ADS7029QDCURQ1 [TI]

超低功耗、超小型 8 位 2MSPS SAR ADC | DCU | 8 | -40 to 125;
ADS7029QDCURQ1
型号: ADS7029QDCURQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超低功耗、超小型 8 位 2MSPS SAR ADC | DCU | 8 | -40 to 125

文件: 总30页 (文件大小:1108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
ADS7029-Q1小型低功耗 8 位、2MSPS SAR ADC  
1 特性  
2 应用  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
车用信息娱乐  
车用传感器  
液位传感器  
超声波流量计  
电机控制  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 ±2000V  
便携式医疗设备  
器件带电器件模型 (CDM) 静电放电 (ESD) 分类  
等级 ±1000V  
3 说明  
超低功耗:  
ADS7029-Q1器件是一款符合汽车类 Q100 标准的 8  
位、2MSPS 模数转换器 (ADC)。此器件支持宽范围的  
模拟输入电压(2.35V 3.6V),并且包括一个基于  
电容器且内置采样保持电路的 SAR ADC。串行外设接  
(SPI) 兼容串口由 CS SCLK 信号控制。输入信  
号在 CS 下降沿进行采样,SCLK 用于转换和串行数据  
输出。此器件支持宽范围的数字电源(1.65V 至  
3.6V),可直接连接到各类主机控制器。ADS7029-  
Q1符合 JESD8-7A 标准的标称 DVDD 范围(1.65V 至  
1.95V)。  
2MSPSAVDD 3V 时的功耗为 1.11 mW  
(最大值)  
1kSPSAVDD 3V 时的功耗低于 1µW  
微型封装:  
8 引脚超薄小外形尺寸 (VSSOP) 封  
装:2.30mm × 2.00mm  
吞吐量为 2MSPS 且零延迟  
宽工作电压范围:  
AVDD2.35V 3.6V  
DVDD1.65V 3.6V(与 AVDD 无关)  
温度范围:-40°C +125°C  
ADS7029-Q1采用 8 引脚微型超薄小外形尺寸  
(VSSOP) 封装,额定工作温度范围为 –40°C +125°  
CADS7029-Q1采样速率较快,采用微型封装并具有  
低功耗特性,适用于空间受限的汽车类快速扫描 标准  
的理想选择。  
性能优异:  
8 位分辨率且无丢码 (NMC)  
±0.2 最低有效位 (LSB) 微分非线性  
(DNL)±0.25 最低有效位 (LSB) 积分非线性  
(INL)  
器件信息(1)  
信噪比 (SNR) 49dB3V AVDD 时)  
部件名称  
封装  
封装尺寸(标称值)  
总谐波失真 (THD) -70dB3V AVDD 时)  
超薄小外形尺寸封装  
(VSSOP)(8)  
ADS7029-Q1  
2.30mm x 2.00mm  
单极输入范围:0V AVDD  
集成偏移校准  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
兼容 SPI 的串行接口:32MHz  
符合 JESD8-7A 标准的数字 I/O  
典型应用  
AVDD  
AVDD used as  
Reference for device  
OPA_AVDD  
R
AVDD  
+
AINP  
+
VIN+  
ADS7029-Q1  
œ
C
AINM  
GND  
OPA_AVSS  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS811  
 
 
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 12  
7.1 Digital Voltage Levels ............................................. 12  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 13  
10 Power Supply Recommendations ..................... 23  
10.1 AVDD and DVDD Supply Recommendations....... 23  
10.2 Estimating Digital Power Consumption................. 23  
10.3 Optimizing Power Consumed by the Device ........ 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 文档支持................................................................ 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
7
8
4 修订历史记录  
日期  
修订版本  
注释  
2017 1 月  
*
最初发布。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
5 Pin Configuration and Functions  
DCU Package  
8-Pin Leaded VSSOP  
Top View  
DVDD  
SCLK  
SDO  
CS  
1
2
3
4
8
7
6
5
GND  
AVDD  
AINP  
AINM  
Not to scale  
Pin Functions  
NAME  
AINM  
NO.  
5
I/O  
DESCRIPTION  
Analog input  
Analog input  
Supply  
Analog signal input, negative  
Analog signal input, positive  
AINP  
AVDD  
CS  
6
7
Analog power-supply input, also provides the reference voltage to the ADC  
4
Digital input  
Supply  
Chip-select signal, active low  
DVDD  
GND  
SCLK  
SDO  
1
Digital I/O supply voltage  
8
Supply  
Ground for power supply, all analog and digital signals are referred to this pin  
2
Digital input  
Digital output  
Serial clock  
3
Serial data out  
Copyright © 2017, Texas Instruments Incorporated  
3
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–60  
MAX  
3.9  
UNIT  
V
AVDD to GND  
DVDD to GND  
3.9  
V
AINP to GND  
AVDD + 0.3  
0.3  
V
AINM to GND  
V
Digital input voltage to GND  
Storage temperature, Tstg  
DVDD + 0.3  
150  
V
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.35  
1.65  
–40  
NOM  
MAX  
3.6  
UNIT  
AVDD  
DVDD  
TA  
Analog supply voltage range  
Digital supply voltage range  
Operating free-air temperature  
V
V
3.6  
125  
°C  
6.4 Thermal Information  
ADS7029-Q1  
THERMAL METRIC(1)  
DCU (VSSOP)  
8 PINS  
181.8  
50.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
73.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
ψJB  
73.9  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
6.5 Electrical Characteristics  
at TA = –40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, fSAMPLE = 2 MSPS, and VAINM = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage span(1)  
0
–0.1  
–0.1  
AVDD  
AVDD + 0.1  
0.1  
V
V
AINP to GND  
AINM to GND  
Absolute input  
voltage range  
CS  
Sampling capacitance  
15  
8
pF  
SYSTEM PERFORMANCE  
Resolution  
Bits  
Bits  
LSB(2)  
NMC  
INL  
No missing codes  
8
–0.5  
–0.4  
Integral nonlinearity  
Differential nonlinearity  
Offset error  
AVDD = 3 V  
±0.25  
±0.2  
±0.5  
±25  
0.5  
0.4  
DNL  
EO  
AVDD = 3 V  
LSB  
LSB  
dVOS/dT  
EG  
Offset error drift with temperature  
Gain error  
ppm/°C  
%FS  
AVDD = 3 V  
±0.2  
±25  
Gain error drift with temperature  
No calibration  
ppm/°C  
SAMPLING DYNAMICS  
tACQ Acquisition time  
Maximum throughput rate  
DYNAMIC CHARACTERISTICS  
120  
ns  
32-MHz SCLK, AVDD = 2.35 V to 3.6 V  
2
MHz  
SNR  
Signal-to-noise ratio(3)  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 3 V  
At –3 dB, AVDD = 3 V  
48.5  
48.5  
49  
–70  
49  
dB  
dB  
THD  
Total harmonic distortion(3)(4)  
Signal-to-noise and distortion(3)  
Spurious-free dynamic range(3)  
Full-power bandwidth  
SINAD  
SFDR  
BW(fp)  
dB  
75  
dB  
25  
MHz  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
VIH  
VIL  
High-level input voltage(5)  
Low-level input voltage(5)  
0.65 × DVDD  
DVDD + 0.3  
0.35 × DVDD  
DVDD  
V
V
–0.3  
At Isource = 500 µA  
At Isource = 2 mA  
At Isink = 500 µA  
At Isink = 2 mA  
0.8 × DVDD  
VOH  
High-level output voltage(5)  
Low-level output voltage(5)  
V
V
DVDD – 0.45  
DVDD  
0
0
0.2 × DVDD  
0.45  
VOL  
POWER-SUPPLY REQUIREMENTS  
AVDD  
DVDD  
IAVDD  
IDVDD  
PD  
Analog supply voltage  
Digital I/O supply voltage  
Analog supply current  
Digital supply current  
Power dissipation  
2.35  
1.65  
3
3
3.6  
3.6  
V
V
At 2 MSPS with AVDD = 3 V  
AVDD = 3 V, no load, no transitions  
At 2 MSPS with AVDD = 3 V  
335  
10  
370  
µA  
µA  
mW  
1.005  
1.11  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale,  
unless otherwise specified.  
(4) Calculated on the first nine harmonics of the input frequency.  
(5) Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V; see the Digital Voltage Levels section for  
more details.  
Copyright © 2017, Texas Instruments Incorporated  
5
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
6.6 Timing Requirements  
all specifications are at TA = –40°C to 125°C, AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD on SDO = 20 pF  
(unless otherwise specified)  
MIN  
120  
0.016  
41.67  
0.45  
0.45  
30  
TYP  
MAX  
UNIT  
ns  
tACQ  
Acquisition time  
fSCLK  
SCLK frequency  
24  
MHz  
ns  
tSCLK  
SCLK period  
tPH_CK  
tPL_CK  
tPH_CS  
tSU_CSCK  
tD_CKCS  
SCLK high time  
0.55  
0.55  
tSCLK  
tSCLK  
ns  
SCLK low time  
CS high time  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
12  
ns  
10  
ns  
6.7 Switching Characteristics  
all specifications are at TA = –40°C to 125°C, AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD on SDO = 20 pF  
(unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fTHROUGHP  
UT  
Throughput  
2
MSPS  
tCYCLE  
Cycle time  
0.5  
µs  
ns  
ns  
tCONV  
Conversion time  
8.5 × tSCLK + tSU_CSCK  
10  
tDV_CSDO  
Delay time: CS falling to data enable  
Delay time: SCLK falling to (next)  
data valid on DOUT  
tD_CKDO  
AVDD = 2.35 V to 3.6 V  
25  
ns  
ns  
Delay time: CS rising to DOUT going  
to tri-state  
tDZ_CSDO  
5
Sample  
N+1  
Sample  
N
tCYCLE  
tCONV  
tACQ  
tSU_CSCK  
CS  
1
0
2
3
4
5
6
7
8
9
10  
SCLK  
SDO  
D4  
D3  
0
D6  
D5  
D2  
D1  
D0  
D7  
Data for Sample N  
Figure 1. Timing Diagram  
6
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 2 MSPS (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Input Frequency (kHz)  
Input Frequency (kHz)  
D001  
D002  
SNR = 49.65 dB, THD = –73.26 dB, fIN = 2 kHz,  
AVDD = 3 V  
SNR = 49.19 dB, THD = –71.25 dB, fIN = 250 kHz,  
AVDD = 3 V  
Figure 2. Typical FFT  
Figure 3. Typical FFT  
52  
8
52  
49  
46  
43  
40  
8
49  
46  
43  
40  
7.75  
7.5  
7.25  
7
7.75  
7.5  
7.25  
7
SNR  
SINAD  
ENOB  
SNR  
SINAD  
ENOB  
-40  
-7  
26  
59  
92  
125  
2
33  
64  
95  
126  
157  
188  
219  
250  
Free-Air Temperature (èC)  
Input Frequency (kHz)  
D003  
D004  
fIN = 2 kHz, AVDD = 3 V  
AVDD = 3 V  
Figure 4. SNR and SINAD vs Temperature  
Figure 5. SNR and SINAD vs Input Frequency  
-65  
-67  
-69  
-71  
-73  
-75  
52  
50.5  
49  
47.5  
46  
44.5  
43  
41.5  
40  
SNR  
SINAD  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
Reference Voltage (V)  
Free-Air Temperature (èC)  
D005  
D006  
fIN = 2 kHz  
fIN = 2 kHz, AVDD = 3 V  
Figure 6. SNR and SINAD vs Reference Voltage (AVDD)  
Figure 7. THD vs Temperature  
Copyright © 2017, Texas Instruments Incorporated  
7
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 2 MSPS (unless otherwise noted)  
67  
65  
63  
61  
59  
57  
-75  
-73  
-71  
-69  
-67  
-65  
-40  
-7  
26  
59  
92  
125  
0
50  
100  
150  
200  
250  
Free-Air Temperature (èC)  
Input Frequency (kHz)  
D007  
D008  
fIN = 2 kHz, AVDD = 3 V  
AVDD = 3 V  
Figure 8. SFDR vs Temperature  
Figure 9. THD vs Input Frequency  
-65  
-68  
-71  
-74  
-77  
-80  
85  
82  
79  
76  
73  
70  
0
50  
100  
150  
200  
250  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Input Frequency (kHz)  
Reference Voltage (V)  
D009  
D010  
fIN = 2 kHz, AVDD = 3 V  
Figure 10. SFDR vs Input Frequency  
Figure 11. THD vs Reference Voltage (AVDD)  
90  
86  
82  
78  
74  
70  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
126  
127  
128  
Reference Voltage (V)  
Code  
D011  
D012  
fIN = 2 kHz, AVDD = 3 V  
Mean code = 127, sigma = 0, AVDD = 3 V  
Figure 12. SFDR vs Reference Voltage (AVDD)  
Figure 13. DC Input Histogram  
8
Copyright © 2017, Texas Instruments Incorporated  
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 2 MSPS (unless otherwise noted)  
0.5  
0.5  
0.3  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
Code  
Code  
D017  
D018  
AVDD = 2.35 V  
AVDD = 2.35 V  
Figure 14. Typical DNL  
Figure 15. Typical INL  
0.5  
0.3  
0.5  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
Code  
Code  
D019  
D020  
AVDD = 3 V  
AVDD = 3 V  
Figure 16. Typical DNL  
Figure 17. Typical INL  
0.5  
0.3  
0.5  
0.3  
Maximum  
Minimum  
Maximum  
Minimum  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-40  
-7  
26  
59  
92  
125  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Free-Air Temperature (èC)  
Reference Voltage (V)  
D021  
D022  
AVDD = 3 V  
Figure 18. DNL vs Temperature  
Figure 19. DNL vs Reference Voltage (AVDD)  
Copyright © 2017, Texas Instruments Incorporated  
9
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 2 MSPS (unless otherwise noted)  
0.5  
0.5  
Maximum  
Minimum  
Maximum  
Minimum  
0.3  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-40  
-7  
26  
59  
92  
125  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Free-Air Temperature (èC)  
Reference Voltage (V)  
D023  
D024  
AVDD = 3 V  
Figure 20. INL vs Temperature  
Figure 21. INL vs Reference Voltage (AVDD)  
400  
375  
350  
325  
300  
0.4  
0.3  
0.2  
0.1  
0
-40  
-7  
26  
59  
92  
125  
100  
600  
1100  
1600  
2000  
Free-Air Temperature (èC)  
Throughput (Ksps)  
D025  
D026  
AVDD = 3 V  
AVDD = 3 V  
Figure 22. AVDD Supply Current vs Temperature  
Figure 23. AVDD Supply Current vs Throughput  
0.45  
0.4  
8
7.9  
7.8  
7.7  
7.6  
7.5  
0.35  
0.3  
0.25  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
0
500  
1000  
1500  
2000  
Supply Voltage (V)  
Sampling rate (kSPS)  
D027  
D029  
fSample = 2 MSPS  
AVDD = DVDD = 3.3 V  
Figure 25. ENOB vs Sampling Rate  
Figure 24. AVDD Supply Current vs Supply Voltage  
10  
Copyright © 2017, Texas Instruments Incorporated  
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 2 MSPS (unless otherwise noted)  
50  
49.75  
49.5  
49.25  
49  
50  
49.8  
49.6  
49.4  
49.2  
49  
48.8  
48.6  
48.4  
48.2  
48  
48.75  
48.5  
48.25  
48  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Sampling rate (kSPS)  
Sampling rate (kSPS)  
D030  
D031  
AVDD = DVDD = 3.3 V  
AVDD = DVDD = 3.3 V  
Figure 26. SNR vs Sampling Rate  
Figure 27. SINAD vs Sampling Rate  
-72  
-71.5  
-71  
-70.5  
-70  
0
500  
1000  
Sampling rate (kSPS)  
1500  
2000  
D032  
AVDD = DVDD = 3.3 V  
Figure 28. THD vs Sampling Rate  
Copyright © 2017, Texas Instruments Incorporated  
11  
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Digital Voltage Levels  
The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 29 shows voltage  
levels for the digital input and output pins.  
Digital Output  
DVDD  
VOH  
DVDD-0.45V  
SDO  
0.45V  
VOL  
0V  
ISource= 2 mA, ISink = 2 mA,  
DVDD = 1.65 V to 1.95 V  
Digital Inputs  
DVDD + 0.3V  
VIH  
0.65DVDD  
CS  
SCLK  
0.35DVDD  
VIL  
DVDD = 1.65 V to 1.95 V  
-0.3V  
Figure 29. Digital Voltage Levels as per the JESD8-7A Standard  
8 Detailed Description  
8.1 Overview  
The ADS7029-Q1 is an ultra-low-power, miniature analog-to-digital converter (ADC) that supports a wide analog  
input range. The analog input range for the device is defined by the AVDD supply voltage. The device samples  
the input voltage across the AINP and AINM pins on the CS falling edge and starts the conversion. The clock  
provided on the SCLK pin is used for conversion and data transfer. During conversions, both the AINP and AINM  
pins are disconnected from the sampling circuit. After the conversion completes, the sampling capacitors are  
reconnected across the AINP and AINM pins and the ADS7029-Q1 enters acquisition phase.  
The device has an internal offset calibration. The offset calibration can be initiated by the user either on power-up  
or during normal operation; see the Offset Calibration section for more details.  
The device also provides a simple serial interface to the host controller and operates over a wide range of digital  
power supplies. The ADS7029-Q1 requires only a 24-MHz SCLK for supporting a throughput of 2 MSPS. The  
digital interface also complies with the JESD8-7A (normal range) standard. The Functional Block Diagram  
section provides a block diagram of the device.  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
8.2 Functional Block Diagram  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
œ
SAR  
8.3 Feature Description  
8.3.1 Reference  
The device uses the analog supply voltage (AVDD) as a reference, as shown in Figure 30. The AVDD pin is  
recommended to be decoupled with a 3.3-µF, low equivalent series resistance (ESR) ceramic capacitor.. The  
AVDD pin functions as a switched capacitor load to the source powering AVDD. The decoupling capacitor  
provides the instantaneous charge required by the internal circuit and helps in maintaining a stable dc voltage on  
the AVDD pin. The AVDD pin is recommended to be powered with a low output impedance and low-noise  
regulator (such as the TPS73230).  
3.3 µF  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
œ
SAR  
Figure 30. Reference for the Device  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Analog Input  
The device supports single-ended analog inputs. The ADC samples the difference between AINP and AINM and  
converts for this voltage. The device is capable of accepting a signal from –100 mV to 100 mV on the AINM input  
and is useful in systems where the sensor or signal-conditioning block is far from the ADC. In such a scenario,  
there can be a difference between the ground potential of the sensor or signal conditioner and the ADC ground.  
In such cases, use separate wires to connect the ground of the sensor or signal conditioner to the AINM pin. The  
AINP input is capable of accepting signals from 0 V to AVDD. Figure 31 represents the equivalent analog input  
circuits for the sampling stage. The device has a low-pass filter followed by the sampling switch and sampling  
capacitor. The sampling switch is represented by an RS (typically 50 Ω) resistor in series with an ideal switch and  
CS (typically 15 pF) is the sampling capacitor. The ESD diodes are connected from both analog inputs to AVDD  
and ground.  
AVDD  
R
s
50  
AINP  
C
S
15 pF  
AVDD  
R
S
50 ꢀ  
AINM  
C
S
Figure 31. Equivalent Input Circuit for the Sampling Stage  
The analog input full-scale range (FSR) is equal to the reference voltage of the ADC. The reference voltage for  
the device is equal to the analog supply voltage (AVDD). Thus, the device FSR can be determined by  
Equation 1:  
FSR = VREF = AVDD  
(1)  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
Feature Description (continued)  
8.3.3 ADC Transfer Function  
The device output is in straight binary format. The device resolution for a single-ended input can be computed by  
Equation 2:  
1 LSB = VREF / 2N  
where:  
VREF = AVDD and  
N = 8  
(2)  
Figure 32 and Table 1 show the ideal transfer characteristics for the device.  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
V
REF  
V
REF  
VREF œ 1 LSB  
+ 1LSB  
1 LSB  
2
2
Single-Ended Analog Input  
(AINP œ AINM)  
Figure 32. Ideal Transfer Characteristics  
Table 1. Transfer Characteristics  
INPUT VOLTAGE (AINP – AINM)  
1 LSB  
CODE  
NFSC  
DESCRIPTION  
IDEAL OUTPUT CODE (HEX)  
Negative full-scale code  
00  
01  
80  
81  
FF  
1 LSB to 2 LSBs  
NFSC + 1  
MC  
Mid code  
(VREF / 2) to (VREF / 2) + 1 LSB  
(VREF / 2) + 1 LSB to (VREF / 2) + 2 LSBs  
VREF – 1 LSB  
MC + 1  
PFSC  
Positive full-scale code  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
 
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
8.3.4 Serial Interface  
The device supports a simple, SPI-compatible interface to the external host. The CS signal defines one  
conversion and serial transfer frame. A frame starts with a CS falling edge and ends with a CS rising edge. The  
SDO pin outputs the ADC conversion results. Figure 33 shows a detailed timing diagram for the serial interface.  
A minimum delay of tSU_CSCK must elapse between the CS falling edge and the first SCLK falling edge. The  
device uses the clock provided on the SCLK pin for conversion and data transfer. The conversion result is  
available on the SDO pin with the first two bits set to 0, followed by 12 bits of the conversion result. The first zero  
is launched on the SDO pin on the CS falling edge. Subsequent bits (starting with another 0 followed by the  
conversion result) are launched on the SDO pin on subsequent SCLK falling edges. The SDO output remains  
low after 14 SCLKs. A CS rising edge ends the frame and brings the serial data bus to tri-state. For acquisition of  
the next sample, a minimum time of tACQ must be provided after the conversion of the current sample is  
completed. For details on timing specifications, see the Timing Requirements table.  
The device initiates an offset calibration on the first CS falling edge after power-up and the SDO output remains  
low during the first serial transfer frame after power-up. For further details, see the Offset Calibration section.  
Sample  
N+1  
Sample  
N
tCYCLE  
tCONV  
tACQ  
tSU_CSCK  
CS  
1
0
2
3
4
5
6
7
8
9
10  
SCLK  
D4  
D3  
0
D6  
D5  
D2  
D1  
D0  
D7  
SDO  
Data for Sample N  
Figure 33. Serial Interface Timing Diagram  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
8.4 Device Functional Modes  
8.4.1 Offset Calibration  
The ADS7029-Q1 includes a feature to calibrate the device internal offset. During offset calibration, the analog  
input pins (AINP and AINM) are disconnected from the sampling stage. The device includes an internal offset  
calibration register (OCR) that stores the offset calibration result. The OCR is an internal register and cannot be  
accessed by the user through the serial interface. The OCR is reset to zero on power-up. Therefore, it is  
recommended to calibrate the offset on power-up in order to bring the offset error within the specified limits. If the  
operating temperature or analog supply voltage reflect a significant change, the offset can be recalibrated during  
normal operation. Figure 34 shows the offset calibration process.  
Normal Operation  
With Uncalibarted  
Data Capture(1)  
offset  
Device  
Power Up  
Data Capture(1)  
Normal Operation  
With Calibarted  
offset  
Calibration during Normal Operation(2)  
(1) See the Timing Requirements section for timing specifications.  
(2) See the Offset Calibration During Normal Operation section for details.  
(3) See the Offset Calibration on Power-Up section for details.  
(4) The power recycle on the AVDD supply is required to reset the offset calibration and to bring the device to a power-up  
state.  
Figure 34. Offset Calibration  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.1.1 Offset Calibration on Power-Up  
The device initiates offset calibration on the first CS falling edge after power-up and calibration completes if the  
CS pin remains low for at least 16 SCLK falling edges after the first CS falling edge. The SDO output remains  
low during calibration. The minimum acquisition time must be provided after calibration for acquiring the first  
sample. If the device is not provided with at least 16 SCLKs during the first serial transfer frame after power-up,  
the OCR is not updated. Table 2 provides the timing parameters for offset calibration on power-up.  
For subsequent samples, the device adjusts the conversion results with the value stored in the OCR. The  
conversion result adjusted with the value stored in OCR is provided by the device on the SDO output. Figure 35  
shows the timing diagram for offset calibration on power-up.  
Table 2. Offset Calibration on Power-Up  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fCLK-CAL  
SCLK frequency for calibration  
12  
tPOWERUP-CAL Calibration time at power-up  
15 × tSCLK  
120  
tACQ  
Acquisition time  
ns  
tPH_CS  
tSU_CSCK  
tD_CKCS  
CS high time  
tACQ  
12  
ns  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
ns  
10  
ns  
Start  
Power-up  
Calibration  
Sample  
#1  
tPH_CS  
tACQ  
tPOWERUP-CAL  
CS  
tD_CKCS  
tSU_CSCK  
1
2
15  
16  
SCLK(fCLK-CAL  
)
SDO  
Figure 35. Offset Calibration on Power-Up Timing Diagram  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
8.4.1.2 Offset Calibration During Normal Operation  
Offset calibration can be done during normal device operation if at least 32 SCLK falling edges are provided in  
one serial transfer frame. During the first 10 SCLKs, the device converts the sample acquired on the CS falling  
edge and provides data on the SDO output. The device initiates the offset calibration on the 17th SCLK falling  
edge and calibration completes on the 32nd SCLK falling edge. The SDO output remains low after the 10th  
SCLK falling edge and SDO goes to tri-state after CS goes high. If the device is provided with less than 32  
SCLKs during a serial transfer frame, the OCR is not updated. Table 3 provides the timing parameters for offset  
calibration during normal operation.  
For subsequent samples, the device adjusts the conversion results with the value stored in the OCR. The  
conversion result adjusted with the value stored in the OCR is provided by the device on the SDO output.  
Figure 36 shows the timing diagram for offset calibration during normal operation.  
Table 3. Offset Calibration During Normal Operation  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fCLK-CAL  
tCAL  
SCLK frequency for calibration  
Calibration time during normal operation  
Acquisition time  
12  
15 × tSCLK  
120  
tACQ  
ns  
tPH_CS  
tSU_CSCK  
tD_CKCS  
CS high time  
tACQ  
12  
ns  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
ns  
10  
ns  
Sample  
N+1  
Sample  
N
tPH_CS  
tACQ  
tCONV  
tCAL  
CS  
tSU_CSCK  
tD_CKCS  
16  
18  
32  
1
0
2
3
4
9
10  
17  
31  
SCLK(fCLK-CAL  
)
0
D7  
D6  
D1  
SDO  
D0  
Data for Sample N  
Figure 36. Offset Calibration During Normal Operation Timing Diagram  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary circuits required to maximize the performance of a SAR ADC are the input driver and the  
reference driver circuits. This section details some general principles for designing the input driver circuit,  
reference driver circuit, and provides some application circuits designed for the ADS7029-Q1.  
9.2 Typical Application  
OPA_VDD  
AVDD  
33  
œ
VDD  
VIN  
+
OPA365-Q1  
TI Device  
+
œ
VSOURCE  
1 nF  
GND  
GND  
Device: 12-Bit , 2-MSPS,  
Single-Ended Input  
Input Driver  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. Single-Supply DAQ with the ADS7029-Q1  
9.2.1 Design Requirements  
The goal of this application is to design a single-supply digital acquisition (DAQ) circuit based on the ADS7029-  
Q1 with SNR greater than 49 dB and THD less than –70 dB for input frequencies of 2 kHz at a throughput of  
2 MSPS.  
9.2.2 Detailed Design Procedure  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a charge  
kickback filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a  
high-precision ADC.  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
Typical Application (continued)  
9.2.2.1 Low Distortion Charge Kickback Filter Design  
Figure 38 shows the input circuit of a typical SAR ADC. During the acquisition phase, the SW switch closes and  
connects the sampling capacitor (CSH) to the input driver circuit. This action introduces a transient on the input  
pins of the SAR ADC. An ideal amplifier with 0 Ω of output impedance and infinite current drive can settle this  
transient in zero time. For a real amplifier with non-zero output impedance and finite drive strength, this switched  
capacitor load can create stability issues.  
RF  
Charge Kickback Filter  
RFLT  
SAR ADC  
RIN  
VIN  
-
+
SW  
CSH  
VCM  
CFLT  
f-3dB  
=
1
2 Œ x RFLT x CFLT  
Figure 38. Charge Kickback Filter  
For ac signals, the filter bandwidth must be kept low to band limit the noise fed into the ADC input, thereby  
increasing the SNR of the system. Besides filtering the noise from the front-end drive circuitry, the RC filter also  
helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC. A filter  
capacitor, CFLT, is connected across the ADC inputs. This capacitor helps reduce the sampling charge injection  
and provides a charge bucket to quickly charge the internal sample-and-hold capacitors during the acquisition  
process. As a rule of thumb, the value of this capacitor is at least 20 times the specified value of the ADC  
sampling capacitance. For this device, the input sampling capacitance is equal to 15 pF. Thus, the value of CFLT  
is greater than 300 pF. Select a COG- or NPO-type capacitor because these capacitor types have a high-Q, low-  
temperature coefficient, and stable electrical characteristics under varying voltages, frequency, and time.  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design.  
The input amplifier bandwidth is typically much higher than the cutoff frequency of the antialiasing filter. Thus, a  
SPICE simulation is strongly recommended to be performed to confirm that the amplifier has more than 40°  
phase margin with the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some  
amplifiers can require more bandwidth than others to drive similar filters.  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.2.2 Input Amplifier Selection  
To achieve a SINAD greater than 49 dB, the operational amplifier must have high bandwidth in order to settle the  
input signal within the acquisition time of the ADC. The operational amplifier must have low noise to keep the  
total system noise below 20% of the input-referred noise of the ADC. For the application circuit illustrated in  
Figure 37, the OPA365-Q1 is selected for its high bandwidth (50 MHz) and low noise (4.5 nV/Hz).  
For a step-by-step design procedure for a low-power, small form-factor digital acquisition (DAQ) circuit based on  
similar SAR ADCs, see the Three 12-Bit Data Acquisition Reference Designs Optimized for Low Power and  
Ultra-Small Form Factor TI Precision Design.  
9.2.2.3 Reference Circuit  
The analog supply voltage of the device is also used as a voltage reference for conversion. The AVDD pin is  
recommended to be decoupled with a 3.3-µF, low-ESR ceramic capacitor.  
9.2.3 Application Curve  
Figure 39 shows the FFT plot for the ADS7029-Q1 with a 2-kHz input frequency used for the circuit in Figure 37.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
200  
400 600  
Frequency (kHz)  
800  
1000  
D001  
SNR = 70.6 dB, THD = –86 dB, SINAD = 70.2 dB, number of samples = 32768  
Figure 39. Test Results for the ADS7029-Q1 and OPA365-Q1 for a 2-kHz Input  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
10 Power Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The ADS7029-Q1 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible  
ranges. The AVDD supply also defines the full-scale input range of the device. Always set the AVDD supply to  
be greater than or equal to the maximum input signal to avoid saturation of codes. Decouple the AVDD and  
DVDD pins individually with 3.3-µF ceramic decoupling capacitors, as shown in Figure 40.  
AVDD  
DVDD  
AVDD  
GND  
3.3 mF  
3.3 mF  
DVDD  
Figure 40. Power-Supply Decoupling  
10.2 Estimating Digital Power Consumption  
The current consumption from the DVDD supply depends on the DVDD voltage, load capacitance on the SDO  
line, and the output code. The load capacitance on the SDO line is charged by the current from the SDO pin on  
every rising edge of the data output and is discharged on every falling edge of the data output. The current  
consumed by the device from the DVDD supply can be calculated by Equation 3:  
IDVDD = C × V × f  
where:  
C = Load capacitance on the SDO line  
V = DVDD supply voltage and  
f = Number of transitions on the SDO output  
(3)  
The number of transitions on the SDO output depends on the output code, and thus changes with the analog  
input. The maximum value of f occurs when data output on SDO change at every SCLK. SDO data changing at  
every SCLK results in an output code of AAh or 55h. For an output code of AAh or 55h at a 2-MSPS throughput,  
the frequency of transitions on the SDO output is 8 MHz.  
For the current consumption to remain at the lowest possible value, keep the DVDD supply at the lowest  
permissible value and keep the capacitance on the SDO line as low as possible.  
10.3 Optimizing Power Consumed by the Device  
Keep the analog supply voltage (AVDD) as close as possible to the analog input voltage. Set AVDD to be  
greater than or equal to the analog input voltage of the device.  
Keep the digital supply voltage (DVDD) at the lowest permissible value.  
Reduce the load capacitance on the SDO output.  
Run the device at the optimum throughput. Power consumption reduces with throughput.  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
 
ADS7029-Q1  
ZHCSFX9 JANUARY 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Figure 41 shows a board layout example for the ADS7029-Q1.  
Some of the key considerations for an optimum layout with this device are:  
Use a ground plane underneath the device and partition the printed circuit board (PCB) into analog and digital  
sections.  
Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference  
input signals away from noise sources.  
The power sources to the device must be clean and well-bypassed. Use 2.2-μF ceramic bypass capacitors in  
close proximity to the analog (AVDD) and digital (DVDD) power-supply pins.  
Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors.  
Connect ground pins to the ground plane using short, low-impedance path.  
Place the fly-wheel RC filters components close to the device.  
Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors provide the best capacitance  
precision. The type of dielectric used in COG (NPO) ceramic capacitors provides the most stable electrical  
properties over voltage, frequency, and temperature changes.  
11.2 Layout Example  
Digital  
Pins  
Analog  
Pins  
GND  
AINM  
5
6
CS  
4
3
SDO  
RFLT  
ADS7049-Q1  
2
SCLK  
DVDD  
GND  
AVDD  
7
8
2.2 F  
GND  
1
2.2 F  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. Example Layout  
24  
版权 © 2017, Texas Instruments Incorporated  
 
ADS7029-Q1  
www.ti.com.cn  
ZHCSFX9 JANUARY 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
TPS732xx 具有反向电流保护功能的无电容 NMOS250mA 低压降稳压器》  
《专为低功耗和超小型特性进行优化的三项 12 位数据采集参考设计》TI 高精度设计  
OPAx314 3MHz、低功耗、低噪声、RRIO1.8V CMOS运算放大器  
OPAx365-Q1 50MHz 低失真、高 CMRR、轨到轨 I/O 单电源运算放大器》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7029QDCURQ1  
ACTIVE  
VSSOP  
DCU  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
17TT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DCU0008A  
VSSOP - 0.9 mm max height  
S
C
A
L
E
6
.
0
0
0
SMALL OUTLINE PACKAGE  
3.2  
3.0  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
SEATING  
PLANE  
6X 0.5  
8
1
2X  
2.1  
1.9  
1.5  
NOTE 3  
4
5
0.25  
0.17  
8X  
2.4  
2.2  
B
0.08  
C A B  
NOTE 3  
SEE DETAIL A  
0.9  
0.6  
0.12  
GAGE PLANE  
0.1  
0.0  
0.35  
0.20  
0 -6  
(0.13) TYP  
A
30  
DETAIL A  
TYPICAL  
4225266/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-187 variation CA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
SEE SOLDER MASK  
DETAILS  
SYMM  
8X (0.85)  
(R0.05) TYP  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(3.1)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225266/A 09/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
8X (0.85)  
SYMM  
(R0.05) TYP  
8
1
8X (0.3)  
SYMM  
6X (0.5)  
4
5
(3.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
4225266/A 09/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS7038

具有 SPI、GPIO 和 CRC 的 8 通道、1MSPS、12 位模数转换器 (ADC)
TI

ADS7038-Q1

具有 SPI、GPIO 和 CRC 的汽车类 8 通道、1MSPS、12 位模数转换器 (ADC)
TI

ADS7038-Q1_V01

ADS7038-Q1 Small, 8-Channel, 12-Bit ADC with SPI Interface, GPIOs, and CRC
TI

ADS7038IRTER

具有 SPI、GPIO 和 CRC 的 8 通道、1MSPS、12 位模数转换器 (ADC) | RTE | 16 | -40 to 125
TI

ADS7038IRTET

具有 SPI、GPIO 和 CRC 的 8 通道、1MSPS、12 位模数转换器 (ADC) | RTE | 16 | -40 to 125
TI

ADS7038QRTERQ1

ADS7038-Q1 Small, 8-Channel, 12-Bit ADC with SPI Interface, GPIOs, and CRC
TI

ADS7039-Q1

超低功耗、超小型 10 位 2MSPS SAR ADC
TI

ADS7039QDCURQ1

超低功耗、超小型 10 位 2MSPS SAR ADC | DCU | 8 | -40 to 125
TI

ADS703H

ADC, Flash Method, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, Hybrid, CDIP40,
BB

ADS703H

1-CH 16-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP40
TI

ADS703HB

ADC, Flash Method, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, Hybrid, CDIP40,
BB

ADS703HB

1-CH 16-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP40
TI