ADS54J66IRMP [TI]

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85;
ADS54J66IRMP
型号: ADS54J66IRMP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85

转换器 模数转换器
文件: 总87页 (文件大小:5910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS54J66  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
ADS54J66 具有集DDC 的四通道、14 位、500MSPS ADC  
1 特性  
3 说明  
• 四通道  
14 位分辨率  
• 最大时钟频率500MSPS  
• 输入带(3dB)900MHz  
• 片上抖动  
• 具有高阻抗输入的模拟输入缓冲器  
• 输出选项:  
ADS54J66 一款低功耗、高带宽、14 、  
500MSPS四通道电信接收器。ADS54J66 持  
JESD204B 串行接口每个通道上具有 1 条信道数  
据传输速率高达 10Gbps。经缓冲的模拟输入可在较宽  
频率范围内提供统一输入阻抗并最大程度地降低采样  
和保持毛刺脉冲能量。ADS54J66 以超低功耗在宽输  
入频率范围内提供出色的无杂散动态范围 (SFDR)。数  
字信号处理模块包含复混频器后接低通滤波器。低通  
滤波器具有 2 倍抽取率和 4 倍抽取率两个选项支持  
200MHz 的接收器带宽。  
Rx通过低通滤波器实2 倍抽取率  
4 倍抽取率选项  
200MHz 复杂带宽100MHz 实际带宽支持  
DPD FB500MSPS  
1.9VPP 差分满量程输入  
JESD204B 接口:  
JESD204B 接口减少了接口线路数从而实现高系统  
集成度。内部锁相环 (PLL) 会将传入的模数转换器  
(ADC) 采样时钟加倍以获得串行化各通道的 14 位数  
据时所使用的位时钟。  
– 子1 支持  
– 每ADC 一条信道速率高10Gsps  
– 专用于通道对SYNC 引脚  
• 支持多芯片同步  
72 VQFN (10mm × 10mm)  
• 主要规格:  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
ADS54J66  
VQFN (72)  
10.00mm x 10.00mm  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
– 功耗675mW/ch  
– 频谱性能未抽取)  
Digital Block  
Interleaving  
Correction  
2x  
fIN = 190MHz (IF)1dBFS ):  
INAP,  
INAM  
14-Bit  
ADC  
DAP,  
DAM  
fS  
fS  
/
4
4x  
2x  
JESD204B  
SNR69.5dBFS  
NSD-153.5dBFS/Hz  
Digital Block  
Interleaving  
Correction  
K
x
/
16  
INBP,  
INBM  
14-Bit  
ADC  
DBP,  
DBM  
fS / 8  
TRIGAB  
SFDR86dBcHD2HD3),  
93dBFSHD2HD3)  
fIN = 370 MHz IF3dBFS ):  
TRIGCD  
TRDYAB  
TRDYCD  
SYSREFP,  
SYSREFM  
SNR68.5dBFS  
CLKINP,  
CLKINM  
PLL  
x10, x20  
SYNCbAB  
SYNCbCD  
NSD-152.5dBFS/Hz  
SFDR81dBcHD2HD3),  
86dBFSHD2HD3)  
Digital Block  
Interleaving  
Correction  
INCP,  
INCM  
14-Bit  
ADC  
DCP,  
DCM  
2x  
fS / 4  
JESD204B  
4x  
2x  
Digital Block  
Interleaving  
Correction  
INDP,  
INDM  
14-Bit  
ADC  
DDP,  
DDM  
K
x fS / 16  
fS / 8  
2 应用  
Configuration  
Registers  
• 雷达和天线阵列  
• 宽带无线和数字转换器  
• 电CMTSDOCSIS 3.1 接收器  
通信测试设备  
简化版方框图  
微波接收器  
• 软件定义无线(SDR)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS745  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
Table of Contents  
7.2 Functional Block Diagram.........................................23  
7.3 Feature Description...................................................24  
7.4 Device Functional Modes..........................................25  
7.5 Programming............................................................ 34  
7.6 Register Maps...........................................................44  
8 Application Information Disclaimer.............................71  
8.1 Application Information............................................. 71  
8.2 Typical Application.................................................... 77  
8.3 Power Supply Recommendations.............................79  
8.4 Layout....................................................................... 80  
9 Device and Documentation Support............................81  
9.1 接收文档更新通知..................................................... 81  
9.2 支持资源....................................................................81  
9.3 商标...........................................................................81  
9.4 Electrostatic Discharge Caution................................81  
9.5 术语表....................................................................... 81  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 3  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................8  
6.6 AC Performance......................................................... 9  
6.7 Digital Characteristics............................................... 11  
6.8 Timing Requirements................................................12  
6.9 Typical Characteristics: General (DDC Mode-8).......14  
6.10 Typical Characteristics: Mode 2..............................21  
6.11 Typical Characteristics: Mode 0.............................. 22  
7 Detailed Description......................................................23  
7.1 Overview...................................................................23  
Information.................................................................... 81  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2015) to Revision B (January 2023)  
Page  
Changed rising to falling in the tSU_SYSREF and tH_SYSREF parameter descriptions...........................................12  
Deleted the tSU_SYSREF maximum value........................................................................................................... 12  
Added second table note to Timing Characteristics table.................................................................................12  
Added SYSREF Timing Diagram figure............................................................................................................12  
Deleted One threshold is set per channel pair A, B, and C, D. from Overrange Indication section..................32  
Added note to Overrange Indication section.....................................................................................................32  
Changed FFh to 0Fh in 7-8 .........................................................................................................................32  
Deleted 5th row (LMFS = 2881) from 7-13 ..................................................................................................41  
Deleted LMFS = 2881 section from 7-14 .................................................................................................... 41  
Changed bit 0, register 53, master page (80h) from 0 to SET SYSREF ......................................................... 45  
Added register 54 to master page registers......................................................................................................45  
Removed registers 19h to 20h from JESD Digital Page (6900h)..................................................................... 45  
Added register 17h to JESD Analog Page (6A00h)..........................................................................................45  
Changed 00h26 to 0026h in ADDRESS column and 80h to C0h in DATA column of Example Register Writes  
table..................................................................................................................................................................47  
Added 7-16, deleted legends from Register Descriptions section............................................................... 47  
Changed register description of Register 53h (address = 53h) [reset = 0h], Master Page (80h)..................... 52  
Added Register 54h (address = 54h) [reset = 0h], Master Page (80h).............................................................53  
Deleted the tables and description for registers 0x19-0x20..............................................................................64  
Changed Register 16h Field Descriptions table in Register 16h (address = 16h) [reset = 0h], JESD Analog  
Page (6A00h)....................................................................................................................................................69  
Added Register 17h (address = 17h) [reset = 0h], JESD Analog Page (6A00h)..............................................69  
Changed 6Ah to 6A00h in register title and changed description of bits 7-5 in Register 1Bh (address = 1Bh)  
[reset = 0h], JESD Analog Page (6A00h)......................................................................................................... 69  
Changed description for Step 1 in Start-Up Sequence section ....................................................................... 71  
Changed Hardware Reset Timing Diagram figure............................................................................................72  
Added SYSREF Signal section.........................................................................................................................72  
Added Idle Channel Histogram section............................................................................................................ 73  
Changed Power Supply Recommendations section ........................................................................................79  
Changes from Revision * (November 2015) to Revision A (December 2015)  
Page  
7-8: changed several comments, added rows ............................................................................................ 32  
Changed 7-13: added footnotes, changed JESD Mode and JESD Mode PLL column headers ................ 41  
Changed Serial Interface Registers figure: changed last value of JESD bank page address .........................44  
Changed Register Map table: changed ADC page registers 5Fh to 6Dh.........................................................45  
Changed description of decimation mode 0 to mode 4 in Example Register Writes section: deleted (default) ...  
47  
Changed Register 5Fh, Register 60h, and Register 61h .................................................................................55  
Changed Register 6Ch and Register 6Dh ....................................................................................................... 56  
Changed Start-Up Sequence section .............................................................................................................. 71  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
5 Pin Configuration and Functions  
NC  
NC  
1
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
NC  
2
NC  
DGND  
IOVDD  
SDIN  
3
DGND  
IOVDD  
PDN  
4
5
SCLK  
SEN  
6
RES  
7
RESET  
DVDD  
AVDD  
AVDD3V  
AVDD  
AVDD  
INAP  
DVDD  
AVDD  
AVDD3V  
SDOUT  
AVDD  
INDP  
8
9
Thermal  
Pad  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INDM  
INAM  
AVDD  
AVDD3V  
AVDD  
INCM  
AVDD  
AVDD3V  
AVDD  
INBM  
Not to scale  
5-1. RMP Package, 72-Pin VQFN  
(Top View)  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
Input, Reference  
INAM  
NUMBER  
41  
42  
37  
36  
18  
19  
14  
13  
Differential analog input pins for channel A.  
I
I
I
I
Connect INAP to AVDD and INAM to GND if unused.  
INAP  
INBM  
Differential analog input pins for channel B. Connect INBP to AVDD and INBM to GND if unused.  
INBP  
INCM  
Differential analog input pins for channel C. Connect INCP to AVDD and INCM to GND if unused.  
Differential analog input pins for channel D. Connect INDP to AVDD and INDM to GND if unused.  
INCP  
INDM  
INDP  
Clock, SYNC  
CLKINM  
CLKINP  
SYSREFM  
SYSREFP  
Control, Serial  
DAM  
28  
27  
34  
33  
I
I
Differential clock input pins for the ADC  
External sync input pins  
59  
58  
62  
61  
65  
66  
68  
69  
JESD204B Serial data output pins for channel A.  
O
O
O
O
Connect a 100 Ohm resistor across DAM and DAP if unused.  
DAP  
DBM  
JESD204B Serial data output pins for channel B. Connect a 100 Ohm resistor across DBM and DBP if  
unused.  
DBP  
DCM  
JESD204B Serial data output pins for channel C. Connect a 100 Ohm resistor across DCM and DCP if  
unused.  
DCP  
DDM  
JESD204B Serial data output pins for channel D. Connect a 100 Ohm resistor across DDM and DDP if  
unused.  
DDP  
NC  
1, 2, 22, 23, 53, 54  
Do not connect  
PDN  
50  
49  
48  
6
I/O  
Power down. Can be configured via SPI register setting.  
Reserve pin. Connect to GND  
RES  
I
RESET  
SCLK  
Hardware reset. Active high. This pin has an internal 150-kΩpulldown resistor.  
Serial interface clock input  
I
SDIN  
5
I
Serial interface data input.  
SDOUT  
SEN  
11  
7
O
I
Serial interface data output.  
Serial interface enable  
SYNCbABM  
SYNCbABP  
SYNCbCDM  
SYNCbCDP  
Power Supply  
AGND  
56  
55  
71  
72  
Synchronization input pins for JESD204B port channel A, B. Can be configured via SPI to SYNCb signal for  
all four channels. Needs external termination.  
I
I
Synchronization input pins for JESD204B port channel C, D. Can be configured via SPI to SYNCb signal for  
all four channels. Needs external termination.  
21, 26, 29, 32  
I
I
Analog ground  
9, 12, 15, 17, 20,  
25, 30, 35, 38, 40,  
43, 44, 46  
AVDD  
Analog 1.9-V power supply  
10, 16, 24, 31, 39,  
45  
AVDD3V  
I
Analog 3 V for analog buffer  
DGND  
DVDD  
IOVDD  
3, 52, 60, 63, 67  
8, 47  
I
I
I
Digital ground  
Digital 1.9-V power supply  
4, 51, 57, 64, 70  
Digital 1.15-V power supply for the JESD204B transmitter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
AVDD3V  
3.6  
0.3  
0.3  
0.3  
0.2  
0.3  
0.3  
0.3  
0.3  
AVDD  
Supply voltage range  
DVDD  
2.1  
2.1  
IOVDD  
Voltage between AGND and DGND  
INAP, INBP, INAM, INBM, INCP, INDP, INCM, INDM  
CLKINP, CLKINM  
1.4  
0.3  
V
3
AVDD + 0.3  
AVDD + 0.3  
SYSREFP, SYSREFM  
Voltage applied to input pins  
V
SCLK, SEN, SDIN, RESET, SPI_MODE,  
SYNCbABP, SYNCbABM, SYNCbCDP, SYNCbCDM,  
PDN  
2
0.2  
65  
Storage temperature, Tstg  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(2)  
MIN  
2.85  
1.8  
NOM  
MAX  
3.6  
2
UNIT  
AVDD3V  
3
1.9  
AVDD  
Supply voltage range  
DVDD  
V
1.8  
1.9  
2
IOVDD  
1.1  
1.15  
1.2  
Differential input voltage range  
Analog inputs  
1.9  
VPP  
V
Input common-mode voltage  
2.0 ± 0.025  
Input clock frequency, device clock frequency  
250  
500  
MHz  
VPP  
Input clock amplitude differential  
(VCLKP VCLKM  
Sine wave, ac-coupled  
1.5  
1.6  
)
Clock inputs  
Temperature  
LVPECL, ac-coupled  
LVDS, ac-coupled  
0.7  
Input device clock duty cycle, default after reset  
Operating free-air, TA  
45%  
50%  
55%  
85  
40  
°C  
Operating junction, TJ  
105(1)  
125  
(1) Prolonged use above this junction temperature can increase the device failure-in-time (FIT) rate.  
(2) SYSREF must be applied for the device initialization.  
6.4 Thermal Information  
ADS54J66  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
2.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJT  
2.3  
ψJB  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS54J66  
 
 
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.5 Electrical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input for IF  
250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADC sampling rate  
Resolution  
500  
MSPS  
Bits  
14  
Power Supply  
AVDD3V  
AVDD  
3-V analog supply  
2.85  
1.8  
1.8  
1.1  
3
1.9  
3.6  
2
V
V
1.9-V analog supply  
DVDD  
IOVDD  
IAVDD3V  
IAVDD  
1.9-V digital supply  
1.9  
2
V
1.15-V SERDES supply  
3-V analog supply current  
1.9-V analog supply current  
1.15  
340  
365  
1.2  
V
370-MHz, full-scale input on all four channels  
370-MHz, full-scale input on all four channels  
mA  
mA  
2x decimation (4 channels), 370 MHz, full-scale input on  
all four channels  
190  
184  
533  
2.68  
2.67  
250  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
mA  
mA  
W
DDC mode-8 (no decimation), 370 MHz,  
full-scale input on all four channels  
DDC mode-8 (no decimation), 370 MHz,  
full-scale input on all four channels  
2x decimation (4 channels), 370 MHz, full-scale input on  
all four channels  
DDC mode-8 (no decimation), 370 MHz,  
full-scale input on all four channels  
Global power-down power  
dissipation  
Full-scale input on all four channels  
mW  
Analog Inputs  
Differential input full-scale voltage  
1.9  
2.0  
0.5  
2.5  
900  
VPP  
V
Input common-mode voltage  
Differential input resistance  
Differential input capacitance  
Analog input bandwidth (3 dB)  
At fIN = 370 MHz  
At fIN = 370 MHz  
kΩ  
pF  
MHz  
Isolation  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 270 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 270 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
105  
104  
96  
Crosstalk(1) isolation between near  
channels  
(channels A and B are near to each  
other, channels C and D are near  
to each other)  
dBFS  
97  
93  
85  
110  
107  
96  
Crosstalk(1) isolation between far  
channels  
(channels A and B, and channels C  
and D are far channels)  
dBFS  
97  
95  
94  
Clock Input  
CLKINP and CLKINM pins are connected to internal  
biasing voltage through 400 Ω  
Internal clock biasing  
1.15  
V
(1) Crosstalk is measured with a 1-dBFS input signal on aggressor channel and no input on the victim channel.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.6 AC Performance  
over operating free-air temperature range (unless otherwise noted)  
NO DECIMATION,  
500-MSPS OUTPUT  
(DDC Mode 8)  
DECIMATE-BY-2,  
250-MSPS OUTPUT  
(DDC Mode 2)  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
70.8  
70.5  
69.5  
70.3  
69  
MAX  
MIN  
TYP  
74.1  
74  
MAX  
fIN = 10 MHz  
fIN = 70 MHz  
73.2  
73.6  
72.6  
72  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
65.6  
64.6  
SNR  
Signal-to-noise ratio  
dBFS  
fIN = 350 MHz  
68.7  
68.4  
67.5  
154.8  
154.5  
153.5  
154.3  
153  
152.7  
152.4  
151.5  
70.7  
70.4  
69.4  
70.2  
68.9  
68.6  
68.2  
66.9  
89  
fIN = 370 MHz  
71.5  
70.7  
155.1  
155  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
154.2  
154.6  
153.6  
153  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
149.6  
148.6  
NSD  
Noise spectral density  
dBFS/Hz  
dBFS  
dBc  
fIN = 350 MHz  
fIN = 370 MHz  
152.5  
151.7  
73.9  
73.9  
73.1  
73.5  
72.5  
71.7  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
Signal-to-noise and  
distortion ratio  
SINAD  
SFDR  
HD2  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
69.7  
88  
fIN = 10 MHz  
fIN = 70 MHz  
87  
95  
86  
97  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
78  
75  
88  
96  
Spurious-free dynamic  
range  
82  
94  
fIN = 350 MHz  
82  
82  
fIN = 370 MHz  
81  
fIN = 470 MHz  
73  
74  
91  
fIN = 10 MHz  
89  
fIN = 70 MHz  
94  
103  
101  
101  
97  
86  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
78  
75  
88  
Second-order harmonic  
distortion  
dBc  
82  
fIN = 350 MHz  
82  
82  
fIN = 370 MHz  
81  
fIN = 470 MHz  
73  
74  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.6 AC Performance (continued)  
over operating free-air temperature range (unless otherwise noted)  
NO DECIMATION,  
500-MSPS OUTPUT  
(DDC Mode 8)  
DECIMATE-BY-2,  
250-MSPS OUTPUT  
(DDC Mode 2)  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
93  
87  
98  
97  
95  
90  
85  
83  
94  
94  
93  
93  
92  
91  
90  
87  
88  
85  
85  
86  
81  
79  
78  
72  
89  
MAX  
MIN  
TYP  
88  
MAX  
fIN = 10 MHz  
fIN = 70 MHz  
99  
100  
98  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
78  
75  
Third-order harmonic  
distortion  
HD3  
dBc  
100  
96  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
83  
98  
95  
97  
96  
94  
94  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
Non  
HD2,  
HD3  
Spurious-free  
dynamic range  
(excluding HD2, HD3)  
87  
80  
dBc  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
93  
86  
92  
92  
91  
89  
82  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz, AIN = 3 dBFS  
fIN = 300 MHz  
THD  
Total harmonic distortion  
dBc  
fIN = 350 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
73  
fIN = 185 MHz, fIN = 190 MHz,  
AIN = 7 dBFS  
fIN = 365 MHz, fIN = 370 MHz,  
AIN = 7 dBFS  
82  
77  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN = 465 MHz, fIN = 470 MHz,  
AIN = 7 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.7 Digital Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 500  
MSPS, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and 1-dBFS differential input  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Inputs (RESET, SCLK, SEN, SDIN, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
0.8  
V
V
All digital inputs support 1.2-V and 1.8-V logic levels  
0.4  
SEN  
0
100  
50  
IIH  
High-level input current  
Low-level input current  
µA  
µA  
RESET, SCLK, SDIN, PDN  
SEN  
IIL  
RESET, SCLK, SDIN, PDN  
0
Digital Inputs (SYSREFP, SYSREFM, SYNCbABM, SYNCbABP, SYNCbCDM, SYNCbCDP)  
VD  
Differential input voltage  
0.35  
0.45  
1.3  
1.4  
V
V
V(CM_DIG)  
Common-mode voltage for SYSREF  
Digital Outputs (SDOUT, PDN)  
DVDD –  
VOH  
High-level output voltage  
DVDD  
V
V
0.1  
VOL  
Low-level output voltage  
0.1  
Digital Outputs (JESD204B Interface: DxP, DxM)(2)  
VOD  
VOC  
Output differential voltage  
With default swing setting  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between –  
0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
100  
mA  
100  
zos  
50  
2
Ω
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDATA, and PDN pins have a 20-kΩ(typical) internal pulldown resistor to ground, and the SEN pin has a 20-kΩ  
(typical) pull up resistor to IOVDD.  
(2) 50-Ω, single-ended external termination to IOVDD.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.8 Timing Requirements  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 500  
MSPS, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and 1-dBFS differential input  
(unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
Sample Timing Characteristics (TBD are any of these Switching Characteristics?)  
Aperture delay  
0.75  
1.6  
ns  
ps  
Aperture delay matching between two channels on the same device  
Aperture delay matching between two devices at the same temperature and supply voltage  
Aperture jitter  
±70  
±270  
135  
ps  
fS rms  
µs  
Wake-up time to valid data after coming out of global power-down  
150  
Input clock  
cycles  
Data latency(1): ADC sample to digital output  
OVR latency: ADC sample to OVR bit  
77  
44  
4
Input clock  
cycles  
Clock propagation delay: input clock rising edge cross-over to output clock rising edge cross-  
over  
tPDI  
ns  
(2)  
tSU_SYSREF  
Setup time for SYSREF, referenced to input clock falling edge  
Hold time for SYSREF, referenced to input clock falling edge  
300  
100  
ps  
ps  
(2)  
tH_SYSREF  
JESD Output Interface Timing Characteristics  
Unit interval  
100  
2.5  
400  
10  
ps  
Gbps  
ps  
Serial output data rate  
Total jitter for BER of 1E-15 and lane rate = 10 Gbps  
26  
0.75  
12  
Random jitter for BER of 1E-15 and lane rate = 10 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 10 Gbps  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times measured from 20% to 80%, differential  
output waveform, 2.5 Gbps bit rate 10 Gbps  
tR, tF  
35  
ps  
(1) Overall ADC latency = data latency + tPDI  
.
(2) SYSREF should arrive 'setup time' before the active edge of sampling clock and remain stable until 'hold time' after active edge of  
sampling clock. See 6-2.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
N+1  
N+2  
N
Sample  
tPD  
Data Latency: 77 Clock Cycles  
CLKINP  
CLKINM  
DAP, DAM  
DBP, DBM  
DCP, DCM  
DDP, DDM  
D20  
D1  
D20  
Sample N-1  
Sample N  
Sample N+1  
6-1. Latency Timing Diagram  
CLKIN  
500 MSPS  
tSU  
tHO  
tSU  
tHO  
SYSREF  
6-2. SYSREF Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D001  
D002  
fIN = 10 MHz , AIN = 1 dBFS, SNR = 71 dBFS, SFDR = 89  
fIN = 140 MHz , AIN = 1 dBFS, SNR = 70 dBFS, SFDR = 88  
dBc, SFDR = 89 dBc (non 23)  
dBc, SFDR = 91 dBc (non 23)  
6-3. FFT for 10-MHz Input Signal  
6-4. FFT for 140-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D003  
D004  
fIN = 190 MHz , AIN = 1 dBFS, SNR = 69.4 dBFS, SFDR =  
fIN = 230 MHz , AIN = 1 dBFS, SNR = 69.4 dBFS, SFDR =  
88 dBc, SFDR = 96 dBc (non 23)  
85 dBc, SFDR = 96 dBc (non 23)  
6-5. FFT for 190-MHz Input Signal  
6-6. FFT for 230-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D005  
D006  
fIN = 300 MHz , AIN = 3 dBFS, SNR = 69.4 dBFS, SFDR =  
fIN = 370 MHz , AIN = 3 dBFS, SNR = 68.4 dBFS, SFDR =  
80 dBc, SFDR = 95 dBc (non 23)  
84 dBc, SFDR = 86 dBc (non 23)  
6-7. FFT for 300-MHz Input Signal  
6-8. FFT for 370-MHz Input Signal  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8) (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D007  
D008  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD = 89 dBFS, each tone at  
fIN = 470 MHz , AIN = 3 dBFS, SNR = 67.4 dBFS, SFDR =  
73 dBc, SFDR = 80 dBc (non 23)  
7 dBFS  
6-9. FFT for 470-MHz Input Signal  
6-10. FFT for Two-Tone Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D009  
D010  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD = 103 dBFS, each tone  
fIN1 = 370 MHz, fIN2 = 365 MHz, IMD = 81.7 dBFS, each tone  
at 36 dBFS  
at 7 dBFS  
6-11. FFT for Two-Tone Input Signal  
6-12. FFT for Two-Tone Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D011  
D012  
fIN1 = 370 MHz, fIN2 = 365 MHz, IMD = 102 dBFS, each tone  
fIN1 = 470 MHz, fIN2 = 465 MHz, IMD = 76.7 dBFS, each tone  
at 36 dBFS  
at 7 dBFS  
6-13. FFT for Two-Tone Input Signal  
6-14. FFT for Two-Tone Input Signal  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8) (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
0
-88  
-90  
-20  
-92  
-40  
-94  
-60  
-96  
-98  
-80  
-100  
-102  
-104  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
-35  
-31  
-27  
-23  
Each Tone Amplitude (dBFS)  
-19  
-15  
-11  
-7  
D013  
D014  
fIN1 = 470 MHz, fIN2 = 465 MHz, IMD = 98.8 dBFS, each tone  
fIN1 = 185 MHz, fIN2 = 190 MHz  
at 36 dBFS  
6-16. Intermodulation Distortion vs Input Amplitude  
6-15. FFT for Two-Tone Input Signal  
-80  
-74  
-80  
-84  
-88  
-86  
-92  
-92  
-96  
-98  
-100  
-104  
-104  
-35  
-31  
-27  
Each Tone Amplitude (dBFS)  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
Each Tone Amplitude (dBFS)  
-23  
-19  
-15  
-11  
-7  
D015  
D016  
fIN1 = 365 MHz, fIN2 = 370 MHz  
fIN1 = 465 MHz, fIN2 = 470 MHz  
6-17. Intermodulation Distortion vs Input Amplitude  
6-18. Intermodulation Distortion vs Input Amplitude  
96  
96  
Ain = -1 dBFS  
Ain = -3 dBFS  
92  
93  
90  
87  
84  
81  
78  
88  
84  
80  
76  
72  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
D017  
D018  
6-19. Spurious-Free Dynamic Range vs Input Frequency  
6-20. IL Spur vs Input Frequency  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8) (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
71.5  
70.5  
69.5  
68.5  
67.5  
66.5  
72  
71.2  
70.4  
69.6  
68.8  
68  
AIN = -1 dBFS  
AIN = -3 dBFS  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D019  
D020  
6-21. Signal-to-Noise Ratio vs Input Frequency  
fIN = 190 MHz, AIN = 1 dBFS  
6-22. Signal-to-Noise Ratio vs AVDD Supply and Temperature  
93  
72  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
71  
70  
69  
68  
67  
66  
91  
89  
87  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D021  
D022  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 3 dBFS  
6-23. Spurious-Free Dynamic Range vs AVDD Supply and  
6-24. Signal-to-Noise Ratio vs AVDD Supply and Temperature  
Temperature  
84  
71.4  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
71  
70.6  
70.2  
69.8  
69.4  
83  
82  
81  
80  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D023  
D024  
fIN = 370 MHz, AIN = 3 dBFS  
fIN = 190 MHz, AIN = 1 dBFS  
6-25. Spurious-Free Dynamic Range vs AVDD Supply and  
6-26. Signal-to-Noise Ratio vs DVDD Supply and  
Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8) (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
92  
91  
90  
89  
88  
87  
86  
71  
70  
69  
68  
67  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D025  
D026  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 3 dBFS  
6-27. Spurious-Free Dynamic Range vs DVDD Supply and  
6-28. Signal-to-Noise Ratio vs DVDD Supply and  
Temperature  
Temperature  
84  
72.2  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
71.7  
71.2  
70.7  
70.2  
69.7  
69.2  
83  
82  
81  
80  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D027  
D028  
fIN = 370 MHz, AIN = 3 dBFS  
fIN = 190 MHz, AIN = 1 dBFS  
6-29. Spurious-Free Dynamic Range vs DVDD Supply and  
6-30. Signal-to-Noise Ratio vs AVDD3V Supply and  
Temperature  
Temperature  
92  
73  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
91  
90  
89  
88  
87  
86  
72  
71  
70  
69  
68  
67  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D029  
D030  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 3 dBFS  
6-31. Spurious-Free Dynamic Range vs AVDD3V Supply and  
6-32. Signal-to-Noise Ratio vs AVDD3V Supply and  
Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8) (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
84  
83  
82  
81  
80  
74  
72  
70  
68  
66  
64  
150  
125  
100  
75  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
50  
25  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-70  
-60  
-50  
-40 -30  
Amplitude (dBFS)  
-20  
-10  
0
D031  
D032  
fIN = 190 MHz  
6-34. Performance vs Amplitude  
fIN = 370 MHz, AIN = 3 dBFS  
6-33. Spurious-Free Dynamic Range vs AVDD3V Supply and  
Temperature  
74  
72.5  
71  
180  
150  
120  
90  
75  
73  
71  
69  
67  
65  
110  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
SFDR  
100  
90  
69.5  
68  
80  
60  
70  
66.5  
30  
65  
0
60  
-70  
-60  
-50  
-40 -30  
Amplitude (dBFS)  
-20  
-10  
0
0.2  
0.6  
1
Differential Clock Amplitude (Vpp)  
1.4  
1.8  
2.2  
D033  
D034  
fIN = 370 MHz  
6-35. Performance vs Amplitude  
fIN = 190 MHz, AIN = 1 dBFS  
6-36. Performance vs Clock Amplitude  
75  
72  
69  
66  
63  
60  
125  
100  
75  
50  
25  
0
73  
95  
90  
85  
80  
75  
70  
SNR  
SFDR  
SNR  
SFDR  
72  
71  
70  
69  
68  
0.2  
0.6  
1
Differential Clock Amplitude (Vpp)  
1.4  
1.8  
2.2  
30  
35  
40  
45  
50  
Input Clock Duty Cycle (%)  
55  
60  
65  
70  
D035  
D036  
fIN = 370 MHz, AIN = 3 dBFS  
fIN = 190 MHz, AIN = 1 dBFS  
6-38. Performance vs Clock Duty Cycle  
6-37. Performance vs Clock Amplitude  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.9 Typical Characteristics: General (DDC Mode-8) (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency =  
500 MSPS, 14-bit resolution, no decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, 1-dBFS differential input for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise  
noted)  
72  
71  
70  
69  
68  
67  
66  
65  
90  
87  
84  
81  
78  
75  
72  
69  
0
SNR  
SFDR  
-20  
-40  
-60  
-80  
-100  
-120  
30  
35  
40  
45  
Input Clock Duty Cycle (%)  
50  
55  
60  
65  
70  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D037  
D038  
fIN = 370 MHz, AIN = 3 dBFS  
6-39. Performance vs Clock Duty Cycle  
fIN = 190 MHz , AIN = 1 dBFS SFDR = 49 dBc, fPSRR = 5  
MHz, APSRR = 50 mVPP  
6-40. Power-Supply Rejection Ratio FFT for Test Signal on  
AVDD Supply  
-10  
-15  
0
-20  
PSRR with 50-mVPP Signal on AVDD  
PSRR with 50-mVPP Signal on AVDD3V  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-40  
-60  
-80  
-100  
-120  
0
50  
100  
Frequency of Signal on Supply (MHz)  
150  
200  
250  
300  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D039  
D040  
fIN = 190 MHz, AIN = 1 dBFS  
fIN = 190 MHz , AIN = 1 dBFS SFDR = 81 , fCMRR = 5 MHz,  
ACMRR = 50 mVPP  
6-41. Power-Supply Rejection Ratio vs Supplies  
6-42. Common-Mode Rejection Ratio FFT  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
4
AVDD_Power (W)  
DVDD_Power (W)  
AVDD3V_Power (W)  
IOVDD_Power (W)  
TotalPower (W)  
3.2  
2.4  
1.6  
0.8  
0
0
50  
100  
Frequency of Input Common-Mode Signal (MHz)  
150  
200  
250  
300  
250  
300  
350 400  
Sampling Speed (MSPS)  
450  
500  
D041  
D042  
6-44. Power vs Chip Clock  
fIN = 190 MHz, AIN= 1 dBFS 50-mVPP test signal on input  
common-mode  
6-43. Common-Mode Rejection Ratio  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.10 Typical Characteristics: Mode 2  
low-pass or high-pass decimation-by-2 filter selected as per input frequency; typical values are at TA = 25°C, full temperature  
range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency = 500 MSPS, 14-bit resolution, no decimation filter,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input for IF 250 MHz,  
and 3-dBFS differential input for IF > 250 MHz (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
D043  
D044  
fIN = 100 MHz, AIN = 1 dBFS, SNR = 74.1 dBFS, SFDR =  
fIN = 150 MHz, AIN = 1 dBFS, SNR = 73.8 dBFS, SFDR =  
98 dBc, SFDR = 100 dBc (non 23)  
99 dBc, SFDR = 99 dBc (non 23)  
6-45. FFT for 100-MHz Input Signal  
6-46. FFT for 150-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
D045  
D045  
fIN = 185 MHz, AIN = 1 dBFS, SNR = 73.2 dBFS, SFDR =  
fIN = 230 MHz, AIN = 1 dBFS, SNR = 72.4 dBFS, SFDR =  
98 dBc, SFDR = 98 dBc (non 23)  
91 dBc, SFDR = 98 dBc (non 23)  
6-47. FFT for 185-MHz Input Signal  
6-48. FFT for 230-MHz Input Signal  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6.11 Typical Characteristics: Mode 0  
low-pass decimation-by-2 filter selected, complex FFT plotted, mixer frequency 125 MHz; typical values are at TA = 25°C, full  
temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling frequency = 500 MSPS, 14-bit resolution, no  
decimation filter, 50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input  
for IF 250 MHz, and 3-dBFS differential input for IF > 250 MHz (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
-125  
-75  
-25 25  
Input Frequency (MHz)  
75  
125  
-125  
-75  
-25 25  
Input Frequency (MHz)  
75  
125  
D047  
D048  
fIN = 270 MHz, AIN = 3 dBFS, SNR = 69.5 dBFS, SFDR =  
fIN = 370 MHz, AIN = 3 dBFS, SNR = 68.1 dBFS, SFDR =  
83 dBc, SFDR = 87 dBc (non 23)  
82 dBc, SFDR = 82 dBc (non 23)  
6-49. FFT for 270-MHz Input Signal  
6-50. FFT for 370-MHz Input Signal  
0
-20  
-40  
-60  
-80  
-100  
-120  
-125  
-75  
-25 25  
Input Frequency (MHz)  
75  
125  
D049  
fIN = 470 MHz, AIN = 3 dBFS, SNR = 66.3 dBFS, SFDR = 75 dBc, SFDR = 75 dBc (non 23)  
6-51. FFT for 470-MHz Input Signal  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7 Detailed Description  
7.1 Overview  
The ADS54J66 is a low-power, wide-bandwidth, 14-bit, 500-MSPS, quad-channel, telecom receiver device. The  
ADS54J66 supports the JESD204B serial interface with data rates up to 10 Gbps supporting one lane per  
channel. The buffered analog input provides uniform input impedance across a wide frequency range and  
minimizes sample-and-hold glitch energy. The ADS54J66 provides excellent spurious-free dynamic range  
(SFDR) over a large input frequency range with very low power consumption. The device digital block includes a  
2x and 4x decimation low-pass filter with fS / 4 and k × fS / 16 mixers to support a receive bandwidth up to 200  
MHz for use as a Digital Pre-Distortion (DPD) observation receiver.  
