ADS61JB23IRHAT [TI]

12-Bit Input-Buffered 80 MSPS ADC with JESD204A Output Interface; 12位输入缓冲80 MSPS ADC,具有JESD204A输出接口
ADS61JB23IRHAT
型号: ADS61JB23IRHAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12-Bit Input-Buffered 80 MSPS ADC with JESD204A Output Interface
12位输入缓冲80 MSPS ADC,具有JESD204A输出接口

文件: 总45页 (文件大小:1378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
12-Bit Input-Buffered 80 MSPS ADC with JESD204A Output Interface  
Check for Samples: ADS61JB23  
1
FEATURES  
APPLICATIONS  
Output Interface:  
Wireless Base-station Infrastructure  
Test and Measurement Instrumentation  
Single-Lane and Dual-Lane Interfaces  
Maximum Data Rate of 1.6 Gbps  
Meets JESD204A Specification  
CML Outputs with Current Programmable  
from 2 mA – 32 mA  
Power Dissipation:  
440 mW at 80 MSPS in Single Lane Mode  
Power Scales Down with Clock Rate  
Input Interface: Buffered Analog Inputs  
71.7 dBFS SNR at 70 MHz IF  
Analog Input FSR: 2 Vpp  
External and Internal (trimmed) Reference  
Support  
1.8V Supply (Analog and digital), 3.3 V Supply  
for Input Buffer  
Programmable Digital Gain: 0dB – 6dB  
Straight Offset Binary or Twos Complement  
Output  
Package:  
6 mm x 6 mm QFN-40  
DESCRIPTION  
The ADS61JB23 is a high-performance, low-power, single channel analog-to-digital converter with an integrated  
JESD204A output interface. Available in a 6 mm x 6 mm QFN package, with both single-lane and dual-lane  
output modes, the ADS61JB23 offers an unprecedented level of compactness. The output interface is compatible  
to the JESD204A standard, with an additional mode (as per IEEE Std 802.3-2002 part3, Clause 36.2.4.12) to  
interface seamlessly to the TI TLK family of SERDES transceivers. Equally impressive is the inclusion of an on-  
chip analog input buffer, providing isolation between the sample/hold switches and higher and more consistent  
input impedance.  
The ADS61JB23 is specified over the industrial temperature range (–40°C to 85°C).  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2012, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
FUNCTIONAL BLOCK DIAGRAM  
CLOCKGEN  
PLL  
10X 20X  
CML  
/
OUTPUTS  
ADC_OUTP<0>  
ADC_OUTM<0>  
INP  
INM  
JESD204A  
Digital  
12 bit ADC  
Buffer  
ADC_OUTP<1>  
ADC_OUTM<1>  
Signal level  
detect  
OVR  
DETECT<3:0>  
CONTROL  
INTERFACE  
VCM  
REFERENCE  
CMOS  
OUTPUTS  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
RHA PACKAGE  
(TOP VIEW)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
DRVDD  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
SYNC~M  
Pad is connected to DRGND  
DRGND  
SYNC~P  
DFS_EXTREF  
PDN_ANA  
3
SDOUT_TEST1  
4
DRVDD  
5
RESET  
AVDD  
AGND  
CLKP  
CLKM  
40 QFN  
SCLK_SERF0_SCR  
6
7
SDATA_TEST0  
SEN_FALIGN_IDLE  
8
9
22 AVDD  
21 PDN  
AGND  
VCM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PIN FUNCTIONS  
PIN  
DESCRIPTION  
NAME  
NO.  
31  
ADC_OUTM<1>  
ADC_OUTM<0>  
ADC_OUTP<1>  
ADC_OUTP<0>  
CML output Lane 2 – Negative output  
CML output Lane 1 – Negative output  
CML output Lane 2 – Positive output  
CML output Lane 1 – Positive output  
34  
32  
35  
5, 6, 9, 11, 14,  
16,  
AGND  
Analog ground  
AVDD  
15, 18, 22  
Analog supply, 1.8 V  
AVDD_3V  
CLKM  
17  
8
Analog supply for input buffer, 3.3 V  
Conversion clock – Negative input  
Conversion clock – Positive input  
Digital ground  
CLKP  
7
DRGND  
DRVDD  
29  
27, 30  
Digital supply, 1.8 V  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
PIN FUNCTIONS (continued)  
PIN  
DESCRIPTION  
NAME  
DETECT<3>  
DETECT<2>  
DETECT<1>  
DETECT<0>  
DFS_EXTREF  
FAVDD  
NO.  
36  
37  
38  
39  
3
Signal level detect output pins: Can be used to either output a 4-bit ADC code with low latency or to  
output a 16-level RMS power estimate  
4-level analog control for Data Format select and Internal/ External reference mode  
Fuse supply – connect externally to AVDD, 1.8 V  
CML buffer supply – 1.2 V to 1.9 V  
20  
33  
13  
12  
19  
40  
21  
IOVDD  
INM  
Analog input - Negative  
INP  
Analog input – Positive  
MODE  
4-level control for Serial interface/ Parallel interface modes selection  
Over-range output  
OVR  
PDN  
Full chip Powerdown (also referred to as Complete Powerdown mode)  
Analog section power down, JESD interface still active. This is referred to as fast recovery powerdown  
mode  
PDN_ANA  
4
RESET  
26  
25  
24  
28  
Chip Reset input  
SCLK_SERF0_  
SCR  
In Serial interface mode : Serial clock input In parallel interface mode : 4-level control for JESD modes  
(single/dual lane & scrambling)  
SDATA_TEST0  
In Serial interface mode : Serial data input In parallel interface mode : JESD test mode  
In Serial interface mode : Serial data output (for register readout) In parallel interface mode : JESD test  
mode  
SDOUT_TEST1  
SEN_FALIGN_I  
DLE  
In Serial interface mode : Serial enable (Chip select) In parallel interface mode : 4-level control for  
JESD modes  
23  
SYNC~M  
SYNC~P  
1
2
JESD Synchronization request – Negative input  
JESD Synchronization request – Positive input  
Common mode output for setting input common mode: 1.95V, Reference input in external reference  
mode  
VCM  
10  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
–0.3 to +2.2  
UNIT  
V
AVDD  
DRVDD  
–0.3 to +2.2  
V
Supply voltage range  
IOVDD  
–0.3 to +2.2  
V
AVDD_3V  
–0.3 to +3.9  
V
Voltage between AGND and DRGND  
Voltage applied to external VCM pin  
Voltage applied to analog input pins  
Voltage applied to digital input pins  
Voltage applied to clock input pins(2)  
–0.3 to +0.3  
V
–0.3 to +2.2  
V
–0.3 to min (3, AVDD_3V + 0.3)  
–0.3 to AVDD + 0.3  
–0.3 to AVDD + 0.3  
–40 to 85  
V
V
V
TA  
Operating free-air temperature range  
Peak solder temperature  
°C  
°C  
°C  
260  
Junction temperature  
105  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability.  
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3V|.  
This prevents the ESD protection diodes at the clock input pins from turning on.  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
THERMAL INFORMATION  
ADS61JB23  
THERMAL METRIC(1)  
UNITS  
QFN 40 PIN  
θJA  
Junction-to-ambient thermal resistance  
30.7  
17  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.7  
0.2  
5.7  
1
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLIES, ANALOG INPUTS AND REFERENCE VOLTAGES  
Analog supply voltage, AVDD  
1.7  
1.7  
1.2  
3.0  
1.8  
1.8  
1.8  
3.3  
2
1.9  
1.9  
1.9  
3.6  
V
V
Digital supply voltage, DRVDD  
CML buffer supply voltage, IOVDD  
V
Analog buffer supply voltage, AVDD_3V  
Differential input voltage range  
V
VPP  
VCM  
±0.05  
Input common-mode voltage  
V
VCM (output) – Internal reference mode(1)  
VCM (input) – External reference mode  
CLOCK INPUT  
1.95  
1.4  
V
V
Input clock rate in JESD204A single lane mode  
Input clock rate in JESD204A dual lane mode  
15.625  
31. 25  
0.2  
80 MSPS  
80 MSPS  
VPP  
Sine wave, ac-coupled  
3.0  
1.6  
LVPECL, ac-coupled  
VPP  
Input clock amplitude differential (VCLKP  
-
VCLKM  
)
LVDS, ac-coupled  
0.7  
VPP  
CMOS, single-ended, ac-coupled  
1.5  
V
Input clock duty cycle  
DIGITAL OUTPUTS  
35%  
50%  
65%  
20x  
Output data rate in single-lane mode  
Output data rate in dual-lane mode  
312.5 (sample  
rate)  
1600 MBPS  
800 MBPS  
10x  
312.5 (sample  
rate)  
CLOAD  
RLOAD  
TA  
Maximum external load capacitance from each pin to DRGND  
External termination from each output pin to IOVDD  
Operating free-air temperature  
5
pF  
50  
Ω
-40  
85  
°C  
HIGH SFDR MODE  
Write register 2h, value 71h to get best HD3 for input frequencies between 150MHz to  
250MHz.  
(1) Typical VCM reduces to 1.85V after HIGH SFDR MODE is written.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Typical values at 25°C, MIN and MAX values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD =  
1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, IOVDD = 1.8V, Clock frequency = 80MSPS, 50% clock duty cycle, –1dBFS  
differential analog input, internal reference mode, CML buffer current setting = 16 mA, unless otherwise noted.  
PARAMETER  
REFERENCE VOLTAGES – INTERNAL  
VCM analog input common mode voltage (output)  
VCM output current (resulting in a VCM change of ±50 mV)  
REFERENCE VOLTAGES – EXTERNAL  
VCM reference voltage (Input)  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
1.95  
2.5  
V
mA  
1.4±0.1  
V
Differential input voltage range  
Differential input capacitance  
2.0  
Vpp  
pF  
3
480  
Analog input bandwidth  
MHz  
V
Analog input common mode range  
Analog input common mode current (per input pin)  
DC ACCURACY  
VCM±0.05  
1.6  
µA  
Offset error  
–20  
20  
mV  
Due to internal reference  
inaccuracy alone  
–2.5  
2.5 %FS  
Gain error  
Due to channel alone  
5
0.006  
>30  
%FS  
mV/°C  
dB  
Gain error temperature coefficient  
AC Power Supply Rejection Ratio, PSRR  
POWERDOWN MODES  
Complete powerdown mode  
Fast recovery powerdown mode  
Power with no clock  
50 mVPP signal on AVDD supply  
10  
210  
115  
±0.3  
mW  
mW  
mW  
DNL differential nonlinearity  
INL integral nonlinearity  
POWER SUPPLY CURRENTS  
AVDD current  
–0.7  
0.8  
LSB  
LSB  
±0.7 ±1.5  
105 122  
mA  
mA  
mA  
mA  
mW  
AVDD_3V current  
40  
50  
16  
51  
61  
21  
DRVDD current  
IOVDD current  
Total power  
440 500  
DYNAMIC PERFORMANCE(1)  
IF = 10 MHz  
IF = 185 MHz  
IF = 10 MHz  
IF = 185 MHz  
IF = 10 MHz  
IF = 185 MHz  
IF = 10 MHz  
IF = 185 MHz  
IF = 10 MHz  
IF = 185 MHz  
IF = 10 MHz  
IF = 185 MHz  
80  
80  
dBc  
dBc  
SFDR  
SNR  
70  
68  
71.7  
70.5  
71.2  
70.1  
80  
dBFs  
dBFs  
dBFs  
dBFs  
dBc  
SINAD  
HD3  
70  
70  
81  
80  
dBc  
100  
80  
dBc  
HD2  
dBc  
90  
dBc  
Worst spur (excluding HD2, HD3)  
(1) HIGH SFDR MODE is enabled.  
87  
dBc  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
DIGITAL CHARACTERISTICS  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1  
PARAMETER  
DIGITAL INPUTS  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
High-level input voltage  
Low-level input voltage  
1.2  
V
V
0.6  
SEN  
0
10  
10  
0
High-level input current  
Low-level input current  
μA  
μA  
SCLK, SDATA, RESET, PDN, PDN_ANA  
SEN  
SCLK, SDATA, RESET, PDN, PDN_ANA  
DIGITAL OUTPUTS (SDOUT)  
High-level output voltage  
Low-level output voltage  
DRVDD-  
0.1  
DRVDD  
V
V
0
0.1  
1.9  
CML OUTPUTS – 50 Ω SINGLE-ENDED EXTERNAL TERMINATION TO IOVDD  
IOVDD supply range  
1.2  
1.8  
V
V
High-level output voltage  
IOVDD  
IOVDD-  
0.4  
Low-level output voltage  
V
V
V
Output differential voltage, |VOD|  
Output common-mode voltage, VOCM  
0.4  
IOVDD-  
0.2  
Transmitter terminals shorted to any voltage between  
Transmitter short circuit current  
–0.25V and 1.45V  
-90  
50  
mA  
Single-ended output impedance  
Unit interval, UI  
50  
Ω
UI  
625  
3200  
Total Jitter, TJ  
0.35  
175  
p-pUI  
ps  
Rise/ fall times  
5 pF single-ended load capacitance to ground  
WAKE-UP TIMING CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
50  
10  
5
MAX UNIT  
Time to valid data after coming out of COMPLETE POWERDOWN mode  
Time to valid data after coming out of FAST RECOVERY POWERDOWN mode  
Time to valid data after coming out of SOFTWARE POWERDOWN mode  
Time to valid data after stopping and restarting the input clock  
μs  
μs  
μs  
μs  
Wake-up time  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
DETAILED DESCRIPTION  
JESD204A OUTPUT INTERFACE  
The 12-bit ADC output is padded with 4 zeros on the LSB side to form a 16-bit output. Two 8B10B codes are  
formed – one from the 8 MSBs and the other from the 6 LSBs and the 2 padded zeros .  
ADCOUT<3:0>,0,0,0,0  
ADCOUT<11:4>  
8B10B code1  
MSB octet  
8B10B code2  
LSB octet  
Figure 1. Mapping of ADC Output to Two 8B10B Codes  
The two octets can be either transmitted on the same lane (single lane interface) or on two lanes (dual lane  
interface). By default, the device operates in single lane interface.  
Conversion clock  
(CLKP-CLKM)  
CML output Lane1  
(ADC_OUTP<0> -  
Dx.y  
(ADC data N, MSB octet)  
Dx.y  
(ADC data N, LSB octet)  
Dx.y Dx.y  
(ADC data N+1, MSB octet) (ADC data N+1, LSB octet)  
ADC_OUTM<0>)  
Figure 2. Single Lane Timing  
Conversion clock  
(CLKP-CLKM)  
CML output Lane1  
(ADC_OUTP<0> -  
ADC_OUTM<0>)  
Dx.y  
(ADC data N, MSB octet)  
Dx.y  
Dx.y  
(ADC data N+1, MSB octet) (ADC data N+2, MSB octet) (ADC data N+3, MSB octet)  
Dx.y  
CML output Lane2  
(ADC_OUTP<1> -  
ADC_OUTM<1>)  
Dx.y  
(ADC data N, LSB octet)  
Dx.y  
(ADC data N+1, LSB octet)  
Dx.y Dx.y  
(ADC data N+2, LSB octet) (ADC data N+3, LSB octet)  
Figure 3. Dual Lane Timing  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
The detailed timing diagram in the dual lane mode is shown below:  
N+22  
N+3  
N+4  
N+21  
N+2  
N+1  
N+20  
Sample  
N
INPUT  
SIGNAL  
t a  
CLKP  
CLKM  
INPUT  
CLOCK  
20 clock cycles *  
t PDI  
CML OUTPUT  
DATA LANE 1  
N-20  
N-20  
N-21  
N-21  
N-19  
N-19  
N-18  
N-18  
N-1  
N-1  
N-17  
N-17  
N
N
N+1  
N+1  
N+2  
N+2  
CML OUTPUT  
DATA LANE 2  
* This is the ADC latency. At higher sampling frequencies, t PDI > 1 clock cycle.  
Then, overall latency = ADC latency + 1.  
Figure 4. Data Timing Diagram - Dual Lane Mode  
PARAMETER  
30 MSPS  
560 ps  
40 MSPS  
560 ps  
60 MSPS  
560 ps  
80 MSPS  
560 ps  
Aperture delay – TA  
Aperture jitter (RMS) – TJ  
Latency  
125 fs  
125 fs  
125 fs  
125 fs  
20 clocks  
33.3 ns  
20 clocks  
26.2 ns  
20 clocks  
18.9 ns  
20 clocks  
15.3 ns  
tPDI Data propagation delay  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
Whenever there is a need to synchronize to the frame boundary of the output data stream, the receiver issues a  
synchronization request through the SYNC~P, SYNC~M pins. Below diagram shows how the transmission  
switches from normal data (D) to code group synchronization symbols K28.5 symbols during and after a  
synchronization request.  
N+9  
N+8  
N+7  
N+5  
N+6  
N+4  
N+3  
N+2  
N+1  
Sample  
N
INPUT  
SIGNAL  
CLKP  
CLKM  
INPUT  
CLOCK  
tCLK-INT  
INTERNAL CLOCK  
FOR LATCHING SYNC~  
(CLK_INT)  
tSYNC-
t SYNC-H  
SYNC ~input  
(SYNC~P)-(SYNC~M)  
tSYNC-PDI  
‘SYNC~ active’ latency = 9 clock cycles  
CML OUTPUT  
DATA LANE1  
N-21  
N-21  
N-20  
N-20  
N-13  
N-13  
N-19  
N-19  
N-18  
N-18  
K28.5  
K28.5  
N-12  
N-12  
N-17  
N-17  
N-16  
N-16  
N-14  
N-14  
N-15  
N-15  
CML OUTPUT  
DATA LANE 2  
Figure 5. SYNC~ ACTIVE Timing Diagram  
Table 1. SYNC~ Falling Edge Timing at 80 MSPS  
PARAMETER  
DESCRIPTION  
TYP  
UNIT  
Delay from input clock rising edge to the rising edge of the internal clock  
(CLK_INT) used to latch falling edge of SYNC~  
tCLK-INT  
10.5  
ns  
tSYNC-SU SYNC~ active edge setup time Minimum delay required from SYNC~ falling edge to CLK_INT rising edge  
tSYNC-H SYNC~ active edge hold time Minimum delay required from CLK_INT rising edge to SYNC~ falling edge  
2
2
ns  
ns  
SYNC~ active latency  
Number of clocks for K28.5 to appear at the output after a SYNC~ request  
Similar to data propagation delay  
9
clocks  
ns  
tSYNC-PDI SYNC~ data propagation  
delay  
15.3  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
N+9  
www.ti.com  
N+8  
N+7  
N+5  
N+6  
N+4  
N+3  
N+2  
N+1  
Sample  
N
INPUT  
SIGNAL  
CLKP  
CLKM  
INPUT  
CLOCK  
tCLK-INT  
INTERNAL CLOCK  
FOR LATCHING SYNC  
(CLK_INT)  
tSYNCZ-SU  
t SYNCZ-H  
SYNC~ input  
(SYNC~P)-(SYNC~M)  
tSYNCZ-PDI  
‘SYNC~ de-active’ latency = 8 clock cycles  
CML OUTPUT  
DATA LANE 1  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
N-12  
N-12  
N-11  
N-11  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
CML OUTPUT  
DATA LANE 2  
K28.5  
Figure 6. SYNC~ DE-ACTIVE Timing Diagram  
Table 2. SYNC~ Rising Edge Timing at 80 MSPS  
PARAMETER  
DESCRIPTION  
TYP  
UNIT  
Delay from input clock rising edge to the rising edge of the internal  
clock (CLK_INT) used to latch rising edge of SYNC~  
10.5  
ns  
tCLK-INT  
tSYNCZ-SU  
SYNC~ active edge setup time Minimum delay required from SYNC~ rising edge to CLK_INT rising  
edge  
2
2
ns  
ns  
tSYNCZ-H  
SYNC~ active edge hold time Minimum delay required from CLK_INT rising edge to SYNC~ rising  
edge  
SYNC~ de-active latency  
Number of clocks for normal data to appear at the output after a  
SYNC~ de-activate request  
8
clocks  
ns  
tSYNCZ-PDI SYNC~ de-active data  
propagation delay  
Similar to data propagation delay  
15.3  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
4-LEVEL CONTROL  
In the ADS61JB23 the DFS_EXTREF and MODE pins function as 4-level control pins as described in Table 3  
and Table 4. A simple scheme to generate 4-level voltage is shown in Figure 7.  
AVDD  
(5/8)AVDD  
3R  
(5/8)AVDD  
2R  
AVDD  
GND  
(3/8)AVDD  
3R  
To parallel pin  
(3/8)AVDD  
GND  
Figure 7. Simple Scheme to Configure 4-Level Control Pins  
Table 3. Pin 3 – DFS_EXTREF  
DFS_EXTREF  
DESCRIPTION  
0
EXTREF = 0, DFS = 0  
+150 mV/–0 mV  
(3/8)AVDD  
±150 mV  
EXTREF = 1, DFS = 0  
EXTREF = 1, DFS = 1  
EXTREF = 0, DFS = 1  
(5/8)AVDD  
±150 mV  
AVDD  
+0 mV/–150 mV  
Key:  
EXTREF: 0 = Internal reference mode,  
1 = External reference mode.  
1 = Offset binary output.  
DFS:  
0 = 2's complement output,  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
 
 
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
PARALLEL INTERFACE MODE  
The ADS61JB23 operates in parallel interface mode when a suitable voltage is applied on the MODE pin as  
described in Table 4. In parallel interface mode, the SEN, SDATA, SCLK, and SDOUT pins function differently  
compared to serial interface mode. In this mode, the SEN_FALIGN_IDLE and SCLK_SERF0_SCR pins turn into  
4-level control pins for JESD interface as described in Table 5 and Table 6, whereas the SDATA_TEST0 and  
SDOUT_TEST1 pins turn into 2-level control pins as described in Table 7.  
Table 4. Pin 19 - Mode  
MODE  
DESCRIPTION  
0
Serial interface mode. Pins 23, 24 and 25 are configured as SEN, SDATA, SCLK. Pins 36, 37, 38, 39 are  
configured to output either early signal estimate or signal power estimate – selection is based on register settings.  
+150 mV/–0 mV  
(3/8)AVDD  
±150 mV  
Do not use  
(5/8)AVDD  
±150 mV  
Parallel interface mode. Pins 23, 24 and 25 are configured as parallel input pins for controlling JESD204A modes.  
Pins 36,37,38, 39 outputs early signal estimate always.  
AVDD  
+0 mV/–150 mV  
Do not use.  
Table 5. Pin 23 - SEN_FALIGN_IDLE (in Parallel Interface Mode)  
SEN_FALIGN_IDLE  
DESCRIPTION  
0
FALIGN = 0, IDLE = 0  
FALIGN = 1, IDLE = 0  
FALIGN = 1, IDLE = 1  
FALIGN = 0, IDLE = 1  
+150 mV/–0 mV  
(3/8)AVDD  
±150 mV  
(5/8)AVDD  
±150 mV  
AVDD  
+0 mV/–150 mV  
Key:  
When the last octet of the current frame is the same as the last octet of the previous frame, then FALIGN determines  
whether the last octet of the current frame is transmitted as is, or replaced by a K28.7 control symbol. When FALIGN=0, it is  
transmitted as is. When FALIGN=1, it is replaced with a K28.7 control symbol.  
FALIGN:  
IDLE:  
IDLE determines the synchronization characters transmitted during and immediately after a SYNC event. When IDLE=0, the  
device transmits K28.5 as per the JESD204A spec. When IDLE=1, the device alternately transmits K28.5 and D5.6/D16.2  
characters as per IEEE Std 802.3-2002 part3, Clause 36.2.4.12. This is the case in both single and dual lane modes.  
Table 6. Pin 25 - SCLK_SERF0_SCR (in Parallel Interface Mode)  
SCLK_SERF0_SCR  
DESCRIPTION  
0
SERF0 = 0, SCR = 0  
SERF0 = 1, SCR = 0  
SERF0 = 1, SCR = 1  
SERF0 = 0, SCR = 1  
+150 mV/–0 mV  
(3/8)AVDD  
±150 mV  
(5/8)AVDD  
±150 mV  
AVDD  
+0 mV/–150 mV  
Key:  
SERF0: Output serialization factor. When SERF0=0, the device transmits 2 octets per frame (entire ADC channel in a single lane) with an  
output serialization factor of 20. When SERF0=1, the device transmits 1 octet per frame (ADC channel over 2 lanes) with an  
output serialization factor of 10.  
SCR:  
SCR=0: Scrambling disabled. SCR=1: Scrambling (as per JESD204A) enabled  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADS61JB23  
 
 
 
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
Table 7. Pins 24 and 28 - SDATA_TEST0 and SDOUT_TEST1 (in Parallel Interface Mode)  
TEST1  
TEST0  
MODE  
Normal mode. Input to JESD204A encoder is ADC data  
Input to JESD204A encoder is B5B5. Output is a stream of D21.5 (alternating 1 and 0)  
Input to JESD204A encoder is FF00  
Input to JESD204A encoder is a pseudo random pattern 1+ X14 + X15 (irrespective of whether scrambler  
is enabled or not)  
0
0
1
1
0
1
0
1
SERIAL INTERFACE  
The ADC has a set of internal registers, which can be accessed by the serial interface formed by pins Serial  
interface Enable (SEN), Serial Interface Clock (SCLK) and Serial Interface Data (SDATA).  
Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every falling edge  
of SCLK when SEN is active (low). The serial data is loaded into the register at every 16th SCLK falling edge  
when SEN is low. In case the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be  
loaded in multiple of 16-bit words within a single active SEN pulse.  
The first 8 bits form the register address and the remaining 8 bits are the register data. The interface can work  
with SCLK frequency from 20 MHz down to very low speeds (few Hertz) and also with non-50% SCLK duty  
cycle.  
REGISTER INITIALIZATION  
After power-up, the internal registers MUST be initialized to their default values. This can be done in one of two  
ways:  
1. Either through hardware reset by applying a high-going pulse on RESET pin (of width greater than 10ns) as  
shown in Figure 8  
OR  
2. By applying software reset. Using the serial interface, set the S_RESET bit (D1 in register 0x00) to HIGH.  
This initializes internal registers to their default values and then self-resets the S_RESET bit to LOW. In this  
case the RESET pin is kept LOW.  
Register Address  
A4 A3  
Register Data  
D4 D3  
SDATA  
SCLK  
SEN  
A7  
A6  
A5  
A2  
A1  
A0  
D7  
D6  
D5  
D2  
tDH  
D1  
D0  
tSCLK  
tDSU  
tSLOADS  
tSLOADH  
RESET  
T0109-04  
Figure 8. Serial Interface Timing  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
 
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at 25°C, MIN and MAX values across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 1.8V,  
DRVDD = 1.8V, unless otherwise noted.  
PARAMETER  
MIN TYP  
MAX UNIT  
fSCLK  
tSLOADS  
tSLOADH  
tDS  
SCLK frequency (= 1/ tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
)
> DC  
25  
20  
MHz  
ns  
25  
ns  
25  
ns  
tDH  
SDATA hold time  
25  
ns  
Serial Register Readout  
The device includes an option where the contents of the internal registers can be read back. This may be useful  
as a diagnostic check to verify the serial interface communication between the external controller and the ADC.  
1. First, set register bit <SERIAL READOUT> = 1. This also disables any further writes into the registers  
(EXCEPT register bit <SERIAL READOUT> itself).  
2. Initiate a serial interface cycle specifying the address of the register (A7-A0) whose content has to be read.  
3. The device outputs the contents (D7-D0) of the selected register on SDOUT_TEST1 pin.  
4. The external controller can latch the contents at the falling edge of SCLK.  
5. To enable register writes, reset register bit <SERIAL READOUT> = 0.  
RESET TIMING  
Typical values at 25°C, MIN and MAX values across the full temperature range TMIN = –40°C to TMAX = 85°C, unless  
otherwise noted.  
PARAMETER  
Power-on delay  
Reset pulse width  
CONDITIONS  
MIN TYP  
MAX UNIT  
t1  
t2  
t3  
Delay from power-up of AVDD and DRVDD to RESET pulse active  
Pulse width of active RESET signal that will reset the serial registers  
Delay from RESET disable to SEN active  
1
ms  
10  
100  
ns  
POWER SUPPLY  
AVDD, DRVDD  
t
1
RESET  
t
2
t
3
SEN  
NOTE: A high-going pulse on RESET pin is required in case of initialization through hardware reset.  
Figure 9. Reset Timing Diagram  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
SERIAL INTERFACE REGISTER MAP  
BIT LOCATION  
MODE  
(Address in Hex  
<Bit location>)  
DESCRIPTION  
S_RESET  
00<1>  
Software RESET. Same function as hardware reset.  
SERIAL_READOUT  
HIGH SFDR MODE  
00<0>  
Default = 0 for serial interface write. 1 for serial readout.  
2<6:4> and 2<0>  
Set these bits to get best HD3 when input frequency is between 150MHz to 250MHz.  
Override control of DFS_EXTREF pin in controlling DFS select mode, and control it using register bit  
DFS_REG.  
When ‘0’, DFS functionality determined by DFS_EXTREF pin.  
When ‘1’, DFS functionality determined by DFS_REG.  
DFS_OVERRIDE  
DFS_REG  
3C<7>  
3C<6>  
44<3>  
44<2>  
Register bit for DFS control.  
When ‘0’, output format is 2’s complement.  
When ‘1’, output format is offset binary.Takes effect when DFS_OVERRIDE is set to ‘1’.  
Override control of DFS_EXTREF pin in controlling Internal/ External reference select mode, and control  
it using register bit INT_REF_REG.  
When ‘0’, Internal/ External reference mode determined by DFS_EXTREF pin.  
When ‘1’, Internal/ External reference mode determined by INT_REF_REG.  
INT_REF_OVERRIDE  
INT_REF_REG  
Register bit for Internal/ External reference mode control.  
When ‘0’, Internal reference mode.  
When ‘1’, External reference mode.Takes effect when INT_REF_OVERRIDE is set to ‘1’.  
S_PDN  
44<6>  
45<7:4>  
45<3>  
Software powerdown.  
FINE_GAIN<3:0>  
BYPASS_FINE_GAIN  
0-6 dB digital gain in steps of 0.5 dB. Default is 0 dB. Refer section titled “FINE GAIN CONTROL”  
Digital gain bypass. When set to 1, fine gain is bypassed.  
Output Test patterns:  
000: ADC output data bus is input to JESD204A encoder block  
001: ADC bus replaced by min code (00000000000000 in offset binary).  
010: ADC bus replaced by max code (11111111111111 in offset binary).  
100: ADC bus replaced by a ramping code pattern that increments by 1 LSB every 4 clocks (and folds  
back to min code once max code is reached).  
ADC_TEST_PAT<2:0>  
TXMIT_LINKDATA_EN  
45<2:0>  
A0<0>  
011,101,110,111: Do not use  
When set to 1, initial lane alignment sequence (as per JESD204A) is sent after Code group sync in both  
single lane and dual lane interfaces. When this bit is 0 (default) initial lane alignment sequence is not  
transmitted.  
Software Frame Align control.  
Enables frame alignment monitoring. When this bit is set to 1 (with scrambling turned off) – If the last  
octet in the previous frame is the same as the last octet in the current frame, then the last octet in the  
current frame will be replaced with a frame alignment symbol K28.7. When this bit is 0, there is no  
replacement.  
S_FALIGN  
A0<1>  
When scrambling is ON and this bit is ‘1’: When the last scrambled octet in a frame equals 0xFC, it is  
encoded as K28.7.  
This bit control is similar to the FALIGN pin control.  
Multi-frame Align control.  
MFALIGN  
A0<2>  
A0<3>  
Similar to frame align, this refers to multi-frame.  
Multi-frame alignment symbol is K28.3.  
By default, the last octet in the frame gets derived from the data octet on the LSB side. Since usually the  
LSB octets switch more (frame to frame) than the MSB octets, the occurrence of consecutive “last  
octets” might be rare. This might lead to infrequent occurrence of frame alignment symbols. To increase  
the rate of consecutive last octets (and thereby the rate of frame and multi-frame alignment symbols),  
this bit can be set to 1. Setting this bit to 1 will flip the bit order of the ADC inputs (N bits) to the  
JESD204A logic. Note that the 2 zeros padded at the end to make the input to the JESD204A logic  
remain unchanged.  
FLIP_ADC_BUS  
TESTMODE_EN  
S_IDLE  
A0<4>  
A0<5>  
Enables the transmission of test sequence mentioned in the JESD204A document.  
Software idle generation control.  
Normally the output during code group synchronization is K28.5. When idle_sync is set to 1, it is a K28.5  
comma followed by either a D5.6 or a D16.2. This is as per IEEE Std 802.3-2002 part3, Clause  
36.2.4.12 and enables compatibility with TI’s TLK family of devices.This bit control is similar to the IDLE  
pin control.  
S_TEST0  
S_TEST1  
CTRL_F  
CTRL_K  
S_SCR  
A0<6>  
A0<7>  
A1<0>  
A1<1>  
A5<7>  
These 2 bit controls are similar to the TEST1 and TEST0 pin controls.  
Enables write into A6<7:0>.  
Enables write into A7<4:0>.  
Software Scrambling enable. This bit control is similar to the SCR pin control.  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
BIT LOCATION  
(Address in Hex  
<Bit location>)  
MODE  
DESCRIPTION  
Number of octets per frame. Default set to 00000001 (2-1) which is 2 octets per frame (single lane). For  
2-lane output (1 octet per frame), set to 00000000. Note that to override default, CTRL_F needs to be  
set to 1.  
F<7:0>  
K<4:0>  
A6<7:0>  
Number of frames per multiframe (minus 1). Default depends on value of F<7:0>.  
When F=0 (10X mode): K=16 (17 frames per multiframe)  
When F=1 (20X mode): K=8 (9 frames per multiframe)  
Note that to override the default value of K<4:0>, CTRL_K needs to be set to 1. When CTRL_K is set to  
1, the value programmed in A7<4:0> denotes the number of frames per multiframe (minus 1). For eg., to  
set the number of frames per multiframe to 23, set CTRL_K=1 and A7<4:0>=10110.  
A7<4:0>  
CML buffer current select. Default (0000) is 16 mA.  
Current is calculated as: 16 mA+16 mA×<3>–8 m×<2>–4 mA×<1>–2 mA×<0>  
CML_I<3:0>  
B0<3:0>  
B4<3>  
Replaces the output of the 8b/10b coder (corresponding to the MSB octet) with a 10-bit word specified in  
OUT_WORD_LANE1<9:0>  
FORCE_OUT_LANE1  
OUT_WORD_LANE1<9:0>  
FORCE_OUT_LANE2  
B6<7:0>,  
B7<7:6>  
10-bit word replacing the output of the 8b/10b coder when FORCE_OUT_LANE1 is set to ‘1’  
Replaces the output of the 8b/10b coder (corresponding to the LSB octet) with a 10-bit word specified in  
OUT_WORD_LANE2<9:0>  
B4<6>  
B8<7:4>,  
B9<7:2>  
OUT_WORD_LANE2<9:0>  
EN_SIG_EST  
10-bit word replacing the output of the 8b/10b coder when FORCE_OUT_LANE2 is set to ‘1’  
D6<0>  
Outputs a 4-bit ADC code with low latency on pins DETECT<3:0>  
Outputs a 4-bit average power estimate of input signal on DETECT<3:0>.  
EN_PWR_EST  
D6<5>  
Power estimate is in dB scale in steps of roughly 1 dB. Refer section titled SIGNAL POWER  
ESTIMATION  
Determines number of samples to average for power estimation.  
Programmable from 1K to 16K.  
SAMPLES_PWR_EST<2:0>  
D6<4:2>  
REGISTER MODES  
A brief summary of different register modes and their location in the digital processing flow of the ADS61JB23 is  
shown in Figure 10 and Figure 11.  
ADC Digital  
block  
ADC  
(Data format,  
Digital gain)  
ADC test  
pattern  
generator  
JESD test  
pattern  
generator  
To Frame to Octet  
Coversion”  
FINE_GAIN<3:0>  
DFS  
JESD  
testmode  
generator  
ADC_TEST_PAT<2:0>  
TEST0,TEST1  
TESTMODE_EN  
Figure 10. Register Modes Preceding Frame to Octet Conversion Block  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADS61JB23  
 
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
MSB octet  
TXMIT_LINKDATA_EN  
SYNC~  
SYNC~  
Decoder  
To SERDES  
TX  
controller  
ILAS  
generator  
1 <9:0>  
OUT_WORD_LANE  
8b/10b  
Coder  
FORCE_OUT_LANE1  
Frame to  
Octet  
stream  
Alignment  
character  
generator  
Scrambler  
LSB octet  
conversion  
To SERDES  
OUT_WORD_LANE2 <9:0>  
SCR, FALIGN,  
MALIGN  
FLIP_ADC_BUS  
SCR  
FORCE_OUT_LANE2  
Figure 11. Register Modes Following Frame to Octet Conversion Block  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
INITIAL LANE ALIGNMENT SEQUENCE  
By default the initial lane alignment sequence is not transmitted. To enable transmission of the initial lane  
alignment sequence,  
For the two settings of F, the Mapping of link configuration fields to octets Table of the JESD204A spec is shown  
in Table 8.  
Table 8. Mapping of Link Configuration Fields to Octets  
Configuration  
Octet No.  
MSB  
6
5
4
3
2
1
LSB  
F=1 (20X mode)  
0
1
DID<7:0> = 00000000  
X
X
X
X
X
X
X
X
BID<3:0> = 0000  
LID<4:0> = 00000  
L<4:0> = 00000  
2
X
3
SCR<0> - set by S_SCR  
4
F<7:0> = 00000001  
5
X
X
X
K<4:0> = 01000 (or programmed value of A7<4:0> if CTRL_K = 1)  
6
M<7:0> = 00000000  
N<4:0> = 01101  
7
CS<1:0>=00  
X
X
X
X
8
X
X
X
X
X
N'<4:0> = 01111  
9
S<4:0>=00000  
10  
11  
12  
13  
HD<0>=0  
CF<4:0>=00000  
RES1<7:0> - Set to all 0  
RES2<7:0> - Set to all 0  
FCHK<7:0>  
F=0 (10X mode)  
0
1
DID<7:0> = 00000000  
X
X
X
X
X
X
X
X
BID<3:0> = 0000  
LID<4:0> = 00000 for Lane 1 and 00001 for Lane 2  
L<4:0> = 00001  
2
X
3
SCR<0> - set by S_SCR  
4
F<7:0> = 00000000  
K<4:0> = 10000 (or programmed value of A7<4:0> if CTRL_K = 1)  
M<7:0> = 00000000  
5
X
X
X
6
7
CS<1:0>=00  
X
X
X
X
N<4:0> = 01101  
8
X
X
X
X
X
N'<4:0> = 01111  
9
S<4:0>=00000  
10  
11  
12  
13  
HD<0>=0  
CF<4:0>=00000  
RES1<7:0> - Set to all 0  
RES2<7:0> - Set to all 0  
FCHK<7:0>  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADS61JB23  
 
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY (for 20MHz IF)  
FREQUENCY (for 70MHz IF)  
0
−20  
0
−20  
SFDR = 75.6 dBc  
SFDR = 75.4 dBc  
SNR = 71.8 dBFS  
SINAD = 70.6 dBFS  
THD = 75.5 dBc  
SFDR Non HD2,HD3  
= 99.83 dBc  
SNR = 71.6 dBFS  
SINAD = 70.3 dBFS  
THD = 75.1 dBc  
SFDR Non HD2,HD3  
= 97.9 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (MHz)  
Frequency (MHz)  
G029  
G030  
Figure 12.  
Figure 13.  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY (for 150MHz IF)  
FREQUENCY (for 300MHz IF)  
0
−20  
0
−20  
SFDR = 85.6 dBc  
SNR = 70.7 dBFS  
SINAD = 70.4 dBFS  
THD = 81.6 dBc  
SFDR = 69.0 dBc  
SNR = 68.6 dBFS  
SINAD = 64.9 dBFS  
THD = 66.2 dBc  
SFDR Non HD2, HD3  
= 88.93 dBc  
SFDR Non HD2, HD3  
= 85.38 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (MHz)  
Frequency (MHz)  
G031  
G032  
Figure 14.  
Figure 15.  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
AMPLITUDE  
AMPLITUDE  
vs  
vs  
FREQUENCY (for TWO TONE INPUT SIGNAL)  
FREQUENCY (for TWO TONE INPUT SIGNAL)  
0
−10  
0
−10  
Each Tone at  
Each Tone at  
−7 dBFS Amplitude  
fIN1 = 190 MHz  
fIN2 = 185 MHz  
−36 dBFS Amplitude  
fIN1 = 190 MHz  
fIN2 = 185 MHz  
−20  
−20  
IMD3 = 82.4 dBFS  
IMD3 = 104.9 dBFS  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−100  
−110  
−120  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
G033  
G034  
Figure 16.  
Figure 17.  
SFDR  
vs  
SFDR NON HD2, HD3  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
104  
101  
98  
Digital Gain = 0 dB  
Digital Gain = 2 dB  
Digital Gain = 6 dB  
Digital Gain = 0 dB  
Digital Gain = 2 dB  
Digital Gain = 6 dB  
95  
92  
89  
86  
83  
80  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
G035  
G036  
Figure 18.  
Figure 19.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
SNR  
vs  
SNR  
vs  
INPUT FREQUENCY  
AMPLITUDE  
75.5  
75  
130  
120  
110  
100  
90  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
Input Frequency = 40 MHz  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
Digital Gain = 0 dB  
Digital Gain = 2 dB  
Digital Gain = 6 dB  
74.5  
74  
73.5  
73  
80  
72.5  
72  
70  
60  
71.5  
71  
50  
40  
70.5  
30  
−50  
−40  
−30  
−20  
−10  
0
Amplitude (dBFS)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
G038  
G037  
Figure 20.  
Figure 21.  
SFDR  
vs  
SNR  
vs  
DIGITAL GAIN  
DIGITAL GAIN  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
20 MHz  
70 MHz  
150 MHz  
220 MHz  
270 MHz  
300 MHz  
400 MHz  
500 MHz  
20 MHz  
70 MHz  
150 MHz  
220 MHz  
270 MHz  
300 MHz  
400 MHz  
500 MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Digital Gain (dB)  
Digital Gain (dB)  
G039  
G040  
Figure 22.  
Figure 23.  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
SINAD  
vs  
SFDR  
vs  
DIGITAL GAIN  
AVDD SUPPLY and TEMPERATURE  
77  
75  
73  
71  
69  
67  
65  
63  
61  
59  
57  
55  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
20 MHz  
70 MHz  
150 MHz  
220 MHz  
270 MHz  
300 MHz  
400 MHz  
500 MHz  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
Input Frequency = 190 MHz  
−15 10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−40  
35  
60  
85  
Digital Gain (dB)  
Temperature (°C)  
G041  
G042  
Figure 24.  
Figure 25.  
SNR  
vs  
SFDR  
vs  
AVDD SUPPLY and TEMPERATURE  
AVDD_3V SUPPLY and TEMPERATURE  
71  
70.9  
70.8  
70.7  
70.6  
70.5  
70.4  
70.3  
70.2  
70.1  
70  
85  
84  
83  
82  
81  
80  
79  
78  
77  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD_3V = 3 V  
AVDD_3V = 3.1 V  
AVDD_3V = 3.2 V  
AVDD_3V = 3.3 V  
AVDD_3V = 3.4 V  
AVDD_3V = 3.5 V  
AVDD_3V = 3.6 V  
Input Frequency = 190 MHz  
−15 10  
Input Frequency = 190 MHz  
−15 10  
−40  
35  
60  
85  
−40  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
G043  
G044  
Figure 26.  
Figure 27.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
SNR  
SFDR  
vs  
vs  
AVDD_3V SUPPLY and TEMPERATURE  
DRVDD SUPPLY and TEMPERATURE  
70.8  
70.7  
70.6  
70.5  
70.4  
70.3  
70.2  
70.1  
70  
85  
84  
83  
82  
81  
80  
79  
78  
AVDD_3V = 3 V  
AVDD_3V = 3.1 V  
AVDD_3V = 3.2 V  
AVDD_3V = 3.3 V  
AVDD_3V = 3.4 V  
AVDD_3V = 3.5 V  
AVDD_3V = 3.6 V  
DRVDD = 1.75 V  
DRVDD = 1.8 V  
DRVDD = 1.85 V  
DRVDD = 1.9 V  
DRVDD = 1.95 V  
69.9  
Input Frequency = 190 MHz  
−15 10  
Input Frequency = 190 MHz  
−15 10  
69.8  
−40  
35  
60  
85  
−40  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
G045  
G046  
Figure 28.  
Figure 29.  
SNR  
vs  
PERFORMANCE  
vs  
DRVDD SUPPLY and TEMPERATURE  
INPUT COMMON-MODE VOLTAGE  
73  
72.5  
72  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70.9  
70.8  
70.7  
70.6  
70.5  
70.4  
70.3  
70.2  
70.1  
70  
Input Frequency = 40 MHz  
SNR  
DRVDD = 1.75 V  
DRVDD = 1.8 V  
DRVDD = 1.85 V  
DRVDD = 1.9 V  
DRVDD = 1.95 V  
SFDR  
71.5  
71  
70.5  
70  
69.5  
69  
68.5  
68  
1.85  
Input Frequency = 190 MHz  
−15 10  
1.88  
1.91  
1.94  
1.97  
2
Input Common-Mode Voltage (V)  
−40  
35  
60  
85  
G048  
Temperature (°C)  
G047  
Figure 30.  
Figure 31.  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
PERFORMANCE  
PERFORMANCE  
vs  
vs  
INPUT COMMON-MODE VOLTAGE  
EXTERNAL REFERENCE VOLTAGE  
71  
70.5  
70  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
75.5  
75  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
Input Frequency = 190 MHz  
SNR  
SFDR  
Input Frequency = 40 MHz  
SNR  
SFDR  
74.5  
74  
69.5  
69  
73.5  
73  
68.5  
68  
72.5  
72  
67.5  
67  
71.5  
71  
66.5  
66  
1.85  
70.5  
1.88  
1.91  
1.94  
1.97  
2
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7  
External Reference Voltage (V)  
Input Common-Mode Voltage (V)  
G049  
G050  
Figure 32.  
Figure 33.  
PERFORMANCE  
vs  
PERFORMANCE  
vs  
EXTERNAL REFERENCE VOLTAGE  
DIFFERENTIAL CLOCK AMPLITUDE  
73.5  
73  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
79  
77  
75  
73  
71  
69  
67  
65  
63  
61  
59  
57  
87  
85  
83  
81  
79  
77  
75  
73  
71  
69  
67  
65  
Input Frequency = 190 MHz  
SNR  
SFDR  
Input Frequency = 190 MHz  
SNR  
SFDR  
72.5  
72  
71.5  
71  
70.5  
70  
69.5  
69  
68.5  
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7  
External Reference Voltage (V)  
0.2 0.5 0.8 1.1 1.4 1.7  
2
2.3 2.6 2.9 3.2 3.5  
Differential Clock Amplitude (Vpp)  
G051  
G052  
Figure 34.  
Figure 35.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
PERFORMANCE  
vs  
INPUT CLOCK DUTY CYCLE  
75  
74.5  
74  
78  
Input Frequency = 20MHz  
SNR  
THD  
77.5  
77  
73.5  
73  
76.5  
76  
72.5  
72  
75.5  
75  
71.5  
71  
74.5  
74  
70.5  
70  
73.5  
73  
20  
30  
40  
50  
60  
70  
80  
Input Clock Duty Cycle (%)  
G053  
Figure 36.  
26  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
TYPICAL CHARACTERISTICS: COMMON  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
PSRR SPECTRUM FOR AVDD SUPPLY  
CMRR SPECTRUM FOR AVDD SUPPLY  
0
−20  
0
−20  
fIN = 20 MHz  
SFDR = 75.4 dBc  
fPSRR = 10 MHz, 50 mVPP  
Amplitude (fIN) = −1 dBFS  
Amplitude (fPSRR  
fIN = 20 MHz  
SFDR = 75.3 dBc  
fCM = 10 MHz, 50 mVPP  
Amplitude (fIN) = −1 dBFS  
Amplitude (fCM  
fIN = 20 MHz  
fIN = 20 MHz  
)
)
= −104.5 dBFS  
Amplitude (fIN + fPSRR  
= −94.5 dBFS  
= −92.8 dBFS  
Amplitude (fIN + fCM  
= −88.9 dBFS  
)
)
−40  
−40  
Amplitude (fIN − fPSRR  
)
Amplitude (fIN − fCM  
)
= −99.4 dBFS  
= −89.8 dBFS  
−60  
−60  
fIN + fPSRR) = 30 MHz  
fIN + fCM) = 30 MHz  
−80  
−80  
fIN − fPSRR) = 10 MHz  
fPSRR = 10 MHz  
fIN − fCM) = 10 MHz  
fCM = 10 MHz  
−100  
−120  
−100  
−120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (MHz)  
Frequency (MHz)  
G054  
G055  
Figure 37.  
Figure 38.  
TOTAL POWER  
vs  
POWER BREAK-UP  
vs  
SAMPLING SPEED  
SAMPLING SPEED  
0.54  
0.48  
0.42  
0.36  
0.3  
0.28  
0.24  
0.2  
Total Power  
AVDD Power  
AVDD_3V Power  
DRVDD Power  
IOVDD Power  
0.16  
0.12  
0.08  
0.04  
0
0.24  
0.18  
5
20  
35  
50  
65  
80  
5
20  
35  
50  
65  
80  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
G056  
G057  
Figure 39.  
Figure 40.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: COMMON (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
IOVDD POWER  
vs  
SAMPLING SPEED  
0.09  
IOVDD Power  
Double Lane  
Single Lane  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
5
20  
35  
50  
65  
80  
Sampling Speed (MSPS)  
G058  
Figure 41.  
28  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
TYPICAL CHARACTERISTICS: CONTOUR  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
SFDR ACROSS INPUT AND SAMPLING FREQUENCIES  
80  
80  
75  
70  
65  
60  
55  
50  
45  
40  
75  
60  
65  
70  
80  
80  
60  
75  
65  
70  
80  
80  
70  
75  
65  
60  
50  
100  
60  
150  
200 300  
Input Frequency, MHz  
250  
350  
400  
450  
500  
85  
55  
65  
70  
75  
80  
Figure 42.  
SFDR ACROSS INPUT AND SAMPLING FREQUENCIES with 6dB Gain  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
90  
80  
85  
70  
90  
90  
75  
80  
90  
90  
85  
70  
80  
90  
75  
90  
75  
75  
85  
70  
80  
50  
100  
150  
200  
250  
300  
Input Frequency, MHz  
350  
400  
85  
450  
500  
65  
70  
75  
80  
90  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS: CONTOUR (continued)  
At +25°C, AVDD = 1.8V, AVDD_3V = 3.3V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock,  
1.5VPP differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, low-latency mode, DDR LVDS  
output interface, and 32k-point FFT, unless otherwise noted. Note that after reset, the device is in 0dB gain mode  
SNR ACROSS INPUT AND SAMPLING FREQUENCIES  
80  
75  
70  
65  
60  
55  
50  
45  
40  
70  
69  
71  
68  
67  
66  
70  
69  
68  
71  
67  
66  
65  
65  
71  
68  
67  
66  
64  
69  
70  
50  
100  
150  
200 300  
Input Frequency, MHz  
250  
350  
400  
450  
500  
72  
63  
64  
65  
66  
67  
68  
69  
70  
71  
Figure 43.  
SNR ACROSS INPUT AND SAMPLING FREQUENCIES with 6dB Gain  
80  
75  
70  
65  
60  
55  
50  
45  
40  
68.5  
67.5  
66.5  
68  
67  
66  
65  
68.5  
67.5  
66.5  
68  
67  
66  
65  
64  
66.5  
68.5  
67.5  
67  
66  
65  
68  
64  
63  
50  
100  
150  
200  
250  
300  
Input Frequency, MHz  
350  
400  
450  
500  
63  
64  
65  
66  
67  
68  
69  
Figure 44.  
30  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS61JB23 is a family of buffered analog input and ultralow power ADCs with maximum sampling rates up  
to 80MSPS. The conversion process is initiated by a rising edge of the external input clock and the analog input  
signal is sampled. The sampled signal is sequentially converted by a series of small resolution stages, with the  
outputs combined in a digital correction logic block. At every clock edge the sample propagates through the  
pipeline, resulting in a data latency of 21 clock cycles. The output is available as 12-bit data, coded in either  
straight offset binary or binary twos complement format, with JESD207A interface in CML logic levels.  
ANALOG INPUTS  
The analog input pins have analog buffers (running off the AVDD3V supply) that internally drive the differential  
sampling circuit. As a result of the analog buffer, the input pins present high input impedance to the external  
driving source (10kΩ dc resistance and 2pF input capacitance). The buffer helps to isolate the external driving  
source from the switching currents of the sampling circuit. This buffering makes it easy to drive the buffered  
inputs compared to an ADC without the buffer.  
The input common-mode is set internally using a 5kΩ resistor from each input pin to 1.95V, so the input signal  
can be ac-coupled to the pins. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.5V) and  
(VCM – 0.5V), resulting in a 2VPP differential input swing.  
The input sampling circuit has a high 3dB bandwidth that extends up to 450 MHz (measured from the input pins  
to the sampled voltage). Figure 45 shows an equivalent circuit for the analog input.  
1 nH (+/- 0.2 nH)  
(+/- 3 W)  
15 W  
INP_ADC  
INP_PIN  
LPIN1  
ROUTE1  
5 pF (+/- 0.5 pF)  
CBUF1  
0.5 pF  
CESD1  
5000 W (+/- 600 W)  
RVCM1  
5 W (+/- 2 W)  
0.5 pF  
RBUF1  
CPBUF1  
5000  
RVCM2  
600  
1 nH (+/- 0.2 nH)  
LPIN2  
INM_ADC  
(+/- 3 W)  
INM_PIN  
15 W  
ROUTE2  
5 pF (+/- 0.5 pF)  
CBUF2  
0.5 pF  
CESD2  
5 W (+/- 2 W)  
RBUF2  
0.5 pF  
CPBUF2  
Figure 45. Equivalent Circuit  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADS61JB23  
 
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
DRIVE CIRCUIT REQUIREMENTS  
For optimum performance, the analog inputs must be driven differentially. This technique improves the common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5Ω) in series with each input pin is  
recommended to damp out ringing caused by package parasitics.  
and show the differential impedance (ZIN = RIN || CIN) seen by looking into the ADC input pins. The presence of  
the analog input buffer results in an almost constant input capacitance up to 1GHz.  
INP_PIN  
RIN  
CIN  
INM_PIN  
RIN and CIN change with frequency  
At frequency F :  
Real part of input impedance (input resistance) = RIN  
= 1/(2. pF.CIN)  
Imaginary part of input impedance  
= CIN  
Input capacitance  
Frequency - MHz  
Frequency - MHz  
Frequency - MHz  
32  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
EXAMPLE DRIVING CIRCUITS  
Two example driving circuit configurations are shown in Figure 46 and Figure 47—one optimized for low input  
frequencies and the other optimized for high input frequencies.  
The presence of internal analog buffers makes the ADS61JB23 simple to drive by absorbing kick-back noise of  
ADC. The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-  
order harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this  
mismatch and good performance is obtained in input frequency range of interest.  
The drive circuit for low input frequencies (<200MHz) in Figure 46 uses two back to back connected ADT1-1  
transformers terminated by 50Ω near the ADC side.  
An additional termination resistor pair may be required between the two transformers to improve even order  
harmonic performance as shown in drive circuit for high input frequencies (>200MHz) in Figure 47. The center  
point of this termination is connected to ground to improve the balance between the P (positive) and M (negative)  
sides. The example circuit uses two back to back connected ADTL2-18 transformers with 200Ω termination  
between them and 100Ω at secondary of second transformer to obtain an effective 50Ω (for a 50Ω source  
impedance). The ac-coupling capacitors allow the analog inputs to self-bias around the required common-mode  
voltage.  
0.1mF  
5 W  
INP  
25 W  
25 W  
0.1mF  
INM  
5 W  
1:1  
1:1  
Figure 46. Drive Circuit with Low Bandwidth (for Low Input Frequencies)  
0.1mF  
5 W  
INP  
100 W  
50 W  
50 W  
0.1mF  
100 W  
INM  
5 W  
1:2  
2:1  
Figure 47. Drive Circuit with High Bandwidth (for High Input Frequencies)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADS61JB23  
 
 
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
CLOCK INPUT  
The ADS61JB23 clock inputs can be driven differentially by sine, LVPECL, or LVDS source with little or no  
difference in performance between them. The common-mode voltage of the clock inputs is set to 0.95V using  
internal 5kΩ resistors as shown in Figure 48. This setting allows the use of transformer-coupled drive circuits for  
sine-wave clock or ac-coupling for LVPECL and LVDS clock sources (see Figure 49, Figure 50, and Figure 51).  
Clock Buffer  
LPKG  
~ 2 nH  
20 Ω  
CLKP  
CBOND  
~ 1 pF  
CEQ  
CEQ  
5 kΩ  
R
ESR  
~ 100 Ω  
0.95V  
5 kΩ  
L
PKG  
~ 2 nH  
20 Ω  
CLKM  
CBOND  
~ 1 pF  
R
ESR  
~ 100 Ω  
Note: CEQ is 1pF to 3pF and is the equivalent input capacitance of the clock buffer.  
Figure 48. Internal Clock Buffer  
For best performance, the clock inputs must be driven differentially, thereby reducing susceptibility to common-  
mode noise. It is recommended to keep differential voltage between clock inputs less than 1.8VPP to get best  
performance. For high input frequency sampling, it is recommended to use a clock source with very low jitter.  
Band-pass filtering of the clock source can help reduce the effects of jitter. There is no change in performance  
with a non-50% duty cycle clock input.  
0.1 μF  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
0.1 μF  
CLKM  
Figure 49. Differential Sine-Wave Clock Driving Circuit  
34  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
 
 
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
Zo  
0.1 μF  
CLKP  
Typical LVDS  
Clock Input  
100 Ω  
Zo  
0.1 μF  
CLKM  
Figure 50. LVDS Clock Driving Circuit  
Zo  
0.1 μF  
CLKP  
150 Ω  
Typical LVPECL  
Clock Input  
100 Ω  
Zo  
0.1 μF  
CLKM  
150 Ω  
Figure 51. LVPECL Clock Driving Circuit  
FINE GAIN CONTROL  
The ADS61JB23 includes gain settings that can be used to get improved SFDR performance (compared to no  
gain). The gain is programmable from 0dB to 6dB (in 0.5dB steps). For each gain setting, the analog input full-  
scale range scales proportionally, as shown in Table 9.  
The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades about  
0.5dB. The SNR degradation is less at high input frequencies. As a result, the fine gain is very useful at high  
input frequencies as the SFDR improvement is significant with marginal degradation in SNR.  
So, the fine gain can be used to trade-off between SFDR and SNR. Note that the default gain after reset is 0dB.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
Table 9. Full-scale Range Across Gains  
FINE_GAIN<3:0>  
GAIN, dB  
TYPE  
FULL-SCALE, Vpp  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
0.5  
1
2.00  
1.89  
1.78  
1.68  
1.59  
1.5  
1.5  
2
2.5  
3
Fine gain, programmable  
Default after reset  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
3.5  
4
4.5  
5
5.5  
6
Do not use  
SIGNAL POWER ESTIMATION  
The ADS61JB23 includes a power estimation circuit that can be used to obtain a coarse power estimate  
(accurate to within a dB) of the input signal averaged over a programmable number of samples. The power  
estimate can be made available on pins DETECT<3:0> by enabling the bit EN_PWR_EST. The states of bits  
DETECT<3:0> maps to the input signal power is shown in Table 10.  
Table 10. State of DETECT<3:0> Versus Input Signal Power  
INPUT SIGNAL POWER  
RANGE IN dBFs  
INPUT SIGNAL POWER RANGE  
IN dBFs  
DETECT<3:0>  
DETECT<3:0>  
–Inf to –12.5  
–12.5 to –11.5  
–11.5 to –10.5  
–10.5 to –9.5  
–9.5 to –8.5  
–8.5 to –7.5  
–7.5 to –6.5  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
–6.5 to –5.5  
–5.5 to –4.5  
–4.5 to –3.5  
–3.5 to –2.5  
–2.5 to –1.5  
–1.5 to 0  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
0 to +1  
The number of samples used for computing the average power is set by SAMPLES_PWR_EST<2:0> as shown  
in Table 11.  
Table 11. Number of Samples Used for Power  
Estimation  
SAMPLES_PWR_EST<2:0>  
NUMBER OF SAMPLES  
000  
001  
010  
011  
100  
1K  
2K  
4K  
8K  
16K  
36  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
 
 
ADS61JB23  
www.ti.com  
SLOS755 DECEMBER 2012  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low frequency value.  
Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay will be different across channels. The maximum variation is specified as  
aperture delay variation (channel-channel).  
Aperture Uncertainty (Jitter) – The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate – The maximum sampling rate at which certified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) – The INL is the deviation of the ADC's transfer function from a best fit line  
determined by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error – Gain error is the deviation of the ADC's actual input full-scale range from its ideal value. The gain  
error is given as a percentage of the ideal input full-scale range. Gain error has two components: error due to  
reference inaccuracy and error due to the channel. Both these errors are specified independently as EGREF and  
EGCHAN  
To a first order approximation, the total gain error will be ETOTAL ~ EGREF + EGCHAN  
For example, if ETOTAL = ±0.5%, the full-scale input varies from (1-0.5/100) x FSideal to (1 + 0.5/100) x FSideal  
.
.
.
Offset Error – The offset error is the difference, given in number of LSBs, between the ADC's actual average  
idle channel output code and the ideal average idle channel output code. This quantity is often mapped into mV.  
Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX–TMIN  
.
Signal-to-Noise Ratio – SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at DC and the first nine harmonics.  
PS  
SNR = 10Log10  
PN  
(1)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s full-  
scale range.  
Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
SINAD = 10Log10  
PN + PD  
(2)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-  
scale range.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: ADS61JB23  
ADS61JB23  
SLOS755 DECEMBER 2012  
www.ti.com  
Effective Number of Bits (ENOB) – The ENOB is a measure of the converter performance as compared to the  
theoretical limit based on quantization noise.  
SINAD - 1.76  
ENOB =  
6.02  
(3)  
Total Harmonic Distortion (THD) – THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
PS  
THD = 10Log10  
PN  
(4)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) – The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion – IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1–f2 or 2f2–f1. IMD3 is either given in  
units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to  
full scale) when the power of the fundamental is extrapolated to the converter’s full-scale range.  
DC Power Supply Rejection Ratio (DC PSRR) – The DC PSSR is the ratio of the change in offset error to a  
change in analog supply voltage. The DC PSRR is typically given in units of mV/V.  
AC Power Supply Rejection Ratio (AC PSRR) – AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVSUP is the change in supply voltage and ΔVout is the resultant change of the  
ADC output code (referred to the input), then  
DVOUT  
PSRR = 20Log10  
(Expressed in dBc)  
DVSUP  
(5)  
Voltage Overload Recovery – The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6dB positive and  
negative overload. The deviation of the first few samples after the overload (from their expected values) is noted.  
Common Mode Rejection Ratio (CMRR) – CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVcm_in is the change in the common-mode voltage of the input pins and ΔVOUT  
is the resultant change of the ADC output code (referred to the input), then  
DVOUT  
10  
CMRR = 20Log  
(Expressed in dBc)  
DVCM  
(6)  
Cross-Talk (only for multi-channel ADC) – This is a measure of the internal coupling of a signal from adjacent  
channel into the channel of interest. It is specified separately for coupling from the immediate neighboring  
channel (near-channel) and for coupling from channel across the package (far-channel). It is usually measured  
by applying a full-scale signal in the adjacent channel. Cross-talk is the ratio of the power of the coupling signal  
(as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel  
input. It is typically expressed in dBc.  
38  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Links: ADS61JB23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Dec-2012  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Samples  
Drawing  
(1)  
(2)  
(3)  
(Requires Login)  
ADS61JB23IRHAR  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Call TI  
Call TI  
Level-3-260C-168 HR  
ADS61JB23IRHAT  
ACTIVE  
RHA  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS61JB23IRHAR  
ADS61JB23IRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
330.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS61JB23IRHAR  
ADS61JB23IRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
336.6  
336.6  
336.6  
336.6  
28.6  
28.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

ADS61JB46

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface
TI

ADS61JB46IRHAR

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface
TI

ADS61JB46IRHAT

14-Bit, Input-Buffered, 160-MSPS, Analog-to-Digital Converter with JESD204A Output Interface
TI

ADS62

Wideband Transmit-Receive Digital Signal Processors
TI

ADS6222

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZ25

2-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, VQFN-48
TI

ADS6222IRGZR

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZRG4

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZT

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6222IRGZTG4

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6223

DUAL CHANNEL, 12-BIT, 125/105/80/65 MSPS ADC WITH SERIAL LVDS INTERFACE
TI

ADS6223IRGZ25

2-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X 7 MM, GREEN, PLASTIC, VQFN-48
TI