]  
ADC3[1:0], 00  
ADC4[9:6]  
7
ADC4[5:2]  
0000  
ADC4[7:4]  
0000  
ADC4[13:10]  
ADC4[5:2]  
ADC4[15:12]  
ADC4[7:4]  
8
ADC4[1:0], 00  
ADC5[9:6]  
ADC4[1:0], 00  
ADC5[9:6]  
9
ADC5[5:2]  
0000  
ADC5[7:4]  
0000  
ADC5[13:10]  
ADC5[5:2]  
ADC5[15:12]  
ADC5[7:4]  
10  
11  
12  
13  
14  
15  
16  
ADC5[1:0], 00  
ADC6[9:6]  
ADC5[1:0], 00  
ADC6[9:6]  
ADC6[5:2]  
0000  
ADC6[7:4]  
0000  
ADC6[13:10]  
ADC6[5:2]  
ADC6[15:12]  
ADC6[7:4]  
ADC6[1:0], 00  
ADC7[9:6]  
ADC6[1:0], 00  
ADC7[9:6]  
ADC7[5:2]  
0000  
ADC7[7:4]  
0000  
ADC7[13:10]  
ADC7[5:2]  
ADC7[15:12]  
ADC7[7:4]  
ADC7[1:0], 00  
ADC8[9:6]  
ADC7[1:0], 00  
ADC8[9:6]  
ADC8[5:2]  
0000  
ADC8[7:4]  
0000  
ADC8[13:10]  
ADC8[5:2]  
ADC8[15:12]  
ADC8[7:4]  
ADC8[1:0], 00  
ADC8[1:0], 00  
(1) For NAL = 4, use the first eight octets. For NAL = 2, use the first four octets.  
(2) A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 17.  
Tail bits (in modes where applicable) are set to 0. There is no option for a pseudo-random generator for  
generating the tail bits. When a converter is powered down, the corresponding sample is replaced by a dummy  
sample that corresponds to all zeros. There is no option for a pseudo-random generator for generating the  
dummy samples. The value S (number of samples per ADC per frame minus 1) is always 0 and HD mode is not  
supported.  
8.3.9.4.2 Transport Layer Test Patterns  
All test patterns described in the LVDS Test Pattern Mode section can be set, even with the JESD204B interface.  
These test patterns serve as transport layer test modes for the JESD interface. These test patterns can replace  
the normal ADC data going into the JESD204B link layer.  
8.3.9.5 Scrambler  
An optional scrambler is implemented in the device using the polynomial as defined in the JESD204B standard.  
The scrambler can be enabled using the SCR_EN register control. The scrambler is bypassed during the code  
group synchronization and transmission of the initial lane alignment sequence. There is no alternate scrambler to  
keep processing the user data during these states.  
56  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.9.6 Data Link Layer  
The data link layer of the JESD204B block handles various functions (such as the 8b, 10b encoding of the input  
octets, code group synchronization (CGS), transmission of an initial lane alignment (ILA) sequence, frame  
alignment character replacement, and transmission of link layer test patterns). As specified by the standard, the  
device uses 8b, 10b coding to encode the data before being transmitted. The frame contents are processed from  
MSB to LSB.  
8.3.9.6.1 Code Group Synchronization (CGS)  
In the CGS state, the device transmits a set of /K28.5/ characters that are used by the receiver to recover the  
clock and data from the serial stream using a clock and data recovery (CDR) circuit, and also to align to the  
symbol boundaries. The device enters the CGS state when it receives an active (low going) SYNC pulse that is  
at least four device clocks wide. In addition, when the device is in the CGS state as defined by the JESD204B  
standard, the device can also be made to transmit a stream of /K28.5/ symbols by programming the  
TX_SYNC_REQ register control.  
8.3.9.6.2 Initial Lane Alignment (ILA)  
By default, the CGS phase is followed by the transmission of an ILA sequence. The ILA transmission can be  
disabled using the LINK_CONFIG_DIS register control. Transitioning from a CGS state to an ILA sequence state  
occurs on the local multiframe clock (LMFC) boundary. By default, the transition occurs at the first LMFC  
boundary after SYNC~ is deasserted. However, the transition point can be delayed to the second, third, or fourth  
LMFC edge by programming the RELEASE_ILA register control to 1, 2, or 3, respectively. This mode can be  
used to provide sufficient time to the receiver to achieve synchronization.  
8.3.9.6.3 Lane and Frame Alignment Monitoring  
The lane and frame alignment monitoring and character replacement are as per the JESD204B standard. The  
insertion of frame and lane alignment characters can be enabled by setting the LANE_ALIGN and  
FRAME_ALIGN register controls. These controls, in conjunction with the SCR_EN control, determine the  
mechanism of the lane and frame alignment character replacement, as shown in 25.  
25. Character Replacement for Lane and Frame Alignment  
SCR_EN  
FRAME_ALIGN LANE_ALIGN  
EFFECT ON LINK DATA  
0
0
0
ADC data are sent without any character replacement.  
If the last octet of the multiframe is the same as the last octet of the previous  
multiframe, then the last octet is replaced with /K28.3/.  
0
0
1
If the last octet of the frame is the same as the last octet of the previous frame, then  
the last octet is replaced with /K28.7/. If an alignment character has already been  
sent in the previous frame, then no characters are replaced.  
0
1
0
0
1
1
0
1
0
Frame and lane alignment character replacements are enabled.  
ADC data are scrambled and sent without any character replacement.  
If the last scrambled octet of the multiframe is D28.3, then that octet is replaced with  
/K28.3/.  
1
0
1
If the last scrambled octet of the frame is D28.7, then that octet is replaced with  
/K28.7/.  
1
1
1
1
0
1
Frame and lane alignment character replacements are enabled with scrambling.  
8.3.9.6.4 Link Layer Test Modes  
The JESD link can be tested by transmitting predetermined 8b, 10b characters in all frames and on all lanes.  
Test modes can be enabled with the LINK_LAYER_TESTMODES register control. These test patterns are never  
scrambled. A pseudo-random pattern of 120 bits corresponds to the random pattern (RPAT). An additional PRBS  
pattern can be output by setting the transport layer test mode to a constant pattern and enabling the scrambler. A  
scrambled jitter pattern (JSPAT) is not supported.  
版权 © 2015–2018, Texas Instruments Incorporated  
57  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
8.3.9.7 Deterministic Latency  
Deterministic latency is achieved in the subclass 1 and subclass 2 of the JESD204B standard through a local  
multiframe clock (LMFC) that is synchronized between the transmitter and receiver. The phase of the LMFC is  
dictated by the sampled SYSREF input in subclass 1 and by the SYNC~ rising edge in subclass 2.  
8.3.9.7.1 Synchronization Using SYNC~ and SYSREF  
In order to achieve deterministic latency across the entire link, the device supports system-level link  
synchronization using the SYNC~ (in subclass 2) and SYSREF (in subclass 1) signals, as mentioned in the  
JESD204B standards document. The mapping of these signals to the pin voltages is shown in 26.  
26. Mapping of the JESD204B Signals to Device Pins  
SIGNAL NOTATION IN JESD204B DOCUMENT  
RELATION TO DEVICE PINS  
ADC_CLKP – ADC_CLKM  
Device clock  
SYNC~  
SYSREF(1)  
SYNCP_SERDES – SYNCM_SERDES  
SYSREFP_SERDES – SYSREFM_SERDES  
(1) Must be inactive (low) except when operating in JESD204B subclass 1.  
JESD subclasses 1 and 2 use an internal clock called the local multiframe clock (LMFC) to achieve deterministic  
latency in the link. The phase of the LMFC clock is set based on the device clock rising edge that the SYSREF  
(in subclass 1) or SYNC~(in subclass 2) signals are sampled on. The device clock is the highest speed input  
clock for the device and there is no provision for a higher speed adjustment clock to achieve phase adjustments  
finer than what is achievable using the device clock. By default, the LMFC count is reset to 0 during a SYNC~ or  
SYSREF event. This reset count can be forced to a different value by using the FORCE_LMFC_COUNT and  
LMFC_COUNTER_INIT_VALUE register controls. The LMFC does not exist in JESD subclass 0.  
SYSREF can be a periodic, one-shot, or gapped periodic active-high signal that is sampled on the rising edge of  
the device clock. There is no option to sample the SYSREF signal on the falling edge of the device clock. If  
SYSREF is a periodic or gapped periodic signal, then its periodicity must be a multiple of the LMFC period in  
order to avoid unwanted sudden shifts in the phase of the LMFC. Note that a continuous periodic SYSREF can  
cause spurious degradation in the ADC performance because of energy coupling into the device at a rate that is  
a sub-harmonic of the device clock rate.  
In addition to resetting the phase of the LMFC, SYSREF (or SYNC~) also resets some of the other internal clock  
dividers not related to the JESD block and affects the reset of the phase of the test pattern generator (see the  
LVDS Test Pattern Mode section). SYSREF (or SYNC~) also affects the reset of the frame clock phases and the  
odd or even sampling selection in 32-channel mode.  
The default mode is to reset all internal dividers as well as the phase of the LMFC during every SYSREF (or  
SYNC~) event based on the JESD subclass.  
The reset operations based on SYNC~ and SYSREF for the different subclasses occurs as shown in 27.  
27. Reset Operations from SYNC~ or SYSREF in the Various JESD204B Subclasses  
What gets reset  
EVENT CONTROLLING THE  
SUBCLASS  
JESD BLOCK (Phase of the LMFC  
Clock)  
RESET  
REST OF DEVICE  
JESD204B-subclass 0  
JESD204B-subclass 1  
JESD204B-subclass 2  
JESD204A  
SYNC~ rising edge  
SYSREF(1)  
Not applicable  
Yes  
Yes  
Yes  
Yes  
Yes  
SYNC~ rising edge  
SYNC~ rising edge  
Yes  
Not applicable  
(1) To avoid unexpected reset behavior, SYSREF must be active only when operating in JESD204B subclass 1.  
58  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
28 lists the register controls to selectively mask the reset operations of the various blocks.  
28. Masking of the Various Reset Operations Resulting from SYNC~ or SYSREF  
MASKS RESET OPERATION IN  
REGISTER BIT  
JESD BLOCK (Phase of the  
LMFC Clock)  
CLOCK DIVIDERS  
OTHER SYNCHRONIZATION(1)  
JESD_RESET1  
JESD_RESET2  
No  
Yes  
Yes  
Yes  
No  
Yes  
(1) Demodulators and test pattern generation.  
The JESD_RESET1 and JESD_RESET2 bits mask the reset operations as indicated in 28 for all subsequent  
SYNC~ and SYSREF events after the bits are set. The JESD_RESET3 register bit is functionally similar to  
JESD_RESET2 (in terms of masking the reset function to the blocks). However, when JESD_RESET3 is set, this  
bit allows the first SYNC~ or SYSREF event to reset all clock dividers, takes affect, and masks the reset of the  
LMFC clock divider only after the first SYNC~ or SYSREF event occurs. The JESD_RESET1, JESD_RESET2,  
and JESD_RESET3 bits can be used appropriately to avoid unwanted reset operations resulting from SYNC~  
and SYSREF events.  
When SYSREF resets the rest of the device, the ADC data can be corrupted for four to six clocks. If SYSREF is  
periodic, then periodic corruption of ADC data can result. Thus, when using a periodic or a gapped periodic  
SYSREF, one JESD_RESET (JESD_RESET1, JESD_RESET2, or JESD_RESET3) must be set to 1.  
8.3.9.7.2 Latency  
73 to 76 illustrate the relevant latencies for the JESD interface with the default mode of operation (four  
ADCs per lane mode, NADC = 12, NSER = 12, and K = 3) used for illustration purposes.  
N+3  
N+4  
N+2  
N+1  
Sample  
N
Analog Input  
to ADC1  
tAP  
ADC_CLKP  
ADC_CLKM  
(3)  
tD_JESD  
NLAT_JESD  
CML_OUT(1)  
Output(2)  
N
Output  
N+1  
Output  
N+2  
(1) CML_OUT is shown broken in terms of octets.  
(2) The ADC word corresponding to ADC1 is contained in the first two octets of output N.  
(3) tD_JESD is a small additional variable delay which is a fraction of the device clock period.  
73. ADC Latency in JESD Mode  
版权 © 2015–2018, Texas Instruments Incorporated  
59  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
SYNC~ is latched by the device.  
ADC_CLKP  
ADC_CLKM  
tSU_T  
tH_T  
SYNC~  
NA_SYNC~  
CGS Phase  
CML_OUT(1)  
= K28.5  
= Data  
(1) CML_OUT is broken in terms of octets.  
74. Latency from SYNC~ Assertion to Start of CGS Phase  
SYSREF is latched  
by the device.  
SYNC~ is latched  
by the device.  
ADC_CLKP  
ADC_CLKM  
Input Clock  
SYSREF  
LMFC  
(Internal Signal)  
1st LMFC boundary after SYNC~.  
SYNC~  
ND_SYNC~  
ILA Sequence  
CML_OUT  
CGS Phase  
= K28.5  
= K28.0  
75. Latency from SYNC~ Deassertion to Start of ILA Phase in Subclass 1  
60  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
SYNC~ is latched  
by the device.  
ADC_CLKP  
Input Clock  
ADC_CLKM  
LMFC  
(Internal Signal)  
1st LMFC boundary after SYNC~.  
SYNC~  
ND_SYNC~  
ILA Sequence  
CML_OUT  
CGS Phase  
= K28.5  
= K28.0  
76. Latency from SYNC~ Deassertion to Start of ILA Phase in Subclass 2  
8.3.9.7.3 Multiframe Size  
The size of the multiframe (as well as the periodicity of the LMFC clock) is denoted as K. Multiframe size is  
calculated as shown in 公式 2:  
Ceil (17 / Number of Octets per Frame) Multiframe Size (In Terms of Number of Frames)  
(2)  
29 lists the multiframe size for different modes of operation.  
29. Multiframe Size in Different Modes(1)  
2 ADCS PER LANE(2)  
MULTIFRAME SIZE  
FRAMES OCTETS  
18  
4 ADCS PER LANE(2)  
8 ADCS PER LANE(2)  
MULTIFRAME SIZE  
ADC  
RESOLUTION FRAME SIZE  
MULTIFRAME SIZE  
FRAME SIZE  
FRAME SIZE  
(Octets)  
(Bits)  
(Octets)  
(Octets)  
FRAMES  
OCTETS  
FRAMES  
OCTETS  
12  
3
4
4
6
6
7
8
3
3
3
18  
21  
24  
12  
2
2
2
24  
28  
32  
14  
5
5
20  
20  
14  
16  
16  
(1) The decimal equivalent of K[4:0] in the link configuration parameter is equal to the multiframe size (in frames) minus 1.  
(2) Determined by the register control NUM_ADC_PER_LANE.  
8.3.9.8 JESD Physical Layer  
The JESD transmitter uses a PLL that runs off an internal low-dropout (LDO) regulator that provides noise  
rejection on the external 1.2-V supply. At higher speeds (beyond 4 Gbps), the LDO voltage drops because of  
increased switching currents. To improve the jitter at higher speeds, restore the LDO voltage with the  
INC_JESD_VDD register control.  
版权 © 2015–2018, Texas Instruments Incorporated  
61  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
8.3.9.8.1 CML Buffer  
The device JESD204B transmitter uses differential CML output drivers with a typical current drive of 16 mA. The  
output driver includes an internal 50-Ω termination to the DVDD_1P2 supply. Additionally, external 50-Ω  
termination resistors connected to DVDD_1P2 must be placed close to the receiver pins. DC compliance to the  
standard is not ensured and ac coupling can be used to avoid the common-mode mismatch between the  
transmitter and receiver, as shown in 77.  
DVDD_1P2  
CM  
CML Buffer (TX)  
50 Ω  
50 W (Typ)  
CML1_  
OUTP  
ZO = 50 W  
0.1 mF  
0.1 mF  
LO  
HI  
CML  
Receiver  
16 mA  
(Typ)  
CML1_  
OUTM  
ZO = 50 W  
50 Ω  
50 W (Typ)  
CM  
DVDD_1P2  
77. CML Output Connections  
The CML buffer also has a pre-emphasis control for improving the timing margins. Pre-emphasis is achieved by  
increasing the CML buffer current if the current transmitter bit is different from the previous one. The current of  
the CML buffer for a transitioning bit can be increased from the CML buffer current setting to one of 16 settings in  
steps of 0.25 mA using the PRE_EMP register control. Pre-emphasis is recommended to be used at higher  
speeds in order to improve the timing margins.  
62  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.9.8.2 Jitter Considerations  
78 shows the data eye measurement of the device JESD204B transmitter against the JESD204B transmitter  
eye mask at 3.125 Gbps.  
78. Eye Diagram at the CML Output at a Data Rate of 3.125 Gbps  
版权 © 2015–2018, Texas Instruments Incorporated  
63  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
79 shows the data eye measurement of the device JESD204B transmitter against the JESD204B transmitter  
eye mask at 5 Gbps. This measurement is taken with PRE_EMP set to 7.  
79. Eye Diagram at the CML Output at a Data Rate of 5 Gbps  
The total jitter as a fraction of the UI changes with interface speed, pre-emphasis setting, and the length of the  
trace from the transmitter pins to the external termination resistor. The total jitter at the transmitter pins can  
exceed the transmitter eye mask specification for speeds beyond 5 Gbps. However, the interface can be made to  
work (and meet the eye mask specification at the receiver inputs) at speeds higher than 5 Gbps for short trace  
lengths. 40 illustrates the total jitter as a function of the trace length (between the transmitter pins and the  
termination resistor) for 5-Gbps, 6-Gbps, and 6.4-Gbps speeds. 41 to 43 illustrate the total jitter as a  
function of the trace length for different pre-emphasis settings at 5 Gbps, 6 Gbps, and 6.4 Gbps, respectively.  
64  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.3.10 Interfacing SYNC~ and SYSREF Between the FPGA and ADCs  
The SYNC~ and SYSREF signals must be connected to the FPGA and the multiple ADCs in the system. When  
driving SYNC~ and SYSREF using differential signals, additional interface circuits may be required to decouple  
the common-mode levels between the FPGA and the ADC. 80 shows an overview of such a scheme for  
driving the SYNC~ signal from the FPGA to multiple ADCs.  
SYNC~ (eg. LVDS level)  
FPGA  
Interface circuit(s)  
ADC1  
ADC2  
ADCn  
80. Connection of SYNC~ From the FPGA to the ADCs  
The ADC has internal 5-kΩ resistors from the SYNCP and SYNCM pins to an internal reference voltage of 0.7 V.  
When driven by a differential driver, an interface circuit may be required to match the common-mode voltages  
between the driver and the ADC. An example circuit is shown in 81 to level-shift from a 1.2-V common-mode  
voltage at the driver output to the 0.7 V at the ADC input. The 100 Ω at the driver output depicts the differential  
termination and could be realized inside the FPGA.  
3.57 KΩ  
FPGA  
ADC  
33 nF  
SYNCP_FPGA  
SYNCP_ADC  
5 KΩ  
5 KΩ  
5 KΩ  
VOCM = 1.2 V  
100 Ω  
0.7 V  
33 nF  
SYNCM_ADC  
SYNCM_FPGA  
5 KΩ  
3.57 KΩ  
81. Circuit to Level-Shift the Common-Mode Voltage From 1.2 V at the Driver Output to 0.7 V at the  
ADC Input  
版权 © 2015–2018, Texas Instruments Incorporated  
65  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
For a different driver output common-mode than the one shown in 81, the interface circuit must be modified.  
A similar circuit as shown in 81 can also be used to interface the SYSREF signals to the ADC. As shown in 图  
82, the SYSREF signal can also be driven using an ac-coupling scheme. The external components are chosen  
for a case where the SYSREF source drives only one ADC. The values of these components must be changed if  
the signal is interfaced to multiple ADCs (contact the factory for details).  
1.8 V  
50 KΩ  
ADC  
1 uF  
SYSREFM_SRC  
SYSREFM_ADC  
5 KΩ  
100 Ω  
0.7 V  
SYSREF Source  
5 KΩ  
SYSREFP_ADC  
SYSREFP_SRC  
1 uF  
30 KΩ  
82. AC-Coupling Scheme for SYSREF (do not use for SYNC~)  
SYSREFM_SRC  
SYSREFP_SRC  
SYSREFM_ADC  
SYSREFP_ADC  
c
c
c
c
SYSREF high pulse should be less wide than this point  
83. Transient of SYSREF With AC-Coupling  
66  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The 50-kΩ and 30-kΩ external resistors along with the two 5-kΩ resistors internal to the ADC form a voltage  
divider circuit to generate a negative differential offset at the ADC SYSREF input when SYSREF is low. A high-  
going pulse on the SYSREF_SRC signal passes through the ac-coupling capacitor. The ac-coupling capacitor  
and the resistors form a high-pass filter and cause the SYSREF_ADC signal to droop towards their quiescent  
values over time (denoted by the dotted lines in 83). However, if the high width of SYSREF is much lower  
than the time constant of the filter, the circuit is able to pass the pulse properly.  
The SYNC~ and SYSREF signals also can be driven using single-ended LVCMOS levels, which can be done by  
driving the P side with the LVCMOS level and connecting the M side to ground as shown in 84. When driven  
in this manner, the internal 5-kΩ resistor (connecting the P and M pins to the 0.7-V node) is disconnected from  
the pins.  
LVCMOS  
Clock Input  
LVCMOS  
Clock Input  
SYNCP_SERDES  
SYSREFP_SERDES  
SYNCM_SERDES  
SYSREFM_SERDES  
84. Single-Ended Driving Circuit for SYNC~ and SYSREF  
版权 © 2015–2018, Texas Instruments Incorporated  
67  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
8.3.11 Clock Input  
The input clock to the device (referred to as the system clock) goes to an input buffer that automatically  
configures itself either to accept a single-ended clock or a differential clock. The equivalent load on the clock pins  
in the case of a differential clock input is shown in 85. For the case of a single-ended clock input, the 5-kΩ  
resistor is disconnected from the input.  
AVDD_1P8  
0.7 V  
VCM  
100 pF  
5 kQ  
5 kQ  
CLKP  
6 pF  
6 pF  
CLKM  
85. Internal Clock Buffer for Differential Clock Mode  
68  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
If the preferred clocking scheme for the device is single-ended, connect the CLKM pin to ground (in other words,  
short CLKM directly to AVSS, as shown in 86). In this case, the auto-detect feature shuts down the internal  
differential clock buffer and the device automatically goes into a single-ended clock input. Connect the single-  
ended clock source directly (without decoupling) to the CLKP pin. When using a single-ended clock input, TI  
recommends using low-jitter, square signals (LVCMOS levels, 1.8-V amplitude) to drive the ADC (refer to  
technical brief, Clocking High-Speed Data Converters, SLYT075 for further details).  
CMOS Clock Input  
CLKP  
CLKM  
86. Single-Ended Clock Driving Circuit  
For differential clocks (such as differential sine-wave, LVPECL, LVDS, and so forth), enable the clock amplifier  
with the connection scheme shown in 87. This same scheme applies when the clock is single-ended but the  
clock amplitude is either small or its edges are not sharp. In this case, connect the input clock signal with a  
capacitor to CLKP (as in 87) and connect CLKM to ground through a capacitor (that is, ac-coupled to AVSS).  
If a transformer is used with the secondary coil floating (for instance, to convert from single-ended to differential),  
the outputs of the transformer can be connected directly to the clock inputs without requiring the 10-nF series  
capacitors.  
10 nF  
CLKP  
Differential Sine Wave  
or PECL or LVDS Clock Signal  
CLKM  
10 nF  
87. Differential Clock Driving Circuit  
To ensure that the aperture delay and jitter are the same for all channels, the device uses a clock tree network to  
generate individual sampling clocks for each channel. For all channels, the clock is closley matched from the  
source point to the sampling circuit of each of the eight internal devices.  
版权 © 2015–2018, Texas Instruments Incorporated  
69  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
The jitter cleaners CDCM7005, CDCE72010, or LMK048X series are suitable to generate the system clock and  
enable high performance. 88 shows a clock distribution network.  
FPGA Clock,  
Noisy Clock  
n × (5 MHz to 100 MHz)  
TI Jitter Cleaner  
LMK048X  
CDCE72010  
CDCM7005  
5-MHz to 100-MHz  
ADC CLK  
CDCLVP1208  
The CDCE72010 has 10  
LMK0030X  
outputs  
LMK01000  
8 Synchronized  
DUT System CLKs  
88. System Clock Distribution Network  
8.3.12 Analog Input and Driving Circuit  
8.3.12.1 Signal Input  
The analog input to the device can be either ac- or dc-coupled. In ac-coupling, the input common-mode required  
for device functionality can be forced with the common-mode voltage, generated internally by the device (that  
comes at the VCM pin) through a resistor, as shown in 89. The resistor and capacitor values used for coupling  
determines the high-pass filter corner of the input circuit; thus, these values are chosen with the frequency of  
interest in mind.  
Device  
INPx  
10 nF  
25 Q  
50 Q  
6.8 pF  
Input 2-VPP  
Differential  
VCM  
1 mF  
25 Q  
50 Q  
Internal  
Reference  
INMx  
CM Buffer  
VCM  
10 nF  
89. AC Coupling  
70  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
When dc-coupling the analog input, the output common-mode voltage of the driver can be set using the VCM  
output pin as a reference, as shown in 90.  
Device  
50 Q  
50 Q  
INPx  
INMx  
OUTP  
OUTM  
6.8 pF  
2-VPP Differential VCM = 0.8 V  
CM  
Internal  
Reference  
CM Buffer  
VCM  
90. DC Coupling  
Each input interfaces to two sets of identical sampling circuits. The electrical model of the load that each of the  
sampling networks present is illustrated in 91. For the sake of simplification, the MOS switches can be  
considered as ideal switches.  
As illustrated in 57, 58, and 59, the scheme of connecting each input sampling circuit to the input pins  
differs across the three input modes. The time-dependent loading of the input pins therefore is different across  
the three input modes, and can be determined by referring to 57, 58, 59, and 91.  
版权 © 2015–2018, Texas Instruments Incorporated  
71  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
SZ  
S
RON  
170 Ω  
RON  
100 Ω  
CPAR3  
2 pF  
Sampling  
Switch  
S
LPKG  
3.5 nH  
Sampling  
Capacitor  
21 Ω  
INP  
RON  
14 Ω  
CBOND  
0.5 pF  
CPAR3  
CPAR3  
1 pF  
CSAMP  
4.6 pF  
RESR  
200 Ω  
14 Ω  
S
RON  
40 Ω  
CPAR1  
1.5 pF  
14 Ω  
LPKG  
3.5 nH  
CSAMP  
4.6 pF  
RON  
14 Ω  
21 Ω  
INM  
CBOND  
0.5 pF  
CPAR3  
1 pF  
Sampling  
Capacitor  
S
Sampling  
Switch  
RESR  
200 Ω  
RON  
170 Ω  
RON  
100 Ω  
CPAR3  
2 pF  
S
SZ  
91. Analog Input Sampling Network  
72  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.4 Device Functional Modes  
8.4.1 Input Modes  
The device supports three input modes: a 16-input, a 32-input, and an 8-input mode using the SEL_CH[2:0]  
register controls. See 49 for a listing of register bits that select the 8-, 16-, and 32-input modes. Using the  
same set of 16 ADCs, the three modes can be used to convert 16, 32, or 8 input channels, respectively. The  
performance of the ADC itself depends on the conversion clock frequency, which has a different relationship to  
the system clock and sampling rates in each of the three modes. Although the ADCs are common to all three  
modes, the manner in which the ADCs are used determines unique performance characteristics in each mode.  
For example, the 8-input mode can have significant interleaving spurs. Additionally, in the 8-input mode, the  
conversion phases of two adjacent ADCs are offset by one system clock period. The switching operation in one  
ADC can affect the performance of the adjacent ADC especially at higher input frequencies. For this reason, only  
10-bit ADC resolution is supported in the 8-input mode. The restrictions when operating in the different input  
modes are listed in 30.  
30. Modes Supported in 8-, 16-, and 32-Input Modes  
ANALOG INPUT MODE  
ADC RESOLUTIONS SUPPORTED (Bits)  
LVDS DATA RATE MODES SUPPORTED  
16  
32  
8
10, 12, 14  
10, 12, 14  
10  
1X, 2X  
1X  
1X, 2X  
8.4.2 ADC Resolution Modes  
The ADC resolution can be programmed between 10, 12,and 14 with the ADC_RES register control. The  
maximum conversion rate of each ADC is determined by the programmed ADC resolution. The restrictions when  
operating with the different ADC resolutions are listed in 31.  
31. Modes Supported in the 10-, 12-, and 14-Bit ADC Resolution Modes  
ADC RESOLUTION (Bits)  
ANALOG INPUT MODES SUPPORTED  
MAXIMUM CONVERSION CLOCK (fC, MHz)  
10  
12  
14  
16, 8, 32  
16, 32  
100  
80  
16, 32  
65  
8.4.3 LVDS and JESD Interface Modes  
By default, the LVDS interface is enabled. To disable the LVDS interface, set DIS_LVDS to 1.  
To enable the JESD204B interface, set EN_JESD to 1. The JESD204B interface is supported only in 16-input  
and 32-input modes.  
8.4.4 LVDS Serialization and Output Data Rate Modes  
The serialization factor of the LVDS interface can be set to 10, 12, 14, or 16 using the SER_DATA_RATE  
register. Additionally, the density of output data payload can be set to 1X or 2X mode by using the  
LVDS_RATE_2X register bits. The maximum data rate (in bits per sec) of the LVDS interface is limited.  
Depending on the input mode, serialization factor, and output data rate mode, the LVDS interface speed  
restriction may impose additional constraints on the maximum sampling rate achievable.  
8.4.5 Power Modes  
The ADS52J90 can be configured via SPI or pin settings to a global power-down mode and via pin settings to a  
fast power-down (standby mode). During these two modes (global and standby power-down), different internal  
functions stay powered up, resulting in different power consumption and wake-up times.  
In standby mode, all LVDS data lanes are powered down. The bit clock and frame clock lanes remain enabled to  
save time to sync again on the receiver side. However, in global power-down mode all lanes are powered down  
and thus this mode requires more time to wake-up because the bit clock and frame clock lanes must sync again  
with the receiver device.  
版权 © 2015–2018, Texas Instruments Incorporated  
73  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
The device consists of the following key blocks:  
Band-gap circuit,  
Serial interface,  
Reference voltage and current generator,  
ADC analog block that performs a sampling and conversion,  
ADC digital block that includes all the digital post processing blocks (such as the offset, gain, digital HPF, and  
so forth),  
LVDS data serializer and buffer that converts the ADC parallel data to a serial stream,  
LVDS frame and clock serializer and buffer, and  
PLL (phase-locked loop) that generates a high-frequency clock for both the ADC and serializer.  
Of all these blocks, only the band-gap and serial interface block are not powered down using the power-down  
pins or bits. 32 lists which blocks in the ADC are powered down using different pins and bits.  
32. Power-Down Modes Description for the ADC  
LVDS FRAME  
LVDS DATA  
SERIALIZER,  
BUFFER  
REFERENCE  
+ ADC CLOCK  
BUFFER  
TYPE (Pin or  
Register)  
ADC  
ANALOG  
ADC  
DIGITAL  
AND CLOCK  
SERIALIZER,  
BUFFER  
NAME  
PLL  
CHANNEL  
PDN_GBL  
GLOBAL_PDN  
PDN_FAST  
Pin  
Yes(1)  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
All(2)  
All  
Register  
Pin  
All  
DIS_LVDS  
Register  
Register  
Register  
Register  
Yes  
No  
All  
PDN_ANA_ADCx  
PDN_DIG_ADCx  
PDN_LVDSx  
Yes  
No  
No  
Individual  
Individual  
Individual  
Yes  
No  
No  
No  
No  
Yes  
No  
(1) Yes = powered down. No = active.  
(2) All = all channels are powered down. Individual = only a single channel is powered down, depending upon the corresponding bit.  
74  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
8.4.6 LVDS Test Pattern Mode  
The ADC data coming out of the LVDS outputs can be replaced by different kinds of test patterns. Note that the  
test patterns replace the data streaming out of the ADCs (more specifically, the DIGRES1 signal). Therefore, in  
16-, 8-, and 32-channel input modes, the pattern that occurs on a per-channel basis can be different for some  
test patterns. The different test patterns are described in 33.  
33. Description of LVDS Test Patterns  
PROGRAMMING THE MODE  
TEST  
THE PATTERN IS SELECTIVELY  
PATTERN  
MODE  
THE SAME PATTERN MUST BE COMMON  
TO ALL DATA LINES  
REQUIRED ON ONE OR MORE DATA  
LINE  
TEST PATTERNS  
REPLACE(1)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Zeros in all bits  
(00000000000000) of  
DIGRESx  
All 0s  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Ones in all bits  
(11111111111111) of  
DIGRESx  
All 1s  
Deskew  
Sync  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
DIGRESx word is replaced  
by alternate 0s and 1s  
(01010101010101)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
DIGRESx word is replaced  
by half 1s and half 0s  
(11111110000000)  
The word written in the  
CUSTOM_PATTERN control  
(taken from the MSB side)  
replaces DIGRESx.  
Set the mode using PAT_MODES[2:0]. Set  
the desired custom pattern using the  
CUSTOM_PATTERN register control.  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
(For instance,  
Custom  
CUSTOM_PATTERN =  
1100101101011100 and  
DIGRESx =  
11001011010111 when the  
serialization factor is 14.)  
The ADCOUTx word (not the  
DIGRESx word) is replaced  
by a word that increments by  
1 LSB every conversion clock  
starting at negative full-scale,  
increments until positive full-  
scale, and wraps back to  
negative full-scale.  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Ramp  
Set the mode using PAT_MODES[2:0]  
The DIGRESx word  
alternates between two  
words that are all 1s and all  
0s. At each setting of the  
toggle pattern, the start word  
can either be all 0s or all 1s.  
(Alternate between  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0]  
Toggle  
Set the mode using PAT_MODES[2:0]  
11111111111111 and  
00000000000000.)  
Set PAT_SELECT_IND = 1. Select either  
custom or ramp pattern with  
PAT_LVDSx[2:0]. Enable PRBS mode on  
Set SEL_PRBS_PAT_GBL = 1. Select either  
custom or ramp pattern with  
PAT_MODES[2:0]. Enable PRBS mode  
using PRBS_EN. Select the desired PRBS  
mode using PRBS_MODE. Reset the PRBS  
generator with PRBS_SYNC.  
A 16-bit pattern is generated  
by a 23-bit (or 9-bit) PRBS  
PRBS  
DOUTx with the PAT_PRBS_LVDSx control. pattern generator (taken from  
Select the desired PRBS mode using  
PRBS_MODE. Reset the PRBS generator  
with PRBS_SYNC.  
the MSB side) and replaces  
the DIGRESx word.  
(1) Shown for a serialization factor of 14.  
All patterns listed in 33 (except the PRBS pattern) can also be forced on the frame clock output line by using  
PAT_MODES_FCLK[2:0]. To force a PRBS pattern on the frame clock, use the SEL_PRBS_PAT_FCLK,  
PRBS_EN, and PAT_MODES_FCLK register controls.  
版权 © 2015–2018, Texas Instruments Incorporated  
75  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
The ramp, toggle, and pseudo-random sequence (PRBS) test patterns can be reset or synchronized by providing  
a synchronization pulse on the TX_TRIG pin or by setting and resetting a specific register bit.  
These test patterns also function as transport layer test patterns for the JESD204B interface.  
8.5 Programming  
8.5.1 Serial Peripheral Interface (SPI) Operation  
This section discusses the read and write operations of the SPI interface.  
8.5.1.1 Serial Register Write Description  
Several different modes can be programmed with the serial peripheral interface (SPI). This interface is formed by  
the SEN (serial interface enable), SCLK (serial interface clock), SDIN (serial interface data), and RESET pins.  
The SCLK, SDIN, and RESET pins have a 20-kΩ pulldown resistor to ground. SEN has a 20-kΩ pullup resistor to  
supply. Serially shifting bits into the device is enabled when SEN is low. SDIN serial data are latched at every  
SCLK rising edge when SEN is active (low). SDIN serial data are loaded into the register at every 24th SCLK  
rising edge when SEN is low. If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data  
can be loaded in multiples of 24-bit words within a single active SEN pulse (an internal counter counts the  
number of 24 clock groups after the SEN falling edge). Data is divided into two main portions: the register  
address (8 bits) and data (16 bits). 92 shows the timing diagram for serial interface write operation.  
SEN  
tSEN_SU  
Data Latched On  
SCLK Rising Edge  
tSCLK_H  
tSEN_HO  
tSCLK  
SCLK  
tSCLK_L  
tDH  
tDSU  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
RESET  
92. Serial Interface Timing  
76  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Programming (接下页)  
8.5.1.2 Register Readout  
The device includes an option where the contents of the internal registers can be read back. This readback can  
be useful as a diagnostic test to verify the serial interface communication between the external controller and  
AFE. First, the REG_READ_EN bit must be set to 1. Then, initiate a serial interface cycle specifying the address  
of the register (A[7:0]) whose content must be read. The data bits are don’t care. The device outputs the contents  
(D[15:0]) of the selected register on the SDOUT pin. For lower-speed SCLKs, SDOUT can be latched on the  
SCLK rising edge. For higher-speed SCLKs, latching SDOUT at the next SCLK falling edge is preferable. The  
read operation timing diagram is shown in 93. In readout mode, the REG_READ_EN bit can be accessed with  
SDIN, SCLK, and SEN. To enable serial register writes, set the REG_READ_EN bit back to 0.  
SEN  
SCLK  
tOUT_DV  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT  
SDIN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
93. Serial Interface Register, Read Operation  
The device SDOUT buffer is 3-stated and is only enabled when the REG_READ_EN bit is enabled. SDOUT pins  
from multiple devices can therefore be tied together without any pullup resistors. The SN74AUP1T04 level shifter  
can be used to convert 1.8-V logic to 2.5-V or 3.3-V logic, if necessary.  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ADS52J90 supports multiple levels of channel integration (8, 16, and 32) with high sampling rates  
achievable for each channel. The ADS52J90 also has options to synchronize the clocking and LVDS interface of  
multiple devices. These features, combined with the excellent ADC performance and low power, make the  
ADS52J90 an excellent choice for applications involving high channel counts. Such applications include  
ultrasound imaging systems, sonar imaging equipment, and radar.  
版权 © 2015–2018, Texas Instruments Incorporated  
77  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
9.2 Typical Application  
An illustration of a system with a channel count of 64 is shown in 94. In 94, the output interface is selected  
as the LVDS interface. Four ADS52J90 devices, each operating in 16-input mode, are connected to a single  
FPGA that aggregates the data from all ADCs for further data processing and storage.  
SPI  
Control  
INP1  
Channel 1  
INM1  
TX_TRIG  
INP3  
Channel 2  
INM3  
LVDS  
Lines  
LVDS  
Receiver  
ADS52J90,  
Device1  
INP31  
INM31  
Channel 16  
FPGA  
Data  
Processing  
and  
Storage  
INP1  
INM1  
INP3  
INM3  
LVDS  
Lines  
ADS52J90,  
Device4  
LVDS  
Receiver  
INP31  
INM31  
Channel 64  
Clock  
Generator  
CLKP,  
CLKM  
94. Application Schematic: 64-Channel Medical Ultrasound Receiver Using the ADS52J90  
78  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Typical Application (接下页)  
9.2.1 Design Requirements  
Typical requirements of a medical ultrasound receiver system are listed in 34.  
34. Requirements of a Typical Medical Ultrasound Receiver  
DESIGN PARAMETER  
EXAMPLE VALUES  
5 MHz-15 MHz  
2 MHz  
Signal center frequency  
Signal bandwidth  
Maximum input signal amplitude  
Transducer noise level  
Total harmonic distortion  
100 mVPP  
1 nV/Hz  
40 dBc  
The ultrasound system typically has an LNA and a time-dependent gain block at the front-end before the ADC. In  
an ultrasound receiver, the signal level keeps reducing as a function of time and the role of the front-end blocks  
is to gain up the signal level without adding too much additional noise. The gain of the front-end can be adjusted  
so that the input signal to the ADC always remains within its full-scale range.  
A sampling rate of approximately 40 MHz to 50 MHz is usually sufficient for such an application. Thus the  
ADS52J90 can be operated in 16-input mode. Furthermore, the resolution can be set to 14 bits to maximize the  
SNR of the device. A higher sampling rate ADC results in a lower noise density in the signal band of interest. For  
example, an ADC with a 2-VPP input operating at 50 MSPS with an SNR of 73 dBFS has a noise level of  
approximately 35 nV/Hz referred to the input of the ADC. If the front-end has a gain of 40 dB, the ADC noise  
referred to the input of the front-end is then 0.35 nV/Hz, which in this case is lower than the transducer noise  
level.  
9.2.2 Detailed Design Procedure  
The design considerations when designing with the 16-, 32-, and 8-input modes are described in the following  
sections.  
版权 © 2015–2018, Texas Instruments Incorporated  
79  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
9.2.2.1 Designing with the 16-Input Mode  
Mapping of the analog inputs to the LVDS outputs is shown in 35 for a case corresponding to a 16-input mode  
and a 1X data rate.  
35. Mapping of Analog Inputs to LVDS Outputs (16-Input Mode, 1X Data Rate)  
CONNECTION TO  
ANALOG INPUT  
PINS  
ANALOG INPUT  
SIGNAL  
SAMPLING  
INSTANT  
SERIAL_OUT  
(Over Two Frames)  
LVDS OUTPUTS ON  
DOUT PINS  
ADC WORD  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
ADCOUT1o  
ADCOUT1e  
ADCOUT2o  
ADCOUT2e  
ADCOUT3o  
ADCOUT3e  
ADCOUT4o  
ADCOUT4e  
ADCOUT5o  
ADCOUT5e  
ADCOUT6o  
ADCOUT6e  
ADCOUT7o  
ADCOUT7e  
ADCOUT8o  
ADCOUT8e  
ADCOUT9o  
ADCOUT9e  
ADCOUT10o  
ADCOUT10e  
ADCOUT11o  
ADCOUT11e  
ADCOUT12o  
ADCOUT12e  
ADCOUT13o  
ADCOUT13e  
ADCOUT14o  
ADCOUT14e  
ADCOUT15o  
ADCOUT15e  
ADCOUT16o  
ADCOUT16e  
Frame 1: ADCOUT1o  
Frame 2: ADCOUT1e  
AIN1  
AIN2  
IN1  
IN3  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
Frame 1: ADCOUT2o  
Frame 2: ADCOUT2e  
Frame 1: ADCOUT3o  
Frame 2: ADCOUT3e  
AIN3  
IN5  
Frame 1: ADCOUT4o  
Frame 2: ADCOUT4e  
AIN4  
IN7  
Frame 1: ADCOUT5o  
Frame 2: ADCOUT5e  
AIN5  
IN9  
Frame 1: ADCOUT6o  
Frame 2: ADCOUT6e  
AIN6  
IN11  
IN13  
IN15  
IN17  
IN19  
IN21  
IN23  
IN25  
IN27  
IN29  
IN31  
Frame 1: ADCOUT7o  
Frame 2: ADCOUT7e  
AIN7  
Frame 1: ADCOUT8o  
Frame 2: ADCOUT8e  
AIN8  
Frame 1: ADCOUT9o  
Frame 2: ADCOUT9e  
AIN9  
Frame 1: ADCOUT10o  
Frame 2: ADCOUT10e  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
Frame 1: ADCOUT11o  
Frame 2: ADCOUT11e  
Frame 1: ADCOUT12o  
Frame 2: ADCOUT12e  
Frame 1: ADCOUT13o  
Frame 2: ADCOUT13e  
Frame 1: ADCOUT14o  
Frame 2: ADCOUT14e  
Frame 1: ADCOUT15o  
Frame 2: ADCOUT15e  
Frame 1: ADCOUT16o  
Frame 2: ADCOUT16e  
80  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Mapping of the analog inputs to the LVDS outputs is shown in 36 for a case corresponding to a 16-input mode  
and a 2X data rate.  
36. Mapping of Analog Inputs to LVDS Outputs (16-Input Mode, 2X Data Rate)  
CONNECTION TO  
ANALOG INPUT  
PINS  
ANALOG INPUT  
SIGNAL  
SAMPLING  
INSTANT  
SERIAL_OUT  
(Over Two Frames)  
LVDS OUTPUTS ON  
DOUT PINS  
ADC WORD  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
ADCOUT1o  
ADCOUT1e  
ADCOUT2o  
ADCOUT2e  
ADCOUT3o  
ADCOUT3e  
ADCOUT4o  
ADCOUT4e  
ADCOUT5o  
ADCOUT5e  
ADCOUT6o  
ADCOUT6e  
ADCOUT7o  
ADCOUT7e  
ADCOUT8o  
ADCOUT8e  
ADCOUT9o  
ADCOUT9e  
ADCOUT10o  
ADCOUT10e  
ADCOUT11o  
ADCOUT11e  
ADCOUT12o  
ADCOUT12e  
ADCOUT13o  
ADCOUT13e  
ADCOUT14o  
ADCOUT14e  
ADCOUT15o  
ADCOUT15e  
ADCOUT16o  
ADCOUT16e  
Frame 1: ADCOUT1o,  
ADCOUT2o  
Frame 2: ADCOUT1e,  
ADCOUT2e  
AIN1  
AIN2  
IN1  
IN3  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
Frame 1: ADCOUT3o,  
ADCOUT4o  
Frame 2: ADCOUT3e,  
ADCOUT4e  
AIN3  
IN5  
AIN4  
IN7  
Frame 1: ADCOUT5o,  
ADCOUT6o  
Frame 2: ADCOUT5e,  
ADCOUT6e  
AIN5  
IN9  
AIN6  
IN11  
IN13  
IN15  
IN17  
IN19  
IN21  
IN23  
IN25  
IN27  
IN29  
IN31  
Frame 1: ADCOUT7o,  
ADCOUT8o  
Frame 2: ADCOUT7e,  
ADCOUT8e  
AIN7  
AIN8  
Frame 1: ADCOUT9o,  
ADCOUT10o  
Frame 2: ADCOUT9e,  
ADCOUT10e  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
Frame 1: ADCOUT11o,  
ADCOUT12o  
Frame 2: ADCOUT11e,  
ADCOUT12e  
Frame 1: ADCOUT13o,  
ADCOUT14  
Frame 2: ADCOUT13e,  
ADCOUT14e  
Frame 1: ADCOUT15o,  
ADCOUT16o  
Frame 2: ADCOUT15e,  
ADCOUT16e  
35 and 36 illustrate that the ADCs convert the odd numbered input when operating in the 16-input mode.  
Each ADC can be set to convert the following even numbered input using the register control IN_CH_ADCx. The  
performance of the ADC may slightly degrade when IN_CH_ADCx is set to 1.  
版权 © 2015–2018, Texas Instruments Incorporated  
81  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
In 16-input mode, there is a one-to-one mapping between the inputs and the ADCs. The register map relative to  
the ADCs can therefore be mapped to the 16 channels, as shown in 37.  
37. Reinterpretation of the Register Map in 16-Input Mode  
MAPPING TO  
CHANNELS IN 16-INPUT  
MODE  
REGISTER MAP  
NOTATION  
EXAMPLE  
GAIN_ADCxo,  
GAIN_ADCxe  
GAIN_CHANNEL1 = GAIN_ADC1o (same for GAIN_ADC1e)  
(Set odd and even gains of the same ADC to the same setting)  
GAIN_CHANNELx  
OFFSET_ADCxo,  
OFFSET_ADCxe  
OFFSET_CHANNEL1 = OFFSET_ADC1o (same for OFFSET_ADC1e  
(Set odd and even offsets of the same ADC to the same setting)  
OFFSET_CHANNELx  
PDN_DIG_CHANNELx  
PDN_DIG_ADCx  
PDN_ANA_ADCx  
PDN_DIG_CHANNEL1 = PDN_DIG_ADC1  
PDN_ANA_CHANNELx PDN_ANA_CHANNEL1 = PDN_ANA_ADC1  
DIG_HPF_EN_CHANNEL1-4 = DIG_HPF_EN_ADC1-4  
Mapped to 4 channels  
DIG_HPF_EN_ADCx  
HPF_CORNER_ADCx  
Common setting for 4 ADCs maps to common setting for 4 channels  
HPF_CORNER_CHANNEL1-4 = HPF_CORNER_ADC1-4  
Mapped to 4 channels  
Common setting for 4 ADCs maps to common setting for 4 channels  
9.2.2.2 Designing with the 32-Input Mode  
Mapping of the analog inputs to the LVDS outputs is shown in 38 for a case corresponding to a 32-input mode  
and a 1X data rate.  
38. Mapping of Analog Inputs to LVDS Outputs (32-Input Mode, 1X Data Rate)  
CONNECTION TO  
ANALOG INPUT  
PINS  
ANALOG INPUT  
SIGNAL  
SAMPLING  
INSTANT  
SERIAL_OUT  
(Over One Frame)  
LVDS OUTPUTS ON  
DOUT PINS  
ADC WORD  
AIN1  
AIN2  
IN1  
IN2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
ADCOUT1o  
ADCOUT1e  
ADCOUT2o  
ADCOUT2e  
ADCOUT3o  
ADCOUT3e  
ADCOUT4o  
ADCOUT4e  
ADCOUT5o  
ADCOUT5e  
ADCOUT6o  
ADCOUT6e  
ADCOUT7o  
ADCOUT7e  
ADCOUT8o  
ADCOUT8e  
ADCOUT9o  
ADCOUT9e  
ADCOUT10o  
ADCOUT10e  
ADCOUT11o  
ADCOUT11e  
ADCOUT12o  
ADCOUT12e  
ADCOUT13o  
ADCOUT13e  
ADCOUT1o,  
ADCOUT1e  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
AIN3  
IN3  
ADCOUT2o,  
ADCOUT2e  
AIN4  
IN4  
AIN5  
IN5  
ADCOUT3o,  
ADCOUT3e  
AIN6  
IN6  
AIN7  
IN7  
ADCOUT4o,  
ADCOUT4e  
AIN8  
IN8  
AIN9  
IN9  
ADCOUT5o,  
ADCOUT5e  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
AIN17  
AIN18  
AIN19  
AIN20  
AIN21  
AIN22  
AIN23  
AIN24  
AIN25  
AIN26  
IN10  
IN11  
IN12  
IN13  
IN14  
IN15  
IN16  
IN17  
IN18  
IN19  
IN20  
IN21  
IN22  
IN23  
IN24  
IN25  
IN26  
ADCOUT6o,  
ADCOUT6e  
ADCOUT7o,  
ADCOUT7e  
ADCOUT8o,  
ADCOUT8e  
ADCOUT9o,  
ADCOUT9e  
ADCOUT10o,  
ADCOUT10e  
ADCOUT11o,  
ADCOUT11e  
ADCOUT12o,  
ADCOUT12e  
ADCOUT13o,  
ADCOUT13e  
82  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
38. Mapping of Analog Inputs to LVDS Outputs (32-Input Mode, 1X Data Rate) (接下页)  
CONNECTION TO  
ANALOG INPUT  
PINS  
ANALOG INPUT  
SIGNAL  
SAMPLING  
INSTANT  
SERIAL_OUT  
(Over One Frame)  
LVDS OUTPUTS ON  
DOUT PINS  
ADC WORD  
AIN27  
AIN28  
AIN29  
AIN30  
AIN31  
AIN32  
IN27  
IN28  
IN29  
IN30  
IN31  
IN32  
t1  
t2  
t1  
t2  
t1  
t2  
ADCOUT14o  
ADCOUT14e  
ADCOUT15o  
ADCOUT15e  
ADCOUT16o  
ADCOUT16e  
ADCOUT14o,  
ADCOUT14e  
DOUT14  
DOUT15  
DOUT16  
ADCOUT15o,  
ADCOUT15e  
ADCOUT16o,  
ADCOUT16e  
Note that 2X data rate mode is not supported in 32-input mode. In 32-input mode, only one ADC is used to  
convert two inputs.  
The odd numbered inputs correspond to the odd sample from the ADC, and the even numbered inputs  
correspond to the even sample from the ADC. The register map relative to the ADCs can therefore be mapped to  
the 32 channels, as shown in 39.  
39. Reinterpretation of Register Map in 32-Input Mode  
MAPPING TO CHANNELS IN 16-INPUT  
REGISTER MAP NOTATION  
EXAMPLE  
MODE  
GAIN_ADCxo  
GAIN_ADCxe  
GAIN_CHANNEL (odd)  
GAIN_CHANNEL (even)  
OFFSET_CHANNEL (odd)  
OFFSET_CHANNEL (even)  
GAIN_CHANNEL1 = GAIN_ADC1o  
GAIN_CHANNEL2 = GAIN_ADC1e  
OFFSET_CHANNEL1 = OFFSET_ADC1o  
OFFSET_CHANNEL2 = OFFSET_ADC1e  
OFFSET_ADCXo  
OFFSET_ADCxe  
PDN_DIG_CHANNEL1 =  
PDN_DIG_CHANNEL2 = PDN_DIG_ADC1  
PDN_DIG_ADCx  
PDN_ANA_ADCx  
PDN_DIG_CHANNEL (odd and even)  
PDN_ANA_CHANNEL (odd and even)  
PDN_ANA_CHANNEL1 =  
PDN_ANA_CHANNEL2 = PDN_ANA_ADC1  
DIG_HPF_EN_CHANNEL1-8 =  
DIG_HPF_EN_ADC1-4  
Common setting for 4 ADCs mapped to  
common setting for 8 channels  
DIG_HPF_EN_ADCx  
HPF_CORNER_ADCx  
Mapped to 8 channels  
Mapped to 8 channels  
HPF_CORNER_CHANNEL1-8 =  
HPF_CORNER_ADC1-4  
Common setting for 4 ADCs mapped to  
common setting for 8 channels  
版权 © 2015–2018, Texas Instruments Incorporated  
83  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
9.2.2.3 Designing with the 8-Input Mode  
Mapping of the analog inputs to the LVDS outputs is shown in 40 for a case corresponding to an 8-input mode  
and a 1X data rate.  
40. Mapping of Analog Inputs to LVDS Outputs (8-Input Mode, 1X Data Rate)  
CONNECTION TO  
ANALOG INPUT  
PINS  
ANALOG INPUT  
SIGNAL  
SAMPLING  
INSTANT  
SERIAL_OUT  
(Over Two Frames)  
LVDS OUTPUTS ON  
DOUT PINS  
ADC WORD  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
ADCOUT1o  
ADCOUT2o  
ADCOUT1e  
ADCOUT2e  
ADCOUT3o  
ADCOUT4o  
ADCOUT3e  
ADCOUT4e  
ADCOUT5o  
ADCOUT6o  
ADCOUT5e  
ADCOUT6e  
ADCOUT7o  
ADCOUT8o  
ADCOUT7e  
ADCOUT8e  
ADCOUT9o  
ADCOUT10o  
ADCOUT9e  
ADCOUT10e  
ADCOUT11o  
ADCOUT12o  
ADCOUT11e  
ADCOUT12e  
ADCOUT13o  
ADCOUT14o  
ADCOUT13e  
ADCOUT14e  
ADCOUT15o  
ADCOUT16o  
ADCOUT15e  
ADCOUT16e  
Frame 1: ADCOUT1o  
Frame 2: ADCOUT1e  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
DOUT8  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
IN1, IN3  
(shorted externally)  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
Frame 1: ADCOUT2o  
Frame 2: ADCOUT2e  
Frame 1: ADCOUT3o  
Frame 2: ADCOUT3e  
IN5, IN7  
(shorted externally)  
Frame 1: ADCOUT4o  
Frame 2: ADCOUT4e  
Frame 1: ADCOUT5o  
Frame 2: ADCOUT5e  
IN9, IN11  
(shorted externally)  
Frame 1: ADCOUT6o  
Frame 2: ADCOUT6e  
Frame 1: ADCOUT7o  
Frame 2: ADCOUT7e  
IN13, IN15  
(shorted externally)  
Frame 1: ADCOUT8o  
Frame 2: ADCOUT8e  
Frame 1: ADCOUT9o  
Frame 2: ADCOUT9e  
IN17, IN19  
(shorted externally)  
Frame 1: ADCOUT10o  
Frame 2: ADCOUT10e  
Frame 1: ADCOUT11o  
Frame 2: ADCOUT11e  
IN21, IN23  
(shorted externally)  
Frame 1: ADCOUT12o  
Frame 2: ADCOUT12e  
Frame 1: ADCOUT13o  
Frame 2: ADCOUT13e  
IN25, IN27  
(shorted externally)  
Frame 1: ADCOUT14o  
Frame 2: ADCOUT14e  
Frame 1: ADCOUT15o  
Frame 2: ADCOUT15e  
IN29, IN31  
(shorted externally)  
Frame 1: ADCOUT16o  
Frame 2: ADCOUT16e  
84  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Mapping of the analog inputs to the LVDS outputs is shown in 41 for a case corresponding to an 8-input mode  
and a 2X data rate.  
41. Mapping of Analog Inputs to LVDS Outputs (8-Input Mode, 2X Data Rate)  
CONNECTION TO  
ANALOG INPUT  
PINS  
ANALOG INPUT  
SIGNAL  
SAMPLING  
INSTANT  
SERIAL_OUT  
(Over Two Frames)  
LVDS OUTPUTS ON  
DOUT PINS  
ADC WORD  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
t1  
t2  
t3  
t4  
ADCOUT1o  
ADCOUT2o  
ADCOUT1e  
ADCOUT2e  
ADCOUT3o  
ADCOUT4o  
ADCOUT3e  
ADCOUT4e  
ADCOUT5o  
ADCOUT6o  
ADCOUT5e  
ADCOUT6e  
ADCOUT7o  
ADCOUT8o  
ADCOUT7e  
ADCOUT8e  
ADCOUT9o  
ADCOUT10o  
ADCOUT9e  
ADCOUT10e  
ADCOUT11o  
ADCOUT12o  
ADCOUT11e  
ADCOUT12e  
ADCOUT13o  
ADCOUT14o  
ADCOUT13e  
ADCOUT14e  
ADCOUT15o  
ADCOUT16o  
ADCOUT15e  
ADCOUT16e  
Frame 1: ADCOUT1o,  
ADCOUT2o  
IN1, IN3  
(shorted externally)  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT9  
DOUT10  
DOUT11  
DOUT12  
Frame 2: ADCOUT1e,  
ADCOUT2e  
Frame 1: ADCOUT3o,  
ADCOUT4o  
IN5, IN7  
(shorted externally)  
Frame 2: ADCOUT3e,  
ADCOUT4e  
Frame 1: ADCOUT5o,  
ADCOUT6o  
IN9, IN11  
(shorted externally)  
Frame 2: ADCOUT5e,  
ADCOUT6e  
Frame 1: ADCOUT7o,  
ADCOUT8o  
IN13, IN15  
(shorted externally)  
Frame 2: ADCOUT7e,  
ADCOUT8e  
Frame 1: ADCOUT9o,  
ADCOUT10o  
IN17, IN19  
(shorted externally)  
Frame 2: ADCOUT9e,  
ADCOUT10e  
Frame 1: ADCOUT11o,  
ADCOUT12o  
IN21, IN23  
(shorted externally)  
Frame 2: ADCOUT11e,  
ADCOUT12e  
Frame 1: ADCOUT13o,  
ADCOUT14  
IN25, IN27  
(shorted externally)  
Frame 2: ADCOUT13e,  
ADCOUT14e  
Frame 1: ADCOUT15o,  
ADCOUT16o  
IN29, IN31  
(shorted externally)  
Frame 2: ADCOUT15e,  
ADCOUT16e  
版权 © 2015–2018, Texas Instruments Incorporated  
85  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
In 8-input mode, two neighboring ADCs are used to convert a single input. The register map relative to the ADCs  
can be mapped to the eight channels, as shown in 42.  
42. Reinterpretation of Register Map in 8-input Mode  
MAPPING TO  
CHANNELS IN 16-INPUT  
MODE  
REGISTER MAP  
NOTATION  
EXAMPLE  
GAIN_ADCxo,  
GAIN_ADCxe of two  
adjacent channels  
GAIN_CHANNEL1 = GAIN_ADC1o (same for GAIN_ADC1e, GAIN_ADC2o, and  
GAIN_ADC2e)  
Set odd and even gains of two adjacent ADCs to the same setting.  
GAIN_CHANNELx  
OFFSET_CHANNEL1 = OFFSET_ADC1o (same for OFFSET_ADC1e,  
OFFSET_ADC2o, and OFFSET_ADC2e)  
Set odd and even offsets of two adjacent ADCs to the same setting.  
OFFSET_ADCxo,  
OFFSET_ADCxe  
OFFSET_CHANNELx  
PDN_DIG_ADCx of two  
adjacent channels  
PDN_DIG_CHANNEL1 = PDN_DIG_ADC1 (same for PDN_DIG_ADC2)  
Set the power-down for two adjacent ADCs to the same setting.  
PDN_DIG_CHANNELx  
PDN_ANA_CHANNELx  
Mapped to 2 channels  
Mapped to 2 channels  
PDN_ANA_ADCx of two  
adjacent channels  
PDN_ANA_CHANNEL1 = PDN_ANA_ADC1 (same for PDN_ANA_ADC2)  
Set the power-down for two adjacent ADCs to the same setting.  
DIG_HPF_EN_CHANNEL1-2 = DIG_HPF_EN_ADC1-4  
Common setting for 4 ADCs mapped to the common setting for 2 channels.  
DIG_HPF_EN_ADCx  
HPF_CORNER_ADCx  
HPF_CORNER_CHANNEL1-2 = HPF_CORNER_ADC1-4  
Common setting for 4 ADCs mapped to the common setting for 2 channels.  
9.2.3 Application Curves  
This section outlines the trends described in the Typical Characteristics section from an application perspective.  
2 illustrates the FFT with a 5-MHz input signal for 32-input mode with the ADC resolution set to 10 bits. The  
system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS, which is the  
maximum sampling rate for this mode of operation.  
3 illustrates the FFT with a 5-MHz input signal for 16-input mode with the ADC resolution set to 10 bits. The  
system clock provided is 100 MSPS and the input is sampled at an effective rate of 100 MSPS, which is the  
maximum sampling rate for this mode of operation.  
4 illustrates the FFT with a 5-MHz input signal for 8-input mode with the ADC resolution set to 10 bits. The  
system clock provided is 200 MSPS and the input is sampled at an effective rate of 200 MSPS, which is the  
maximum sampling rate for this mode of operation. The increase in sampling rate is achieved through two ADCs  
converting the same input in an interleaved manner. The interleaving spurs are visible in the FFT. The  
predominant spur is at the frequencies of (fS / 2 ± fIN), which appear at 95 MHz. Additional spurs are at the  
frequencies of (fS / 4 ± fIN), which appear at 45 MHz and 55 MHz. The magnitude of the spurs is expected to rise  
when the input frequency is increased. Also, the spur level is sensitive to the matching of the manner in which  
the two sets of input pins are driven. A spur at fS/4 is also seen. This arises from the offset mismatch between  
the four sets of sampling circuits used to sample the same input.  
5 illustrates the FFT with a 5-MHz input signal for 32-input mode with the ADC resolution set to 12 bits. The  
system clock provided is 80 MSPS and the input is sampled at an effective rate of 40 MSPS, which is the  
maximum sampling rate for this mode of operation.  
6 illustrates the FFT with a 5-MHz input signal for 16-input mode with the ADC resolution set to 12 bits. The  
system clock provided is 80 MSPS and the input is sampled at an effective rate of 80 MSPS, which is the  
maximum sampling rate for this mode of operation.  
7 illustrates the FFT with a 5-MHz input signal for 32-input mode with the ADC resolution set to 14 bits. The  
system clock provided is 65 MSPS and the input is sampled at an effective rate of 32.5 MSPS, which is the  
maximum sampling rate for this mode of operation.  
8 illustrates the FFT with a 5-MHz input signal for 16-input mode with the ADC resolution set to 14 bits. The  
system clock provided is 65 MSPS and the input is sampled at an effective rate of 65 MSPS, which is the  
maximum sampling rate for this mode of operation. In addition to the harmonics, the spur at the frequency (fS / 2  
± fIN) also occurs at 27.5 MHz. This spur is caused by the interleaved sampling of the input signal by two  
physically different sampling circuits of the same ADC.  
86  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
9 illustrates the signal-to-noise ratio (SNR) versus the frequency of the input signal for 32-input mode with the  
ADC resolution set to 10 bits. SNR is expressed in the dBFS scale where the RMS noise at the ADC output is  
referred to the full-scale differential voltage of 2 V. The system clock provided is 100 MSPS and the input is  
sampled at an effective rate of 50 MSPS. SNR is computed by integrating the noise in all FFT bins after  
excluding the first nine harmonics. SNR is dominated by the quantization noise of the 10-bit conversion.  
10 illustrates SNR versus the frequency of the input signal for 16-input mode with the ADC resolution set to 10  
bits. The system clock provided is 100 MSPS and the input is sampled at an effective rate of 100 MSPS. SNR is  
computed by integrating the noise in all FFT bins after excluding the first nine harmonics and any interleaving  
spurs. SNR is dominated by the quantization noise of the 10-bit conversion.  
11 illustrates SNR versus the frequency of the input signal for 8-input mode with the ADC resolution set to 10  
bits. The system clock provided is 200 MSPS and the input is sampled at an effective rate of 200 MSPS. SNR is  
computed by integrating the noise in all FFT bins after excluding the first nine harmonics and any interleaving  
spurs at (fS / 2 ± fIN) and (fS / 4 ± fIN) as well as additional spurs at fS / 2 and fS / 4. SNR is dominated by the  
quantization noise of the 10-bit conversion.  
12 illustrates SNR versus the frequency of the input signal for 32-input mode with the ADC resolution set to 12  
bits. The system clock provided is 80 MSPS and the input is sampled at an effective rate of 40 MSPS.  
13 illustrates SNR versus the frequency of the input signal for 16-input mode with the ADC resolution set to 12  
bits. The system clock provided is 80 MSPS and the input is sampled at an effective rate of 80 MSPS.  
14 illustrates SNR versus the frequency of the input signal for 32-input mode with the ADC resolution set to 14  
bits. The system clock provided is 65 MSPS and the input is sampled at an effective rate of 32.5 MSPS. SNR at  
high input frequencies degrades because of clock jitter.  
15 illustrates SNR versus the frequency of the input signal for 16-input mode with the ADC resolution set to 14  
bits. The system clock provided is 65 MSPS and the input is sampled at an effective rate of 65 MSPS.  
16 illustrates the amplitude of the third-order harmonic distortion (HD3) of the input signal versus the  
frequency of the input signal. The unit of dBc indicates that the HD3 amplitude is referred to the amplitude of the  
input signal, which is set to –1 dBFS. 16 is taken for 32-input mode with the ADC resolution set to 10 bits. The  
system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS. The device follows  
a similar trend across the other input modes and resolutions.  
17 illustrates the amplitude of the second-order harmonic distortion (HD2) of the input signal versus the  
frequency of the input signal. The unit of dBc indicates that the HD2 amplitude is referred to the amplitude of the  
input signal, which is set to –1 dBFS. 17 is taken for 32-input mode with the ADC resolution set to 10 bits. The  
system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS. The device follows  
a similar trend across the other input modes and resolutions.  
18 illustrates the total harmonic distortion (THD) versus the frequency of the input signal. The THD parameter  
includes the RMS amplitude of the first nine harmonics of the fundamental signal. The unit of dBc indicates that  
THD is referred to the amplitude of the input signal, which is set to –1 dBFS. 18 is taken for 32-input mode  
with the ADC resolution set to 10 bits. The system clock provided is 100 MSPS and the input is sampled at an  
effective rate of 50 MSPS. The device follows a similar trend across the other input modes and resolutions.  
19 illustrates the interleaving spur at (fS / 2 ± fIN) versus the frequency of the input signal. 19 is taken for 8-  
input mode with the ADC resolution set to 10 bits. The system clock is set to 200 MSPS and the input is sampled  
at an effective rate of 200 MSPS. The interleaving spur at (fS / 2 ± fIN) is referred to the fundamental amplitude,  
which is at a level of –1 dBFS. The (fS / 2 ± fIN) spur comes about because of the interleaved conversion of the  
same input by two ADCs. As illustrated in 19, the interleaving spur gets much worse at higher input  
frequencies. This degradation results from the fact that when the input frequency is increased, any mismatch in  
the sampling bandwidths and sampling instants of the two interleaved ADCs leads to a larger phase error  
between the interleaved conversions.  
20 illustrates the interleaving spur at (fS / 2 ± fIN) versus the frequency of the input signal. 20 is taken for  
16-input mode with the ADC resolution set to 10 bits. The system clock is set to 100 MSPS and the input is  
sampled at an effective rate of 100 MSPS. The (fS / 2 ± fIN) spur comes about because of the interleaved  
sampling of the input by the two sampling circuits of one ADC. Although not as bad as the (fS / 2 ± fIN) spur for 8-  
input mode, the interleaving spur could still be the dominant factor governing the SFDR at high input frequencies.  
版权 © 2015–2018, Texas Instruments Incorporated  
87  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
21 illustrates the interleaving spur at (fS / 4 ± fIN) versus the frequency of the input signal. 21 is taken for 8-  
input mode with the ADC resolution set to 10 bits. The system clock is set to 200 MSPS and the input is sampled  
at an effective rate of 200 MSPS. In 8-input mode, there are a total of four sampling circuits (two in each ADC)  
that sample the same input in sequence. The (fS / 4 ± fIN) spur comes about from mismatches between these  
four sampling circuits.  
22 illustrates SNR in dBFS as a function of the input amplitude, also expressed in dBFS. SNR excludes the  
first nine harmonics and the interleaving spurs. 22 is taken for the 16-input mode with the ADC resolution set  
to 14 bits. The system clock is set to 65 MSPS and the input is sampled at an effective rate of 65 MSPS. The  
points in the left extreme of the curve provide an estimate of the idle channel SNR (SNR in the absence of an  
input signal).  
23 illustrates the spurious-free dynamic range (SFDR) as a function of the input amplitude. 23 is taken for  
32-input mode with the ADC resolution set to 14 bits. In 32-input mode, there is no interleaved operation of any  
sort and SFDR is a true measure of ADC conversion performance. As mentioned previously, SFDR may be  
dominated by interleaving spurs (and significantly lower than 32-input mode) when operated in 16-input or 8-  
input modes. SFDR is plotted in both dBc and dBFS: the former referring the amplitude of the worst-spur to the  
fundamental amplitude and the latter to the full-scale voltage.  
24 illustrates SNR as a function of the input common-mode voltage (average of INP and INM). 24 is taken  
for 16-input mode with the ADC resolution set to 14 bits. The device is meant to be operated at an input  
common-mode that is tightly controlled around the ideal value of 0.8 V. The driving circuit can generate its output  
common-mode using the 0.8-V reference voltage provided at the VCM pin.  
25 illustrates SNR as a function of the input clock amplitude (expressed in differential VPP) when driven with a  
differential sine-wave clock input. At small input amplitudes, the sine-wave clock has a low dV/dt slope at the  
zero crossings. This low slope can cause increased jitter in the clocking and can lead to a reduction in the SNR  
within the device. The effect is more pronounced when the input frequency is set to a higher value (as is  
evidenced by the difference in behavior between the 5-MHz and 50-MHz inputs). The recommended manner to  
drive the device is with an LVPECL clock.  
26 illustrates SNR as a function of the duty cycle of a differential clock input. Ideally, the device is driven with  
a 50% clock; see the Electrical Characteristics table for the acceptable variation around 50% duty cycle.  
27 illustrates the channel-to-channel crosstalk as a function of the analog input frequency. An analog input of  
a –1-dBFS amplitude is applied on one channel and the crosstalk spur (at the input frequency) is measured on  
all channels. The worst of the crosstalk numbers (usually on the physically closest channel) is plotted.  
28 illustrates the integral nonlinearity (INL) versus ADC code. The device is operated in 32-input mode at 14-  
bit resolution with an effective sampling rate of 32.5 MSPS. 28 provides an accurate INL estimate of the ADC  
inside the device because there is no interleaving of any kind in the 32-input mode operation.  
29 illustrates the differential nonlinearity (DNL) versus ADC code. The device is operated in 32-input mode at  
14-bit resolution with an effective sampling rate of 32.5 MSPS. The saturation of the DNL on the lower side to –1  
indicates missing codes at the 14-bit level.  
30 illustrates the power-supply rejection ratio (PSRR) as a function of the tone frequency applied on the  
supply. A tone is applied on the supplies and the tone at the same frequency is measured at the device output.  
The unit of dBc refers to the relation of the amplitude of the output tone to the amplitude of the supply tone that is  
set to 100 mVPP for this measurement.  
31 illustrates the power-supply modulation ratio (PSMR) as a function of the tone frequency applied on the  
supply. A –1-dBFS input at 5 MHz is applied on the analog input. Simultaneously, a 100-mVPP tone is applied on  
the supply. The tone caused by the intermodulation between the supply tone and the input tone is measured at  
the device output. PSMR refers to the intermodulation tone referred to in terms of dBc to the amplitude of the  
input tone.  
32 illustrates the common-mode rejection ratio (CMRR) as a function of the tone frequency applied as a  
common-mode signal on the input pins. A 50-mVPP common-mode signal is applied to INP and INM around the  
ideal common-mode voltage of 0.8 V. The amplitude of the tone at the same frequency is measured at the  
device output. CMRR refers to the amplitude of this output tone referred to in terms of dBc to the amplitude of  
the common-mode input tone.  
88  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
33 illustrates the current of the AVDD_1P8 supply as a function of fC, the conversion clock frequency. The  
relation of the sampling rate to the conversion clock frequency is different between the 16-, 32-, and 8- input  
modes and therefore the curve can be appropriately interpreted for each mode. The curve extends to a  
conversion clock frequency of up to 100 MSPS, which is the maximum value for the 10-bit ADC resolution. For  
the 12- and 14-bit ADC resolutions, sections of the same curve up to 80 MSPS and 65 MSPS (respectively) are  
applicable.  
34 illustrates the current of the DVDD_1P8 supply as a function of the conversion clock frequency. All 16  
LVDS buffers are on during this measurement.  
35 illustrates the current of the DVDD_1P2 supply as a function of the conversion clock frequency.  
36 illustrates the total power consumption as a function of the conversion clock frequency. The power per  
input channel can be calculated by dividing this total power by 8, 16, or 32 for the 8-, 16-, or 32-input modes.  
37 illustrates the digital high-pass filter response for different settings of the HPF corner frequency.  
38 illustrates the typical minimum and maximum SNR values taken across 100 devices operating in the 14-bit,  
32-input mode at fC = 65 MSPS (corresponding to fSAMP = 32.5 MSPS). A trend can be observed across  
channels and originates from the physical placement and routing of common signals (such as reference voltage  
and power) to the channels. Depending on the way the channel data are combined, an averaging effect can  
result when the system-level SNR is computed.  
39 illustrates a plot of the low-frequency noise from the device with and without the chopper enabled. When  
the chopper is enabled (using the CHOPPER_EN register control), the low-frequency noise generated inside the  
device is shifted to approximately fS / 2. Chopper mode is useful when the signal frequency of interest is close to  
dc.  
48 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 32-  
input mode operating with a 10-bit ADC resolution.  
49 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 16-  
input mode operating with a 10-bit ADC resolution.  
50 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 8-  
input mode operating with a 10-bit ADC resolution.  
51 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 32-  
input mode operating with a 12-bit ADC resolution.  
52 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 16-  
input mode operating with a 12-bit ADC resolution.  
53 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 32-  
input mode operating with a 14-bit ADC resolution.  
54 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 16-  
input mode operating with a 14-bit ADC resolution.  
版权 © 2015–2018, Texas Instruments Incorporated  
89  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
9.3 Do's and Don'ts  
Driving the inputs (analog or digital) beyond the power-supply rails. For device reliability, an input must not  
go more than 300 mV below the ground pins or 300 mV above the supply pins. Exceeding these limits, even on  
a transient basis, can cause faulty or erratic operation and can impair device reliability.  
Driving the device signal input with an excessively high level signal. The device offers consistent and fast  
overload recovery for an overload of upto 6 dBFS. For very large overload signals (> 6 dB of the linear input  
signal range), TI recommends back-to-back Schottky clamping diodes at the input to limit the amplitude of the  
input signal.  
Using a clock source with excessive jitter, an excessively long input clock signal trace, or having other  
signals coupled to the ADC clock signal trace. These situations cause the sampling instant vary, causing an  
excessive output noise and a reduction in SNR performance. For a system with multiple devices, the clock tree  
scheme must be used to apply an ADC clock. Excessive clock delay mismatch between devices can also lead to  
latency mismatch and functional failure at the system level.  
LVDS routing length mismatch. The routing length of all LVDS lines routing to the FPGA must be matched to  
avoid any timing-related issues. For systems with multiple devices, the LVDS serialized data clock (DCLKP,  
DCLKM) and the frame clock (FCLKP, FCLKM) of each individual device must be used to deserialize the  
corresponding LDVS serialized data (DOUTP, DOUTM).  
Failure to provide adequate heat removal. Use the appropriate thermal parameter listed in the Thermal  
Information table and an ambient, board, or case temperature in order to calculate device junction temperature. A  
suitable heat removal technique must be used to keep the device junction temperature below the maximum limit  
of 105°C.  
10 Power Supply Recommendations  
The device requires three supplies in order to operate properly. These supplies are AVDD_1P8, DVDD_1P8, and  
DVDD_1P2. All supplies must be driven with low-noise sources to be able to achieve the best performance from  
the device. When determining the drive current needed to drive each of the supplies of the device, a margin of  
50-100% over the typical current might be needed to account for the current consumption across different modes  
of operation.  
10.1 Power Sequencing and Initialization  
95 shows the suggested power-up sequencing and reset timing for the device. Note that the DVDD_1P2  
supply must rise before the AVDD_1P8 supply. If the AVDD_1P8 supply rises before the DVDD_1P2 supply, the  
AVDD_1P8 supply current is several times higher than the normal operating current until the time the DVDD_1P2  
supply reaches the 1.2-V level.  
The device requires register described in 43 to be written as part of the initialization.  
43. Initialization Register Details  
INITIALIZATION REGISTER ADDRESS  
16-BIT DATA WORD TO BE WRITTEN  
0Ah  
3000h  
The initialization sequence is described below:  
1. Power-up the supplies as indicated,  
2. Apply a hardware reset pulse,  
3. Write the initialization register listed in 43 through the SPI interface,  
4. Write other device settings through the SPI interface, and  
5. After a wait time, the device is ready for high accuracy operation.  
90  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
The power sequence and initialization is shown in 95.  
t1  
DVDD_1P2  
t2  
t3  
DVDD_1P8  
AVDD_1P8  
t5  
t4  
RESET  
t6  
t7  
Device  
Initialization  
and Settings  
SPI  
Interface  
CLK  
t8  
TX_TRIG  
Device  
State  
High-Accuracy Operation  
95. Power Sequencing and Initialization  
The timing parameters corresponding to 95 are shown in 44.  
44. Timing for Power Sequencing and Initialization  
MIN  
10 µ  
10 µ  
t1  
MAX  
50 m  
50 m  
UNIT  
t1  
t2  
t3  
Ramp-up time of DVDD_1P2  
s
s
Ramp up time of AVDD_1P8 and DVDD_1P8  
Time between DVDD_1P2 and AVDD_1P8 start of ramp up  
Time between supplies stabilizing and application of a  
hardware reset  
t4  
t5  
t6  
10  
100  
100  
ms  
ns  
ns  
Width of hardware reset  
Time between hardware reset and SPI write for device  
initialization and programming of device settings  
Time between programming of device settings and  
synchronization using TX_TRIG  
t7  
t8  
100  
10  
ns  
Time between TX_TRIG pulse and device ready for high-  
accuracy operation  
ADC clocks  
版权 © 2015–2018, Texas Instruments Incorporated  
91  
 
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
11 Layout  
11.1 Power Supply, Grounding, and Bypassing  
In a mixed-signal system design, the power-supply and grounding design plays a significant role. The device  
distinguishes between two different grounds: AVSS (analog ground) and DVSS (digital ground). In most cases,  
laying out the PCB to use a single ground plane is adequate. However, in high-frequency or high-performance  
systems, care must be taken so that this ground plane is properly partitioned between various sections within the  
system to minimize interactions between analog and digital circuitry. Alternatively, the digital supply set  
consisting of the DVDD_1P8, DVDD_1P2, and DVSS pins can be placed on separate power and ground planes.  
For this configuration, tie the AVSS and DVSS grounds together at the power connector in a star layout. In  
addition, optical or digital isolators (such as the ISO7240) can completely separate the analog portion from the  
digital portion. Consequently, such isolators prevent digital noise from contaminating the analog portion. 45  
lists the related circuit blocks for each power supply.  
45. Supply versus Circuit Blocks  
POWER SUPPLY  
GROUND  
CIRCUIT BLOCKS  
ADC analog, reference voltage and current generator, band-gap circuit,  
and ADC clock buffer  
AVDD_1P8  
AVSS  
DVDD_1P8  
DVDD_1P2  
DVSS  
DVSS  
LVDS serializer and buffer, and PLL  
ADC digital and serial interface  
Reference all bypassing and power supplies for the device to their corresponding ground planes. Bypass all  
supply pins with 0.1-μF ceramic chip capacitors (size 0603 or smaller). In order to minimize the lead and trace  
inductance, the capacitors must be located as close to the supply pins as possible. Where double-sided  
component mounting is allowed, these capacitors are best placed directly under the package. In addition, larger  
bipolar decoupling capacitors (2.2 µF to 10 μF, effective at lower frequencies) can also be used on the main  
supply pins. These components can be placed on the PCB in close proximity (< 0.5 inch or 12.7 mm) to the  
device itself.  
Bypass the VCM pin with at least a 1-μF capacitor; higher value capacitors can be used for better low-frequency  
noise suppression. For best results, choose low-inductance ceramic chip capacitors (size 0402, > 1 μF) placed  
as close as possible to the device pin.  
11.2 Layout Guidelines  
High-speed, mixed-signal devices are sensitive to various types of noise coupling. One primary source of noise is  
the switching noise from the serializer and the output buffer and drivers. For the device, care must be taken to  
ensure that the interaction between the analog and digital supplies within the device is kept to a minimal amount.  
The extent of noise coupled and transmitted from the digital and analog sections depends on the effective  
inductances of each of the supply and ground connections. Smaller effective inductances of the supply and  
ground pins result in better noise suppression. For this reason, multiple pins are used to connect each supply  
and ground sets. Low inductance properties must be maintained throughout the design of the PCB layout by use  
of proper planes and layer thickness.  
To avoid noise coupling through supply pins, TI recommends keeping sensitive input pins (such as the INM and  
INP pins) away from the supply planes. For example, do not route the traces or vias connected to these pins  
across the supply planes. That is, avoid the power planes under the INM and INP pins.  
Some layout guidelines associated with the layout of the high speed interfaces are listed below:  
The length of the positive and negative traces of a differential pair must be matched to within 2 mils of each  
other.  
Each differential pair length must be matched within 10 mils of other differential pairs.  
When the ADC is used on the same printed circuit board (PCB) with a digital intensive component (such as  
an FPGA or ASIC), separate digital and analog ground planes must be used. Do not overlap these separate  
ground planes to minimize undesired coupling.  
Connect decoupling capacitors directly to ground and place these capacitors close to the ADC power pins  
and the power-supply pins to filter high-frequency current transients directly to the ground plane.  
Ground and power planes must be wide enough to keep the impedance very low. In a multilayer PCB, one  
layer must be dedicated to each ground and power plane.  
92  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
Layout Guidelines (接下页)  
All high-speed traces must be routed straight with minimum bends. Where a bend is necessary, avoid making  
very sharp right-angle bends in the trace.  
In order to maintain proper LVDS timing, all LVDS traces must follow a controlled impedance design. In  
addition, all LVDS trace lengths must be equal and symmetrical; TI recommends keeping trace length  
variations less than 150 mil (0.150 inch or 3.81 mm).  
When routing CML lines, the traces must be designed for a controlled impedance of 50 Ω. The routing of  
different lines must be matched as much as possible to minimize the inter-lane skew. However, trace length  
matching is less critical for the JESD interface as compared to the LVDS interface.  
Additional details on the NFBGA PCB layout techniques can be found in the Texas Instruments application  
report, MicroStar BGA Packaging Reference Guide (SSYZ015), available from www.ti.com.  
11.3 Layout Example  
96. Example Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
93  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12 Register Map  
12.1 ADC Registers  
The register map of the device is shown in 46.  
46. ADC Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
(Hex)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
REG_  
READ_EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
LVDS_  
RATE_2X  
GLOBAL_  
PDN  
1
2
0
0
0
0
0
0
0
SEL_CH[2]  
EN_JESD  
DIS_LVDS  
SEL_CH[1]  
0
SEL_CH[0]  
0
LOW_  
LATENCY_  
EN  
SEL_  
PRBS_  
PAT_FCLK  
SEL_  
PRBS_  
PAT_GBL  
PAT_MODES_FCLK  
AVG_EN  
PAT_MODES  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0]  
DIG_  
OFFSET_  
EN  
DIG_  
GAIN_EN  
OFFSET_CORR_DELAY_  
FROM_TX_TRIG[7:6]  
JESD_  
WR_SEL  
3
4
SER_DATA_RATE  
OFFSET_  
REMOVAL_ REMOVAL_  
START_  
SEL  
0
0
0
0
0
0
0
0
0
0
OFFSET_  
OFFSET_  
REMOVAL_  
SELF  
PAT_SEL  
_IND  
PRBS_  
SYNC  
PRBS_  
MODE  
PRBS_  
EN  
MSB_  
FIRST  
AUTO_OFFSET_REMOVAL_ACC_CYCLES  
ADC_RES  
START_  
MANUAL  
5
7
CUSTOM_PATTERN  
CHOPPER  
_EN  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL  
0
0
0
0
0
0
0
0
0
0
0
8
0
0
AUTO_OFFSET_REMOVAL_VAL_RD  
A
0
0
INIT2  
0
INIT1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN_  
DITHER  
B
0
D
E
GAIN_ADC1o  
GAIN_ADC1e  
GAIN_ADC2o  
GAIN_ADC2e  
GAIN_ADC3o  
GAIN_ADC3e  
GAIN_ADC4o  
GAIN_ADC4e  
0
0
0
0
0
0
0
0
OFFSET_ADC1o  
OFFSET_ADC1e  
OFFSET_ADC2o  
OFFSET_ADC2e  
OFFSET_ADC3o  
OFFSET_ADC3e  
OFFSET_ADC4o  
OFFSET_ADC4e  
F
10  
11  
12  
13  
14  
PAT_  
PRBS_  
LVDS1  
PAT_  
PRBS_  
LVDS2  
PAT_  
PRBS_  
LVDS3  
PAT_  
PRBS_  
LVDS4  
HPF_  
ROUND_  
EN_CH1-8  
DIG_HPF_  
EN_ADC1-4  
15  
PAT_LVDS1  
PAT_LVDS2  
PDN_  
HPF_CORNER_ADC1-4  
PAT_LVDS4  
IN_16CH_  
ADC1  
IN_16CH_  
ADC2  
IN_16CH_  
ADC3  
IN_16CH_  
ADC4  
17  
18  
0
0
0
0
PAT_LVDS3  
PDN_  
0
0
PDN_  
DIG_ADC4  
PDN_  
DIG_ADC3  
PDN_  
DIG_ADC2  
PDN_  
DIG_ADC1  
PDN_  
LVDS4  
PDN_  
LVDS3  
PDN_  
LVDS2  
PDN_  
LVDS1  
PDN_  
PDN_  
INVERT_  
LVDS4  
INVERT_  
LVDS3  
INVERT_  
LVDS2  
INVERT_  
LVDS1  
ANA_ADC4 ANA_ADC3 ANA_ADC2 ANA_ADC1  
(1) Default value of all registers is 0.  
94  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
ADC Registers (接下页)  
46. ADC Register Map (接下页)  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
(Hex)  
19  
15  
14  
13  
12  
11  
10  
0
9
8
7
6
5
4
3
2
1
0
GAIN_ADC5o  
GAIN_ADC5e  
GAIN_ADC6o  
GAIN_ADC6e  
GAIN_ADC7o  
GAIN_ADC7e  
GAIN_ADC8o  
GAIN_ADC8e  
OFFSET_ADC5o  
OFFSET_ADC5e  
OFFSET_ADC6o  
OFFSET_ADC6e  
OFFSET_ADC7o  
OFFSET_ADC7e  
OFFSET_ADC8o  
OFFSET_ADC8e  
1A  
0
1B  
0
1C  
1D  
1E  
0
0
0
1F  
0
20  
0
PAT_  
PRBS_  
LVDS5  
PAT_  
PRBS_  
LVDS6  
PAT_  
PRBS_  
LVDS7  
PAT_  
PRBS_  
LVDS8  
DIG_  
HPF_EN_  
ADC5-8  
21  
PAT_LVDS5  
PAT_LVDS6  
PDN_  
0
HPF_CORNER_ADC5-8  
PAT_LVDS8  
IN_16CH_  
ADC5  
IN_16CH_  
ADC6  
IN_16CH_  
ADC7  
IN_16CH_  
ADC8  
23  
24  
0
0
0
0
PAT_LVDS7  
PDN_  
0
0
PDN_  
DIG_ADC8  
PDN_  
DIG_ADC7  
PDN_  
DIG_ADC6  
PDN_  
DIG_ADC5  
PDN_  
LVDS8  
PDN_  
LVDS7  
PDN_  
LVDS6  
PDN_  
LVDS5  
PDN_  
PDN_  
INVERT_  
LVDS8  
INVERT_  
LVDS7  
INVERT_  
LVDS6  
INVERT_  
LVDS5  
ANA_ADC8 ANA_ADC7 ANA_ADC6 ANA_ADC5  
25  
26  
27  
28  
29  
2A  
2B  
2C  
GAIN_ADC9o  
GAIN_ADC9e  
GAIN_ADC10o  
GAIN_ADC10e  
GAIN_ADC11o  
GAIN_ADC11e  
GAIN_ADC12o  
GAIN_ADC12e  
0
0
0
0
0
0
0
0
OFFSET_ADC9o  
OFFSET_ADC9e  
OFFSET_ADC10o  
OFFSET_ADC10e  
OFFSET_ADC11o  
OFFSET_ADC11e  
OFFSET_ADC12o  
OFFSET_ADC12e  
PAT_  
PRBS_  
LVDS9  
PAT_  
PRBS_  
LVDS10  
PAT_  
PRBS_  
LVDS11  
PAT_  
PRBS_  
LVDS12  
HPF_ROUN  
D_EN_CH9-  
16  
DIG_  
HPF_EN_  
ADC9-12  
2D  
PAT_LVDS9  
PAT_LVDS10  
HPF_CORNER_ADC9-12  
PAT_LVDS12  
IN_16CH_  
ADC9  
IN_16CH_  
ADC10  
IN_16CH_  
ADC11  
IN_16CH_  
ADC12  
2F  
30  
0
0
0
0
PAT_LVDS11  
0
0
PDN_  
PDN_  
PDN_  
PDN_  
PDN_  
LVDS12  
PDN_  
LVDS11  
PDN_  
LVDS10  
PDN_  
LVDS9  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
ADC12 ADC11 ADC10 ADC9  
INVERT_  
LVDS12  
INVERT_  
LVDS11  
INVERT_  
LVDS10  
INVERT_  
LVDS9  
DIG_ADC12 DIG_ADC11 DIG_ADC10 DIG_ADC9  
版权 © 2015–2018, Texas Instruments Incorporated  
95  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
ADC Registers (接下页)  
46. ADC Register Map (接下页)  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
(Hex)  
31  
15  
14  
13  
12  
11  
10  
0
9
8
7
6
5
4
3
2
1
0
GAIN_ADC13o  
GAIN_ADC13e  
GAIN_ADC14o  
GAIN_ADC14e  
GAIN_ADC15o  
GAIN_ADC15e  
GAIN_ADC16o  
GAIN_ADC16e  
OFFSET_ADC13o  
OFFSET_ADC13e  
OFFSET_ADC14o  
OFFSET_ADC14e  
OFFSET_ADC15o  
OFFSET_ADC15e  
OFFSET_ADC16o  
OFFSET_ADC16e  
32  
0
33  
0
34  
0
35  
0
36  
0
37  
0
38  
0
PAT_  
PRBS_  
LVDS13  
PAT_  
PRBS_  
LVDS14  
PAT_  
PRBS_  
LVDS15  
PAT_  
PRBS_  
LVDS16  
DIG_  
HPF_EN_  
ADC13-16  
39  
3B  
PAT_LVDS13  
PAT_LVDS14  
0
HPF_CORNER_ADC13-16  
PAT_LVDS16  
IN_16CH_  
ADC13  
IN_16CH_  
ADC14  
IN_16CH_  
ADC15  
IN_16CH_  
ADC16  
0
0
0
0
PAT_LVDS15  
0
0
PDN_  
PDN_  
PDN_  
PDN_  
PDN_  
LVDS16  
PDN_  
LVDS15  
PDN_  
LVDS14  
PDN_  
LVDS13  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
INVERT_  
LVDS16  
INVERT_  
LVDS15  
INVERT_  
LVDS14  
INVERT_  
LVDS13  
3C  
43  
DIG_ADC16 DIG_ADC15 DIG_ADC14 DIG_ADC13  
ADC16  
ADC15  
ADC14  
ADC13  
0
0
0
0
0
0
0
0
0
0
0
LVDS_DCLK_DELAY_PROG  
96  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1 Description of Registers  
12.1.1.1 Register 0h (address = 0h)  
97. Register 0h  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
REG_READ_  
EN  
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
47. Register 0h Field Descriptions  
Bit  
15-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
REG_READ_EN  
W
0h  
Register readout enabled.  
0 = Disabled  
1 = Enabled; see the Serial Peripheral Interface (SPI) Operation  
section for further details.  
0
RESET  
W
0h  
0 = Disabled  
1 = Enabled (this setting returns the device to a reset state; this  
bit is self-clearing bit)  
版权 © 2015–2018, Texas Instruments Incorporated  
97  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.2 Register 1h (address = 1h)  
98. Register 1h  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
8
0
LVDS_RATE_  
2X  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
0
2
1
0
0
SEL_CH[2]  
R/W-0h  
EN_JESD  
R/W-0h  
DIS_LVDS  
R/W-0h  
SEL_CH[1]  
R/W-0h  
SEL_CH[0]  
R/W-0h  
GLOBAL_PDN  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
48. Register 1h Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LVDS_RATE_2X  
0h  
0 = 1X rate; normal operation (default)  
1 = 2X rate. This setting combines the data of two LVDS pairs  
into a single LVDS pair. This feature can be used when the ADC  
clock rate is low.  
13-8  
7
0
R/W  
R/W  
0h  
0h  
Must write 0  
SEL_CH[2]  
Input mode selection bit 3. 49 lists bit settings for the three  
input modes.  
6
5
4
EN_JESD  
DIS_LVDS  
SEL_CH[1]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = JESD interface disabled  
1 = JESD interface enabled; see 49  
0 = LVDS interface is enabled (default)  
1 = LVDS interface is disabled  
Input mode selection bit 2. 49 lists bit settings for the three  
input modes.  
3
2
0
R/W  
R/W  
0h  
0h  
Must write 0  
SEL_CH[0]  
Input mode selection bit 1. 49 lists bit settings for the three  
input modes.  
1
0
0
R/W  
R/W  
0h  
0h  
Must write 0  
GLOBAL_PDN  
0 = The device operates in normal mode (default)  
1 = ADC enters complete power-down mode  
49. 8-, 16-, and 32-Input Mode Selection  
INPUT MODE  
8-channel input  
16-channel input  
32-channel input  
SEL_CH[2]  
SEL_CH[1]  
SEL_CH[0]  
1
0
0
1
1
0
1
1
0
50. Output Interface Supported in 8-, 16-, and 32-Input Mode  
OUTPUT INTERFACE SUPPORTED?  
INPUT MODE  
LVDS  
Yes  
JESD204B  
No  
8-channel input  
16-channel input  
32-channel input  
Yes  
Yes  
Yes  
Yes  
98  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.3 Register 2h (address = 2h)  
99. Register 2h  
15  
14  
13  
5
12  
11  
10  
9
8
LOW_  
LATENCY_EN  
SEL_PRBS_  
PAT_FCLK  
PAT_MODES_FCLK[2:0]  
R/W-0h  
AVG_EN  
PAT_MODES[2:0]  
R/W-0h  
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
7
6
1
0
PAT_  
MODES[2:0]  
SEL_PRBS_  
PAT_GBL  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
51. Register 2h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
PAT_MODES_FCLK[2:0]  
R/W  
0h  
These bits enable different test patterns on the frame clock line;  
see 52 for bit descriptions and the LVDS Test Pattern Mode  
section for further details.  
12  
11  
LOW_LATENCY_EN  
AVG_EN  
R/W  
R/W  
0h  
0h  
0 = Default latency with digital features supported  
1 = Low-latency with digital features bypassed  
0 = No digital averaging  
1 = Enables digital averaging of two channels to improve signal-  
to-noise ratio (SNR)  
10  
9-7  
6
SEL_PRBS_PAT_FCLK  
PAT_MODES[2:0]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation  
1 = Enables the PRBS pattern to be generated on FCLK; see  
the LVDS Test Pattern Mode section for further details.  
These bits enable different test patterns on the LVDS data lines;  
see 52 for bit descriptions and the LVDS Test Pattern Mode  
section for further details.  
SEL_PRBS_PAT_GBL  
0 = Normal operation  
1 = Enables the PRBS pattern to be generated on all the LVDS  
data lines; see the LVDS Test Pattern Mode section for further  
details.  
5-0  
OFFSET_CORR_DELAY_FROM_  
TX_TRIG[5:0]  
R/W  
0h  
This is a part of an 8-bit control that initiates offset correction  
after the TX_TRIG input pulse (each step is equivalent to one  
sample delay); the remaining two MSB bits are the  
OFFSET_CORR_DELAY_FROM_TX_TRIG[7:6] bits (bits 10-9)  
in register 3.  
52. Pattern Mode Bit Description(1)  
PAT_MODES[2:0] or PAT_MODES_FCLK[2:0] or PAT_LVDSx[2:0]  
DESCRIPTION  
Normal operation  
Sync (half frame 1, half frame 0)  
Deskew  
000  
001  
010  
011  
100  
101  
110  
111  
Custom(2)  
All 1s  
Toggle mode  
All 0s  
Ramp(2)  
(1) For detailed description, see 33.  
(2) Either the custom or ramp pattern setting is required for PRBS pattern selection.  
版权 © 2015–2018, Texas Instruments Incorporated  
99  
 
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.4 Register 3h (address = 3h)  
100. Register 3h  
15  
14  
13  
5
12  
11  
0
10  
9
8
OFFSET_CORR_DELAY_FROM  
_TX_TRIG[7:6]  
DIG_  
OFFSET_EN  
SER_DATA_RATE  
DIG_GAIN_EN  
R/W-0h  
6
R/W-0h  
4
R/W-0h  
3
R/W-0h  
R/W-0h  
0
7
0
2
0
1
0
JESD_WR_  
SEL  
0
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
53. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
SER_DATA_RATE  
R/W  
0h  
These bits control the LVDS serialization rate.  
000 = 12X  
001 = 14X  
100 = 16X  
011 = 10X  
101, 110, 111, 010 = Unused  
12  
DIG_GAIN_EN  
0
R/W  
0h  
0 = Digital gain disabled  
1 = Digital gain enabled  
11  
R/W  
R/W  
0h  
0h  
Must write 0  
10-9  
OFFSET_CORR_DELAY_FROM_  
TX_TRIG[7:6]  
This is a part of an 8-bit control that initiates offset correction  
after the TX_TRIG input pulse (each step is equivalent to one  
sample delay); the remaining six LSB bits are the  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0] bits (bits 5-0) in  
register 2.  
8
DIG_OFFSET_EN  
R/W  
0h  
0 = Digital offset subtraction disabled  
1 = Digital offset subtraction enabled  
7-6  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
JESD_WR_SEL  
0 = Setting when writing to all registers except for registers with  
addresses in the decimal range of 115-119 and 134-138  
1 = Setting when writing to registers with addresses in the  
decimal range of 115-119 and 134-138  
4-0  
0
R/W  
0h  
Must write 0  
100  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.5 Register 4h (address = 4h)  
101. Register 4h  
15  
14  
13  
12  
11  
10  
9
1
8
OFFEST_  
REMOVAL_  
START_  
OFFSET_  
REMOVAL_  
SELF  
OFFSET_  
REMOVAL_  
START_ SEL  
PAT_  
SELECT_ IND  
AUTO_OFFSET_REMOVAL_ACC_CYCLES[3:0]  
R/W-0h  
MANUAL  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
0
4
3
0
2
0
PRBS_  
SYNC  
PRBS_  
MODE  
PRBS_EN  
R/W-0h  
MSB_FIRST  
R/W-0h  
ADC_RES  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
54. Register 4h Field Descriptions  
Bit  
15  
14  
Field  
Type  
Reset  
0h  
Description  
OFFSET_REMOVAL_SELF  
R/W  
Auto offset removal mode is enabled when this bit is set to 1  
OFFSET_REMOVAL_START_SEL R/W  
0h  
0 = Auto offset correction initiated when the  
OFFSET_REMOVAL_START_ MANUAL bit is set to 1.  
1 = Auto offset correction initiated with a pulse on TX_TRIG pin.  
13  
12-9  
8
OFFSET_REMOVAL_START_  
MANUAL  
R/W  
0h  
0h  
0h  
This bit initiates offset correction when  
OFFSET_REMOVAL_START_SEL is set to 0.  
AUTO_OFFSET_REMOVAL_ACC_ R/W  
CYCLES  
These bits define the number of samples required to generate  
an offset in auto offset correction mode  
PAT_SELECT_IND  
R/W  
0 = All LVDS output data lines have the same pattern, as  
determined by the PAT_MODES[2:0] bits  
1 = Different test patterns can be sent on different LVDS data  
lines; see the LVDS Test Pattern Mode section for further details  
7
6
5
PRBS_SYNC  
PRBS_MODE  
PRBS_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation  
1 = PRBS generator is in a reset state  
0 = 23-bit PRBS generator  
1 = 9-bit PRBS generator  
0 = PRBS sequence generation block disabled  
1 = PRBS sequence generation block enabled; see the LVDS  
Test Pattern Mode section for further details  
4
MSB_FIRST  
R/W  
0h  
0 = The LSB is transmitted first on serialized output data  
1 = The MSB is transmitted first on serialized output data  
3-2  
1-0  
0
R/W  
R/W  
0h  
0h  
Must write 0  
ADC_RES  
These bits control the ADC resolution.  
00 = 12-bit resolution  
01 = 14-bit resolution  
11 = 10-bit resolution  
10 = Unused  
版权 © 2015–2018, Texas Instruments Incorporated  
101  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.6 Register 5h (address = 5h)  
102. Register 5h  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CUSTOM_PATTERN  
R/W-0h  
4
3
CUSTOM_PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
55. Register 5h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
CUSTOM_PATTERN  
R/W  
0h  
If the pattern mode is programmed to a custom pattern mode,  
then the custom pattern value can be provided by programming  
these bits; see the LVDS Test Pattern Mode section for further  
details.  
12.1.1.7 Register 7h (address = 7h)  
103. Register 7h  
15  
14  
13  
12  
11  
10  
0
9
0
8
0
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CHOPPER_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
56. Register 7h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
AUTO_OFFSET_REMOVAL_VAL_ R/W  
RD_CH_SEL  
0h  
Write the channel number to read the offset value in auto offset  
correction mode for a corresponding channel number (read the  
offset value in AUTO_OFFSET_REMOVAL_VAL_RD.(1)  
10-1  
0
0
R/W  
R/W  
0h  
0h  
Must write 0  
CHOPPER_EN  
The chopper can be used to move low-frequency, 1 / f noise to  
fS / 2 frequency.  
0 = Chopper disabled  
1 = Chopper enabled  
(1) In 32-channel input mode, the value written in this register corresponds to the channel number (minus 1). When operating in 8- and 16-  
input modes, the value can be mapped to the odd or even data streams of the 16 ADCs. For example, a value of 0 corresponds to the  
odd data stream of ADC1. Likewise, a value of 1 corresponds to the even data stream of ADC1, and so on respectively.  
102  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.8 Register 8h (address = 8h)  
104. Register 8h  
15  
0
14  
0
13  
5
12  
11  
10  
9
1
8
0
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
4
3
2
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
57. Register 8h Field Descriptions  
Bit  
Field  
Type  
Reset  
0h  
Description  
15-14  
13-0  
0
R/W  
Must write 0  
AUTO_OFFSET_REMOVAL_VAL_ R/W  
RD  
0h  
Read the offset value applied in auto offset correction mode for  
a specific channel number as defined in  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL  
12.1.1.9 Register Ah (address = Ah)  
105. Register Ah  
15  
0
14  
0
13  
12  
11  
0
10  
0
9
0
8
0
INIT2  
INIT1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
58. Register Ah Field Descriptions  
Bit  
15-14  
13  
Field  
0
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
Must write 0  
INIT2  
INIT1  
0
0h  
Write 1 as part of the initialization after power-up(1)  
Write 1 as part of the initialization after power-up(1)  
Must write 0  
12  
0h  
11-0  
0h  
(1) See 43.  
版权 © 2015–2018, Texas Instruments Incorporated  
103  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.10 Register Bh (address = Bh)  
106. Register Bh  
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
0
8
0
EN_DITHER  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
59. Register Bh Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
EN_DITHER  
0h  
Dither can be used to reduce the power in higher-order  
harmonics.  
0 = Dither disabled  
1 = Dither enabled  
Note: Enabling the dither converts higher-order harmonics power  
into noise. Thus, enabling this mode reduce the power in higher-  
order harmonics but degrades SNR.  
10-0  
0
R/W  
0h  
Must write 0  
104  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.11 Register Dh (address = Dh)  
107. Register Dh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC1o  
R/W-0h  
OFFSET_ADC1o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC1o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
60. Register Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC1o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC1 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC1o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC1 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.12 Register Eh (address = Eh)  
108. Register Eh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC1e  
R/W-0h  
OFFSET_ADC1e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC1e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
61. Register Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC1e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC1 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC1e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC1 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
105  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.13 Register Fh (address = Fh)  
109. Register Fh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC2o  
R/W-0h  
OFFSET_ADC2o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC2o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
62. Register Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC2o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC2 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC2o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC2 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.14 Register 10h (address = 10h)  
110. Register 10h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC2e  
R/W-0h  
OFFSET_ADC2e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC2e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
63. Register 10h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC2e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC2 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC2e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC2 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
106  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.15 Register 11h (address = 11h)  
111. Register 11h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC3o  
R/W-0h  
OFFSET_ADC3o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC3o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
64. Register 11h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC3o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC3 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC3o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC3 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.16 Register 12h (address = 12h)  
112. Register 12h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC3e  
R/W-0h  
OFFSET_ADC3e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC3e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
65. Register 12h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC3e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC3 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC3e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC3 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
107  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.17 Register 13h (address = 13h)  
113. Register 13h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC4o  
R/W-0h  
OFFSET_ADC4o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC4o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
66. Register 13h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC4o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC4 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC4o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC4 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.18 Register 14h (address = 14h)  
114. Register 14h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC4e  
R/W-0h  
OFFSET_ADC4e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC4e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
67. Register 14h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC4e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC4 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC4e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC4 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
108  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.19 Register 15h (address = 15h)  
115. Register 15h  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS1  
PAT_PRBS_  
LVDS2  
PAT_PRBS_  
LVDS3  
PAT_PRBS_  
LVDS4  
PAT_  
LVDS2  
PAT_LVDS1  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
HPF_ROUND_  
EN_CH1-8  
DIG_HPF_EN_  
ADC1-4  
PAT_LVDS2  
R/W-0h  
HPF_CORNER_ADC1-4  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
68. Register 15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS1  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 1 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
14  
13  
PAT_PRBS_LVDS2  
PAT_PRBS_LVDS3  
PAT_PRBS_LVDS4  
PAT_LVDS1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 2 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 3 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 4 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
11-9  
8-6  
5
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 1 can be programmed with these  
bits; see 33 for bit descriptions.  
PAT_LVDS2  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 2 can be programmed with these  
bits; see 33 for bit descriptions.  
HPF_ROUND_EN_CH1-8  
0 = Rounding in the ADC HPF is disabled for channel 1 to 8.  
HPF output is truncated to be mapped to the ADC resolution  
bits.  
1 = HPF output of channel 1 to 8 is mapped to the ADC  
resolution bits by the round-off operation.  
4-1  
0
HPF_CORNER_ADC1-4  
DIG_HPF_EN_ADC1-4  
R/W  
R/W  
0h  
0h  
When the DIG_HPF_EN_ADC1-4 bit is set to 1, the digital HPF  
characteristic for the corresponding ADCs can be programmed  
by setting the value of k with these bits.  
The value of k can be from 2 to 10 (0010b to 1010b); see the  
Digital HPF section for further details.  
0 = Digital HPF disabled for ADCs 1 to 4 (default)  
1 = Enables digital HPF for ADCs 1 to 4  
版权 © 2015–2018, Texas Instruments Incorporated  
109  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.20 Register 17h (address = 17h)  
116. Register 17h  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
IN_16CH_  
ADC1  
IN_16CH_  
ADC2  
IN_16CH_  
ADC3  
IN_16CH_  
ADC4  
R/W-0h  
7
R/W-0h  
R/W-0h  
5
R/W-0h  
4
R/W-0h  
R/W-0h  
2
R/W-0h  
R/W-0h  
6
3
1
0
0
0
PAT_LVDS3  
R/W-0h  
PAT_LVDS4  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
69. Register 17h Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
IN_16CH_ADC1  
0h  
Selects the input pair sampled by ADC1 in 16-input mode.  
0 = ADC1 samples the signal on INP1, INM1  
1 = ADC1 samples the signal on INP2, INM2  
10  
9
IN_16CH_ADC2  
IN_16CH_ADC3  
IN_16CH_ADC4  
PAT_LVDS3  
PAT_LVDS4  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
Selects the input pair sampled by ADC2 in 16-input mode.  
0 = ADC2 samples the signal on INP3, INM3  
1 = ADC2 samples the signal on INP4, INM4  
Selects the input pair sampled by ADC3 in 16-input mode.  
0 = ADC3 samples the signal on INP5, INM5  
1 = ADC3 samples the signal on INP6, INM6  
8
Selects the input pair sampled by ADC4 in 16-input mode.  
0 = ADC4 samples the signal on INP7, INM7  
1 = ADC4 samples the signal on INP8, INM8  
7-5  
4-2  
1-0  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 3 can be programmed with these  
bits; see 33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 4 can be programmed with these  
bits; see 33 for bit descriptions.  
Must write 0  
110  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.21 Register 18h (address = 18h)  
117. Register 18h  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
ADC4  
PDN_DIG_  
ADC3  
PDN_DIG_  
ADC2  
PDN_DIG_  
ADC1  
PDN_LVDS4  
PDN_LVDS3  
PDN_LVDS2  
PDN_LVDS1  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
ADC4  
PDN_ANA_  
ADC3  
PDN_ANA_  
ADC2  
PDN_ANA_  
ADC1  
INVERT_  
LVDS4  
INVERT_  
LVDS3  
INVERT_  
LVDS2  
INVERT_  
LVDS1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
70. Register 18h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_ADC4  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC4  
14  
13  
12  
11  
10  
9
PDN_DIG_ADC3  
PDN_DIG_ADC2  
PDN_DIG_ADC1  
PDN_LVDS4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC3  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC2  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC1  
0 = Normal operation (default)  
1 = Powers down LVDS output line 4  
PDN_LVDS3  
0 = Normal operation (default)  
1 = Powers down LVDS output line 3  
PDN_LVDS2  
0 = Normal operation (default)  
1 = Powers down LVDS output line 2  
8
PDN_LVDS1  
0 = Normal operation (default)  
1 = Powers down LVDS output line 1  
7
PDN_ANA_ADC4  
PDN_ANA_ADC3  
PDN_ANA_ADC2  
PDN_ANA_ADC1  
INVERT_LVDS4  
0 = Normal operation (default)  
1 = Powers down the analog block for ADC4  
6
0 = Normal operation (default)  
1 = Powers down the analog block for ADC3  
5
0 = Normal operation (default)  
1 = Powers down the analog block for ADC2  
4
0 = Normal operation (default)  
1 = Powers down the analog block for ADC1  
3
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 4. Has no effect  
on Test patterns.  
2
1
0
INVERT_LVDS3  
INVERT_LVDS2  
INVERT_LVDS1  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 3. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 2. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 1. Has no effect  
on Test patterns.  
版权 © 2015–2018, Texas Instruments Incorporated  
111  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.22 Register 19h (address = 19h)  
118. Register 19h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC5o  
R/W-0h  
OFFSET_ADC5o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC5o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
71. Register 19h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC5o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC5 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC5o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC5 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.23 Register 1Ah (address = 1Ah)  
119. Register 1Ah  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC5e  
R/W-0h  
OFFSET_ADC5e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC5e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
72. Register 1Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC5e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC5 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC5e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC5 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
112  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.24 Register 1Bh (address = 1Bh)  
120. Register 1Bh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC6o  
R/W-0h  
OFFSET_ADC6o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC6o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
73. Register 1Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC6o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC6 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC6o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC6 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.25 Register 1Ch (address = 1Ch)  
121. Register 1Ch  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC6e  
R/W-0h  
OFFSET_ADC6e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC6e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
74. Register 1Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC6e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC6 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC6e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC6 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
113  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.26 Register 1Dh (address = 1Dh)  
122. Register 1Dh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC7o  
R/W-0h  
OFFSET_ADC7o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC7o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
75. Register 1Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC7o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC7 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC7o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC7 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.27 Register 1Eh (address = 1Eh)  
123. Register 1Eh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC7e  
R/W-0h  
OFFSET_ADC7e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC7e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
76. Register 1Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC7e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC7 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC7e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC7 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
114  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.28 Register 1Fh (address = 1Fh)  
124. Register 1Fh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC8o  
R/W-0h  
OFFSET_ADC8o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC8o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
77. Register 1Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC8o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC8 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC8o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC8 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.29 Register 20h (address = 20h)  
125. Register 20h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC8e  
R/W-0h  
OFFSET_ADC8e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC8e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
78. Register 20h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC8e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC8 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC8e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC8 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
115  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.30 Register 21h (offset = 21h)  
126. Register 21h  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS5  
PAT_PRBS_  
LVDS6  
PAT_PRBS_  
LVDS7  
PAT_PRBS_  
LVDS8  
PAT_  
LVDS6  
PAT_LVDS5  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
ADC5-8  
PAT_LVDS6  
R/W-0h  
0
HPF_CORNER_ADC5-8  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
79. Register 21h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS5  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 5 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
14  
13  
PAT_PRBS_LVDS6  
PAT_PRBS_LVDS7  
PAT_PRBS_LVDS8  
PAT_LVDS5  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 6 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 7 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 8 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 5 can be programmed with these  
bits; see 33 for bit descriptions.  
PAT_LVDS6  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 6 can be programmed with these  
bits; see 33 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_ADC5-8  
When the DIG_HPF_EN_ADC5-8 bit is set to 1, the digital HPF  
characteristic for the corresponding ADCs can be programmed  
by setting the value of k with these bits.  
The value of k can be from 2 to 10 (0010b to 1010b); see the  
Digital HPF section for further details.  
0
DIG_HPF_EN_ADC5-8  
R/W  
0h  
0 = Digital HPF disabled for ADCs 5 to 8 (default)  
1 = Enables digital HPF for ADCs 5 to 8  
116  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.31 Register 23h (register = 23h)  
127. Register 23h  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
IN_16CH_  
ADC5  
IN_16CH_  
ADC6  
IN_16CH_  
ADC7  
IN_16CH_  
ADC8  
R/W-0h  
7
R/W-0h  
R/W-0h  
5
R/W-0h  
4
R/W-0h  
R/W-0h  
2
R/W-0h  
R/W-0h  
6
3
1
0
0
0
PAT_LVDS7  
R/W-0h  
PAT_LVDS8  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
80. Register 23h Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
IN_16CH_ADC5  
0h  
Selects the input pair sampled by ADC5 in 16-input mode.  
0 = ADC5 samples the signal on INP9, INM9  
1 = ADC5 samples the signal on INP10, INM10  
10  
9
IN_16CH_ADC6  
IN_16CH_ADC7  
IN_16CH_ADC8  
PAT_LVDS7  
PAT_LVDS8  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
Selects the input pair sampled by ADC6 in 16-input mode.  
0 = ADC6 samples the signal on INP11, INM11  
1 = ADC6 samples the signal on INP12, INM12  
Selects the input pair sampled by ADC7 in 16-input mode.  
0 = ADC7 samples the signal on INP13, INM13  
1 = ADC7 samples the signal on INP14, INM14  
8
Selects the input pair sampled by ADC8 in 16-input mode.  
0 = ADC8 samples the signal on INP15, INM15  
1 = ADC8 samples the signal on INP16, INM16  
7-5  
4-2  
1-0  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 7 can be programmed with these  
bits; see 33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 8 can be programmed with these  
bits; see 33 for bit descriptions.  
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
117  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.32 Register 24h (address = 24h)  
128. Register 24h  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
ADC8  
PDN_DIG_  
ADC7  
PDN_DIG_  
ADC6  
PDN_DIG_  
ADC5  
PDN_LVDS8  
PDN_LVDS7  
PDN_LVDS6  
PDN_LVDS5  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
ADC8  
PDN_ANA_  
ADC7  
PDN_ANA_  
ADC6  
PDN_ANA_  
ADC5  
INVERT_  
LVDS8  
INVERT_  
LVDS7  
INVERT_  
LVDS6  
INVERT_  
LVDS5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
81. Register 24h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_ADC8  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC8  
14  
13  
12  
11  
10  
9
PDN_DIG_ADC7  
PDN_DIG_ADC6  
PDN_DIG_ADC5  
PDN_LVDS8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC7  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC6  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC5  
0 = Normal operation (default)  
1 = Powers down LVDS output line 8  
PDN_LVDS7  
0 = Normal operation (default)  
1 = Powers down LVDS output line 7  
PDN_LVDS6  
0 = Normal operation (default)  
1 = Powers down LVDS output line 6  
8
PDN_LVDS5  
0 = Normal operation (default)  
1 = Powers down LVDS output line 5  
7
PDN_ANA_ADC8  
PDN_ANA_ADC7  
PDN_ANA_ADC6  
PDN_ANA_ADC5  
INVERT_LVDS8  
0 = Normal operation (default)  
1 = Powers down the analog block for ADC8  
6
0 = Normal operation (default)  
1 = Powers down the analog block for ADC7  
5
0 = Normal operation (default)  
1 = Powers down the analog block for ADC6  
4
0 = Normal operation (default)  
1 = Powers down the analog block for ADC5  
3
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 8. Has no effect  
on Test patterns.  
2
1
0
INVERT_LVDS7  
INVERT_LVDS6  
INVERT_LVDS5  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 7. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 6. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 5. Has no effect  
on Test patterns.  
118  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.33 Register 25h (address = 25h)  
129. Register 25h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC9o  
R/W-0h  
OFFSET_ADC9o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC9o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
82. Register 25h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC9o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC9 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC9o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC9 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.34 Register 26h (address = 26h)  
130. Register 26h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC9e  
R/W-0h  
OFFSET_ADC9e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC9e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
83. Register 26h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC9e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC9 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC9e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC9 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
119  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.35 Register 27h (address = 27h)  
131. Register 27h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC10o  
R/W-0h  
OFFSET_ADC10o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC10o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
84. Register 27h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC10o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC10 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC10o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC10 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.36 Register 28h (address = 28h)  
132. Register 28h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC10e  
R/W-0h  
OFFSET_ADC10e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC10e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
85. Register 28h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC10e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC10 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC10e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC10  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
120  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.37 Register 29h (address = 29h)  
133. Register 29h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC11o  
R/W-0h  
OFFSET_ADC11o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC11o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
86. Register 29h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC11o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC11 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC11o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC11 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.38 Register 2Ah (address = 2Ah)  
134. Register 2Ah  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC11e  
R/W-0h  
OFFSET_ADC11e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC11e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
87. Register 2Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC11e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC11 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC11e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC11  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
121  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.39 Register 2Bh (address = 2Bh)  
135. Register 2Bh  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC12o  
R/W-0h  
OFFSET_ADC12o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC12o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
88. Register 2Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC12o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC12 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC12o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC12 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.40 Register 2Ch (address = 2Ch)  
136. Register 2Ch  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC12e  
R/W-0h  
OFFSET_ADC12e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC12e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
89. Register 2Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC12e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC12 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC12e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC12  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
122  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.41 Register 2Dh (address = 2Dh)  
137. Register 2Dh  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS9  
PAT_PRBS_  
LVDS10  
PAT_PRBS_  
LVDS11  
PAT_PRBS_  
LVDS12  
PAT_  
LVDS10  
PAT_LVDS9  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
HPF_ROUND_  
EN_CH9-16  
DIG_HPF_EN_  
ADC9-12  
PAT_LVDS10  
R/W-0h  
HPF_CORNER_ADC9-12  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
90. Register 2Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS9  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 9 can be enabled with this bit;  
see the LVDS Test Pattern Mode section for further details.  
14  
13  
PAT_PRBS_LVDS10  
PAT_PRBS_LVDS11  
PAT_PRBS_LVDS12  
PAT_LVDS9  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 10 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 11 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 12 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
11-9  
8-6  
5
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 9 can be programmed with these  
bits; see33 for bit descriptions.  
PAT_LVDS10  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 10 can be programmed with these  
bits; see33 for bit descriptions.  
HPF_ROUND_EN_CH9-16  
0 = Rounding in the ADC HPF is disabled for channels 9-16.  
The HPF output is truncated to be mapped to the ADC  
resolution bits.  
1 = HPF output of channels 9-16 is mapped to the ADC  
resolution bits by the round-off operation.  
4-1  
0
HPF_CORNER_ADC9-12  
DIG_HPF_EN_ADC9-12  
R/W  
R/W  
0h  
0h  
When the DIG_HPF_EN_CH9-12 bit is set to 1, the digital HPF  
characteristic for the corresponding ADCs can be programmed  
by setting the value of k with these bits.  
The value of k can be from 2 to 10 (0010b to 1010b); see the  
Digital HPF section for further details.  
0 = Digital HPF disabled for ADCs 9 to 12 (default)  
1 = Enables digital HPF for ADCs 9 to 12  
版权 © 2015–2018, Texas Instruments Incorporated  
123  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.42 Register 2Fh (address = 2Fh)  
138. Register 2Fh  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
IN_16CH_  
ADC9  
IN_16CH_  
ADC10  
IN_16CH_  
ADC11  
IN_16CH_  
ADC12  
R/W-0h  
7
R/W-0h  
R/W-0h  
5
R/W-0h  
4
R/W-0h  
R/W-0h  
2
R/W-0h  
R/W-0h  
6
3
1
0
0
0
PAT_LVDS11  
R/W-0h  
PAT_LVDS12  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write;-n = value after reset  
91. Register 2Fh Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
IN_16CH_ADC9  
0h  
Selects the input pair sampled by ADC9 in 16-input mode.  
0 = ADC9 samples the signal on INP17, INM17  
1 = ADC9 samples the signal on INP18, INM18  
10  
9
IN_16CH_ADC10  
IN_16CH_ADC11  
IN_16CH_ADC12  
PAT_LVDS11[2:0]  
PAT_LVDS12[2:0]  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
Selects the input pair sampled by ADC10 in 16-input mode.  
0 = ADC10 samples the signal on INP19, INM19  
1 = ADC10 samples the signal on INP20, INM20  
Selects the input pair sampled by ADC11 in 16-input mode.  
0 = ADC11 samples the signal on INP21, INM21  
1 = ADC11 samples the signal on INP22, INM22  
8
Selects the input pair sampled by ADC12 in 16-input mode.  
0 = ADC12 samples the signal on INP23, INM23  
1 = ADC12 samples the signal on INP24, INM24  
7-5  
4-2  
1-0  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 11 can be programmed with these  
bits; see33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 12 can be programmed with these  
bits; see33 for bit descriptions.  
Must write 0  
124  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.43 Register 30h (address = 30h)  
139. Register 30h  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
ADC12  
PDN_DIG_  
ADC11  
PDN_DIG_  
ADC10  
PDN_DIG_  
ADC9  
PDN_  
LVDS12  
PDN_  
LVDS11  
PDN_  
LVDS10  
PDN_  
LVDS9  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
ADC12  
PDN_ANA_  
ADC11  
PDN_ANA_  
ADC10  
PDN_ANA_  
ADC9  
INVERT_  
LVDS12  
INVERT_  
LVDS11  
INVERT_  
LVDS10  
INVERT_  
LVDS9  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; = value after reset  
92. Register 30h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_ADC12  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC12  
14  
13  
12  
11  
10  
9
PDN_DIG_ADC11  
PDN_DIG_ADC10  
PDN_DIG_ADC9  
PDN_LVDS12  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC11  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC10  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC9  
0 = Normal operation (default)  
1 = Powers down LVDS output line 12  
PDN_LVDS11  
0 = Normal operation (default)  
1 = Powers down LVDS output line 11  
PDN_LVDS10  
0 = Normal operation (default)  
1 = Powers down LVDS output line 10  
8
PDN_LVDS9  
0 = Normal operation (default)  
1 = Powers down LVDS output line 9  
7
PDN_ANA_ADC12  
PDN_ANA_ADC11  
PDN_ANA_ADC10  
PDN_ANA_ADC9  
INVERT_LVDS12  
0 = Normal operation (default)  
1 = Powers down the analog block for ADC12  
6
0 = Normal operation (default)  
1 = Powers down the analog block for ADC11  
5
0 = Normal operation (default)  
1 = Powers down the analog block for ADC10  
4
0 = Normal operation (default)  
1 = Powers down the analog block for ADC9  
3
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 12. Has no effect  
on Test patterns.  
2
1
0
INVERT_LVDS11  
INVERT_LVDS10  
INVERT_LVDS9  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 11. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 10. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 9. Has no effect  
on Test patterns.  
版权 © 2015–2018, Texas Instruments Incorporated  
125  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.44 Register 31h (address = 31h)  
140. Register 31h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC13o  
R/W-0h  
OFFSET_ADC13o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC13o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
93. Register 31h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC13o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC13 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC13o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC13 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.45 Register 32h (address = 32h)  
141. Register 32h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC13e  
R/W-0h  
OFFSET_ADC13e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC13e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
94. Register 32h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC13e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC13 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC13e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC13  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
126  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.46 Register 33h (address = 33h)  
142. Register 33h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC14o  
R/W-0h  
OFFSET_ADC14o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC14o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
95. Register 33h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC14o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC14 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC14o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC14 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.47 Register 34h (address = 34h)  
143. Register 34h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC14e  
R/W-0h  
OFFSET_ADC14e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC14e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
96. Register 34h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC14e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC14 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC14e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC14  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
127  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.48 Register 35h (address = 35h)  
144. Register 35h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC15o  
R/W-0h  
OFFSET_ADC15o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC15o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
97. Register 35h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC15o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC15 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC15o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC15 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.49 Register 36h (address = 36h)  
145. Register 36h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC15e  
R/W-0h  
OFFSET_ADC15e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC15e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
98. Register 36h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC15e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC15 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC15e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC15  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
128  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.50 Register 37h (address = 37h)  
146. Register 37h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC16o  
R/W-0h  
OFFSET_ADC16o  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC16o  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
99. Register 37h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC16o  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the odd sample of ADC16 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC16o  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the odd sample of ADC16 can  
be obtained with this 10-bit register. The offset value is in twos  
complement format and its LSB corresponds to a 14-bit LSB.  
12.1.1.51 Register 38h (address = 38h)  
147. Register 38h  
15  
7
14  
6
13  
12  
11  
10  
0
9
8
GAIN_ADC16e  
R/W-0h  
OFFSET_ADC16e  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
OFFSET_ADC16e  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
100. Register 38h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_ADC16e  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, the  
digital gain value for the even sample of ADC16 can be obtained  
with this register. For a value of N (decimal equivalent of binary)  
written to these bits, the digital gain gets set to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_ADC16e  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1, the  
offset value to be subtracted from the even sample of ADC16  
can be obtained with this 10-bit register. The offset value is in  
twos complement format and its LSB corresponds to a 14-bit  
LSB.  
版权 © 2015–2018, Texas Instruments Incorporated  
129  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.52 Register 39h (address = 39h)  
148. Register 39h  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS13  
PAT_PRBS_  
LVDS14  
PAT_PRBS_  
LVDS15  
PAT_PRBS_  
LVDS16  
PAT_LVDS13  
PAT_LVDS14  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
ADC13-16  
PAT_LVDS14  
R/W-0h  
0
HPF_CORNER_ADC13-16  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
101. Register 39h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS13  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 13 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
14  
13  
PAT_PRBS_LVDS14  
PAT_PRBS_LVDS15  
PAT_PRBS_LVDS16  
PAT_LVDS13[2:0]  
PAT_LVDS14[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 14 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 15 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the PRBS pattern on LVDS output 16 can be enabled with this  
bit; see the LVDS Test Pattern Mode section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 13 can be programmed with these  
bits; see 33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 14 can be programmed with these  
bits; see 33 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_ADC13-16  
When the DIG_HPF_EN_CH13-16 bit is set to 1, the digital HPF  
characteristic for the corresponding ADCs can be programmed  
by setting the value of k with these bits.  
The value of k can be from 2 to 10 (0010b to 1010b); see the  
Digital HPF section for further details.  
0
DIG_HPF_EN_ADC13-16  
R/W  
0h  
0 = Digital HPF disabled for ADCs 13 to 16 (default)  
1 = Enables digital HPF for ADCs 13 to 16  
130  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.53 Register 3Bh (address = 3Bh)  
149. Register 3Bh  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
IN_16CH_  
ADC13  
IN_16CH_  
ADC14  
IN_16CH_  
ADC15  
IN_16CH_  
ADC16  
R/W-0h  
7
R/W-0h  
R/W-0h  
5
R/W-0h  
4
R/W-0h  
R/W-0h  
2
R/W-0h  
R/W-0h  
6
3
1
0
0
0
PAT_LVDS15  
R/W-0h  
PAT_LVDS16  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
102. Register 3Bh Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
IN_16CH_ADC13  
0h  
Selects the input pair sampled by ADC13 in 16-input mode.  
0 = ADC13 samples the signal on INP25, INM25  
1 = ADC13 samples the signal on INP26, INM26  
10  
9
IN_16CH_ADC14  
IN_16CH_ADC15  
IN_16CH_ADC16  
PAT_LVDS15[2:0]  
PAT_LVDS16[2:0]  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
Selects the input pair sampled by ADC14 in 16-input mode.  
0 = ADC14 samples the signal on INP27, INM27  
1 = ADC14 samples the signal on INP28, INM28  
Selects the input pair sampled by ADC15 in 16-input mode.  
0 = ADC15 samples the signal on INP29, INM29  
1 = ADC15 samples the signal on INP30, INM30  
8
Selects the input pair sampled by ADC16 in 16-input mode.  
0 = ADC16 samples the signal on INP31, INM31  
1 = ADC16 samples the signal on INP32, INM32  
7-5  
4-2  
1-0  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 15 can be programmed with these  
bits; see 33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
the pattern on LVDS output 16 can be programmed with these  
bits; see 33 for bit descriptions.  
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
131  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.1.1.54 Register 3Ch (address = 3Ch)  
150. Register 3Ch  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
ADC16  
PDN_DIG_  
ADC15  
PDN_DIG_  
ADC14  
PDN_DIG_  
PDN_LVDS16 PDN_LVDS15 PDN_LVDS14 PDN_LVDS13  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
ADC16  
PDN_ANA_  
ADC15  
PDN_ANA_  
ADC14  
PDN_ANA_  
ADC13  
INVERT_  
LVDS16  
INVERT_  
LVDS15  
INVERT_  
LVDS14  
INVERT_  
LVDS13  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
103. Register 3Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_ADC16  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC16  
14  
13  
12  
11  
10  
9
PDN_DIG_ADC15  
PDN_DIG_ADC14  
PDN_DIG_ADC13  
PDN_LVDS16  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC15  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC14  
0 = Normal operation (default)  
1 = Powers down the digital block for ADC13  
0 = Normal operation (default)  
1 = Powers down LVDS output line 16  
PDN_LVDS15  
0 = Normal operation (default)  
1 = Powers down LVDS output line 15  
PDN_LVDS14  
0 = Normal operation (default)  
1 = Powers down LVDS output line 14  
8
PDN_LVDS13  
0 = Normal operation (default)  
1 = Powers down LVDS output line 13  
7
PDN_ANA_ADC16  
PDN_ANA_ADC15  
PDN_ANA_ADC14  
PDN_ANA_ADC13  
INVERT_LVDS16  
0 = Normal operation (default)  
1 = Powers down the analog block for ADC16  
6
0 = Normal operation (default)  
1 = Powers down the analog block for ADC15  
5
0 = Normal operation (default)  
1 = Powers down the analog block for ADC14  
4
0 = Normal operation (default)  
1 = Powers down the analog block for ADC13  
3
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 16. Has no effect  
on Test patterns.  
2
1
0
INVERT_LVDS15  
INVERT_LVDS14  
INVERT_LVDS13  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 15. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 14. Has no effect  
on Test patterns.  
0 = Normal operation (default)  
1 = Inverts ADC data sent on LVDS output line 13. Has no effect  
on Test patterns.  
132  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.1.1.55 Register 43h (address = 43h)  
151. Register 43h  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
1
0
0
LVDS_DCLK_DELAY_PROG  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
104. Register 43h Field Descriptions  
Bit  
15-5  
4-1  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LVDS_DCLK_DELAY_PROG  
0h  
The LVDS DCLK output delay is programmable with 110-ps  
steps. Delay values are in twos complement format. Increasing  
the positive delay increases setup time and reduces hold time,  
and vice-versa for the negative delay.  
0000 = No delay  
0001 = 110 ps  
0010 = 220 ps  
1110 = –220 ps  
1111 = –110ps  
0
0
R/W  
0h  
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
133  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2 JESD Serial Interface Registers  
This section discusses the JESD registers. A register map is available in 105.  
105. JESD Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
DECIMAL  
HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASK_TX_  
TRIG  
JESD_  
RESET1  
70  
73  
74  
46  
49  
4A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LINK_  
CONFIG_  
DIS  
IDLE_  
MODE  
LANE_  
ALIGN  
FRAME_  
ALIGN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FORCE_K  
0
0
0
TX_SYNC_  
REQ  
JESD_RES JESD_RES  
ET2  
LINK_LAYER_TESTMODES  
RELEASE_ILA  
ET3  
SING_  
CONV_  
PER_OCT  
75  
77  
80  
4B  
4D  
50  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NUM_ADC_PER_LANE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PRE_EMP  
INC_  
JESD_  
VDD  
0
0
0
0
0
0
0
81  
82  
83  
85  
51  
52  
53  
55  
DEVICE_ID  
0
0
0
BANK_ID  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SCR_EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
K_VALUE_TO_FORCE  
0
JESD_SUBCLASS  
JESD_VER  
0
0
EN_  
EN_  
EN_  
EN_  
ENABLE_  
JESD_VER  
_CONTROL  
EN_LANE_ EN_LANE_ EN_LANE_ EN_LANE_  
CHECK  
SUM_  
LANE1  
CHECK  
SUM_  
LANE2  
CHECK  
SUM_  
LANE3  
CHECK  
SUM_  
LANE4  
115(2)  
73  
0
0
0
0
ID1  
ID2  
ID3  
ID4  
116(2)  
117(2)  
118(2)  
119(2)  
74  
75  
76  
77  
CHECK_SUM1  
CHECK_SUM3  
CHECK_SUM2  
CHECK_SUM4  
0
0
0
0
0
0
LANE_ID1  
LANE_ID3  
0
0
0
0
0
0
LANE_ID2  
LANE_ID4  
FORCE_  
LMFC_  
COUNT  
120  
78  
86  
LMFC_COUNTER_INIT_VALUE  
EN_  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN_  
EN_  
EN_  
EN_LANE_ EN_LANE_ EN_LANE_ EN_LANE_  
CHECK  
SUM_  
CHECK  
SUM_  
LANE6  
CHECK  
SUM_  
LANE7  
CHECK  
SUM_  
LANE8  
134(2)  
ID5  
ID6  
ID7  
ID8  
LANE5  
135(2)  
136(2)  
137(2)  
138(2)  
87  
88  
89  
8A  
CHECK_SUM5  
CHECK_SUM7  
CHECK_SUM6  
CHECK_SUM8  
0
0
0
0
0
0
LANE_ID5  
LANE_ID7  
0
0
0
0
0
0
LANE_ID6  
LANE_ID8  
(1) Default value of all registers is 0.  
(2) These registers must only be written to after setting the JESD_WR_SEL register bit (register 3, bit 5) to 1. To write any other registers, set the JESD_WR_SEL bit to 0.  
134  
版权 © 2015–2018, Texas Instruments Incorporated  
 
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1 Description of JESD Serial Interface Registers  
12.2.1.1 Register 70 (address = 46h)  
152. Register 70  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
MASK_TX_  
TRIG  
JESD_RESET1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
106. Register 70 Field Descriptions  
Bit  
15-3  
2
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
MASK_TX_TRIG  
0h  
0 = TX_TRIG affects internal clock-phase resets  
1 = TX_TRIG does not affect internal clock-phase resets  
1
JESD_RESET1  
R/W  
0h  
0 = SYNC~ and SYSREF events reset non-JESD blocks (such  
as the clock dividers, demodulator, and test pattern generator)  
1 = SYNC~ and SYSREF events do not reset non-JESD blocks  
(such as the clock dividers, demodulator, and test pattern  
generator)  
0
0
R/W  
0h  
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
135  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.2 Register 73 (address = 49h)  
153. Register 73  
15  
14  
0
13  
0
12  
11  
10  
9
0
8
0
LINK_CONFIG  
_DIS  
IDLE_MODE  
R/W-0h  
LANE_ALIGN FRAME_ALIGN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
FORCE_K  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
107. Register 73 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
IDLE_MODE  
R/W  
0h  
0 = Idle mode disabled (normal operation)  
1 = Device sends a continuous pattern (BC50h) on all lanes  
Must write 0  
14-13  
12  
0
R/W  
R/W  
0h  
0h  
LANE_ALIGN  
0 = Character replacement disabled. Data are sent without  
inserting a lane alignment control character.  
1 = If the last octet of the multiframe is the same as the last  
octet of the previous multiframe, then the last octet is replaced  
with a /K28.3/ character that can be used by the receiver for  
lane alignment monitoring and correction; see the JESD204B  
document., section 5.3.3.4 for details.  
11  
10  
FRAME_ALIGN  
R/W  
R/W  
0h  
0h  
0 = Character replacement is disabled. Data are sent without  
inserting a frame alignment control character.  
1 = If the last octet of the frame is the same as the last octet of  
the previous frame, then the octet is replaced with /K28.7/.  
Character replacement is not performed if a control character  
was already sent in the previous frame; see the JESD204B  
document., section 5.3.3.4 for details.  
LINK_CONFIG_DIS  
0 = ILA transmission enabled. The initial lane alignment data are  
sent, as per section 5.3.3.5 and 8.3 of the JESD204B document.  
1 = ILA transmission disabled. The device starts sending  
payload data immediately after the code group synchronization.  
9-3  
2
0
R/W  
R/W  
0h  
0h  
Must write 0  
FORCE_K  
0 = Value of K (number of frames per multiframe) minus 1 is  
automatically calculated and set  
1 = Value of K (number of frames per multiframe) minus 1 is set  
by the K_VALUE_TO_FORCE register setting  
1-0  
0
R/W  
0h  
Must write 0  
136  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1.3 Register 74 (address = 4Ah)  
154. Register 74  
15  
14  
13  
12  
11  
10  
9
0
8
TX_SYNC_  
REQ  
LINK_LAYER_TESTMODES  
RELEASE_ILA  
R/W-0h  
JESD_RESET2  
R/W-0h  
R/W-0h  
6
R/W-0h  
R/W-0h  
7
5
0
4
0
3
0
2
0
1
0
0
0
JESD_RESET3  
R/W-0h  
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
108. Register 74 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
LINK_LAYER_TESTMODES  
R/W  
0h  
000 = Normal operation  
001 = D21.5 (1010101010) is transmitted on all lanes  
010 = /K28.5/ is transmitted on all lanes  
011 = ILA sequence is continuously transmitted on all lanes  
100 = Pseudo-random pattern of 120 bits is transmitted on all  
lanes  
All other combinations are invalid.  
12  
TX_SYNC_REQ  
RELEASE_ILA  
R/W  
R/W  
0h  
0h  
0 = Sync reinitialization request disabled (normal operation)  
1 = A stream of /K28.5/ symbols are transmitted, requesting link  
reinitialization. After transmission, the /K28.5/ characters enter  
into a link initialization state; see section 5.3.3.7 of the  
JESD204B document for further details.  
11-10  
000 = Default value  
The value of this register determines the LMFC edge that the  
transmitter enters in the ILA phase from the code group  
synchronization. This setting is useful for adjusting the  
deterministic latency value; see the Data Link Layer section.  
9
8
0
R/W  
R/W  
0h  
0h  
Must write 0  
JESD_RESET2  
0 = SYNC~ and SYSREF events reset the phase of JESD and  
non-JESD blocks (demodulator, test pattern generator, and  
clock dividers)  
1 = SYNC~ and SYSREF events do not reset the phase of  
JESD block and clock dividers but do reset the phase of the  
demodulator and test pattern generator  
7
JESD_RESET3  
R/W  
R/W  
0h  
0h  
0 = SYNC~ and SYSREF events reset the phase of JESD and  
non-JESD blocks (demodulator, test pattern generator, and  
clock dividers)  
1 = Immediately after setting this bit to 1, the first SYNC~ and  
SYSREF event resets the phase of the JESD and non-JESD  
blocks. Subsequent SYNC~ and SYSREF events do not reset  
the phase of the JESD block and clock dividers but do reset the  
phase of the demodulator and test pattern generator.  
6-0  
0
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
137  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.4 Register 75 (address = 4Bh)  
155. Register 75  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
SING_CONV_  
PER_OCT  
R/W-0h  
7
R/W-0h  
R/W-0h  
5
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
6
4
0
3
0
2
0
1
0
0
0
NUM_ADC_PER_LANE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
109. Register 75 Field Descriptions  
Bit  
15-9  
8
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
SING_CONV_PER_OCT  
0h  
0 = Data are packed efficiently and transmitted over the link  
1 = Each ADC data are packed in two octets [that is, each ADC  
data are transmitted as 16 bits (12-, 14-, and 16-bit mode) by  
the appropriate zero padding]; see the User Data Format section  
for further details.  
7-5  
NUM_ADC_PER_LANE  
R/W  
0h  
000 = Four ADCs per lane mode: data from four ADCs are  
packed into a lane. Four lanes are active and four lanes are  
powered down.  
001 = Eight ADCs per lane mode: data from eight ADCs are  
packed into a lane. Two lanes are active and six lanes are  
powered down.  
100 = Two ADCs per lane mode: data from two ADCs are  
packed into a lane. All eight lanes are active.  
All other settings are invalid.  
4-0  
0
R/W  
0h  
Must write 0  
138  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1.5 Register 77 (address = 4Dh)  
156. Register 77  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
0
2
0
1
0
0
0
PRE_EMP  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
110. Register 77 Field Descriptions  
Bit  
15-8  
7-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PRE_EMP  
0h  
The extra current during pre-emphasis is equal to the decimal  
equivalent of the programmed value multiplied by 0.25 mA. A  
value corresponding to 0 refers to no pre-emphasis.  
3-0  
0
R/W  
0h  
Must write 0  
12.2.1.6 Register 80 (address = 50h)  
157. Register 80  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
INC_JESD_  
VDD  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
111. Register 80 Field Descriptions  
Bit  
15-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
INC_JESD_VDD  
0h  
0 = Default value for the internal LDO driving the JESD PLL  
1 = Increased value for the internal LDO driving the JESD PLL  
0
0
R/W  
0h  
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
139  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.7 Register 81 (address = 51h)  
158. Register 81  
15  
14  
13  
12  
11  
10  
9
1
8
0
DEVICE_ID  
R/W-0h  
7
0
6
0
5
0
4
3
2
BANK_ID  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
112. Register 81 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
DEVICE_ID  
0
These bits force the device ID value.  
Must write 0  
0h  
4-0  
BANK_ID  
0h  
These bits force the bank ID value.  
12.2.1.8 Register 82 (address = 52h)  
159. Register 82  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
SCR_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
113. Register 82 Field Descriptions  
Bit  
15-8  
7
Field  
0
Type  
R/W  
R/W  
Reset  
0h  
Description  
Must write 0  
SCR_EN  
0h  
0 = Scrambler disabled  
1 = Scrambler enabled; see the Scrambler section for further  
details  
6-0  
0
R/W  
0h  
Must write 0  
140  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1.9 Register 83 (address = 53h)  
160. Register 83  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
1
0
K_VALUE_TO_FORCE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
114. Register 83 Field Descriptions  
Bit  
15-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
K_VALUE_TO_FORCE  
0h  
Specifies the value of K (number of frames per multiframe)  
minus 1 to be forced when the FORCE_K bit is set to 1.  
12.2.1.10 Register 85 (address = 55h)  
161. Register 85  
15  
7
14  
13  
5
12  
0
11  
0
10  
0
9
0
8
0
JESD_SUBCLASS  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
6
4
0
3
0
2
0
1
0
0
0
JESD_VER  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
115. Register 85 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
JESD_SUBCLASS  
R/W  
0h  
000 = Subclass 0  
001 = Subclass 1  
010 = subclass 2  
See the JESD Version and Subclass section for further details.  
12-8  
7-5  
0
R/W  
R/W  
0h  
0h  
Must write 0  
JESD_VER  
000 = JESD204A  
001 = JESD204B  
See the JESD Version and Subclass section for further details.  
4-0  
0
R/W  
0h  
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
141  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.11 Register 115 (address = 73h)  
162. Register 115  
15  
14  
13  
12  
11  
10  
9
8
EN_  
EN_  
CHECKSUM_  
LANE2  
EN_  
CHECKSUM_  
LANE3  
EN_  
CHECKSUM_  
LANE4  
EN_LANE_ID1 EN_LANE_ID2 EN_LANE_ID3 EN_LANE_ID4 CHECKSUM_  
LANE1  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
ENABLE_JESD  
_VER_  
0
0
0
0
0
0
0
CONTROL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
116. Register 115 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
EN_LANE_ID1  
R/W  
0h  
0 = Lane 1 default ID (00001) is set  
1 = Lane 1 default ID (00001) can be forced with register 118,  
bits 12-8  
14  
13  
12  
11  
10  
9
EN_LANE_ID2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Lane 2 default ID (00010) is set  
1 = Lane 2 default ID (00010) can be forced with register 118,  
bits 4-0  
EN_LANE_ID3  
0 = Lane 3 default ID (00011) is set  
1 = Lane 3 default ID (00011) can be forced with register 119,  
bits 12-8  
EN_LANE_ID4  
0 = Lane 4 default ID (00100) is set  
1 = Lane 4 default ID (00100) can be forced with register 119,  
bits 4-0  
EN_CHECKSUM_LANE1  
EN_CHECKSUM_LANE2  
EN_CHECKSUM_LANE3  
EN_CHECKSUM_LANE4  
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) is forced from register  
116, bits 15-8  
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) is forced from register  
116, bits 7-0  
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) is forced from register  
117, bits 15-8  
8
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) is forced from register  
117, bits 7-0  
7-5  
4
0
R/W  
R/W  
0h  
0h  
Must write 0  
ENABLE_JESD_VER_CONTROL  
0 = The device is in JESD204B, subclass 1 mode  
1 = JESD version and subclass can be changed; see the 15  
section for further details.  
3-0  
0
R/W  
0h  
Must write 0  
142  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1.12 Register 116 (address = 74h)  
163. Register 116  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CHECK_SUM1  
R/W-0h  
4
3
CHECK_SUM2  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
117. Register 116 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
CHECK_SUM1  
R/W  
0h  
These bits determine the lane 1 checksum value; see register  
135.  
7-0  
CHECK_SUM2  
R/W  
0h  
These bits determine the lane 2 checksum value; see register  
135.  
12.2.1.13 Register 117 (address = 75h)  
164. Register 117  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CHECK_SUM3  
R/W-0h  
4
3
CHECK_SUM4  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
118. Register 117 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
CHECK_SUM3  
R/W  
0h  
These bits determine the lane 3 checksum value; see register  
136.  
7-0  
CHECK_SUM4  
R/W  
0h  
These bits determine the lane 4 checksum value; see register  
136.  
版权 © 2015–2018, Texas Instruments Incorporated  
143  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.14 Register 118 (address = 76h)  
165. Register 118  
15  
0
14  
0
13  
0
12  
11  
10  
9
1
8
0
LANE_ID1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
LANE_ID2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
119. Register 118 Field Descriptions  
Bit  
15-13  
12-8  
7-5  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LANE_ID1  
0
0h  
These bits determine the lane 1 ID value; see register 137.  
Must write 0  
0h  
4-0  
LANE_ID2  
0h  
These bits determine the lane 2 ID value; see register 137.  
12.2.1.15 Register 119 (address = 77h)  
166. Register 119  
15  
0
14  
0
13  
0
12  
11  
10  
9
1
8
0
LANE_ID3  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
LANE_ID4  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
120. Register 119 Field Descriptions  
Bit  
15-13  
12-8  
7-5  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LANE_ID3  
0
0h  
These bits determine the lane 3 ID value; see register 138.  
Must write 0  
0h  
4-0  
LANE_ID4  
0h  
These bits determine the lane 4 ID value; see register 138.  
144  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1.16 Register 120 (address = 78h)  
167. Register 120  
15  
14  
13  
12  
LMFC_COUNTER_INIT_VALUE  
R/W-0h  
11  
10  
9
0
8
0
FORCE_LMFC  
_COUNT  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
121. Register 120 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
FORCE_LMFC_COUNT  
R/W  
0h  
0 = Default value  
1 = The LMFC counter value is forced, as per register 120, bits  
14-10.  
14-10  
9-0  
LMFC_COUNTER_INIT_VALUE  
R/W  
R/W  
0h  
0h  
These bits specify the initial value of the LMFC counter. This  
option is useful when the multiframe size must be different than  
the default value; see the Synchronization Using SYNC~ and  
SYSREF section.  
0
Must write 0  
版权 © 2015–2018, Texas Instruments Incorporated  
145  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.17 Register 134 (address = 86h)  
168. Register 134  
15  
14  
13  
12  
11  
10  
9
8
EN_  
EN_  
CHECKSUM_  
LANE6  
EN_  
CHECKSUM_  
LANE7  
EN_  
CHECKSUM_  
LANE8  
EN_LANE_ID5 EN_LANE_ID6 EN_LANE_ID7 EN_LANE_ID8 CHECKSUM_  
LANE5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
(1) This register is valid when JESD_WR_SEL (register 3, bit 5) is 1.  
122. Register 134 Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
15  
EN_LANE_ID5  
0 = Lane 5 default ID (00101) is set  
1 = Lane 5 default ID (00101) can be forced with register 137, bits 12-8  
14  
13  
12  
11  
10  
9
EN_LANE_ID6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Lane 6 default ID (00110) is set  
1 = Lane 6 default ID (00110) can be forced with register 137, bits 4-0  
EN_LANE_ID7  
0 = Lane 7 default ID (00111) is set  
1 = Lane 7 default ID (00111) can be forced with register 138, bits 12-8  
EN_LANE_ID8  
0 = Lane 8 default ID (01000) is set  
1 = Lane 8 default ID (01000) can be forced with register 138, bits 4-0  
EN_CHECKSUM_LANE5  
EN_CHECKSUM_LANE6  
EN_CHECKSUM_LANE7  
EN_CHECKSUM_LANE8  
0
0 = Default checksum value calculated by device  
1 = Checksum value (FCHK field in 15) from register 135, bits 15-8  
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) from register 135, bits 7-0  
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) from register 135, bits 15-8  
8
0 = The default checksum value is calculated by the device  
1 = Checksum value (FCHK field in 15) from register 135, bits 7-0  
7-0  
Must write 0  
12.2.1.18 Register 135 (address = 87h)  
169. Register 135  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CHECK_SUM5  
R/W-0h  
4
3
CHECK_SUM6  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
123. Register 135 Field Descriptions  
Bit  
15-8  
7-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
CHECK_SUM5  
CHECK_SUM6  
These bits determine the lane 5 checksum value.  
These bits determine the lane 6 checksum value.  
0h  
146  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
12.2.1.19 Register 136 (address = 88h)  
170. Register 136  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CHECK_SUM7  
R/W-0h  
4
3
CHECK_SUM8  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
124. Register 136 Field Descriptions  
Bit  
15-8  
7-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
CHECK_SUM7  
CHECK_SUM8  
These bits determine the lane 7 checksum value.  
These bits determine the lane 8 checksum value.  
0h  
12.2.1.20 Register 137 (address = 89h)  
171. Register 137  
15  
0
14  
0
13  
0
12  
11  
10  
9
1
8
0
LANE_ID5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
LANE_ID6  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
125. Register 137 Field Descriptions  
Bit  
15-13  
12-8  
7-5  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LANE_ID5  
0
0h  
These bits determine the lane 5 ID value.  
Must write 0  
0h  
4-0  
LANE_ID6  
0h  
These bits determine the lane 6 ID value.  
版权 © 2015–2018, Texas Instruments Incorporated  
147  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2.1.21 Register 138 (address = 8Ah)  
172. Register 138  
15  
0
14  
0
13  
0
12  
11  
10  
9
1
8
0
LANE_ID7  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
LANE_ID8  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
126. Register 138 Field Descriptions  
Bit  
15-13  
12-8  
7-5  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LANE_ID7  
0
0h  
These bits determine the lane 7 ID value.  
Must write 0  
0h  
4-0  
LANE_ID8  
0h  
These bits determine the lane 8 ID value.  
148  
版权 © 2015–2018, Texas Instruments Incorporated  
ADS52J90  
www.ti.com.cn  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
CDCE72010 数据表》,SCAS858  
CDCM7005 数据表》,SCAS793  
LMK048X 数据表》,SNAS605  
SN74AUP1T04 数据表》,SCES800  
《高速时钟数据转换器》SLYT075  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2015–2018, Texas Instruments Incorporated  
149  
ADS52J90  
ZHCSDS3C MAY 2015REVISED APRIL 2018  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
150  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS52J90ZZE  
ACTIVE  
NFBGA  
ZZE  
198  
160  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
ADS52J90  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS52J90ZZE  
ZZE  
NFBGA  
198  
160  
10 x 16  
150  
315 135.9 7620 19.2  
13.5 10.35  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY