ADS54J69 [TI]

双通道、16 位、500MSPS 模数转换器 (ADC);
ADS54J69
型号: ADS54J69
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、16 位、500MSPS 模数转换器 (ADC)

转换器 模数转换器
文件: 总81页 (文件大小:3998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
ADS54J69 双通道、16 位、500MSPS 模数转换器  
1 特性  
3 说明  
1
16 位分辨率、双通道、500 MSPS 模数转换器  
ADS54J69 是一款低功耗、高带宽 16 位、500MSPS  
(DAC)  
双通道模数转换器 (ADC)。该器件经设计具有高信噪  
(SNR),可提供 -159dBFS/Hz 的噪底,从而 协助应  
用在宽瞬时带宽内 实现最高动态范围。该器件支持  
JESD204B 串行接口,数据传输速率高达 10Gbps,每  
ADC 可支持 1 2 条通道。经缓冲的模拟输入可  
在较宽频率范围内提供统一输入阻抗并最大程度地降低  
采样和保持毛刺脉冲能量。可选择将每条 ADC 通道直  
接与宽带数字下变频器 (DDC) 模块相连。ADS54J69  
以超低功耗在宽输入频率范围内提供出色的无杂散动态  
范围 (SFDR)。  
空闲通道噪底:-159dBFS/Hz  
频谱性能(–1dBFS 时的 fIN = 170MHz):  
信噪比 (SNR)73dBFS  
噪声频谱密度 (NSD)–157dBFS/Hz  
无杂散动态范围 (SFDR)93dBc  
SFDR94dBc(不包括 HD2HD3 和交错音  
调)  
频谱性能(–1dBFS 时的 fIN = 310MHz):  
SNR71.7dBFS  
NSD–155.7dBFS/Hz  
SFDR81dBc  
JESD204B 接口减少了接口线路数,从而实现高系统  
集成度。内部锁相环 (PLL) 会将 ADC 采样时钟加倍,  
以获得串行化各通道的 16 位数据时所使用的位时钟。  
SFDR94dBc(不包括 HD2HD3 和交错音  
调)  
通道隔离:fIN = 170MHz 时为 100dBc  
输入满量程:1.9 VPP  
器件信息  
器件编号  
ADS54J69  
封装  
封装尺寸(标称值)  
VQFNP (72)  
10.00mm x 10.00mm  
输入带宽 (3dB)1.2GHz  
片上抖动  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
集成 2 倍抽取率滤波器  
支持 JESD204B 子类 1 接口:  
10.0Gbps 时每个 ADC 1 条通道  
5.0Gbps 时每个 ADC 2 条通道  
支持多芯片同步  
170MHz 中频 (IF) 时的频谱  
0
SNR = 73 dBFS  
SFDR = 93 dBc  
Non HD2, HD3 Spur = 94 dBc  
-20  
-40  
功耗:500MSPS 时为 1.35W/通道  
72 引脚超薄型四方扁平无引线 (VQFN) 封装  
(10mm × 10mm)  
-60  
2 应用  
雷达和天线阵列  
-80  
无线宽带  
-100  
-120  
电缆 CMTSDOCSIS 3.1 接收器  
通信测试设备  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
微波接收器  
D003  
软件定义无线电 (SDR)  
数字转换器  
医疗成像和诊断功能  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS713  
 
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 30  
8.5 Register Maps......................................................... 39  
Application and Implementation ........................ 63  
9.1 Application Information............................................ 63  
9.2 Typical Application .................................................. 68  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 AC Characteristics .................................................... 9  
7.7 Digital Characteristics ............................................. 11  
7.8 Timing Characteristics............................................. 12  
7.9 Typical Characteristics............................................ 14  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
8.2 Functional Block Diagram ....................................... 24  
9
10 Power Supply Recommendations ..................... 70  
10.1 Power Sequencing and Initialization..................... 71  
11 Layout................................................................... 72  
11.1 Layout Guidelines ................................................. 72  
11.2 Layout Example .................................................... 73  
12 器件和文档支持 ..................................................... 74  
12.1 文档支持................................................................ 74  
12.2 接收文档更新通知 ................................................. 74  
12.3 社区资源................................................................ 74  
12.4 ....................................................................... 74  
12.5 静电放电警告......................................................... 74  
12.6 Glossary................................................................ 74  
13 机械、封装和可订购信息....................................... 74  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (February 2016) to Revision C  
Page  
Added Device Comparison Table........................................................................................................................................... 5  
Added the FOVR latency parameter to the Timing Characteristics table............................................................................. 12  
Added SYSREF Not Present (Subclass 0, 2) section .......................................................................................................... 27  
Changed the number of clock cycles in the Fast OVR section ............................................................................................ 28  
Changed the Register Map................................................................................................................................................... 40  
Deleted register 39h, 3Ah, and 56h ..................................................................................................................................... 40  
Changed the SNR versus Input Frequency and External Clock Jitter figure ....................................................................... 67  
Changed Power Supply Recommendations section ........................................................................................................... 70  
Added the Power Sequencing and Initialization section....................................................................................................... 71  
已添加 文档支持接收文档更新通知............................................................................................................................ 74  
已添加 接收文档更新通知.............................................................................................................................................. 74  
Changes from Revision A (January 2016) to Revision B  
Page  
Changed Sample Timing, Aperture jitter parameter in Timing Characteristics table .......................................................... 12  
Changed Table 35 ................................................................................................................................................................ 51  
Changed Table 42 ................................................................................................................................................................ 54  
Changed Table 44 ................................................................................................................................................................ 55  
Changed SNR and Clock Jitter section: changed Figure 130 and last sentence of section................................................ 67  
Changed Application Curves section ................................................................................................................................... 70  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Changes from Original (May 2015) to Revision A  
Page  
已发布为量产数据”................................................................................................................................................................. 1  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
ADS54J20  
ADS54J42  
ADS54J40  
ADS54J60  
ADS54J66  
ADS54J69  
SPEED GRADE (MSPS)  
RESOLUTION (Bits)  
CHANNEL  
1000  
625  
12  
14  
14  
16  
14  
16  
2
2
2
2
4
2
1000  
1000  
500  
500  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
6 Pin Configuration and Functions  
RMP Package  
72-Pin VQFNP  
Top View  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
1
2
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DB3M  
DB3P  
DA3M  
DA3P  
DGND  
IOVDD  
PDN  
3
DGND  
IOVDD  
SDIN  
4
5
6
SCLK  
RES  
7
SEN  
RESET  
DVDD  
AVDD  
AVDD3V  
AVDD  
AVDD  
INAP  
8
DVDD  
AVDD  
AVDD3V  
SDOUT  
AVDD  
INBP  
9
GND Pad  
(Back Side)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INBM  
INAM  
AVDD  
AVDD3V  
AVDD  
AGND  
AVDD  
AVDD3V  
AVDD  
AGND  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CLOCK, SYSREF  
CLKINM  
28  
27  
34  
33  
I
I
I
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative external SYSREF input  
CLKINP  
SYSREFM  
SYSREFP  
Positive external SYSREF input  
CONTROL, SERIAL INTERFACE  
Power-down. Can be configured via an SPI register setting.  
Can be configured to fast overrange output for channel A via the SPI.  
PDN  
50  
I/O  
RESET  
SCLK  
SDIN  
48  
6
I
I
I
Hardware reset; active high. This pin has an internal 20-kΩ pulldown resistor.  
Serial interface clock input  
5
Serial interface data input  
Serial interface data output.  
Can be configured to fast overrange output for channel B via the SPI.  
SDOUT  
11  
7
O
I
SEN  
Serial interface enable  
DATA INTERFACE  
DA0M  
DA1M  
DA2M  
DA3M  
DA0P  
62  
59  
56  
54  
61  
58  
55  
53  
65  
68  
71  
1
O
O
O
JESD204B serial data negative outputs for channel A  
DA1P  
JESD204B serial data positive outputs for channel A  
JESD204B serial data negative outputs for channel B  
DA2P  
DA3P  
DB0M  
DB1M  
DB2M  
DB3M  
DB0P  
66  
69  
72  
2
DB1P  
O
I
JESD204B serial data positive outputs for channel B  
Synchronization input for JESD204B port  
DB2P  
DB3P  
SYNC  
INPUT, COMMON MODE  
INAM  
63  
41  
42  
14  
13  
I
I
I
I
Differential analog negative input for channel A  
Differential analog positive input for channel A  
Differential analog negative input for channel B  
Differential analog positive input for channel B  
Common-mode voltage, 2.1 V.  
INAP  
INBM  
INBP  
VCM  
22  
O
Note that analog inputs are internally biased to this pin through 600 Ω (effective), no external  
connection from the VCM pin to the INxP or INxM pin is required.  
POWER SUPPLY  
AGND  
AVDD  
18, 23, 26, 29, 32, 36, 37  
I
I
Analog ground  
9, 12, 15, 17, 25, 30, 35, 38,  
40, 43, 44, 46  
Analog 1.9-V power supply  
AVDD3V  
DGND  
DVDD  
IOVDD  
NC, RES  
NC  
10, 16, 24, 31, 39, 45  
3, 52, 60, 67  
8, 47  
I
I
I
I
Analog 3.0-V power supply for the analog buffer  
Digital ground  
Digital 1.9-V power supply  
4, 51, 57, 64, 70  
Digital 1.15-V power supply for the JESD204B transmitter  
19, 20, 21  
49  
I
Unused pins, do not connect  
RES  
Reserved pin. Connect to DGND.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.2  
–0.3  
–0.3  
–0.3  
–0.3  
–0.2  
–65  
MAX  
UNIT  
V
AVDD3V  
3.6  
AVDD  
Supply voltage range  
DVDD  
2.1  
2.1  
IOVDD  
Voltage between AGND and DGND  
INAP, INBP, INAM, INBM  
1.4  
0.3  
3
V
CLKINP, CLKINM  
Voltage applied to input pins  
AVDD + 0.3  
AVDD + 0.3  
2.1  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDIN, RESET, SYNC, PDN  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
2.85  
1.8  
NOM  
3.0  
MAX  
3.6  
UNIT  
AVDD3V  
AVDD  
1.9  
2.0  
Supply voltage range  
Analog inputs  
V
DVDD  
1.7  
1.9  
2.0  
IOVDD  
1.1  
1.15  
1.9  
1.2  
Differential input voltage range  
Input common-mode voltage  
VPP  
V
2.0  
Maximum analog input frequency for 1.9-VPP input amplitude(3)(4)  
Input clock frequency, device clock frequency  
Sine wave, ac-coupled  
400  
MHz  
MHz  
500  
0.75  
0.8  
1000  
1.5  
1.6  
Input clock amplitude differential  
Clock inputs  
Temperature  
LVPECL, ac-coupled  
VPP  
(VCLKP – VCLKM  
)
LVDS, ac-coupled  
0.7  
Input device clock duty cycle  
Operating free-air, TA  
45%  
–40  
50%  
55%  
85  
ºC  
Operating junction, TJ  
105(5)  
125  
(1) SYSREF must be applied for the device to initialize; see the SYSREF Signal section for details.  
(2) After power-up, always use a hardware reset to reset the device for the first time; see Table 60 for details.  
(3) Operating 0.5 dB below the maximum-supported amplitude is recommended to accommodate gain mismatch in interleaving ADCs.  
(4) At high frequencies, the maximum supported input amplitude reduces; see Figure 51 for details.  
(5) Prolonged use above the nominal junction temperature can increase the device failure-in-time (FIT) rate.  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
7.4 Thermal Information  
ADS54J69  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
2.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.3  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, –1-dBFS differential input, and 0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
Device clock frequency  
Output sample rate  
Resolution  
1000 MSPS  
500 MSPS  
Bits  
16  
POWER SUPPLIES  
AVDD3V  
AVDD  
DVDD  
IOVDD  
IAVDD3V  
IAVDD  
3.0-V analog supply  
2.85  
1.8  
3.0  
1.9  
3.6  
2.0  
V
V
1.9-V analog supply  
1.9-V digital supply  
1.7  
1.9  
2.0  
V
1.15-V SERDES supply  
3.0-V analog supply current  
1.9-V analog supply current  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
1.1  
1.15  
293  
354  
188  
512  
2.66  
195  
559  
2.73  
1.2  
V
VIN = full-scale on both channels  
VIN = full-scale on both channels  
360  
510  
260  
920  
3.1  
mA  
mA  
mA  
mA  
W
IDVDD  
Four-lane output mode  
(default after reset)  
IIOVDD  
Pdis  
IDVDD  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
mA  
mA  
W
IIOVDD  
Pdis  
Two-lane output mode  
Using the GLOBAL PDN register  
bit in the master page  
Global power-down power dissipation  
204  
315  
mW  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
7.6 AC Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, –1-dBFS differential input, and 0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
MIN  
TYP  
74.2  
73.4  
73  
MAX  
UNIT  
71.3  
SNR  
Signal-to-noise ratio  
72.7  
71.7  
70.3  
70.5  
158.2  
157.4  
157.0  
156.7  
155.7  
154.3  
154.5  
73.8  
73.3  
72.9  
72.5  
71.2  
70.2  
69.4  
86  
dBFS  
155.3  
69.8  
79  
NSD  
Noise spectral density  
dBFS/Hz  
dBFS  
dBc  
SINAD  
SFDR  
HD2  
Signal-to-noise and distortion ratio  
95  
94  
Spurious free dynamic range  
(excluding IL spurs)  
89  
81  
87  
73  
86  
104  
102  
95  
85  
Second-order harmonic distortion  
dBc  
81  
87  
96  
89  
103  
101  
100  
98  
86  
HD3  
Third-order harmonic distortion  
dBc  
95  
73  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
AC Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, –1-dBFS differential input, and 0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 140 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 210 MHz, AIN = –1 dBFS  
fIN = 310 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
MIN  
TYP  
98  
MAX  
UNIT  
95  
84  
94  
Non  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3, and IL spur)  
89  
dBc  
92  
97  
92  
12  
11.9  
11.9  
11.8  
11.5  
11.4  
11.2  
84  
11.3  
ENOB  
Effective number of bits  
Total harmonic distortion  
Interleaving spur  
Bits  
95  
79  
89  
THD  
85  
dBc  
80  
85  
72  
90  
90  
75  
87  
SFDR_IL  
85  
dBc  
85  
86  
82  
fIN1 = 185 MHz, fIN2 = 190 MHz,  
AIN = –7 dBFS  
86  
79  
78  
Two-tone, third-order  
intermodulation distortion  
fIN1 = 365 MHz, fIN2 = 370 MHz,  
AIN = –7 dBFS  
IMD3  
dBFS  
fIN1 = 465 MHz, fIN2 = 470 MHz,  
AIN = –10 dBFS  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
7.7 Digital Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, –1-dBFS differential input, and 0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, SYNC, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
All digital inputs support 1.2-V and 1.8-V logic levels  
SEN  
0.8  
V
V
0.4  
0
50  
50  
0
IIH  
High-level input current  
Low-level input current  
µA  
µA  
RESET, SCLK, SDIN, PDN, SYNC  
SEN  
IIL  
RESET, SCLK, SDIN, PDN, SYNC  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VD  
Differential input voltage  
Common-mode voltage for SYSREF(2)  
0.35  
0.45  
1.3  
1.4  
V
V
V(CM_DIG)  
DIGITAL OUTPUTS (SDOUT, PDN(3)  
)
DVDD –  
0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD  
V
V
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(4)  
VOD  
VOC  
Output differential voltage  
With default swing setting  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDIN, and PDN pins have a 20-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 20-kΩ  
(typical) pullup resistor to IOVDD.  
(2) The SYSREFP and SYSREFM pins are internally biased to the 1.3-V common-mode voltage through a 5-kΩ resistor.  
(3) When functioning as an OVR pin for channel B.  
(4) 100-Ω differential termination.  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
7.8 Timing Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING  
Aperture delay  
0.75  
1.6  
ns  
ps  
ps  
Aperture delay matching between two channels on the same device  
±70  
±270  
145  
Aperture delay matching between two devices at the same temperature and supply voltage  
Actual jitter of sampling clock buffer  
Aperture jitter  
fS rms  
Effective jitter after decimation filtering  
102  
WAKE-UP TIMING  
Wake-up time to valid data after coming out of global power-down  
150  
µs  
LATENCY  
Input  
clock  
cycles  
Data latency(1): ADC sample to digital output  
OVR latency: ADC sample to OVR bit  
134(2)  
62  
Input  
clock  
cycles  
Input  
clock  
cycles  
FOVR latency: ADC sample to FOVR signal on pin  
18 + 4 ns  
4
tPD  
Propagation delay: logic gates and output buffers delay (does not change with fS)  
ns  
SYSREF TIMING  
tSU_SYSREF Setup time for SYSREF, referenced to the input clock falling edge  
300  
100  
900  
ps  
ps  
tH_SYSREF  
Hold time for SYSREF, referenced to the input clock falling edge  
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS  
Unit interval  
100  
2.5  
400  
10  
ps  
Gbps  
ps  
Serial output data rate  
Total jitter for BER of 1E-15 and lane rate = 10 Gbps  
Random jitter for BER of 1E-15 and lane rate = 10 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 10 Gbps  
26  
0.75  
12  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times are measured from 20% to 80%,  
differential output waveform, 2.5 Gbps bit rate 10 Gbps  
tR, tF  
35  
ps  
(1) Overall latency = data latency + decimation filter delay + tPDI  
.
(2) Decimation filter latency is not included in this specification.  
Sample N  
ts_min  
ts_max  
CLKIN  
1.0 GSPS  
SYSREF  
Figure 1. SYSREF Timing  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
N+1  
N+2  
N
N+3  
Sample  
tPD  
Data Latency: 134 Clock Cycles  
CLKINM  
CLKINP  
DA0P, DA0M,  
DB0P, DB0M  
D20  
D11 D20  
D11 D20  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
DA1P, DA1M,  
DB1P, DB1M  
D10  
D1  
D10  
D1  
D10  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
Figure 2. Sample Timing Requirements  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
7.9 Typical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D001  
D002  
SNR = 74.2 dBFS; SFDR = 86 dBc; SINAD = 73.8 dBFS;  
THD = 83 dBc; HD2 = 86 dBc; HD3 = 89 dBc;  
IL spur = 99 dBc; non HD2, HD3 spur = 98 dBc  
SNR = 73.3 dBFS; SFDR = 94 dBc; SINAD = 73.25 dBFS;  
THD = 93 dBc; HD2 = 104 dBc; HD3 = 111 dBc;  
IL spur = 95 dBc; non HD2, HD3 spur = 94 dBc  
Figure 3. FFT for 10-MHz Input Signal  
Figure 4. FFT for 140-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
D004  
SNR = 73 dBFS; SFDR = 93 dBc; SINAD = 73.18 dBFS;  
THD = 89 dBc; HD2 = 93 dBc; HD3 = 103 dBc;  
IL spur = 99 dBc; non HD2, HD3 spur = 94 dBc  
SNR = 72.8 dBFS; SFDR = 89 dBc; SINAD = 72.63 dBFS;  
THD = 86 dBc; HD2 = 97 dBc; HD3 = 99 dBc;  
IL spur = 84 dBc; non HD2, HD3 spur = 89 dBc  
Figure 5. FFT for 170-MHz Input Signal  
Figure 6. FFT for 210-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D005  
D007  
SNR = 71.6 dBFS; SFDR = 80 dBc; SINAD = 71 dBFS;  
THD = 79 dBc; HD2 = –80 dBc; HD3 = –96 dBc;  
IL spur = 85 dBc; non HD2, HD3 spur = 92 dBc  
SNR = 70.5 dBFS; SFDR = 86 dBc; SINAD = 70.4 dBFS;  
THD = 85 dBc; HD2 = –86 dBc; HD3 = –96 dBc;  
IL spur = 98 dBc; non HD2, HD3 spur = 98 dBc  
Figure 7. FFT for 310-MHz Input Signal  
Figure 8. FFT for 370-MHz Input Signal  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D007  
D008  
SNR = 70.6 dBFS; SFDR = 86 dBc; SINAD = 70.55 dBFS;  
THD = 85 dBc; tone at –3 dBFS; HD2 = 102 dBc; HD3 = 86 dBc;  
IL spur = 97 dBc; non HD2, HD3 spur = 96 dBc  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at –7 dBFS,  
IMD = 86 dBFS  
Figure 9. FFT for 470-MHz Input Signal  
Figure 10. FFT for Two-Tone Input Signal (–7 dBFS)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D009  
D010  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at –36 dBFS,  
IMD = 101 dBFS  
fIN1 = 300 MHz, fIN2 = 310 MHz, each tone at –7 dBFS,  
IMD = 79 dBFS  
Figure 11. FFT for Two-Tone Input Signal (–36 dBFS)  
Figure 12. FFT for Two-Tone Input Signal (–7 dBFS)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D011  
D012  
fIN1 = 300 MHz, fIN2 = 310 MHz, each tone at –36 dBFS,  
IMD3 = 102 dBFS  
fIN1 = 470 MHz, fIN2 = 465 MHz, each tone at –10 dBFS,  
IMD = 78 dBFS  
Figure 13. FFT for Two-Tone Input Signal (–36 dBFS)  
Figure 14. FFT for Two-Tone Input Signal (–10 dBFS)  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
-80  
0
-85  
-20  
-90  
-40  
-95  
-60  
-100  
-105  
-110  
-80  
-100  
-120  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
0
50  
100  
150  
200  
250  
Each Tone Amplitude (dBFS)  
D014  
Input Frequency (MHz)  
D013  
fIN1 = 185 MHz, fIN2 = 190 MHz  
fIN1 = 470 MHz, fIN2 = 465 MHz, each tone at –36 dBFS,  
IMD3 = 104 dBFS  
Figure 16. Intermodulation Distortion vs  
Input Amplitude (185 MHz and 190 MHz)  
Figure 15. FFT for Two-Tone Input Signal (–36 dBFS)  
-75  
-80  
-50  
-60  
-85  
-70  
-90  
-80  
-95  
-90  
-100  
-105  
-110  
-100  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-30  
-25  
-20  
-15  
-10  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D015  
D016  
fIN1 = 300 MHz, fIN2 = 310 MHz  
fIN1 = 465 MHz, fIN2 = 470 MHz  
Figure 17. Intermodulation Distortion vs  
Input Amplitude (365 MHz and 370 MHz)  
Figure 18. Intermodulation Distortion vs  
Input Amplitude (465 MHz and 470 MHz)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
AIN = -6 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
fS/4 - fIN  
fS/2 - fIN  
3fS/4 - fIN  
0
100  
200  
300  
400  
500  
600  
700  
0
100  
200  
300  
400  
500  
600  
700  
Input Frequency (MHz)  
Input Frequency (MHz)  
D017  
D018  
Figure 19. Spurious-Free Dynamic Range vs  
Input Frequency  
Figure 20. IL Spur vs Input Frequency  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
75  
74.5  
74  
75  
74  
73  
72  
71  
70  
69  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AIN = -6 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
73.5  
73  
72.5  
72  
71.5  
71  
0
100  
200  
300  
400  
500  
600  
700  
-40  
-15  
10  
35  
60  
85  
Input Frequency (MHz)  
Temperature (°C)  
D019  
D020  
fIN = 185 MHz  
Figure 21. Signal-to-Noise Ratio vs Input Frequency  
Figure 22. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
74  
73.5  
73  
98  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
96  
94  
92  
90  
88  
86  
72.5  
72  
71.5  
71  
70.5  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D021  
D022  
fIN = 185 MHz  
fIN = 300 MHz  
Figure 23. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
85  
84  
83  
82  
81  
80  
79  
75  
74.5  
74  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
73.5  
73  
72.5  
72  
71.5  
71  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D023  
D024  
fIN = 300 MHz  
fIN = 185 MHz  
Figure 25. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
96  
94  
92  
90  
88  
75  
74.5  
74  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
73.5  
73  
72.5  
72  
71.5  
71  
70.5  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D025  
D026  
fIN = 185 MHz  
fIN = 300 MHz  
Figure 27. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 28. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
75.5  
75  
86  
84  
82  
80  
78  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
74.5  
74  
73.5  
73  
72.5  
72  
71.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D027  
D028  
fIN = 300 MHz  
fIN = 185 MHz  
Figure 29. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 30. Signal-to-Noise Ratio vs  
AVDD3V Supply and Temperature  
74  
73.5  
73  
96  
94  
92  
90  
88  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
72.5  
72  
71.5  
71  
70.5  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D030  
D029  
fIN = 300 MHz  
fIN = 185 MHz  
Figure 32. Signal-to-Noise Ratio vs  
AVDD3V Supply and Temperature  
Figure 31. Spurious-Free Dynamic Range vs  
AVDD3V Supply and Temperature  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
84  
83  
82  
81  
80  
83  
80  
77  
74  
71  
68  
65  
62  
59  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
-40  
-15  
10  
35  
60  
85  
0
80  
160  
240  
320  
400  
480  
Temperature (°C)  
Input Frequency (MHz)  
D031  
D032  
fIN = 300 MHz  
Figure 33. Spurious-Free Dynamic Range vs  
AVDD3V Supply and Temperature  
Figure 34. Signal-to-Noise Ratio vs  
Gain and Input Frequency  
110  
105  
100  
95  
120  
115  
110  
105  
100  
95  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
90  
85  
80  
90  
75  
85  
70  
80  
65  
75  
0
80  
160  
240  
320  
400  
480  
0
80  
160  
240  
320  
400  
480  
D034  
Input Frequency (MHz)  
Input Frequency (MHz)  
D033  
Figure 35. Spurious-Free Dynamic Range vs  
Gain and Input Frequency  
Figure 36. Second-Order Harmonic Distortion vs  
Gain and Input Frequency  
125  
115  
105  
95  
115  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
110  
105  
100  
95  
85  
90  
75  
85  
65  
80  
0
80  
160  
240  
320  
400  
480  
0
80  
160  
240  
320  
400  
480  
Input Frequency (MHz)  
Input Frequency (MHz)  
D035  
D036  
Figure 37. Third-Order Harmonic Distortion vs  
Gain and Input Frequency  
Figure 38. IL Spur vs Gain and Input Frequency  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
78  
76  
74  
72  
70  
68  
200  
160  
120  
80  
77  
75.5  
74  
180  
150  
120  
90  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
72.5  
71  
60  
40  
69.5  
30  
0
68  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D037  
D038  
fIN = 185 MHz  
fIN = 310 MHz  
Figure 39. Performance vs Amplitude  
Figure 40. Performance vs Amplitude  
120  
110  
100  
90  
120  
110  
100  
90  
fS / 4 - fIN  
fS / 2 - fIN  
3fS / 4 - fIN  
fS / 4 - fIN  
fS / 2 - fIN  
3fS / 4 - fIN  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D039  
D040  
fIN = 185 MHz  
fIN = 310 MHz  
Figure 41. IL Spur vs Amplitude  
Figure 42. IL Spur vs Amplitude  
78  
110  
80  
120  
SNR  
SNR  
SFDR  
SFDR  
76  
74  
72  
70  
68  
100  
90  
80  
70  
60  
77  
74  
71  
68  
65  
100  
80  
60  
40  
20  
0.2  
0.6  
1
1.4  
1.8  
2.2  
0.2  
0.6  
1
1.4  
1.8  
2.2  
Differential Clock Amplitude (VPP  
)
Differential Clock Amplitude (VPP)  
D041  
D042  
fIN = 185 MHz  
fIN = 310 MHz  
Figure 43. Performance vs Differential Clock Amplitude  
Figure 44. Performance vs Differential Clock Amplitude  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
76  
75  
74  
73  
72  
71  
100  
95  
90  
85  
80  
75  
75  
74  
73  
72  
71  
70  
90  
85  
80  
75  
70  
65  
SNR  
SFDR  
SNR  
SFDR  
35  
40  
45  
50  
55  
60  
65  
30  
35  
40  
45  
50  
55  
60  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D043  
D044  
fIN = 185 MHz  
fIN = 300 MHz  
Figure 45. Performance vs Input Clock Duty Cycle  
Figure 46. Performance vs Input Clock Duty Cycle  
-10  
0
PSRR with 50-mVPP Signal on AVDD  
PSRR with 50-mVPP Signal on AVDD3V  
-20  
-20  
-40  
-30  
-40  
-50  
-60  
-70  
-60  
-80  
-100  
-120  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
Frequency of Signal on Supply (MHz)  
D046  
Input Frequency (MHz)  
D045  
fIN = 185 MHz  
AIN = –1 dBFS, SFDR = 84 dBc, SINAD = 70 dBFS,  
fPSRR = 5 MHz, APSRR = 50 mVPP, fIN = 185 MHz,  
amplitude: fIN – fPSRR = 85 dBc, fIN + fPSRR = 84 dBc  
Figure 48. Power-Supply Rejection Ratio vs  
Noise Signal Frequency  
Figure 47. Power-Supply Rejection Ratio FFT for  
AVDD Supply  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
Frequency of Input Common-Mode Signal (MHz)  
D048  
Input Frequency (MHz)  
D047  
fIN = 185 MHz  
AIN = –1 dBFS, SFDR = 78 dBc, SINAD = 71 dBFS,  
fCMRR = 5 MHz, ACMRR = 50 mVPP, fIN = 185 MHz,  
amplitude: fIN – fCMRR = 79 dBc, fIN + fCMRR = 80 dBc  
Figure 50. Common-Mode Rejection Ratio vs  
Common-Mode Signal Frequency  
Figure 49. Common-Mode Rejection Ratio FFT  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
2
4
3.2  
2.4  
1.6  
0.8  
0
AVDD  
IOVDD  
DVDD  
TOTAL POWER  
0
AVDD3V  
-2  
-4  
-6  
-8  
-10  
0
100 200 300 400 500 600 700 800 900 1000  
250  
300  
350  
400  
450  
500  
Input Frequency (MHz)  
Output Sample Rate (MSPS)  
D049  
D050  
Figure 51. Maximum-Supported Amplitude vs  
Input Frequency  
Figure 52. Power Consumption vs Sampling Speed  
76  
105  
AIN = -3 dBFS  
AIN = -1 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
100  
95  
90  
85  
80  
75  
70  
65  
75  
74  
73  
72  
71  
70  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
Input Frequency (MHz)  
Input Frequency (MHz)  
D051  
D052  
Figure 53. Signal-to-Noise Ratio vs  
Figure 54. Spurious-Free Dynamic Range vs  
Input Frequency (Output Sample Rate = 300 MSPS)  
Input Frequency (Output Sample Rate = 300 MSPS)  
105  
76  
AIN = -3 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
AIN = -1 dBFS  
100  
75  
95  
90  
85  
80  
75  
70  
65  
74  
73  
72  
71  
70  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
Input Frequency (MHz)  
Input Frequency (MHz)  
D053  
D054  
Figure 55. Signal-to-Noise Ratio vs Input Frequency  
(Output Sample Rate = 350 MSPS)  
Figure 56. Spurious-Free Dynamic Range vs  
Input Frequency (Output Sample Rate = 350 MSPS)  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, device clock frequency =  
1 GSPS, output sampling rate = 500 MSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD =  
1.15 V, and –1-dBFS differential input (unless otherwise noted)  
105  
101  
97  
76  
75  
74  
73  
72  
71  
70  
AIN = -3 dBFS  
AIN = -1 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
93  
89  
85  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D055  
D056  
Figure 57. Signal-to-Noise Ratio vs Input Frequency  
(Output Sample Rate = 400 MSPS)  
Figure 58. Spurious-Free Dynamic Range vs  
Input Frequency (Output Sample Rate = 400 MSPS)  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADS54J69 is a low-power, wide-bandwidth, 16-bit, 500-MSPS, dual-channel, analog-to-digital converter  
(ADC). The ADS54J69 employs four interleaving ADCs for each channel to achieve a noise floor of  
–159 dBFS/Hz.  
The ADS54J69 uses TI's proprietary interleaving and dither algorithms to achieve a clean spectrum with high  
spurious-free dynamic range (SFDR). Built-in, half-band, decimate-by-2 filters further enhance the capability of  
the ADS54J69 to deliver excellent signal-to-noise ratio (SNR) and SFDR over a wide range of frequencies.  
Analog input buffers isolate the ADC driver from glitch energy generated from sampling process, thereby simplify  
the driving network on-board.  
The JESD204B interface reduces the number of interface lines with two-lane and four-lane options, allowing a  
high system integration density. The JESD204B interface operates in subclass-1, enabling multi-chip  
synchronization with the SYSREF input.  
8.2 Functional Block Diagram  
DDC Block  
DA0P, DA0M,  
DA1P, DA1M  
Buffer  
Interleaving  
Correction,  
Digital Gain  
2
2
ADC  
INAP, INAM  
DA2P, DA2M,  
DA3P, DA3M  
PLL:  
x20  
x40  
Divide-  
by-4  
CLKINP,  
CLKINM  
SYNC  
SYSREFP,  
SYSREFM  
DDC Block  
DB0P, DB0M,  
DB1P, DB1M  
Buffer  
2
Interleaving  
Correction,  
Digital Gain  
ADC  
INBP, INBM  
VCM  
2
DB2P, DB2M,  
DB3P, DB3M  
FOVR  
Control and SPI  
Common-  
Mode  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.3 Feature Description  
8.3.1 Analog Inputs  
The ADS54J69 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source that enables great flexibility in  
the external analog filter design as well as excellent 50-matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, resulting in a more  
constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to VCM using 600-Ω resistors, allowing for ac-  
coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.475 V) and (VCM – 0.475 V), resulting in a 1.9-VPP (default) differential input swing. The input sampling circuit  
has a 3-dB bandwidth that extends up to 1.2 GHz. An equivalent analog input network diagram is shown in  
Figure 59.  
0.77 W  
1 W  
3.3 W  
2 nH  
0.6 W  
150 fF  
200 fF  
3 pF  
375 fF  
375 fF  
375 fF  
375 fF  
INP  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
600 W  
150 fF  
200 fF  
3 pF  
VCM  
40 W  
600 W  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
2 nH  
0.6 W  
INM  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
40 W  
Figure 59. Analog Input Network  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
The input bandwidth shown in Figure 60 is measured with respect to a 50-Ω differential input termination at the  
ADC input pins.  
0
-3  
-6  
-9  
-12  
-15  
-18  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Input Frequency (MHz)  
D057  
Figure 60. Transfer Function versus Frequency  
8.3.2 DDC Block  
The ADS54J69 has an optional DDC block that can be enabled via an SPI register write. Each ADC channel is  
followed by a DDC block consisting of a decimate-by-2, half-band, finite impulse response (FIR) filter with low-  
pass and high-pass options programmable via the SPI interface.  
8.3.2.1 Decimate-by-2 Filter  
This decimation filter has 41 taps. The stop-band attenuation is approximately 90 dB and the pass-band flatness  
is ±0.05 dB. Table 1 shows corner frequencies for the low-pass and high-pass filter options.  
Table 1. Corner Frequencies for the Decimate-by-2 Filter  
CORNERS (dB)  
LOW PASS  
0.202 × fS  
0.210 × fS  
0.215 × fS  
0.227 × fS  
HIGH PASS  
0.298 × fS  
0.290 × fS  
0.285 × fS  
0.273 × fS  
–0.1  
–0.5  
–1  
–3  
Figure 61 and Figure 62 show the frequency response of the decimate-by-2 filter from dc to fS / 2.  
5
-20  
0.5  
0
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
D013  
D014  
Figure 61. Decimate-by-2 Filter Response  
Figure 62. Decimate-by-2 Filter Response (Zoomed)  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.3.3 SYSREF Signal  
The SYSREF signal is a periodic signal that is sampled by the ADS54J69 device clock and used to align the  
boundary of the local multi-frame clock inside the data converter. SYSREF is required to be a sub-harmonic of  
the local multi-frame clock (LMFC) internal timing. To meet this requirement, the timing of SYSREF is dependent  
on the device clock frequency and the LMFC frequency, as determined by the selected DDC decimation and  
frames per multi-frame settings. The SYSREF signal is recommended be a low-frequency signal in the range of  
1 MHz to 5 MHz in order to reduce coupling to the signal path both on the printed circuit board (PCB) as well as  
internal in the device.  
The external SYSREF signal must be a sub-harmonic of the internal LMFC clock, as shown in Equation 1 and  
Table 2.  
SYSREF = LMFC / 2N  
where  
N = 0, 1, 2, and so forth  
(1)  
Table 2. LMFC Clock Frequency  
LMFS CONFIGURATION  
DECIMATION  
LMFC CLOCK(1)(2)  
(fS / 4) / k  
4222  
2242  
2X  
2X  
(fS / 4) / k  
(1) K = Number of frames per multi-frame (JESD digital page 6900h, address 06h, bits 4-0).  
(2) fS = sampling (device) clock frequency.  
8.3.3.1 SYSREF Not Present (Subclass 0, 2)  
A SYSREF pulse is required by the ADS54J69 to reset internal counters. If SYSREF is not present, as can be  
the case in subclass 0 or 2, this pulse can be done by doing the following register writes shown in Table 3.  
Table 3. Internally Pulsing SYSREF Twice Using Register Writes  
ADDRESS (Hex)  
0-011h  
DATA (Hex)  
80h  
COMMENT  
Set the master page  
Enable manual SYSREF  
Set SYSREF high  
Set SYSREF low  
0-054h  
80h  
0-053h  
01h  
0-053h  
00h  
0-053h  
01h  
Set SYSREF high  
Set SYSREF low  
0-053h  
00h  
8.3.4 Overrange Indication  
The ADS54J69 provides a fast overrange indication that can be presented in the digital output data stream via an  
SPI configuration. Alternatively, if not used, the SDOUT (pin 11) and PDN (pin 50) pins can be configured via the  
SPI to output the fast overrange (FOVR) indicator.  
When the FOVR indication is embedded in the output data stream, the FOVR replaces the LSB of the 16-bit data  
stream going to the 8b/10b encoder, as shown in Figure 63.  
16-Bit Data Output  
D0/  
OVR  
D15  
D14  
D13 D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
16-Bit Data Going to 8b/10b Encoder  
Figure 63. Overrange Indication in a Data Stream  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
 
 
 
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.3.4.1 Fast OVR  
The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and is presented  
after only 18 clock cycles + tPD (tPD of the gates and buffers is approximately 4 ns), thus enabling a quicker  
reaction to an overrange event.  
The input voltage level at which the overload is detected is referred to as the threshold. The threshold is  
programmable using the FOVR THRESHOLD bits, as shown in Figure 64. The FOVR is triggered 18 clock cycles  
+ tPD (tPD of the gates and buffers is approximately 4 ns) after the overload condition occurs.  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
32  
64  
96  
128  
160  
192  
224  
255  
Threshold Decimal Value  
D055  
Figure 64. Programming Fast OVR Thresholds  
The input voltage level at which the fast OVR is triggered is defined by Equation 2:  
Full-Scale × [Decimal Value of the FOVR Threshold Bits] / 255)  
(2)  
(3)  
The default threshold is E3h (227d), corresponding to a threshold of –1 dBFS.  
In terms of full-scale input, the fast OVR threshold can be calculated as Equation 3:  
20log (FOVR Threshold / 255)  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.3.5 Power-Down Mode  
The ADS54J69 provides a highly-configurable power-down mode. Power-down can be enabled by using the  
PDN pin or via SPI register writes.  
A power-down mask can be configured that allows a trade-off between wake-up time and power consumption in  
power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2, as shown in  
Table 4. See the master page registers in Table 10 for further details.  
Table 4. Register Address for Power-Down Modes  
REGISTER  
ADDRESS  
REGISTER DATA  
COMMENT  
A[7:0] (Hex)  
MASTER PAGE (80h)  
20  
7
6
5
4
3
2
1
0
PDN ADC CHA  
PDN BUFFER CHB  
PDN ADC CHA  
PDN BUFFER CHB  
GLOBAL OVERRIDE  
PDN ADC CHB  
MASK 1  
21  
23  
24  
PDN BUFFER CHA  
PDN BUFFER CHA  
0
0
0
0
PDN ADC CHB  
MASK 2  
CONFIG  
0
0
0
0
0
0
0
0
PDN MASK  
26  
0
PDN  
PDN PIN  
SEL  
MASK  
SYSREF  
53  
55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PDN MASK  
To save power, the device can be put in complete power-down by using the GLOBAL PDN register bit. However,  
when the JESD link is required to be active during power-down, the ADC and analog buffer can be selectively  
powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN MASK  
register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. Table 5 shows  
power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF CHx  
register bits.  
Table 5. Power Consumption in Different Power-Down Settings  
TOTAL  
IAVDD3V  
(mA)  
IAVDD  
(mA)  
IDVDD  
(mA)  
IIOVDD  
(mA)  
POWER  
(W)  
REGISTER BIT  
Default  
COMMENT  
After reset, with a full-scale input signal to both  
channels  
346  
3
354  
6
188  
21  
512  
127  
2.66  
0.2  
GBL PDN = 1  
The device is in a complete power-down state  
GBL PDN = 0,  
PDN ADC CHx = 1  
(x = A or B)  
The ADC of one channel is powered down  
284  
270  
221  
352  
130  
188  
461  
516  
2.05  
2.43  
GBL PDN = 0,  
PDN BUFF CHx = 1  
(x = A or B)  
The input buffer of one channel is powered down  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = A or B)  
The ADC and input buffer of one channel are  
powered down  
206  
64  
220  
84  
129  
67  
465  
389  
1.82  
0.93  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = A and B)  
The ADC and input buffer of both channels are  
powered down  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Device Configuration  
The ADS54J69 can be configured by using a serial programming interface, as described in the Serial Interface  
section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down mode.  
The ADS54J69 supports a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see the Register  
Maps section) to access all register bits.  
8.4.1.1 Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins, as shown in Figure 65.  
Legends used in Figure 65 are explained in Table 6. Serially shifting bits into the device is enabled when SEN is  
low. Serial data on SDIN are latched at every SCLK rising edge when SEN is active (low). The interface can  
function with SCLK frequencies from 2 MHz down to very low speeds (of a few Hertz) and also with a non-50%  
SCLK duty cycle.  
Register Address[11:0]  
Register Data[7:0]  
SDIN  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 65. SPI Timing Diagram  
Table 6. SPI Timing Diagram Legend  
SPI BITS  
DESCRIPTION  
BIT SETTINGS  
0 = SPI write  
1 = SPI read back  
R/W  
Read/write bit  
0 = Analog SPI bank (master and ADC pages)  
M
P
SPI bank access  
1 = JESD SPI bank (main digital, analog JESD, and digital  
JESD pages)  
0 = Page access  
1 = Register access  
JESD page selection bit  
0 = Channel A  
CH  
SPI access for a specific channel of the JESD SPI bank  
1 = Channel B  
By default, both channels are being addressed.  
A[11:0]  
D[7:0]  
SPI address bits  
SPI data bits  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Table 7 shows the timing requirements for the serial interface signals in Figure 65.  
Table 7. SPI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIN setup time  
)
> dc  
100  
100  
100  
100  
2
ns  
ns  
tDH  
SDIN hold time  
ns  
8.4.1.2 Serial Register Write: Analog Bank  
The analog SPI bank contains two pages (the master and ADC page). The internal register of the ADS54J69  
analog SPI bank can be programmed by:  
1. Driving the SEN pin low.  
2. Initiating a serial interface cycle specifying the page address of the register whose content must be written.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Writing the register content, as shown in Figure 66. When a page is selected, multiple writes into the same  
page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 66. Serial Register Write Timing Diagram  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.4.1.3 Serial Register Readout: Analog Bank  
The content from one of the two analog banks can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the page address of the register whose content must be read.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Setting the R/W bit to 1 and writing the address to be read back.  
4. Reading back the register content on the SDOUT pin, as shown in Figure 67. When a page is selected,  
multiple read backs from the same page can be done.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 67. Serial Register Read Timing Diagram  
8.4.1.4 JESD Bank SPI Page Selection  
The JESD SPI bank contains four pages (main digital, digital, and analog JESD pages). The individual pages can  
be selected by:  
1. Driving the SEN pin low.  
2. Setting the M bit to 1 and specifying the page with two register writes. Note that the P bit must be set to 0, as  
shown in Figure 68.  
Write address 4003h with 00h (LSB byte of page address).  
Write address 4004h with the MSB byte of the page address.  
For the main digital page: write address 4004h with 68h.  
For the digital JESD page: write address 4004h with 69h.  
For the analog JESD page: write address 4004h with 6Ah.  
Register Address[11:0]  
Register Data[7:0]  
D5 D4 D3 D2  
0
1
0
0
SDIN  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SCLK  
SEN  
RESET  
Figure 68. SPI Page Selection  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.4.1.5 Serial Register Write: JESD Bank  
The ADS54J69 is a dual-channel device and the JESD204B portion is configured individually for each channel by  
using the CH bit. Note that the P bit must be set to 1 for register writes.  
1. Drive the SEN pin low.  
2. Select the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
If separate control for both channels is desired, write address 4005h with 01h.  
For the main digital page: write address 4004h with 68h.  
For the digital JESD page: write address 4004h with 69h.  
For the analog JESD page: write address 4004h with 6Ah.  
3. Set the M and P bits to 1, select channel A (CH = 0) or channel B (CH = 1), and write the register content as  
shown in Figure 69. When a page is selected, multiple writes into the same page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 69. JESD Serial Register Write Timing Diagram  
8.4.1.5.1 Individual Channel Programming  
By default, register writes are applied to both channels. To enable individual channel writes, write address 4005h  
with 01h (default is 00h).  
8.4.1.6 Serial Register Readout: JESD Bank  
The content from one of the pages of the JESD bank can be read out by:  
1. Driving the SEN pin low.  
2. Select the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
If separate control for both channels is desired, write address 4005h with 01h.  
For the main digital page: write address 4004h with 68h.  
For the digital JESD page: write address 4004h with 69h.  
For the analog JESD page: write address 4004h with 6Ah.  
3. Setting the R/W, M, and P bits to 1, selecting channel A or channel B, and writing the address to be read  
back.  
4. Reading back the register content on the SDOUT pin; see Figure 70. When a page is selected, multiple read  
backs from the same page can be done.  
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Register Address[11:0]  
A7 A6 A5 A4  
Register Data[7:0] = XX  
D5 D4 D3 D2  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 70. JESD Serial Register Read Timing Diagram  
8.4.2 JESD204B Interface  
The ADS54J69 supports device subclass 1 with a maximum output data rate of 10.0 Gbps for each serial  
transmitter.  
An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific  
sampling clock edge, allowing synchronization of multiple devices in a system and minimizing timing and  
alignment uncertainty. The SYNC input is used to control the JESD204B SERDES blocks.  
Depending on the ADC output data rate, the JESD204B output interface can be operated with either two or four  
active lanes (out of total 8 lanes), as shown in Figure 71. The JESD204B setup and configuration of the frame  
assembly parameters is controlled via the SPI interface.  
SYSREF  
SYNC  
JESD204B  
DA[3:0]  
INA  
INB  
JESD204B  
JESD204B  
JESD204B  
DB[3:0]  
Sample Clock  
Figure 71. ADS54J69 Block Diagram  
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
The JESD204B transmitter block shown in Figure 72 consists of the transport layer, the data scrambler, and the  
link layer. The transport layer maps the ADC output data into the selected JESD204B frame data format. The link  
layer performs the 8b/10b data encoding as well as the synchronization and initial lane alignment using the  
SYNC input signal. Optionally, data from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
8b, 10b  
Encoding  
Frame Data  
Mapping  
Scrambler  
1 + x14 + x15  
D[3:0]  
Comma Characters,  
Initial Lane Alignment  
SYNC  
Figure 72. JESD204B Transmitter Block  
8.4.2.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started when the receiving device de-asserts the SYNC signal, as shown in  
Figure 73. When a logic low is detected on the SYNC input pin, the ADS54J69 starts transmitting comma (K28.5)  
characters to establish a code group synchronization.  
When synchronization is complete, the receiving device asserts the SYNC signal and the ADS54J69 starts the  
initial lane alignment sequence with the next local multi-frame clock boundary. The ADS54J69 transmits four  
multi-frames, each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNC  
Transmit Data  
xxx  
K28.5  
Code Group  
K28.5  
Initial Lane  
ILA  
ILA  
DATA  
DATA  
Data Transmission  
Synchronization  
Alignment  
Figure 73. Lane Alignment Sequence  
8.4.2.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J69  
supports a clock output, encoded, and a PRBS (215 – 1) pattern. These test patterns can be enabled via an SPI  
register write and are located in the JESD digital page of the JESD bank.  
Copyright © 2015–2017, Texas Instruments Incorporated  
35  
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.4.2.3 JESD204B Frame  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link  
M is the number of converters per device  
F is the number of octets per frame clock period, per lane  
S is the number of samples per frame per converter  
8.4.2.4 JESD204B Frame Assembly with Decimation  
Table 8 lists the available JESD204B formats and interface rate at maximum sampling frequency. At lower  
sampling frequencies, interface rates scale down proportionally.  
Figure 74 shows the detailed frame assembly for the decimated output.  
Table 8. Interface Rates with Decimation Filter  
MAX ADC  
OUTPUT RATE  
(MSPS)  
JESD MODE  
REGISTER BIT  
JESD PLL MODE  
SETTING  
MAX fSERDES  
(Gbps)  
L
M
F
S
DECIMATION  
4
2
2
2
2
4
2
2
001  
010  
20x  
40x  
2X  
2X  
500  
500  
5.0  
10.0  
Channel Output Sample Clock  
(Chip Clock / 2 = 500 MSPS)  
Frame Clock  
(250 MHz)  
One Frame Period  
One Frame Period  
PIN  
LMFS = 4222, 2X DECIMATION  
LMFS = 2242, 2X DECIMATION  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
A1[15:8]  
A0[15:8]  
A1[7:0]  
A0[7:0]  
A3[15:8]  
A2[15:8]  
A3[7:0]  
A2[7:0]  
Lane DA0 is Unused  
A0[15:8] A0[7:0] A1[15:8] A1[7:0]  
Lane DA2 is Unused  
Lane DA2 is Unused  
Lane DA3 is Unused  
Lane DA3 is Unused  
Lane DB0 is Unused  
B1[15:8]  
B0[15:8]  
B1[7:0]  
B0[7:0]  
B3[15:8]  
B3[7:0]  
B2[7:0]  
B2[15:8]  
B0[15:8] B0[7:0] B1[15:8] B1[7:0]  
Lane DB2 is Unused  
Lane DB2 is Unused  
Lane DB3 is Unused  
Lane DB3 is Unused  
Figure 74. Frame Assembly with Decimation Filter  
36  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Note that after power-up, the JESD output bus must be reordered to obtain correct link parameters in the ILA  
sequence. Table 9 shows the required register writes to reorder the JESD output bus.  
Table 9. Configuring LMFS for the JESD Link  
JESD MODE  
REGISTER BIT  
(In JESD  
JESD PLL MODE  
(In JESD  
Analog Page)  
DA_BUS_REORDER  
REGISTER BIT  
(In JESD Digital Page)  
DB_BUS_REORDER  
REGISTER BIT  
(In JESD Digital Page)  
REGISTER 52  
(In Main  
Digital Page)  
REGISTER 72  
(In Main  
Digital Page)  
L
M
F
S
DECIMATION  
Digital Page)  
4
2
2
2
2
4
2
2
2X  
2X  
00h  
10h  
01h  
02h  
0Ah  
0Ah  
0Ah  
0Ah  
80h  
80h  
08h  
08h  
8.4.2.4.1 JESD Transmitter Interface  
Each of the 10.0-Gbps SERDES JESD transmitter outputs requires ac-coupling between the transmitter and  
receiver. The differential pair must be terminated with 100-Ω resistors as close to the receiving device as  
possible to avoid unwanted reflections and signal degradation, as shown in Figure 75.  
0.1 mF  
DA[3:0]P,  
DB[3:0]P  
Rt = ZO  
Transmission Line, Zo  
VCM  
Receiver  
Rt = ZO  
DA[3:0]M,  
DB[3:0]M  
0.1 mF  
Figure 75. Output Connection to Receiver  
Copyright © 2015–2017, Texas Instruments Incorporated  
37  
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.4.2.4.2 Eye Diagrams  
Figure 76 to Figure 79 show the serial output eye diagrams of the ADS54J69 at 5.0 Gbps and 10 Gbps with  
default and increased output voltage swing against the JESD204B mask.  
Figure 76. Eye Diagram at 5-Gbps Bit Rate with  
Default Output Swing  
Figure 77. Eye Diagram at 5-Gbps Bit Rate with  
Increased Output Swing  
Figure 79. Eye Diagram at 10-Gbps Bit Rate with  
Increased Output Swing  
Figure 78. Eye Diagram at 10-Gbps Bit Rate with  
Default Output Swing  
38  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5 Register Maps  
Figure 80 shows a conceptual diagram of the serial registers.  
Initiate an SPI Cycle  
R/W, M, P, CH, Bits Decoder(1)  
M = 0  
M = 1  
Analog Bank  
JESD Bank  
General Register  
General Register  
(Address 005h,  
Keep M = 1, P = 0)  
JESD Bank Page Selection  
(Address 003h and Address 004h,  
Keep M = 1, P = 0)  
Unused Registers  
(Address 01h, Address 02h.  
Keep M = 1, P = 0)  
Analog Bank Page Selection  
(Address 00h,  
(Address 011h, Keep M = 0, P = 0)  
Keep M = 0, P = 0)  
Value 80h  
Addr 5Fh  
Value 0Fh  
Value 6800h  
Value 6900h  
Value 6A00h  
Addr 0h  
Addr 20h  
Addr 0h  
Addr 12h  
Main  
Digital Page  
JESD  
ADC Page  
(Fast OVR)  
JESD  
Digital Page  
Master Page  
(PDN, OVR,  
DC Coupling)  
Analog Page  
(PLL Configuration,  
Output Swing,  
(Nyquist Zone,  
Gain,  
OVR, Filter)  
Keep  
M = 0, P = 0  
(JESD  
Configuration)  
Pre-Emphasis)  
Keep  
M = 0, P = 0  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
Addr F7h  
Addr 59h  
Addr 32h  
Addr 1Bh  
Figure 80. Serial Interface Registers  
8.5.1 Detailed Register Info  
The ADS54J69 contains two main SPI banks: the analog SPI bank and the digital SPI bank. The analog SPI bank gives access to the ADC analog blocks  
and the JESD SPI bank controls the digital features and anything related to the JESD204B serial interface. The analog SPI bank is divided into two  
pages (master and ADC) and the JESD SPI bank is divided into three pages (main digital, JESD digital, and JESD analog). Table 10 lists a register map  
for the ADS54J69.  
Copyright © 2015–2017, Texas Instruments Incorporated  
39  
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 10. Register Map  
REGISTER  
ADDRESS  
REGISTER DATA  
4
A[11:0] (Hex)  
7
6
5
3
2
1
0
GENERAL REGISTERS  
0
3
4
RESET  
0
0
0
0
0
0
RESET  
JESD BANK PAGE SEL[7:0]  
JESD BANK PAGE SEL[15:8]  
DISABLE  
BROADCAST  
5
0
0
0
0
0
0
0
11  
ANALOG BANK PAGE SEL  
MASTER PAGE (80h)  
20  
21  
23  
24  
PDN ADC CHA  
PDN ADC CHA  
PDN ADC CHB  
PDN ADC CHB  
PDN BUFFER CHB  
PDN BUFFER CHA  
0
0
0
0
PDN BUFFER CHB  
PDN BUFFER CHA  
0
0
0
0
0
0
0
0
OVERRIDE PDN  
PIN  
26  
4F  
53  
GLOBAL PDN  
PDN MASK SEL  
0
0
0
0
EN INPUT DC  
COUPLING  
0
0
0
0
0
0
0
0
0
0
0
0
0
EN SYSREF DC  
COUPLING  
MASK SYSREF  
0
SET SYSREF  
0
ENABLE MANUAL  
SYSREF  
54  
0
55  
0
0
0
0
PDN MASK  
0
0
0
0
0
0
0
0
0
59  
ADC PAGE (0Fh)  
5F  
FOVR CHB  
ALWAYS WRITE 1  
FOVR THRESHOLD PROG  
MAIN DIGITAL PAGE (6800h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PULSE RESET  
41  
42  
43  
44  
4B  
0
0
0
0
0
DECFIL MODE[3]  
0
DECFIL MODE[2:0]  
NYQUIST ZONE  
0
0
0
0
0
0
0
FORMAT SEL  
0
DIGITAL GAIN  
0
0
FORMAT EN  
0
0
MAIN DIGITAL PAGE (6800h) (continued)  
40  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Register Maps (continued)  
Table 10. Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0] (Hex)  
7
6
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
3
2
0
0
0
0
0
0
0
1
0
0
0
0
0
0
4D  
4E  
52  
0
DEC MODE EN  
0
CTRL NYQUIST  
0
0
ALWAYS WRITE 1  
0
DIG GAIN EN  
0
72  
0
0
0
0
ALWAYS WRITE 1  
AB  
AD  
F7  
0
0
0
LSB SEL EN  
LSB SELECT  
0
DIG RESET  
JESD DIGITAL PAGE (6900h)  
0
1
CTRL K  
0
0
0
TESTMODE EN  
0
FLIP ADC DATA  
0
LANE ALIGN  
0
FRAME ALIGN  
JESD MODE  
TX LINK DIS  
SYNC REG  
SYNC REG EN  
LINK LAYER  
RPAT  
LMFC MASK  
RESET  
2
3
LINK LAYER TESTMODE  
0
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
0
RELEASE ILANE SEQ  
5
6
SCRAMBLE EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FRAMES PER MULTI FRAME (K)  
7
0
SUBCLASS  
0
31  
32  
DA_BUS_REORDER[7:0]  
DB_BUS_REORDER[7:0]  
JESD ANALOG PAGE (6A00h)  
12  
13  
14  
15  
SEL EMP LANE 1  
SEL EMP LANE 0  
SEL EMP LANE 2  
SEL EMP LANE 3  
0
0
0
0
0
0
0
0
16  
1A  
1B  
0
0
0
0
0
0
0
0
0
0
0
0
JESD PLL MODE  
0
0
FOVR CHA  
0
0
0
JESD SWING  
FOVR CHA EN  
Copyright © 2015–2017, Texas Instruments Incorporated  
41  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.2 Example Register Writes  
This section provides three different example register writes. Table 11 describes a global power-down register  
write, Table 12 describes the register writes to enable the high-pass filter in the default four-lane output mode  
(LMFS = 4222), and Table 13 describes the register writes to enable the high-pass filter in the two-lane output  
mode (LMFS = 2242).  
Note that by default after reset, the low-pass filter and four-lane output mode are enabled and register writes are  
applied to both channels together.  
Table 11. Global Power-Down  
ADDRESS (Hex)  
DATA (Hex)  
80h  
COMMENT  
11h  
26h  
Set the master page  
C0h  
Set the global power-down  
Table 12. Selecting 2X Decimation with Four-Lane Mode (LMFS = 4222)  
ADDRESS (Hex)  
4-004h  
DATA (Hex)  
68h  
COMMENT  
Select the main digital page (6800h)  
4-003h  
00h  
6-041h  
16h  
Set decimate-by-2 (high-pass filter)  
Enable decimation filter control  
6-04Dh  
6-072h  
08h  
08h  
Enable the ALWAYS WRITE 1 register bit (for output bus reorder)  
Enable the ALWAYS WRITE 1 register bit (for output bus reorder)  
6-052h  
80h  
6-000h  
01h  
Pulse the PULSE RESET register bit so that registers programmed in the main  
digital page (6800h) become effective.  
6-000h  
00h  
4-004h  
69h  
Select the JESD digital page (6900h)  
4-003h  
00h  
6-031h  
0Ah  
Output bus reorder for channel A  
6-032h  
0Ah  
Output bus reorder for channel B  
6-001h  
01h  
JESD filter mode + 4-lanes output selection  
Table 13. Selecting 2X Decimation with Two-Lane Mode (LMFS = 2242)  
ADDRESS (Hex)  
4-004h  
4-003h  
6-041h  
6-04Dh  
6-072h  
6-052h  
6-000h  
6-000h  
4-004h  
4-003h  
6-031h  
6-032h  
6-001h  
4-004h  
4-003h  
6-016h  
DATA (Hex)  
68h  
COMMENT  
Select the main digital page (6800h)  
00h  
16h  
Set decimate-by-2 (high-pass filter)  
Enable decimation filter control  
08h  
08h  
Set the ALWAYS WRITE 1 register bit (for output bus reorder)  
Set the ALWAYS WRITE 1 register bit (for output bus reorder)  
80h  
01h  
Pulse the PULSE RESET register bit so that registers programmed in the main  
digital page (6800h) become effective.  
00h  
69h  
Select the JESD digital page (6900h)  
00h  
0Ah  
0Ah  
02h  
Output bus reorder for channel A  
Output bus reorder for channel B  
JESD filter mode + 2-lanes output selection  
6Ah  
00h  
Select the JESD analog page (6A00h)  
02h  
JESD PLL MODE 40x selection in the analog page  
42  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3 Register Descriptions  
8.5.3.1 General Registers  
8.5.3.1.1 Register 0h (address = 0h)  
Figure 81. Register 0h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
RESET  
W-0h  
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 14. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
W
0h  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
6-1  
0
0
W
W
0h  
0h  
Must write 0  
RESET  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
8.5.3.1.2 Register 3h (address = 3h)  
Figure 82. Register 3h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 15. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
JESD BANK PAGE SEL[7:0]  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
8.5.3.1.3 Register 4h (address = 4h)  
Figure 83. Register 4h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 16. Register 4h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
JESD BANK PAGE SEL[15:8]  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
Copyright © 2015–2017, Texas Instruments Incorporated  
43  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.1.4 Register 5h (address = 5h)  
Figure 84. Register 5h  
7
0
6
0
5
0
4
3
0
2
1
0
0
0
0
DISABLE BROADCAST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 17. Register 5h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DISABLE BROADCAST  
R/W  
0h  
0 = Normal operation; channel A and B are programmed as a pair  
1 = Channel A and B can be individually programmed based on the  
CH bit (keep CH = 0 for channel A, CH = 1 for channel B).  
8.5.3.1.5 Register 11h (address = 11h)  
Figure 85. Register 11h  
7
6
5
4
3
2
1
0
ANALOG PAGE SELECTION  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 18. Register 11h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ANALOG BANK PAGE SEL  
R/W  
0h  
Program these bits to access the desired page in the analog bank.  
Master page = 80h  
ADC page = 0Fh  
8.5.3.2 Master Page (080h) Registers  
8.5.3.2.1 Register 20h (address = 20h), Master Page (080h)  
Figure 86. Register 20h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 19. Registers 20h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN ADC CHA  
PDN ADC CHB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. Power-down mask 1 or  
mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
0Fh = Power-down CHB only.  
0h  
F0h = Power-down CHA only.  
FFh = Power-down both.  
44  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.2.2 Register 21h (address = 21h), Master Page (080h)  
Figure 87. Register 21h  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 20. Register 21h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN BUFFER CHB  
PDN BUFFER CHA  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. Power-down mask 1 or  
mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
There are two buffers per channel. One buffer drives two ADC  
cores.  
0h  
PDN BUFFER CHx:  
00 = Both buffers of a channel are active.  
11 = Both buffers are powered down.  
01–10 = Do not use.  
3-0  
0
W
0h  
Must write 0  
8.5.3.2.3 Register 23h (address = 23h), Master Page (080h)  
Figure 88. Register 23h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 21. Register 23h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN ADC CHA  
PDN ADC CHB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. Power-down mask 1 or  
mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
0Fh = Power-down CHB only.  
0h  
F0h = Power-down CHA only.  
FFh = Power-down both.  
Copyright © 2015–2017, Texas Instruments Incorporated  
45  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.2.4 Register 24h (address = 24h), Master Page (080h)  
Figure 89. Register 24h  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 22. Register 24h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN BUFFER CHB  
PDN BUFFER CHA  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. Power-down mask 1 or  
mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
Power-down mask 2: addresses 23h and 24h.  
There are two buffers per channel. One buffer drives two ADC  
cores.  
0h  
PDN BUFFER CHx:  
00 = Both buffers of a channel are active.  
11 = Both buffers are powered down.  
01–10 = Do not use.  
3-0  
0
W
0h  
Must write 0  
46  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.2.5 Register 26h (address = 26h), Master Page (080h)  
Figure 90. Register 26h  
7
6
5
4
0
3
0
2
0
1
0
0
0
OVERRIDE  
PDN PIN  
PDN MASK  
SEL  
GLOBAL PDN  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 23. Register 26h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL PDN  
R/W  
0h  
Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be  
programmed.  
0 = Normal operation  
1 = Global power-down via the SPI  
6
5
OVERRIDE PDN PIN  
R/W  
R/W  
W
0h  
0h  
0h  
This bit ignores the power-down pin control.  
0 = Normal operation  
1 = Ignores inputs on the power-down pin  
PDN MASK SEL  
0
This bit selects power-down mask 1 or mask 2.  
0 = Power-down mask 1  
1 = Power-down mask 2  
4-0  
Must write 0  
8.5.3.2.6 Register 39h (address = 39h), Master Page (080h)  
Figure 91. Register 39h  
7
6
5
0
4
3
2
0
1
0
0
0
PERF MODE[1:0]  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 24. Register 39h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PERF MODE[1:0]  
R/W  
0h  
Set all four PERF MODE[3:0] bits together.  
Bits are located in register address 39h, 3Ah, and 56h in the  
master page.  
5-0  
0
W
0h  
Must write 0  
8.5.3.2.7 Register 3Ah (address = 3Ah), Master Page (080h)  
Figure 92. Register 3Ah  
7
0
6
5
0
4
3
2
0
1
0
0
0
PERF MODE[2]  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 25. Register 3Ah Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
PERF MODE[2]  
R/W  
0h  
Set all four PERF MODE[3:0] bits together.  
Bits are located in register address 39h, 3Ah, and 56h in the  
master page.  
5-0  
0
W
0h  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
47  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.2.8 Register 4Fh (address = 4Fh), Master Page (080h)  
Figure 93. Register 4Fh  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
EN INPUT DC COUPLING  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 4Fh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
EN INPUT DC COUPLING  
R/W  
0h  
Enables dc-coupling between the analog inputs and driver by  
changing the internal biasing resistor between the analog inputs  
and VCM from 600 Ω to 5 kΩ.  
0 = Disable dc-coupling support  
1 = Enable dc-coupling support  
8.5.3.2.9 Register 53h (address = 53h), Master Page (080h)  
Figure 94. Register 53h  
7
0
6
5
0
4
3
2
0
1
0
MASK  
SYSREF  
EN SYSREF  
DC COUPLING  
0
0
SET SYSREF  
R/W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 27. Register 53h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
MASK SYSREF  
R/W  
0h  
0 = Normal operation  
1 = Ignores the SYSREF input  
5-2  
1
0
W
0h  
0h  
Must write 0  
EN SYSREF DC COUPLING  
R/W  
Enables a higher common-mode voltage input on the SYSREF  
signal (up to 1.6 V).  
0 = Normal operation  
1 = Enables a higher SYSREF common-mode voltage support  
0
SET SYSREF  
R/W  
0h  
0 = Set SYSREF low  
1 = Set SYSREF high  
8.5.3.2.10 Register 54h (address = 54h), Master Page (080h)  
Figure 95. Register 54h  
7
6
0
5
0
4
3
2
0
1
0
0
0
ENABLE  
MANUAL  
SYSREF  
0
0
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register 54h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
0h  
Description  
ENABLE MANUAL SYSREF  
0
This bit enables manual SYSREF  
Must write 0  
6-0  
0h  
48  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.2.11 Register 55h (address = 55h), Master Page (080h)  
Figure 96. Register 55h  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
PDN MASK  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register 55h Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PDN MASK  
R/W  
0h  
This bit enables power-down via a register bit.  
0 = Normal operation  
1 = Power-down is enabled by powering down internal blocks as  
specified in the selected power-down mask  
3-0  
0
W
0h  
Must write 0  
8.5.3.2.12 Register 56h (address = 56h), Master Page (080h)  
Figure 97. Register 56h  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
PERF MODE[3]  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 30. Register 56h Field Descriptions  
Bit  
7-3  
2
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PERF MODE[3]  
W
0h  
Set all four PERF MODE[3:0] bits together.  
Bits are located in register address 39h, 3Ah, and 56h in the  
master page.  
1-0  
0
W
0h  
Must write 0  
8.5.3.2.13 Register 59h (address = 59h), Master Page (080h)  
Figure 98. Register 59h  
7
6
0
5
4
0
3
0
2
0
1
0
0
0
FOVR CHB  
W-0h  
ALWAYS WRITE 1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 59h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FOVR CHB  
W
0h  
Outputs the FOVR signal for channel B on the SDOUT pin.  
0 = Normal operation  
1 = Outputs FOVR on the SDOUT pin  
6
5
0
W
0h  
0h  
0h  
Must write 0  
Must write 1  
Must write 0  
ALWAYS WRITE 1  
0
R/W  
W
4-0  
Copyright © 2015–2017, Texas Instruments Incorporated  
49  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.3 ADC Page (0Fh) Registers  
8.5.3.3.1 Registers 5F (addresses = 5F), ADC Page (0Fh)  
Figure 99. Register 5F  
7
6
5
4
3
2
1
0
FOVR THRESHOLD PROG  
R/W-E3h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 32. Registers 5F Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
FOVR THRESHOLD PROG  
R/W  
E3h  
Program the fast OVR thresholds together for channel A and B,  
as described in the Overrange Indication section.  
50  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.4 Main Digital Page (6800h) Registers  
8.5.3.4.1 Register 0h (address = 0h), Main Digital Page (6800h)  
Figure 100. Register 0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PULSE RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 33. Register 0h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PULSE RESET  
R/W  
0h  
Must be pulsed after power-up or after configuring registers in  
the main digital page of the JESD bank. Any register bits in the  
main digital page (6800h) take effect only after this bit is pulsed;  
see the Start-Up Sequence section for the correct sequence.  
0 = Normal operation  
0 1 0 = Bit is pulsed  
8.5.3.4.2 Register 41h (address = 41h), Main Digital Page (6800h)  
Figure 101. Register 41h  
7
0
6
0
5
0
4
3
2
1
0
DECFIL MODE[3]  
R/W-0h  
0
DECFIL MODE[2:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 41h Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
Must write 0  
Refer Table 35.  
Must write 0  
0
DECFIL MODE[3]  
0
R/W  
W
0h  
3
0h  
2-0  
DECFIL MODE[2:0]  
R/W  
2h  
These bits select the decimation filter mode. Table 35 lists the bit  
settings.  
Register bit DEC MODE EN (register 4Dh, bit 3) must also be  
enabled.  
Table 35. DECFIL MODE Bit Settings  
DEC MODE EN (REGISTER 4Dh, BIT 3)  
BITS (4, 2-0)  
XXXX  
FILTER MODE  
DECIMATION  
0
1
1
1
Low-pass filter  
Low-pass filter  
High-pass filter  
Do not use  
2X  
2X  
2X  
1010  
1110  
Others  
Copyright © 2015–2017, Texas Instruments Incorporated  
51  
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.4.3 Register 42h (address = 42h), Main Digital Page (6800h)  
Figure 102. Register 42h  
7
0
6
0
5
0
4
0
3
0
2
1
0
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 36. Register 42h Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
NYQUIST ZONE  
R/W  
0h  
The Nyquist zone must be selected for proper interleaving  
correction. Here Nyquist refers to Device Clock/2. For 1 GSPS  
Device clock, Nyquist frequency is 500 MHz. Also set register bit  
CTRL NYQUIST (4Eh, bit 7).  
000 = 1st Nyquist zone (0 MHz to 500 MHz)  
001 = 2nd Nyquist zone (500 MHz to 1000 MHz)  
010 = 3rd Nyquist zone (1000 MHz to 1500 MHz)  
All others = Not used  
8.5.3.4.4 Register 43h (address = 43h), Main Digital Page (6800h)  
Figure 103. Register 43h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT SEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 43h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FORMAT SEL  
R/W  
0h  
Changes the output format. Set the FORMAT EN bit (register  
4Bh, bit 5) to enable control using this bit.  
0 = Twos complement  
1 = Offset binary  
8.5.3.4.5 Register 44h (address = 44h), Main Digital Page (6800h)  
Figure 104. Register 44h  
7
0
6
5
4
3
2
1
0
DIGITAL GAIN  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 38. Register 44h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
6-0  
DIGITAL GAIN  
0h  
Digital gain setting. Digital gain must be enabled (register 52h,  
bit 0).  
Gain in dB = 20log (digital gain / 32).  
7Fh = 127, equals digital gain of 9.5 dB.  
52  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.4.6 Register 4Bh (address = 4Bh), Main Digital Page (6800h)  
Figure 105. Register 4Bh  
7
0
6
0
5
4
0
3
0
2
0
1
0
0
0
FORMAT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 4Bh Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FORMAT EN  
R/W  
0h  
This bit enables control for data format selection using the  
FORMAT SEL register bit.  
0 = Default, output is in twos complement format  
1 = Output is in offset binary format after the FORMAT SEL bit is  
set  
4-0  
0
W
0h  
Must write 0  
8.5.3.4.7 Register 4Dh (address = 4Dh), Main Digital Page (6800h)  
Figure 106. Register 4Dh  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
DEC MOD EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 4Dh Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DEC MOD EN  
R/W  
0h  
This bit enables control of decimation filter mode via the DECFIL  
MODE[3:0] register bits.  
0 = Default  
1 = Decimation modes control is enabled  
2-0  
0
W
0h  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
53  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.4.8 Register 4Eh (address = 4Eh), Main Digital Page (6800h)  
Figure 107. Register 4Eh  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
CTRL NYQUIST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 41. Register 4Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL NYQUIST  
R/W  
0h  
This bit enables selecting the Nyquist zone using register 42h,  
bits 2-0.  
0 = Selection disabled  
1 = Selection enabled  
6-0  
0
W
0h  
Must write 0  
8.5.3.4.9 Register 52h (address = 52h), Main Digital Page (6800h)  
Figure 108. Register 52h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
ALWAYS WRITE 1  
W-0h  
DIG GAIN EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 52h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALWAYS WRITE 1  
W
0h  
This bit enables output bus reorder using the  
Dx_BUS_REORDER[7:0] bits. Set this bit along with register  
72h, bit 3 in the main digital page.  
6-1  
0
0
W
0h  
0h  
Must write 0  
DIG GAIN EN  
R/W  
Enables selecting the digital gain for register 44h.  
0 = Digital gain disabled  
1 = Digital gain enabled  
8.5.3.4.10 Register 72h (address = 72h), Main Digital Page (6800h)  
Figure 109. Register 72h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
ALWAYS WRITE 1  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 43. Register 72h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
ALWAYS WRITE 1  
W
0h  
This bit enables output bus reorder using the  
Dx_BUS_REORDER[7:0] bits. Set this bit along with register  
52h, bit 7 in the main digital page.  
2-0  
0
W
0h  
Must write 0  
54  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.4.11 Register ABh (address = ABh), Main Digital Page (6800h)  
Figure 110. Register ABh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LSB SEL EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 44. Register ABh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
LSB SEL EN  
R/W  
0h  
Enables control for the LSB SELECT register bit.  
0 = Default  
1 = The LSB of the 16-bit ADC data can be programmed as fast  
OVR using the LSB SELECT bit  
8.5.3.4.12 Register ADh (address = ADh), Main Digital Page (6800h)  
Figure 111. Register ADh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LSB SELECT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 45. Register ADh Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
LSB SELECT  
R/W  
0h  
Enables output of the FOVR flag instead of the output data LSB.  
00 = Output is 16-bit data  
11 = Output data LSB is replaced by the FOVR information for  
each channel  
8.5.3.4.13 Register F7h (address = F7h), Main Digital Page (6800h)  
Figure 112. Register F7h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIG RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 46. Register F7h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DIG RESET  
W
0h  
Self-clearing reset for the digital block. Does not include the  
interleaving correction.  
0 = Normal operation  
1 = Digital reset  
Copyright © 2015–2017, Texas Instruments Incorporated  
55  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.5 JESD Digital Page (6900h) Registers  
8.5.3.5.1 Register 0h (address = 0h), JESD Digital Page (6900h)  
Figure 113. Register 0h  
7
6
0
5
0
4
3
2
1
0
TESTMODE  
EN  
FLIP ADC  
DATA  
CTRL K  
R/W-0h  
LANE ALIGN  
R/W-0h  
FRAME ALIGN  
R/W-0h  
TX LINK DIS  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 47. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL K  
R/W  
0h  
Enable bit for a number of frames per multi-frame.  
0 = Default is five frames per multi-frame  
1 = Frames per multi-frame can be set in register 06h  
6-5  
4
0
W
0h  
0h  
Must write 0  
TESTMODE EN  
R/W  
This bit generates the long transport layer test pattern mode, as  
per section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
3
2
FLIP ADC DATA  
LANE ALIGN  
R/W  
R/W  
0h  
0h  
0 = Normal operation  
1 = Output data order is reversed: MSB to LSB  
This bit inserts the lane alignment character (K28.3) for the  
receiver to align to the lane boundary, as per section 5.3.3.5 of  
the JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
1
0
FRAME ALIGN  
TX LINK DIS  
R/W  
R/W  
0h  
0h  
This bit inserts the lane alignment character (K28.7) for the  
receiver to align to the lane boundary, as per section 5.3.3.5 of  
the JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA) sequence  
when SYNC is de-asserted.  
0 = Normal operation  
1 = ILA disabled  
56  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.5.2 Register 1h (address = 1h), JESD Digital Page (6900h)  
Figure 114. Register 1h  
7
6
5
0
4
0
3
0
2
1
0
SYNC REG  
R/W-0h  
SYNC REG EN  
R/W-0h  
JESD MODE  
R/W-1h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 48. Register 1h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC REG  
R/W  
0h  
Register control for sync request.  
0 = Normal operation  
1 = ADC output data are replaced with K28.5 characters; the SYNC  
REG EN register bit must also be set to 1  
6
SYNC REG EN  
R/W  
0h  
Enables register control for sync request.  
0 = Use the SYNC pin for sync requests  
1 = Use the SYNC REG register bit for sync requests  
5-3  
2-0  
0
W
0h  
1h  
Must write 0  
JESD MODE  
R/W  
These bits select the number of active output lanes. The JESD PLL  
MODE register bit located in the JESD analog page must also be  
set accordingly. Active lanes carry serial JESD data whereas  
inactive lanes don't carry any data.  
001 = 20X mode, four active lanes per device (default)  
010 = 40X mode, two active lanes per device  
All others = Not used  
8.5.3.5.3 Register 2h (address = 2h), JESD Digital Page (6900h)  
Figure 115. Register 2h  
7
6
5
4
3
2
0
1
0
0
0
LINK LAYER TESTMODE  
R/W-0h  
LINK LAYER RPAT  
R/W-0h  
LMFC MASK RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 49. Register 2h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
These bits generate a pattern according to section 5.3.3.8.2 of the  
JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12-octet RPAT jitter pattern  
All others = Not used  
4
LINK LAYER RPAT  
R/W  
0h  
This bit changes the running disparity in the modified RPAT pattern  
test mode (only when the link layer test mode = 100).  
0 = Normal operation  
1 = Changes disparity  
3
LMFC MASK RESET  
0
R/W  
W
0h  
0h  
Masks the LMFC reset coming to the digital block.  
0 = LMFC reset is not masked  
1 = Ignore the LMFC reset request  
2-0  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
57  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.5.4 Register 3h (address = 3h), JESD Digital Page (6900h)  
Figure 116. Register 3h  
7
6
5
4
3
2
1
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
R/W-0h  
RELEASE ILANE SEQ  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 50. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORCE LMFC COUNT  
R/W  
0h  
This bit forces the LMFC count.  
0 = Normal operation  
1 = Enables using a different starting value for the LMFC  
counter  
6-2  
1-0  
MASK SYSREF  
R/W  
R/W  
0h  
0h  
When SYSREF transmits to the digital block, the LMFC count  
resets to 0 and K28.5 stops transmitting when the LMFC count  
reaches 31. The initial value that the LMFC count resets to can  
be set using LMFC COUNT INIT. In this manner, the receiver  
can be synchronized early because the LANE ALIGNMENT  
SEQUENCE is received early. The FORCE LMFC COUNT  
register bit must be enabled.  
RELEASE ILANE SEQ  
These bits delay the generation of the lane alignment sequence  
by 0, 1, 2 or 3 multi-frames after the code group  
synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
8.5.3.5.5 Register 5h (address = 5h), JESD Digital Page (6900h)  
Figure 117. Register 5h  
7
6
0
5
4
3
2
0
1
0
0
0
SCRAMBLE EN  
R/W-Undefined  
0
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 51. Register 5h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCRAMBLE EN  
R/W  
Undefined Scrambles the enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
6-0  
0
W
0h  
Must write 0  
58  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.5.6 Register 6h (address = 6h), JESD Digital Page (6900h)  
Figure 118. Register 6h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTI FRAME (K)  
R/W-8h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 52. Register 6h Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FRAMES PER MULTI FRAME (K)  
R/W  
8h  
These bits set the number of multi-frames.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
8.5.3.5.7 Register 7h (address = 7h), JESD Digital Page (6900h)  
Figure 119. Register 7h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
SUBCLASS  
R/W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 53. Register 7h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SUBCLASS  
R/W  
1h  
This bit sets the JESD204B subclass.  
000 = Subclass 0 is backward compatible with JESD204A  
001 = Subclass 1 deterministic latency using the SYSREF signal  
2-0  
0
W
0h  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
59  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.5.8 Register 31h (address = 31h), JESD Digital Page (6900h)  
Figure 120. Register 31h  
7
6
5
4
3
2
1
0
DA_BUS_REORDER[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 54. Register 31h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DA_BUS_REORDER[7:0]  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 mode. Table 12 lists  
the supported combinations of these bits.  
8.5.3.5.9 Register 32h (address = 32h), JESD Digital Page (6900h)  
Figure 121. Register 32h  
7
6
5
4
3
2
1
0
DB_BUS_REORDER[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 55. Register 32h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DB_BUS_REORDER[7:0]  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 mode. Table 12 lists  
the supported combinations of these bits.  
60  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.6 JESD Analog Page (6A00h) Register  
8.5.3.6.1 Registers 12h-5h (address = 12h-5h), JESD Analog Page (6A00h)  
Figure 122. Register 12h  
7
6
5
4
3
2
2
2
2
1
0
0
0
SEL EMP LANE 1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 123. Register 13h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 0  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 124. Register 14h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 125. Register 15h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Table 56. Registers 12h-15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE 1, 0, 2, or 3  
R/W  
0h  
Selects the amount of de-emphasis for the JESD output  
transmitter. The de-emphasis value in dB is measured as the  
ratio between the peak value after the signal transition to the  
settled value of the voltage in one bit period.  
000000 = 0 dB  
000001 = –1 dB  
000011 = –2 dB  
000111 = –4.1 dB  
001111 = –6.2 dB  
011111 = –8.2 dB  
111111 = –11.5 dB  
1-0  
0
W-0h  
0h  
Must write 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
61  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3.6.2 Register 16h (address = 16h), JESD Analog Page (6A00h)  
Figure 126. Register 16h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
JESD PLL MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 57. Register 16h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
JESD PLL MODE  
R/W  
0h  
These bits select the JESD PLL multiplication factor and must  
match the JESD MODE setting.  
00 = 20X mode, four active lanes per device  
01 = Not used  
10 = 40X mode, two active lanes per device  
11 = Not used  
8.5.3.6.3 Register 1Ah (address = 1Ah), JESD Analog Page (6A00h)  
Figure 127. Register 1Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FOVR CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 58. Register 1Ah Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FOVR CHA  
R/W  
0h  
Outputs the FOVR signal for channel A on the PDN pin. FOVR  
CHA EN (register 1Bh, bit 3) must be enabled.  
0 = Normal operation  
1 = FOVR on the PDN pin  
0
0
W
0h  
Must write 0  
62  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
8.5.3.6.4 Register 1Bh (address = 1Bh), JESD Analog Page (6A00h)  
Figure 128. Register 1Bh  
7
6
5
4
0
3
2
0
1
0
0
0
JESD SWING  
R/W-0h  
FOVR CHA EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 59. Register 1Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
JESD SWING  
R/W  
0h  
Selects the output differential amplitude VOD (mVPP) of the JESD  
transmitter (for all lanes).  
0 = 860 mVPP  
1 = 810 mVPP  
2 = 770 mVPP  
3 = 745 mVPP  
4 = 960 mVPP  
5 = 930 mVPP  
6 = 905 mVPP  
7 = 880 mVPP  
4
3
0
W
0h  
0h  
Must write 0  
FOVR CHA EN  
R/W  
Enables overwriting the PDN pin with the FOVR signal from  
channel A.  
0 = Normal operation  
1 = PDN is overwritten  
2-0  
JESD PLL MODE  
R/W  
0h  
Must write 0  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Start-Up Sequence  
The steps described in Table 60 are the recommended power-up sequence with the ADS54J69 in 20X or 40X  
mode.  
Copyright © 2015–2017, Texas Instruments Incorporated  
63  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Table 60. Initialization Sequence  
PAGE BEING  
PROGRAMMED  
STEP  
SEQUENCE  
DESCRIPTION  
COMMENT  
Bring up IOVDD to 1.15 V before applying power to DVDD. Bring up  
DVDD to 1.9 V, AVDD to 1.9 V, and AVDD3V to 3.0 V.  
See the Power Sequencing and Initialization section for power sequence  
requirements.  
1
Power-up the device  
Hardware reset  
Apply a hardware reset by pulsing pin 48 (low->high->low).  
Software reset: Register writes equivalent to a hardware reset are:  
A hardware reset clears all registers to their default values.  
Reset registers in the ADC page and master page of the analog bank This bit  
is a self-clearing bit.  
Write address 0-000h with 81h.  
General register  
This bit is a self-clearing bit.  
2
Reset the device  
Write address 4-001h with 00h and address 4-002h with 00h.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Unused page  
Clear any unwanted content from the unused pages of the JESD bank.  
Select the main digital page of the JESD bank.  
Use the DIG RESET register bit to reset all pages in the JESD bank.  
This bit is a self-clearing bit.  
Write address 6-0F7h with 01h for channel A.  
Main digital page  
(JESD bank)  
Write address 6-000h with 01h, then address 6-000h with 00h.  
Write address 0-011h with 80h.  
Pulse the PULSE RESET register bit for both channels.  
Select the master page of the analog bank.  
3
Performance modes  
Master page  
(analog bank)  
Write address 0-059h with 20h.  
Set the ALWAYS WRITE 1 bit.  
The JESD mode (in the JESD digital page) and JESD PLL mode (in the JESD analog page) register bits control 20X or 40X serialization. By default after reset,  
the device is in 20X serialization mode (4-lanes output).  
Write address 4-003h with 00h and address 4-004h with 69h.  
Write address 6-000h with 80h.  
Select the JESD digital page.  
Set the CTRL K bit for both channels to program K for the SYSREF signal  
frequency in step 5.  
JESD  
digital page  
(JESD bank)  
Write address 6-001h with 01h.  
Enable 20X serialization (4-lane output, default setting after reset).  
Enable 40X serialization (2-lane output).  
Write address 6-001h with 02h.  
Write address 4-003h with 00h and address 4-004h with 6Ah.  
Write address 6-016h with 00h  
Select the JESD analog page.  
JESD  
analog page  
(JESD bank)  
Program registers for  
20X or 40X serialization  
and program the HPF or LPF  
filter  
Enable 20X serialization (4-lane output, default setting after reset).  
To enable 40X serialization (2-lane output).  
Select the main digital page.  
4
Write address 6-016h with 02h  
Write address 4-003h with 00h and address 4-004h with 68h.  
Set the ALWAYS WRITE 1 bit (enables correct order of the JESD output  
lanes).  
Write address 6-052h with 80h and address 6-072h with 08h.  
Write address 6-04Dh with 08h  
Write address 6-041h with 12h  
Write address 6-041h with 16h  
Enable the decimation filter programming.  
Enable the low-pass filter (default setting after reset).  
Enable the high-pass filter.  
Main digital page  
(JESD bank)  
Pulse the PULSE RESET register bit. All settings programmed in the main  
digital page take effect only after this bit is pulsed.  
Write address 6-000h with 01h and address 6-000h with 00h.  
64  
Copyright © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
STEP  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Table 60. Initialization Sequence (continued)  
PAGE BEING  
SEQUENCE  
DESCRIPTION  
PROGRAMMED  
COMMENT  
Write address 4-003h with 00h and address 4-004h with 69h.  
Select the JESD digital page.  
Default value of K is 8 for 20X (4-lane) mode and 4 for 40X (2-lane) mode.  
However, K can be programmed for higher values than the default by using  
bits 4-0 of address 6-006 in the JESD digital page. For example, if K = 31 by  
writing address 6-006h with 1Fh in the JESD digital page, then the SYSREF  
signal frequency must be kept less than or equal to 250 MHz / 32 =  
7.8125 MHz.  
Set the value of K and the  
SYSREF signal frequency  
accordingly  
JESD  
digital page  
(JESD bank)  
5
6
Write address 6-006h with XXh (choose the value of K).  
Pull the SYNC pin (pin 63) low.  
Pull the SYNC pin high.  
Transmit K28.5 characters.  
JESD lane alignment  
After the receiver is synchronized, initiate an ILA phase and subsequent  
transmissions of ADC data.  
Copyright © 2015–2017, Texas Instruments Incorporated  
65  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
9.1.2 Hardware Reset  
Figure 129 and Table 61 show the timing for a hardware reset.  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 129. Hardware Reset Timing Diagram  
Table 61. Timing Requirements for Figure 129  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay from power-up to active high RESET pulse  
1
10  
Reset pulse duration: active high RESET pulse duration  
Register write delay: delay from RESET disable to SEN active  
100  
ns  
9.1.3 SNR and Clock Jitter  
The signal-to-noise ratio (SNR) of the ADC is limited by three different factors: quantization noise, thermal noise,  
and jitter, as shown in Equation 4. The quantization noise is typically not noticeable in pipeline converters and is  
98 dB for a 16-bit ADC. The thermal noise limits SNR at low input frequencies and the clock jitter sets SNR for  
higher input frequencies. The decimation-by-2 process gives approximately an additional 3-dB improvement in  
SNR.  
2
2
2
504  
,EPPAN  
20  
F
¨
20  
20  
>
?
504#&% @$? = F3 F 20HKC l10  
3Q=JPEV=PEKJ 0KEOA p + l10F 5046DANI=H 0KEOA p + l 10F 504  
p
(4)  
The SNR limitation resulting from the sample clock jitter can be calculated by Equation 5:  
(5)  
The total clock jitter (TJitter) has two components: the internal aperture jitter (145 fS) is set by the noise of the  
clock input buffer and the external clock jitter. TJitter can be calculated by Equation 6:  
(6)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.  
66  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
 
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
The ADS54J69 has a thermal noise of approximately 71.1 dBFS and an internal aperture jitter of 120 fS. The  
SNR, depending on the amount of external jitter for different input frequencies, is shown in Figure 130.  
75  
35 fS  
50 fS  
100 fS  
150 fS  
200 fS  
73  
71  
69  
67  
65  
10  
100  
Input Frequency (MHz)  
D052  
Figure 130. SNR versus Input Frequency and External Clock Jitter  
Half-band decimation filtering employed by the ADS54J69 reduces the affect of all contributors to SNR by 3 dB.  
Filtering makes the SNR curve in Figure 130 start at 74 dBFS despite a thermal noise of 71.1 dBFS.  
Decimation filtering also improves the affect of jitter noise by 3 dB, and is equivalent to having 102 fS as the  
effective aperture jitter instead of 120 fS.  
Copyright © 2015–2017, Texas Instruments Incorporated  
67  
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
9.2 Typical Application  
The ADS54J69 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. A typical schematic for an ac-coupled receiver is shown in Figure 131.  
DVDD  
10 k  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
2 pF  
0.1 mF  
SPI Master  
GND  
GND  
IOVDD GND  
0.1 mF  
0.1 mF  
0.1 mF  
10nF  
GND  
0.1 mF  
AVDD3V  
AVDD  
AVDD  
AVDD3V  
DVDD  
100-W Differential  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
10 nF  
DB2P  
DB2M  
IOVDD  
DB1P  
DB1M  
DGND  
DB0P  
DB0M  
IOVDD  
SYNC  
DA0M  
DA0P  
DGND  
DA1M  
DA1P  
IOVDD  
DA2M  
DA2P  
NC  
NC  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
IOVDD  
10 nF  
GND  
NC  
10 nF  
10 nF  
VCM  
0.1 mF  
AGND  
AVDD3V  
AVDD  
AGND  
CLKINP  
CLKINM  
AGND  
AVDD  
AVDD3V  
AGND  
GND  
0.1 mF  
AVDD3V  
GND  
AVDD  
0.1 mF  
GND  
10 nF  
IOVDD  
0.1 mF  
GND  
GND Pad  
(Back Side)  
GND  
0.1 mF  
FPGA  
Low-Jitter Clock  
Generator  
AVDD3V  
0.1 mF  
GND  
10 nF  
10 nF  
GND  
SYSREFP  
SYSREFM  
AVDD  
100 W  
IOVDD  
10 nF  
GND  
AVDD  
AGND  
GND  
10 nF  
10 nF  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
100-W Differential  
AVDD3V  
DVDD  
AVDD  
AVDD  
AVDD3V  
0.1 mF  
GND  
GND  
0.1 mF  
IOVDD GND  
0.1 mF  
GND  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
0.1 mF  
2 pF  
GND  
NOTE: GND = AGND and DGND connected in the PCB layout.  
Figure 131. AC-Coupled Receiver  
68  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Transformer-Coupled Circuits  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 300 MHz to achieve good phase and amplitude balances at the ADC  
inputs. When designing dc driving circuits, the ADC input impedance must be considered. Figure 132 and  
Figure 133 show the impedance (ZIN = RIN || CIN) across the ADC input pins.  
5
4.75  
4.5  
1.4  
1.2  
1
4.25  
4
0.8  
0.6  
0.4  
0.2  
0
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Frequency (MHz)  
D103  
D102  
Figure 132. RIN vs Input Frequency  
Figure 133. CIN vs Input Frequency  
By using the simple drive circuit of Figure 134, uniform performance can be obtained over a wide frequency  
range. The buffers present at the analog inputs of the device help isolate the external drive source from the  
switching currents of the sampling circuit.  
0.1 F  
T2  
CHx_INP  
T1  
5 ꢀ  
0.1 F  
25 ꢀ  
0.1 F  
RIN  
CIN  
25 ꢀ  
5 ꢀ  
0.1 F  
CHx_INM  
1:1  
1:1  
Device  
Figure 134. Input Drive Circuit  
9.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input  
pin is recommended to damp out ringing caused by package parasitics, as shown in Figure 134.  
Copyright © 2015–2017, Texas Instruments Incorporated  
69  
 
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.3 Application Curves  
Figure 135 and Figure 136 show the typical performance at 170 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
D005  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
SNR = 73 dBFS; SFDR = 93 dBc; SINAD = 73.18 dBFS;  
THD = 89 dBc; HD2 = 93 dBc; HD3 = 103 dBc;  
IL spur = 99 dBc; non HD2, HD3 spur = 94 dBc  
SNR = 71.6 dBFS; SFDR = 80 dBc; SINAD = 71 dBFS;  
THD = 79 dBc; HD2 = –80 dBc; HD3 = –96 dBc;  
IL spur = 85 dBc; non HD2, HD3 spur = 92 dBc  
Figure 135. FFT for 170-MHz Input Signal  
Figure 136. FFT for 310-MHz Input Signal  
10 Power Supply Recommendations  
The device requires a 1.15-V nominal supply for IOVDD, a 1.9-V nominal supply for DVDD, a 1.9-V nominal  
supply for AVDD, and a 3.0-V nominal supply for AVDD3V. For detailed information regarding the operating  
voltage minimum and maximum specifications of different supplies, see the Recommended Operating Conditions  
table.  
70  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
10.1 Power Sequencing and Initialization  
Figure 137 shows the suggested power-up sequencing for the device. Note that the 1.15-V IOVDD supply must  
rise before the 1.9-V DVDD supply. If the 1.9-V DVDD supply rises before the 1.15-V IOVDD supply, then the  
internal default register settings may not load properly. The other supplies (the 3-V AVDD3V and the 1.9-V  
AVDD), can come up in any order during the power sequence. The power supplies can ramp up at any rate and  
there is no hard requirement for the time delay between IOVDD ramp up to DVDD ramp-up (can be in orders of  
microseconds but is recommend to be a few milliseconds).  
IOVDD = 1.15 V  
DVDD = 1.9 V  
AVDD = 1.9 V  
AVDD = 3 V  
Figure 137. Power Sequencing for the ADS54Jxx Family of Devices  
Copyright © 2015–2017, Texas Instruments Incorporated  
71  
 
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in Figure 138. A complete layout of the EVM is available from  
the ADS54J69EVM folder. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as  
illustrated in the reference layout of Figure 138 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 138  
as much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be  
matched in length to avoid skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDDD3V), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
72  
版权 © 2015–2017, Texas Instruments Incorporated  
ADS54J69  
www.ti.com.cn  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
11.2 Layout Example  
Figure 138. ADS54J69EVM layout  
版权 © 2015–2017, Texas Instruments Incorporated  
73  
ADS54J69  
ZHCSEJ4C MAY 2015REVISED JANUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
ADS54J20双通道 12 1.0GSPS 模数转换器  
ADS54J40 双通道 14 1.0GSPS 模数转换器  
ADS54J42 双通道、14 位、625MSPS 模数转换器  
ADS54J60 双通道 16 1.0GSPS 模数转换器  
ADS54J66 具有集成 DDC 的四通道、14 位、500MSPS ADC  
ADS54J69EVM 用户指南》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
74  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J69IRMP  
ADS54J69IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
168  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J69  
AZ54J69  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS54J69IRMP  
RMP  
VQFNP  
72  
168  
8 X 21  
150  
315 135.9 7620 14.65  
11  
11.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS54J69IRMP

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J69IRMPT

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54RF63

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI

ADS54RF63IPFP

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI

ADS54RF63IPFPR

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI

ADS54T01

Dual Channel 12-Bit 500Msps Receiver and Feedback IC
TI

ADS54T01IZAY

Single 12-Bit 750Msps Receiver and Feedback IC
TI

ADS54T01IZAYR

Single 12-Bit 750Msps Receiver and Feedback IC
TI

ADS54T02

Dual Channel 12-Bit 500Msps Receiver and Feedback IC
TI

ADS54T02IZAY

Dual Channel 12-Bit 750 Msps Receiver and Feedback IC
TI

ADS54T02IZAYR

Dual Channel 12-Bit 750 Msps Receiver and Feedback IC
TI

ADS54T04

Single 12-Bit 750Msps Receiver and Feedback IC
TI