The JESD204B interface reduces the number of interface lines allowing high system integration density. An  
internal phase locked loop (PLL) multiplies the incoming ADC sampling clock to derive the bit clock which is  
used to serialize the 14-bit data from each channel.  
7.2 Functional Block Diagram  
Digital Block  
Interleaving  
Correction  
2x  
INAP,  
INAM  
14-Bit  
ADC  
DAP,  
DAM  
FS / 4  
4x  
2x  
JESD204B  
Digital Block  
Interleaving  
Correction  
K x FS / 16  
INBP,  
INBM  
14-Bit  
ADC  
DBP,  
DBM  
FS / 8  
SYSREFP,  
SYSREFM  
CLKINP,  
CLKINM  
PLL  
x10/x20  
SYNCbAB  
SYNCbCD  
Digital Block  
Interleaving  
Correction  
INCP,  
INCM  
14-Bit  
ADC  
DCP, DCM  
DDP, DDM  
2x  
FS / 4  
JESD204B  
4x  
2x  
Digital Block  
Interleaving  
Correction  
INDP,  
INDM  
14-Bit  
ADC  
K x FS / 16  
FS / 8  
Configuration  
Registers  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.3 Feature Description  
7.3.1 Analog Inputs  
The ADS54J66 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source which enables great flexibility  
in the external analog filter design as well as excellent 50-matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, thus resulting in a  
more constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to 1.9 V using 600-resistors which allows  
for ac coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.475 V) and (VCM 0.475 V), resulting in a 1.9-VPP (default) differential input swing. The input sampling circuit  
has a 3-dB bandwidth that extends up to 900 MHz.  
7.3.2 Recommended Input Circuitry  
In order to achieve optimum ac performance the circuitry shown in 7-1 is recommended at the analog inputs.  
T1  
T2  
0.1 mF  
10 W  
INxP  
0.1 mF  
25 W  
25 W  
25 W  
0.1 mF  
RIN  
CIN  
3.3 pF  
25 W  
INxM  
1:1  
1:1  
10 W  
0.1 mF  
Device  
7-1. Analog Input Driving Circuit  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4 Device Functional Modes  
7.4.1 Digital Features  
The ADS54J66 supports decimation-by-2 and -4 and un-decimated output. The four channels can be configured  
as pairs (A, B and C, D; however, the same decimation factor must be chosen for all four channels).  
7-2 shows signal processing done in the digital down-conversion (DDC) block of the ADS54J66. 7-1 shows  
available modes of operation for this block.  
I Data  
Filter  
N
Real Data  
0
2
4
5
6
7
8
cos (2pnfmix2 / fS  
)
cos (2pnfmix1 / fS  
)
500-MSPS  
Data, x(n)  
Channel x  
2
To JESD  
Encoder  
Upscaled  
Zero-Padded  
Data  
sin (2pnfmix1 / fS  
)
sin (2pnfmix2 / fS  
)
N
Filter  
Q Data  
Default 14-Bit  
Mode  
Default 14-Bit Data  
Mode  
Selection  
7-2. Digital Down-Conversion Block Diagram  
7-1. Overview of Operating Modes  
BANDWIDTH  
OPERATING  
DIGITAL  
MIXER  
OUTPUT  
FORMAT  
MAX OUTPUT  
DESCRIPTION  
DECIMATION  
MODE  
RATE  
491 MSPS  
368 MSPS  
150 MHz  
75 MHz  
0
2
4
5
6
7
8
±fS / 4  
2
2
200 MHz  
100 MHz  
100 MHz  
200 MHz  
100 MHz  
100 MHz  
245.76 MHz  
Complex  
Real  
250 MSPS  
250 MSPS  
250 MSPS  
250 MSPS  
125 MSPS  
500 MSPS  
500 MSPS  
N × fS / 16  
N × fS / 16  
N × fS / 16  
N × fS / 16  
2
75 MHz  
Real  
Decimation  
2
150 MHz  
75 MHz  
Complex  
Complex  
Real  
4
2
75 MHz  
No decimation  
184.32 MHz  
Real  
7-2 shows characteristics of different blocks of DDC signal processing blocks active in different modes.  
7-2. Features of DDC Block in Different Modes  
MODE  
fmix1  
FILTER AND DECIMATION  
LPF cutoff at fS / 4, decimation-by-2  
LPF or HPF cutoff at fS / 4, decimation-by-2  
LPF cutoff at fS / 8, decimation-by-2  
LPF cutoff at fS / 8, decimation-by-2  
LPF cutoff at fS / 8, decimation-by-4  
fmix2  
OUTPUT  
0
2
4
5
6
fS / 4  
Not used  
Not used  
fS / 8  
I, Q data at 250 MSPS each are given out  
Straight 250 MSPS data are given out  
Real data at 250 MSPS are given out  
I, Q data at 250 MSPS each are given out  
I, Q data at 125 MSPS each are given out  
Not used  
k fS / 16  
k fS / 16  
k fS / 16  
Not used  
Not used  
Real data are up-scaled, zero-padded and given  
out at 500 MSPS  
7
k fS / 16  
LPF cutoff at fS8, decimation-by-2  
Not used  
fS / 8  
Default  
Not used  
Not used  
Straight 500-MSPS, 14-bit data are given out  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.2 Mode 0, Decimation-by-2 with IQ Outputs for up to 220 MHz of IQ Bandwidth  
In this configuration, the DDC block includes a fixed frequency ±fS / 4 complex digital mixer preceding the digital  
filter, so the IQ passband is approximately ±110 MHz (3 dB) centered at fS / 4. Mixing with +fS / 4 inverts the  
spectrum. The stop-band attenuation is approximately 90 dB and the pass-band flatness is ±0.1 dB. 7-3  
shows mixing operation in DDC mode 0. 7-3 shows corner frequencies of decimation filter in DDC mode 0. 图  
7-4 and 7-5 show frequency response of the filter.  
fS / 4  
IQ:  
IQ:  
500 MSPS  
500 MSPS  
250 MSPS  
14-Bit  
ADC  
2x  
fS / 4  
fS / 2  
fS / 4  
7-3. Mixing in Mode 0  
7-3. Filter Specification Details, Mode 0  
CORNERS  
0.1 dB  
0.5 dB  
1 dB  
LOW PASS  
0.204 × fS  
0.211 × fS  
0.216 × fS  
0.226 × fS  
3 dB  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-120  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.1  
0.2 0.3  
Frequency Response  
0.4  
0.5  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D052  
D053  
7-4. Frequency Response of Filter in Mode 0  
7-5. Zoomed View of Frequency Response  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.3 Mode 2, Decimation-by-2 for up to 110 MHz of Real Bandwidth  
In this configuration, the DDC block only includes a 2x decimation filter (high pass or low pass) with real outputs.  
The pass band is approximately 110 MHz (3 dB). 7-6 shows the filtering operation in DDC mode 2. 7-4  
shows corner frequencies of decimation filter in DDC mode 2. 7-7 and 7-8 show frequency response of the  
filter.  
500 MSPS  
250 MSPS  
14-Bit  
ADC  
2x  
fS / 4  
fS / 2  
fS / 4  
7-6. Filtering in Mode 2  
7-4. Filter Specification Details, Mode 2  
CORNERS  
0.1 dB  
0.5 dB  
1 dB  
LOW PASS  
0.204 × fS  
0.211 × fS  
0.216 × fS  
0.226 × fS  
HIGH PASS  
0.296 × fS  
0.290 × fS  
0.284 × fS  
0.274 × fS  
3 dB  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-120  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D056  
D057  
7-7. Frequency Response for Decimate-by-2  
7-8. Zoomed View of Frequency Response  
Low-Pass and High-Pass Filter (in Mode 2)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.4 Modes 4 and 7, Decimation-by-2 with Real Outputs for up to 110 MHz of Bandwidth  
In this configuration, the DDC block includes a selectable N × fS / 16 complex digital mixer (N from 8 to +7)  
preceding the decimation-by-2 digital filter also with an IQ passband of approximately ±55 MHz (3 dB) centered  
at N × fS / 16. A positive value for N inverts the spectrum. In addition, a fS / 8 complex digital mixer is added after  
the decimation filter transforming the output back to real format and centers the output spectrum within the  
Nyquist zone.  
In addition, the ADS54J66 supports a 0-pad feature where a sample with value = 0 is added after each sample.  
In this way the output data rate is interpolated to 500 MSPS (real) with a second image inverted at fS / 2 fIN.  
The stop-band attenuation is approximately 90 dB for in-band aliases from negative frequencies and  
approximately 55 dB for out-of-band aliases. The passband flatness is ±0.1 dB. 7-9 shows the filtering  
operation in DDC mode 4 and 7. 7-5 shows corner frequencies of decimation filter in DDC mode 4 and 7. 图  
7-10 and 7-11 show frequency response of the filter.  
fS / 8  
2nd Image  
N x fS / 16  
fS / 8  
Real:  
500 MSPS  
0 Pad  
IQ:  
500 MSPS  
500 MSPS  
IQ: 250 MSPS  
14-Bit  
ADC  
Real:  
250 MSPS  
2x  
fS / 4  
fS / 2  
Example  
:
N= -4  
fS / 8  
fS / 4  
fS / 2  
0
fS / 8  
fS / 4  
fS / 4  
7-9. Mixing and Filtering in Modes 4 and 7  
7-5. Filter Specification Details, Modes 4 and 7  
CORNERS  
0.1 dB  
0.5 dB  
1 dB  
LOW PASS  
0.102 × fS  
0.105 × fS  
0.108 × fS  
0.113 × fS  
3 dB  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-120  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D050  
D051  
7-10. Frequency Response for Decimate-by-2,  
7-11. Zoomed View of Frequency Response  
Low-Pass Filter (in Modes 4 and 7)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.5 Mode 5, Decimation-by-2 with IQ Outputs for up to 110 MHz of IQ Bandwidth  
In this configuration, the DDC block includes a selectable N × fS / 16 complex digital mixer (N from 8 to +7)  
preceding the decimation-by-2 digital filter, so the IQ passband is approximately ±55 MHz (3 dB) centered at N ×  
fS / 16. A positive value for N inverts the spectrum.  
The stop-band attenuation is approximately 90 dB for in-band aliases from negative frequencies. The pass-band  
flatness is ±0.1 dB. Figure 62 shows the filtering operation in DDC mode 5. Table 6 shows corner frequencies of  
decimation filter in DDC mode 5. Figure 63 and Figure 64 show frequency response of the filter. 7-12 shows  
the filtering operation in DDC mode 5. 7-6 shows corner frequencies of decimation filter in DDC mode 5. 图  
7-13 and 7-14 show frequency response of the filter.  
N x fS / 16  
IQ:  
500 MSPS  
IQ:  
250 MSPS  
500 MSPS  
14-Bit  
ADC  
2x  
Example:  
N = -4  
fS / 4  
fS / 2  
fS / 8  
fS / 4  
7-12. Mixing and Filtering in Mode 5  
7-6. Filter Specification Details, Mode 5  
CORNERS  
0.1 dB  
0.5 dB  
1 dB  
LOW PASS  
0.102 × fS  
0.105 × fS  
0.108 × fS  
0.113 × fS  
3 dB  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-120  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D050  
D051  
7-13. Frequency Response for Decimate-by-2,  
7-14. Zoomed View of Frequency Response  
Low-Pass Filter (In Mode 5)  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.6 Mode 6, Decimation-by-4 with IQ Outputs for up to 110 MHz of IQ Bandwidth  
In this configuration, the DDC block includes a selectable N × fS / 16 complex digital mixer (n from 8 to +7)  
preceding the decimation-by-4 digital filter, so the IQ passband is approximately ±55 MHz (3 dB) centered at N ×  
fS / 16. A positive value for N inverts the spectrum. 7-15 shows the filtering operation in DDC mode 6. 7-7  
shows corner frequencies of decimation filter in DDC mode 6. The decimation-by-4 filter is a cascade of two  
decimation-by-2 filters with frequency response shown in 7-16 and 7-17.  
The stop-band attenuation is approximately 90 dB for in-band aliases from negative frequencies and  
approximately 55 dB for out-of-band aliases. The pass-band flatness is ±0.1 dB.  
N x fS / 16  
IQ:  
500 MSPS  
IQ:  
250 MSPS  
IQ:  
125 MSPS  
500 MSPS  
14-Bit  
ADC  
2x  
2x  
Example:  
N = -6  
3 fS / 8  
fS / 4  
fS / 2  
fS / 8  
fS / 4  
7-15. Mixing and Filtering in Mode 6  
7-7. Filter Specification Details, Mode 6  
CORNERS  
0.1 dB  
0.5 dB  
1 dB  
LOW PASS  
0.102 × fS  
0.105 × fS  
0.108 × fS  
0.113 × fS  
3 dB  
20  
0
0.5  
0
-20  
-40  
-60  
-80  
-100  
-120  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D050  
D051  
7-16. Frequency Response for Decimate-by-2,  
7-17. Zoomed View of Frequency Response  
Low-Pass Filter (in Mode 6)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.7 Overrange Indication  
The ADS54J66 provides a fast overrange indication (FOVR) that can be presented in the digital output data  
stream via SPI configuration. When the FOVR indication is embedded in the output data stream, it replaces the  
LSB (normal 0) of the 16 bit going to the 8b/10b encoder as shown in 7-18.  
14-Bit Data Output  
0,  
OVR  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
16-Bit Data Going Into 8b/10b Encoder  
7-18. Timing Diagram for FOVR  
The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and it gets  
presented after just 44 input clock cycles enabling a quicker reaction to an overrange event.  
The input voltage level at which the overload is detected is referred to as the threshold. It is programmable using  
the FOVR THRESHOLD bits.  
备注  
These register bits set the OVR threshold for all channels.  
The input voltage level that fast OVR is triggered is:  
Full-scale × [the decimal value of the FOVR threshold bits] / 255)  
The default threshold is E3h (227), corresponding to a threshold of 1 dBFS.  
In terms of full-scale input, the fast OVR threshold can be calculated as shown in 方程1:  
20 × log (<FOVR Threshold> / 255).  
(1)  
7-8 is an example register write to set the FOVR threshold for all four channels.  
7-8. Register Sequence for FOVR Configuration  
ADDRESS  
DATA  
COMMENT  
11h  
80h  
Go to master page  
59h  
20h  
Set the ALWAYS WRITE 1 bit. This bit configures the  
OVR signal as fast OVR.  
11h  
0Fh  
FFh  
68h  
00h  
01h  
01h  
03h  
03h  
01h  
01h  
00h  
00h  
Go to ADC page  
5Fh  
Set FOVR threshold for all channels to 255  
4004h  
4003h  
60ABh  
70ABh  
60ADh  
70ADh  
6000h  
7000h  
6000h  
7000h  
Go to main digital page of the JESD bank  
Enable bit D0 overwrite  
Select FOVR to replace bit D0  
Pulse the IL RESET register bit. Register writes in  
main digital page take effect when the IL RESET  
register bit is pulsed.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.4.8 Power-Down Mode  
The ADS54J66 provides a highly-configurable power-down mode. Power-down can be enabled using the PDN  
pin or SPI register writes.  
A power-down mask can be configured that allows a trade-off between wake-up time and power consumption in  
power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2, as shown in  
7-9. See the master page registers in 7-15 for further details.  
7-9. Register Address for Power-Down Modes  
REGISTER  
ADDRESS  
A[7:0] (Hex)  
REGISTER DATA  
COMMENT  
7
6
5
4
3
2
1
0
MASTER PAGE (80h)  
20  
PDN ADC CHAB  
PDN ADC CHCD  
MASK 1  
21  
23  
24  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0
0
0
0
PDN ADC CHAB  
PDN ADC CHCD  
MASK 2  
CONFIG  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0
0
0
0
0
0
0
0
OVERRIDE  
PDN MASK  
26  
GLOBAL PDN  
0
PDN PIN  
SEL  
MASK  
SYSREF  
53  
55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PDN MASK  
To save power, the device can be put in complete power down by using the GLOBAL PDN register bit. However,  
when JESD link must remain up when putting the device in power down, the ADC and analog buffer can be  
powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN MASK  
register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. 7-10 shows  
power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF CHx  
register bits.  
7-10. Power Consumption in Different Power-Down Settings  
TOTAL  
IAVDD3V  
(mA)  
IAVDD  
(mA)  
IDVDD  
(mA)  
IIOVDD  
(mA)  
POWER  
(W)  
REGISTER BIT  
Default  
COMMENT  
After reset, with a full-scale input signal to  
both channels  
0.340  
0.002  
0.365  
0.006  
0.184  
0.012  
0.533  
0.181  
2.675  
0.247  
The device is in complete power-down  
state  
GBL PDN = 1  
GBL PDN = 0,  
PDN ADC CHx = 1  
(x = AB or CD)  
The ADCs of one pair of channels are  
powered down  
0.277  
0.266  
0.225  
0.361  
0.123  
0.187  
0.496  
0.527  
2.063  
2.445  
GBL PDN = 0,  
PDN BUFF CHx = 1  
(x = AB or CD)  
The input buffers of one pair of channels  
are powered down  
GBL PDN = 0,  
PDN ADC CHx = 1, PDN The ADCs and input buffers of one pair of  
0.200  
0.060  
0.224  
0.080  
0.126  
0.060  
0.492  
0.448  
1.830  
0.960  
BUFF CHx = 1  
(x = AB or CD)  
channels are powered down  
GBL PDN = 0,  
PDN ADC CHx = 1, PDN The ADCs and input buffers of all channels  
BUFF CHx = 1  
are powered down  
(x = AB and CD)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5 Programming  
7.5.1 Device Configuration  
The ADS54J66 can be configured using a serial programming interface, as described in this section. In addition,  
the device has one dedicated parallel pin (PDN) for controlling the power-down modes. The ADS54J66 supports  
a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see the 7.6.1 section) to access all  
register bits. 7-19 shows timing diagram for serial interface signals. SPI registers are grouped in two banks  
with each bank containing different pages (see 7-34).  
First 4 MSBs of 16-bit address are special bits carrying information about register bank, page and channel to be  
programmed. 7-11 lists the purpose of each special bit.  
Register Address[11:0]  
Register Data[7:0]  
SDIN  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
7-19. Serial Interface Timing Diagram  
7-11. Programing Details of Serial Interface  
SPI BITS  
DESCRIPTION  
OPTIONS  
0 = SPI write  
1 = SPI read back  
R/W  
M
Read/write bit  
0 = Analog SPI bank (master and ADC page)  
1 = Digital SPI bank (main digital, analog JESD, and  
digital JESD pages)  
SPI bank access  
JESD page selection bit  
0 = Page access  
1 = Register access  
P
0 = Channel AB  
1 = Channel CD  
By default, both channels are being addressed.  
SPI access for a specific channel of the digital SPI  
bank  
CH  
ADDR [11:0]  
DATA [7:0]  
SPI address bits  
SPI data bits  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.1.1 Details of the Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock) and SDIN (serial interface data) pins. Serially shifting bits into the  
device is enabled when SEN is low. Serial data on SDIN are latched at every SCLK rising edge when SEN is  
active (low). The interface can function with SCLK frequencies from 5 MHz down to very low speeds (of a few  
hertz) and also with a non-50% SCLK duty cycle.  
7-24 shows timing requirements for serial interface signals.  
7-12. Serial Interface Timing Requirements(1)  
MIN  
> dc  
25  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
)
20  
25  
ns  
25  
ns  
tDH  
SDATA hold time  
25  
ns  
(1) Typical values are at 25°C. Minimum and maximum values are across the full temperature range of TMIN = 40°C to TMAX = 100°C,  
AVDD3V = 3 V, AVDD = 1.9 V, and DRVDD = 1.8 V, unless otherwise noted.  
7.5.1.2 Serial Register Write: Analog Bank  
The analog SPI bank contains of two pages (the master and ADC page). The internal register of the ADS54J66  
analog SPI bank can be programmed by:  
1. Drive the SEN pin low.  
2. Initiate a serial interface cycle specifying the page address of the register whose content must be written.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Write the register content as shown in 7-20. When a page is selected, multiple writes into the same page  
can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
7-20. Serial Register Write Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.1.3 Serial Register Readout: Analog Bank  
The content from one of the two analog banks can be read out by:  
1. Drive the SEN pin low.  
2. Select the page address of the register whose content must be read.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Set the R/W bit to 1 and write the address to be read back.  
4. Read back the register content on the SDOUT pin, as shown in 7-21. When a page is selected, multiple  
read backs from the same page can be done.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
7-21. Serial Register Read Timing Diagram  
7.5.1.4 JESD Bank SPI Page Selection  
The JESD SPI bank contains five pages (main digital, interleaving engine, decimation filter, JESD digital, and  
JESD analog). The individual pages can be selected following these steps:  
1. Drive the SEN pin low.  
2. Set the M bit to 1 and specify the page with two register writes (Note: the P bit is set to 0)  
Write address 4003h with 00h (LSB byte of the page address)  
Write address 4004h MSB byte of the page address  
spacer  
Main digital page: write address = 4004h with 68h (default)  
Digital JESD page: write address = 4004h with 69h  
Analog JESD page: write address = 4004h with 6Ah  
Interleaving engine page: write address = 4004h with 61h  
Decimation filter page: write address = 4004h with 61h and 4003h with 41h  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7-22 shows the serial interface signals when pages in the JESD bank are being accessed. Note that the P bit  
is set to 0.  
Register Address[11:0]  
Register Data[7:0]  
0
1
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
7-22. SPI Timing Diagram for Accessing a Page in the JESD Bank  
7.5.1.5 Serial Register Write: Digital Bank  
The ADS54J66 is a quad-channel device and the JESD204B portion is configured individually for two channels  
(A, B and C, D) using the CH bit. Note that the P bit must be set to 1 for register writes.  
1. Drive the SEN pin low.  
2. Select the JESD bank page (Note: M bit = 1, P bit = 0)  
Write address 4003h with 00h  
Main digital page: write address = 4004h with 68h (default)  
Digital JESD page: write address = 4004h with 69h  
Analog JESD page: write address = 4004h with 6Ah  
Interleaving Engine page: write address = 4004h with 61h  
Decimation Filter page: write address = 4004h with 61h and 4003h with 41h  
3. Set the M and P bit to 1 and select channels A, B (CH = 0) or C, D (CH = 1) and write the register content.  
When a page is selected, multiple writes into the same page can be done.  
By default, register writes are applied to both channel pairs (broadcast mode). To disable broadcast mode  
and enable individual channel writes, write address 4005h with 01h (default is 00h).  
7-23 shows the serial interface signals when a register in the desired page of the JESD bank is programmed  
(note that the P bit must be set to 1 in this step).  
Register Address[11:0]  
Register Data[7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
7-23. SPI Timing Diagram for Writing a Register in the JESD Bank (After Page is Accessed)  
7.5.1.6 Individual Channel Programming  
By default, register writes are applied to both channels in a group (for example, the register writes are applied to  
channels A and B if the CH bit is 0, or the register writes are applied to channels C and D if the CH bit is 1). This  
form of programming is referred to as broadcast mode.  
For pages located in the JESD bank, the device gives flexibility to program each channel individually. To enable  
individual channel writes, write address 4005h with 01h (default is 00h).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.1.7 Serial Register Readout: JESD Bank  
SPI read out of content in one of the three digital banks can be accomplished with the following steps:  
1. Drive the SEN pin low.  
2. Select the digital bank page (Note: M bit = 1, P bit = 0)  
Write address 4003h with 00h  
Main digital page: write address = 4004h with 68h  
Digital JESD page: write address = 4004h with 69h  
Analog JESD page: write address = 4004h with 6Ah  
Interleaving engine page: write address = 4004h with 61h  
Decimation filter page: write address = 4004h with 61h and 4003h with 41h  
3. Set the R/W bit, M and P bit to 1 and select channels A, B or C, D and write the address to be read back.  
4. Read back register content on the SDOUT pin. When a page is selected, multiple read backs from the same  
page can be done.  
7-24 shows the serial interface signals when the contents of a register in the desired page of the JESD bank  
are being read-back (note that the P bit must be set to 1 in this step).  
Register Address[11:0]  
Register Data[7:0] = XX  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
7-24. Serial Register Read Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.2 JESD204B Interface  
The ADS54J66 supports device subclass 1 with a maximum output data rate of 10 Gbps for each serial  
transmitter. 7-25 shows JESD20B block inside ADS54J66.  
An external SYSREF signal is used to align all internal clock phases and the local multi frame clock to a specific  
sampling clock edge. This process allows synchronization of multiple devices in a system and minimizes timing  
and alignment uncertainty. The ADS54J66 supports single (for all four JESD links) or dual (for channel A, B and  
C, D) SYNCb inputs and can be configured via SPI as shown in 7-26.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b/10b  
Encoding  
Scrambler  
1+x14+x15  
DX  
Comma Characters  
Initial Lane Alignment  
Test Patterns  
SYNCb  
7-25. JESD Interface Block Diagram  
SYSREF  
SYNCbAB  
JESD  
204B  
JESD204B  
DA  
INA  
INB  
INC  
IND  
JESD  
204B  
JESD204B  
DB  
JESD  
204B  
JESD204B  
DC  
JESD  
204B  
JESD204B  
DD  
Sample Clock SYNCbCD  
7-26. JESD204B Transmitter Block  
Depending on the ADC sampling rate, the JESD204B output interface can be operated with one lane per  
channel. The JESD204B setup and configuration of the frame assembly parameters is controlled through the  
SPI interface.  
The JESD204B transmitter block consists of the transport layer, the data scrambler and the link layer. The  
transport layer maps the ADC output data into the selected JESD204B frame data format and manages if the  
ADC output data or test patterns are being transmitted. The link layer performs the 8b/10b data encoding as well  
as the synchronization and initial lane alignment using the SYNC input signal. Optionally, data from the transport  
layer can be scrambled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.2.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started by the receiving device by de-asserting the SYNCb signal. Upon  
detecting a logic low on the SYNC input pins, the ADS54J66 starts transmitting comma (K28.5) characters to  
establish code group synchronization as shown in 7-27.  
When synchronization is completed the receiving device re-asserts the SYNCb signal and the ADS54J66 starts  
the initial lane alignment sequence with the next local multi frame clock boundary. The ADS54J66 transmits four  
multi-frames each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNCb  
Transmit Data  
xxx  
K28.5  
K28.5  
ILA  
ILA  
DATA  
DATA  
Code Group  
Synchronization  
Initial Lane Alignment  
Data Transmission  
7-27. ILA Sequence  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.2.2 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link.  
M is the number of converters per device.  
F is the number of octets per frame clock period.  
S is the number of samples per frame.  
7-13 lists the available JESD204B formats and valid ranges for the ADS54J66. The ranges are limited by the  
Serdes line rate and the maximum ADC sample frequency.  
7-13. Available JESD204B Formats and Valid Ranges for the ADS54J66  
MAX ADC  
OUTPUT  
RATE (MSPS)  
OPERATING  
MODE  
OUTPUT  
FORMAT  
JESD  
JESD PLL  
MODE(2)  
MAX fSERDES  
(Gbps)  
L
M
F
S
DIGITAL MODE  
MODE(1)  
4
4
2
4
8
4
4
8
4
2
4
4
1
1
1
1
0,5  
2,4  
2,4  
6
2x decimation  
2x decimation  
2x decimation  
4x decimation  
Complex  
Real  
40x  
20x  
40x  
40x  
40x  
20x  
40x  
20x  
250  
250  
250  
125  
10.0  
5.0  
Real  
10.0  
5.0  
Complex  
2x decimation with 0-  
4
4
4
4
2
2
1
1
7
8
Real  
Real  
20x  
20x  
40x  
40x  
500  
500  
10.0  
10.0  
pad  
No decimation  
(1) In register 01h of the JESD digital page.  
(2) In register 16h of the JESD analog page.  
The detailed frame assembly is shown in 7-14.  
7-14. Detailed Frame Assembly  
LMFS = 4841  
LMFS = 4421  
LMFS = 4421 (0-Pad)  
DA  
DB  
DC  
DD  
0000  
A0[7:0]  
0000  
0000  
AI0[15:8] AI0[7:0] AQ0[15:8] AQ0[7:0]  
BI0[15:8] BI0[7:0] BQ0[15:8] BQ0[7:0]  
CI0[15:8] CI0[7:0] CQ0[15:8] CQ0[7:0]  
DI0[15:8] DI0[7:0] DQ0[15:8] DQ0[7:0]  
A0[15:8]  
B0[15:8]  
C0[15:8]  
D0[15:8]  
A0[7:0]  
B0[7:0]  
C0[7:0]  
D0[7:0]  
A1[15:8]  
B1[15:8]  
C1[15:8]  
D1[15:8]  
A1[7:0]  
B1[7:0]  
C1[7:0]  
D1[7:0]  
A0[15:8]  
B0[15:8]  
C0[15:8]  
D0[15:8]  
0000  
0000  
B0[7:0]  
0000  
0000  
0000  
0000  
C0[7:0]  
0000  
0000  
0000  
0000  
D0[7:0]  
0000  
0000  
0000  
LMFS = 2441  
DB  
DC  
A0[15:8]  
C0[15:8]  
A0[7:0]  
C0[7:0]  
B0[15:8]  
D0[15:8]  
B0[7:0]  
D0[7:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS54J66  
 
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.2.3 JESD Output Switch  
The ADS54J66 provides a digital cross point switch in the JESD204B block which allows internal routing of any  
output of the two ADCs within one channel pair to any of the two JESD204B serial transmitters in order to ease  
layout constraints. The cross-point switch routing is configured via SPI (address 21h in the JESD digital page, as  
shown in 7-28).  
JESD Switch  
DAP,  
ADCA  
DAM  
DBP,  
ADCB  
DBM  
JESD Switch  
DCP,  
ADCC  
DCM  
DDP,  
ADCD  
DDM  
7-28. Switching the Output Lanes  
7.5.2.3.1 SERDES Transmitter Interface  
Each of the 10 Gbps serdes transmitter outputs requires ac coupling between transmitter and receiver. The  
differential pair must be terminated with 100 Ω as close to the receiving device as possible to avoid unwanted  
reflections and signal degradation as shown in 7-29.  
0.1 mF  
DAP, DAB,  
DAC, DAP  
Rt = ZO  
Transmission Line,  
VCM  
Receiver  
Zo  
Rt = ZO  
DAM, DAB,  
DAC, DAM  
0.1 mF  
7-29. SERDES Transmitter Connection to Receiver  
7.5.2.3.2 SYNCb Interface  
The ADS54J66 supports single (either SYNCb input controls all four JESD204B links) or dual (one SYNCb input  
controls two JESD204B lanes (DA, DB and DC, DD) SYNCb control. When using single SYNCb control, connect  
the unused input to differential logic low (SYNCbxxP = 0 V, SYNCbxxM = IOVDD).  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.5.2.3.3 Eye Diagram  
7-30 to 7-33 show the serial output eye diagrams of the ADS54J66 at 5 Gbps and 10 Gbps with default  
and increased output voltage swing against the JESD204B mask.  
7-30. Eye at 5-Gbps Bit Rate with Default Output  
7-31. Eye at 5-Gbps Bit Rate with Increased  
Swing  
Output Swing  
7-33. Eye at 10-Gbps Bit Rate with Increased  
7-32. Eye at 10-Gbps Bit Rate with Default  
Output Swing  
Output Swing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6 Register Maps  
The conceptual diagram of the serial registers is shown in 7-34.  
SPI Cycle Initiated  
M, P, CH Bits Decoder  
M = 0  
M = 1  
Analog Page Selection  
JESD Bank Page Address  
Value 6800h  
Addr 18h  
Value 6100h  
Addr 00h  
Value 6141h  
Value 6900h  
Addr 12h  
Value 6A00h  
Addr 20h  
Addr 74h  
Addr 0h  
Addr 0h  
Decimation  
Filter Page  
[Signal  
Processing  
Modes 0 to 8]  
Main Digital  
Page  
[Nyquist Zone,  
OVR Select]  
JESD Analog  
Page  
[PLL Config,  
Output Swing,  
Pre-Emphasis]  
ADC Page  
[Test Patterns,  
Fast OVR]  
JESD Digital  
Page  
[JESD Config]  
IL Engine Page  
[Engine Bypass,  
DC Correction]  
Master Page  
[PDN, OVR,  
DC Coupling]  
Addr 59h  
Addr 78h  
Addr 68h  
Addr 22h  
Addr 1Bh  
Addr F7h  
Addr 02h  
7-34. Serial Interface Registers  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.1 Detailed Register Information  
The ADS54J66 contains two main SPI banks. The analog SPI bank gives access to the ADC cores and the  
digital SPI bank controls the serial interface. The analog SPI bank is divided into two pages (master and ADC)  
and the digital SPI bank is divided into five pages (main digital, interleaving engine, decimation filter, JESD  
digital, and JESD analog; see 7-34). 7-15 gives a summary of all programmable registers in the pages of  
different banks in the ADS54J66.  
7-15. Register Map  
REGISTER  
ADDRESS  
A[7:0] (Hex)  
REGISTER DATA  
7
6
5
4
3
2
1
0
GENERAL REGISTERS  
0
RESET  
0
0
0
0
0
0
0
0
0
0
RESET  
3
JESD BANK PAGE SEL [7:0]  
JESD BANK PAGE SEL [15:8]  
4
5
0
0
0
DIS BROADCAST  
11  
ANALOG PAGE SELECTION [7:0]  
MASTER PAGE (80h)  
20  
21  
23  
24  
PDN ADC CHAB  
PDN ADC CHAB  
PDN ADC CHCD  
PDN ADC CHCD  
PDN BUFFER CHCD  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
PDN BUFFER CHAB  
0
0
0
0
0
0
0
0
0
0
0
0
26  
GLOBAL PDN  
OVERRIDE PDN  
PDN MASK SEL  
0
PIN  
3A  
0
BUFFER CURR  
INCREASE  
0
0
0
0
0
0
39  
53  
54  
ALWAYS WRITE 1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CLK DIV  
MASK SYSREF  
0
SET SYSREF  
0
ENABLE  
MANUAL  
SYSREF  
55  
56  
0
0
0
0
0
0
PDN MASK  
0
0
0
0
0
0
0
0
INPUT BUFF  
CURR EN  
59  
0
0
ALWAYS WRITE 1  
0
0
0
0
0
ADC PAGE (0Fh)  
5F  
60  
61  
6C  
6D  
74  
75  
76  
77  
78  
FOVR THRESH  
PULSE BIT CHC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HD3 NYQ2 CHCD  
PULSE BIT CHD  
PULSE BIT CHA  
0
0
0
HD3 NYQ2 CHAB  
0
PULSE BIT CHB  
0
TEST PATTERN ON CHANNEL  
CUSTOM PATTERN 1 [13:6]  
CUSTOM PATTERN 1 [5:0]  
CUSTOM PATTERN 2 [13:6]  
CUSTOM PATTERN 2 [5:0]  
0
0
0
0
INTERLEAVING ENGINE PAGE (6100h)  
18  
68  
0
0
0
0
0
0
0
0
0
IL BYPASS  
0
0
DC CORR DIS  
DDC MODE  
0
DECIMATION FILTER PAGE (6141h)  
0
CHB/C FINE MIX  
CHB/C COARSE  
MIX  
1
2
0
0
0
0
0
0
DDC MODE6 EN1 ALWAYS WRITE 1 CHB/C HPF EN  
CHA/D FINE MIX  
CHA/D COARSE  
MIX  
CHA/D HPF EN  
MAIN DIGITAL PAGE (6800h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IL RESET  
0
42  
NYQUIST ZONE  
CTRL NYQUIST  
ZONE  
4E  
0
0
0
0
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7-15. Register Map (continued)  
REGISTER  
ADDRESS  
A[7:0] (Hex)  
REGISTER DATA  
7
6
5
4
3
2
1
0
AB  
F7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OVR EN  
DIG RESET  
JESD DIGITAL PAGE (6900h)  
0
1
CTRL K  
JESD MODE EN DDC MODE6 EN2 TESTMODE EN  
SYNCB SEL  
0
LANE ALIGN  
0
FRAME ALIGN  
TX LINK DIS  
SYNC REG  
SYNC REG EN  
0
DDC MODE6 EN3  
JESD MODE  
AB/CD  
LINK LAYER  
RPAT  
LMFC MASK  
RESET  
2
3
LINK LAYER TESTMODE  
0
0
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
0
RELEASE ILANE SEQ  
5
6
SCRAMBLE EN  
0
0
0
0
0
0
0
0
0
FRAMES PER MULTI FRAME (K)  
OUTPUT CHC MUX SEL  
21  
22  
OUPUT CHA MUX SEL  
OUTPUT CHB MUX SEL  
OUTPUT CHD MUX SEL  
0
0
0
0
OUT CHA INV  
OUT CHB INV  
OUT CHC INV  
OUT CHD INV  
JESD ANALOG PAGE (6A00h)  
12  
13  
SEL EMP LANE A/D  
SEL EMP LANE B/C  
0
0
0
0
16  
17  
1B  
0
0
0
0
0
0
0
0
0
0
0
0
0
JESD PLL MODE  
PLL RESET  
JESD SWING  
0
0
0
0
0
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.2 Example Register Writes  
Global power down:  
ADDRESS  
11h  
DATA  
COMMENT  
80h  
C0h  
Set master page  
0026h  
Set global power down  
Change decimation mode 0 to mode 4 adjusting both the LMFS configuration (LMFS = 4841 to 4421) as well as  
serial output data rate (10 Gbps to 5 Gbps):  
ADDRESS  
4004h  
4003h  
6000h  
6001h  
4004h  
6016h  
4004h  
4003h  
6000h  
DATA  
69h  
00h  
40h  
01h  
6Ah  
00h  
61h  
41h  
CCh  
COMMENT  
Select digital JESD page  
Enables JESD mode overwrite  
Select digital to 20x mode  
Select analog JESD page  
Set serdes PLL to 20x mode  
Select decimation filter page  
Select mode 4  
Digital mixer for channel AB set to 4 (fS / 4)  
Digital mixer for channel CD set to 4 (fS / 4)  
6002h  
0Ch  
7-16 lists the access codes for the ADS54J66 registers.  
7-16. ADS54J66 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RW  
R-W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3 Register Descriptions  
7.6.3.1 General Registers  
7.6.3.1.1 Register 0h (offset = 0h) [reset = 0h]  
7-35. Register 0h  
7
6
0
5
0
4
3
2
0
1
0
0
RESET  
R/W-0h  
0
0
RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-17. Register 0h Field Description  
Bit  
Name  
Type  
Reset  
Description  
7(1)  
RESET  
R/W  
0h  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
6-0  
0(1)  
0
W
0h  
0h  
Must write 0.  
RESET  
R/W  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
(1) Both bits (7, 0) must be set simultaneously to exercise reset.  
7.6.3.1.2 Register 3h, 4h (offset = 3h, 4h) [reset = 0h]  
7-36. Register 3h  
7
7
6
6
5
5
4
3
2
2
1
1
0
0
JESD BANK PAGE SEL [7:0]  
R/W-0h  
7-37. Register 4h  
4
3
JESD BANK PAGE SEL [16:8]  
R/W-0h  
7-18. Register 3h, 4h Field Description  
Bit  
Name  
JESD BANK PAGE SEL  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD bank.  
6100h = Interleaving engine page selected  
6141h = Decimation filter page selected  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.1.3 Register 5h (offset = 5h) [reset = 0h]  
7-38. Register 5h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
DIS BROADCAST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-19. Register 5h Field Description  
Bit  
7-1  
0
Name  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
DIS BROADCAST  
R/W  
0h  
0 = Normal operation. Channel A and B are programmed as a pair. Channel  
C and D are programmed as a pair.  
1 = channel A and B can be individually programmed based on the CH bit.  
Similarly channel C and D can be individually programmed based on the CH  
bit.  
7.6.3.1.4 Register 11h (offset = 11h) [reset = 0h]  
7-39. Register 11h  
7
6
5
4
3
2
1
0
ANALOG PAGE SELECTION [7:0]  
R/W-0h  
7-20. Register 11h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-0  
ANALOG PAGE SELECTION [7:0]  
R/W  
0h  
Register page (only one page at a time can be addressed).  
Master page = 80h  
ADC page = 0Fh  
The five digital pages (main digital, interleaving engine, analog  
JESD, digital JESD, and decimation filter) are selected via the  
M bit. See 7-11 in the 7.5.1.1 section for more details.  
7.6.3.2 Master Page (80h)  
7.6.3.2.1 Register 20h (address = 20h) [reset = 0h], Master Page (080h)  
7-40. Register 20h  
7
6
5
4
3
2
1
0
PDN ADC CHAB  
R/W-0h  
PDN ADC CHCD  
R/W-0h  
7-21. Registers 20h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
PDN ADC CHAB  
PDN ADC CHCD  
0h  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
See the 7.4.8 section for details.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.2.2 Register 21h (address = 21h) [reset = 0h], Master Page (080h)  
7-41. Register 21h  
7
6
5
4
3
2
0
1
0
0
0
PDN BUFFER CHCD  
R/W-0h  
PDN BUFFER CHAB  
R/W-0h  
0
W-0h  
R/W-0h  
R/W-0h  
W-0h  
7-22. Register 21h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0h  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
See the 7.4.8 section for details.  
3-0  
0
W
0h  
Must write 0.  
7.6.3.2.3 Register 23h (address = 23h), Master Page (080h)  
7-42. Register 23h  
7
6
5
4
3
2
1
0
PDN ADC CHAB  
R/W-0h  
PDN ADC CHCD  
W-0h  
R/W-0h  
R/W-0h  
W-0h  
7-23. Register 23h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
PDN ADC CHAB  
PDN ADC CHCD  
0h  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
See the 7.4.8 section for details.  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.2.4 Register 24h (address = 24h) [reset = 0h], Master Page (080h)  
7-43. Register 24h  
7
6
5
4
3
2
0
1
0
0
0
PDN BUFFER CHCD  
R/W-0h  
PDN BUFFER CHAB  
R/W-0h  
0
W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-24. Register 24h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
PDN BUFFER CHCD  
PDN BUFFER CHAB  
0h  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
See the 7.4.8 section for details.  
3-0  
0
W
0h  
Must write 0.  
7.6.3.2.5 Register 26h (address = 26h), Master Page (080h)  
7-25. Register 26h  
7
6
5
4
3
0
2
0
1
0
0
0
GLOBAL PDN  
R/W-0h  
OVERRIDE PDN PIN  
R/W-0h  
PDN MASK SEL  
R/W-0h  
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-26. Register 26h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL PDN  
R/W  
0h  
Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be  
programmed.  
0 = Normal operation  
1 = Global power-down via the SPI  
6
5
OVERRIDE PDN PIN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
This bit ignores the power-down pin control.  
0 = Normal operation  
1 = Ignores inputs on the power-down pin  
PDN MASK SEL  
0
This bit selects power-down mask 1 or mask 2.  
0 = Power-down mask 1  
1 = Power-down mask 2  
4-0  
Must write 0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.2.6 Register 3Ah (address = 3Ah) [reset = 0h], Master Page (80h)  
7-44. Register 3Ah  
7
0
6
5
0
4
3
0
2
0
1
0
0
0
BUFFER CURR INCREASE  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-27. Register 3Ah Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
6
0
W
0h  
Must write 0.  
BUFFER CURR INCREASE  
R/W  
0h  
0 = Normal operation  
1 = Increases AVDD3V current by 30 mA., improves HD3, helpful for  
second and third Nyquist application. Make sure that the INPUT BUF  
CUR EN regiser bit is also set to 1.  
5-0  
0
W
0h  
Must write 0.  
7.6.3.2.7 Register 39h (address = 39h) [reset = 0h], Master Page (80h)  
7-45. Register 39h  
7
6
5
0
4
3
2
0
1
0
0
0
ALWAYS WRITE 1  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-28. Register 39h Field Descriptions  
Bit  
7-6  
5-0  
Name  
Type  
R/W  
W
Reset  
Description  
ALWAYS WRITE 1  
0h  
Always set these bits to 11.  
Must write 0.  
0
0h  
7.6.3.2.8 Register 53h (address = 53h) [reset = 0h], Master Page (80h)  
7-46. Register 53h Register  
7
6
5
4
3
2
0
1
0
CLK DIV  
R/W-0h  
MASK SYSREF  
R/W-0h  
0
0
0
0
SET SYSREF  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-29. Register 53h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
CLK DIV  
R/W  
0h  
This bit configures the input clock divider.  
0 = Divide-by-4  
1 = Divide-by-2 (must be enabled for proper operation of the ADS54J66)  
6
MASK SYSREF  
R/W  
0h  
0 = Normal operation  
1 = Ignores the SYSREF input  
5-1  
0
0
W
0h  
0h  
Must write 0.  
SET SYSREF  
R/W  
0 = SYSREF signal inside device is set as 0  
1 = SYSREF signal inside device is set as 1  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.2.9 Register 54h (address = 54h) [reset = 0h], Master Page (80h)  
7-47. Register 54h Register  
7
6
0
5
4
3
2
0
1
0
0
0
ENABLE MANUAL  
SYSREF  
0
0
0
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-30. Register 54h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
ENABLE MANUAL  
SYSREF  
R/W  
0h  
This bit enables manual SYSREF using SPI when disabling the pin control.  
After setting this bit, the SET SYSREF register bit can be used to apply  
SYSREF.  
6-1  
0
W
0h  
Must write 0.  
7.6.3.2.10 Register 55h (address = 55h) [reset = 0h], Master Page (80h)  
7-48. Register 55h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
PDN MASK  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-31. Register 55h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-5  
4
0
W
0h  
Must write 0.  
PDN MASK  
R/W  
0h  
Power-down via register bit.  
0 = Normal operation  
1 = Power down enabled powering down internal blocks specified in the  
selected power-down mask  
3-0  
0
W
0h  
Must write 0.  
7.6.3.2.11 Register 56h (address = 56h) [reset = 0h], Master Page (80h)  
7-49. Register 56h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
INPUT BUFF CURR EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-32. Register 56h Field Descriptions  
Bit  
7-4  
3
Name  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
INPUT BUFF CURR EN R/W  
0h  
0 = Normal operation  
1 = Increases AVDD3V current by 30 mA., improves HD3, helpful for  
second Nyquist application. Make sure that the BUFFER CURR  
INCREASE register bit is also set to 1.  
2-0  
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.2.12 Register 59h (address = 59h) [reset = 0h], Master Page (80h)  
7-50. Register 59h  
7
0
6
0
5
4
3
0
2
0
1
0
0
0
ALWAYS WRITE 1  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-33. Register 59h Field Descriptions  
Bit  
7-6  
5
Name  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
ALWAYS WRITE 1  
0
R/W  
W
0h  
Always set this bit to 1.  
Must write 0.  
4-0  
0h  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.3 ADC Page (0Fh)  
7.6.3.3.1 Register 5Fh (address = 5Fh) [reset = 0h], ADC Page (0Fh)  
7-51. Register 5Fh  
7
6
5
4
3
2
1
0
FOVR THRESH  
R/W-0h  
7-34. Register 5Fh Field Descriptions  
Bit  
Name  
FOVR THRESH  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits control the location of FAST OVR threshold for all four channels  
together; see the 7.4.7 section.  
7.6.3.3.2 Register 60h (address = 60h) [reset = 0h], ADC Page (0Fh)  
7-52. Register 60h  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
PULSE BIT CHC  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-35. Register 60h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
PULSE BIT CHC  
R/W  
0h  
Pulse this bit to improve HD3 for 2nd Nyquist frequencies (fIN > 250 MHz) for  
channel C.(1)  
Before pulsing this bit, the HD3 NYQ2 CHCD register bit must be set to 1.  
6-0  
0
W
0h  
Must write 0.  
(1) Pulsing = set the bit to 1 and then reset to 0.  
7.6.3.3.3 Register 61h (address = 61h) [reset = 0h], ADC Page (0Fh)  
7-53. Register 61h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
HD3 NYQ2 CHCD  
R/W-0h  
PULSE BIT CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-36. Register 61h Field Descriptions  
Bit  
7-4  
3
Name  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HD3 NYQ2 CHCD  
R/W  
0h  
Set this bit to improve HD3 for 2nd Nyquist frequencies (fIN > 250 MHz) for  
channel C and D. When this bit is set, the PULSE BIT CHx register bits must  
be pulsed to obtain the improvement in corresponding channels.  
2-1  
0
0
W
0h  
0h  
Must write 0.  
PULSE BIT CHD  
R/W  
Pulse this bit to improve HD3 for 2nd Nyquist frequencies (fIN > 250 MHz) for  
channel D.(1)  
Before pulsing this bit, the HD3 NYQ2 CHCD register bit must be set to 1.  
(1) Pulsing = set the bit to 1 and then reset to 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.3.4 Register 6Ch (address = 6Ch) [reset = 0h], ADC Page (0Fh)  
7-54. Register 6Ch  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
PULSE BIT CHA  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-37. Register 6Ch Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
PULSE BIT CHA  
R/W  
0h  
Pulse this bit to improve HD3 for 2nd Nyquist frequencies (fIN > 250 MHz) for  
channel A.(1)  
Before pulsing this bit, the HD3 NYQ2 CHCAB register bit must be set to 1.  
6-0  
0
W
0h  
Must write 0.  
(1) Pulsing = set the bit to 1 and then reset to 0.  
7.6.3.3.5 Register 6Dh (address = 6Dh) [reset = 0h], ADC Page (0Fh)  
7-55. Register 6Dh  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
HD3 NYQ2 CHAB  
R/W-0h  
PULSE BIT CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-38. Register 6Dh Field Descriptions  
Bit  
7-4  
3
Name  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HD3 NYQ2 CHAB  
R/W  
0h  
Set this bit to improve HD3 for 2nd Nyquist frequencies (fIN > 250 MHz) for  
channel A and B. When this bit is set, the PULSE BIT CHx register bits must  
be pulsed to obtain the improvement in corresponding channels.  
2-1  
0
0
W
0h  
0h  
Must write 0.  
PULSE BIT CHB  
R/W  
Pulse this bit to improve HD3 for 2nd Nyquist frequencies (fIN > 250 MHz) for  
channel B.(1)  
Before pulsing this bit, the HD3 NYQ2 CHAB register bit must be set to 1.  
(1) Pulsing = set the bit to 1 and then reset to 0.  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.3.6 Register 74h (address = 74h) [reset = 0h], ADC Page (0Fh)  
7-39. Register 74h  
7
6
5
4
3
2
0
1
0
0
0
TEST PATTERN ON CHANNEL  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
7-40. Register 74h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TEST PATTERN ON CHANNEL  
R/W  
0h  
Test pattern output on channel A and B  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
0011 = Outputs toggle pattern: Output data are an alternating  
sequence of 101010101010 and 010101010101  
0100 = Output digital ramp: output data increment by one LSB  
every clock cycle from code 0 to 16384  
0110 = Single pattern: output data are custom pattern 1 (75h  
and 76h)  
0111 = Double pattern: output data alternate between custom  
pattern 1 and custom pattern 2  
1000 = Deskew pattern: output data are 2AAAh  
1001 = SYNC pattern: output data are 7FFFh  
See the 8.1.6 section for more details.  
To use the test patterns, the interleave engine must be in  
bypass and the DC correction disabled (page 6100h  
addresses 0x18 and 0x68) and the ADC must be in bypass  
mode.  
3-0  
0
W
0h  
Must write 0.  
7.6.3.3.7 Register 75h (address = 75h) [reset = 0h], ADC Page (0Fh)  
7-41. Register 75h  
7
6
5
4
3
2
1
0
CUSTOM PATTERN 1[13:6]  
R/W-0h  
7-42. Register 75h Field Descriptions  
Bit  
Name  
CUSTOM PATTERN  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the custom pattern (13-6) for all channels; see the 8.1.6  
section for more details.  
7.6.3.3.8 Register 76h (address = 76h) [reset = 0h], ADC Page (0Fh)  
7-43. Register 76h  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN 1[ 5:0]  
R/W-0h  
W-0h  
W-0h  
7-44. Register 76h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-2  
CUSTOM PATTERN  
R/W  
0h  
These bits set the custom pattern (5-0) for all channels; see the 8.1.6  
section for more details.  
1-0  
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.3.9 Register 77h (address = 77h) [reset = 0h], ADC Page (0Fh)  
7-45. Register 77h  
7
6
5
4
3
2
1
0
CUSTOM PATTERN 2[13:6]  
R/W-0h  
7-46. Register 77h Field Descriptions  
Bit  
Name  
CUSTOM PATTERN  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the custom pattern (13-6) for all channels; see the 8.1.6  
section for more details.  
7.6.3.3.10 Register 78h (address = 78h) [reset = 0h], ADC Page (0Fh)  
7-47. Register 78h  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN 2[ 5:0]  
R/W-0h  
W-0h  
W-0h  
7-48. Register 78h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-2  
CUSTOM PATTERN  
R/W  
0h  
These bits set the custom pattern (5-0) for all channels; see the 8.1.6  
section for more details.  
1-0  
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.4 Interleaving Engine Page (6100h)  
7.6.3.4.1 Register 18h (address = 18h) [reset = 0h], Interleaving Engine Page (6100h)  
7-56. Register 18h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
IL BYPASS  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-49. Register 18h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-2  
1-0  
0
W
0h  
Must write 0.  
IL BYPASS  
R/W  
0h  
These bits allow bypassing of the interleaving correction, which is to be  
used when ADC test patterns are enabled.  
00 = Interleaving correction enabled  
11 = Interleaving correction bypassed  
7.6.3.4.2 Register 68h (address = 68h) [reset = 0h], Interleaving Engine Page (6100h)  
7-57. Register 68h  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
DC CORR DIS  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-50. Register 68h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-3  
2-1  
0
W
0h  
Must write 0.  
DC CORR DIS  
R/W  
0h  
These bits enable the dc offset correction loop.  
00 = DC offset correction enabled  
11 = DC offset correction disabled  
Others = Do not use  
0
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.5 Decimation Filter Page (6141h) Registers  
7.6.3.5.1 Register 0h (address = 0h) [reset = 0h], Decimation Filter Page (6141h)  
7-58. Register 0h  
7
6
5
4
3
2
1
0
CHB/C FINE MIX  
R/W-0h  
DDC MODE  
R/W-0h  
7-51. 0h Field Descriptions  
Bit Field  
Type Reset Description  
7-4 CHB/C FINE MIX  
R/W  
0h  
These bits select fine mixing frequency for the N × fS / 16 mixer, where N is a twos  
complement number varying from 8 to 7.  
0000 = N is 0  
0001 = N is 1  
0010 = N is 2  
...  
0111 = N is 7  
1000 = N is 8  
...  
1111 = N is 1  
3-0 DDC MODE  
R/W  
0h  
These bits select DDC mode for all channels; see 7-52 for bit settings.  
7-52. DDC MODE Bit Settings  
SETTING  
000  
MODE  
DESCRIPTION  
fS / 4 mixing with decimation-by-2, complex output  
N/A  
0
001  
010  
2
Decimation-by-2, high or low pass filter, real output  
N/A  
011  
4
100  
Decimation-by-2, N × fS / 16 mixer, real output  
Decimation-by-2, N × fS / 16 mixer, complex output  
101  
5
6
Decimation-by-4, N × fS / 16 mixer, complex output. Make sure the  
DDC MODE 6 EN[3:1] register bits are also set to 111.  
110  
111  
7
8
Decimation-by-2, N × fS / 16 mixer, insert 0, real output  
No decimation, no mixing, straight 500-MSPS data output  
Do not use  
1000  
Others  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.5.2 Register 1h (address = 1h) [reset = 0h], Decimation Filter Page (6141h)  
7-59. Register 1h  
7
0
6
0
5
0
4
3
2
1
0
DDC MODE6  
EN1  
ALWAYS  
WRITE 1  
CHB/C  
COARSE MIX  
0
CHB/C HPF EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-53. Register 1h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-4  
3
0
W
0h  
Must write 0.  
DDC MODE6 EN1  
R/W  
0h  
Set this bit along with the DDC MODE6 EN2 and DDC MODE6  
EN3 register bits for proper operation of mode 6.  
0 = Default  
1 = Use for proper operation of DDC mode 6  
2
1
ALWAYS WRITE 1  
CHB/C HPF EN  
R/W  
R/W  
0h  
0h  
Always write this bit to 1.  
This bit enables the high-pass filter for DDC mode 2 for channel  
B and C.  
0 = Low-pass filter enabled  
1 = High-pass filter enabled  
0
CHB/C COARSE MIX  
R/W  
0h  
This bit selects the fS / 4 mixer phase for DDC mode 0 for  
channel B and C.  
0 = Mix with fS / 4  
1 = Mix with fS / 4  
7.6.3.5.3 Register 2h (address = 2h) [reset = 0h], Decimation Filter Page (6141h)  
7-60. Register 2h  
7
0
6
0
5
4
3
2
1
0
CHA/D  
COARSE MIX  
CHA/D HPF EN  
R/W-0h  
CHA/D FINE MIX  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
7-54. 2h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-6  
5
0
W
0h  
Must write 0.  
CHA/D HPF EN  
R/W  
0h  
This bit enables the high-pass filter for DDC mode 2 for channel  
A and D.  
0 = Low-pass filter enabled  
1 = High-pass filter enabled  
4
CHA/D COARSE MIX  
CHA/D FINE MIX  
R/W  
R/W  
0h  
0h  
This bit selects the fS / 4 mixer phase for DDC mode 0 for  
channel A and D.  
0 = Mix with fS / 4  
1 = Mix with fS / 4  
3-0  
These bits select the fine mixing frequency for the N × fS / 16  
mixer, where N is a twos complement number varying from 8  
to 7.  
0000 = N is 0  
0001 = N is 1  
0010 = N is 2  
...  
0111 = N is 7  
1000 = N is 8  
...  
1111 = N is 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.6 Main Digital Page (6800h) Registers  
7.6.3.6.1 Register 0h (address = 0h) [reset = 0h], Main Digital Page (6800h)  
7-61. Register 0h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
IL RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-55. Register 0h Field Descriptions  
Bit  
Name  
0
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0.  
IL RESET  
R/W  
0h  
This bit resets the interleaving engine. This bit is not a self-  
clearing bit and must be pulsed(1)  
.
Any register bit in the main digital page (6800h) takes effect only  
after this bit is pulsed. Also, note that pulsing this bit clears  
registers in the interleaving page (6100h).  
0 = Normal operation  
0 1 0 = Interleaving engine reset  
(1) Pulsing = set the bit to 1 and then reset to 0.  
7.6.3.6.2 Register 42h (address = 42h) [reset = 0h], Main Digital Page (6800h)  
7-62. Register 42h  
7
0
6
0
5
0
4
3
2
1
0
0
0
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-56. Register 42h Field Descriptions  
Bit  
Name  
Type  
W
Reset  
Description  
7-3  
2-0  
0
0h  
Must write 0.  
NYQUIST ZONE  
R/W  
0h  
These bits provide Nyquist zone information to the interleaving engine. Make  
sure the CTRL NYQUIST register bit is set to 1.  
000 = 1st Nyquist zone (input frequencies between 0 to fS / 2)  
001 = 2nd Nyquist zone (input frequencies between fS / 2 to fS)  
010 = 3rd Nyquist zone (input frequencies between fS to 3 fS / 2)  
...  
111 = 8th Nyquist zone (input frequencies between 7 fS / 2 to 4 fS)  
7.6.3.6.3 Register 4Eh (address = 4Eh) [reset = 0h], Main Digital Page (6800h)  
7-63. Register 4Eh  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
CTRL NYQUIST  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-57. Register 4Eh Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
CTRL NYQUIST R/W  
0h  
Enables Nyquist zone control using register bits NYQUIST ZONE.  
0 = Selection disabled  
1 = Selection enabled  
6-0  
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.6.4 Register ABh (address = ABh) [reset = 0h], Main Digital Page (6800h)  
7-64. Register ABh  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
OVR EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-58. Register ABh Field Descriptions  
Bit  
Field  
0
Type  
W
Reset  
Description  
7-1  
0
0h  
Must write 0.  
OVR EN  
R/W  
0h  
Set this bit to enable the OVR ON LSB register bit.  
0 = Normal operation  
1 = OVR ON LSB enabled  
7.6.3.6.5 Register ADh (address = ADh) [reset = 0h], Main Digital Page (6800h)  
7-65. Register ADh  
7
0
6
0
5
0
4
3
2
1
0
0
OVR ON LSB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-59. Register ADh Field Descriptions  
Bit  
Field  
0
Type  
W
Reset  
Description  
7-4  
3-0  
0h  
Must write 0.  
OVR EN  
R/W  
0h  
Set this bit to bring OVR on two LSBs of the 16-bit output. Make sure the OVR EN  
register bit is set to 1.  
0000 = Bits 0 and 1 of the 16-bit data are noise bits  
0011 = OVR comes on bit 0 of the 16-bit data  
1100 = OVR comes on bit 1 of the 16-bit data  
1111 = OVR comes on both bits 0 and 1 of the 16-bit data  
7.6.3.6.6 Register F7h (address = F7h) [reset = 0h], Main Digital Page (68h)  
7-66. Register F7h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
DIG RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-60. Register F7h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
Description  
7-1  
0
0
0h  
Must write 0.  
DIG RESET  
R/W  
0h  
Self-clearing reset for the digital block. Does not include the interleaving correction.  
0 = Normal operation  
1 = Digital reset  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.7 JESD Digital Page (6900h) Registers  
7.6.3.7.1 Register 0h (address = 0h) [reset = 0h], JESD Digital Page (6900h)  
7-67. Register 0h  
7
6
5
4
3
2
1
0
JESD MODE  
EN  
DDC MODE6  
EN2  
CTRL K  
R/W-0h  
TESTMODE EN  
R/W-0h  
0
LANE ALIGN FRAME ALIGN  
R/W-0h R/W-0h  
TX LINK DIS  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
7-61. Register 0h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
CTRL K  
R/W  
0h  
Enable bit for a number of frames per multi frame.  
0 = Default is five frames per multi frame  
1 = Frames per multi frame can be set in register 06h  
6
JESD MODE EN  
R/W  
0h  
Allows changing the JESD MODE setting in register 01h (bits 1-0)  
0 = Disabled  
1 = Enables changing the JESD MODE setting.  
This setting is to be used with MODE2 and MODE4 only.  
5
4
DDC MODE6 EN2  
TESTMODE EN  
R/W  
R/W  
0h  
0h  
Set this bit along with the DDC MODE6 EN1 and DDC MODE6 EN3 register bits  
for proper operation of mode 6.  
0 = Default  
1 = Use for proper operation of DDC mode 6  
This bit generates the long transport layer test pattern mode, as per section  
5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
3
2
0
W
0h  
0h  
Must write 0.  
LANE ALIGN  
R/W  
This bit inserts the lane alignment character (K28.3) for the receiver to align to  
lane boundary, as per section 5.3.3.5 of the JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
1
0
FRAME ALIGN  
TX LINK DIS  
R/W  
R/W  
0h  
0h  
This bit inserts the lane alignment character (K28.7) for the receiver to align to  
lane boundary, as per section 5.3.3.5 of the JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA) sequence when SYNC is  
de-asserted.  
0 = Normal operation  
1 = ILA disabled  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.7.2 Register 1h (address = 1h) [reset = 0h], JESD Digital Page (6900h)  
7-68. Register 1h  
7
6
5
4
3
2
0
1
0
SYNCB SEL  
AB/CD  
DDC MODE6  
EN3  
SYNC REG  
R/W-0h  
SYNC REG EN  
R/W-0h  
0
JESD MODE  
R/W-0h  
R/W-0h  
W-0h  
R/W-0h  
W-0h  
7-62. Register 1h Field Descriptions  
Bit  
Name  
SYNC REG  
Type  
Reset  
Description  
7
R/W  
0h  
SYNC register (bit 6 must be enabled).  
0 = Normal operation  
1 = ADC output data are replaced with K28.5 characters  
6
5
SYNC REG EN  
R/W  
0h  
0h  
Enables bit for SYNC operation.  
0 = Normal operation  
1 = ADC output data overwrite enabled  
SYNCB SEL AB/CD R/W  
This bit selects which SYNCb input controls the JESD interface; must be  
configured for ch AB and ch CD.  
0 = SYNCbAB  
1 = SYNCbCD  
4
3
0
W
0h  
0h  
Must write 0.  
DDC MODE6 EN3  
R/W  
Set this bit along with the DDC MODE6 EN1 and DDC MODE6 EN2 register  
bits for proper operation of mode 6.  
0 = Default  
1 = Use for proper operation of DDC mode 6  
2
0
W
0h  
0h  
Must write 0.  
1-0  
JESD MODE  
R/W  
These bits select the number of serial JESD output lanes per ADC. The JESD  
MODE EN (00h) and JESD PLL MODE register (JESD ANALOG page, register  
16h) must also be set accordingly.  
01 = 20x mode  
10 = 40x mode  
11 = 80x mode  
All others = Not used  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.7.3 Register 2h (address = 2h) [reset = 0h], JESD Digital Page (6900h)  
7-69. Register 2h  
7
6
5
4
3
2
0
1
0
0
0
LINK LAYER  
RPAT  
LMFC MASK  
RESET  
LINK LAYER TESTMODE  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
7-63. Register 2h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
These bits generate a pattern according to clause 5.3.3.8.2 of  
the JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12-octet RPAT jitter pattern  
4
LINK LAYER RPAT  
R/W  
0h  
This bit changes the running disparity in the modified RPAT  
pattern test mode (only when the link layer test mode = 100).  
0 = Normal operation  
1 = Changes disparity  
3
LMFC MASK RESET  
0
R/W  
W
0h  
0h  
0 = Default  
1 = Resets the LMFC mask  
2-0  
Must write 0.  
7.6.3.7.4 Register 3h (address = 3h) [reset = 0h], JESD Digital Page (6900h)  
7-70. Register 3h  
7
6
5
4
3
2
1
0
FORCE LMFC COUNT  
R/W-0h  
LMFC COUNT INIT  
R/W-0h  
RELEASE ILANE SEQ  
R/W-0h  
7-64. Register 3h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
FORCE LMFC COUNT  
R/W  
0h  
This bit forces the LMFC count.  
0 = Normal operation  
1 = Enables using a different starting value for the LMFC  
counter  
6-2  
1-0  
LMFC COUNT INIT  
R/W  
R/W  
0h  
0h  
SYSREF coming to the digital block resets the LMFC count to 0  
and K28.5 stops coming when the LMFC count reaches 31. The  
initial value that the LMFC count resets to can be set using  
LMFC COUNT INIT. In this manner, Rx can be synchronized  
early because it receives the LANE ALIGNMENT SEQUENCE  
early. The FORCE LMFC COUNT register bit must be enabled.  
RELEASE ILANE SEQ  
These bits delay the generation of lane alignment sequence by  
0, 1, 2, or 3 multi frames after code group synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.7.5 Register 5h (address = 5h) [reset = 0h], JESD Digital Page (6900h)  
7-71. Register 5h  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
SCRAMBLE EN  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-65. Register 5h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
SCRAMBLE EN  
R/W  
0h  
Scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
6-0  
0
W
0h  
Must write 0.  
7.6.3.7.6 Register 6h (address = 6h) [reset = 0h], JESD Digital Page (6900h)  
7-72. Register 6h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTI FRAME (K)  
R/W-0h  
W-0h  
W-0h  
W-0h  
7-66. Register 6h Field Descriptions  
Bit  
7-5  
4-0  
Name  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
FRAMES PER MULTI FRAME (K)  
R/W  
0h  
These bits set the number of multi frames.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
7.6.3.7.7 Register 21h (address = 21h) [reset = 0h], JESD Digital Page (6900h)  
7-73. Register 21h  
7
6
5
4
3
2
1
0
OUTPUT CHA MUX SEL  
R/W-0h  
OUTPUT CHB MUX SEL  
R/W-0h  
OUTPUT CHC MUX SEL  
R/W-0h  
OUTPUT CHD MUX SEL  
R/W-0h  
7-67. 21h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-6  
OUTPUT CHA MUX SEL  
R/W  
0h  
SERDES lane swap with ch B.  
00 = Ch A is output on lane DA  
10 = Ch A is output on lane DB  
01, 11 = Do not use.  
Can only be used in 4 lane mode.  
5-4  
3-2  
1-0  
OUTPUT CHB MUX SEL  
OUTPUT CHC MUX SEL  
OUTPUT CHD MUX SEL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
SERDES lane swap with ch A.  
00 = Ch B is output on lane DB  
10 = Ch B is output on lane DA  
01, 11 = Do not use. Can only be used in 4 lane mode.  
SERDES lane swap with ch D.  
00 = Ch C is output on lane DC  
10 = Ch C is output on lane DD  
01, 11 = Do not use. Can only be used in 4 lane mode.  
SERDES lane swap with ch C.  
00 = Ch D is output on lane DD  
10 = Ch D is output on lane DC  
01, 11 = Do not use. Can only be used in 4 lane mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.7.8 Register 22h (address = 22h) [reset = 0h], JESD Digital Page (6900h)  
7-74. Register 22h  
7
0
6
0
5
0
4
3
2
1
0
0
OUT CHA INV OUT CHB INV OUT CHC INV OUT CHD INV  
R/W-0h R/W-0h R/W-0h R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-68. 22h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-4  
3-0  
0
W
0h  
Must write 0.  
OUT CHA, CHB, CHC and R/W  
CH D INV  
0h  
Polarity inversion of JESD output of CHA, CHB, CHC and CHD.  
00 = Normal operation  
0011 = Output polarity of CHB and CHD inverted. 1100 = Output polarity  
of CHA and CHC inverted. 1111 = Output of all channels inverted.  
All others = Do not use.  
7.6.3.8 JESD Analog Page (6A00h) Register  
7.6.3.8.1 Register 12h, 13h (address 12h, 13h) [reset = 0h], JESD Analog Page (6Ah)  
7-75. Register 12h  
7
6
5
4
3
2
1
0
0
0
SEL EMP LANE DA/DD  
R/W-0h  
W-0h  
W-0h  
7-76. Register 13h  
7
6
5
4
3
2
1
0
0
0
SEL EMP LANE DB/DC  
R/W-0h  
W-0h  
W-0h  
7-69. 12h, 13h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-2  
SEL EMP LANE DA/DD  
SEL EMP LANE DB/DC  
R/W  
0h  
Selects the amount of de-emphasis for the JESD output transmitter. The  
de-emphasis value in dB is measured as the ratio between the peak  
value after the signal transition to the settled value of the voltage in one  
bit period.  
0 = 0 dB  
1 = 1 dB  
3 = 2 dB  
7 = 4.1 dB  
15 = 6.2 dB  
31 = 8.2 dB  
63 = 11.5 dB  
1-0  
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7.6.3.8.2 Register 16h (address = 16h) [reset = 0h], JESD Analog Page (6A00h)  
7-77. Register 16h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
JESD PLL MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-70. Register 16h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7-2  
1-0  
0
W
0h  
Must write 0.  
JESD PLL MODE  
R/W  
0h  
These bits select the JESD PLL multiplication factor and must  
match the JESD MODE setting.  
00 = 20x mode  
01 = Not used  
10 = 40x mode  
11 = Not used  
7.6.3.8.3 Register 17h (address = 17h) [reset = 0h], JESD Analog Page (6A00h)  
7-78. Register 17h  
7
0
6
5
0
4
3
2
0
1
0
0
0
PLL RESET  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-71. Register 17h Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
7
6
0
W
0h  
Must write 0.  
PLL RESET  
R/W  
0h  
When SERDES line is < 5 Gbps, pulse this bit after powering up  
the device.  
0 = Default  
0 > 1 > 0 = The PLL RESET bit is pulsed.  
5-0  
0
W
0h  
Must write 0.  
7.6.3.8.4 Register 1Bh (address = 1Bh) [reset = 0h], JESD Analog Page (6A00h)  
7-79. Register 1Bh  
7
6
5
4
3
2
0
1
0
0
0
JESD SWING  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-72. Register 1Bh Field Descriptions  
Bit  
Name  
JESD SWING  
Type  
Reset Description  
7-5  
R/W  
0h  
To program the JESD swing, first disable broadcast mode by setting the DIS  
BROADCAST register bit to 1. Then keep the bit CH = 1 while programming the  
JESD SWING bits. For example, to set the swing as 930 mVpp:  
i) Write address 4005h, value 01h to disable broadcast mode.  
ii)Write address 4004h, value 6Ah; and 4003h, value 00h to access the JESD  
analog page.  
iii)Write address 701Bh, value A0h to set the swing as 930 mVpp.  
0 = 860 mVPP  
1 = 810 mVPP  
2 = 770 mVPP  
3 = 745 mVPP  
4 = 960 mVPP  
5 = 930 mVPP  
6 = 905 mVPP  
7 = 880 mVPP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
7-72. Register 1Bh Field Descriptions (continued)  
Bit  
Name  
Type  
Reset Description  
4-0  
0
W
0h  
Must write 0.  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADS54J66  
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8 Application Information Disclaimer  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Start-Up Sequence  
The following steps are recommended as the power-up sequence with the ADS54J66 in DDC mode 8 (no  
decimation) with LMFS = 4421 (shown in 8-1).  
8-1. Recommended Power-Up Sequence  
REGISTER REGISTER  
STEP  
DESCRIPTION  
COMMENT  
ADDRESS  
DATA  
1
Power up the IOVDD 1.15-V supply before the  
1.9-V supply. All other supplies (AVDD 1.9-V and  
AVDD 3-V supply) can be supplied in any order.  
2
Pulse a hardware reset (low to high to low) on pin  
48.  
Alternatively, the device can be reset with an  
analog reset and a digital reset.  
0000h  
4004h  
4003h  
4002h  
4001h  
60F7h  
60F7h  
70F7h  
70F7h  
81h  
68h  
00h  
00h  
00h  
01h  
00h  
01h  
00h  
3
4
5
Set the input clock divider.  
0011h  
0053h  
0039h  
0059h  
80h  
80h  
C0h  
20h  
Select the master page in the analog bank.  
Set the clock divider to divide-by-2.  
Set the ALWAYS WRITE 1 bit for all channels.  
Set the ALWAYS WRITE 1 bit for all channels.  
Reset the interleaving correction engine in  
register 6800h of the main digital page of the  
JESD bank. (Register access is already set to  
page 6800h in step 2.)  
6000h  
6000h  
7000h  
7000h  
01h  
00h  
01h  
00h  
Resets the interleaving engine for channel A, B  
(because the device is in broadcast mode).  
Resets the interleaving engine for channel C, D  
(because the device is in broadcast mode).  
Set DDC mode 8 for all channels (no decimation,  
14-bit, 500-MSPS data output).  
4004h  
4003h  
61h  
41h  
Select the decimation filter page of the JESD bank.  
6000h  
7000h  
08h  
08h  
Select DDC mode 8 for channel A, B.  
Select DDC mode 8 for channel C, D.  
6001h  
7001h  
04h  
04h  
Set the ALWAYS WRITE 1 bit for channel A, B.  
Set the ALWAYS WRITE 1 bit for channel C, D.  
6
7
Default registers for the analog page of the JESD  
bank.  
4003h  
4004h  
00h  
6Ah  
Select the analog page in the JESD bank.  
6016h  
7016h  
02h  
02h  
PLL mode 40x for channel A, B.  
PLL mode 40x for channel C, D.  
Default registers for the digital page of the JESD  
bank.  
4003h  
4004h  
00h  
69h  
Select the digital page in the JESD bank.  
6000h  
6001h  
7000h  
7001h  
20h  
01h  
20h  
01h  
Enable JESD MODE control for channel A, B.  
Set JESD MODE to 20x mode for LMFS = 4421.  
Enable JESD MODE control for channel C, D.  
Set JESD MODE to 20x mode for LMFS = 4421.  
6000h  
6006h  
7000h  
7006h  
80h  
0Fh  
80h  
0Fh  
Set CTRL K for channel A, B.  
Set K to 16.  
Set CTRL K for channel C, D.  
Set K to 16.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8-1. Recommended Power-Up Sequence (continued)  
REGISTER REGISTER  
STEP  
DESCRIPTION  
COMMENT  
ADDRESS  
DATA  
8
Enable a single SYNCb input (on the SYNCbAB  
pin).  
4005h  
7001h  
01h  
20h  
Disable broadcast mode.  
Use SYNCbABP, SYNCbABM to issue a SYNC  
request for all four channels.  
9
Pulse SYNCbAB (pins 55 and 56) from high to  
low.  
K28.5 characters are transmitted by all four channels  
(CGS phase).  
10  
Pulse SYNCbAB (pins 55 and 56) from low to  
high.  
The ILA sequence begins and lasts for four  
multiframes. The device transmits ADC data after  
the ILA sequence ends.  
8.1.2 Hardware Reset  
8.1.2.1 Register Initialization  
After power-up, the internal registers can be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in 8-1. Alternatively, the  
serial interface registers can be cleared a set of register writes as described in the 8.1.1 section. 8-2 lists  
the timing requirements for the pulse signal on the RESET pin.  
8.1.2.2  
Power  
Supplies  
t1  
RESET  
t3  
t2  
CLK  
(CLKP-CLKM)  
SYSREF*  
(SYSREFP-SYSREFM)  
Power down SYSREF driver after  
applying at least 2 SYSREF pulses  
after SPI is configured.  
SEN,  
SCLK,  
SDATA  
SPI  
Cycle  
SPI  
Cycle  
* The SYSREF signal resets the input clock divider, the LMFC counter in the JESD block, and the NCO counters in the DDC block.  
Applying the SYSREF signal before configuring SPI is recommended. After SPI is configured, either the SYSREF driver can be  
powered down, or the SYSREF buffer inside the device can be powered down to avoid degradation in the ADC performance resulting  
from the SYSREF signal coupling to the ADC analog inputs.  
8-1. Hardware Reset Timing Diagram  
8-2. Timing Requirements for Hardware Reset  
MIN  
1
TYP MAX UNIT  
t1  
t2  
t3  
Power-on delay from power-up to active high RESET pulse  
Reset pulse duration : active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
ms  
ns  
ns  
10  
100  
8.1.3 SYSREF Signal  
Apply SYSREF after reset and before configuring the device. After the device is configured to the desired mode,  
the SYSREF driver can be disabled. Optionally, SYSREF can be masked inside the device using the MASK  
SYSREF register bit.  
The SYSREF signal is sampled by the ADS54J66 device clock, and is used to reset the input clock divider that  
generates the sampling clock for the two interleaving ADC cores. The SYSREF signal also resets the local  
multiframe clock (LMFC) counter inside the JESD block, and the divider in the decimation filter block of the data  
converter. SYSREF is required to be a subharmonic of the LMFC frequency. The LMFC clock frequency  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
depends upon the device clock frequency, the DDC decimation option, and the JESD link settings (LMFS). The  
SYSREF signal is also recommended to be a low frequency signal (less than 5 MHz) in order to reduce coupling  
to the signal path both on the PCB as well as internal to the device.  
8-3 shows that the external SYSREF signal must be a subharmonic of the internal LMFC clock.  
The SYSREF frequency is equal to LMFC / N with N = 0, 1, 2, and so forth.  
8-3. LMFC Clock Frequency  
LMFS CONFIGURATION  
DECIMATION  
LMFC CLOCK  
4421  
fS (1) / K(2)  
4x  
2x  
2x  
2x  
4841  
2441  
4421  
4841  
fS / (4 × K)  
fS / (2 × K)  
fS / (2 × K)  
fS / (2 × K)  
(1) fS = sampling (device) clock frequency.  
(2) K = number of frames per multiframe (JESD digital page 6900h, address 06h, D4-D0).  
8.1.4 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors (as shown in 方程式 2): the quantization  
noise is typically not noticeable in pipeline converters and is 84 dB for a 14-bit ADC. The thermal noise limits the  
SNR at low input frequencies and the clock jitter sets the SNR for higher input frequencies.  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated by 方程3:  
(3)  
The total clock jitter (TJitter) has two components: the internal aperture jitter (120 fs for the ADS54J66) that is set  
by the noise of the clock input buffer and the external clock jitter. TJitter can be calculated by 方程4:  
(4)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-  
pass filters at the clock input; a faster clock slew rate also improves the ADC aperture jitter.  
The ADS54J66 has a thermal noise of approximately 72 dBFS and an internal aperture jitter of 120 fs.  
8.1.5 Idle Channel Histogram  
8-2 shows a histogram of output codes for when no signal is applied at the analog inputs of the ADS54J66. 图  
8-3 shows that when the dc offset correction block of the device is bypassed, the output code histogram  
becomes multi-modal with as many as four peaks. This (TBD this what?) happens because the ADS54J66 is a  
4-way interleaved ADC with each ADC core having a different internal dc offset.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADS54J66  
 
 
 
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
6000  
5000  
4000  
3000  
2000  
1000  
0
3600  
3000  
2400  
1800  
1200  
600  
0
8040  
8180  
8185  
8190  
8195  
8200  
8205  
8080  
8120  
8160 8200  
Output Code  
8240  
8280  
Output Code  
D062  
D063  
8-2. Idle Channel Histogram (No Signal at  
8-3. Idle Channel Histogram (No Signal at  
Analog Inputs, DC Offset Correction is On)  
Analog Inputs, DC Offset Correction is Off)  
8-4 shows that when the dc offset correction block is frozen (instead of bypassing), the output code histogram  
improves (compared to when bypassed). However, when the temperature changes, the dc offset difference  
among interleaving cores may increase resulting in increased spacing between peaks in the histogram.  
6000  
5000  
4000  
3000  
2000  
1000  
0
8182 8184 8186 8188 8190 8192 8194 8196 8198 8200 8202  
Output Code  
D064  
D107  
8-4. Idle Channel Histogram (No Signal at Analog Inputs, DC Offset Correction is Frozen)  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8.1.6 ADC Test Pattern  
The ADS54J66 provides several different options to output test patterns instead of the actual output data of the  
ADC in order to simplify bring up of the JESD204B digital interface link. The output data path is shown in 8-5.  
ADC Section  
Transport Layer  
Link Layer  
PHY Layer  
ADC  
Data Mapping  
Frame Construction  
DDC  
Block  
8b/10b  
Encoding  
Interleaving  
Correction  
Scrambler  
1+x14+x15  
Serializer  
ADC Test  
Pattern  
JESD204B Long  
Transport Layer  
Test Pattern  
JESD204B  
Link Layer  
Test Pattern  
8-5. ADC Test Pattern  
8.1.6.1 ADC Section  
The ADC test pattern replaces the actual output data of the ADC. The following test patterns are available in  
register 74h. In order to properly obtain the test pattern output, the interleaving correction must be disabled  
(6100h, address 18h) and DDC mode-8 must be selected (un-decimated output).  
In un-decimated output (DDC mode-8), the device supports LMFS = 4421 only. Available ADC test patterns are  
summarized in 8-4.  
8-4. ADC Test Pattern Settings  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
These bits provide the test pattern output on channels A and B.  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
0011 = Outputs toggle pattern: output data are an alternating  
sequence of 101010101010 and 010101010101  
0100 = Output digital ramp: output data increment by one LSB every  
clock cycle from code 0 to 16384  
7-4  
TEST PATTERN  
0000  
0110 = Single pattern: output data are custom pattern 1 (75h and  
76h)  
0111 = Double pattern: output data alternate between custom pattern  
1 and custom pattern 2  
1000 = Deskew pattern: output data are 2AAAh  
1001 = SYNC pattern: output data are 3FFFh  
8.1.6.2 Transport Layer Pattern  
The transport layer maps the ADC output data into 8-bit octets and constructs the JESD204B frames using the  
LMFS parameters. Tail bits or 0s are added when needed. Alternatively, the JESD204B long transport layer test  
pattern can be substituted as shown in 8-5.  
8-5. Transport Layer Test Mode  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
This bit generates the long transport layer test pattern mode  
according to clause 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
4
TESTMODE EN  
0
1 = Test mode enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADS54J66  
 
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8.1.6.3 Link Layer Pattern  
The link layer contains the scrambler and the 8b/10b encoding of any data passed on from the transport layer.  
Additionally, the link layer also controls the initial lane alignment sequence that can be manually restarted. The  
link layer test patterns are intended for testing the quality of the link (jitter testing and so forth). The test patterns  
do not pass through the 8b/10b encoder and contain the options shown in 8-6.  
8-6. Link Layer Test Mode  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
These bits generate the pattern according to clause 5.3.3.8.2 of the  
JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character and  
repeats lane alignment sequences continuously)  
100 = 12-octet RPAT jitter pattern  
7-5  
LINK LAYER TESTMODE  
000  
Furthermore, a 215 PRBS can be enabled by setting up a custom test pattern (AAAA) in the ADC section and  
running that through the 8b/10b encoder with scrambling enabled.  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8.2 Typical Application  
The ADS54J66 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. A typical schematic for an ac-coupled dual receiver (dual FPGA with dual SYNC) is  
shown in 8-6.  
DVDD  
5  
10 kꢀ  
25 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
0.1 uF  
0.1 uF  
GND  
Driver  
SPI Master  
25 ꢀ  
5 ꢀ  
GND  
IOVDD GND  
0.1 uF  
0.1 uF  
GND  
0.1 uF  
AVDD  
0.1 uF  
DVDD  
AVDD3V  
AVDD  
AVDD3V  
5 ꢀ  
25 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
25 ꢀ  
0.1 uF  
0.1 uF  
100 Differential  
Driver  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
5 ꢀ  
GND  
INCP  
SYNCbCDP  
SYNCbCDM  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
50 ꢀ  
50 ꢀ  
Vterm=1.2 V  
AVDD  
AGND  
AVDD  
0.1 uF  
IOVDD  
FPGA  
IOVDD  
DDP  
GND  
10 nF  
GND  
10 nF  
10 nF  
NC  
NC  
DDM  
GND  
0.1 uF  
AVDD3V  
AVDD  
DGND  
DCP  
AVDD3V  
GND  
AVDD  
0.1 uF  
DCM  
AGND  
GND  
10 nF  
IOVDD  
0.1 uF  
GND  
IOVDD  
DGND  
DBM  
CLKINP  
CLKINM  
AGND  
100 ꢀ  
ADS54J66  
GND  
GND PAD (backside)  
0.1 uF  
AVDD  
Low Jitter  
Clock  
Generator  
DBP  
AVDD  
DGND  
DAM  
AVDD3V  
AGND  
AVDD3V  
0.1 uF  
GND  
10 nF  
10 nF  
GND  
DAP  
SYSREFP  
100 ꢀ  
IOVDD  
10 nF  
IOVDD  
SYNCbABM  
SYNCbABP  
SYSREFM  
AVDD  
AVDD  
5 ꢀ  
GND  
50 ꢀ  
50 ꢀ  
Vterm=1.2 V  
INBP  
FPGA  
25 ꢀ  
25 ꢀ  
25 ꢀ  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
0.1 uF  
100 Differential  
0.1 uF  
GND  
3.3 pF  
Driver  
25 ꢀ  
5 ꢀ  
AVDD3V  
AVDD  
DVDD  
AVDD  
AVDD3V  
0.1 uF  
GND  
GND  
GND  
0.1 uF  
IOVDD  
0.1 uF  
GND  
5 ꢀ  
25 ꢀ  
25 ꢀ  
0.1 uF  
0.1 uF  
GND  
3.3 pF  
Driver  
25 ꢀ  
GND = AGND + DGND connected in Layout  
25 ꢀ  
5 ꢀ  
GND = AGND and DGND are connected in the PCB layout.  
8-6. Application Diagram for the ADS54J66  
8.2.1 Design Requirements  
By using the simple drive circuit of 8-6 (when the amplifier drives the ADC) or 7-1 (when transformers drive  
the ADC), uniform performance can be obtained over a wide frequency range. The buffers present at the analog  
inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.  
8.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves the  
common-mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with  
each input pin is recommended to damp out ringing caused by package parasitics, as shown in 8-6.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8.2.3 Application Curves  
8-7 and 8-8 show the typical performance at 190 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D003  
D004  
fIN = 190 MHz, AIN = 1 dBFS, SNR = 69.4 dBFS, SFDR =  
fIN = 230 MHz, AIN = 1 dBFS, SNR = 69.4 dBFS, SFDR =  
88 dBc, SFDR = 96 dBc (non 23)  
85 dBc, SFDR = 96 dBc (non 23)  
8-7. FFT for 190-MHz Input Signal  
8-8. FFT for 230-MHz Input Signal  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8.3 Power Supply Recommendations  
The device requires a 1.15-V nominal supply for IOVDD, a 1.9-V nominal supply for DVDD, a 1.9-V nominal  
supply for AVDD, and a 3.0-V nominal supply for AVDD3V. For detailed information regarding the operating  
voltage minimum and maximum specifications of different supplies, see the 6.3 table.  
8.3.1 Power Sequencing and Initialization  
8-9 shows the suggested power-up sequencing for the device. The 1.15-V IOVDD supply must rise before the  
1.9-V DVDD supply. If the 1.9-V DVDD supply rises before the 1.15-V IOVDD supply, then the internal default  
register settings may not load properly. The other supplies (the 3-V AVDD3V and the 1.9-V AVDD), can come up  
in any order during the power sequence. The power supplies can ramp up at any rate and there is no hard  
requirement for the time delay between IOVDD ramp up to DVDD ramp-up (can be in orders of microseconds  
but is recommend to be a few milliseconds).  
IOVDD = 1.15 V  
DVDD = 1.9 V  
AVDD = 1.9 V  
AVDD = 3 V  
8-9. Power Sequencing for the ADS54J66 Device  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADS54J66  
 
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
8.4 Layout  
8.4.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in 8-10. A complete layout of the EVM is available at the  
ADS54J66 EVM folder. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout for minimum crosstalk on the package level.  
To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as shown in the  
reference layout of 8-10 as much as possible.  
Connect INP of all unused analog inputs to AVDD and the INM to GND or vice versa.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of 8-10 as  
much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be  
matched in length to avoid skew among outputs.  
Connect a 100 Ohm differential resistor across unused SERDES outputs to limit the swing which will occur if  
unterminated.  
At each power-supply pin (AVDD, DVDD, or AVDDD3V), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1F, and 0.1-µF  
capacitors can be kept close to the supply source.  
8.4.2 Layout Example  
8-10. ADS54J66EVM Layout  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: ADS54J66  
 
 
ADS54J66  
www.ti.com.cn  
ZHCSEE2B DECEMBER 2015 REVISED JANUARY 2023  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADS54J66  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J66IRMP  
ADS54J66IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
168  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J66  
AZ54J66  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jan-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY