ADS7044 [TI]

超低功耗、超小尺寸 SAR ADC | 12 位 | 1MSPS | 全差分;
ADS7044
型号: ADS7044
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超低功耗、超小尺寸 SAR ADC | 12 位 | 1MSPS | 全差分

文件: 总43页 (文件大小:1768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
ADS7044 超低功耗、超小尺寸、12 位、1MSPSSAR ADC  
1 特性  
3 说明  
1
业界第一款具有毫微瓦功耗的逐次逼近寄存器  
(SAR) 模数转换器 (ADC):  
ADS7044 是一款 1MSPS 模数转换器 (ADC)。该器件  
支持较宽的模拟输入电压范围(±1.65V ±3.6V),  
并且包括一个基于电容且内置采样保持电路的逐次逼近  
寄存器 (SAR) ADC。串行外设接口 (SPI) 兼容串口由  
CS SCLK 信号控制。输入信号在 CS 下降沿进行采  
样,SCLK 用于转换和串行数据输出。此器件支持宽范  
围的数字电源(1.65V 3.6V),可直接连接到各类  
主机控制器。此器件符合 JESD8-7A 标准的标称  
DVDD 范围(1.65V 1.95V)。  
1MSPS 1.8V AVDD 时为 261µW  
1MSPS 3V AVDD 时为 900µW  
100kSPS 3V AVDD 时为 90µW  
1kSPS 3V AVDD 时低于 1µW  
业界最小的 SAR ADC:  
采用 X2QFN-8 封装,封装尺寸为 2.25mm2  
1MSPS 吞吐量且零延迟  
宽工作范围:  
此器件采用 8 引脚微型引线 X2QFN 封装,额定工作  
温度范围为 –40°C 125°C。此器件尺寸微小且功耗  
极低,非常适合空间受限类电池供电 应用。  
AVDD:1.65V 3.6V  
DVDD1.65V 3.6V(与 AVDD 无关)  
温度范围:-40°C 125°C  
器件信息(1)  
出色的性能:  
部件名称  
封装  
封装尺寸(标称值)  
12 位分辨率且无丟码 (NMC)  
X2QFN (8)  
1.50mm x 1.50mm  
最大 ±1 最低有效位 (LSB) 的差分非线性 (DNL)  
和积分非线性 (INL)  
ADS7044  
超薄小外形尺寸封装  
(VSSOP)(8)  
2.30mm x 2.00mm  
71dB 的信噪比 (SNR)3V AVDD 时)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
-85dB 的总谐波失真 (SNR)3V AVDD 时)  
空白  
空白  
空白  
单极差分输入范围:  
–AVDD AVDD  
集成偏移校准  
串行外设接口 (SPI)™- 兼容串口:16MHz  
符合 JESD8-7A 标准的数字 I/O  
典型应用  
AVDD  
AVDD used as  
R
+
2 应用  
Reference for device  
AVDD  
AINP  
低功耗数据采集  
Device  
C
电池供电类手持设备  
液位传感器  
超声波流量计  
电机控制  
R
AINM  
+
GND  
RUG (8)  
可穿戴健身器  
便携式医疗设备  
硬盘  
Actual Device Size  
1.5 x 1.5 x 0.35(H) mm  
血糖仪  
注:此器件比 08052012 公制)SMD 元  
件小。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS682  
 
 
 
 
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 23  
9.1 Application Information............................................ 23  
9.2 Typical Applications ................................................ 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Characteristics............................................... 7  
6.7 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 14  
7.1 Digital Voltage Levels ............................................. 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
9
10 Power-Supply Recommendations ..................... 29  
10.1 AVDD and DVDD Supply Recommendations....... 29  
10.2 Estimating Digital Power Consumption................. 29  
10.3 Optimizing Power Consumed by the Device ........ 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 30  
12 器件和文档支持 ..................................................... 31  
12.1 文档支持................................................................ 31  
12.2 社区资源................................................................ 31  
12.3 ....................................................................... 31  
12.4 静电放电警告......................................................... 31  
12.5 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 32  
7
8
4 修订历史记录  
Changes from Revision C (February 2015) to Revision D  
Page  
Changed Figure 1................................................................................................................................................................... 8  
Changed Serial Interface section: changed last half of first paragraph, changed Figure 35 ............................................... 19  
Changed Figure 38............................................................................................................................................................... 22  
添加了社区资源部分 ............................................................................................................................................................. 31  
Changes from Revision B (December 2014) to Revision C  
Page  
已更改宽工作电压范围 特性 要点:已将 AVDD 的值从 1.8V 改为 1.65V .............................................................................. 1  
已将宽模拟输入电压范围下限值改为 ±1.65V (说明 部分第一段) ....................................................................................... 1  
Changed AVDD parameter minimum specification in Recommended Operating Conditions table ...................................... 5  
Changed EO parameter uncalibrated test conditions in Electrical Characteristics table ....................................................... 6  
Changed Maximum throughput rate parameter test conditions in Electrical Characteristics table ....................................... 6  
Changed AVDD parameter minimum specification in Electrical Characteristics table .......................................................... 7  
Changed conditions for Timing Characteristics table: changed range of AVDD and added CLOAD condition ....................... 7  
Changed tD_CKDO specification in Timing Characteristics table .............................................................................................. 7  
Added fSCLK minimum specification to Timing Characteristics table ...................................................................................... 7  
Changed titles of Figure 26 to Figure 30.............................................................................................................................. 12  
Changed Reference sub-section in Feature Description section ......................................................................................... 16  
Changed AVDD range in description of fCLK-CAL parameter in Table 2 ................................................................................ 21  
Changed AVDD range in description of fCLK-CAL parameter in Table 3 ................................................................................. 22  
Changed Reference Circuit section in Application Information ............................................................................................ 25  
Added last two sentences to AVDD and DVDD Supply Recommendations section ........................................................... 29  
2
版权 © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Changes from Revision A (November 2014) to Revision B  
Page  
Changed ESD Ratings table to latest standards ................................................................................................................... 5  
Added footnote 3 to Electrical Characteristics table .............................................................................................................. 6  
Changed y-axis unit in Figure 30 ......................................................................................................................................... 13  
Changes from Original (November 2014) to Revision A  
Page  
已更改产品预览数据表............................................................................................................................................................ 1  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
RUG Package  
8-Pin X2QFN  
Top View  
DCU Package  
8-Pin Leaded VSSOP  
Top View  
AINM  
GND  
1
2
3
4
8
7
6
5
DVDD  
SCLK  
SDO  
CS  
SDO  
1
2
3
7
6
5
AINP  
AVDD  
GND  
AVDD  
AINP  
AINM  
SCLK  
CS  
DVDD  
Pin Functions  
PIN  
NO.  
NAME  
AINM  
AINP  
AVDD  
CS  
RUG  
DCU  
I/O  
DESCRIPTION  
8
7
6
1
4
5
3
2
5
6
7
4
1
8
2
3
Analog input  
Analog input  
Supply  
Analog signal input, negative  
Analog signal input, positive  
Analog power-supply input, also provides the reference voltage to the ADC  
Digital input  
Supply  
Chip-select signal, active low  
DVDD  
GND  
SCLK  
SDO  
Digital I/O supply voltage  
Supply  
Ground for power supply, all analog and digital signals are referred to this pin  
Digital input  
Digital output  
Serial clock  
Serial data out  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–60  
MAX  
3.9  
UNIT  
V
AVDD to GND  
DVDD to GND  
3.9  
V
AINP to GND  
AVDD + 0.3  
AVDD + 0.3  
DVDD + 0.3  
150  
V
AINM to GND  
V
Digital input voltage to GND  
Storage temperature, Tstg  
V
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
1.65  
–40  
MAX  
3.6  
UNIT  
AVDD  
DVDD  
TA  
Analog supply voltage range  
Digital supply voltage range  
Operating free-air temperature  
V
V
3.6  
125  
°C  
6.4 Thermal Information  
ADS7044  
THERMAL METRIC(1)  
RUG (X2QFN)  
8 PINS  
177.5  
51.5  
DCU (VSSOP)  
8 PINS  
235.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
79.8  
76.7  
117.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
8.9  
ψJB  
76.7  
116.5  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
At TA = –40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, fSAMPLE = 1 MSPS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage span(1)  
–AVDD  
–0.1  
AVDD  
AVDD + 0.1  
AVDD + 0.1  
V
V
AINP to GND  
AINM to GND  
Absolute input  
voltage range  
–0.1  
CS  
Sampling capacitance  
15  
12  
pF  
SYSTEM PERFORMANCE  
Resolution  
Bits  
Bits  
NMC  
INL  
No missing codes  
12  
–1  
AVDD = 3 V  
±0.7  
±1  
1
2
1
2
Integral nonlinearity  
LSB(2)  
AVDD = 1.8 V  
AVDD = 3 V  
–2  
–0.99  
–0.99  
±0.5  
±0.7  
±12  
±0.5  
±1  
DNL  
EO  
Differential nonlinearity  
LSB  
AVDD = 1.8 V  
AVDD = 1.65 V to 3.6 V  
AVDD = 3 V  
Uncalibrated offset error  
Calibrated offset error(3)  
Offset error drift with temperature  
Gain error  
–3  
–4  
3
4
LSB  
AVDD = 1.8 V  
dVOS/dT  
EG  
5
ppm/°C  
%FS  
AVDD = 3 V  
–0.1  
–0.2  
±0.05  
±0.1  
2
0.1  
0.2  
AVDD = 1.8 V  
Gain error drift with temperature  
Common-mode rejection ratio  
ppm/°C  
dB  
CMRR  
fIN = 2 kHz, AVDD = 3 V  
53  
SAMPLING DYNAMICS  
tACQ Acquisition time  
Maximum throughput rate  
DYNAMIC CHARACTERISTICS  
200  
70  
ns  
16-MHz SCLK, AVDD = 1.65 V to 3.6 V  
1
MHz  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 1.8 V  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 3 V  
fIN = 2 kHz, AVDD = 1.8 V  
fIN = 2 kHz, AVDD = 3 V  
At –3 dB, AVDD = 3 V  
71  
70  
SNR  
Signal-to-noise ratio(4)  
dB  
dB  
dB  
THD  
Total harmonic distortion(4)(5)  
Signal-to-noise and distortion(4)  
–85  
71  
69.5  
SINAD  
70  
SFDR  
BW(fp)  
Spurious-free dynamic range(4)  
Full-power bandwidth  
85  
dB  
25  
MHz  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
VIH  
VIL  
High-level input voltage(6)  
Low-level input voltage(6)  
0.65 DVDD  
DVDD + 0.3  
0.35 DVDD  
DVDD  
V
V
–0.3  
At Isource = 500 µA  
At Isource = 2 mA  
At Isink = 500 µA  
At Isink = 2 mA  
0.8 DVDD  
VOH  
High-level output voltage(6)  
Low-level output voltage(6)  
V
V
DVDD – 0.45  
DVDD  
0
0
0.2 DVDD  
0.45  
VOL  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Refer to the Offset Calibration section for more details.  
(4) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale,  
unless otherwise specified.  
(5) Calculated on the first nine harmonics of the input frequency.  
(6) Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. See the Digital Voltage Levels section for  
more details.  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Electrical Characteristics (continued)  
At TA = –40°C to 125°C, AVDD = 3 V, DVDD = 1.65 V to 3.6 V, fSAMPLE = 1 MSPS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER-SUPPLY REQUIREMENTS  
AVDD  
DVDD  
Analog supply voltage  
1.65  
1.65  
3
3
3.6  
3.6  
300  
30  
V
V
Digital I/O supply voltage  
At 1 MSPS with AVDD = 3 V  
At 100 kSPS with AVDD = 3 V  
At 1 MSPS with AVDD = 1.8 V  
At 1 MSPS with AVDD = 3 V  
At 100 kSPS with AVDD = 3 V  
At 1 MSPS with AVDD = 1.8 V  
IAVDD  
Analog supply current  
Power dissipation  
µA  
145  
261  
900  
90  
PD  
µW  
6.6 Timing Characteristics  
All specifications are at TA = –40°C to 125°C, AVDD = 1.65 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD on SDO = 20 pF,  
unless otherwise specified.  
MIN  
TYP  
MAX  
UNIT  
TIMING SPECIFICATIONS  
fTHROUGHPUT Throughput  
tCYCLE  
1
MSPS  
µs  
Cycle time  
1
tCONV  
Conversion time  
12.5 × tSCLK + tSU_CSCK  
10  
ns  
tDV_CSDO  
Delay time: CS falling to data enable  
ns  
Delay time: SCLK falling to (next) data valid on DOUT,  
AVDD = 1.8 V to 3.6 V  
30  
50  
tD_CKDO  
ns  
ns  
Delay time: SCLK falling to (next) data valid on DOUT,  
AVDD = 1.65 V to 1.8 V  
tDZ_CSDO  
Delay time: CS rising to DOUT going to 3-state  
5
TIMING REQUIREMENTS  
tACQ  
Acquisition time  
200  
0.016  
62.5  
0.45  
0.45  
60  
ns  
MHz  
ns  
fSCLK  
SCLK frequency  
16  
tSCLK  
SCLK period  
tPH_CK  
tPL_CK  
tPH_CS  
tSU_CSCK  
tD_CKCS  
SCLK high time  
0.55  
0.55  
tSCLK  
tSCLK  
ns  
SCLK low time  
CS high time  
Setup time: CS falling to SCLK falling  
Delay time: last SCLK falling to CS rising  
15  
ns  
10  
ns  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Sample  
N
Sample  
N+1  
tCYCLE  
tCONV  
tACQ  
tPH_CS  
CS  
tD_CKCS  
tSU_CSCK  
tPH_CK  
tPL_CK  
tSCLK  
1
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
SCLK  
SDO  
tD_CKDO  
tDZ_CSDO  
tDV_CSDO  
D11  
D10  
D9  
D0  
0
D2  
D1  
D8  
D7  
D6  
D5  
D4  
D3  
Data for Sample N  
Figure 1. Timing Diagram  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
6.7 Typical Characteristics  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
0
œ20  
0
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ100  
œ120  
œ140  
œ160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
Input Frequency (kHz)  
C001  
C002  
SNR = 72.58 dB  
THD = –93 dB  
fIN = 2 kHz  
SNR = 71.95 dB  
THD = –76.5 dB  
fIN = 250 kHz  
Number of samples = 32768  
Number of samples = 32768  
Figure 2. Typical FFT  
Figure 3. Typical FFT  
75  
74  
73  
72  
71  
76  
74  
72  
70  
68  
SNR  
SNR  
SINAD  
SINAD  
70  
66  
0
26  
59  
92  
125  
50  
100  
150  
200  
250  
œ40  
œ7  
Free-Air Temperature (oC)  
Input Frequency (kHz)  
C003  
C004  
fIN = 2 kHz  
Figure 4. SNR and SINAD vs Temperature  
Figure 5. SNR and SINAD vs Input Frequency  
75  
74  
73  
72  
71  
70  
69  
œ83  
œ85  
œ87  
œ89  
œ91  
œ93  
SNR  
SINAD  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
26  
59  
92  
125  
œ40  
œ7  
Reference Voltage (V)  
Free-Air Temperature (oC)  
C005  
C006  
Figure 6. SNR and SINAD vs Reference Voltage (AVDD)  
Figure 7. THD vs Free-Air Temperature  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
œ65  
œ70  
œ75  
œ80  
œ85  
œ90  
œ95  
œ100  
œ82  
œ84  
œ86  
œ88  
œ90  
œ92  
0
50  
100  
150  
200  
250  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
Input Frequency (kHz)  
Reference Voltage (V)  
C008  
C010  
Figure 8. THD vs Input Frequency  
Figure 9. THD vs Reference Voltage (AVDD)  
96  
94  
92  
90  
88  
108  
103  
98  
93  
88  
83  
78  
73  
68  
26  
59  
92  
125  
0
50  
100  
150  
200  
250  
œ40  
œ7  
Free-Air Temperature (oC)  
Input Frequency (kHz)  
C007  
C009  
Figure 10. SFDR vs Free-Air Temperature  
Figure 11. SFDR vs Input Frequency  
95  
93  
91  
89  
87  
85  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
2046  
2047  
2048  
2049  
Reference Voltage (V)  
Code  
C011  
C012  
Mean code = 2046.98  
Sigma = 0.14  
Figure 12. SFDR vs Reference Voltage (AVDD)  
Figure 13. DC Input Histogram  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
12  
10  
8
12  
10  
8
6
6
4
4
Calibrated  
Calibrated  
2
2
0
0
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
Un-Calibrated  
26  
59  
92  
125  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C013  
C014  
Figure 14. Offset vs Free-Air Temperature  
Figure 15. Offset vs Reference Voltage (AVDD)  
0.2  
0.1  
0
0.2  
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
26  
59  
92  
125  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C015  
C016  
Figure 16. Gain Error vs Free-Air Temperature  
Figure 17. Gain Error vs Reference Voltage (AVDD)  
1
0.75  
0.5  
1
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C017  
C018  
AVDD = 3 V  
AVDD = 3 V  
Figure 18. Typical DNL  
Figure 19. Typical INL  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C019  
C020  
AVDD = 1.8 V  
AVDD = 1.8 V  
Figure 20. Typical DNL  
Figure 21. Typical INL  
1
0.75  
0.5  
1
0.75  
0.5  
Maximum  
0.25  
0
0.25  
0
Maximum  
Minimum  
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-1  
Minimum  
-1  
26  
59  
92  
125  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C021  
C022  
Figure 22. DNL vs Free-Air-Temperature  
Figure 23. DNL vs Reference Voltage (AVDD)  
1
0.75  
0.5  
1
0.75  
0.5  
0.25  
0
0.25  
0
Maximum  
Minimum  
Maximum  
Minimum  
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
26  
59  
92  
125  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
œ40  
œ7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C023  
C024  
Figure 24. INL vs Free-Air Temperature  
Figure 25. INL vs Reference Voltage (AVDD)  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 3 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS, unless otherwise noted.  
300  
280  
260  
240  
220  
200  
300  
250  
200  
150  
100  
50  
0
26  
59  
92  
125  
0
200  
400  
600  
800  
1000  
œ40  
œ7  
Free-Air Temperature (oC)  
Throughput (Ksps)  
C025  
C026  
fSAMPLE = 1 MSPS  
AVDD = 3 V  
Figure 26. AVDD Supply Current vs Free-Air Temperature  
Figure 27. AVDD Supply Current vs Throughput  
175  
300  
250  
200  
150  
100  
150  
125  
100  
75  
50  
25  
0
0
200  
400  
600  
800  
1000  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
Throughput (Ksps)  
Supply Voltage (V)  
C027  
C028  
AVDD = 1.8 V  
Figure 28. AVDD Supply Current vs Throughput  
Figure 29. AVDD Supply Current vs AVDD Voltage  
100  
80  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
Free-Air Temperature (oC)  
C029  
Figure 30. AVDD Static Current vs Free-Air Temperature  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Digital Voltage Levels  
The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 31 shows voltage  
levels for the digital input and output pins.  
Digital Output  
DVDD  
VOH  
DVDD-0.45V  
SDO  
0.45V  
VOL  
0V  
ISource= 2 mA, ISink = 2 mA,  
DVDD = 1.65 V to 1.95 V  
Digital Inputs  
DVDD + 0.3V  
VIH  
0.65DVDD  
CS  
SCLK  
0.35DVDD  
VIL  
DVDD = 1.65 V to 1.95 V  
-0.3V  
Figure 31. Digital Voltage Levels as per the JESD8-7A Standard  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
8 Detailed Description  
8.1 Overview  
The ADS7044 is an ultralow-power, ultra-small analog-to-digital converter (ADC) that supports a wide analog  
input range. The analog input range for the device is defined by the AVDD supply voltage. The device samples  
the input voltage across the AINP and AINM pins on the CS falling edge and starts the conversion. The clock  
provided on the SCLK pin is used for conversion and data transfer. During conversions, both the AINP and AINM  
pins are disconnected from the sampling circuit. After the conversion completes, the sampling capacitors are  
reconnected across the AINP and AINM pins and the device enters acquisition phase.  
The device has an internal offset calibration. The offset calibration can be initiated by the user either on power-up  
or during normal operation; see the Offset Calibration section for more details.  
The device also provides a simple serial interface to the host controller and operates over a wide range of digital  
power supplies. The device requires only a 16-MHz SCLK for supporting a throughput of 1 MSPS. The digital  
interface also complies with the JESD8-7A (normal range) standard. The Functional Block Diagram section  
provides a block diagram of the device.  
8.2 Functional Block Diagram  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
SAR  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Reference  
The device uses the analog supply voltage (AVDD) as a reference, as shown in Figure 32. TI recommends  
decoupling the AVDD pin with a 1-µF, low equivalent series resistance (ESR) ceramic capacitor. The minimum  
capacitor value required for AVDD is 200 nF. The AVDD pin functions as a switched capacitor load to the source  
powering AVDD. The decoupling capacitor provides the instantaneous charge required by the internal circuit and  
helps in maintaining a stable dc voltage on the AVDD pin. TI recommends powering the AVDD pin with a low  
output impedance and low-noise regulator (such as the TPS79101).  
1µF  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
SAR  
Figure 32. Reference for the Device  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Feature Description (continued)  
8.3.2 Analog Input  
The device supports differential analog inputs. The ADC samples the difference between AINP and AINM and  
converts for this voltage. The device is capable of accepting a signal from 0 V to AVDD on the AINM input and a  
signal from 0 V to AVDD on the AINP input. Figure 33 represents the equivalent analog input circuits for the  
sampling stage. The device has a low-pass filter followed by the sampling switch and sampling capacitor. The  
sampling switch is represented by an Rs (typically 50 Ω) resistor in series with an ideal switch and Cs (typically  
15 pF) is the sampling capacitor. The ESD diodes are connected from both analog inputs to AVDD and ground.  
AVDD  
50  
Rs  
AINP  
CS  
10 pF  
AVDD  
Rs  
50 ꢀ  
AINM  
CS  
Figure 33. Equivalent Input Circuit for the Sampling Stage  
The analog input full-scale range (FSR) is defined by the reference voltage of the ADC. The relationship between  
the FSR and the reference voltage can be determined by: FSR = 2 × VREF = 2 × AVDD.  
8.3.3 ADC Transfer Function  
The device output is in twos compliment format. The device resolution can be computed by Equation 1:  
1 LSB = FSR / 2N  
where:  
FSR = 2 × VREF = 2 × AVDD and  
N = 12  
(1)  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
Figure 34 and Table 1 show the ideal transfer characteristics for the device.  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
-(VREF œ 1 LSB)  
(VREF œ 1 LSB)  
0 LSB 1 LSB  
Analog Input  
(AINP œ AINM)  
Figure 34. Ideal Transfer Characteristics  
Table 1. Transfer Characteristics  
INPUT VOLTAGE (AINP-AINM)  
–(VREF – 1 LSB)  
CODE  
NFSC  
DESCRIPTION  
IDEAL OUTPUT CODE  
Negative full-scale code  
800  
801  
000  
001  
7FF  
–(VREF – 1 LSB) to –(VREF – 2 LSBs)  
0 to 1 LSB  
NFSC + 1  
MC  
Mid code  
1 LSB to 2 LSBs  
MC + 1  
PFSC  
VREF – 1 LSB  
Positive full-scale code  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
8.3.4 Serial Interface  
The device supports a simple, SPI-compatible interface to the external host. The CS signal defines one  
conversion and serial transfer frame. A frame starts with a CS falling edge and ends with a CS rising edge. The  
SDO pin outputs the ADC conversion results. Figure 35 shows a detailed timing diagram for the serial interface.  
A minimum delay of tSU_CSCK must elapse between the CS falling edge and the first SCLK falling edge. The  
device uses the clock provided on the SCLK pin for conversion and data transfer. The conversion result is  
available on the SDO pin with the first two bits set to 0, followed by 12 bits of the conversion result. The first zero  
is launched on the SDO pin on the CS falling edge. Subsequent bits (starting with another 0 followed by the  
conversion result) are launched on the SDO pin on subsequent SCLK falling edges. The SDO output remains  
low after 14 SCLKs. A CS rising edge ends the frame and brings the serial data bus to 3-state. For the  
acquisition of the next sample, a minimum time of tACQ must be provided after the conversion of the current  
sample is completed. For details on timing specifications, see the Timing Characteristics table.  
The device initiates offset calibration on first CS falling edge after power-up and the SDO output remains low  
during the first serial transfer frame after power-up. For details, refer to the Offset Calibration section.  
Sample  
N
Sample  
N+1  
tCYCLE  
tCONV  
tACQ  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
SCLK  
D0  
D3  
D2  
0
D1  
D8  
0
D11 D10  
D9  
D7  
D6  
D5  
D4  
SDO  
Data for Sample N  
Figure 35. Serial Interface Timing Diagram  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Offset Calibration  
The device includes a feature to calibrate its internal offset. The device initiates offset calibration on the first CS  
falling edge after power up and during offset calibration, the analog input pins (AINP and AINM) are disconnected  
from the sampling stage. After the first serial transfer frame, the device starts operating with either uncalibrated  
or calibrated offset, depending on the number of SCLKs provided in the first serial transfer frame. Offset  
calibration can also be initiated by the user during normal operation. Figure 36 shows the offset calibration  
process. The SDO output remains low during the first serial transfer frame.  
The device includes an internal offset calibration register (OCR) that stores the offset calibration result. The OCR  
is an internal register and cannot be accessed by the user through the serial interface. The OCR is reset to zero  
on power-up. Therefore, TI recommends calibrating the offset on power-up to bring the offset within the specified  
limits. If there is a significant change in operating temperature or analog supply voltage, the offset can be  
recalibrated during normal operation.  
Normal Operation  
With Uncalibarted  
Data Capture(1)  
offset  
Device  
Power Up  
Data Capture(1)  
Normal Operation  
With Calibarted  
offset  
Calibration during Normal Operation(2)  
(1) See the Timing Characteristics section for timing specifications.  
(2) See the Offset Calibration During Normal Operation section for details.  
(3) See the Offset Calibration on Power-Up section for details.  
(4) The power recycle on the AVDD supply is required to reset the offset calibration and to bring the device to a power-up  
state.  
Figure 36. Offset Calibration  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Device Functional Modes (continued)  
8.4.1.1 Offset Calibration on Power-Up  
The device starts offset calibration on the first CS falling edge after power-up and calibration completes if the CS  
pin remains low for at least 16 SCLKs after the first CS falling edge. The SDO output remains low during  
calibration. The minimum acquisition time must be provided after calibration for acquiring the first sample. If the  
device is not provided with at least 16 SCLKs during the first serial transfer frame after power-up, the OCR is not  
updated. Table 2 provides the timing parameters for offset calibration on power-up.  
For subsequent samples, the device adjusts the conversion results with the value stored in the OCR. The  
conversion result adjusted with the value stored in OCR is provided by the device on the SDO output. Figure 37  
shows the timing diagram for offset calibration on power-up.  
Table 2. Offset Calibration on Power-Up  
MIN  
TYP  
MAX  
16  
UNIT  
MHz  
MHz  
ns  
fCLK-CAL  
fCLK-CAL  
SCLK frequency for calibration at 2.25 V < AVDD < 3.6 V  
SCLK frequency for calibration at 1.65 V < AVDD < 2.25 V  
12  
tPOWERUP-CAL Calibration time at power-up  
16 tSCLK  
200  
tACQ  
Acquisition time  
CS high time  
ns  
tPH_CS  
tACQ  
ns  
Start  
Power-up  
Calibration  
Sample  
#1  
tPH_CS  
tACQ  
tPOWERUP-CAL  
CS  
tD_CKCS  
tSU_CSCK  
1
2
15  
16  
SCLK(fCLK-CAL  
)
SDO  
Figure 37. Offset Calibration on Power-Up Timing Diagram  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
8.4.1.2 Offset Calibration During Normal Operation  
The offset can also be calibrated during normal device operation. Offset calibration can be done during normal  
device operation if at least 32 SCLKs are provided in one serial transfer frame. During the first 14 SCLKs, the  
device converts the sample acquired on the CS falling edge and provides data on the SDO output. The device  
initiates the offset calibration on the 17th SCLK falling edge and calibration is completed on the 32nd SCLK  
falling edge. The SDO output remains low after the 14th SCLK falling edge and SDO goes to 3-state after CS  
goes high. If the device is provided with less than 32 SCLKs during a serial transfer frame, the OCR is not  
updated. Table 3 provides the timing parameters for offset calibration during normal operation.  
For subsequent samples, the device adjusts the conversion results with the value stored in OCR. The conversion  
result adjusted with the value stored in the OCR is provided by the device on the SDO output. Figure 38 shows  
the timing diagram for offset calibration during normal operation.  
Table 3. Offset Calibration During Normal Operation  
MIN  
TYP  
MAX  
16  
UNIT  
MHz  
MHz  
ns  
fCLK-CAL  
fCLK-CAL  
tCAL  
SCLK frequency for calibration for 2.25 V < AVDD < 3.6 V  
SCLK frequency for calibration for 1.65 V < AVDD < 2.25 V  
Calibration time during normal operation  
Acquisition time  
12  
16 tSCLK  
200  
tACQ  
ns  
tPH_CS  
CS high time  
tACQ  
ns  
Sample  
N+1  
Sample  
N
tPH_CS  
tACQ  
tCONV  
tCAL  
CS  
tSU_CSCK  
tD_CKCS  
16  
18  
32  
1
0
2
3
4
13  
14  
15  
17  
31  
SCLK(fCLK-CAL  
)
0
D11  
D10  
D1  
D0  
SDO  
Data for Sample N  
Figure 38. Offset Calibration During Normal Operation Timing Diagram  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing the input driver circuit, reference driver circuit, and provides  
some application circuits designed for the ADS7044.  
9.2 Typical Applications  
9.2.1 Single-Supply DAQ with the ADS7044  
R2  
20 k  
R1  
20 kꢀ  
AVDD  
AVDD  
+
OPA316  
AVDD  
30 ꢀ  
30 ꢀ  
1 nF  
AINP  
AINM  
!ë55/2  
VIN  
Device  
2.2 nF  
AVDD  
R3  
20 kꢀ  
GND  
+
1 nF  
OPA316  
Device: 12-Bit, 1-MSPS  
Differential Input  
R4  
20 kꢀ  
Input Driver  
Figure 39. DAQ Circuit: Single-Supply DAQ  
9.2.1.1 Design Requirements  
The goal of this application is to design a single-supply digital acquisition (DAQ) circuit based on the ADS7044  
with SNR greater than 71 dB and THD less than –85 dB for a differential input signal having an amplitude of  
AVDD with a common-mode voltage of AVDD / 2 and input frequencies of 5 kHz at a throughput of  
1 MSPS.  
9.2.1.2 Detailed Design Procedure  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and an  
antialiasing filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a  
high-precision ADC.  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
 
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.2.1 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a rate greater than or equal to the  
Nyquist rate. Any higher frequency content in the input signal beyond half the sampling frequency is digitized and  
folded back into the low-frequency spectrum. This process is called aliasing. Therefore, an external, antialiasing  
filter must be used to remove the harmonic content from the input signal before being sampled by the ADC. An  
antialiasing filter is designed as a low-pass RC filter, for which the 3-dB bandwidth is optimized for noise,  
response time, and throughput. For dc signals with fast transients (including multiplexed input signals), a high-  
bandwidth filter is designed to allow the signal to be accurately set at the ADC inputs during the small acquisition  
time window. Figure 40 provides the equation for determining the bandwidth of antialiasing filter.  
AVDD  
AVDD  
RFLT  
AINP  
1
f-3dB  
=
CFLT  
Device  
2Œì2RFLTìCFLT  
RFLT  
AINM  
GND  
Figure 40. Antialiasing Filter  
For ac signals, the filter bandwidth must be kept low to band limit the noise fed into the ADC input, thereby  
increasing the signal-to-noise ratio (SNR) of the system. Besides filtering the noise from the front-end drive  
circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage  
of the ADC. A filter capacitor, CFLT, is connected across the ADC inputs. This capacitor helps reduce the  
sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold  
capacitors during the acquisition process. As a rule of thumb, the value of this capacitor must be at least 20  
times the specified value of the ADC sampling capacitance. For this device, the input sampling capacitance is  
equal to 15 pF. Thus, the value of CFLT must be greater than 300 pF. The capacitor must be a COG- or NPO-  
type because these capacitor types have a high-Q, low-temperature coefficient, and stable electrical  
characteristics under varying voltages, frequency, and time.  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design.  
The input amplifier bandwidth must be much higher than the cutoff frequency of the antialiasing filter. TI strongly  
recommends performing a SPICE simulation to confirm that the amplifier has more than 40° phase margin with  
the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some amplifiers may  
require more bandwidth than others to drive similar filters.  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
Typical Applications (continued)  
9.2.1.2.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider while selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth: Select the small-signal bandwidth of the input amplifiers to be high enough to settle  
the input signal in the acquisition time of the ADC. Higher bandwidth reduces the closed-loop output  
impedance of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter  
at the ADC inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. In  
order to maintain the overall stability of the input driver circuit, select the amplifier bandwidth as described in  
Equation 2:  
1
GBW í 4ì  
2Œì2RFLT  
ì
C
FLT  
where:  
GBW = Unity-gain bandwidth  
(2)  
Noise: Noise contribution of the front-end amplifiers must be low enough to prevent any degradation in SNR  
performance of the system. As a rule of thumb, to ensure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, keep the total noise contribution from the front-end circuit below  
20% of the input-referred noise of the ADC. Noise from the input driver circuit is band limited by designing a  
low cutoff frequency RC filter, as explained in Equation 3.  
SNR(dB)  
20  
2ì  
(
R +R3  
))  
Œ
2
2ì  
(
R22 +R42  
)
)
+
)
(
( 2ì 4kTì(1-  
b
)
)
2
-
(
)
»
ÿ
Ÿ
1
5
VREF  
2
V
1 f _AMP_PP  
(
2ìe  
)
+
((  
2ìinìb  
)
n_RMS  
1
+
+4kT  
(
R2 +R4  
)
ì ìf-3dB  
Ç
ì
ì 10  
(
)
2
6.6ì2  
b
2
(
2
b
Ÿ
where:  
V1/f_AMP_PP is the peak-to-peak flicker noise in µVrms,  
en_RMS is the amplifier broadband noise,  
f–3dB is the –3-dB bandwidth of the RC filter,  
k is the Boltzmann's constant, and  
T is absolute temperature in kelvin.  
For symmetrical feedback, β = R1 / (R1 + R2) = R3 / (R3 + R4).  
For details on noise analysis, refer to the technical brief Analysis of fully differential amplifiers (SLYT157)  
(3)  
Settling time: For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, always verify the settling behavior of the input driver with TINA™-SPICE  
simulations before selecting the amplifier.  
The OPA316 is selected for this application for its rail-to-rail input and output swing, low-noise (11 nV/Hz), and  
low-power (400 µA) performance to support a single-supply data acquisition circuit.  
9.2.1.2.3 Reference Circuit  
The analog supply voltage of the device is also used as a voltage reference for conversion. TI recommends  
decoupling the AVDD pin with a 1-µF, low-ESR ceramic capacitor. The minimum capacitor value required for  
AVDD is 200 nF.  
For a step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation  
results, and test results, refer to TI Precision Design TIPD168, Three 12-Bit Data Acquisition  
Reference Designs Optimized for Low Power and Ultra-Small Form Factor (TIDU390).  
Copyright © 2014–2015, Texas Instruments Incorporated  
25  
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
9.2.1.3 Application Curve  
Figure 41 shows the FFT plot for the device with a 5-kHz input frequency for the circuit in Figure 39.  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
C031  
SNR = 72.2 dB  
THD = –85.7 dB  
SINAD = 72 dB  
Number of samples = 8192  
Figure 41. Test Results for the ADS7044 and OPA316 for a 5-kHz Input  
26  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
9.2.2 Ultra-Low Power and Ultra-Small, High CMRR DAQ Circuit with the ADS7044  
R2  
20 k  
AVDD  
R1  
AVDD  
20 kꢀ  
AVDD  
30 ꢀ  
1 nF  
ëLb-  
ëhÜÇ+  
AINP  
AINM  
!ë55/2  
ëhꢀa  
ëLb+  
VIN  
THS4531A  
Device  
2.2 nF  
1 nF  
ëhÜÇ-  
GND  
30 ꢀ  
R3  
20 kꢀ  
Device: 12-Bit, 1-MSPS  
Differential Input  
R4  
20 kꢀ  
Input Driver  
Figure 42. ADS7044 DAQ Circuit  
9.2.2.1 Design Requirements  
For this design example, use the parameters listed in Table 4 as input parameters.  
Table 4. Design Parameters  
DESIGN PARAMETER  
SINAD  
GOAL VALUE  
71 dB  
Throughput  
AVDD  
1 MSPS  
3.3 V  
AVDD current consumption  
VIN to the THS4531A  
800 µA (at a 5-kHz fIN) and 1500 µA (at a 25-kHz fIN  
)
–AVDD to AVDD  
Common-mode voltage for VIN to the THS4531A  
0 V to AVDD / 2  
9.2.2.2 Detailed Design Procedure  
See the Detailed Design Procedure section in the Single-Supply DAQ with the ADS7044 application for further  
details.  
To achieve a SINAD of 71 dB, the operational amplifier must have high bandwidth to settle the input signal within  
the acquisition time of the ADC. The operational amplifier must have low noise to keep the total system noise  
below 20% of the input-referred noise of the ADC.  
For the application circuit shown in Figure 42, the THS4531A is selected for its high bandwidth (36 MHz), low  
noise (10 nV/Hz), and for its capability to set the common-mode voltage for the ADC. The THS4531A rejects  
the variation of common-mode at its input and provides a CMRR of 90 dB (min).  
Copyright © 2014–2015, Texas Instruments Incorporated  
27  
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
9.2.2.3 Application Curves  
Figure 43 shows the FFT plot for the device with a 5-kHz input frequency for the circuit in Figure 42. Figure 44  
shows the FFT plot for the device with a 25-kHz input frequency for the circuit in Figure 42.  
0
œ20  
0
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ100  
œ120  
œ140  
œ160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
C033  
C032  
Input Frequency (kHz)  
Input Frequency (kHz)  
SNR = 72.3 dB  
THD = –87.8 dB  
SINAD = 72.2 dB  
SNR = 71.6 dB  
THD = –85 dB  
SINAD = 71.4 dB  
AVDD current = 740 µA, Number of samples = 8192  
AVDD current = 1375 µA, Number of samples = 8192  
Figure 43. Test Results for the ADS7044 and THS4531A for  
a 5-kHz Input  
Figure 44. Test Results for the ADS7044 and THS4531A for  
a 25-kHz Input  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
10 Power-Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is used  
for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible ranges.  
The AVDD supply also defines the full-scale input range of the device. Decouple the AVDD and DVDD pins  
individually with 1-µF ceramic decoupling capacitors, as shown in Figure 45. The minimum capacitor value  
required for AVDD and DVDD is 200 nF and 20 nF, respectively. If both supplies are powered from the same  
source, a minimum capacitor value of 220 nF is required for decoupling.  
AVDD  
AVDD  
GND  
1 mF  
1 mF  
DVDD  
DVDD  
Figure 45. Power-Supply Decoupling  
10.2 Estimating Digital Power Consumption  
The current consumption from the DVDD supply depends on the DVDD voltage, load capacitance on the SDO  
line, and the output code. The load capacitance on the SDO line is charged by the current from the SDO pin on  
every rising edge of the data output and is discharged on every falling edge of the data output. The current  
consumed by the device from the DVDD supply can be calculated by Equation 4:  
IDVDD = C × V × f  
where:  
C = Load capacitance on the SDO line,  
V = DVDD supply voltage, and  
f = Number of transitions on the SDO output.  
(4)  
The number of transitions on the SDO output depends on the output code, and thus changes with the analog  
input. The maximum value of f occurs when data output on the SDO change on every SCLK. SDO changing on  
every SCLK results in an output code of AAAh or 555h. For an output code of AAAh or 555h at a 1-MSPS  
throughput, the frequency of transitions on the SDO output is 6 MHz.  
To keep the current consumption at the lowest possible value, the DVDD supply must be kept at the lowest  
permissible value and the capacitance on the SDO line must be kept as low as possible.  
10.3 Optimizing Power Consumed by the Device  
Keep the analog supply voltage (AVDD) as per the analog input full-scale range (FSR) requirement.  
Keep the digital supply voltage (DVDD) at the lowest permissible value.  
Reduce the load capacitance on the SDO output.  
Run the device at optimum throughput. Power consumption reduces with throughput.  
Copyright © 2014–2015, Texas Instruments Incorporated  
29  
 
 
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Figure 46 shows a board layout example for the ADS7044. Use a ground plane underneath the device and  
partition the PCB into analog and digital sections. Avoid crossing digital lines with the analog signal path and  
keep the analog input signals and the reference input signals away from noise sources. In Figure 46, the analog  
input and reference signals are routed on the top and left side of the device while the digital connections are  
routed on the bottom and right side of the device.  
The power sources to the device must be clean and well-bypassed. Use 1-μF ceramic bypass capacitors in close  
proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the AVDD and  
DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low-impedance  
paths. The AVDD supply voltage for the ADS7044 also functions as a reference for the device. Place the  
decoupling capacitor (CREF) for AVDD close to the device AVDD and GND pins. CREF must be connected to the  
device pins with thick copper tracks, as shown in Figure 46.  
The fly-wheel RC filters are placed close to the device. Among ceramic surface-mount capacitors, COG (NPO)  
ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG (NPO) ceramic  
capacitors provides the most stable electrical properties over voltage, frequency, and temperature changes.  
11.2 Layout Example  
Figure 46. Example Layout  
30  
版权 © 2014–2015, Texas Instruments Incorporated  
 
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
OPA316 数据表》(文献编号 SBOS703)  
OPA835 数据表》(文献编号 SLOS713)  
THS4531A 数据表》(文献编号 SLOS823)  
TPS79101 数据表》(文献编号 SLVS325)  
《全差动放大器分析》(文献编号 SLYT157)  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
TINA is a trademark of Texas Instruments, Inc.  
串行外设接口 (SPI) is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2014–2015, Texas Instruments Incorporated  
31  
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
PACKAGE OUTLINE  
RUG0008A  
X2QFN - 0.4 mm max height  
SCALE 7.500  
PLASTIC QUAD FLATPACK - NO LEAD  
1.55  
1.45  
B
A
PIN 1 INDEX AREA  
1.55  
1.45  
C
0.4 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
SYMM  
0.35  
0.25  
2X  
(0.15)  
TYP  
0.45  
0.35  
2X  
4
3
5
SYMM  
2X  
1
4X 0.5  
0.25  
0.15  
2X  
7
1
0.3  
4X  
8
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.1)  
C A  
C
B
0.4  
0.3  
6X  
4222060/A 05/14/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2014–2015, Texas Instruments Incorporated  
33  
ADS7044  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
3
2X (0.2)  
5
(R0.05) TYP  
4
SYMM  
(1.35)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222060/A 05/14/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
34  
版权 © 2014–2015, Texas Instruments Incorporated  
ADS7044  
www.ti.com.cn  
ZHCSD03D NOVEMBER 2014REVISED DECEMBER 2015  
EXAMPLE STENCIL DESIGN  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
2X (0.2)  
3
5
4
SYMM  
(1.35)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICKNESS  
SCALE:25X  
4222060/A 05/14/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2014–2015, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7044IDCUR  
ADS7044IDCUT  
ADS7044IRUGR  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
X2QFN  
DCU  
DCU  
RUG  
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
7044  
7044  
FX  
NIPDAU  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7044IDCUR  
ADS7044IDCUT  
ADS7044IRUGR  
VSSOP  
VSSOP  
X2QFN  
DCU  
DCU  
RUG  
8
8
8
3000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
2.25  
2.25  
1.6  
3.35  
3.35  
1.6  
1.05  
1.05  
0.66  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7044IDCUR  
ADS7044IDCUT  
ADS7044IRUGR  
VSSOP  
VSSOP  
X2QFN  
DCU  
DCU  
RUG  
8
8
8
3000  
250  
202.0  
202.0  
202.0  
201.0  
201.0  
201.0  
28.0  
28.0  
28.0  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCU0008A  
VSSOP - 0.9 mm max height  
S
C
A
L
E
6
.
0
0
0
SMALL OUTLINE PACKAGE  
3.2  
3.0  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
SEATING  
PLANE  
6X 0.5  
8
1
2X  
2.1  
1.9  
1.5  
NOTE 3  
4
5
0.25  
0.17  
8X  
2.4  
2.2  
B
0.08  
C A B  
NOTE 3  
SEE DETAIL A  
0.9  
0.6  
0.12  
GAGE PLANE  
0.1  
0.0  
0.35  
0.20  
0 -6  
(0.13) TYP  
A
30  
DETAIL A  
TYPICAL  
4225266/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-187 variation CA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
SEE SOLDER MASK  
DETAILS  
SYMM  
8X (0.85)  
(R0.05) TYP  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(3.1)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225266/A 09/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
8X (0.85)  
SYMM  
(R0.05) TYP  
8
1
8X (0.3)  
SYMM  
6X (0.5)  
4
5
(3.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
4225266/A 09/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY