ADS7038IRTET [TI]

具有 SPI、GPIO 和 CRC 的 8 通道、1MSPS、12 位模数转换器 (ADC) | RTE | 16 | -40 to 125;
ADS7038IRTET
型号: ADS7038IRTET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI、GPIO 和 CRC 的 8 通道、1MSPS、12 位模数转换器 (ADC) | RTE | 16 | -40 to 125

转换器 模数转换器
文件: 总81页 (文件大小:2383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
具有 SPI 接口、GPIO CRC ADS7038 小型 8 通道 12 ADC  
1 特性  
2 应用  
1
小封装尺寸:  
宏远程无线电单元 (RRU)  
电池管理系统 (BMS)  
串式逆变器  
WQFN 3mm × 3mm  
8 通道,可配置为以下任意组合:  
中央逆变器  
最多 8 个模拟输入、数字输入或数字输出  
用于 I/O 扩展的 GPIO:  
开漏、推挽数字输出  
模拟监控:  
3 说明  
ADS7038 是一款易于使用的 8 通道多路复用 12 位  
1MSPS 逐次逼近寄存器模数转换器 (SAR ADC)8 个  
通道可独立配置为模拟输入、数字输入或数字输出。  
该器件具有一个用于执行 ADC 转换过程的内部振荡  
器。  
每个通道的可编程阈值  
用于瞬态抑制的事件计数器  
宽工作范围:  
AVDD2.35V 5.5V  
DVDD1.65V 5.5V  
温度范围:-40°C +125°C  
ADS7038 通过兼容 SPI 的接口进行通信,可以在自主  
或单冲转换模式下运行。ADS7038 使用具有可编程高  
低阈值、迟滞和事件计数器的数字窗口比较器,通过每  
通道事件触发的中断来实施模拟监控功能。ADS7038  
具有用于数据读取/写入操作和上电配置的内置循环冗  
余校验 (CRC) 功能。  
增强型 SPI 数字接口:  
高速 60MHz 接口  
使用 >13.5MHz SPI 实现最大吞吐量  
用于读取/写入操作的 CRC:  
数据读取/写入 CRC  
上电配置 CRC  
器件信息(1)  
器件型号  
ADS7038  
封装  
封装尺寸(标称值)  
可编程均值滤波器:  
WQFN (16)  
3.00mm × 3.00mm  
用于求平均值的可编程样本大小  
利用内部转换求平均值  
16 位分辨率  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
ADS7038 方框图和 应用  
Device Block Diagram  
Example System Architecture  
AVDD  
DECAP  
VCC  
AVDD  
High/Low Threshold  
Hysteresis  
DVDD  
Digital Window  
Comparator  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
OVP  
Programmable  
Averaging Filters  
ADC  
MUX  
ADC  
CS  
MUX  
GPIO  
OCP  
SPI Interface  
SCLK  
SDI  
Sequencer  
Pin CFG  
and  
CRC  
Verification  
SDO  
GPO Write  
GPI Read  
GND  
OVP: Over voltage protection  
OCP: Over current protection  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS979  
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 23  
8.5 ADS7038 Registers................................................. 27  
Application and Implementation ........................ 67  
9.1 Application Information............................................ 67  
9.2 Typical Applications ................................................ 67  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Switching Characteristics.......................................... 7  
7.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
9
10 Power Supply Recommendations ..................... 70  
10.1 AVDD and DVDD Supply Recommendations....... 70  
11 Layout................................................................... 71  
11.1 Layout Guidelines ................................................. 71  
11.2 Layout Example .................................................... 71  
12 器件和文档支持 ..................................................... 72  
12.1 接收文档更新通知 ................................................. 72  
12.2 社区资源................................................................ 72  
12.3 ....................................................................... 72  
12.4 静电放电警告......................................................... 72  
12.5 Glossary................................................................ 72  
13 机械、封装和可订购信息....................................... 72  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2019) to Revision A  
Page  
已更改 将器件状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
5 Device Comparison Table  
PART  
ZERO-CROSSING-DETECT  
ROOT-MEAN-SQUARE  
(RMS) MODULE  
DESCRIPTION  
NUMBER  
CRC MODULE  
(ZCD) MODULE  
ADS7028  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
8-channel, 12-bit ADC with SPI  
ADS7038  
interface and GPIOs  
ADS7038-Q1  
No  
No  
Copyright © 2019, Texas Instruments Incorporated  
3
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
AIN2/GPIO2  
AIN3/GPIO3  
AIN4/GPIO4  
AIN5/GPIO5  
1
2
3
4
12  
11  
10  
9
SDO  
CS  
Thermal  
Pad  
DVDD  
GND  
Not to scale  
Pin Functions  
PIN  
FUNCTION(1)  
DESCRIPTION  
NAME  
NO.  
15  
16  
1
AIN0/GPIO0  
AIN1/GPIO1  
AIN2/GPIO2  
AIN3/GPIO3  
AIN4/GPIO4  
AIN5/GPIO5  
AIN6/GPIO6  
AIN7/GPIO7  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
Channel 0; can be configured as either an analog input (default), digital input, or digital output.  
Channel 1; can be configured as either an analog input (default), digital input, or digital output.  
Channel 2; can be configured as either an analog input (default), digital input, or digital output.  
Channel 3; can be configured as either an analog input (default), digital input, or digital output.  
Channel 4; can be configured as either an analog input (default), digital input, or digital output.  
Channel 5; can be configured as either an analog input (default), digital input, or digital output.  
Channel 6; can be configured as either an analog input (default), digital input, or digital output.  
Channel 7; can be configured as either an analog input (default), digital input, or digital output.  
2
3
4
5
6
Analog supply input, also used as the reference voltage to the ADC; connect a 1-µF  
decoupling capacitor to GND.  
AVDD  
7
Supply  
Chip-select input pin; active low. The device takes control of the data bus when CS is low.  
The device starts converting the active input channel on the rising edge of CS. SDO goes hi-Z  
when CS is high.  
CS  
11  
DI  
DECAP  
DVDD  
GND  
8
Supply  
Supply  
Supply  
DI  
Connect a decoupling capacitor to this pin for the internal power supply.  
Digital I/O supply voltage; connect a 1-µF decoupling capacitor to GND.  
Ground for the power supply; all analog and digital signals are referred to this pin voltage.  
Serial clock for the SPI interface.  
10  
9
SCLK  
13  
14  
12  
SDI  
DI  
Serial data in for the device.  
SDO  
DO  
Serial data out for the device.  
Thermal pad  
Supply  
Exposed thermal pad; connect to GND.  
(1) AI = analog input, DI = digital input, and DO = digital output.  
4
Copyright © 2019, Texas Instruments Incorporated  
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
5.5  
UNIT  
V
DVDD to GND  
AVDD to GND  
5.5  
V
AINx / GPOx(2) to GND  
GND – 0.3 AVDD + 0.3  
V
Digital input to GND  
GND – 0.3  
–10  
5.5  
10  
V
Current through any pin except supply pins(3)  
Junction temperature, TJ  
Storage temperature, Tstg  
mA  
°C  
°C  
–40  
125  
150  
–60  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) AINx / GPIOx refers to pins 1, 2, 3, 4, 5, 6, 15, and 16.  
(3) Pin current must be limited to 10mA or less.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
2.35  
1.65  
3.3  
3.3  
5.5  
5.5  
V
V
ANALOG INPUTS  
FSR  
VIN  
Full-scale input range  
Absolute input voltage  
AINX - GND  
AINX - GND  
0
AVDD  
V
V
–0.1  
AVDD + 0.1  
TEMPERATURE RANGE  
TA Ambient temperature  
–40  
25  
125  
(1) AINx refers to AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
7.4 Thermal Information  
ADS7038  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
49.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.4  
24.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ΨJB  
24.7  
RθJC(bot)  
9.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
ANALOG INPUTS  
CSH Sampling capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
12  
pF  
DC PERFORMANCE  
Resolution  
No missing codes  
12  
±0.3  
±0.5  
±0.3  
±2  
bits  
DNL  
INL  
Differential nonlinearity  
–0.75  
–1.5  
–2  
0.75  
1.5  
2
LSB  
LSB  
Integral nonlinearity  
Input offset error  
V(OS)  
Post offset calibration  
Post offset calibration  
LSB  
Input offset thermal drift  
Offset error match  
Gain error  
ppm/°C  
LSB  
0
0.5  
2
GE  
–0.1  
±0.05  
±1  
0.1 %FSR  
ppm/°C  
Gain error thermal drift  
Gain error match  
–0.05  
±0.01  
0.05 %FSR  
AC PERFORMANCE  
AVDD = 5 V, fIN = 2 kHz  
AVDD = 3 V, fIN = 2 kHz  
AVDD = 5 V, fIN = 2 kHz  
AVDD = 3 V, fIN = 2 kHz  
fIN = 2 kHz  
68.5  
67.5  
69  
71.5  
70.5  
72  
SINAD Signal-to-noise + distortion ratio  
dB  
dB  
SNR  
Signal-to-noise ratio  
68  
71  
THD  
Total harmonic distortion  
Spurious-free dynamic range  
Isolation crosstalk  
–85  
91  
dB  
dB  
dB  
SFDR  
fIN = 2-kHz  
fIN = 100 kHz  
–100  
DECAP Pin  
Decoupling capacitor on DECAP  
0.1  
1
µF  
pin  
SPI INTERFACE (CS, SCLK, SDI, SDO)  
VIH  
VIL  
Input high logic level  
Input low logic level  
0.7 x DVDD  
–0.3  
5.5  
V
V
0.3 x DVDD  
Source current = 2 mA,  
DVDD > 2 V  
0.8 x DVDD  
0.7 x DVDD  
DVDD  
DVDD  
VOH  
Output high logic level  
Output low logic level  
V
V
Source current = 2 mA,  
DVDD 2 V  
Sink current = 2 mA, DVDD > 2 V  
0
0
0.4  
VOL  
Sink current = 2 mA, DVDD 2 V  
0.2 x DVDD  
GPIOs  
VIH  
Input high logic level  
Input low logic level  
Input leakge current  
0.7 x AVDD  
–0.3  
AVDD + 0.3  
0.3 x AVDD  
100  
V
V
VIL  
GPIO configured as input  
10  
nA  
GPO_DRIVE_CFG = push-pull,  
ISOURCE = 2 mA  
VOH  
Output high logic level  
0.8 x AVDD  
0
AVDD  
V
VOL  
IOH  
IOL  
Output low logic level  
ISINK = 2 mA  
0.2 x AVDD  
V
Output high source current  
Output low sink current  
VOH > 0.7 x AVDD  
VOL < 0.3 x AVDD  
5
5
mA  
mA  
POWER-SUPPLY CURRENTS  
Full throughput, AVDD = 5 V  
Full throughput, AVDD = 3 V  
No conversion, AVDD = 5 V  
470  
440  
10  
600  
550  
50  
IAVDD  
Analog supply current  
µA  
6
Copyright © 2019, Texas Instruments Incorporated  
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
7.6 Timing Requirements  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C  
MIN  
MAX  
UNIT  
CONVERSION CYCLE  
fCYCLE  
Sampling frequency  
1000  
kSPS  
s
tCYCLE  
ADC cycle-time period  
Acquisition time  
1 / fCYCLE  
tACQ  
300  
10  
10  
10  
10  
ns  
tQT_ACQ  
tD_CNVCAP  
tWH_CSZ  
tWL_CSZ  
Quiet acquisition time  
Quiet conversion time  
Pulse duration: CS high  
Pulse duration: CS low  
ns  
ns  
ns  
ns  
SPI INTERFACE TIMINGS  
fCLK  
Maximum SCLK frequency  
60  
MHz  
ns  
tCLK  
Minimum SCLK time period  
16.67  
0.45  
0.45  
3.5  
1.5  
2
tPH_CK  
tPL_CK  
tSU_CSCK  
tSU_CKDI  
tHT_CKDI  
tD_CKCS  
SCLK high time  
0.55  
0.55  
tCLK  
tCLK  
ns  
SCLK low time  
Setup time: CS falling to the first SCLK capture edge  
Setup time: SDI data valid to the SCLK capture edge  
Hold time: SCLK capture edge to data valid on SDI  
Delay time: last SCLK falling to CS rising  
ns  
ns  
6
ns  
7.7 Switching Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
CONVERSION CYCLE  
Test Conditions  
MIN  
MAX  
UNIT  
tCONV  
tACQ  
ADC conversion time  
Acquisition time  
600  
ns  
ns  
400  
RESET and ALERT  
AVDD 2.35 V,  
CDECAP = 1 µF  
tPU  
Power-up time for device  
5
5
ms  
ms  
ns  
Delay time; RST bit = 1b to device reset  
complete(1)  
tRST  
ALERT_LOGIC[1:0]  
= 1x  
tALERT_HI  
tALERT_LO  
ALERT high period  
ALERT low period  
50  
50  
150  
150  
ALERT_LOGIC[1:0]  
= 1x  
ns  
SPI INTERFACE TIMINGS  
tDEN_CSDO Delay time: CS falling to data enable  
tDZ_CSDO  
15  
15  
ns  
ns  
Delay time: CS rising to SDO going Hi-Z  
Delay time: SCLK launch edge to (next)  
data valid on SDO  
tD_CKDO  
16  
ns  
(1) RST bit is automatically reset to 0b after tRST  
.
版权 © 2019, Texas Instruments Incorporated  
7
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Sample  
S
Sample  
S + 1  
CS  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (S)  
ACQ (S + 1)  
1. Conversion Cycle Timing  
tCLK  
tPH_CK  
tPL_CK  
SCLK(1)  
CS  
tSU_CKDI  
tHT_CKDI  
tSU_CSCK  
tD_CKCS  
SCLK(1)  
SDI  
tDEN_CSDO  
tDZ_CSDO  
tD_CKDO  
SDO  
SDO  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.  
2. SPI-Compatible Serial Interface Timing  
8
版权 © 2019, Texas Instruments Incorporated  
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
7.8 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
0
45000  
39581  
-30  
30000  
-60  
-90  
25955  
15000  
-120  
-150  
0
0
100  
200 300  
Frequency (kHz)  
400  
500  
2048  
2049  
C008  
C001  
Output Code  
fIN = 2 kHz, SNR = 73.2 dB, THD = –92.1 dB  
Standard deviation = 0.49 LSB  
4. Typical FFT  
3. DC Input Histogram  
0.8  
0.4  
0
0.8  
0.4  
0
-0.4  
-0.8  
-0.4  
-0.8  
0
1024  
2048  
Output Code  
3072  
4095  
0
1024  
2048  
Output Code  
3072  
4095  
C002  
C004  
Typical DNL = ±0.5 LSB  
Typical INL = ±0.5 LSB  
5. Typical DNL  
6. Typical INL  
0.5  
0.3  
0.75  
0.45  
Maximum  
Minimum  
Maximum  
Minimum  
0.1  
0.15  
-0.1  
-0.3  
-0.5  
-0.15  
-0.45  
-0.75  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Temperature (èC)  
Temperature (èC)  
C003  
C005  
7. DNL vs Temperature  
8. INL vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
9
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
0.5  
0.75  
Maximum  
Minimum  
Maximum  
Minimum  
0.3  
0.45  
0.1  
0.15  
-0.1  
-0.3  
-0.5  
-0.15  
-0.45  
-0.75  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C018  
C019  
9. DNL vs AVDD  
10. INL vs AVDD  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
0.05  
0.03  
0.01  
-0.01  
-0.03  
-0.05  
-40  
-7  
26 59  
Temperature (°C)  
92  
125  
-40  
-7  
26 59  
Temperature (°C)  
92  
125  
C006  
C007  
11. Offset Error vs Temperature  
12. Gain Error vs Temperature  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
0.05  
0.03  
0.01  
-0.01  
-0.03  
-0.05  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C016  
C017  
13. Offset Error vs AVDD  
14. Gain Error vs AVDD  
10  
版权 © 2019, Texas Instruments Incorporated  
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
73.2  
73.1  
73  
11.75  
11.725  
11.7  
73.5  
12  
SINAD  
SNR  
ENOB  
SINAD  
SNR  
ENOB  
73  
11.85  
11.7  
11.55  
11.4  
72.5  
72  
72.9  
72.8  
11.675  
11.65  
71.5  
-40  
-7  
26 59  
Temperature (°C)  
92  
125  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C009  
C010  
15. Noise Performance vs Temperature  
16. Noise Performance vs AVDD  
-90.3  
-90.5  
-90.7  
-90.9  
-91.1  
94.8  
94.4  
94  
-82  
-84  
-86  
-88  
-90  
-92  
96  
94  
92  
90  
88  
86  
THD  
SFDR(dBFS)  
THD  
SFDR  
93.6  
93.2  
125  
-40  
-7  
26 59  
Temperature (°C)  
92  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C011  
C012  
17. Distortion Performance vs Temperature  
18. Distortion Performance vs AVDD  
500  
480  
460  
440  
420  
490  
484  
478  
472  
466  
460  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C014  
-40  
-7  
26 59  
Temperature (°C)  
92  
125  
C013  
20. Analog Supply Current vs AVDD  
19. Analog Supply Current vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
11  
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
500  
400  
300  
200  
100  
0
0
200  
400 600  
Throughput (kSPS)  
800  
1000  
C015  
21. Analog Supply Current vs Throughput  
12  
版权 © 2019, Texas Instruments Incorporated  
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8 Detailed Description  
8.1 Overview  
The ADS7038 is a small, eight-channel, multiplexed, 12-bit, 1-MSPS, analog-to-digital converter (ADC) with an  
enhanced-SPI serial interface. The eight channels of the ADS7038 can be individually configured as either  
analog inputs, digital inputs, or digital outputs. The device includes a digital comparator which can be used to  
interrupt the host when a programmed high or low threshold is crossed on any input channel. The device uses an  
internal oscillator for conversion. The ADC can be used in manual mode for reading ADC data over the SPI  
interface or in autonomous mode for monitoring the analog inputs without an active SPI interface.  
The device features a programmable averaging filter that outputs a 16-bit result for enhanced resolution.  
8.2 Functional Block Diagram  
DECAP  
AVDD  
High/Low Threshold  
Hysteresis  
DVDD  
Digital Window  
Comparator  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
Averager  
1 to 128  
ADC  
CS  
MUX  
SCLK  
SDI  
Sequencer  
Pin CFG  
SPI Interface  
SDO  
GPO Write  
GPI Read  
CRC (optional)  
GND  
版权 © 2019, Texas Instruments Incorporated  
13  
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Multiplexer and ADC  
The eight channels of the multiplexer can be independently configured as ADC inputs or general-purpose  
inputs/outputs (GPIOs). 22 shows that each input pin has ESD protection diodes to AVDD and GND. On  
power-up or after device reset, all eight multiplexer channels are configured as analog inputs.  
22 shows an equivalent circuit for pins configured as analog inputs. The ADC sampling switch is represented  
by ideal switch (SW) in series with the resistor RSW (typically 150 Ω) and the sampling capacitor, CSH (typically 12  
pF).  
GPO_VALUE[0]  
GPIO_CFG[0]  
AVDD  
GPI_VALUE[0]  
PIN_CFG[0]  
AIN0 / GPIO0  
RSW  
SW  
MUX  
CSH  
Multiplexer  
AVDD  
ADC  
AIN7 / GPIO7  
PIN_CFG[7]  
GPI_VALUE[7]  
GPIO_CFG[7]  
GPO_VALUE[7]  
22. Analog Inputs, GPIOs, and ADC Connections  
During acquisition, the SW switch is closed to allow the signal on the selected analog input channel to charge the  
internal sampling capacitor. During conversion, the SW switch is opened to disconnect the analog input channel  
from the sampling capacitor.  
The multiplexer channels can be configured as GPIOs in the PIN_CFG register. The direction of a GPIO (either  
as an input or an output) can be set in the GPIO_CFG register. The logic level on the channels configured as  
digital inputs can be read from the GPI_VALUE register. The digital outputs can be accessed by writing to the  
GPO_VALUE register. The digital outputs can be configured as either open-drain or push-pull in the  
GPO_DRIVE_CFG register.  
8.3.2 Reference  
The device uses the analog supply voltage (AVDD) as a reference for the analog-to-digital conversion process.  
TI recommends connecting a 1-µF, low-equivalent series resistance (ESR) ceramic decoupling capacitor  
between the AVDD and GND pins.  
8.3.3 ADC Transfer Function  
The ADC output is in straight binary format. 公式 1 computes the ADC resolution:  
1 LSB = VREF / 2N  
where:  
VREF = AVDD  
N = 12  
(1)  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Feature Description (接下页)  
23 and 1 detail the transfer characteristics for the device.  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
1 LSB  
AVDD/2 (AVDD/2 + 1 LSB)  
(AVDD œ 1 LSB)  
23. Ideal Transfer Characteristics  
1. Transfer Characteristics  
IDEAL OUTPUT  
CODE  
INPUT VOLTAGE FOR SINGLE-ENDED INPUT  
CODE  
DESCRIPTION  
1 LSB  
1 LSB to 2 LSBs  
NFSC  
NFSC + 1  
MC  
Negative full-scale code  
000  
001  
800  
801  
FFF  
Mid code  
(AVDD / 2) to (AVDD / 2) + 1 LSB  
(AVDD / 2) + 1 LSB to (AVDD / 2) + 2 LSB  
AVDD – 1 LSB  
MC + 1  
PFSC  
Positive full-scale code  
8.3.4 ADC Offset Calibration  
The variation in ADC offset error resulting from changes in temperature or AVDD can be calibrated by setting the  
CAL bit in the GENERAL_CFG register. The CAL bit is reset to 0 after calibration. The host can poll the CAL bit  
to check the ADC offset calibration completion status.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.5 Programmable Averaging Filter  
The ADS7038 features a built-in oversampling (OSR) function that can be used to average several samples. The  
averaging filter can be enabled by programming the OSR[2:0] bits in the OSR_CFG register. The averaging filter  
configuration is common to all analog input channels. 24 shows that the averaging filter module output is 16  
bits long. In manual conversion mode and auto-sequence mode, only the first conversion for the selected analog  
input channel must be initiated by the host; see the Manual Mode and Auto-Sequence Mode sections. As shown  
in 24, any remaining conversions for the selected averaging factor are generated internally. The time required  
to complete the averaging operation is determined by the sampling speed and number of samples to be  
averaged. As shown in 24, the 16-bit result can be read out after the averaging operation completes.  
Sample  
AINx  
(start of averaging)  
Sample  
AINx  
Sample  
AINx  
CS  
N œ 1 conversions triggered  
internally  
tAVG = N samples x tCYCLE  
SCLK  
SDO  
[15:0] Data  
16 clocks  
24. Averaging Example  
In autonomous mode of operation, samples from analog input channels that are enabled in the  
AUTO_SEQ_CH_SEL register are averaged sequentially. The digital window comparator compares the top 12  
bits of the 16-bit average result with the thresholds.  
公式 2 provides the LSB value of the 16-bit average result.  
AVDD  
1 LSB =  
216  
(2)  
8.3.6 CRC on Data Interface  
The ADS7038 features a cyclic redundancy check (CRC) module for checking the integrity of the data bits  
exchanged over the SPI interface. The CRC module is bidirectional, which appends an 8-bit CRC to every byte  
read from the device and also evaluates the CRC of every incoming byte over the SPI interface. The CRC  
module uses the CRC-8-CCITT polynomial (x8 + x2 + x + 1) for CRC computation.  
To enable the CRC module, set the CRC_EN bit in the GENERAL_CFG register. 2 shows the different ways  
that a CRC error that occurs when configuring the ADS7038 can be detected.  
2. Configuring Notifications when CRC Error is Detected  
CRC ERROR NOTIFICATION  
CONFIGURATION  
DESCRIPTION  
ALERT  
ALERT_CRCIN = 1b  
ALERT (internal signal) is asserted if a CRC error is detected  
4-bit status flags are appended to the ADC data. See the Output Data  
Format section for details.  
Status flags  
APPEND_STATUS = 10b  
Register read  
Read the CRCERR_IN bit to check if a CRC error was detected.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
When the ADS7038 detects a CRC error on the SPI interface, the erroneous data are ignored and the  
CRCERR_IN bit is set. Additional notifications can be enabled as described in 2. Further register writes are  
disabled until the CRCERR_IN bit is cleared by writing 1b to this bit. When using autonomous conversion mode,  
further conversions can be disabled on a CRC error on the SPI interface by setting CONV_ON_ERR = 1b.  
8.3.7 General-Purpose I/Os  
The eight channels of the ADS7038 can be independently configured as analog inputs, digital inputs, or digital  
outputs. 3 shows how the PIN_CFG and GPIO_CFG registers can be used to configure the device channels.  
3. Configuring Channels as Analog Inputs or GPIOs  
PIN_CFG[7:0]  
GPIO_CFG[7:0]  
GPO_DRIVE_CFG[7:0]  
CHANNEL CONFIGURATION  
Analog input (default)  
0
1
1
1
x
0
1
1
x
x
0
1
Digital input  
Digital output; open-drain driver  
Digital output; push-pull driver  
Digital outputs can be configured to logic 1 or 0 by writing to the GPO_VALUE register. Reading the GPI_VALUE  
register returns the logic level for all channels configured as digital inputs or digital outputs. The GPI_VALUE  
register can be read to detect a failure in external components, such as a floating pullup resistor or a low-  
impedance pulldown resistor, that prevents digital outputs being set to the desired logic level.  
8.3.8 Oscillator and Timing Control  
The device uses an internal oscillator for conversion. When using the averaging module, the host initiates the  
first conversion and subsequent conversions are generated internally by the device. 4 describes how the  
sampling rate can be controlled by the OSC_SEL and CLK_DIV[3:0] register fields when the device generates  
the start of the conversion.  
4. Configuring Sampling Rate for Internal Conversion Start Control  
OSC_SEL = 0  
OSC_SEL = 1  
CLK_DIV[3:0]  
SAMPLING FREQUENCY, fCYCLE  
(kSPS)  
CYCLE TIME,  
tCYCLE (µs)  
SAMPLING FREQUENCY,  
CYCLE TIME, tCYCLE  
(µs)  
fCYCLE (kSPS)  
31.25  
20.83  
15.63  
10.42  
7.81  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
1000  
666.7  
500  
1
1.5  
2
32  
48  
64  
333.3  
250  
3
96  
4
128  
192  
256  
384  
512  
768  
1024  
1536  
2048  
3072  
4096  
6144  
166.7  
125  
6
5.21  
8
3.91  
83  
12  
16  
24  
32  
48  
64  
96  
128  
192  
2.60  
62.5  
41.7  
31.3  
20.8  
15.6  
10.4  
7.8  
1.95  
1.3  
0.98  
0.65  
0.49  
0.33  
0.24  
5.2  
0.16  
The conversion time of the device, given by tCONV in the Switching Characteristics table, is independent of the  
OSC_SEL and CLK_DIV[3:0] configuration.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.9 Output Data Format  
25 shows various SPI frames for reading data. The data output is MSB aligned. If averaging is enabled the  
output data from the ADC are 16 bits long, otherwise the output data are 12 bits long. Optionally, a 4-bit channel  
ID or status flags can be appended at the end of the output data by configuring the APPEND_STATUS[1:0] field.  
CS  
SCLK  
12  
13  
14  
15  
16  
18  
19  
20  
17  
1
2
Data output when averaging is disabled  
OSR[2:0] = 00b  
12 SCLKs minimum. Remaining clocks optional.  
SDO  
LSB  
Channel ID / Status Flags  
4 bits optional  
MSB  
12 bit ADC data  
Data output when averaging is enabled  
OSR[2:0] > 00b  
16 SCLKs minimum. Remaining clocks optional.  
SDO  
LSB  
Channel ID / Status Flags  
4 bits optional  
MSB  
16 bit averaged ADC data  
25. SPI Frames for Reading Data  
8.3.10 Digital Window Comparator  
The internal digital window comparator (DWC) is available in both conversion modes (manual and autonomous).  
The DWC outputs an internal ALERT signal. The internal ALERT signal can be output on any one of the digital  
output channels by configuring the ALERT_PIN register. 26 provides a block diagram for the digital window  
comparator.  
EVENT_RGN[7]  
EVENT_RGN[0]  
Digital input CH0  
ALERT  
(internal)  
High threshold -  
Hysteresis  
12-bit ADC data  
or  
[15:4] Average result  
EVENT_HIGH_FLAG[0]  
EVENT_LOW_FLAG[0]  
MUX  
Programmable  
Averaging Filter  
Event  
Counter  
ADC  
ALERT_CH_SEL[0]  
Low threshold +  
Hysteresis  
PIN_CFG[0]  
All registers are specific for individual  
analog input channels  
GPIO_CFG[0]  
26. Digital Window Comparator Block Diagram  
The low-side threshold, high-side threshold, event counter, and hysteresis parameters are independently  
programmable for each input channel. 27 illustrates that the window comparator can monitor events for every  
analog input channel.  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
0xFFF  
0xFFF  
High threshold -  
Hysteresis  
Signal above limit  
High threshold -  
Hysteresis  
Low threshold +  
Hysteresis  
Signal below limit  
Samples  
Low threshold +  
Hysteresis  
0x000  
0xFFF  
0x000  
0xFFF  
Samples  
Signal out of band  
High threshold -  
Hysteresis  
High threshold -  
Hysteresis  
Signal in band  
DWC_CH_POL = 0  
Low threshold +  
Hysteresis  
Low threshold +  
Hysteresis  
DWC_CH_POL = 1  
Signal out of band  
0x000  
0x000  
Samples  
Samples  
27. Event Monitoring With the Window Comparator  
To enable the digital window comparator, set the DWC_EN bit in the GENERAL_CFG register. By default,  
hysteresis = 0, high threshold = 0xFFF, and low threshold = 0x000. For detecting when a signal is in-band, the  
EVENT_RGN register must be configured. In each of the cases shown in 27, either or both  
ALERT_HIGH_FLAG and ALERT_LOW_FLAG can be set. The programmable event counter counts consecutive  
threshold violations before alert flags are set. The event count can be set to a higher value to avoid transients in  
the input signal setting the alert flags.  
In order to assert the ALERT signal (internal) when the alert flag is set for a particular analog input channel, set  
the corresponding bit in the DWC_CH_SEL register. Alert flags are set, irrespective of the DWC_CH_SEL  
configuration, if DWC_EN = 1 and high or low thresholds are exceeded.  
8.3.10.1 Interrupts From Digital Inputs  
5 shows that rising edge or falling edge events can be detected on channels configured as digital inputs.  
5. Configuring Interrupts From Digital Inputs  
PIN_CFG[7:0]  
GPIO_CFG[7:0]  
EVENT_RGN[7:0]  
EVENT DESCRIPTION  
ALERT_HIGH_FLAG is set on the rising edge on the digital input  
channel  
1
0
0
ALERT_LOW_FLAG is set on the falling edge on the digital input  
channel  
1
0
1
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.10.2 Triggering Digital Outputs With Alert  
28 shows that digital outputs can be updated in response to alerts from individual channels.  
Digital output 7  
Digital output 0  
Select alerts on which channels  
should be enabled as triggers  
GPO0_TRIG_EVENT_SEL[7:0]  
trigger  
GPO_TRIGGER_UPDATE_EN [0]  
Enable the triggers  
0
1
GPO_OUTPUT_VALUE [0]  
GPO_VALUE_ON_TRIGGER [0]  
28. Block Diagram of the Digital Output Logic  
8.3.10.2.1 Triggering Digital Outputs on Alerts  
Any given digital output can be updated in response to an alert condition on one or more analog inputs and  
digital inputs. To update the digital output in response to alert conditions, configure the trigger and the value to  
be launched when the trigger occurs.  
8.3.10.2.1.1 Trigger  
The following events can act as triggers for updating the value on the digital output:  
An alert on one or more analog input channels. The digital window comparator must be enabled for these  
channels.  
An alert on one or more digital input channels. The digital window comparator must be enabled for these  
channels.  
Configure the GPOx_TRIG_EVENT_SEL register to select which channels, analog inputs, or digital inputs can  
trigger an update on the digital output pin. After configuring the triggers for updating a digital output, the logic can  
be enabled by configuring the corresponding bit in the GPO_TRIGGER_UPDATE_EN register.  
8.3.10.2.1.2 Output Value  
The digital outputs can be set to logic 1 or logic 0 in response to triggers. The value to be updated on the digital  
output when a trigger event occurs can be configured in the GPO_VALUE_ON_TRIGGER register.  
8.3.11 Minimum, Maximum, and Latest Data Registers  
The ADS7038 can record the minimum, maximum, and latest code (statistics registers) for every analog input  
channel. To enable or re-enable recording statistics, set the STATS_EN bit in the GENERAL_CFG register.  
Writing 1 to the STATS_EN bit reinitializes the statistics module. Afterwards, results from new conversions are  
recorded in the statistics registers.. Previous values can be read from the statistics registers until a new  
conversion result is available. Before reading the statistics registers, set STATS_EN = 0 to prevent any updates  
to this block of registers.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.3.12 Device Programming  
8.3.12.1 Enhanced-SPI Interface  
The device features an enhanced-SPI interface that allows the host controller to operate at slower SCLK speeds  
and still achieve full throughput. As described in 6, the host controller can use any of the four SPI-compatible  
protocols (SPI-00, SPI-01, SPI-10, or SPI-11) to access the device.  
6. SPI Protocols for Configuring the Device  
SCLK POLARITY  
(At the CS Falling Edge)  
SCLK PHASE  
(Capture Edge)  
PROTOCOL  
CPOL_CPHA[1:0]  
DIAGRAM  
SPI-00  
SPI-01  
SPI-10  
SPI-11  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00b  
01b  
10b  
11b  
29  
30  
29  
30  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00 protocol for data  
read and data write operations. To select a different SPI-compatible protocol, program the CPOL_CPHA[1:0]  
field. This first write operation must adhere to the SPI-00 protocol. Any subsequent data transfer frames must  
adhere to the newly-selected protocol.  
CS  
CS  
CPOL = 0  
CPOL = 0  
SCLK  
SCLK  
CPOL = 1  
CPOL = 1  
SDO  
0
MSB  
MSB-1  
LSB+1  
LSB  
MSB  
MSB-1  
LSB+1  
LSB  
SDO  
MSB-2  
30. Standard SPI Timing Protocol  
29. Standard SPI Timing Protocol  
(CPHA = 1)  
(CPHA = 0)  
8.3.12.2 Register Read/Write Operation  
The device supports the commands listed in 7 to access the internal configuration registers.  
7. Opcodes for Commands  
OPCODE  
0000 0000b  
0001 0000b  
0000 1000b  
0001 1000b  
0010 0000b  
COMMAND DESCRIPTION  
No operation  
Single register read  
Single register write  
Set bit  
Clear bit  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.12.2.1 Register Write  
A 24-bit SPI frame is required for writing data to configuration registers. The 24-bit data on SDI, as shown in 图  
31. consists of an 8-bit write command (0000 1000b), an 8-bit register address, and 8-bit data. The write  
command is decoded on the CS rising edge and the specified register is updated with the 8-bit data specified  
during the register write operation.  
CS  
SCLK  
18  
1
2
8
9
10  
16  
17  
24  
0000 1000b  
(WR_REG)  
SDI  
8-bit Address  
8-bit Data  
31. Register Write Operation  
8.3.12.2.2 Register Read  
Register read operation consists of two SPI frames: the first SPI frame initiates a register read and the second  
SPI frame reads data from the register address provided in the first frame. As shown in 32, the 8-bit register  
address and the 8-bit dummy data are sent over the SDI pin during the first 24-bit frame with the read command  
(0001 0000b). On the rising edge of CS, the read command is decoded and the requested register data are  
available for reading during the next frame. During the second frame, the first eight bits on SDO correspond to  
the requested register read. During the second frame, SDI can be used to initiate another operation or can be set  
to 0.  
CS  
SCLK  
18  
1
2
8
9
10  
16  
17  
24  
18  
1
2
8
9
10  
16  
17  
24  
0001 0000b  
(RD_REG)  
SDI  
8-bit Address  
0000 0000b  
Command  
8-bit Address  
8-bit Data  
Optional; can set SDI = 0  
SDO  
8-bit Register Data  
32. Register Read Operation  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.4 Device Functional Modes  
8 lists the functional modes supported by the ADS7038.  
8. Functional Modes  
FUNCTIONAL  
MODE  
CONVERSION CONTROL  
MUX CONTROL  
CONV_MODE[1:0]  
SEQ_MODE[1:0]  
Manual  
On-the-fly  
CS rising edge  
CS rising edge  
Register write to MANUAL_CHID  
First 5 bits after the CS falling edge  
Channel sequencer  
00b  
00b  
00b  
01b  
00b  
10b  
01b  
01b  
Auto-sequence  
Autonomous  
CS rising edge  
Internal to the device  
Channel sequencer  
The device powers up in manual mode and can be configured into either of these modes by writing the  
configuration registers for the desired mode.  
8.4.1 Device Power-Up and Reset  
On power-up, the BOR bit is set indicating a power-cycle or reset event. The device can be reset by setting the  
RST bit or by recycling the power on the AVDD pin.  
8.4.2 Manual Mode  
Manual mode allows the external host processor to directly select the analog input channel. 33 shows the  
steps for operating the device in manual mode.  
Idle  
SEQ_MODE = 0  
CONV_MODE = 0  
Configure channels as AIN/GPIO using PIN_CFG  
Select Manual mode  
(CONV_MODE = 00b, SEQ_MODE = 00b)  
Configure desired Channel ID in MANUAL_CHID field  
Host starts conversion and reads conversion result  
No  
Yes  
Same  
Channel ID?  
33. Device Operation in Manual Mode  
In manual mode, the command to switch to a new channel (indicated by cycle N in 34) is decoded by the  
device on the CS rising edge. The CS rising edge is also the start of the conversion signal, and therefore the  
device samples the previously selected MUX channel in cycle N+1. The newly selected analog input channel  
data are available in cycle N+2. For switching the analog input channel, a register write to the MANUAL_CHID  
field requires 24 clocks; see the Register Write section for more details. After a channel is selected, the number  
of clocks required for reading the output data depends on the device output data frame size; see the Output Data  
Format section for more details.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINz  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
Switch to AINy  
Switch to AINz  
Switch to AINx  
Data AINy  
SDO  
Data AINx  
24 clocks  
Data AINx  
100-ns  
MUX OUT = AINx  
MUX OUT = AINy  
MUX OUT = AINz  
MUX  
Cycle N  
Cycle (N + 1)  
Cycle (N + 2)  
34. Starting Conversions and Reading Data in Manual Mode  
8.4.3 On-the-Fly Mode  
In the on-the-fly mode of operation, the analog input channel is selected, as shown in 35, using the first five  
bits on SDI without waiting for the CS rising edge. Thus, the ADC samples the newly selected channel on the CS  
edge and there is no latency between the channel selection and the ADC output data.  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINz  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
2
2
1
24  
1
3
4
5
12  
1
3
4
5
12  
5 clocks  
SEQ_MODE =  
10b  
4-bit AINy ID  
1
4-bit AINz ID  
1
12 clocks  
Data AINx  
12 clocks  
SDO  
Data AINx  
24 clocks  
Data AINy  
MUX OUT = AINz  
MUX OUT = AINx  
100-ns  
MUX OUT = AINx  
MUX OUT = AINy  
MUX  
No Cycle Latency  
35. Starting Conversions and Reading Data in On-the-Fly Mode  
24  
版权 © 2019, Texas Instruments Incorporated  
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
The number of clocks required for reading the output data depends on the device output data frame size; see the  
Output Data Format section for more details.  
8.4.4 Auto-Sequence Mode  
In auto-sequence mode, the internal channel sequencer switches the multiplexer to the next analog input  
channel after every conversion. The desired analog input channels can be configured for sequencing in the  
AUTO_SEQ_CHSEL register. To enable the channel sequencer, set SEQ_START = 1b. After every conversion,  
the channel sequencer switches the multiplexer to the next analog input in ascending order. To stop the channel  
sequencer from selecting channels, set SEQ_START = 0b.  
In the example shown in 36, AIN2 and AIN6 are enabled for sequencing in AUTO_SEQ_CHSEL. The channel  
sequencer loops through AIN2 and AIN6 and repeats until SEQ_START is set to 0b. The number of clocks  
required for reading the output data depends on the device output data frame size; see the Output Data Format  
section for more details.  
Sample  
AINx  
Sample  
AIN2  
Sample  
AIN6  
Sample  
AIN2  
Sample  
AIN6  
tCYCLE  
CS  
SCLK  
SDI  
SEQ_START  
SDO  
Data AIN6  
Data AIN2  
Data AINx  
24 clocks  
Data AINx  
Data AIN2  
12 clocks  
MUX OUT = AIN2  
MUX OUT = AIN6  
MUX OUT = AIN2  
MUX OUT = AIN6  
MUX OUT = AINx  
MUX  
Scan channels AIN2 and AIN6 and repeat  
36. Starting Conversions and Reading Data in Auto-Sequence Mode  
8.4.5 Autonomous Mode  
In autonomous mode, the device can be programmed to monitor the voltage applied on the analog input pins of  
the device and generate an ALERT signal internal to the device when the programmable high or low threshold  
values are crossed. The internal ALERT signal can be mapped to any one digital output channel by configuring  
the channel ID in the ALERT_PIN[3:0] register field. In autonomous mode, the device generates the start of  
conversion using the internal oscillator. The first start of conversion must be provided by the host and the device  
generates the subsequent start of conversions.  
版权 © 2019, Texas Instruments Incorporated  
25  
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
37 shows the steps for configuring the functional mode to autonomous mode. Abort the on-going sequence by  
setting the SEQ_START to 0b before changing the functional mode or configuration of device.  
Idle  
SEQ_MODE = 0  
CONV_MODE = 0  
Configure channels as AIN/GPIO using GPIO_CFG  
Channel  
selection  
Enable analog inputs for sequencing (AUTO_SEQ_CHSEL)  
Select Auto-sequence mode (SEQ_MODE = 01b)  
Configure alert condition using HIGH_THRESHOLD_CHx,  
LOW_THRESHOLD_CHx,EVENT_COUNT, HYSTERESIS_CHx, and  
EVENT_REGION_CHx fields  
Threshold & Alert  
configuration  
Enable analog inputs to trigger ALERT pinusing ALERT_CH_SEL  
Configuration  
Configure ALERT pin behavior using ALERT_DRIVE and ALERT_LOGIC  
Configure sampling rate of analog inputsusing OSC_SEL and CLK_DIV  
Set mode to autonomous monitoring (CONV_MODE = 01b)  
Sampling rate  
configuration  
(optional) Enable averaging and min/max recording (OSR[2:0] and STATS_EN)  
Enable threshold comparison (DWC_EN = 1)  
Enable autonomous monitoring (SEQ_START = 1)  
Active Operation  
(Host can sleep)  
No  
(optional) read conversion results in  
MIN_VALUE_CHx, MAX_VALUE_CHx, and  
LAST_VALUE_CHx registers  
ALERT?  
Yes  
Stop autonomous monitoring (SEQ_START = 0)  
Disable threshold comparison (DWC_EN = 0)  
ALERT Detected  
Read alert flags œ EVENT_FLAG, EVENT_HIGH_FLAG, EVENT_LOW_FLAG  
Clear alert flags œ EVENT_HIGH_FLAG, EVENT_LOW_FLAG  
37. Configuring the Device in Autonomous Mode  
26  
Copyright © 2019, Texas Instruments Incorporated  
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.5 ADS7038 Registers  
Table 9 lists the ADS7038 registers. All register offset addresses not listed in Table 9 should be considered as  
reserved locations and the register contents should not be modified.  
Table 9. ADS7038 Registers  
Address  
Acronym  
Register  
Name  
Section  
0x0  
0x1  
SYSTEM_STATUS  
GENERAL_CFG  
DATA_CFG  
SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]  
GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
DATA_CFG Register (Address = 0x2) [reset = 0x0]  
0x2  
0x3  
OSR_CFG  
OSR_CFG Register (Address = 0x3) [reset = 0x0]  
0x4  
OPMODE_CFG  
PIN_CFG  
OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
PIN_CFG Register (Address = 0x5) [reset = 0x0]  
0x5  
0x7  
GPIO_CFG  
GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
0x9  
GPO_DRIVE_CFG  
GPO_VALUE  
GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_VALUE Register (Address = 0xB) [reset = 0x0]  
GPI_VALUE Register (Address = 0xD) [reset = 0x0]  
0xB  
0xD  
GPI_VALUE  
0x10  
0x11  
0x12  
0x14  
0x16  
0x17  
0x18  
0x1A  
0x1C  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
SEQUENCE_CFG  
CHANNEL_SEL  
AUTO_SEQ_CH_SEL  
ALERT_CH_SEL  
ALERT_MAP  
SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]  
ALERT_CH_SEL Register (Address = 0x14) [reset = 0x0]  
ALERT_MAP Register (Address = 0x16) [reset = 0x0]  
ALERT_PIN_CFG Register (Address = 0x17) [reset = 0x0]  
EVENT_FLAG Register (Address = 0x18) [reset = 0x0]  
EVENT_HIGH_FLAG Register (Address = 0x1A) [reset = 0x0]  
EVENT_LOW_FLAG Register (Address = 0x1C) [reset = 0x0]  
EVENT_RGN Register (Address = 0x1E) [reset = 0x0]  
HYSTERESIS_CH0 Register (Address = 0x20) [reset = 0xF0]  
HIGH_TH_CH0 Register (Address = 0x21) [reset = 0xFF]  
EVENT_COUNT_CH0 Register (Address = 0x22) [reset = 0x0]  
LOW_TH_CH0 Register (Address = 0x23) [reset = 0x0]  
HYSTERESIS_CH1 Register (Address = 0x24) [reset = 0xF0]  
HIGH_TH_CH1 Register (Address = 0x25) [reset = 0xFF]  
EVENT_COUNT_CH1 Register (Address = 0x26) [reset = 0x0]  
LOW_TH_CH1 Register (Address = 0x27) [reset = 0x0]  
HYSTERESIS_CH2 Register (Address = 0x28) [reset = 0xF0]  
HIGH_TH_CH2 Register (Address = 0x29) [reset = 0xFF]  
EVENT_COUNT_CH2 Register (Address = 0x2A) [reset = 0x0]  
LOW_TH_CH2 Register (Address = 0x2B) [reset = 0x0]  
HYSTERESIS_CH3 Register (Address = 0x2C) [reset = 0xF0]  
HIGH_TH_CH3 Register (Address = 0x2D) [reset = 0xFF]  
EVENT_COUNT_CH3 Register (Address = 0x2E) [reset = 0x0]  
LOW_TH_CH3 Register (Address = 0x2F) [reset = 0x0]  
HYSTERESIS_CH4 Register (Address = 0x30) [reset = 0xF0]  
HIGH_TH_CH4 Register (Address = 0x31) [reset = 0xFF]  
EVENT_COUNT_CH4 Register (Address = 0x32) [reset = 0x0]  
LOW_TH_CH4 Register (Address = 0x33) [reset = 0x0]  
HYSTERESIS_CH5 Register (Address = 0x34) [reset = 0xF0]  
HIGH_TH_CH5 Register (Address = 0x35) [reset = 0xFF]  
EVENT_COUNT_CH5 Register (Address = 0x36) [reset = 0x0]  
ALERT_PIN_CFG  
EVENT_FLAG  
EVENT_HIGH_FLAG  
EVENT_LOW_FLAG  
EVENT_RGN  
HYSTERESIS_CH0  
HIGH_TH_CH0  
EVENT_COUNT_CH0  
LOW_TH_CH0  
HYSTERESIS_CH1  
HIGH_TH_CH1  
EVENT_COUNT_CH1  
LOW_TH_CH1  
HYSTERESIS_CH2  
HIGH_TH_CH2  
EVENT_COUNT_CH2  
LOW_TH_CH2  
HYSTERESIS_CH3  
HIGH_TH_CH3  
EVENT_COUNT_CH3  
LOW_TH_CH3  
HYSTERESIS_CH4  
HIGH_TH_CH4  
EVENT_COUNT_CH4  
LOW_TH_CH4  
HYSTERESIS_CH5  
HIGH_TH_CH5  
EVENT_COUNT_CH5  
Copyright © 2019, Texas Instruments Incorporated  
27  
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 9. ADS7038 Registers (continued)  
Address  
Acronym  
Register  
Name  
Section  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x4E  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
LOW_TH_CH5  
LOW_TH_CH5 Register (Address = 0x37) [reset = 0x0]  
HYSTERESIS_CH6 Register (Address = 0x38) [reset = 0xF0]  
HIGH_TH_CH6 Register (Address = 0x39) [reset = 0xFF]  
EVENT_COUNT_CH6 Register (Address = 0x3A) [reset = 0x0]  
LOW_TH_CH6 Register (Address = 0x3B) [reset = 0x0]  
HYSTERESIS_CH7 Register (Address = 0x3C) [reset = 0xF0]  
HIGH_TH_CH7 Register (Address = 0x3D) [reset = 0xFF]  
EVENT_COUNT_CH7 Register (Address = 0x3E) [reset = 0x0]  
LOW_TH_CH7 Register (Address = 0x3F) [reset = 0x0]  
RESERVED Register (Address = 0x4E) [reset = 0x0]  
MAX_CH0_LSB Register (Address = 0x60) [reset = 0x0]  
MAX_CH0_MSB Register (Address = 0x61) [reset = 0x0]  
MAX_CH1_LSB Register (Address = 0x62) [reset = 0x0]  
MAX_CH1_MSB Register (Address = 0x63) [reset = 0x0]  
MAX_CH2_LSB Register (Address = 0x64) [reset = 0x0]  
MAX_CH2_MSB Register (Address = 0x65) [reset = 0x0]  
MAX_CH3_LSB Register (Address = 0x66) [reset = 0x0]  
MAX_CH3_MSB Register (Address = 0x67) [reset = 0x0]  
MAX_CH4_LSB Register (Address = 0x68) [reset = 0x0]  
MAX_CH4_MSB Register (Address = 0x69) [reset = 0x0]  
MAX_CH5_LSB Register (Address = 0x6A) [reset = 0x0]  
MAX_CH5_MSB Register (Address = 0x6B) [reset = 0x0]  
MAX_CH6_LSB Register (Address = 0x6C) [reset = 0x0]  
MAX_CH6_MSB Register (Address = 0x6D) [reset = 0x0]  
MAX_CH7_LSB Register (Address = 0x6E) [reset = 0x0]  
MAX_CH7_MSB Register (Address = 0x6F) [reset = 0x0]  
MIN_CH0_LSB Register (Address = 0x80) [reset = 0xFF]  
MIN_CH0_MSB Register (Address = 0x81) [reset = 0xFF]  
MIN_CH1_LSB Register (Address = 0x82) [reset = 0xFF]  
MIN_CH1_MSB Register (Address = 0x83) [reset = 0xFF]  
MIN_CH2_LSB Register (Address = 0x84) [reset = 0xFF]  
MIN_CH2_MSB Register (Address = 0x85) [reset = 0xFF]  
MIN_CH3_LSB Register (Address = 0x86) [reset = 0xFF]  
MIN_CH3_MSB Register (Address = 0x87) [reset = 0xFF]  
MIN_CH4_LSB Register (Address = 0x88) [reset = 0xFF]  
MIN_CH4_MSB Register (Address = 0x89) [reset = 0xFF]  
MIN_CH5_LSB Register (Address = 0x8A) [reset = 0xFF]  
MIN_CH5_MSB Register (Address = 0x8B) [reset = 0xFF]  
MIN_CH6_LSB Register (Address = 0x8C) [reset = 0xFF]  
MIN_CH6_MSB Register (Address = 0x8D) [reset = 0xFF]  
MIN_CH7_LSB Register (Address = 0x8E) [reset = 0xFF]  
MIN_CH7_MSB Register (Address = 0x8F) [reset = 0xFF]  
RECENT_CH0_LSB Register (Address = 0xA0) [reset = 0x0]  
RECENT_CH0_MSB Register (Address = 0xA1) [reset = 0x0]  
RECENT_CH1_LSB Register (Address = 0xA2) [reset = 0x0]  
RECENT_CH1_MSB Register (Address = 0xA3) [reset = 0x0]  
RECENT_CH2_LSB Register (Address = 0xA4) [reset = 0x0]  
HYSTERESIS_CH6  
HIGH_TH_CH6  
EVENT_COUNT_CH6  
LOW_TH_CH6  
HYSTERESIS_CH7  
HIGH_TH_CH7  
EVENT_COUNT_CH7  
LOW_TH_CH7  
RESERVED  
MAX_CH0_LSB  
MAX_CH0_MSB  
MAX_CH1_LSB  
MAX_CH1_MSB  
MAX_CH2_LSB  
MAX_CH2_MSB  
MAX_CH3_LSB  
MAX_CH3_MSB  
MAX_CH4_LSB  
MAX_CH4_MSB  
MAX_CH5_LSB  
MAX_CH5_MSB  
MAX_CH6_LSB  
MAX_CH6_MSB  
MAX_CH7_LSB  
MAX_CH7_MSB  
MIN_CH0_LSB  
MIN_CH0_MSB  
MIN_CH1_LSB  
MIN_CH1_MSB  
MIN_CH2_LSB  
MIN_CH2_MSB  
MIN_CH3_LSB  
MIN_CH3_MSB  
MIN_CH4_LSB  
MIN_CH4_MSB  
MIN_CH5_LSB  
MIN_CH5_MSB  
MIN_CH6_LSB  
MIN_CH6_MSB  
MIN_CH7_LSB  
MIN_CH7_MSB  
RECENT_CH0_LSB  
RECENT_CH0_MSB  
RECENT_CH1_LSB  
RECENT_CH1_MSB  
RECENT_CH2_LSB  
28  
Copyright © 2019, Texas Instruments Incorporated  
ADS7038  
www.ti.com.cn  
Address  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 9. ADS7038 Registers (continued)  
Acronym  
Register  
Name  
Section  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xC3  
0xC5  
0xC7  
0xC9  
0xCB  
0xCD  
0xCF  
0xD1  
0xE9  
0xEB  
RECENT_CH2_MSB  
RECENT_CH2_MSB Register (Address = 0xA5) [reset = 0x0]  
RECENT_CH3_LSB Register (Address = 0xA6) [reset = 0x0]  
RECENT_CH3_MSB Register (Address = 0xA7) [reset = 0x0]  
RECENT_CH4_LSB Register (Address = 0xA8) [reset = 0x0]  
RECENT_CH4_MSB Register (Address = 0xA9) [reset = 0x0]  
RECENT_CH5_LSB Register (Address = 0xAA) [reset = 0x0]  
RECENT_CH5_MSB Register (Address = 0xAB) [reset = 0x0]  
RECENT_CH6_LSB Register (Address = 0xAC) [reset = 0x0]  
RECENT_CH6_MSB Register (Address = 0xAD) [reset = 0x0]  
RECENT_CH7_LSB Register (Address = 0xAE) [reset = 0x0]  
RECENT_CH7_MSB Register (Address = 0xAF) [reset = 0x0]  
GPO0_TRIG_EVENT_SEL Register (Address = 0xC3) [reset = 0x0]  
GPO1_TRIG_EVENT_SEL Register (Address = 0xC5) [reset = 0x0]  
GPO2_TRIG_EVENT_SEL Register (Address = 0xC7) [reset = 0x0]  
GPO3_TRIG_EVENT_SEL Register (Address = 0xC9) [reset = 0x0]  
GPO4_TRIG_EVENT_SEL Register (Address = 0xCB) [reset = 0x0]  
GPO5_TRIG_EVENT_SEL Register (Address = 0xCD) [reset = 0x0]  
GPO6_TRIG_EVENT_SEL Register (Address = 0xCF) [reset = 0x0]  
GPO7_TRIG_EVENT_SEL Register (Address = 0xD1) [reset = 0x0]  
GPO_TRIGGER_CFG Register (Address = 0xE9) [reset = 0x0]  
GPO_VALUE_TRIG Register (Address = 0xEB) [reset = 0x0]  
RECENT_CH3_LSB  
RECENT_CH3_MSB  
RECENT_CH4_LSB  
RECENT_CH4_MSB  
RECENT_CH5_LSB  
RECENT_CH5_MSB  
RECENT_CH6_LSB  
RECENT_CH6_MSB  
RECENT_CH7_LSB  
RECENT_CH7_MSB  
GPO0_TRIG_EVENT_SEL  
GPO1_TRIG_EVENT_SEL  
GPO2_TRIG_EVENT_SEL  
GPO3_TRIG_EVENT_SEL  
GPO4_TRIG_EVENT_SEL  
GPO5_TRIG_EVENT_SEL  
GPO6_TRIG_EVENT_SEL  
GPO7_TRIG_EVENT_SEL  
GPO_TRIGGER_CFG  
GPO_VALUE_TRIG  
Complex bit access types are encoded to fit into small table cells. Table 10 shows the codes that are used for  
access types in this section.  
Table 10. ADS7038 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups form  
a hierarchical structure and the  
array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
Copyright © 2019, Texas Instruments Incorporated  
29  
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.1 SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]  
SYSTEM_STATUS is shown in Figure 38 and described in Table 11.  
Return to the Summary Table.  
Figure 38. SYSTEM_STATUS Register  
7
6
5
4
3
2
1
0
RSVD  
SEQ_STATUS  
RESERVED  
R-0b  
OSR_DONE  
CRCERR_FUS  
E
CRCERR_IN  
BOR  
R-1b  
R-0b  
R/W-0b  
R-0b  
R/W-0b  
R/W-1b  
Table 11. SYSTEM_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
1b  
Description  
RSVD  
Reads return 1b.  
6
SEQ_STATUS  
R
0b  
Status of the channel sequencer.  
0b = Sequence stopped  
1b = Sequence in progress  
Reserved. Reads return 1b.  
5-4  
3
RESERVED  
OSR_DONE  
R
0b  
0b  
R/W  
Averaging status. Clear this bit by writing 1b to this bit.  
0b = Averaging in progress or not started; average result is not  
ready.  
1b = Averaging complete; average result is ready.  
2
1
CRCERR_FUSE  
CRCERR_IN  
R
0b  
0b  
Device power-up configuration CRC check status. To re-evaluate  
this bit, software reset the device or power cycle AVDD.  
0b = No problems detected in power-up configuration.  
1b = Device configuration not loaded correctly.  
R/W  
Status of CRC check on incoming data. Write 1b to clear this error  
flag.  
0b = No CRC error.  
1b = CRC error detected. All register writes, except to addresses  
0x00 and 0x01, are blocked.  
0
BOR  
R/W  
1b  
Brown out reset indicator. This bit is set if brown out condition occurs  
or device is power cycled. Write 1b to this bit to clear the flag.  
0b = No brown out from the last time this bit was cleared.  
1b = Brown out condition detected or device power cycled.  
8.5.2 GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
GENERAL_CFG is shown in Figure 39 and described in Table 12.  
Return to the Summary Table.  
Figure 39. GENERAL_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CRC_EN  
R/W-0b  
STATS_EN  
R/W-0b  
DWC_EN  
R/W-0b  
RESERVED  
R-0b  
CH_RST  
R/W-0b  
CAL  
RST  
W-0b  
R/W-0b  
Table 12. GENERAL_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0b  
Description  
RESERVED  
CRC_EN  
Reserved. Reads return 1b.  
6
R/W  
0b  
Enable or disable the CRC on device interface.  
0b = CRC module disabled.  
1b = CRC appended to data output. CRC check is enabled on  
incoming data.  
30  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 12. GENERAL_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Enable or disable the statistics module.  
0b Minimum, maximum, and recent value registers are not  
5
STATS_EN  
R/W  
0b  
=
updated.  
1b = Clear minimum, maximum, and recent value registers and  
conitnue updating with new conversion results.  
4
DWC_EN  
R/W  
0b  
Enable or disable the digital window comparator.  
0b = Reset or disable the digital window comparator.  
1b = Enable digital window comparator.  
Reserved. Reads return 0b.  
3
2
RESERVED  
CH_RST  
R
0b  
0b  
R/W  
Force all channels to be analog inputs.  
0b = Normal operation.  
1b = All channels will be set as analog inputs irrespective of  
configuration in other registers.  
1
0
CAL  
RST  
R/W  
W
0b  
0b  
Calibrate ADC offset.  
0b = Normal operation.  
1b = ADC offset is calibrated. After calibration is complete, this bit is  
set to 0b.  
Software reset all registers to default values.  
0b = Normal operation.  
1b = Device is reset. After reset is complete, this bit is set to 0b and  
BOR bit is set to 1b.  
8.5.3 DATA_CFG Register (Address = 0x2) [reset = 0x0]  
DATA_CFG is shown in Figure 40 and described in Table 13.  
Return to the Summary Table.  
Figure 40. DATA_CFG Register  
7
6
5
4
3
2
1
0
FIX_PAT  
R/W-0b  
RESERVED  
R-0b  
APPEND_STATUS[1:0]  
R/W-0b  
RESERVED  
R-0b  
CPOL_CPHA[1:0]  
R/W-0b  
Table 13. DATA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIX_PAT  
R/W  
0b  
Device outputs fixed data bits which can be helpful for debugging  
communication with the device.  
0b = Normal operation.  
1b = Device outputs fixed code 0xA5A repeatitively when reading  
ADC data.  
6
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
5-4  
APPEND_STATUS[1:0]  
R/W  
Append 4-bit channel ID or status flags to output data. 00b: 01b:  
10b: 11b:  
0b = Channel ID and status flags are not appended to ADC data.  
1b = 4-bit channel ID is appended to ADC data.  
10b = 4-bit status flags are appended to ADC data.  
11b = Reserved.  
3-2  
1-0  
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
CPOL_CPHA[1:0]  
R/W  
This field sets the polarity and phase of SPI communication.  
0b = CPOL = 0, CPHA = 0.  
1b = CPOL = 0, CPHA = 1.  
10b = CPOL = 1, CPHA = 0.  
11b = CPOL = 1, CPHA = 1.  
Copyright © 2019, Texas Instruments Incorporated  
31  
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.4 OSR_CFG Register (Address = 0x3) [reset = 0x0]  
OSR_CFG is shown in Figure 41 and described in Table 14.  
Return to the Summary Table.  
Figure 41. OSR_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
OSR[2:0]  
R/W-0b  
Table 14. OSR_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-3  
2-0  
RESERVED  
OSR[2:0]  
Reserved. Reads return 0b.  
R/W  
0b  
Selects the oversampling ratio for ADC conversion result.  
0b = No averaging  
1b = 2 samples  
10b = 4 samples  
11b = 8 samples  
100b = 16 samples  
101b = 32 samples  
110b = 64 samples  
111b = 128 samples  
8.5.5 OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
OPMODE_CFG is shown in Figure 42 and described in Table 15.  
Return to the Summary Table.  
Figure 42. OPMODE_CFG Register  
7
6
5
4
3
2
1
0
CONV_ON_ER  
R
CONV_MODE[1:0]  
OSC_SEL  
CLK_DIV[3:0]  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 15. OPMODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CONV_ON_ERR  
R/W  
0b  
Control continuation of autonomous modes if CRC error is detected  
on communication interface.  
0b = If CRC error is detected, device continues channel sequencing  
and pin configuration is retained. See the CRCERR_IN bit for more  
details.  
1b = If CRC error is detected, devicel changes all channels to analog  
inpts and channel sequencing is paused until CRCERR_IN = 1b.  
After clearing CRCERR_IN flag, device resumes channel  
sequencing and pin confguration is restored.  
6-5  
CONV_MODE[1:0]  
R/W  
0b  
These bits set the mode of conversion of the ADC.  
0b = Manual mode; conversions are initiated by host.  
1b = Autonomous mode; conversions are initiated by the internal  
state machine.  
4
OSC_SEL  
R/W  
R/W  
0b  
0b  
Selects the oscillator for internal timing generation.  
0b = High-speed oscillator.  
1b = Low-power oscillator.  
3-0  
CLK_DIV[3:0]  
Sampling speed control in autonomous monitoring mode  
(CONV_MODE = 01b). See the section on oscillator and timing  
control for details.  
32  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.5.6 PIN_CFG Register (Address = 0x5) [reset = 0x0]  
PIN_CFG is shown in Figure 43 and described in Table 16.  
Return to the Summary Table.  
Figure 43. PIN_CFG Register  
7
6
5
4
3
2
1
0
PIN_CFG[7:0]  
R/W-0b  
Table 16. PIN_CFG Register Field Descriptions  
Bit  
7-0  
Field  
PIN_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure device channels AIN / GPIO [7:0] as analog inputs or  
GPIOs.  
0b = Channel is configured as analog input.  
1b = Channel is configured as GPIO.  
8.5.7 GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
GPIO_CFG is shown in Figure 44 and described in Table 17.  
Return to the Summary Table.  
Figure 44. GPIO_CFG Register  
7
6
5
4
3
2
1
0
GPIO_CFG[7:0]  
R/W-0b  
Table 17. GPIO_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPIO_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure GPIO[7:0] as either digital inputs or digital outputs.  
0b = GPIO is configured as digital input.  
1b = GPIO is configured as digital output.  
8.5.8 GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_DRIVE_CFG is shown in Figure 45 and described in Table 18.  
Return to the Summary Table.  
Figure 45. GPO_DRIVE_CFG Register  
7
6
5
4
3
2
1
0
GPO_DRIVE_CFG[7:0]  
R/W-0b  
Table 18. GPO_DRIVE_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPO_DRIVE_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure digital outputs GPO[7:0] as open-drain or push-pull  
outputs.  
0b = Digital output is open-drain; connect external pullup resistor.  
1b = Push-pull driver is used for digital output.  
Copyright © 2019, Texas Instruments Incorporated  
33  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.9 GPO_VALUE Register (Address = 0xB) [reset = 0x0]  
GPO_VALUE is shown in Figure 46 and described in Table 19.  
Return to the Summary Table.  
Figure 46. GPO_VALUE Register  
7
6
5
4
3
2
1
0
GPO_VALUE[7:0]  
R/W-0b  
Table 19. GPO_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
GPO_VALUE[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Logic level to be set on digital outputs GPO[7:0].  
0b = Digital output set to logic 0.  
1b = Digital output set to logic 1.  
8.5.10 GPI_VALUE Register (Address = 0xD) [reset = 0x0]  
GPI_VALUE is shown in Figure 47 and described in Table 20.  
Return to the Summary Table.  
Figure 47. GPI_VALUE Register  
7
6
5
4
3
2
1
0
GPI_VALUE[7:0]  
R-0b  
Table 20. GPI_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
GPI_VALUE[7:0]  
Type  
Reset  
Description  
R
0b  
Readback the logic level on GPIO[7:0].  
0b = GPIO is at logic 0.  
1b = GPIO is at logic 1.  
8.5.11 SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
SEQUENCE_CFG is shown in Figure 48 and described in Table 21.  
Return to the Summary Table.  
Figure 48. SEQUENCE_CFG Register  
7
6
5
4
3
2
1
SEQ_MODE[1:0]  
R/W-0b  
0
RESERVED  
R-0b  
SEQ_START  
R/W-0b  
RESERVED  
R-0b  
Table 21. SEQUENCE_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-5  
4
RESERVED  
SEQ_START  
Reserved. Reads return 0b.  
R/W  
0b  
Control for start of channel sequence when using auto sequence  
mode (SEQ_MODE = 01b).  
0b = Stop channel sequencing.  
1b = Start channel sequencing in ascending order for channels  
enabled in AUTO_SEQ_CHSEL register.  
3-2  
RESERVED  
R
0b  
Reserved. Reads return 0b.  
34  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 21. SEQUENCE_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
SEQ_MODE[1:0]  
R/W  
0b  
Selects the mode of scanning of analog input channels.  
0b = Manual sequence mode; channel selected by MANUAL_CHID  
field.  
1b  
=
Auto  
sequence  
mode;  
channel  
selected  
by  
AUTO_SEQ_CHSEL.  
10b = On-the-fly sequence mode.  
11b = Reserved.  
8.5.12 CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
CHANNEL_SEL is shown in Figure 49 and described in Table 22.  
Return to the Summary Table.  
Figure 49. CHANNEL_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
MANUAL_CHID[3:0]  
R/W-0b  
Table 22. CHANNEL_SEL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-4  
3-0  
RESERVED  
Reserved. Reads return 0b.  
MANUAL_CHID[3:0]  
R/W  
0b  
In manual mode (SEQ_MODE = 00b), this field contains the 4-bit  
channel ID of the analog input channel for next ADC conversion. For  
valid ADC data, the selected channel must not be configured as  
GPIO in PIN_CFG register. 1xxx = Reserved.  
0b = AIN0  
1b = AIN1  
10b = AIN2  
11b = AIN3  
100b = AIN4  
101b = AIN5  
110b = AIN6  
111b = AIN7  
8.5.13 AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]  
AUTO_SEQ_CH_SEL is shown in Figure 50 and described in Table 23.  
Return to the Summary Table.  
Figure 50. AUTO_SEQ_CH_SEL Register  
7
6
5
4
3
2
1
0
AUTO_SEQ_CH_SEL[7:0]  
R/W-0b  
Table 23. AUTO_SEQ_CH_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
AUTO_SEQ_CH_SEL[7:0] R/W  
0b  
Select analog input channels AIN[7:0] in for auto sequencing mode.  
0b = Analog input channel is not enabled in scanning sequence.  
1b = Analog input channel is enabled in scanning sequence.  
Copyright © 2019, Texas Instruments Incorporated  
35  
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.14 ALERT_CH_SEL Register (Address = 0x14) [reset = 0x0]  
ALERT_CH_SEL is shown in Figure 51 and described in Table 24.  
Return to the Summary Table.  
Figure 51. ALERT_CH_SEL Register  
7
6
5
4
3
2
1
0
ALERT_CH_SEL[7:0]  
R/W-0b  
Table 24. ALERT_CH_SEL Register Field Descriptions  
Bit  
7-0  
Field  
ALERT_CH_SEL[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Select channels for which the alert flags can assert the internal  
ALERT signal. The ALERT signal can be mapped to the digital  
output channel configured in the ALERT_PIN[3:0] field.  
0b = Alert flags for this channel do not assert the ALERT pin.  
1b = Alert flags for this channel assert the ALERT pin.  
8.5.15 ALERT_MAP Register (Address = 0x16) [reset = 0x0]  
ALERT_MAP is shown in Figure 52 and described in Table 25.  
Return to the Summary Table.  
Figure 52. ALERT_MAP Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
ALERT_CRCIN  
R/W-0b  
Table 25. ALERT_MAP Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-1  
0
RESERVED  
Reserved. Reads return 0b.  
ALERT_CRCIN  
R/W  
0b  
Enable or disable the alert notification for CRC error on input data  
(CRCERR_IN = 1b).  
0b = ALERT signal is not asserted when CRCERR_IN = 1b.  
1b = ALERT signal is asserted when CRCERR_IN = 1b. Clear  
CRCERR_IN for deasserting the ALERT pin.  
8.5.16 ALERT_PIN_CFG Register (Address = 0x17) [reset = 0x0]  
ALERT_PIN_CFG is shown in Figure 53 and described in Table 26.  
Return to the Summary Table.  
Figure 53. ALERT_PIN_CFG Register  
7
6
5
4
3
2
1
0
ALERT_PIN[3:0]  
R/W-0b  
RESERVED  
R-0b  
ALERT_LOGIC[1:0]  
R/W-0b  
Table 26. ALERT_PIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
ALERT_PIN[3:0]  
R/W  
0b  
Internal ALERT output of the digital window comparator will be  
output on this channel. This channel must be configured as digital  
output.  
3-2  
RESERVED  
R
0b  
Reserved. Reads return 0b.  
36  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 26. ALERT_PIN_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
ALERT_LOGIC[1:0]  
R/W  
0b  
Configure how the ALERT signal is asserted.  
0b = Active low.  
1b = Active high.  
10b = Pulsed low (one logic low pulse once per alert flag).  
11b = Pulsed high (one logic high pulse once per alert flag).  
8.5.17 EVENT_FLAG Register (Address = 0x18) [reset = 0x0]  
EVENT_FLAG is shown in Figure 54 and described in Table 27.  
Return to the Summary Table.  
Figure 54. EVENT_FLAG Register  
7
6
5
4
3
2
1
0
EVENT_FLAG[7:0]  
R-0b  
Table 27. EVENT_FLAG Register Field Descriptions  
Bit  
7-0  
Field  
EVENT_FLAG[7:0]  
Type  
Reset  
Description  
R
0b  
Alert flags indicating digital window comparator status for CH[7:0].  
Clear individual bits of EVENT_HIGH_FLAG or EVENT_LOW_FLAG  
registers to clear the corresponding alert flag.  
0b = Event condition not detected.  
1b = Event condition detected.  
8.5.18 EVENT_HIGH_FLAG Register (Address = 0x1A) [reset = 0x0]  
EVENT_HIGH_FLAG is shown in Figure 55 and described in Table 28.  
Return to the Summary Table.  
Figure 55. EVENT_HIGH_FLAG Register  
7
6
5
4
3
2
1
0
EVENT_HIGH_FLAG[7:0]  
R/W-0b  
Table 28. EVENT_HIGH_FLAG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
EVENT_HIGH_FLAG[7:0] R/W  
0b  
Alert flag corresponding to high threshold of analog input or rising  
edge of digital input on CH[7:0]. Write 1b to clear this flag.  
0b = No alert condition detected.  
1b = Either high threshold was exceeded (analog input) or rising  
edge was detected (digital input).  
8.5.19 EVENT_LOW_FLAG Register (Address = 0x1C) [reset = 0x0]  
EVENT_LOW_FLAG is shown in Figure 56 and described in Table 29.  
Return to the Summary Table.  
Figure 56. EVENT_LOW_FLAG Register  
7
6
5
4
3
2
1
0
EVENT_LOW_FLAG[7:0]  
R/W-0b  
Copyright © 2019, Texas Instruments Incorporated  
37  
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 29. EVENT_LOW_FLAG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
EVENT_LOW_FLAG[7:0] R/W  
0b  
Alert flag corresponding to low threshold of analog input or falling  
edge of digital input on CH[7:0]. Write 1b to clear this flag.  
0b = No Event condition detected.  
1b = Either low threshold was exceeded (analog input) or falling  
edge was detected (digital input).  
8.5.20 EVENT_RGN Register (Address = 0x1E) [reset = 0x0]  
EVENT_RGN is shown in Figure 57 and described in Table 30.  
Return to the Summary Table.  
Figure 57. EVENT_RGN Register  
7
6
5
4
3
2
1
0
EVENT_RGN[7:0]  
R/W-0b  
Table 30. EVENT_RGN Register Field Descriptions  
Bit  
7-0  
Field  
EVENT_RGN[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Choice of region used in monitoring analog/digital inputs CH[7:0].  
0b = Alert flag is set if: (conversion result < low threshold) or  
(conversion result > high threshold). For digital inputs, logic 1 sets  
the alert flag.  
1b = Alert flag is set if: (low threshold > conversion result < high  
threshold). For digital inputs, logic 0 sets the alert flag.  
8.5.21 HYSTERESIS_CH0 Register (Address = 0x20) [reset = 0xF0]  
HYSTERESIS_CH0 is shown in Figure 58 and described in Table 31.  
Return to the Summary Table.  
Figure 58. HYSTERESIS_CH0 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH0_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH0[3:0]  
R/W-0b  
Table 31. HYSTERESIS_CH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH0 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH0[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.22 HIGH_TH_CH0 Register (Address = 0x21) [reset = 0xFF]  
HIGH_TH_CH0 is shown in Figure 59 and described in Table 32.  
Return to the Summary Table.  
Figure 59. HIGH_TH_CH0 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH0_MSB[7:0]  
R/W-11111111b  
38  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 32. HIGH_TH_CH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HIGH_THRESHOLD_CH0 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.23 EVENT_COUNT_CH0 Register (Address = 0x22) [reset = 0x0]  
EVENT_COUNT_CH0 is shown in Figure 60 and described in Table 33.  
Return to the Summary Table.  
Figure 60. EVENT_COUNT_CH0 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH0_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH0[3:0]  
R/W-0b  
Table 33. EVENT_COUNT_CH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH0 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH0[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.24 LOW_TH_CH0 Register (Address = 0x23) [reset = 0x0]  
LOW_TH_CH0 is shown in Figure 61 and described in Table 34.  
Return to the Summary Table.  
Figure 61. LOW_TH_CH0 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH0_MSB[7:0]  
R/W-0b  
Table 34. LOW_TH_CH0 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH0 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.25 HYSTERESIS_CH1 Register (Address = 0x24) [reset = 0xF0]  
HYSTERESIS_CH1 is shown in Figure 62 and described in Table 35.  
Return to the Summary Table.  
Figure 62. HYSTERESIS_CH1 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH1_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH1[3:0]  
R/W-0b  
Table 35. HYSTERESIS_CH1 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH1 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
Copyright © 2019, Texas Instruments Incorporated  
39  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 35. HYSTERESIS_CH1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
HYSTERESIS_CH1[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.26 HIGH_TH_CH1 Register (Address = 0x25) [reset = 0xFF]  
HIGH_TH_CH1 is shown in Figure 63 and described in Table 36.  
Return to the Summary Table.  
Figure 63. HIGH_TH_CH1 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH1_MSB[7:0]  
R/W-11111111b  
Table 36. HIGH_TH_CH1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH1 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.27 EVENT_COUNT_CH1 Register (Address = 0x26) [reset = 0x0]  
EVENT_COUNT_CH1 is shown in Figure 64 and described in Table 37.  
Return to the Summary Table.  
Figure 64. EVENT_COUNT_CH1 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH1_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH1[3:0]  
R/W-0b  
Table 37. EVENT_COUNT_CH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH1 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH1[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.28 LOW_TH_CH1 Register (Address = 0x27) [reset = 0x0]  
LOW_TH_CH1 is shown in Figure 65 and described in Table 38.  
Return to the Summary Table.  
Figure 65. LOW_TH_CH1 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH1_MSB[7:0]  
R/W-0b  
Table 38. LOW_TH_CH1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH1 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
40  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.5.29 HYSTERESIS_CH2 Register (Address = 0x28) [reset = 0xF0]  
HYSTERESIS_CH2 is shown in Figure 66 and described in Table 39.  
Return to the Summary Table.  
Figure 66. HYSTERESIS_CH2 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH2_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH2[3:0]  
R/W-0b  
Table 39. HYSTERESIS_CH2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH2 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH2[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.30 HIGH_TH_CH2 Register (Address = 0x29) [reset = 0xFF]  
HIGH_TH_CH2 is shown in Figure 67 and described in Table 40.  
Return to the Summary Table.  
Figure 67. HIGH_TH_CH2 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH2_MSB[7:0]  
R/W-11111111b  
Table 40. HIGH_TH_CH2 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH2 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.31 EVENT_COUNT_CH2 Register (Address = 0x2A) [reset = 0x0]  
EVENT_COUNT_CH2 is shown in Figure 68 and described in Table 41.  
Return to the Summary Table.  
Figure 68. EVENT_COUNT_CH2 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH2_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH2[3:0]  
R/W-0b  
Table 41. EVENT_COUNT_CH2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH2 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH2[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.32 LOW_TH_CH2 Register (Address = 0x2B) [reset = 0x0]  
LOW_TH_CH2 is shown in Figure 69 and described in Table 42.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
41  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 69. LOW_TH_CH2 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH2_MSB[7:0]  
R/W-0b  
Table 42. LOW_TH_CH2 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH2 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.33 HYSTERESIS_CH3 Register (Address = 0x2C) [reset = 0xF0]  
HYSTERESIS_CH3 is shown in Figure 70 and described in Table 43.  
Return to the Summary Table.  
Figure 70. HYSTERESIS_CH3 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH3_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH3[3:0]  
R/W-0b  
Table 43. HYSTERESIS_CH3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH3 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH3[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.34 HIGH_TH_CH3 Register (Address = 0x2D) [reset = 0xFF]  
HIGH_TH_CH3 is shown in Figure 71 and described in Table 44.  
Return to the Summary Table.  
Figure 71. HIGH_TH_CH3 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH3_MSB[7:0]  
R/W-11111111b  
Table 44. HIGH_TH_CH3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH3 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.35 EVENT_COUNT_CH3 Register (Address = 0x2E) [reset = 0x0]  
EVENT_COUNT_CH3 is shown in Figure 72 and described in Table 45.  
Return to the Summary Table.  
Figure 72. EVENT_COUNT_CH3 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH3_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH3[3:0]  
R/W-0b  
42  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 45. EVENT_COUNT_CH3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH3 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH3[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.36 LOW_TH_CH3 Register (Address = 0x2F) [reset = 0x0]  
LOW_TH_CH3 is shown in Figure 73 and described in Table 46.  
Return to the Summary Table.  
Figure 73. LOW_TH_CH3 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH3_MSB[7:0]  
R/W-0b  
Table 46. LOW_TH_CH3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH3 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.37 HYSTERESIS_CH4 Register (Address = 0x30) [reset = 0xF0]  
HYSTERESIS_CH4 is shown in Figure 74 and described in Table 47.  
Return to the Summary Table.  
Figure 74. HYSTERESIS_CH4 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH4_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH4[3:0]  
R/W-0b  
Table 47. HYSTERESIS_CH4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH4 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH4[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.38 HIGH_TH_CH4 Register (Address = 0x31) [reset = 0xFF]  
HIGH_TH_CH4 is shown in Figure 75 and described in Table 48.  
Return to the Summary Table.  
Figure 75. HIGH_TH_CH4 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH4_MSB[7:0]  
R/W-11111111b  
Copyright © 2019, Texas Instruments Incorporated  
43  
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 48. HIGH_TH_CH4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HIGH_THRESHOLD_CH4 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.39 EVENT_COUNT_CH4 Register (Address = 0x32) [reset = 0x0]  
EVENT_COUNT_CH4 is shown in Figure 76 and described in Table 49.  
Return to the Summary Table.  
Figure 76. EVENT_COUNT_CH4 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH4_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH4[3:0]  
R/W-0b  
Table 49. EVENT_COUNT_CH4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH4 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH4[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.40 LOW_TH_CH4 Register (Address = 0x33) [reset = 0x0]  
LOW_TH_CH4 is shown in Figure 77 and described in Table 50.  
Return to the Summary Table.  
Figure 77. LOW_TH_CH4 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH4_MSB[7:0]  
R/W-0b  
Table 50. LOW_TH_CH4 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH4 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.41 HYSTERESIS_CH5 Register (Address = 0x34) [reset = 0xF0]  
HYSTERESIS_CH5 is shown in Figure 78 and described in Table 51.  
Return to the Summary Table.  
Figure 78. HYSTERESIS_CH5 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH5_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH5[3:0]  
R/W-0b  
Table 51. HYSTERESIS_CH5 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH5 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
44  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 51. HYSTERESIS_CH5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
HYSTERESIS_CH5[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.42 HIGH_TH_CH5 Register (Address = 0x35) [reset = 0xFF]  
HIGH_TH_CH5 is shown in Figure 79 and described in Table 52.  
Return to the Summary Table.  
Figure 79. HIGH_TH_CH5 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH5_MSB[7:0]  
R/W-11111111b  
Table 52. HIGH_TH_CH5 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH5 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.43 EVENT_COUNT_CH5 Register (Address = 0x36) [reset = 0x0]  
EVENT_COUNT_CH5 is shown in Figure 80 and described in Table 53.  
Return to the Summary Table.  
Figure 80. EVENT_COUNT_CH5 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH5_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH5[3:0]  
R/W-0b  
Table 53. EVENT_COUNT_CH5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH5 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH5[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.44 LOW_TH_CH5 Register (Address = 0x37) [reset = 0x0]  
LOW_TH_CH5 is shown in Figure 81 and described in Table 54.  
Return to the Summary Table.  
Figure 81. LOW_TH_CH5 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH5_MSB[7:0]  
R/W-0b  
Table 54. LOW_TH_CH5 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH5 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
Copyright © 2019, Texas Instruments Incorporated  
45  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.45 HYSTERESIS_CH6 Register (Address = 0x38) [reset = 0xF0]  
HYSTERESIS_CH6 is shown in Figure 82 and described in Table 55.  
Return to the Summary Table.  
Figure 82. HYSTERESIS_CH6 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH6_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH6[3:0]  
R/W-0b  
Table 55. HYSTERESIS_CH6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH6 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH6[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.46 HIGH_TH_CH6 Register (Address = 0x39) [reset = 0xFF]  
HIGH_TH_CH6 is shown in Figure 83 and described in Table 56.  
Return to the Summary Table.  
Figure 83. HIGH_TH_CH6 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH6_MSB[7:0]  
R/W-11111111b  
Table 56. HIGH_TH_CH6 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH6 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.47 EVENT_COUNT_CH6 Register (Address = 0x3A) [reset = 0x0]  
EVENT_COUNT_CH6 is shown in Figure 84 and described in Table 57.  
Return to the Summary Table.  
Figure 84. EVENT_COUNT_CH6 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH6_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH6[3:0]  
R/W-0b  
Table 57. EVENT_COUNT_CH6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH6 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH6[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.48 LOW_TH_CH6 Register (Address = 0x3B) [reset = 0x0]  
LOW_TH_CH6 is shown in Figure 85 and described in Table 58.  
Return to the Summary Table.  
46  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Figure 85. LOW_TH_CH6 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH6_MSB[7:0]  
R/W-0b  
Table 58. LOW_TH_CH6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LOW_THRESHOLD_CH6 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.49 HYSTERESIS_CH7 Register (Address = 0x3C) [reset = 0xF0]  
HYSTERESIS_CH7 is shown in Figure 86 and described in Table 59.  
Return to the Summary Table.  
Figure 86. HYSTERESIS_CH7 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH7_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH7[3:0]  
R/W-0b  
Table 59. HYSTERESIS_CH7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH7 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH7[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.5.50 HIGH_TH_CH7 Register (Address = 0x3D) [reset = 0xFF]  
HIGH_TH_CH7 is shown in Figure 87 and described in Table 60.  
Return to the Summary Table.  
Figure 87. HIGH_TH_CH7 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH7_MSB[7:0]  
R/W-11111111b  
Table 60. HIGH_TH_CH7 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH7 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.51 EVENT_COUNT_CH7 Register (Address = 0x3E) [reset = 0x0]  
EVENT_COUNT_CH7 is shown in Figure 88 and described in Table 61.  
Return to the Summary Table.  
Figure 88. EVENT_COUNT_CH7 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH7_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH7[3:0]  
R/W-0b  
Copyright © 2019, Texas Instruments Incorporated  
47  
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 61. EVENT_COUNT_CH7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH7 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH7[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting alert flag.  
8.5.52 LOW_TH_CH7 Register (Address = 0x3F) [reset = 0x0]  
LOW_TH_CH7 is shown in Figure 89 and described in Table 62.  
Return to the Summary Table.  
Figure 89. LOW_TH_CH7 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH7_MSB[7:0]  
R/W-0b  
Table 62. LOW_TH_CH7 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH7 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.5.53 RESERVED Register (Address = 0x4E) [reset = 0x0]  
RESERVED is shown in Figure 90 and described in Table 63.  
Return to the Summary Table.  
Figure 90. RESERVED Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
Table 63. RESERVED Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
8.5.54 MAX_CH0_LSB Register (Address = 0x60) [reset = 0x0]  
MAX_CH0_LSB is shown in Figure 91 and described in Table 64.  
Return to the Summary Table.  
Figure 91. MAX_CH0_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH0_LSB[7:0]  
R-0b  
Table 64. MAX_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH0_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
48  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.5.55 MAX_CH0_MSB Register (Address = 0x61) [reset = 0x0]  
MAX_CH0_MSB is shown in Figure 92 and described in Table 65.  
Return to the Summary Table.  
Figure 92. MAX_CH0_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH0_MSB[7:0]  
R-0b  
Table 65. MAX_CH0_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH0_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.56 MAX_CH1_LSB Register (Address = 0x62) [reset = 0x0]  
MAX_CH1_LSB is shown in Figure 93 and described in Table 66.  
Return to the Summary Table.  
Figure 93. MAX_CH1_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH1_LSB[7:0]  
R-0b  
Table 66. MAX_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH1_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.57 MAX_CH1_MSB Register (Address = 0x63) [reset = 0x0]  
MAX_CH1_MSB is shown in Figure 94 and described in Table 67.  
Return to the Summary Table.  
Figure 94. MAX_CH1_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH1_MSB[7:0]  
R-0b  
Table 67. MAX_CH1_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH1_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.58 MAX_CH2_LSB Register (Address = 0x64) [reset = 0x0]  
MAX_CH2_LSB is shown in Figure 95 and described in Table 68.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
49  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 95. MAX_CH2_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH2_LSB[7:0]  
R-0b  
Table 68. MAX_CH2_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH2_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.59 MAX_CH2_MSB Register (Address = 0x65) [reset = 0x0]  
MAX_CH2_MSB is shown in Figure 96 and described in Table 69.  
Return to the Summary Table.  
Figure 96. MAX_CH2_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH2_MSB[7:0]  
R-0b  
Table 69. MAX_CH2_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH2_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.60 MAX_CH3_LSB Register (Address = 0x66) [reset = 0x0]  
MAX_CH3_LSB is shown in Figure 97 and described in Table 70.  
Return to the Summary Table.  
Figure 97. MAX_CH3_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH3_LSB[7:0]  
R-0b  
Table 70. MAX_CH3_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH3_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.61 MAX_CH3_MSB Register (Address = 0x67) [reset = 0x0]  
MAX_CH3_MSB is shown in Figure 98 and described in Table 71.  
Return to the Summary Table.  
Figure 98. MAX_CH3_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH3_MSB[7:0]  
R-0b  
50  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 71. MAX_CH3_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAX_VALUE_CH3_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.62 MAX_CH4_LSB Register (Address = 0x68) [reset = 0x0]  
MAX_CH4_LSB is shown in Figure 99 and described in Table 72.  
Return to the Summary Table.  
Figure 99. MAX_CH4_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH4_LSB[7:0]  
R-0b  
Table 72. MAX_CH4_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH4_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.63 MAX_CH4_MSB Register (Address = 0x69) [reset = 0x0]  
MAX_CH4_MSB is shown in Figure 100 and described in Table 73.  
Return to the Summary Table.  
Figure 100. MAX_CH4_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH4_MSB[7:0]  
R-0b  
Table 73. MAX_CH4_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH4_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.64 MAX_CH5_LSB Register (Address = 0x6A) [reset = 0x0]  
MAX_CH5_LSB is shown in Figure 101 and described in Table 74.  
Return to the Summary Table.  
Figure 101. MAX_CH5_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH5_LSB[7:0]  
R-0b  
Table 74. MAX_CH5_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH5_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
Copyright © 2019, Texas Instruments Incorporated  
51  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.65 MAX_CH5_MSB Register (Address = 0x6B) [reset = 0x0]  
MAX_CH5_MSB is shown in Figure 102 and described in Table 75.  
Return to the Summary Table.  
Figure 102. MAX_CH5_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH5_MSB[7:0]  
R-0b  
Table 75. MAX_CH5_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH5_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.66 MAX_CH6_LSB Register (Address = 0x6C) [reset = 0x0]  
MAX_CH6_LSB is shown in Figure 103 and described in Table 76.  
Return to the Summary Table.  
Figure 103. MAX_CH6_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH6_LSB[7:0]  
R-0b  
Table 76. MAX_CH6_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH6_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.67 MAX_CH6_MSB Register (Address = 0x6D) [reset = 0x0]  
MAX_CH6_MSB is shown in Figure 104 and described in Table 77.  
Return to the Summary Table.  
Figure 104. MAX_CH6_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH6_MSB[7:0]  
R-0b  
Table 77. MAX_CH6_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH6_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.68 MAX_CH7_LSB Register (Address = 0x6E) [reset = 0x0]  
MAX_CH7_LSB is shown in Figure 105 and described in Table 78.  
Return to the Summary Table.  
52  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Figure 105. MAX_CH7_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH7_LSB[7:0]  
R-0b  
Table 78. MAX_CH7_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAX_VALUE_CH7_LSB[7  
:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.69 MAX_CH7_MSB Register (Address = 0x6F) [reset = 0x0]  
MAX_CH7_MSB is shown in Figure 106 and described in Table 79.  
Return to the Summary Table.  
Figure 106. MAX_CH7_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH7_MSB[7:0]  
R-0b  
Table 79. MAX_CH7_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH7_MSB[  
7:0]  
R
0b  
Maximum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0.  
8.5.70 MIN_CH0_LSB Register (Address = 0x80) [reset = 0xFF]  
MIN_CH0_LSB is shown in Figure 107 and described in Table 80.  
Return to the Summary Table.  
Figure 107. MIN_CH0_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH0_LSB[7:0]  
R-11111111b  
Table 80. MIN_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH0_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.71 MIN_CH0_MSB Register (Address = 0x81) [reset = 0xFF]  
MIN_CH0_MSB is shown in Figure 108 and described in Table 81.  
Return to the Summary Table.  
Figure 108. MIN_CH0_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH0_MSB[7:0]  
R-11111111b  
Copyright © 2019, Texas Instruments Incorporated  
53  
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 81. MIN_CH0_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MIN_VALUE_CH0_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.72 MIN_CH1_LSB Register (Address = 0x82) [reset = 0xFF]  
MIN_CH1_LSB is shown in Figure 109 and described in Table 82.  
Return to the Summary Table.  
Figure 109. MIN_CH1_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH1_LSB[7:0]  
R-11111111b  
Table 82. MIN_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH1_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.73 MIN_CH1_MSB Register (Address = 0x83) [reset = 0xFF]  
MIN_CH1_MSB is shown in Figure 110 and described in Table 83.  
Return to the Summary Table.  
Figure 110. MIN_CH1_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH1_MSB[7:0]  
R-11111111b  
Table 83. MIN_CH1_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH1_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.74 MIN_CH2_LSB Register (Address = 0x84) [reset = 0xFF]  
MIN_CH2_LSB is shown in Figure 111 and described in Table 84.  
Return to the Summary Table.  
Figure 111. MIN_CH2_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH2_LSB[7:0]  
R-11111111b  
Table 84. MIN_CH2_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH2_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
54  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.5.75 MIN_CH2_MSB Register (Address = 0x85) [reset = 0xFF]  
MIN_CH2_MSB is shown in Figure 112 and described in Table 85.  
Return to the Summary Table.  
Figure 112. MIN_CH2_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH2_MSB[7:0]  
R-11111111b  
Table 85. MIN_CH2_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH2_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.76 MIN_CH3_LSB Register (Address = 0x86) [reset = 0xFF]  
MIN_CH3_LSB is shown in Figure 113 and described in Table 86.  
Return to the Summary Table.  
Figure 113. MIN_CH3_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH3_LSB[7:0]  
R-11111111b  
Table 86. MIN_CH3_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH3_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.77 MIN_CH3_MSB Register (Address = 0x87) [reset = 0xFF]  
MIN_CH3_MSB is shown in Figure 114 and described in Table 87.  
Return to the Summary Table.  
Figure 114. MIN_CH3_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH3_MSB[7:0]  
R-11111111b  
Table 87. MIN_CH3_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH3_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.78 MIN_CH4_LSB Register (Address = 0x88) [reset = 0xFF]  
MIN_CH4_LSB is shown in Figure 115 and described in Table 88.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
55  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 115. MIN_CH4_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH4_LSB[7:0]  
R-11111111b  
Table 88. MIN_CH4_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH4_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.79 MIN_CH4_MSB Register (Address = 0x89) [reset = 0xFF]  
MIN_CH4_MSB is shown in Figure 116 and described in Table 89.  
Return to the Summary Table.  
Figure 116. MIN_CH4_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH4_MSB[7:0]  
R-11111111b  
Table 89. MIN_CH4_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH4_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.80 MIN_CH5_LSB Register (Address = 0x8A) [reset = 0xFF]  
MIN_CH5_LSB is shown in Figure 117 and described in Table 90.  
Return to the Summary Table.  
Figure 117. MIN_CH5_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH5_LSB[7:0]  
R-11111111b  
Table 90. MIN_CH5_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH5_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.81 MIN_CH5_MSB Register (Address = 0x8B) [reset = 0xFF]  
MIN_CH5_MSB is shown in Figure 118 and described in Table 91.  
Return to the Summary Table.  
Figure 118. MIN_CH5_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH5_MSB[7:0]  
R-11111111b  
56  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 91. MIN_CH5_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MIN_VALUE_CH5_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.82 MIN_CH6_LSB Register (Address = 0x8C) [reset = 0xFF]  
MIN_CH6_LSB is shown in Figure 119 and described in Table 92.  
Return to the Summary Table.  
Figure 119. MIN_CH6_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH6_LSB[7:0]  
R-11111111b  
Table 92. MIN_CH6_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH6_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.83 MIN_CH6_MSB Register (Address = 0x8D) [reset = 0xFF]  
MIN_CH6_MSB is shown in Figure 120 and described in Table 93.  
Return to the Summary Table.  
Figure 120. MIN_CH6_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH6_MSB[7:0]  
R-11111111b  
Table 93. MIN_CH6_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH6_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.84 MIN_CH7_LSB Register (Address = 0x8E) [reset = 0xFF]  
MIN_CH7_LSB is shown in Figure 121 and described in Table 94.  
Return to the Summary Table.  
Figure 121. MIN_CH7_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH7_LSB[7:0]  
R-11111111b  
Table 94. MIN_CH7_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH7_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
Copyright © 2019, Texas Instruments Incorporated  
57  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.85 MIN_CH7_MSB Register (Address = 0x8F) [reset = 0xFF]  
MIN_CH7_MSB is shown in Figure 122 and described in Table 95.  
Return to the Summary Table.  
Figure 122. MIN_CH7_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH7_MSB[7:0]  
R-11111111b  
Table 95. MIN_CH7_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH7_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register will reset the value  
to 0xFF.  
8.5.86 RECENT_CH0_LSB Register (Address = 0xA0) [reset = 0x0]  
RECENT_CH0_LSB is shown in Figure 123 and described in Table 96.  
Return to the Summary Table.  
Figure 123. RECENT_CH0_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH0_LSB[7:0]  
R-0b  
Table 96. RECENT_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH0_LSB[  
7:0]  
R
0b  
8.5.87 RECENT_CH0_MSB Register (Address = 0xA1) [reset = 0x0]  
RECENT_CH0_MSB is shown in Figure 124 and described in Table 97.  
Return to the Summary Table.  
Figure 124. RECENT_CH0_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH0_MSB[7:0]  
R-0b  
Table 97. RECENT_CH0_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH0_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.88 RECENT_CH1_LSB Register (Address = 0xA2) [reset = 0x0]  
RECENT_CH1_LSB is shown in Figure 125 and described in Table 98.  
Return to the Summary Table.  
58  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Figure 125. RECENT_CH1_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH1_LSB[7:0]  
R-0b  
Table 98. RECENT_CH1_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
7-0  
LAST_VALUE_CH1_LSB[  
7:0]  
R
0b  
8.5.89 RECENT_CH1_MSB Register (Address = 0xA3) [reset = 0x0]  
RECENT_CH1_MSB is shown in Figure 126 and described in Table 99.  
Return to the Summary Table.  
Figure 126. RECENT_CH1_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH1_MSB[7:0]  
R-0b  
Table 99. RECENT_CH1_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH1_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.90 RECENT_CH2_LSB Register (Address = 0xA4) [reset = 0x0]  
RECENT_CH2_LSB is shown in Figure 127 and described in Table 100.  
Return to the Summary Table.  
Figure 127. RECENT_CH2_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH2_LSB[7:0]  
R-0b  
Table 100. RECENT_CH2_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH2_LSB[  
7:0]  
R
0b  
8.5.91 RECENT_CH2_MSB Register (Address = 0xA5) [reset = 0x0]  
RECENT_CH2_MSB is shown in Figure 128 and described in Table 101.  
Return to the Summary Table.  
Figure 128. RECENT_CH2_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH2_MSB[7:0]  
R-0b  
Copyright © 2019, Texas Instruments Incorporated  
59  
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 101. RECENT_CH2_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LAST_VALUE_CH2_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.92 RECENT_CH3_LSB Register (Address = 0xA6) [reset = 0x0]  
RECENT_CH3_LSB is shown in Figure 129 and described in Table 102.  
Return to the Summary Table.  
Figure 129. RECENT_CH3_LSB Register  
7
6
5
4
3
2
1
0
0
0
LAST_VALUE_CH3_LSB[7:0]  
R-0b  
Table 102. RECENT_CH3_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH3_LSB[  
7:0]  
R
0b  
8.5.93 RECENT_CH3_MSB Register (Address = 0xA7) [reset = 0x0]  
RECENT_CH3_MSB is shown in Figure 130 and described in Table 103.  
Return to the Summary Table.  
Figure 130. RECENT_CH3_MSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH3_MSB[7:0]  
R-0b  
Table 103. RECENT_CH3_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH3_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.94 RECENT_CH4_LSB Register (Address = 0xA8) [reset = 0x0]  
RECENT_CH4_LSB is shown in Figure 131 and described in Table 104.  
Return to the Summary Table.  
Figure 131. RECENT_CH4_LSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH4_LSB[7:0]  
R-0b  
Table 104. RECENT_CH4_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH4_LSB[  
7:0]  
R
0b  
60  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
8.5.95 RECENT_CH4_MSB Register (Address = 0xA9) [reset = 0x0]  
RECENT_CH4_MSB is shown in Figure 132 and described in Table 105.  
Return to the Summary Table.  
Figure 132. RECENT_CH4_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH4_MSB[7:0]  
R-0b  
Table 105. RECENT_CH4_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH4_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.96 RECENT_CH5_LSB Register (Address = 0xAA) [reset = 0x0]  
RECENT_CH5_LSB is shown in Figure 133 and described in Table 106.  
Return to the Summary Table.  
Figure 133. RECENT_CH5_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH5_LSB[7:0]  
R-0b  
Table 106. RECENT_CH5_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH5_LSB[  
7:0]  
R
0b  
8.5.97 RECENT_CH5_MSB Register (Address = 0xAB) [reset = 0x0]  
RECENT_CH5_MSB is shown in Figure 134 and described in Table 107.  
Return to the Summary Table.  
Figure 134. RECENT_CH5_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH5_MSB[7:0]  
R-0b  
Table 107. RECENT_CH5_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH5_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.98 RECENT_CH6_LSB Register (Address = 0xAC) [reset = 0x0]  
RECENT_CH6_LSB is shown in Figure 135 and described in Table 108.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
61  
 
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 135. RECENT_CH6_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH6_LSB[7:0]  
R-0b  
Table 108. RECENT_CH6_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH6_LSB[  
7:0]  
R
0b  
8.5.99 RECENT_CH6_MSB Register (Address = 0xAD) [reset = 0x0]  
RECENT_CH6_MSB is shown in Figure 136 and described in Table 109.  
Return to the Summary Table.  
Figure 136. RECENT_CH6_MSB Register  
7
6
5
4
3
2
1
0
0
0
LAST_VALUE_CH6_MSB[7:0]  
R-0b  
Table 109. RECENT_CH6_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH6_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.100 RECENT_CH7_LSB Register (Address = 0xAE) [reset = 0x0]  
RECENT_CH7_LSB is shown in Figure 137 and described in Table 110.  
Return to the Summary Table.  
Figure 137. RECENT_CH7_LSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH7_LSB[7:0]  
R-0b  
Table 110. RECENT_CH7_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH7_LSB[  
7:0]  
R
0b  
8.5.101 RECENT_CH7_MSB Register (Address = 0xAF) [reset = 0x0]  
RECENT_CH7_MSB is shown in Figure 138 and described in Table 111.  
Return to the Summary Table.  
Figure 138. RECENT_CH7_MSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH7_MSB[7:0]  
R-0b  
62  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Table 111. RECENT_CH7_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LAST_VALUE_CH7_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.5.102 GPO0_TRIG_EVENT_SEL Register (Address = 0xC3) [reset = 0x0]  
GPO0_TRIG_EVENT_SEL is shown in Figure 139 and described in Table 112.  
Return to the Summary Table.  
Figure 139. GPO0_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO0_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 112. GPO0_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO0_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO0.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO0 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO0 output.  
8.5.103 GPO1_TRIG_EVENT_SEL Register (Address = 0xC5) [reset = 0x0]  
GPO1_TRIG_EVENT_SEL is shown in Figure 140 and described in Table 113.  
Return to the Summary Table.  
Figure 140. GPO1_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO1_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 113. GPO1_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO1_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO1.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO1 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO1 output.  
8.5.104 GPO2_TRIG_EVENT_SEL Register (Address = 0xC7) [reset = 0x0]  
GPO2_TRIG_EVENT_SEL is shown in Figure 141 and described in Table 114.  
Return to the Summary Table.  
Figure 141. GPO2_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO2_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Copyright © 2019, Texas Instruments Incorporated  
63  
 
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Table 114. GPO2_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GPO2_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO2.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO2 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO2 output.  
8.5.105 GPO3_TRIG_EVENT_SEL Register (Address = 0xC9) [reset = 0x0]  
GPO3_TRIG_EVENT_SEL is shown in Figure 142 and described in Table 115.  
Return to the Summary Table.  
Figure 142. GPO3_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO3_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 115. GPO3_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO3_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO3.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO3 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO3 output.  
8.5.106 GPO4_TRIG_EVENT_SEL Register (Address = 0xCB) [reset = 0x0]  
GPO4_TRIG_EVENT_SEL is shown in Figure 143 and described in Table 116.  
Return to the Summary Table.  
Figure 143. GPO4_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO4_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 116. GPO4_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO4_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO4.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO4 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO4 output.  
8.5.107 GPO5_TRIG_EVENT_SEL Register (Address = 0xCD) [reset = 0x0]  
GPO5_TRIG_EVENT_SEL is shown in Figure 144 and described in Table 117.  
Return to the Summary Table.  
64  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Figure 144. GPO5_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO5_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 117. GPO5_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GPO5_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO5.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO5 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO5 output.  
8.5.108 GPO6_TRIG_EVENT_SEL Register (Address = 0xCF) [reset = 0x0]  
GPO6_TRIG_EVENT_SEL is shown in Figure 145 and described in Table 118.  
Return to the Summary Table.  
Figure 145. GPO6_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO6_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 118. GPO6_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO6_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO6.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO6 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO6 output.  
8.5.109 GPO7_TRIG_EVENT_SEL Register (Address = 0xD1) [reset = 0x0]  
GPO7_TRIG_EVENT_SEL is shown in Figure 146 and described in Table 119.  
Return to the Summary Table.  
Figure 146. GPO7_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO7_TRIG_EVENT_SEL[7:0]  
R/W-0b  
Table 119. GPO7_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO7_TRIG_EVENT_SE R/W  
L[7:0]  
0b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO7.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO7 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger  
GPO7 output.  
Copyright © 2019, Texas Instruments Incorporated  
65  
 
 
 
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.110 GPO_TRIGGER_CFG Register (Address = 0xE9) [reset = 0x0]  
GPO_TRIGGER_CFG is shown in Figure 147 and described in Table 120.  
Return to the Summary Table.  
Figure 147. GPO_TRIGGER_CFG Register  
7
6
5
4
3
2
1
0
GPO_TRIGGER_UPDATE_EN[7:0]  
R/W-0b  
Table 120. GPO_TRIGGER_CFG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO_TRIGGER_UPDAT R/W  
E_EN[7:0]  
0b  
Update digital outputs GPO[7:0] when the corresponding trigger is  
set.  
0b = Digital output is not updated in response to the alert flags.  
1b = Digital output is updated when the corresponding alert flags are  
set. Configure GPOx_TRIG_EVENT_SEL register to select which  
alert flags can trigger an update on the desired GPO.  
8.5.111 GPO_VALUE_TRIG Register (Address = 0xEB) [reset = 0x0]  
GPO_VALUE_TRIG is shown in Figure 148 and described in Table 121.  
Return to the Summary Table.  
Figure 148. GPO_VALUE_TRIG Register  
7
6
5
4
3
2
1
0
GPO_VALUE_ON_TRIGGER[7:0]  
R/W-0b  
Table 121. GPO_VALUE_TRIG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO_VALUE_ON_TRIGG R/W  
ER[7:0]  
0b  
Value to be set on digital outputs GPO[7:0] when the corresponding  
trigger occurs. GPO update on alert flags must be enabled in the  
corresponding bit in the GPO_TRIGGER_CFG register.  
0b = Digital output is set to logic 0.  
1b = Digital output is set to logic 1.  
66  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register analog-to-digital converter (SAR ADC) are the input driver and the reference driver circuits. This section  
details some general principles for designing the input driver circuit, reference driver circuit, and provides some  
application circuits designed for the ADS7038.  
9.2 Typical Applications  
9.2.1 Mixed-Channel Configuration  
AVDD (VREF  
)
Digital Output (open-drain)  
Digital Output (push-pull)  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
SPI  
Controller  
Device  
Digital Input  
Digital Input  
149. DAQ Circuit: Single-Supply DAQ  
9.2.1.1 Design Requirements  
The goal of this application is to configure some channels of the ADS7038 as digital inputs, open-drain digital  
outputs, and push-pull digital outputs.  
9.2.1.2 Detailed Design Procedure  
The ADS7038 can support GPIO functionality at each input pin. Any analog input pin can be independently  
configured as a digital input, a digital open-drain output, or a digital push-pull output though the PIN_CFG and  
GPIO_CFG registers; see 3.  
9.2.1.2.1 Digital Input  
The digital input functionality can be used to monitor a signal within the system. 150 illustrates that the state of  
the digital input can be read from the GPI_VALUE register.  
版权 © 2019, Texas Instruments Incorporated  
67  
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
ADC  
From input device  
GPIx  
GPIx  
SW  
AVDD  
150. Digital Input  
9.2.1.2.2 Digital Open-Drain Output  
The channels of the ADS7038 can be configured as digital open-drain outputs supporting an output voltage up to  
5.5 V. An open-drain output, as shown in 151, consists of an internal FET (Q) connected to ground. The  
output is idle when not driven by the device, which means Q is off and the pullup resistor, RPULL_UP, connects the  
GPOx node to the desired output voltage. The output voltage can range anywhere up to 5.5 V, depending on the  
external voltage that the GPIOx is pulled up to. When the device is driving the output, Q turns on, thus  
connecting the pullup resistor to ground and bringing the node voltage at GPOx low.  
VPULL_UP  
Receiving Device  
ADC  
RPULL_UP  
GPOx  
ILOAD  
Q
151. Digital Open-Drain Output  
The minimum value of the pullup resistor, as calculated in 公式 3, is given by the ratio of VPULL_UP and the  
maximum current supported by the device digital output (5 mA).  
RMIN = (VPULL_UP / 5 mA)  
(3)  
The maximum value of the pullup resistor, as calculated in 公式 4, depends on the minimum input current  
requirement, ILOAD, of the receiving device driven by this GPIO.  
RMAX = (VPULL_UP / ILOAD  
)
(4)  
Select RPULL_UP such that RMIN < RPULL_UP < RMAX  
.
68  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
Typical Applications (接下页)  
9.2.1.2.3 Application Curve  
45000  
30000  
15000  
0
39581  
25955  
2048  
2049  
C001  
Output Code  
Standard deviation = 0.49 LSB  
152. DC Input Histogram  
9.2.2 Digital Push-Pull Output Configuration  
The channels of the ADS7038 can be configured as digital push-pull outputs supporting an output voltage up to  
AVDD. As shown in 153, a push-pull output consists of two mirrored opposite bipolar transistors, Q1 and Q2.  
The device can both source and sink current because only one transistor is on at a time (either Q2 is on and  
pulls the output low, or Q1 is on and sets the output high). A push-pull configuration always drives the line  
opposed to an open-drain output where the line is left floating.  
ADC  
AVDD  
Q1  
GPOx  
Digital  
output  
Q2  
153. Digital Push-Pull Output  
版权 © 2019, Texas Instruments Incorporated  
69  
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The ADS7038 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. For supplies greater than 2.35 V, AVDD and DVDD can be shorted externally if  
single-supply operation is desired. The AVDD supply also defines the full-scale input range of the device.  
Decouple the AVDD and DVDD pins individually, as illustrated in 154, with 1-µF ceramic decoupling  
capacitors. The minimum capacitor value required for AVDD and DVDD is 200 nF and 20 nF, respectively. If  
both supplies are powered from the same source, a minimum capacitor value of 220 nF is required for  
decoupling.  
AVDD  
AVDD  
GND  
1 mF  
1 mF  
DVDD  
DVDD  
154. Power-Supply Decoupling  
70  
版权 © 2019, Texas Instruments Incorporated  
 
ADS7038  
www.ti.com.cn  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
155 shows a board layout example for the ADS7038. Avoid crossing digital lines with the analog signal path  
and keep the analog input signals and the AVDD supply away from noise sources.  
Use 1-µF ceramic bypass capacitors in close proximity to the analog (AVDD) and digital (DVDD) power-supply  
pins. Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors. Connect the GND pin to  
the ground plane using short, low-impedance paths. The AVDD supply voltage also functions as the reference  
voltage for the ADS7038. Place the decoupling capacitor (CREF) for AVDD close to the device AVDD and GND  
pins and connect CREF to the device pins with thick copper tracks.  
11.2 Layout Example  
SCLK  
SDI  
DECAP  
AVDD  
AIN/GPIO  
155. Example Layout  
版权 © 2019, Texas Instruments Incorporated  
71  
 
ADS7038  
ZHCSJX6A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
72  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7038IRTER  
ADS7038IRTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
7038  
7038  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2021  
OTHER QUALIFIED VERSIONS OF ADS7038 :  
Automotive : ADS7038-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jan-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7038IRTER  
ADS7038IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jan-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7038IRTER  
ADS7038IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS7038QRTERQ1

ADS7038-Q1 Small, 8-Channel, 12-Bit ADC with SPI Interface, GPIOs, and CRC
TI

ADS7039-Q1

超低功耗、超小型 10 位 2MSPS SAR ADC
TI

ADS7039QDCURQ1

超低功耗、超小型 10 位 2MSPS SAR ADC | DCU | 8 | -40 to 125
TI

ADS703H

ADC, Flash Method, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, Hybrid, CDIP40,
BB

ADS703H

1-CH 16-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP40
TI

ADS703HB

ADC, Flash Method, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, Hybrid, CDIP40,
BB

ADS703HB

1-CH 16-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP40
TI

ADS7040

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端
TI

ADS7040IDCUR

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端 | DCU | 8 | -40 to 125
TI

ADS7040IDCUT

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端 | DCU | 8 | -40 to 125
TI

ADS7040IRUGR

超低功耗、超小尺寸 SAR ADC | 8 位 | 1MSPS | 单端 | RUG | 8 | -40 to 125
TI

ADS7041

超低功耗和超小尺寸 SAR ADC | 10 位 | 1MSPS | 单端
TI