ADS7138IRTET [TI]

具有 I2C、GPIO 和 CRC 的 8 通道、140kSPS、12 位模数转换器 (ADC) | RTE | 16 | -40 to 125;
ADS7138IRTET
型号: ADS7138IRTET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I2C、GPIO 和 CRC 的 8 通道、140kSPS、12 位模数转换器 (ADC) | RTE | 16 | -40 to 125

转换器 模数转换器
文件: 总79页 (文件大小:2094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS7138  
ZHCSJS8 MAY 2019  
ADS7138 小型 8 通道 12 ADC,具有 I2C 接口、GPIO CRC  
1 特性  
用于计算平均输出的 16 位分辨率  
1
小封装尺寸:  
3mm × 3mm WQFN  
8 通道,可配置为以下任意组合:  
最多 8 个模拟输入、数字输入或数字输出  
用于 I/O 扩展的 GPIO:  
开漏、推挽数字输出  
模拟监控:  
2 应用  
监控功能  
便携式仪表  
电信基础设施  
电源监控  
3 说明  
每个通道的可编程阈值  
用于瞬态抑制的事件计数器  
ADS7138 是一款易于使用的 8 通道多路复用 12 位逐  
次逼近寄存器模数转换器 (SAR ADC)8 个通道可独  
立配置为模拟输入、数字输入或数字输出。该器件具有  
一个用于执行 ADC 转换过程的内部振荡器。  
宽工作范围:  
AVDD2.35V 5.5V  
DVDD1.65V 5.5V  
温度范围:–40°C +125°C  
ADS7138 通过兼容 I2C 的接口进行通信,可以在自主  
或单冲转换模式下运行。ADS7138 使用具有可编程高  
低阈值、迟滞和事件计数器的数字窗口比较器,通过每  
通道事件触发的中断来实施模拟监控功能。ADS7138  
具有用于数据读取/写入操作和上电配置的内置循环冗  
余校验 (CRC) 功能。  
用于读取/写入操作的 CRC:  
数据读取/写入 CRC  
上电配置 CRC  
I2C 接口:  
高达 3.4MHz(高速)  
8 个可配置 I2C 地址  
器件信息(1)  
可编程均值滤波器:  
部件名称  
ADS7138  
封装  
封装尺寸(标称值)  
用于求平均值的可编程样本大小  
利用内部转换求平均值  
WQFN (16)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
ADS7138 方框图和 应用  
Example System Architecture  
Device Block Diagram  
AVDD  
DECAP  
VCC  
AVDD  
High/Low Threshold  
± Hysteresis  
DVDD  
OVP  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
ALERT  
Programmable  
Averaging Filter  
ADC  
Digital Window  
Comparator  
MUX  
ADC  
GPIO  
OCP  
MUX  
ADDR  
Sequencer  
Pin CFG  
I2C Interface  
CRC  
SDA  
SCL  
GPO Write  
GPI Read  
OVP: Over voltage protection  
OCP: Over current protection  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS976  
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 18  
8.5 Programming........................................................... 22  
8.6 ADS7138 Registers................................................. 25  
Application and Implementation ........................ 66  
9.1 Application Information............................................ 66  
9.2 Typical Applications ................................................ 66  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 I2C Timing Requirements.......................................... 7  
7.7 Timing Requirements................................................ 7  
7.8 I2C Switching Characteristics.................................... 7  
7.9 Switching Characteristics.......................................... 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
9
10 Power Supply Recommendations ..................... 68  
10.1 AVDD and DVDD Supply Recommendations....... 68  
11 Layout................................................................... 69  
11.1 Layout Guidelines ................................................. 69  
11.2 Layout Example .................................................... 69  
12 器件和文档支持 ..................................................... 70  
12.1 接收文档更新通知 ................................................. 70  
12.2 社区资源................................................................ 70  
12.3 ....................................................................... 70  
12.4 静电放电警告......................................................... 70  
12.5 Glossary................................................................ 70  
13 机械、封装和可订购信息....................................... 70  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 5 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
5 Device Comparison Table  
ZERO-CROSSING-DETECT  
(ZCD) MODULE  
ROOT-MEAN-SQUARE  
(RMS) MODULE  
PART NUMBER  
DESCRIPTION  
CRC MODULE  
ADS7128  
ADS7138  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
8-channel, 12-bit ADC with  
I2C interface and GPIOs  
ADS7138-Q1  
No  
No  
Copyright © 2019, Texas Instruments Incorporated  
3
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
AIN2 / GPIO2  
1
2
3
4
12  
11  
10  
9
ALERT  
ADDR  
DVDD  
GND  
AIN3 / GPIO3  
AIN4 / GPIO4  
Thermal  
Pad  
AIN5 / GPIO5  
Pin Functions  
PIN  
FUNCTION(1)  
DESCRIPTION  
NAME  
NO.  
Channel 0; configurable as either an analog input (default) or a general-purpose  
input/output (GPIO)  
AIN0/GPIO0  
15  
AI, DI, DO  
AIN1/GPIO1  
AIN2/GPIO2  
AIN3/GPIO3  
AIN4/GPIO4  
AIN5/GPIO5  
AIN6/GPIO6  
AIN7/GPIO7  
16  
1
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
Channel 1; configurable as either an analog input (default) or a GPIO  
Channel 2; configurable as either an analog input (default) or a GPIO  
Channel 3; configurable as either an analog input (default) or a GPIO  
Channel 4; configurable as either an analog input (default) or a GPIO  
Channel 5; configurable as either an analog input (default) or a GPIO  
Channel 6; configurable as either an analog input (default) or a GPIO  
Channel 7; configurable as either an analog input (default) or a GPIO  
2
3
4
5
6
Input for selecting the device I2C address.  
Connect a resistor to this pin from DECAP pin or GND to select one of the eight  
addresses.  
ADDR  
11  
AI  
ALERT  
AVDD  
12  
7
Digital output  
Supply  
Open-drain (default) or push-pull output for the digital comparator  
Analog supply input, also used as the reference voltage to the ADC; connect a  
1-µF decoupling capacitor to GND  
DECAP  
DVDD  
8
Supply  
Supply  
Connect a decoupling capacitor to this pin for the internal power supply  
Digital I/O supply voltage; connect a 1-µF decoupling capacitor to GND  
10  
Ground for the power supply; all analog and digital signals are referred to this  
pin voltage  
GND  
9
Supply  
SDA  
SCL  
14  
13  
DI, DO  
DI  
Serial data input or output for the I2C interface  
Serial clock for the I2C interface  
(1) AI = analog input, DI = digital input, and DO = digital output.  
4
Copyright © 2019, Texas Instruments Incorporated  
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
5.5  
UNIT  
V
DVDD to GND  
AVDD to GND  
5.5  
V
AINx/GPOx(2)  
GND – 0.3 AVDD + 0.3  
V
ADDR  
GND – 0.3  
GND – 0.3  
–10  
2.1  
5.5  
10  
V
Digital inputs  
V
Current through any pin except supply pins(3)  
Junction temperature, TJ  
Storage temperature, Tstg  
mA  
°C  
°C  
–40  
125  
150  
–60  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) AINx/GPIOx refers to pins 1, 2, 3, 4, 5, 6, 15, and 16.  
(3) Pin current must be limited to 10mA or less.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
2.35  
1.65  
3.3  
3.3  
5.5  
5.5  
V
V
ANALOG INPUTS  
FSR  
VIN  
Full-scale input range  
Absolute input voltage  
AINX(1) - GND  
AINX - GND  
0
AVDD  
V
V
–0.1  
AVDD + 0.1  
TEMPERATURE RANGE  
TA Ambient temperature  
–40  
25  
125  
(1) AINx refers to AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
7.4 Thermal Information  
ADS7138  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
49.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.4  
24.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ΨJB  
24.7  
RθJC(bot)  
9.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
ANALOG INPUTS  
CSH Sampling capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
12  
pF  
DC PERFORMANCE  
Resolution  
No missing codes  
12  
±0.2  
±0.5  
±0.3  
±5  
bits  
DNL  
INL  
Differential nonlinearity  
–0.9  
–2  
0.9  
2
LSB  
LSB  
Integral nonlinearity  
Input offset error  
V(OS)  
Post offset calibration  
Post offset calibration  
–2  
2
LSB  
Input offset thermal drift  
Offset error match  
Gain error  
ppm/°C  
LSB  
–1  
±0.5  
±0.05  
±5  
1
GE  
–0.1  
0.1 %FSR  
ppm/°C  
Gain error thermal drift  
Gain error match  
–0.05  
±0.01  
0.05 %FSR  
AC PERFORMANCE  
AVDD = 5 V, fIN = 2 kHz  
AVDD = 3 V, fIN = 2 kHz  
AVDD = 5 V, fIN = 2 kHz  
AVDD = 3 V, fIN = 2 kHz  
fIN = 2 kHz  
68.5  
67.5  
69  
71.5  
70.5  
72  
SINAD Signal-to-noise + distortion ratio  
dB  
dB  
SNR  
Signal-to-noise ratio  
68  
71  
THD  
Total harmonic distortion  
–85  
91  
dB  
dB  
SFDR  
Spurious-free dynamic range  
fIN = 2 kHz  
100-kHz signal applied on any OFF  
channel and measured on ON the  
channel  
Crosstalk  
–100  
dB  
DECAP Pin  
Decoupling capacitor on DECAP  
0.22  
1
µF  
pin  
DIGITAL INPUT/OUTPUT (SCL, SDA)  
VIH  
VIL  
Input high logic level  
Input low logic level  
All I2C modes  
All I2C modes  
0.7 x DVDD  
DVDD  
V
V
–0.3  
0
0.3 x DVDD  
0.4  
Sink current = 2 mA, DVDD > 2 V  
Sink current = 2 mA, DVDD 2 V  
VOL  
Output low logic level  
V
0
0.2 x DVDD  
VOL = 0.4 V, standard and fast  
Mode  
3
IOL  
Low-level output current (sink)  
mA  
VOL = 0.6 V, fast mode  
6
VOL = 0.4 V, fast mode plus  
20  
GPIOs  
VIH  
Input high logic level  
Input low logic level  
Input leakge current  
0.7 x AVDD  
–0.3  
AVDD + 0.3  
0.3 x AVDD  
100  
V
V
VIL  
GPIO configured as input  
10  
nA  
GPO_DRIVE_CFG = push-pull,  
ISOURCE = 2 mA  
VOH  
Output high logic level  
0.8 x AVDD  
0
AVDD  
V
VOL  
IOH  
IOL  
Output low logic level  
ISINK = 2 mA  
0.2 x AVDD  
V
Output high source current  
Output low sink current  
VOH > 0.7 x AVDD  
VOL < 0.3 x AVDD  
5
5
mA  
mA  
DIGITAL OUTPUT (ALERT)  
GPO_DRIVE_CFG = push-pull,  
ISOURCE = 2 mA  
VOH  
VOL  
Output high logic level  
Output low logic level  
0.8 x DVDD  
0
DVDD  
V
V
ISINK = 2 mA  
0.2 x DVDD  
6
Copyright © 2019, Texas Instruments Incorporated  
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Electrical Characteristics (continued)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
VOH > 0.7 x DVDD  
MIN  
TYP  
MAX UNIT  
IOH  
IOL  
Output high sink current  
Output low sink current  
5
5
mA  
mA  
VOL < 0.3 x DVDD  
POWER SUPPLY CURRENTS  
I2C high-speed mode, AVDD = 5 V  
I2C fast mode plus, AVDD = 5 V  
I2C fast mode, AVDD = 5 V  
260  
83  
35  
10  
5
430  
140  
57  
IAVDD  
Analog supply current  
µA  
I2C standard mode, AVDD = 5 V  
20  
No conversion, AVDD = 5 V  
15  
7.6 I2C Timing Requirements  
MODE  
HIGH-SPEED MODE  
FAST MODE  
UNIT  
MIN  
MAX  
MIN  
MAX  
fSCL  
SCL clock frequency(1)  
1
3.4  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUSTA  
tHDSTA  
tLOW  
tHIGH  
tSUDAT  
tHDDAT  
tR  
START condition setup time for repeated start  
Start condition hold time  
Clock low period  
260  
260  
500  
260  
50  
160  
160  
160  
60  
Clock high period  
Data in setup time  
10  
Data in hold time  
0
0
SCL rise time  
120  
120  
80  
80  
tF  
SCL fall time  
tSUSTO  
tBUF  
STOP condition hold time  
Bus free time before new transmission  
260  
500  
60  
300  
(1) Bus load (CB) consideration; CB 400 pF for fSCL 1 MHz; CB < 100 pF for fSCL = 3.4 MHz.  
7.7 Timing Requirements  
at AVDD = 2.35 V to 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and  
maximum values at TA = –40°C to +125°C; typical values at TA = 25°C.  
MIN  
MAX  
UNIT  
tACQ  
Acquisition time  
300  
ns  
7.8 I2C Switching Characteristics  
MODE  
HIGH-SPEED MODE  
FAST MODE  
MIN MAX  
UNIT  
MIN  
MAX  
200  
tVDDATA  
tVDACK  
SCL low to SDA data out valid  
450  
450  
ns  
ns  
SCL low to SDA acknowledge time  
200  
Clock stretch time in one-shot conversion mode; during ADC  
conversion  
tSTRETCH  
tSP  
1200  
50  
950  
10  
ns  
ns  
Noise supression time constant on SDA and SCL  
Copyright © 2019, Texas Instruments Incorporated  
7
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
7.9 Switching Characteristics  
at AVDD = 2.35 V to 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and  
maximum values at TA = –40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
CONVERSION CYCLE  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Manual and auto  
sequence modes  
tSTRETCH  
550  
ns  
ns  
tCONV  
ADC conversion time  
Autonomous mode  
RESET AND ALERT  
tPU  
Power-up time for device  
AVDD 2.35 V  
5
5
ms  
ms  
Delay time; RST bit = 1b to device reset  
complete(1)  
tRST  
ALERT_LOGIC[1:0]  
= 1x  
tALERT_HI  
tALERT_LO  
ALERT high period  
ALERT low period  
85  
85  
105  
105  
ns  
ns  
ALERT_LOGIC[1:0]  
= 1x  
(1) RST bit is automatically reset to 0b after tRST  
.
9th clock  
tLOW  
tHIGH  
SCL  
tR  
tSUDAT  
tF  
tSUSTO  
tSTRETCH  
tHDSTA tHDDAT  
tSUSTA  
tSP  
SDA  
tBUF  
tVDDAT  
tVDACK  
P
S
Sr  
P
NOTE: S = start, Sr = repeated start, and P = stop.  
1. I2C Timing Diagram  
8
版权 © 2019, Texas Instruments Incorporated  
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8 Detailed Description  
8.1 Overview  
The ADS7138 is a small, eight-channel, multiplexed, 12-bit, analog-to-digital converter (ADC) with an I2C-  
compatible serial interface. The eight channels of the ADS7138 can be individually configured as either analog  
inputs, digital inputs, or digital outputs. The device includes a digital comparator with a dedicated alert pin that  
can be used to interrupt the host when a programmed high or low threshold is crossed on any input channel. The  
device uses an internal oscillator for conversion. The ADC can be used in the manual mode for reading ADC  
data over the I2C interface or in autonomous mode for monitoring the analog inputs without an active I2C  
interface.  
The device features a programmable averaging filter that outputs a 16-bit result for enhanced resolution.  
The I2C serial interface supports standard-mode, fast-mode, fast-mode plus, and high-speed mode. The device  
also features an 8-bit cyclic redundancy check (CRC) for the serial communication interface.  
8.2 Functional Block Diagram  
DECAP  
AVDD  
High/Low Threshold  
± Hysteresis  
DVDD  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
ALERT  
Programmable  
Averaging Filter  
ADC  
Digital Window  
Comparator  
MUX  
ADDR  
Sequencer  
Pin CFG  
I2C Interface  
CRC  
SDA  
SCL  
GPO Write  
GPI Read  
GND  
版权 © 2019, Texas Instruments Incorporated  
9
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Multiplexer and ADC  
The eight channels of the multiplexer can be independently configured as ADC inputs or general-purpose  
inputs/outputs (GPIOs). 2 shows that each input pin has electrostatic discharge (ESD) protection diodes to  
AVDD and GND. On power-up or after device reset, all eight multiplexer channels are configured as analog  
inputs.  
2 shows an equivalent circuit for pins configured as analog inputs. The ADC sampling switch is represented  
by an ideal switch (SW) in series with the resistor, RSW (typically 150 Ω), and the sampling capacitor, CSH  
(typically 12 pF).  
Pin CFG  
AVDD  
GPIO0  
AIN0 / GPIO0  
RSW  
SW  
MUX  
CSH  
AVDD  
ADC  
GPIO7  
AIN7 / GPIO7  
Multiplexer  
2. Analog Inputs, GPIOs, and ADC Connections  
During acquisition, the SW switch is closed to allow the signal on the selected analog input channel to charge the  
internal sampling capacitor. During conversion, the SW switch is opened to disconnect the analog input channel  
from the sampling capacitor.  
The multiplexer channels can be configured as GPIOs in the PIN_CFG register. The direction of a GPIO (either  
as an input or an output) can be set in the GPIO_CFG register. The logic level on the channels configured as  
digital inputs can be read from the GPI_VALUE register. The digital outputs can be accessed by writing to the  
GPO_OUTPUT_VALUE register. The digital outputs can be configured as either open-drain or push-pull in the  
GPO_DRIVE_CFG register.  
8.3.2 Reference  
The device uses the analog supply voltage (AVDD) as a reference for the analog-to-digital conversion process.  
TI recommends connecting a 1-µF, low-equivalent series resistance (ESR) ceramic decoupling capacitor  
between the AVDD and GND pins.  
8.3.3 ADC Transfer Function  
The ADC output is in straight binary format. 公式 1 computes the ADC resolution:  
1 LSB = VREF / 2N  
where:  
VREF = AVDD  
N = 12  
(1)  
3 and 1 detail the transfer characteristics for the device.  
10  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Feature Description (接下页)  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
1 LSB  
AVDD/2 (AVDD/2 + 1 LSB)  
(AVDD œ 1 LSB)  
3. Ideal Transfer Characteristics  
1. Transfer Characteristics  
INPUT VOLTAGE  
1 LSB  
CODE  
NFSC  
DESCRIPTION  
IDEAL OUTPUT CODE  
Negative full-scale code  
000  
001  
800  
801  
FFF  
1 LSB to 2 LSBs  
NFSC + 1  
Mid code  
(AVDD / 2) to (AVDD / 2) + 1 LSB  
(AVDD / 2) + 1 LSB to (AVDD / 2) + 2 LSB  
AVDD – 1 LSB  
MC  
MC + 1  
PFSC  
Positive full-scale code  
8.3.4 ADC Offset Calibration  
The variation in ADC offset error resulting from changes in temperature or AVDD can be calibrated by setting the  
CAL bit in the GENERAL_CFG register. The CAL bit is reset to 0 after calibration. The host can poll the CAL bit  
to check the ADC offset calibration completion status.  
8.3.5 I2C Address Selector  
The I2C address for the device is determined by connecting external resistors on the ADDR pin. The device  
address is determined at power-up based on the resistor values. The device retains this address until the next  
power-up event, until the next device reset, or until the device receives a command to program its own address.  
4 shows a connection diagram for the ADDR pin and 2 lists the resistor values for selecting different  
addresses of the device.  
DECAP Pin  
R1  
ADDR  
R2  
4. External Resistor Connection Diagram for the ADDR Pin  
版权 © 2019, Texas Instruments Incorporated  
11  
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
2. I2C Address Selection  
RESISTORS  
ADDRESS  
R1(1)  
0 Ω  
R2(1)  
DNP(2)  
DNP(2)  
DNP(2)  
001 0111b (17h)  
001 0110b (16h)  
001 0101b (15h)  
001 0100b (14h)  
001 0000b (10h)  
001 0001b (11h)  
001 0010b (12h)  
001 0011b (13h)  
11 kΩ  
33 kΩ  
100 kΩ  
DNP(2)  
DNP(2)  
DNP(2)  
DNP(2)  
DNP(2)  
0 Ω or DNP(2)  
11 kΩ  
33 kΩ  
100 kΩ  
(1) Tolerance for R1, R2 ±5%.  
(2) DNP = Do not populate.  
8.3.6 Programmable Averaging Filter  
The ADS7138 features a built-in oversampling (OSR) function that can be used to average several samples. The  
averaging filter can be enabled by programming the OSR[2:0] bits in the OSR_CFG register. The averaging filter  
configuration is common to all analog input channels. 5 shows that the averaging filter module output is 16  
bits long. In the manual conversion mode and auto-sequence mode, only the first conversion for the selected  
analog input channel must be initiated by the host; see the Manual Mode and Auto-Sequence Mode sections. As  
shown in 5, any remaining conversions for the selected averaging factor are generated internally. The time  
required to complete the averaging operation is determined by the sampling speed and number of samples to be  
averaged. As shown in 5, the 16-bit result can be read out after the averaging operation completes.  
Sample AINX  
Sample AINX  
Sample AINX  
Sample AINX OSR_DONE = 1  
S
7-bit ADDR  
R
A
Bus idle or Poll OSR_DONE bit  
DATA[15:8]  
A
DATA[7:0]  
A
OSR_DONE = 0  
OSR_CFG[2:0] = 2  
Time = tCONV x OSR_CFG[2:0]  
Data from host to device  
Data from device to host  
5. Averaging Example  
In 5, SCL is stretched by the device after the start of conversions until the averaging operation is complete.  
If SCL stretching is not required during averaging, enable the statistics registers by setting STATS_EN to 1b and  
initiate conversions by writing 1b to the CNVST bit. The OSR_DONE bit in the SYSTEM_STATUS register can  
be polled to check the averaging completion status. When using the CNVST bit to initiate conversion, the result  
can be read in the RECENT_CHx_LSB and RECENT_CHx_MSB registers.  
In the autonomous mode of operation, samples from the analog input channels that are enabled in the  
AUTO_SEQ_CH_SEL register are averaged sequentially; see the Autonomous Mode section. The digital window  
comparator compares the top 12 bits of the 16-bit average result with the thresholds.  
公式 2 provides the LSB value of the 16-bit average result.  
AVDD  
216  
1 LSB =  
(2)  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.3.7 CRC on Data Interface  
The ADS7138 features a cyclic redundancy check (CRC) module for checking the integrity of the data bits  
exchanged over the I2C interface. The CRC module is bidirectional and appends an 8-bit CRC to every byte read  
from the device while also evaluating the CRC of every incoming byte over the I2C interface. The CRC module  
uses the CRC-8-CCITT polynomial (x8 + x2 + x + 1) for CRC computation.  
To enable the CRC module, set the CRC_EN bit in the GENERAL_CFG register. 3 shows how a CRC error  
can be detected when configuring the ADS7138.  
3. Configuration Notifications When a CRC Error is Detected  
CRC ERROR NOTIFICATION  
CONFIGURATION  
DESCRIPTION  
ALERT pin  
ALERT_CRCIN = 1b  
ALERT pin is asserted if a CRC error is detected by the device.  
4-bit status flags are appended to the ADC data; see the Output Data  
Format section for details.  
Status flags  
APPEND_STATUS = 10b  
Register read  
Read the CRC_ERR_IN bit to check if a CRC error is detected.  
When the ADS7138 detects a CRC error, the erroneous data are ignored and the CRC_ERR_IN bit is set. 3  
describes the additional notifications that can be enabled. Further register writes are disabled until the  
CRC_ERR_IN bit is cleared by writing 1b to it. When using autonomous mode, further conversions can be  
disabled on the CRC error by setting CONV_ON_ERR to 1b; see the Autonomous Mode section.  
8.3.8 General-Purpose I/Os (GPIOs)  
The eight channels of the ADS7138 can be independently configured as analog inputs, digital inputs, or digital  
outputs. 4 describes how the PIN_CFG and GPIO_CFG registers can be used to configure the channels.  
4. Configuring Channels as Analog Inputs or GPIOs  
GPO_DRIVE_CF  
PIN_CFG[7:0]  
GPIO_CFG[7:0]  
CHANNEL CONFIGURATION  
G[7:0]  
0
1
1
1
x
0
1
1
x
x
0
1
Analog input (default)  
Digital input  
Digital output; open-drain driver  
Digital output; push-pull driver  
The digital outputs can be configured to logic 1 or 0 by writing to the GPO_OUTPUT_VALUE register. Reading  
the GPI_VALUE register returns the logic level for all channels configured as digital inputs.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.3.9 Oscillator and Timing Control  
The device uses an internal oscillator for conversions. When using the averaging module, the host initiates the  
first conversion and all subsequent conversions are generated internally by the device. 5 shows that when the  
device generates the start of the conversion, the sampling rate is controlled by the OSC_SEL and CLK_DIV[3:0]  
register fields.  
5. Configuring Sampling Rate for Internal Conversion Start Control  
OSC_SEL = 0  
OSC_SEL = 1  
CLK_DIV[3:0]  
SAMPLING FREQUENCY,  
CYCLE TIME,  
tCYCLE (µs)  
SAMPLING FREQUENCY, fCYCLE  
(kSPS)  
CYCLE TIME, tCYCLE  
(µs)  
fCYCLE (kSPS)  
1000  
666.7  
500  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1
1.5  
2
31.25  
20.83  
15.63  
10.42  
7.81  
5.21  
3.91  
2.60  
1.95  
1.3  
32  
48  
64  
333.3  
250  
3
96  
4
128  
192  
256  
384  
512  
768  
1024  
1536  
2048  
3072  
166.7  
125  
6
8
83  
12  
16  
24  
32  
48  
64  
96  
62.5  
41.7  
31.3  
0.98  
0.65  
0.49  
0.33  
20.8  
15.6  
10.4  
The conversion time of the device (see tCONV in the Switching Characteristics table) is independent of the  
OSC_SEL and CLK_DIV[3:0] configuration.  
8.3.10 Output Data Format  
6 illustrates various I2C frames for reading data.  
Read the ADC conversion result: Two 8-bit I2C packets are required (frame A).  
Read the averaged conversion result: Two 8-bit I2C packets are required (frame B).  
Read data with the channel ID appended: The 4-bit channel ID can be appended to the 12-bit ADC result by  
configuring the APPEND_STATUS field in the GENERAL_CFG register. When the channel ID appended to  
the 12-bit ADC data, two I2C packets are required (frame C). If the channel ID appended to the 16-bit average  
result, three I2C frames are required (frame D).  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Sample A  
Sample A + 1  
S
S
7-bit Slave Address  
R
A
D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
A
D3  
D7  
D2  
D6  
D1  
D5  
D0  
D4  
0
0
0
0
A
A
Frame A : Reading ADC data  
7-bit Slave Address  
7-bit Slave Address  
7-bit Slave Address  
R
A
D15 D14 D13 D12 D11 D10 D9  
D8  
A
D3  
D2  
D1  
D0  
Frame B : Reading ADC data with averaging enabled  
4-bit Channel ID  
or Status Flags  
S
S
R
R
A
A
D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
A
D3  
D2  
D1  
D0  
A
A
Frame C : Reading ADC data with status flags or channel ID appended  
4-bit Channel ID  
or Status Flags  
D15 D14  
D8  
A
D7  
D6  
D0  
A
0
0
0
0
Frame D : Reading ADC data with averaging enabled &  
status flags or channel ID appended  
Clock stretching for conversion time  
Data from host to device  
Data from device to host  
6. Data Frames for Reading Data  
When status flags are enabled, APPEND_STATUS is set to 10b and four bits are appended to the ADC output.  
The device outputs status flags in this order: {1b, 0b, CRCERR_IN, ALERT}. The level transitions on the digital  
interface, resulting from the fixed 1b and 0b in the status flags, can be used to detect if the digital outputs are  
shorted to a fixed voltage in the system. The CRCERR_IN flag reflects the corresponding bit in the  
GENERAL_CFG register. The ALERT flag is the output of the logical OR of the bits in the EVENT_FLAG  
register.  
8.3.11 Digital Window Comparator  
The internal digital window comparator (DWC) is available in all functional modes of the device (see the Device  
Functional Modes section for details). The digital window comparator controls output of the ALERT pin buffer.  
The ALERT pin can be configured as open-drain (default) or push-pull output using the ALERT_DRIVE bit in the  
ALERT_PIN_CFG register. 7 shows a block diagram for the digital window comparator.  
ALERT_CH_SEL[7]  
EVENT_RGN[7]  
ALERT_CH_SEL[0]  
Digital input CH0  
EVENT_RGN[0]  
ALERT  
12-bit ADC data  
or  
[15:4] Average result  
High threshold -  
Hysteresis  
EVENT_HIGH_FLAG  
EVENT_LOW_FLAG  
Event  
Counter  
MUX  
Averager  
1 to 128  
ADC  
Low threshold +  
Hysteresis  
PIN_CFG  
All registers are specific for  
individual analog input channels  
7. Digital Window Comparator Block Diagram  
版权 © 2019, Texas Instruments Incorporated  
15  
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
The low-side threshold, high-side threshold, event counter, and hysteresis parameters are independently  
programmable for each input channel. 8 shows the events that can be monitored for every analog input  
channel by the window comparator.  
0xFFF  
0xFFF  
High threshold -  
Hysteresis  
Signal above limit  
High threshold -  
Hysteresis  
Low threshold +  
Hysteresis  
Signal below limit  
Low threshold +  
Hysteresis  
0x000  
0xFFF  
0x000  
0xFFF  
Samples  
Samples  
Signal out of band  
High threshold -  
Hysteresis  
High threshold -  
Hysteresis  
Signal in band  
DWC_CH_POL = 0  
Low threshold +  
Hysteresis  
Low threshold +  
Hysteresis  
DWC_CH_POL = 1  
Signal out of band  
0x000  
0x000  
Samples  
Samples  
8. Event Monitoring With the Window Comparator  
To enable the digital window comparator, set the DWC_EN bit in the GENERAL_CFG register. By default,  
hysteresis is 0, the high threshold is 0xFFF, and the low threshold is 0x000. A 12-bit straight binary code cannot  
be higher than 0xFFF or lower than 0x000, thus the thresholds have no effect unless set to different values. 8  
shows the various types of event that can be detected by adjusting the thresholds. For detecting when a signal is  
in-band, the EVENT_RGN register must be configured. In each of the cases shown in 8, either or both  
EVENT_HIGH_FLAG and EVENT_LOW_FLAG can be set.  
The programmable event counter counts consecutive thresholds violations before alert flags can be set. The  
event count can be set to a higher value to avoid transients in the input signal setting the alert flags.  
In order to assert the ALERT pin when the alert flag is set for a particular analog input channel, set the  
corresponding bit in the ALERT_CH_SEL register. Alert flags are set regardless of the ALERT_CH_SEL  
configuration if DWC_EN is 1 and the high or low thresholds are exceeded.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.3.11.1 Interrupts From Digital Inputs  
Logic 1 or logic 0 events can detected on channels configured as digital inputs, as shown in 6, by enabling the  
corresponding ALERT_CH_SEL bit.  
6. Configuring Interrupts From Digital Inputs  
ALERT_CH_SEL[7:  
PIN_CFG[7:0] GPIO_CFG[7:0]  
EVENT_RGN [7:0]  
EVENT DESCRIPTION  
0]  
EVENT_HIGH_FLAG is set when digital input channel is at  
logic 1.  
1
1
0
0
1
0
1
EVENT_LOW_FLAG is set when digital input channel is at  
logic 0.  
1
8.3.11.2 Changing Digital Outputs on Alert  
9 shows how digital outputs can be updated in response to alerts from individual channels.  
Digital output 7  
Digital output 0  
Select alerts on which channels  
should be enabled as triggers  
GPO0_TRIG_EVENT_SEL[7:0]  
trigger  
GPO_TRIGGER_UPDATE_EN [0]  
Enable the triggers  
0
1
GPO_OUTPUT_VALUE [0]  
GPO_VALUE_ON_TRIGGER [0]  
9. Block Diagram for the Digital Output Logic  
8.3.11.2.1 Changing Digital Outputs on Alerts  
Any given digital output can be updated in response to an alert condition on one or more analog inputs and  
digital inputs. To update the digital output in response to alert conditions, the trigger must be configured and the  
value must be launched on the trigger.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.3.11.2.1.1 Trigger  
The following events can act as triggers for updating the value on the digital output:  
An alert occurs on one or more analog input channels. The digital window comparator must be enabled for  
these channels.  
An alert occurs on one or more digital input channels. The digital window comparator must be enabled for  
these channels.  
Configure the GPOx_TRIG_EVENT_SEL register to select which channels, analog inputs, or digital inputs can  
trigger an update on the digital output pin. After configuring the triggers for updating a digital output, the logic can  
be enabled by configuring the corresponding bit in the GPO_TRIGGER_UPDATE_EN register.  
8.3.11.2.1.2 Output Value  
The digital outputs can be set to logic 1 or logic 0 in response to the triggers. The value to be updated on the  
digital output when a trigger event occurs can be configured in the GPO_VALUE_ON_TRIGGER register.  
8.3.12 Minimum, Maximum, and Latest Data Registers  
The ADS7138 can record the minimum, maximum, and latest code (statistics registers) for every analog input  
channel. To enable or re-enable recording statistics, set the STATS_EN bit in the GENERAL_CFG register.  
Writing 1 to the STATS_EN bit reinitializes the statistics module, after which results from new conversions are  
recorded in the statistics registers. Until a new conversion result is available, previous values can be read from  
the statistics registers. Before reading the statistics registers, set STATS_EN to 0 to prevent any updates to this  
register block.  
8.3.13 I2C Protocol Features  
8.3.13.1 General Call  
On receiving a general call (00h), the device provides an acknowledge (ACK).  
8.3.13.2 General Call With Software Reset  
On receiving a general call (00h) followed by a software reset (06h), the device resets itself.  
8.3.13.3 General Call With a Software Write to the Programmable Part of the Slave Address  
On receiving a general call (00h) followed by 04h, the device reevaluates its own I2C address configured by the  
ADDR pin. During this operation, the device does not respond to other I2C commands except the general-call  
command.  
8.3.13.4 Configuring the Device for High-Speed I2C Mode  
The device can be configured in high-speed I2C mode by providing an I2C frame with one of these codes: 0x09,  
0x0B, 0x0D, or 0x0F.  
After receiving one of these codes, the device sets the I2C_HIGH_SPEED bit in the SYSTEM_STATUS register  
and remains in high-speed I2C mode until a STOP condition is received in an I2C frame.  
8.4 Device Functional Modes  
7 lists the functional modes supported by the ADS7138.  
7. Functional Modes  
FUNCTIONAL  
CONVERSION CONTROL  
MUX CONTROL  
CONV_MODE[1:0]  
SEQ_MODE[1:0]  
MODE  
Manual  
9th falling edge of SCL (ACK)  
9th falling edge of SCL (ACK)  
Internal to the device  
Register write to MANUAL_CHID  
Channel sequencer  
00b  
00b  
01b  
00b  
01b  
01b  
Auto-sequence  
Autonomous  
Channel sequencer  
18  
版权 © 2019, Texas Instruments Incorporated  
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
The device powers up in manual mode (see the Manual Mode section) and can be configured into any mode  
listed in 7 by writing the configuration registers for the desired mode.  
8.4.1 Device Power-Up and Reset  
On power-up, the device calculates the address from the resistors connected on the ADDR pin and the BOR bit  
is set, thus indicating a power-cycle or reset event.  
The device can be reset by an I2C general call (00h) followed by a software reset (06h), by setting the RST bit, or  
by recycling the power on the AVDD pin.  
8.4.2 Manual Mode  
Manual mode allows the external host processor to directly select the analog input channel. 10 lists the steps  
for operating the device in manual mode.  
Idle  
SEQ_MODE = 0  
CONV_MODE = 0  
Configure channels as AIN/GPIO using PIN_CFG  
Select Manual mode  
(CONV_MODE = 00b, SEQ_MODE = 00b)  
Configure desired Channel ID in MANUAL_CHID field  
Host provides Conversion Start Frame on I2C Bus  
Host provides Conversion Read Frame on I2C Bus  
No  
Yes  
Same  
Channel ID?  
Manual mode with channel selection using register write  
10. Device Operation in Manual Mode  
Provide an I2C start or restart frame to initiate a conversion, as shown in the conversion start frame of 11,  
after configuring the device registers. ADC data can be read in subsequent I2C frames. The number of I2C  
frames required to read conversion data depends on the output data frame size; see the Output Data Format  
section for more details. A new conversion is initiated on the ninth falling edge of SCL (ACK bit) when the last  
byte of output data is read.  
Sample A + 1  
Sample A  
S
7-bit Slave Address  
R
A
8 bit I2C frame  
A
8 bit I2C frame  
A
8 bit I2C frame  
A
8 bit I2C frame  
A
Clock stretching for conversion time  
Clock stretching for conversion time  
Data from host to device  
Data from device to host  
11. Starting a Conversion and Reading Data in Manual Mode  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.4.3 Auto-Sequence Mode  
In auto-sequence mode, the internal channel sequencer switches the multiplexer to the next analog input  
channel after every conversion. The desired analog input channels can be configured for sequencing in the  
AUTO_SEQ_CHSEL register. To enable the channel sequencer, set SEQ_START to 1b. After every conversion,  
the channel sequencer switches the multiplexer to the next analog input in ascending order. To stop the channel  
sequencer from selecting channels, set SEQ_START to 0b. 12 lists the conversion start and read frames for  
auto-sequence mode.  
Idle  
SEQ_MODE = 0  
CONV_MODE = 0  
Configure channels as AIN/GPIO using PIN_CFG  
Enable analog inputs for sequencing (AUTO_SEQ_CHSEL)  
Select Auto-sequence mode (SEQ_MODE = 01b)  
(optional) Configure alert conditions  
(optional) Append Channel ID to data using APPEND_STATUS  
Enable channel sequencing SEQ_START = 1  
Host provides Conversion Start Frame on I2C Bus  
Host provides Conversion Read Frame on I2C Bus  
Device selects next channel according to AUTO_SEQ_CHSEL  
Yes  
Continue?  
No  
Disable channel sequencing SEQ_START = 0  
Idle  
12. Device Operation in Auto-Sequence Mode  
8.4.4 Autonomous Mode  
In autonomous mode, the device can be programmed to monitor the voltage applied on the analog input pins of  
the device and generate a signal on the ALERT pin when the programmable high or low threshold values are  
crossed. In this mode, the device generates the start of conversion using the internal oscillator. The first start of  
conversion must be provided by the host and the device then generates the subsequent start of conversions.  
13 shows the steps for configuring the operation mode to autonomous mode. Abort the ongoing sequence by  
setting SEQ_START to 0b before changing the functional mode or device configuration.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Idle  
SEQ_MODE = 0  
CONV_MODE = 0  
Configure channels as AIN/GPIO using GPIO_CFG  
Channel  
selection  
Enable analog inputs for sequencing (AUTO_SEQ_CHSEL)  
Select Auto-sequence mode (SEQ_MODE = 01b)  
Configure alert condition using HIGH_THRESHOLD_CHx,  
LOW_THRESHOLD_CHx,EVENT_COUNT, HYSTERESIS_CHx, and  
EVENT_REGION_CHx fields  
Threshold & Alert  
configuration  
Enable analog inputs to trigger ALERT pinusing ALERT_CH_SEL  
Configure ALERT pin behavior using ALERT_DRIVE and ALERT_LOGIC  
Configuration  
Configure sampling rate of analog inputsusing OSC_SEL and CLK_DIV  
Set mode to autonomous monitoring (CONV_MODE = 01b)  
Sampling rate  
configuration  
(optional) Enable averaging and min/max recording (OSR[2:0] and STATS_EN)  
Enable threshold comparison (DWC_EN = 1)  
Enable autonomous monitoring (SEQ_START = 1)  
Active Operation  
(Host can sleep)  
No  
(optional) read conversion results in  
MIN_VALUE_CHx, MAX_VALUE_CHx, and  
LAST_VALUE_CHx registers  
ALERT?  
Yes  
Stop autonomous monitoring (SEQ_START = 0)  
Disable threshold comparison (DWC_EN = 0)  
ALERT Detected  
Read alert flags œ EVENT_FLAG, EVENT_HIGH_FLAG, EVENT_LOW_FLAG  
Clear alert flags œ EVENT_HIGH_FLAG, EVENT_LOW_FLAG  
13. Configuring the Device in Autonomous Mode  
版权 © 2019, Texas Instruments Incorporated  
21  
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.5 Programming  
8 provides the acronyms for different conditions in an I2C frame. 9 lists the various command opcodes.  
8. I2C Frame Acronyms  
SYMBOL  
DESCRIPTION  
Start condition for the I2C frame  
Restart condition for the I2C frame  
Stop condition for the I2C frame  
ACK (low)  
S
Sr  
P
A
N
R
W
NACK (high)  
Read bit (high)  
Write bit (low)  
9. Opcodes for Commands  
OPCODE  
0001 0000b  
0000 1000b  
0001 1000b  
0010 0000b  
0011 0000b  
0010 1000b  
COMMAND DESCRIPTION  
Single register read  
Single register write  
Set bit  
Clear bit  
Reading a continuous block of registers  
Writing a continuous block of registers  
8.5.1 Reading Registers  
The I2C master can either read a single register or a continuous block registers from the device, as described in  
the Single Register Read and Reading a Continuous Block of Registers sections.  
8.5.1.1 Single Register Read  
To read a single register from the device, the I2C master must provide an I2C command with three frames to set  
the register address for reading data. 9 lists the opcodes for different commands. After this command is  
provided, the I2C master must provide another I2C frame (as shown in 14) containing the device address and  
the read bit. After this frame, the device provides the register data. The device provides the same register data  
even if the host provides more clocks. To end the register read command, the master must provide a STOP or a  
RESTART condition in the I2C frame.  
Register  
Address  
S
7-bit Slave Address  
W
A
0001 0000b  
A
A
P/Sr  
S
7-bit Slave Address  
R
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
14. Reading Register Data  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.5.1.2 Reading a Continuous Block of Registers  
To read a continuous block of registers, the I2C master must provide an I2C command to set the register  
address. The register address is the address of the first register in the block that must be read. After this  
command is provided, the I2C master must provide another I2C frame, as shown in 15, containing the device  
address and the read bit. After this frame, the device provides the register data. The device provides data for the  
next register when more clocks are provided. When data are read from addresses that do not exist in the register  
map of the device, the device returns zeros. If the device does not have any further registers to provide data on,  
the device provide zeros. To end the register read command, the master must provide a STOP or a RESTART  
condition in the I2C frame.  
1st Reg Address  
in the Block  
S
7-bit Slave Address  
W
A
0011 0000b  
A
A
P/Sr  
S
7-bit Slave Address  
R
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
15. Reading a Continuous Block of Registers  
8.5.2 Writing Registers  
The I2C master can either write a single register or a continuous block of registers to the device, set a few bits in  
a register, or clear a few bits in a register.  
8.5.2.1 Single Register Write  
To write a single register from the device, as shown in 16, the I2C master must provide an I2C command with  
four frames. The register address is the address of the register that must be written and the register data is the  
value that must be written. 9 lists the opcodes for different commands. To end the register write command, the  
master must provide a STOP or a RESTART condition in the I2C frame.  
Register  
Address  
S
7-bit Slave Address  
W
A
0000 1000b  
A
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
16. Writing a Single Register  
8.5.2.2 Set Bit  
The I2C master must provide an I2C command with four frames, as shown in 16, to set bits in a register  
without changing the other bits. The register address is the address of the register that the bits must set and the  
register data is the value representing the bits that must be set. Bits with a value of 1 in the register data are set  
and bits with a value of 0 in the register data are not changed. 9 lists the opcodes for different commands. To  
end this command, the master must provide a STOP or RESTART condition in the I2C frame.  
8.5.2.3 Clear Bit  
The I2C master must provide an I2C command with four frames, as shown in 16, to clear bits in a register  
without changing the other bits. The register address is the address of the register that the bits must clear and  
the register data is the value representing the bits that must be cleared. Bits with a value of 1 in the register data  
are cleared and bits with a value of 0 in the register data are not changed. 9 lists the opcodes for different  
commands. To end this command, the master must provide a STOP or a RESTART condition in the I2C frame.  
Copyright © 2019, Texas Instruments Incorporated  
23  
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.5.2.4 Writing a Continuous Block of Registers  
The I2C master must provide an I2C command, as shown in 17, to write a continuous block of registers. The  
register address is the address of the first register in the block that must be written. The I2C master must provide  
data for registers in subsequent I2C frames in an ascending order of register addresses. Writing data to  
addresses that do not exist in the register map of the device have no effect. 9 lists the opcodes for different  
commands. If the data provided by the I2C master exceeds the address space of the device, the device ignores  
the data beyond the address space. To end the register write command, the master must provide a STOP or a  
RESTART condition in the I2C frame.  
1st Reg Address  
in the block  
S
7-bit Slave Address  
W
A
0010 1000b  
A
A
Register Data  
A
P/Sr  
Data from host to device  
Data from device to host  
NOTE: S = start, Sr = repeated start, and P = stop.  
17. Writing a Continuous Block of Registers  
24  
Copyright © 2019, Texas Instruments Incorporated  
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6 ADS7138 Registers  
Table 10 lists the ADS7138 registers. All register offset addresses not listed in Table 10 should be considered as  
reserved locations and the register contents should not be modified.  
Table 10. ADS7138 Registers  
Address  
Acronym  
Register  
Name  
Section  
0x0  
0x1  
SYSTEM_STATUS  
GENERAL_CFG  
DATA_CFG  
SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]  
GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
DATA_CFG Register (Address = 0x2) [reset = 0x0]  
0x2  
0x3  
OSR_CFG  
OSR_CFG Register (Address = 0x3) [reset = 0x0]  
0x4  
OPMODE_CFG  
PIN_CFG  
OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
PIN_CFG Register (Address = 0x5) [reset = 0x0]  
0x5  
0x7  
GPIO_CFG  
GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
0x9  
GPO_DRIVE_CFG  
GPO_OUTPUT_VALUE  
GPI_VALUE  
GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_OUTPUT_VALUE Register (Address = 0xB) [reset = 0x0]  
GPI_VALUE Register (Address = 0xD) [reset = 0x0]  
0xB  
0xD  
0xF  
ZCD_BLANKING_CFG  
SEQUENCE_CFG  
CHANNEL_SEL  
AUTO_SEQ_CH_SEL  
ALERT_CH_SEL  
ALERT_MAP  
ZCD_BLANKING_CFG Register (Address = 0xF) [reset = 0x0]  
SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]  
ALERT_CH_SEL Register (Address = 0x14) [reset = 0x0]  
ALERT_MAP Register (Address = 0x16) [reset = 0x0]  
ALERT_PIN_CFG Register (Address = 0x17) [reset = 0x0]  
EVENT_FLAG Register (Address = 0x18) [reset = 0x0]  
EVENT_HIGH_FLAG Register (Address = 0x1A) [reset = 0x0]  
EVENT_LOW_FLAG Register (Address = 0x1C) [reset = 0x0]  
EVENT_RGN Register (Address = 0x1E) [reset = 0x0]  
HYSTERESIS_CH0 Register (Address = 0x20) [reset = 0xF0]  
HIGH_TH_CH0 Register (Address = 0x21) [reset = 0xFF]  
EVENT_COUNT_CH0 Register (Address = 0x22) [reset = 0x0]  
LOW_TH_CH0 Register (Address = 0x23) [reset = 0x0]  
HYSTERESIS_CH1 Register (Address = 0x24) [reset = 0xF0]  
HIGH_TH_CH1 Register (Address = 0x25) [reset = 0xFF]  
EVENT_COUNT_CH1 Register (Address = 0x26) [reset = 0x0]  
LOW_TH_CH1 Register (Address = 0x27) [reset = 0x0]  
HYSTERESIS_CH2 Register (Address = 0x28) [reset = 0xF0]  
HIGH_TH_CH2 Register (Address = 0x29) [reset = 0xFF]  
EVENT_COUNT_CH2 Register (Address = 0x2A) [reset = 0x0]  
LOW_TH_CH2 Register (Address = 0x2B) [reset = 0x0]  
HYSTERESIS_CH3 Register (Address = 0x2C) [reset = 0xF0]  
HIGH_TH_CH3 Register (Address = 0x2D) [reset = 0xFF]  
EVENT_COUNT_CH3 Register (Address = 0x2E) [reset = 0x0]  
LOW_TH_CH3 Register (Address = 0x2F) [reset = 0x0]  
HYSTERESIS_CH4 Register (Address = 0x30) [reset = 0xF0]  
HIGH_TH_CH4 Register (Address = 0x31) [reset = 0xFF]  
EVENT_COUNT_CH4 Register (Address = 0x32) [reset = 0x0]  
LOW_TH_CH4 Register (Address = 0x33) [reset = 0x0]  
HYSTERESIS_CH5 Register (Address = 0x34) [reset = 0xF0]  
HIGH_TH_CH5 Register (Address = 0x35) [reset = 0xFF]  
0x10  
0x11  
0x12  
0x14  
0x16  
0x17  
0x18  
0x1A  
0x1C  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
ALERT_PIN_CFG  
EVENT_FLAG  
EVENT_HIGH_FLAG  
EVENT_LOW_FLAG  
EVENT_RGN  
HYSTERESIS_CH0  
HIGH_TH_CH0  
EVENT_COUNT_CH0  
LOW_TH_CH0  
HYSTERESIS_CH1  
HIGH_TH_CH1  
EVENT_COUNT_CH1  
LOW_TH_CH1  
HYSTERESIS_CH2  
HIGH_TH_CH2  
EVENT_COUNT_CH2  
LOW_TH_CH2  
HYSTERESIS_CH3  
HIGH_TH_CH3  
EVENT_COUNT_CH3  
LOW_TH_CH3  
HYSTERESIS_CH4  
HIGH_TH_CH4  
EVENT_COUNT_CH4  
LOW_TH_CH4  
HYSTERESIS_CH5  
HIGH_TH_CH5  
Copyright © 2019, Texas Instruments Incorporated  
25  
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 10. ADS7138 Registers (continued)  
Address  
Acronym  
Register  
Name  
Section  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
EVENT_COUNT_CH5  
LOW_TH_CH5  
EVENT_COUNT_CH5 Register (Address = 0x36) [reset = 0x0]  
LOW_TH_CH5 Register (Address = 0x37) [reset = 0x0]  
HYSTERESIS_CH6 Register (Address = 0x38) [reset = 0xF0]  
HIGH_TH_CH6 Register (Address = 0x39) [reset = 0xFF]  
EVENT_COUNT_CH6 Register (Address = 0x3A) [reset = 0x0]  
LOW_TH_CH6 Register (Address = 0x3B) [reset = 0x0]  
HYSTERESIS_CH7 Register (Address = 0x3C) [reset = 0xF0]  
HIGH_TH_CH7 Register (Address = 0x3D) [reset = 0xFF]  
EVENT_COUNT_CH7 Register (Address = 0x3E) [reset = 0x0]  
LOW_TH_CH7 Register (Address = 0x3F) [reset = 0x0]  
MAX_CH0_LSB Register (Address = 0x60) [reset = 0x0]  
MAX_CH0_MSB Register (Address = 0x61) [reset = 0x0]  
MAX_CH1_LSB Register (Address = 0x62) [reset = 0x0]  
MAX_CH1_MSB Register (Address = 0x63) [reset = 0x0]  
MAX_CH2_LSB Register (Address = 0x64) [reset = 0x0]  
MAX_CH2_MSB Register (Address = 0x65) [reset = 0x0]  
MAX_CH3_LSB Register (Address = 0x66) [reset = 0x0]  
MAX_CH3_MSB Register (Address = 0x67) [reset = 0x0]  
MAX_CH4_LSB Register (Address = 0x68) [reset = 0x0]  
MAX_CH4_MSB Register (Address = 0x69) [reset = 0x0]  
MAX_CH5_LSB Register (Address = 0x6A) [reset = 0x0]  
MAX_CH5_MSB Register (Address = 0x6B) [reset = 0x0]  
MAX_CH6_LSB Register (Address = 0x6C) [reset = 0x0]  
MAX_CH6_MSB Register (Address = 0x6D) [reset = 0x0]  
MAX_CH7_LSB Register (Address = 0x6E) [reset = 0x0]  
MAX_CH7_MSB Register (Address = 0x6F) [reset = 0x0]  
MIN_CH0_LSB Register (Address = 0x80) [reset = 0xFF]  
MIN_CH0_MSB Register (Address = 0x81) [reset = 0xFF]  
MIN_CH1_LSB Register (Address = 0x82) [reset = 0xFF]  
MIN_CH1_MSB Register (Address = 0x83) [reset = 0xFF]  
MIN_CH2_LSB Register (Address = 0x84) [reset = 0xFF]  
MIN_CH2_MSB Register (Address = 0x85) [reset = 0xFF]  
MIN_CH3_LSB Register (Address = 0x86) [reset = 0xFF]  
MIN_CH3_MSB Register (Address = 0x87) [reset = 0xFF]  
MIN_CH4_LSB Register (Address = 0x88) [reset = 0xFF]  
MIN_CH4_MSB Register (Address = 0x89) [reset = 0xFF]  
MIN_CH5_LSB Register (Address = 0x8A) [reset = 0xFF]  
MIN_CH5_MSB Register (Address = 0x8B) [reset = 0xFF]  
MIN_CH6_LSB Register (Address = 0x8C) [reset = 0xFF]  
MIN_CH6_MSB Register (Address = 0x8D) [reset = 0xFF]  
MIN_CH7_LSB Register (Address = 0x8E) [reset = 0xFF]  
MIN_CH7_MSB Register (Address = 0x8F) [reset = 0xFF]  
RECENT_CH0_LSB Register (Address = 0xA0) [reset = 0x0]  
RECENT_CH0_MSB Register (Address = 0xA1) [reset = 0x0]  
RECENT_CH1_LSB Register (Address = 0xA2) [reset = 0x0]  
RECENT_CH1_MSB Register (Address = 0xA3) [reset = 0x0]  
RECENT_CH2_LSB Register (Address = 0xA4) [reset = 0x0]  
HYSTERESIS_CH6  
HIGH_TH_CH6  
EVENT_COUNT_CH6  
LOW_TH_CH6  
HYSTERESIS_CH7  
HIGH_TH_CH7  
EVENT_COUNT_CH7  
LOW_TH_CH7  
MAX_CH0_LSB  
MAX_CH0_MSB  
MAX_CH1_LSB  
MAX_CH1_MSB  
MAX_CH2_LSB  
MAX_CH2_MSB  
MAX_CH3_LSB  
MAX_CH3_MSB  
MAX_CH4_LSB  
MAX_CH4_MSB  
MAX_CH5_LSB  
MAX_CH5_MSB  
MAX_CH6_LSB  
MAX_CH6_MSB  
MAX_CH7_LSB  
MAX_CH7_MSB  
MIN_CH0_LSB  
MIN_CH0_MSB  
MIN_CH1_LSB  
MIN_CH1_MSB  
MIN_CH2_LSB  
MIN_CH2_MSB  
MIN_CH3_LSB  
MIN_CH3_MSB  
MIN_CH4_LSB  
MIN_CH4_MSB  
MIN_CH5_LSB  
MIN_CH5_MSB  
MIN_CH6_LSB  
MIN_CH6_MSB  
MIN_CH7_LSB  
MIN_CH7_MSB  
RECENT_CH0_LSB  
RECENT_CH0_MSB  
RECENT_CH1_LSB  
RECENT_CH1_MSB  
RECENT_CH2_LSB  
26  
Copyright © 2019, Texas Instruments Incorporated  
ADS7138  
www.ti.com.cn  
Address  
ZHCSJS8 MAY 2019  
Table 10. ADS7138 Registers (continued)  
Acronym  
Register  
Name  
Section  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xC3  
0xC5  
0xC7  
0xC9  
0xCB  
0xCD  
0xCF  
0xD1  
0xE9  
0xEB  
RECENT_CH2_MSB  
RECENT_CH2_MSB Register (Address = 0xA5) [reset = 0x0]  
RECENT_CH3_LSB Register (Address = 0xA6) [reset = 0x0]  
RECENT_CH3_MSB Register (Address = 0xA7) [reset = 0x0]  
RECENT_CH4_LSB Register (Address = 0xA8) [reset = 0x0]  
RECENT_CH4_MSB Register (Address = 0xA9) [reset = 0x0]  
RECENT_CH5_LSB Register (Address = 0xAA) [reset = 0x0]  
RECENT_CH5_MSB Register (Address = 0xAB) [reset = 0x0]  
RECENT_CH6_LSB Register (Address = 0xAC) [reset = 0x0]  
RECENT_CH6_MSB Register (Address = 0xAD) [reset = 0x0]  
RECENT_CH7_LSB Register (Address = 0xAE) [reset = 0x0]  
RECENT_CH7_MSB Register (Address = 0xAF) [reset = 0x0]  
GPO0_TRIG_EVENT_SEL Register (Address = 0xC3) [reset = 0x2]  
GPO1_TRIG_EVENT_SEL Register (Address = 0xC5) [reset = 0x2]  
GPO2_TRIG_EVENT_SEL Register (Address = 0xC7) [reset = 0x2]  
GPO3_TRIG_EVENT_SEL Register (Address = 0xC9) [reset = 0x2]  
GPO4_TRIG_EVENT_SEL Register (Address = 0xCB) [reset = 0x2]  
GPO5_TRIG_EVENT_SEL Register (Address = 0xCD) [reset = 0x2]  
GPO6_TRIG_EVENT_SEL Register (Address = 0xCF) [reset = 0x2]  
GPO7_TRIG_EVENT_SEL Register (Address = 0xD1) [reset = 0x2]  
GPO_TRIGGER_CFG Register (Address = 0xE9) [reset = 0x0]  
GPO_VALUE_TRIG Register (Address = 0xEB) [reset = 0x0]  
RECENT_CH3_LSB  
RECENT_CH3_MSB  
RECENT_CH4_LSB  
RECENT_CH4_MSB  
RECENT_CH5_LSB  
RECENT_CH5_MSB  
RECENT_CH6_LSB  
RECENT_CH6_MSB  
RECENT_CH7_LSB  
RECENT_CH7_MSB  
GPO0_TRIG_EVENT_SEL  
GPO1_TRIG_EVENT_SEL  
GPO2_TRIG_EVENT_SEL  
GPO3_TRIG_EVENT_SEL  
GPO4_TRIG_EVENT_SEL  
GPO5_TRIG_EVENT_SEL  
GPO6_TRIG_EVENT_SEL  
GPO7_TRIG_EVENT_SEL  
GPO_TRIGGER_CFG  
GPO_VALUE_TRIG  
Complex bit access types are encoded to fit into small table cells. Table 11 shows the codes that are used for  
access types in this section.  
Table 11. ADS7138 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups form  
a hierarchical structure and the  
array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
Copyright © 2019, Texas Instruments Incorporated  
27  
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.6.1 SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]  
SYSTEM_STATUS is shown in Figure 18 and described in Table 12.  
Return to the Summary Table.  
Figure 18. SYSTEM_STATUS Register  
7
6
5
4
3
2
1
0
RSVD  
SEQ_STATUS  
I2C_SPEED  
RESERVED  
OSR_DONE  
CRC_ERR_FU CRC_ERR_IN  
SE  
BOR  
R-1b  
R-0b  
R-0b  
R-0b  
R/W-0b  
R-0b  
R/W-0b  
R/W-1b  
Table 12. SYSTEM_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
1b  
Description  
RSVD  
Reads return 1b.  
6
SEQ_STATUS  
R
0b  
Status of the channel sequencer.  
0b = Sequence stopped  
1b = Sequence in progress  
I2C high-speed status.  
5
I2C_SPEED  
R
0b  
0b = I2C bus is not in high-speed mode.  
1b = I2C bus is in high-speed mode.  
Reserved. Reads return 0.  
4
3
RESERVED  
OSR_DONE  
R
0b  
0b  
R/W  
Averaging status. Clear this bit by writing 1b to this bit.  
0b = Averaging in progress or not started; average result is not  
ready.  
1b = Averaging complete; average result is ready.  
2
1
CRC_ERR_FUSE  
CRC_ERR_IN  
R
0b  
0b  
Device power-up configuration CRC check status. To re-evaluate  
this bit, software reset the device or power cycle AVDD.  
0b = No problems detected in power-up configuration.  
1b = Device configuration not loaded correctly.  
R/W  
Status of CRC check on incoming data. Write 1b to clear this error  
flag.  
0b = No CRC error.  
1b = CRC error detected. All register writes, except to addresses  
0x00 and 0x01, are blocked.  
0
BOR  
R/W  
1b  
Brown out reset indicator. This bit is set if brown out condition occurs  
or device is power cycled. Write 1b to this bit to clear the flag.  
0b = No brown out from last time this bit was cleared.  
1b = Brown out condition detected or device power cycled.  
8.6.2 GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
GENERAL_CFG is shown in Figure 19 and described in Table 13.  
Return to the Summary Table.  
Figure 19. GENERAL_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CRC_EN  
R/W-0b  
STATS_EN  
R/W-0b  
DWC_EN  
R/W-0b  
CNVST  
W-0b  
CH_RST  
R/W-0b  
CAL  
RST  
W-0b  
R/W-0b  
28  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 13. GENERAL_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0b  
Description  
RESERVED  
CRC_EN  
Reserved. Reads return 0.  
Enable or disable the CRC on device interface.  
0b = CRC module disabled.  
6
R/W  
0b  
1b = CRC appended to data output. CRC check is enabled on  
incoming data.  
5
STATS_EN  
R/W  
0b  
Enable or disable the statistics module to update minimu, maximum,  
and latest output code registers.  
0b = Statistics registers are not updated.  
1b = Clear statistics registers and conitnue updating with new  
conversion results.  
4
3
DWC_EN  
CNVST  
R/W  
W
0b  
0b  
Enable or disable the digital window comparator.  
0b = Reset or disable the digital window comparator.  
1b = Enable the digital window comparator.  
Control start conversion on selected analog input. Readback of this  
bit returns 0b.  
0b = Normal operation; conversions starts on the 9th falling edge of  
I2C frame. Device stretches SCL until end of conversion or  
completion of averaging.  
1b = Initiate start of conversion. Device does not stretch SCL until  
end of conversion or completion of averaging.  
2
1
0
CH_RST  
CAL  
R/W  
R/W  
W
0b  
0b  
0b  
Force all channels to be analog inputs.  
0b = Normal operation.  
1b = All channels are configured as analog inputs irrespective of  
configuration in other registers.  
Calibrate ADC offset.  
0b = Normal operation.  
1b = ADC offset is calibrated. After calibration is complete, this bit is  
set to 0b.  
RST  
Software reset all registers to default values.  
0b = Normal operation.  
1b = Device is reset. After reset is complete, this bit is set to 0b and  
BOR bit is set to 1b.  
8.6.3 DATA_CFG Register (Address = 0x2) [reset = 0x0]  
DATA_CFG is shown in Figure 20 and described in Table 14.  
Return to the Summary Table.  
Figure 20. DATA_CFG Register  
7
6
5
4
3
2
1
0
FIX_PAT  
R/W-0b  
RESERVED  
R-0b  
APPEND_STATUS[1:0]  
R/W-0b  
RESERVED  
R-0b  
Table 14. DATA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIX_PAT  
R/W  
0b  
Device will output fixed data bits, which can be helpful for debugging  
communication with the device.  
0b = Normal operation.  
1b = Device outputs fixed code 0xA5A repeatitively when reading  
ADC data.  
6
RESERVED  
R
0b  
Reserved. Reads return 0.  
Copyright © 2019, Texas Instruments Incorporated  
29  
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 14. DATA_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-4  
APPEND_STATUS[1:0]  
R/W  
0b  
Append 4-bit channel ID or status flags to output data.  
0b = Channel ID and status flags are not appended to ADC data.  
1b = 4-bit channel ID is appended to ADC data.  
10b = 4-bit status flags are appended to ADC data.  
11b = Reserved.  
3-0  
RESERVED  
R
0b  
8.6.4 OSR_CFG Register (Address = 0x3) [reset = 0x0]  
OSR_CFG is shown in Figure 21 and described in Table 15.  
Return to the Summary Table.  
Figure 21. OSR_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
OSR[2:0]  
R/W-0b  
Table 15. OSR_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-3  
2-0  
RESERVED  
OSR[2:0]  
Reserved. Reads return 0.  
R/W  
0b  
Selects the oversampling ratio for ADC conversion result.  
0b = No averaging  
1b = 2 samples  
10b = 4 samples  
11b = 8 samples  
100b = 16 samples  
101b = 32 samples  
110b = 64 samples  
111b = 128 samples  
8.6.5 OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
OPMODE_CFG is shown in Figure 22 and described in Table 16.  
Return to the Summary Table.  
Figure 22. OPMODE_CFG Register  
7
6
5
4
3
2
1
0
CONV_ON_ER  
R
CONV_MODE[1:0]  
OSC_SEL  
CLK_DIV[3:0]  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 16. OPMODE_CFG Register Field Descriptions  
Bit  
Field  
CONV_ON_ERR  
Type  
Reset  
Description  
7
R/W  
0b  
Control continuation of autonomous modes if CRC error is detected  
on communication interface.  
0b = If CRC error is detected, device continues channel sequencing  
and pin configuration is retained. See the CRC_ERR_IN bit for more  
details.  
1b = If CRC error is detected, device changes all channels to analog  
inputs and channel sequencing will be paused until CRC_ERR_IN =  
1b. After clearing CRC_ERR_IN flag, device resumes channel  
sequencing and pin confguration is restored.  
30  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 16. OPMODE_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
CONV_MODE[1:0]  
R/W  
0b  
These bits set the mode of conversion of the ADC.  
0b = Manual mode; conversions are initiated by host.  
1b = Autonomous mode; conversions are initiated by internal state  
machine.  
4
OSC_SEL  
R/W  
R/W  
0b  
0b  
Selects the oscillator for internal timing generation.  
0b = High-speed oscillator.  
1b = Low-power oscillator.  
3-0  
CLK_DIV[3:0]  
Sampling speed control in autonomous monitoring mode  
(CONV_MODE = 01b). See the section on oscillator and timing  
control for details.  
8.6.6 PIN_CFG Register (Address = 0x5) [reset = 0x0]  
PIN_CFG is shown in Figure 23 and described in Table 17.  
Return to the Summary Table.  
Figure 23. PIN_CFG Register  
7
6
5
4
3
2
1
0
PIN_CFG[7:0]  
R/W-0b  
Table 17. PIN_CFG Register Field Descriptions  
Bit  
7-0  
Field  
PIN_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure device channels AIN/GPIO[7:0] as analog inputs or  
GPIOs.  
0b = Channel is configured as analog input.  
1b = Channel is configured as GPIO.  
8.6.7 GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
GPIO_CFG is shown in Figure 24 and described in Table 18.  
Return to the Summary Table.  
Figure 24. GPIO_CFG Register  
7
6
5
4
3
2
1
0
GPIO_CFG[7:0]  
R/W-0b  
Table 18. GPIO_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPIO_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure GPIO[7:0] as either digital inputs or digital outputs.  
0b = GPIO is configured as digital input.  
1b = GPIO is configured as digital output.  
8.6.8 GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_DRIVE_CFG is shown in Figure 25 and described in Table 19.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
31  
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Figure 25. GPO_DRIVE_CFG Register  
7
6
5
4
3
2
1
0
GPO_DRIVE_CFG[7:0]  
R/W-0b  
Table 19. GPO_DRIVE_CFG Register Field Descriptions  
Bit  
Field  
GPO_DRIVE_CFG[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0b  
Configure digital outputs GPO[7:0] as either open-drain or push-pull  
outputs.  
0b = Digital output is open-drain; connect external pullup resistor.  
1b = Push-pull driver is used for digital output.  
8.6.9 GPO_OUTPUT_VALUE Register (Address = 0xB) [reset = 0x0]  
GPO_OUTPUT_VALUE is shown in Figure 26 and described in Table 20.  
Return to the Summary Table.  
Figure 26. GPO_OUTPUT_VALUE Register  
7
6
5
4
3
2
1
0
GPO_OUTPUT_VALUE[7:0]  
R/W-0b  
Table 20. GPO_OUTPUT_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO_OUTPUT_VALUE[7: R/W  
0]  
0b  
Logic level to be set on digital outputs GPO[7:0].  
0b = Digital output set to logic 0.  
1b = Digital output set to logic 1.  
8.6.10 GPI_VALUE Register (Address = 0xD) [reset = 0x0]  
GPI_VALUE is shown in Figure 27 and described in Table 21.  
Return to the Summary Table.  
Figure 27. GPI_VALUE Register  
7
6
5
4
3
2
1
0
GPI_VALUE[7:0]  
R-0b  
Table 21. GPI_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
GPI_VALUE[7:0]  
Type  
Reset  
Description  
R
0b  
Readback the logic level on GPIO[7:0].  
0b = GPIO is at logic 0.  
1b = GPIO is at logic 1.  
8.6.11 ZCD_BLANKING_CFG Register (Address = 0xF) [reset = 0x0]  
ZCD_BLANKING_CFG is shown in Figure 28 and described in Table 22.  
Return to the Summary Table.  
32  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Figure 28. ZCD_BLANKING_CFG Register  
7
6
5
4
3
2
1
0
MULT_EN  
R/W-0b  
ZCD_BLANKING[6:0]  
R/W-0b  
Table 22. ZCD_BLANKING_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MULT_EN  
R/W  
0b  
Multiplier enable bit for the ZCD_BLANKING field.  
0b = Blanking count = ZCD_BLANKING  
1b = Blanking count = ZCD_BLANKING x 8  
6-0  
ZCD_BLANKING[6:0]  
R/W  
0b  
This field defines the number of analog conversions, of the ZCD  
channel, which must be ignored for generating next ZCD event. The  
counting starts from ZCD event detection.  
8.6.12 SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
SEQUENCE_CFG is shown in Figure 29 and described in Table 23.  
Return to the Summary Table.  
Figure 29. SEQUENCE_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
SEQ_START  
R/W-0b  
RESERVED  
R-0b  
SEQ_MODE[1:0]  
R/W-0b  
Table 23. SEQUENCE_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-5  
4
RESERVED  
SEQ_START  
Reserved. Reads return 0.  
R/W  
0b  
Control for start of channel sequence when using auto sequence  
mode (SEQ_MODE = 01b).  
0b = Stop channel sequencing.  
1b = Start channel sequencing in ascending order for channels  
enabled in AUTO_SEQ_CH_SEL register.  
3-2  
1-0  
RESERVED  
R
0b  
0b  
Reserved. Reads return 0.  
SEQ_MODE[1:0]  
R/W  
Selects the mode of scanning of analog input channels.  
0b = Manual sequence mode; channel selected by MANUAL_CHID  
field.  
1b = Auto sequence mode; channel selected by internal channel  
sequencer.  
10b = Reserved.  
11b = Reserved.  
8.6.13 CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
CHANNEL_SEL is shown in Figure 30 and described in Table 24.  
Return to the Summary Table.  
Figure 30. CHANNEL_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
MANUAL_CHID[3:0]  
R/W-0b  
Copyright © 2019, Texas Instruments Incorporated  
33  
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 24. CHANNEL_SEL Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
0b  
Description  
RESERVED  
MANUAL_CHID[3:0]  
Reserved. Reads return 0.  
R/W  
0b  
In manual mode (SEQ_MODE = 00b), this field contains the 4-bit  
channel ID of the analog input channel for next ADC conversion. For  
valid ADC data, the selected channel must not be configured as  
GPIO in PIN_CFG register.  
0b = AIN0  
1b = AIN1  
10b = AIN2  
11b = AIN3  
100b = AIN4  
101b = AIN5  
110b = AIN6  
111b = AIN7  
1000b = Reserved.  
8.6.14 AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]  
AUTO_SEQ_CH_SEL is shown in Figure 31 and described in Table 25.  
Return to the Summary Table.  
Figure 31. AUTO_SEQ_CH_SEL Register  
7
6
5
4
3
2
1
0
AUTO_SEQ_CH_SEL[7:0]  
R/W-0b  
Table 25. AUTO_SEQ_CH_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
AUTO_SEQ_CH_SEL[7:0] R/W  
0b  
Select analog input channels AIN[7:0] in for auto sequencing mode.  
0b = Analog input channel is not enabled in scanning sequence.  
1b = Analog input channel is enabled in scanning sequence.  
8.6.15 ALERT_CH_SEL Register (Address = 0x14) [reset = 0x0]  
ALERT_CH_SEL is shown in Figure 32 and described in Table 26.  
Return to the Summary Table.  
Figure 32. ALERT_CH_SEL Register  
7
6
5
4
3
2
1
0
ALERT_CH_SEL[7:0]  
R/W-0b  
Table 26. ALERT_CH_SEL Register Field Descriptions  
Bit  
7-0  
Field  
ALERT_CH_SEL[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Select channels for which the alert flags can assert the ALERT pin.  
0b = Alert flags for this channel do not assert the ALERT pin.  
1b = Alert flags for this channel assert the ALERT pin.  
34  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6.16 ALERT_MAP Register (Address = 0x16) [reset = 0x0]  
ALERT_MAP is shown in Figure 33 and described in Table 27.  
Return to the Summary Table.  
Figure 33. ALERT_MAP Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
ALERT_CRCIN  
R/W-0b  
Table 27. ALERT_MAP Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-1  
0
RESERVED  
Reserved. Reads return 0.  
ALERT_CRCIN  
R/W  
0b  
Enable or disable the alert notification for CRC error on input data  
(CRCERR_IN = 1b).  
0b = ALERT pin is not asserted when CRCERR_IN = 1b.  
1b  
= ALERT pin is asserted when CRCERR_IN = 1b. Clear  
CRCERR_IN for deasserting the ALERT pin.  
8.6.17 ALERT_PIN_CFG Register (Address = 0x17) [reset = 0x0]  
ALERT_PIN_CFG is shown in Figure 34 and described in Table 28.  
Return to the Summary Table.  
Figure 34. ALERT_PIN_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
ALERT_DRIVE  
R/W-0b  
ALERT_LOGIC[1:0]  
R/W-0b  
Table 28. ALERT_PIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-3  
2
RESERVED  
Reserved. Reads return 0.  
Configure output drive of the ALERT pin.  
ALERT_DRIVE  
R/W  
0b  
0b = Open-drain output. Connect external pullup resistor.  
1b = Push-pull output.  
1-0  
ALERT_LOGIC[1:0]  
R/W  
0b  
Configure how ALERT pin is asserted.  
0b = Pulsed high (one logic high pulse one time per alert flag).  
1b = Active high.  
8.6.18 EVENT_FLAG Register (Address = 0x18) [reset = 0x0]  
EVENT_FLAG is shown in Figure 35 and described in Table 29.  
Return to the Summary Table.  
Figure 35. EVENT_FLAG Register  
7
6
5
4
3
2
1
0
EVENT_FLAG[7:0]  
R-0b  
Copyright © 2019, Texas Instruments Incorporated  
35  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 29. EVENT_FLAG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
EVENT_FLAG[7:0]  
R
0b  
Alert flags indicating digital window comparator status for CH[7:0].  
Write 0b to individual bits of high/low register to clear alert flag.  
0b = Event condition not detected.  
1b = Event condition detected.  
8.6.19 EVENT_HIGH_FLAG Register (Address = 0x1A) [reset = 0x0]  
EVENT_HIGH_FLAG is shown in Figure 36 and described in Table 30.  
Return to the Summary Table.  
Figure 36. EVENT_HIGH_FLAG Register  
7
6
5
4
3
2
1
0
EVENT_HIGH_FLAG[7:0]  
R/W-0b  
Table 30. EVENT_HIGH_FLAG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
EVENT_HIGH_FLAG[7:0] R/W  
0b  
Alert flag corresponding to high threshold of analog input or logic 1  
on digital input on CH[7:0]. Write 1b to clear this flag.  
0b = No alert condition detected.  
1b = Either high threshold was exceeded (analog input) or logic 1  
was detected (digital input).  
8.6.20 EVENT_LOW_FLAG Register (Address = 0x1C) [reset = 0x0]  
EVENT_LOW_FLAG is shown in Figure 37 and described in Table 31.  
Return to the Summary Table.  
Figure 37. EVENT_LOW_FLAG Register  
7
6
5
4
3
2
1
0
EVENT_LOW_FLAG[7:0]  
R/W-0b  
Table 31. EVENT_LOW_FLAG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
EVENT_LOW_FLAG[7:0] R/W  
0b  
Alert flag corresponding to low threshold of analog input or logic 0 on  
digital input on CH[7:0]. Write 1b to clear this flag.  
0b = No Event condition detected.  
1b = Either low threshold was exceeded (analog input) or logic 0 was  
detected (digital input).  
8.6.21 EVENT_RGN Register (Address = 0x1E) [reset = 0x0]  
EVENT_RGN is shown in Figure 38 and described in Table 32.  
Return to the Summary Table.  
Figure 38. EVENT_RGN Register  
7
6
5
4
3
2
1
0
EVENT_RGN[7:0]  
R/W-0b  
36  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 32. EVENT_RGN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
EVENT_RGN[7:0]  
R/W  
0b  
Choice of region used in monitoring analog and digital inputs  
CH[7:0].  
0b = Alert flag is set if: (conversion result < low threshold) or  
(conversion result > high threshold). For digital inputs, logic 1 sets  
the alert flag.  
1b = Alert flag is set if: (low threshold > conversion result < high  
threshold). For digital inputs, logic 0 sets the alert flag.  
8.6.22 HYSTERESIS_CH0 Register (Address = 0x20) [reset = 0xF0]  
HYSTERESIS_CH0 is shown in Figure 39 and described in Table 33.  
Return to the Summary Table.  
Figure 39. HYSTERESIS_CH0 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH0_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH0[3:0]  
R/W-0b  
Table 33. HYSTERESIS_CH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH0 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH0[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.23 HIGH_TH_CH0 Register (Address = 0x21) [reset = 0xFF]  
HIGH_TH_CH0 is shown in Figure 40 and described in Table 34.  
Return to the Summary Table.  
Figure 40. HIGH_TH_CH0 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH0_MSB[7:0]  
R/W-11111111b  
Table 34. HIGH_TH_CH0 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH0 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.24 EVENT_COUNT_CH0 Register (Address = 0x22) [reset = 0x0]  
EVENT_COUNT_CH0 is shown in Figure 41 and described in Table 35.  
Return to the Summary Table.  
Figure 41. EVENT_COUNT_CH0 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH0_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH0[3:0]  
R/W-0b  
Copyright © 2019, Texas Instruments Incorporated  
37  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 35. EVENT_COUNT_CH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH0 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH0[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.25 LOW_TH_CH0 Register (Address = 0x23) [reset = 0x0]  
LOW_TH_CH0 is shown in Figure 42 and described in Table 36.  
Return to the Summary Table.  
Figure 42. LOW_TH_CH0 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH0_MSB[7:0]  
R/W-0b  
Table 36. LOW_TH_CH0 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH0 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.26 HYSTERESIS_CH1 Register (Address = 0x24) [reset = 0xF0]  
HYSTERESIS_CH1 is shown in Figure 43 and described in Table 37.  
Return to the Summary Table.  
Figure 43. HYSTERESIS_CH1 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH1_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH1[3:0]  
R/W-0b  
Table 37. HYSTERESIS_CH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH1 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH1[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.27 HIGH_TH_CH1 Register (Address = 0x25) [reset = 0xFF]  
HIGH_TH_CH1 is shown in Figure 44 and described in Table 38.  
Return to the Summary Table.  
Figure 44. HIGH_TH_CH1 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH1_MSB[7:0]  
R/W-11111111b  
38  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 38. HIGH_TH_CH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HIGH_THRESHOLD_CH1 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.28 EVENT_COUNT_CH1 Register (Address = 0x26) [reset = 0x0]  
EVENT_COUNT_CH1 is shown in Figure 45 and described in Table 39.  
Return to the Summary Table.  
Figure 45. EVENT_COUNT_CH1 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH1_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH1[3:0]  
R/W-0b  
Table 39. EVENT_COUNT_CH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH1 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH1[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.29 LOW_TH_CH1 Register (Address = 0x27) [reset = 0x0]  
LOW_TH_CH1 is shown in Figure 46 and described in Table 40.  
Return to the Summary Table.  
Figure 46. LOW_TH_CH1 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH1_MSB[7:0]  
R/W-0b  
Table 40. LOW_TH_CH1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH1 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.30 HYSTERESIS_CH2 Register (Address = 0x28) [reset = 0xF0]  
HYSTERESIS_CH2 is shown in Figure 47 and described in Table 41.  
Return to the Summary Table.  
Figure 47. HYSTERESIS_CH2 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH2_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH2[3:0]  
R/W-0b  
Table 41. HYSTERESIS_CH2 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH2 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
Copyright © 2019, Texas Instruments Incorporated  
39  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 41. HYSTERESIS_CH2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
HYSTERESIS_CH2[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.31 HIGH_TH_CH2 Register (Address = 0x29) [reset = 0xFF]  
HIGH_TH_CH2 is shown in Figure 48 and described in Table 42.  
Return to the Summary Table.  
Figure 48. HIGH_TH_CH2 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH2_MSB[7:0]  
R/W-11111111b  
Table 42. HIGH_TH_CH2 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH2 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.32 EVENT_COUNT_CH2 Register (Address = 0x2A) [reset = 0x0]  
EVENT_COUNT_CH2 is shown in Figure 49 and described in Table 43.  
Return to the Summary Table.  
Figure 49. EVENT_COUNT_CH2 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH2_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH2[3:0]  
R/W-0b  
Table 43. EVENT_COUNT_CH2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH2 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH2[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.33 LOW_TH_CH2 Register (Address = 0x2B) [reset = 0x0]  
LOW_TH_CH2 is shown in Figure 50 and described in Table 44.  
Return to the Summary Table.  
Figure 50. LOW_TH_CH2 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH2_MSB[7:0]  
R/W-0b  
Table 44. LOW_TH_CH2 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH2 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
40  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6.34 HYSTERESIS_CH3 Register (Address = 0x2C) [reset = 0xF0]  
HYSTERESIS_CH3 is shown in Figure 51 and described in Table 45.  
Return to the Summary Table.  
Figure 51. HYSTERESIS_CH3 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH3_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH3[3:0]  
R/W-0b  
Table 45. HYSTERESIS_CH3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH3 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH3[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.35 HIGH_TH_CH3 Register (Address = 0x2D) [reset = 0xFF]  
HIGH_TH_CH3 is shown in Figure 52 and described in Table 46.  
Return to the Summary Table.  
Figure 52. HIGH_TH_CH3 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH3_MSB[7:0]  
R/W-11111111b  
Table 46. HIGH_TH_CH3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH3 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.36 EVENT_COUNT_CH3 Register (Address = 0x2E) [reset = 0x0]  
EVENT_COUNT_CH3 is shown in Figure 53 and described in Table 47.  
Return to the Summary Table.  
Figure 53. EVENT_COUNT_CH3 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH3_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH3[3:0]  
R/W-0b  
Table 47. EVENT_COUNT_CH3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH3 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH3[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.37 LOW_TH_CH3 Register (Address = 0x2F) [reset = 0x0]  
LOW_TH_CH3 is shown in Figure 54 and described in Table 48.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
41  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Figure 54. LOW_TH_CH3 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH3_MSB[7:0]  
R/W-0b  
Table 48. LOW_TH_CH3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LOW_THRESHOLD_CH3 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.38 HYSTERESIS_CH4 Register (Address = 0x30) [reset = 0xF0]  
HYSTERESIS_CH4 is shown in Figure 55 and described in Table 49.  
Return to the Summary Table.  
Figure 55. HYSTERESIS_CH4 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH4_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH4[3:0]  
R/W-0b  
Table 49. HYSTERESIS_CH4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH4 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH4[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.39 HIGH_TH_CH4 Register (Address = 0x31) [reset = 0xFF]  
HIGH_TH_CH4 is shown in Figure 56 and described in Table 50.  
Return to the Summary Table.  
Figure 56. HIGH_TH_CH4 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH4_MSB[7:0]  
R/W-11111111b  
Table 50. HIGH_TH_CH4 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH4 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.40 EVENT_COUNT_CH4 Register (Address = 0x32) [reset = 0x0]  
EVENT_COUNT_CH4 is shown in Figure 57 and described in Table 51.  
Return to the Summary Table.  
Figure 57. EVENT_COUNT_CH4 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH4_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH4[3:0]  
R/W-0b  
42  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 51. EVENT_COUNT_CH4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH4 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH4[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.41 LOW_TH_CH4 Register (Address = 0x33) [reset = 0x0]  
LOW_TH_CH4 is shown in Figure 58 and described in Table 52.  
Return to the Summary Table.  
Figure 58. LOW_TH_CH4 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH4_MSB[7:0]  
R/W-0b  
Table 52. LOW_TH_CH4 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH4 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.42 HYSTERESIS_CH5 Register (Address = 0x34) [reset = 0xF0]  
HYSTERESIS_CH5 is shown in Figure 59 and described in Table 53.  
Return to the Summary Table.  
Figure 59. HYSTERESIS_CH5 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH5_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH5[3:0]  
R/W-0b  
Table 53. HYSTERESIS_CH5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH5 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH5[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.43 HIGH_TH_CH5 Register (Address = 0x35) [reset = 0xFF]  
HIGH_TH_CH5 is shown in Figure 60 and described in Table 54.  
Return to the Summary Table.  
Figure 60. HIGH_TH_CH5 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH5_MSB[7:0]  
R/W-11111111b  
Copyright © 2019, Texas Instruments Incorporated  
43  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 54. HIGH_TH_CH5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HIGH_THRESHOLD_CH5 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.44 EVENT_COUNT_CH5 Register (Address = 0x36) [reset = 0x0]  
EVENT_COUNT_CH5 is shown in Figure 61 and described in Table 55.  
Return to the Summary Table.  
Figure 61. EVENT_COUNT_CH5 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH5_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH5[3:0]  
R/W-0b  
Table 55. EVENT_COUNT_CH5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH5 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH5[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.45 LOW_TH_CH5 Register (Address = 0x37) [reset = 0x0]  
LOW_TH_CH5 is shown in Figure 62 and described in Table 56.  
Return to the Summary Table.  
Figure 62. LOW_TH_CH5 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH5_MSB[7:0]  
R/W-0b  
Table 56. LOW_TH_CH5 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH5 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.46 HYSTERESIS_CH6 Register (Address = 0x38) [reset = 0xF0]  
HYSTERESIS_CH6 is shown in Figure 63 and described in Table 57.  
Return to the Summary Table.  
Figure 63. HYSTERESIS_CH6 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH6_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH6[3:0]  
R/W-0b  
Table 57. HYSTERESIS_CH6 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH6 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
44  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 57. HYSTERESIS_CH6 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
HYSTERESIS_CH6[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.47 HIGH_TH_CH6 Register (Address = 0x39) [reset = 0xFF]  
HIGH_TH_CH6 is shown in Figure 64 and described in Table 58.  
Return to the Summary Table.  
Figure 64. HIGH_TH_CH6 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH6_MSB[7:0]  
R/W-11111111b  
Table 58. HIGH_TH_CH6 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH6 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.48 EVENT_COUNT_CH6 Register (Address = 0x3A) [reset = 0x0]  
EVENT_COUNT_CH6 is shown in Figure 65 and described in Table 59.  
Return to the Summary Table.  
Figure 65. EVENT_COUNT_CH6 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH6_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH6[3:0]  
R/W-0b  
Table 59. EVENT_COUNT_CH6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH6 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH6[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.49 LOW_TH_CH6 Register (Address = 0x3B) [reset = 0x0]  
LOW_TH_CH6 is shown in Figure 66 and described in Table 60.  
Return to the Summary Table.  
Figure 66. LOW_TH_CH6 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH6_MSB[7:0]  
R/W-0b  
Table 60. LOW_TH_CH6 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LOW_THRESHOLD_CH6 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
Copyright © 2019, Texas Instruments Incorporated  
45  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.6.50 HYSTERESIS_CH7 Register (Address = 0x3C) [reset = 0xF0]  
HYSTERESIS_CH7 is shown in Figure 67 and described in Table 61.  
Return to the Summary Table.  
Figure 67. HYSTERESIS_CH7 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH7_LSB[3:0]  
R/W-1111b  
HYSTERESIS_CH7[3:0]  
R/W-0b  
Table 61. HYSTERESIS_CH7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
HIGH_THRESHOLD_CH7 R/W  
_LSB[3:0]  
1111b  
Lower 4-bits of high threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
HYSTERESIS_CH7[3:0]  
R/W  
0b  
4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left  
shifted 3 times and applied on the lower 7-bits of the threshold. Total  
hysteresis = 7-bits [4-bits, 000b]  
8.6.51 HIGH_TH_CH7 Register (Address = 0x3D) [reset = 0xFF]  
HIGH_TH_CH7 is shown in Figure 68 and described in Table 62.  
Return to the Summary Table.  
Figure 68. HIGH_TH_CH7 Register  
7
6
5
4
3
2
1
0
HIGH_THRESHOLD_CH7_MSB[7:0]  
R/W-11111111b  
Table 62. HIGH_TH_CH7 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
HIGH_THRESHOLD_CH7 R/W  
_MSB[7:0]  
11111111b MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.52 EVENT_COUNT_CH7 Register (Address = 0x3E) [reset = 0x0]  
EVENT_COUNT_CH7 is shown in Figure 69 and described in Table 63.  
Return to the Summary Table.  
Figure 69. EVENT_COUNT_CH7 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH7_LSB[3:0]  
R/W-0b  
EVENT_COUNT_CH7[3:0]  
R/W-0b  
Table 63. EVENT_COUNT_CH7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LOW_THRESHOLD_CH7 R/W  
_LSB[3:0]  
0b  
Lower 4-bits of low threshold for analog input. These bits are  
compared with bits 3:0 of ADC conversion result.  
3-0  
EVENT_COUNT_CH7[3:0 R/W  
]
0b  
Configuration for checking 'n+1' consecutive samples above  
threshold before setting event flag.  
8.6.53 LOW_TH_CH7 Register (Address = 0x3F) [reset = 0x0]  
LOW_TH_CH7 is shown in Figure 70 and described in Table 64.  
Return to the Summary Table.  
46  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Figure 70. LOW_TH_CH7 Register  
7
6
5
4
3
2
1
0
LOW_THRESHOLD_CH7_MSB[7:0]  
R/W-0b  
Table 64. LOW_TH_CH7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LOW_THRESHOLD_CH7 R/W  
_MSB[7:0]  
0b  
MSB aligned high threshold for analog input. These bits are  
compared with top 8 bits of ADC conversion result.  
8.6.54 MAX_CH0_LSB Register (Address = 0x60) [reset = 0x0]  
MAX_CH0_LSB is shown in Figure 71 and described in Table 65.  
Return to the Summary Table.  
Figure 71. MAX_CH0_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH0_LSB[7:0]  
R-0b  
Table 65. MAX_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH0_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.55 MAX_CH0_MSB Register (Address = 0x61) [reset = 0x0]  
MAX_CH0_MSB is shown in Figure 72 and described in Table 66.  
Return to the Summary Table.  
Figure 72. MAX_CH0_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH0_MSB[7:0]  
R-0b  
Table 66. MAX_CH0_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH0_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.56 MAX_CH1_LSB Register (Address = 0x62) [reset = 0x0]  
MAX_CH1_LSB is shown in Figure 73 and described in Table 67.  
Return to the Summary Table.  
Figure 73. MAX_CH1_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH1_LSB[7:0]  
R-0b  
Copyright © 2019, Texas Instruments Incorporated  
47  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 67. MAX_CH1_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAX_VALUE_CH1_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.57 MAX_CH1_MSB Register (Address = 0x63) [reset = 0x0]  
MAX_CH1_MSB is shown in Figure 74 and described in Table 68.  
Return to the Summary Table.  
Figure 74. MAX_CH1_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH1_MSB[7:0]  
R-0b  
Table 68. MAX_CH1_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH1_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.58 MAX_CH2_LSB Register (Address = 0x64) [reset = 0x0]  
MAX_CH2_LSB is shown in Figure 75 and described in Table 69.  
Return to the Summary Table.  
Figure 75. MAX_CH2_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH2_LSB[7:0]  
R-0b  
Table 69. MAX_CH2_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH2_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.59 MAX_CH2_MSB Register (Address = 0x65) [reset = 0x0]  
MAX_CH2_MSB is shown in Figure 76 and described in Table 70.  
Return to the Summary Table.  
Figure 76. MAX_CH2_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH2_MSB[7:0]  
R-0b  
Table 70. MAX_CH2_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH2_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
48  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6.60 MAX_CH3_LSB Register (Address = 0x66) [reset = 0x0]  
MAX_CH3_LSB is shown in Figure 77 and described in Table 71.  
Return to the Summary Table.  
Figure 77. MAX_CH3_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH3_LSB[7:0]  
R-0b  
Table 71. MAX_CH3_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH3_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.61 MAX_CH3_MSB Register (Address = 0x67) [reset = 0x0]  
MAX_CH3_MSB is shown in Figure 78 and described in Table 72.  
Return to the Summary Table.  
Figure 78. MAX_CH3_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH3_MSB[7:0]  
R-0b  
Table 72. MAX_CH3_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH3_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.62 MAX_CH4_LSB Register (Address = 0x68) [reset = 0x0]  
MAX_CH4_LSB is shown in Figure 79 and described in Table 73.  
Return to the Summary Table.  
Figure 79. MAX_CH4_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH4_LSB[7:0]  
R-0b  
Table 73. MAX_CH4_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH4_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.63 MAX_CH4_MSB Register (Address = 0x69) [reset = 0x0]  
MAX_CH4_MSB is shown in Figure 80 and described in Table 74.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
49  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Figure 80. MAX_CH4_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH4_MSB[7:0]  
R-0b  
Table 74. MAX_CH4_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAX_VALUE_CH4_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.64 MAX_CH5_LSB Register (Address = 0x6A) [reset = 0x0]  
MAX_CH5_LSB is shown in Figure 81 and described in Table 75.  
Return to the Summary Table.  
Figure 81. MAX_CH5_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH5_LSB[7:0]  
R-0b  
Table 75. MAX_CH5_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH5_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.65 MAX_CH5_MSB Register (Address = 0x6B) [reset = 0x0]  
MAX_CH5_MSB is shown in Figure 82 and described in Table 76.  
Return to the Summary Table.  
Figure 82. MAX_CH5_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH5_MSB[7:0]  
R-0b  
Table 76. MAX_CH5_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH5_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.66 MAX_CH6_LSB Register (Address = 0x6C) [reset = 0x0]  
MAX_CH6_LSB is shown in Figure 83 and described in Table 77.  
Return to the Summary Table.  
Figure 83. MAX_CH6_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH6_LSB[7:0]  
R-0b  
50  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 77. MAX_CH6_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAX_VALUE_CH6_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.67 MAX_CH6_MSB Register (Address = 0x6D) [reset = 0x0]  
MAX_CH6_MSB is shown in Figure 84 and described in Table 78.  
Return to the Summary Table.  
Figure 84. MAX_CH6_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH6_MSB[7:0]  
R-0b  
Table 78. MAX_CH6_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH6_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.68 MAX_CH7_LSB Register (Address = 0x6E) [reset = 0x0]  
MAX_CH7_LSB is shown in Figure 85 and described in Table 79.  
Return to the Summary Table.  
Figure 85. MAX_CH7_LSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH7_LSB[7:0]  
R-0b  
Table 79. MAX_CH7_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH7_LSB[7  
:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
8.6.69 MAX_CH7_MSB Register (Address = 0x6F) [reset = 0x0]  
MAX_CH7_MSB is shown in Figure 86 and described in Table 80.  
Return to the Summary Table.  
Figure 86. MAX_CH7_MSB Register  
7
6
5
4
3
2
1
0
MAX_VALUE_CH7_MSB[7:0]  
R-0b  
Table 80. MAX_CH7_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MAX_VALUE_CH7_MSB[  
7:0]  
R
0b  
Maximum code recorded on analog input channel from the last time  
this register was read. Reading the register resets the value to 0.  
Copyright © 2019, Texas Instruments Incorporated  
51  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.6.70 MIN_CH0_LSB Register (Address = 0x80) [reset = 0xFF]  
MIN_CH0_LSB is shown in Figure 87 and described in Table 81.  
Return to the Summary Table.  
Figure 87. MIN_CH0_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH0_LSB[7:0]  
R-11111111b  
Table 81. MIN_CH0_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH0_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.71 MIN_CH0_MSB Register (Address = 0x81) [reset = 0xFF]  
MIN_CH0_MSB is shown in Figure 88 and described in Table 82.  
Return to the Summary Table.  
Figure 88. MIN_CH0_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH0_MSB[7:0]  
R-11111111b  
Table 82. MIN_CH0_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH0_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.72 MIN_CH1_LSB Register (Address = 0x82) [reset = 0xFF]  
MIN_CH1_LSB is shown in Figure 89 and described in Table 83.  
Return to the Summary Table.  
Figure 89. MIN_CH1_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH1_LSB[7:0]  
R-11111111b  
Table 83. MIN_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH1_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.73 MIN_CH1_MSB Register (Address = 0x83) [reset = 0xFF]  
MIN_CH1_MSB is shown in Figure 90 and described in Table 84.  
Return to the Summary Table.  
52  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Figure 90. MIN_CH1_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH1_MSB[7:0]  
R-11111111b  
Table 84. MIN_CH1_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MIN_VALUE_CH1_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.74 MIN_CH2_LSB Register (Address = 0x84) [reset = 0xFF]  
MIN_CH2_LSB is shown in Figure 91 and described in Table 85.  
Return to the Summary Table.  
Figure 91. MIN_CH2_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH2_LSB[7:0]  
R-11111111b  
Table 85. MIN_CH2_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH2_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.75 MIN_CH2_MSB Register (Address = 0x85) [reset = 0xFF]  
MIN_CH2_MSB is shown in Figure 92 and described in Table 86.  
Return to the Summary Table.  
Figure 92. MIN_CH2_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH2_MSB[7:0]  
R-11111111b  
Table 86. MIN_CH2_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH2_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.76 MIN_CH3_LSB Register (Address = 0x86) [reset = 0xFF]  
MIN_CH3_LSB is shown in Figure 93 and described in Table 87.  
Return to the Summary Table.  
Figure 93. MIN_CH3_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH3_LSB[7:0]  
R-11111111b  
Copyright © 2019, Texas Instruments Incorporated  
53  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 87. MIN_CH3_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MIN_VALUE_CH3_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.77 MIN_CH3_MSB Register (Address = 0x87) [reset = 0xFF]  
MIN_CH3_MSB is shown in Figure 94 and described in Table 88.  
Return to the Summary Table.  
Figure 94. MIN_CH3_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH3_MSB[7:0]  
R-11111111b  
Table 88. MIN_CH3_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH3_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.78 MIN_CH4_LSB Register (Address = 0x88) [reset = 0xFF]  
MIN_CH4_LSB is shown in Figure 95 and described in Table 89.  
Return to the Summary Table.  
Figure 95. MIN_CH4_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH4_LSB[7:0]  
R-11111111b  
Table 89. MIN_CH4_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH4_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.79 MIN_CH4_MSB Register (Address = 0x89) [reset = 0xFF]  
MIN_CH4_MSB is shown in Figure 96 and described in Table 90.  
Return to the Summary Table.  
Figure 96. MIN_CH4_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH4_MSB[7:0]  
R-11111111b  
Table 90. MIN_CH4_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH4_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
54  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6.80 MIN_CH5_LSB Register (Address = 0x8A) [reset = 0xFF]  
MIN_CH5_LSB is shown in Figure 97 and described in Table 91.  
Return to the Summary Table.  
Figure 97. MIN_CH5_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH5_LSB[7:0]  
R-11111111b  
Table 91. MIN_CH5_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH5_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.81 MIN_CH5_MSB Register (Address = 0x8B) [reset = 0xFF]  
MIN_CH5_MSB is shown in Figure 98 and described in Table 92.  
Return to the Summary Table.  
Figure 98. MIN_CH5_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH5_MSB[7:0]  
R-11111111b  
Table 92. MIN_CH5_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH5_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.82 MIN_CH6_LSB Register (Address = 0x8C) [reset = 0xFF]  
MIN_CH6_LSB is shown in Figure 99 and described in Table 93.  
Return to the Summary Table.  
Figure 99. MIN_CH6_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH6_LSB[7:0]  
R-11111111b  
Table 93. MIN_CH6_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH6_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.83 MIN_CH6_MSB Register (Address = 0x8D) [reset = 0xFF]  
MIN_CH6_MSB is shown in Figure 100 and described in Table 94.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
55  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Figure 100. MIN_CH6_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH6_MSB[7:0]  
R-11111111b  
Table 94. MIN_CH6_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MIN_VALUE_CH6_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.84 MIN_CH7_LSB Register (Address = 0x8E) [reset = 0xFF]  
MIN_CH7_LSB is shown in Figure 101 and described in Table 95.  
Return to the Summary Table.  
Figure 101. MIN_CH7_LSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH7_LSB[7:0]  
R-11111111b  
Table 95. MIN_CH7_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH7_LSB[7:  
0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.85 MIN_CH7_MSB Register (Address = 0x8F) [reset = 0xFF]  
MIN_CH7_MSB is shown in Figure 102 and described in Table 96.  
Return to the Summary Table.  
Figure 102. MIN_CH7_MSB Register  
7
6
5
4
3
2
1
0
MIN_VALUE_CH7_MSB[7:0]  
R-11111111b  
Table 96. MIN_CH7_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MIN_VALUE_CH7_MSB[7  
:0]  
R
11111111b Minimum code recorded on the analog input channel from the last  
time this register was read. Reading the register resets the value to  
0xFF.  
8.6.86 RECENT_CH0_LSB Register (Address = 0xA0) [reset = 0x0]  
RECENT_CH0_LSB is shown in Figure 103 and described in Table 97.  
Return to the Summary Table.  
Figure 103. RECENT_CH0_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH0_LSB[7:0]  
R-0b  
56  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Table 97. RECENT_CH0_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
7-0  
LAST_VALUE_CH0_LSB[  
7:0]  
R
0b  
8.6.87 RECENT_CH0_MSB Register (Address = 0xA1) [reset = 0x0]  
RECENT_CH0_MSB is shown in Figure 104 and described in Table 98.  
Return to the Summary Table.  
Figure 104. RECENT_CH0_MSB Register  
7
6
5
4
3
2
1
0
0
0
LAST_VALUE_CH0_MSB[7:0]  
R-0b  
Table 98. RECENT_CH0_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH0_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.6.88 RECENT_CH1_LSB Register (Address = 0xA2) [reset = 0x0]  
RECENT_CH1_LSB is shown in Figure 105 and described in Table 99.  
Return to the Summary Table.  
Figure 105. RECENT_CH1_LSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH1_LSB[7:0]  
R-0b  
Table 99. RECENT_CH1_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH1_LSB[  
7:0]  
R
0b  
8.6.89 RECENT_CH1_MSB Register (Address = 0xA3) [reset = 0x0]  
RECENT_CH1_MSB is shown in Figure 106 and described in Table 100.  
Return to the Summary Table.  
Figure 106. RECENT_CH1_MSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH1_MSB[7:0]  
R-0b  
Table 100. RECENT_CH1_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH1_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
Copyright © 2019, Texas Instruments Incorporated  
57  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
8.6.90 RECENT_CH2_LSB Register (Address = 0xA4) [reset = 0x0]  
RECENT_CH2_LSB is shown in Figure 107 and described in Table 101.  
Return to the Summary Table.  
Figure 107. RECENT_CH2_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH2_LSB[7:0]  
R-0b  
Table 101. RECENT_CH2_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH2_LSB[  
7:0]  
R
0b  
8.6.91 RECENT_CH2_MSB Register (Address = 0xA5) [reset = 0x0]  
RECENT_CH2_MSB is shown in Figure 108 and described in Table 102.  
Return to the Summary Table.  
Figure 108. RECENT_CH2_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH2_MSB[7:0]  
R-0b  
Table 102. RECENT_CH2_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH2_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.6.92 RECENT_CH3_LSB Register (Address = 0xA6) [reset = 0x0]  
RECENT_CH3_LSB is shown in Figure 109 and described in Table 103.  
Return to the Summary Table.  
Figure 109. RECENT_CH3_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH3_LSB[7:0]  
R-0b  
Table 103. RECENT_CH3_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH3_LSB[  
7:0]  
R
0b  
8.6.93 RECENT_CH3_MSB Register (Address = 0xA7) [reset = 0x0]  
RECENT_CH3_MSB is shown in Figure 110 and described in Table 104.  
Return to the Summary Table.  
58  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Figure 110. RECENT_CH3_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH3_MSB[7:0]  
R-0b  
Table 104. RECENT_CH3_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LAST_VALUE_CH3_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.6.94 RECENT_CH4_LSB Register (Address = 0xA8) [reset = 0x0]  
RECENT_CH4_LSB is shown in Figure 111 and described in Table 105.  
Return to the Summary Table.  
Figure 111. RECENT_CH4_LSB Register  
7
6
5
4
3
2
1
0
0
0
LAST_VALUE_CH4_LSB[7:0]  
R-0b  
Table 105. RECENT_CH4_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH4_LSB[  
7:0]  
R
0b  
8.6.95 RECENT_CH4_MSB Register (Address = 0xA9) [reset = 0x0]  
RECENT_CH4_MSB is shown in Figure 112 and described in Table 106.  
Return to the Summary Table.  
Figure 112. RECENT_CH4_MSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH4_MSB[7:0]  
R-0b  
Table 106. RECENT_CH4_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH4_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.6.96 RECENT_CH5_LSB Register (Address = 0xAA) [reset = 0x0]  
RECENT_CH5_LSB is shown in Figure 113 and described in Table 107.  
Return to the Summary Table.  
Figure 113. RECENT_CH5_LSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH5_LSB[7:0]  
R-0b  
Copyright © 2019, Texas Instruments Incorporated  
59  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 107. RECENT_CH5_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
7-0  
LAST_VALUE_CH5_LSB[  
7:0]  
R
0b  
8.6.97 RECENT_CH5_MSB Register (Address = 0xAB) [reset = 0x0]  
RECENT_CH5_MSB is shown in Figure 114 and described in Table 108.  
Return to the Summary Table.  
Figure 114. RECENT_CH5_MSB Register  
7
6
5
4
3
2
1
0
0
0
LAST_VALUE_CH5_MSB[7:0]  
R-0b  
Table 108. RECENT_CH5_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH5_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.6.98 RECENT_CH6_LSB Register (Address = 0xAC) [reset = 0x0]  
RECENT_CH6_LSB is shown in Figure 115 and described in Table 109.  
Return to the Summary Table.  
Figure 115. RECENT_CH6_LSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH6_LSB[7:0]  
R-0b  
Table 109. RECENT_CH6_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH6_LSB[  
7:0]  
R
0b  
8.6.99 RECENT_CH6_MSB Register (Address = 0xAD) [reset = 0x0]  
RECENT_CH6_MSB is shown in Figure 116 and described in Table 110.  
Return to the Summary Table.  
Figure 116. RECENT_CH6_MSB Register  
7
6
5
4
3
2
1
LAST_VALUE_CH6_MSB[7:0]  
R-0b  
Table 110. RECENT_CH6_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH6_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
60  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6.100 RECENT_CH7_LSB Register (Address = 0xAE) [reset = 0x0]  
RECENT_CH7_LSB is shown in Figure 117 and described in Table 111.  
Return to the Summary Table.  
Figure 117. RECENT_CH7_LSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH7_LSB[7:0]  
R-0b  
Table 111. RECENT_CH7_LSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Next 8 bits of the last result for this analog input channel.  
LAST_VALUE_CH7_LSB[  
7:0]  
R
0b  
8.6.101 RECENT_CH7_MSB Register (Address = 0xAF) [reset = 0x0]  
RECENT_CH7_MSB is shown in Figure 118 and described in Table 112.  
Return to the Summary Table.  
Figure 118. RECENT_CH7_MSB Register  
7
6
5
4
3
2
1
0
LAST_VALUE_CH7_MSB[7:0]  
R-0b  
Table 112. RECENT_CH7_MSB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LAST_VALUE_CH7_MSB  
[7:0]  
R
0b  
MSB aligned first 8 bits of the last result for this analog input  
channel.  
8.6.102 GPO0_TRIG_EVENT_SEL Register (Address = 0xC3) [reset = 0x2]  
GPO0_TRIG_EVENT_SEL is shown in Figure 119 and described in Table 113.  
Return to the Summary Table.  
Figure 119. GPO0_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO0_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 113. GPO0_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO0_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO0.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO0 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO0 output.  
8.6.103 GPO1_TRIG_EVENT_SEL Register (Address = 0xC5) [reset = 0x2]  
GPO1_TRIG_EVENT_SEL is shown in Figure 120 and described in Table 114.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
61  
 
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Figure 120. GPO1_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO1_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 114. GPO1_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GPO1_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO1.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO1 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO1 output.  
8.6.104 GPO2_TRIG_EVENT_SEL Register (Address = 0xC7) [reset = 0x2]  
GPO2_TRIG_EVENT_SEL is shown in Figure 121 and described in Table 115.  
Return to the Summary Table.  
Figure 121. GPO2_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO2_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 115. GPO2_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO2_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO2.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO2 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO2 output.  
8.6.105 GPO3_TRIG_EVENT_SEL Register (Address = 0xC9) [reset = 0x2]  
GPO3_TRIG_EVENT_SEL is shown in Figure 122 and described in Table 116.  
Return to the Summary Table.  
Figure 122. GPO3_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO3_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 116. GPO3_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO3_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO3.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO3 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO3 output.  
62  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
8.6.106 GPO4_TRIG_EVENT_SEL Register (Address = 0xCB) [reset = 0x2]  
GPO4_TRIG_EVENT_SEL is shown in Figure 123 and described in Table 117.  
Return to the Summary Table.  
Figure 123. GPO4_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO4_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 117. GPO4_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO4_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO4.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO4 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO4 output.  
8.6.107 GPO5_TRIG_EVENT_SEL Register (Address = 0xCD) [reset = 0x2]  
GPO5_TRIG_EVENT_SEL is shown in Figure 124 and described in Table 118.  
Return to the Summary Table.  
Figure 124. GPO5_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO0_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 118. GPO5_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO0_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO5.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO5 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO5 output.  
8.6.108 GPO6_TRIG_EVENT_SEL Register (Address = 0xCF) [reset = 0x2]  
GPO6_TRIG_EVENT_SEL is shown in Figure 125 and described in Table 119.  
Return to the Summary Table.  
Figure 125. GPO6_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO6_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Copyright © 2019, Texas Instruments Incorporated  
63  
 
 
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Table 119. GPO6_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GPO6_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO6.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO6 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO6 output.  
8.6.109 GPO7_TRIG_EVENT_SEL Register (Address = 0xD1) [reset = 0x2]  
GPO7_TRIG_EVENT_SEL is shown in Figure 126 and described in Table 120.  
Return to the Summary Table.  
Figure 126. GPO7_TRIG_EVENT_SEL Register  
7
6
5
4
3
2
1
0
GPO7_TRIG_EVENT_SEL[7:0]  
R/W-10b  
Table 120. GPO7_TRIG_EVENT_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO7_TRIG_EVENT_SE R/W  
L[7:0]  
10b  
Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger  
an event based update on GPO7.  
0b = Alert flags for the AIN/GPIO corresponding to this bit do not  
trigger GPO7 output.  
1b = Alert flags for the AIN/GPIO corresponding to this bit trigger  
GPO7 output.  
8.6.110 GPO_TRIGGER_CFG Register (Address = 0xE9) [reset = 0x0]  
GPO_TRIGGER_CFG is shown in Figure 127 and described in Table 121.  
Return to the Summary Table.  
Figure 127. GPO_TRIGGER_CFG Register  
7
6
5
4
3
2
1
0
GPO_TRIGGER_UPDATE_EN[7:0]  
R/W-0b  
Table 121. GPO_TRIGGER_CFG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
GPO_TRIGGER_UPDAT R/W  
E_EN[7:0]  
0b  
Update digital outputs GPO[7:0] when corresponding trigger is set.  
0b = Digital output is not updated in response to alert flags.  
1b = Digital output is updated when corresponding alert flags are set.  
Configure GPOx_TRIG_EVENT_SEL register to select which alert  
flags can trigger an update on the desired GPO.  
8.6.111 GPO_VALUE_TRIG Register (Address = 0xEB) [reset = 0x0]  
GPO_VALUE_TRIG is shown in Figure 128 and described in Table 122.  
Return to the Summary Table.  
64  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Figure 128. GPO_VALUE_TRIG Register  
7
6
5
4
3
2
1
0
GPO_VALUE_ON_TRIGGER[7:0]  
R/W-0b  
Table 122. GPO_VALUE_TRIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GPO_VALUE_ON_TRIGG R/W  
ER[7:0]  
0b  
Value to be set on digital outputs GPO[7:0] when corresponding  
trigger occurs. GPO update on alert flags must be enabled in  
corresponding bit in GPO_TRIGGER_CFG register.  
0b = Digital output set to logic 0.  
1b = Digital output set to logic 1.  
版权 © 2019, Texas Instruments Incorporated  
65  
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing the input driver circuit, reference driver circuit, and provides  
some application circuits designed for the ADS7138.  
9.2 Typical Applications  
9.2.1 Mixed-Channel Configuration  
AVDD (VREF  
)
Digital Output (open-drain)  
Digital Output (push-pull)  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
I2C  
Controller  
Device  
Digital Input  
Digital Input  
129. DAQ Circuit: Single-Supply DAQ  
9.2.1.1 Design Requirements  
The goal of this application is to configure some channels of the ADS7138 as digital inputs, open-drain digital  
outputs, and push-pull digital outputs.  
9.2.1.2 Detailed Design Procedure  
The ADS7138 can support GPIO functionality at each input pin. Any analog input pin can be independently  
configured as a digital input, a digital open-drain output, or a digital push-pull output though the PIN_CFG and  
GPIO_CFG registers; see 4.  
9.2.1.2.1 Digital Input  
The digital input functionality can be used to monitor a signal within the system. 130 illustrates that the state of  
the digital input can be read from the GPI_VALUE register.  
66  
版权 © 2019, Texas Instruments Incorporated  
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
Typical Applications (接下页)  
ADS7128  
From input device  
GPIx  
SW  
AVDD  
GPIx  
130. Digital Input  
9.2.1.2.2 Digital Open-Drain Output  
The channels of the ADS7138 can be configured as digital open-drain outputs supporting an output voltage up to  
5.5 V. An open-drain output, as shown in 131, consists of an internal FET (Q) connected to ground. The  
output is idle when not driven by the device, which means Q is off and the pull-up resistor, RPULL_UP, connects  
the GPOx node to the desired output voltage. The output voltage can range anywhere up to 5.5 V, depending on  
the external voltage that the GPIOx is pulled up to. When the device is driving the output, Q turns on, thus  
connecting the pull-up resistor to ground and bringing the node voltage at GPOx low.  
VPULL_UP  
Receiving Device  
ADS7128  
RPULL_UP  
GPOx  
ILOAD  
Q
131. Digital Open-Drain Output  
The minimum value of the pullup resistor, as calculated in 公式 3, is given by the ratio of VPULL_UP and the  
maximum current supported by the device digital output (5 mA).  
RMIN = (VPULL_UP / 5 mA)  
(3)  
The maximum value of the pullup resistor, as calculated in 公式 4, depends on the minimum input current  
requirement, ILOAD, of the receiving device driven by this GPIO.  
RMAX = (VPULL_UP / ILOAD  
)
(4)  
67  
Select RPULL_UP such that RMIN < RPULL_UP < RMAX  
.
版权 © 2019, Texas Instruments Incorporated  
 
 
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.3 Digital Push-Pull Output  
The channels of the ADS7138 can be configured as digital push-pull outputs supporting an output voltage up to  
AVDD. As shown in 132, a push-pull output consists of two mirrored opposite bipolar transistors, Q1 and Q2.  
The device can both source and sink current because only one transistor is on at a time (either Q2 is on and  
pulls the output low, or Q1 is on and sets the output high). A push-pull configuration always drives the line  
opposed to an open-drain output where the line is left floating.  
ADS7128  
AVDD  
Q1  
GPOx  
Digital  
output  
Q2  
132. Digital Push-Pull Output  
10 Power Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The ADS7138 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. For supplies greater than 2.35 V, AVDD and DVDD can be shorted externally if  
single-supply operation is desired. The AVDD supply also defines the full-scale input range of the device.  
Decouple the AVDD and DVDD pins individually, as shown in 133, with 1-µF ceramic decoupling capacitors.  
The minimum capacitor value required for AVDD and DVDD is 200 nF and 20 nF, respectively. If both supplies  
are powered from the same source, a minimum capacitor value of 220 nF is required for decoupling.  
AVDD  
AVDD  
GND  
1 mF  
1 mF  
DVDD  
DVDD  
133. Power-Supply Decoupling  
68  
版权 © 2019, Texas Instruments Incorporated  
 
 
ADS7138  
www.ti.com.cn  
ZHCSJS8 MAY 2019  
11 Layout  
11.1 Layout Guidelines  
134 shows a board layout example for the ADS7138. Avoid crossing digital lines with the analog signal path  
and keep the analog input signals and the AVDD supply away from noise sources.  
Use 1-µF ceramic bypass capacitors in close proximity to the analog (AVDD) and digital (DVDD) power-supply  
pins. Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors. Connect the GND pin to  
the ground plane using short, low-impedance paths. The AVDD supply voltage also functions as the reference  
voltage for the ADS7138. Place the decoupling capacitor (CREF) for AVDD close to the device AVDD and GND  
pins and connect CREF to the device pins with thick copper tracks.  
11.2 Layout Example  
ALERT  
DECAP  
AVDD  
SCL  
SDA  
AIN/GPIO  
134. Example Layout  
版权 © 2019, Texas Instruments Incorporated  
69  
 
ADS7138  
ZHCSJS8 MAY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
70  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7138IRTER  
ADS7138IRTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
7138  
7138  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Aug-2021  
OTHER QUALIFIED VERSIONS OF ADS7138 :  
Automotive : ADS7138-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7138IRTER  
ADS7138IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7138IRTER  
ADS7138IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY