ADS7250IRTET [TI]

SAR ADC、双路、750 kSPS、12 位、同步采样 | RTE | 16 | -40 to 125;
ADS7250IRTET
型号: ADS7250IRTET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SAR ADC、双路、750 kSPS、12 位、同步采样 | RTE | 16 | -40 to 125

文件: 总44页 (文件大小:3504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
ADSxx50 双路,750kSPS1614 12 位,同步采样,  
模数转换器  
1 特性  
3 说明  
1
1614 12 位引脚兼容系列  
两个通道同时采样  
ADS8350ADS7850 ADS7250 器件属于引脚兼容  
型双路高速同步采样模数转换器 (ADC) 产品系列,它  
们均支持伪差动模拟输入。所有器件支持一个由宽电源  
电压范围供电运行的简单串行接口,从而实现与多种主  
机控制器的轻松通信。  
伪差分模拟输入  
快速数据吞吐量:750kSPS  
出色的直流性能:  
线性:  
所有器件的额定扩展工业范围均为 –40°C 125°C,  
并且采用引脚兼容 WQFN-16 (3mm × 3mm) 封装。  
ADS8350:  
16 位丢码率 (NMC) 差分非线性  
(DNL)±2.5 最低有效位 (LSB),最大积分  
非线性 (INL)  
器件信息(1)  
器件型号  
ADS7250  
封装  
封装尺寸(标称值)  
ADS7850:  
14 NMC DNL±1.5 LSB,最大 INL  
ADS7850  
ADS8350  
WQFN (16)  
3.00mm x 3.00mm  
ADS7250:  
12 NMC DNL±1 LSB,最大 INL  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
出色的交流性能:  
ADS835085dB 信噪比 (SNR)-96dB 总谐波  
失真 (THD)  
ADS7850: 81dB SNR-90dB THD  
ADS725073dB SNR-88dB THD  
功能方框图  
ADS7250,  
ADS7850,  
ADS8350  
简单串行接口  
OPA322  
-40°C + 125°C 的扩展工业用温度范围内完全  
额定运行  
-
OPA322  
AINP  
-
+
+
+
+
+V  
小型封装:超薄四方扁平无引线 (WQFN)-16 (3mm  
+V  
x 3mm)  
AINM  
2 应用范围  
VREF  
电机控制:  
使用 SinCos 编码器进行位置测量  
光网络互连:  
掺铒光纤放大器 (EDFA) 增益控制环路  
AINM  
OPA322  
+
保护中继器  
OPA322  
+
+
-
AINP  
电源质量测量  
三相电源控制  
可编程逻辑控制器  
工业自动化  
+
-
+V  
+V  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS580  
 
 
 
 
 
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 20  
7.2 Functional Block Diagram ....................................... 20  
7.3 Feature Description................................................. 21  
7.4 Device Functional Modes........................................ 24  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Applications ................................................ 26  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: All Devices....................... 5  
6.6 Electrical Characteristics: ADS7250 ......................... 6  
6.7 Electrical Characteristics: ADS7850 ......................... 7  
6.8 Electrical Characteristics: ADS8350 ......................... 8  
6.9 Timing Requirements................................................ 9  
6.10 Switching Characteristics........................................ 9  
6.11 Typical Characteristics: ADS7250 ........................ 10  
6.12 Typical Characteristics: ADS7850 ........................ 13  
6.13 Typical Characteristics: ADS8350 ........................ 16  
6.14 Typical Characteristics: All Devices...................... 19  
Detailed Description ............................................ 20  
8
9
10 Layout................................................................... 34  
10.1 Layout Guidelines ................................................. 34  
10.2 Layout Example .................................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 文档支持................................................................ 35  
11.2 相关链接................................................................ 35  
11.3 接收文档更新通知 ................................................. 35  
11.4 社区资源................................................................ 35  
11.5 ....................................................................... 35  
11.6 静电放电警告......................................................... 35  
11.7 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 35  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (June 2014) to Revision D  
Page  
Changed ESD Ratings title, updated to current format, moved Storage temperature parameter to Absolute  
Maximum Ratings table .......................................................................................................................................................... 4  
Changed Timing Characteristics table: split table into Timing Requirements and Switching Characteristics ....................... 9  
Deleted tSU_DOCK and tHT_CKDO parameters, replaced with tD_CKDO parameter ........................................................................ 9  
Changed Timing Diagram figure............................................................................................................................................. 9  
Changes from Revision B (April 2014) to Revision C  
Page  
已将器件信息表更改为最新标准 ............................................................................................................................................ 1  
已更正功能方框图中的伪差分输入和参考连........................................................................................................................ 1  
Changed Handling Ratings table to current standards ......................................................................................................... 4  
Changes from Revision A (January 2014) to Revision B  
Page  
更改了格式,以符合最新数据表标准;添加了布局 部分,移动了现有部分............................................................................ 1  
Deleted Ordering Information section .................................................................................................................................... 3  
Changes from Original (May 2013) to Revision A  
Page  
已发布至生产 .......................................................................................................................................................................... 1  
2
Copyright © 2013–2018, Texas Instruments Incorporated  
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
REFIN-A  
REFGND-A  
REFGND-B  
REFIN-B  
1
2
3
4
12 SDO-B  
11  
10  
9
SDO-A  
SCLK  
CS  
Thermal  
Pad  
Pin Functions  
PIN  
NAME  
NO.  
16  
5
I/O  
DESCRIPTION  
AINM-A  
AINM-B  
AINP-A  
AINP-B  
AVDD  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
Negative analog input, ADC_A  
Negative analog input, ADC_B  
Positive analog input, ADC_A  
Positive analog input, ADC_B  
ADC supply voltage  
15  
6
14  
9
CS  
Digital input  
Supply  
Chip-select signal; active low  
Digital I/O supply  
DVDD  
7
GND  
8, 13  
2
Supply  
Device ground  
REFGND-A  
REFGND-B  
REFIN-A  
REFIN-B  
SCLK  
Supply  
Reference ground potential, ADC_A  
Reference ground potential, ADC_B  
Reference voltage input, ADC_A  
Reference voltage input, ADC_B  
Serial communication clock  
3
Supply  
1
Analog input  
Analog input  
Digital input  
Digital output  
Digital output  
4
10  
11  
12  
SDO-A  
SDO-B  
Data output for serial communication, ADC_A  
Data output for serial communication, ADC_B  
Exposed thermal pad. TI recommends connecting the thermal pad to the printed  
circuit board (PCB) ground.  
Thermal pad  
Supply  
Copyright © 2013–2018, Texas Instruments Incorporated  
3
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
AVDD to GND  
Supply voltage  
7
7
V
DVDD to GND  
–0.3  
AINP_x to REFGND_x  
REFGND_x – 0.3  
REFGND_x – 0.3  
REFGND_x – 0.3  
GND – 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
DVDD + 0.3  
0.3  
Analog input voltage  
AINM_x to REFGND_x  
REFIN_x to REFGND_x  
CS, SCLK to GND  
V
Digital input voltage  
Ground voltage difference  
Input current  
V
V
| REFGND_x – GND |  
Any pin except supply pins  
±10  
mA  
°C  
°C  
Maximum virtual junction temperature, TJ  
Storage temperature, Tstg  
150  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
5
MAX  
UNIT  
AVDD  
DVDD  
Analog power supply  
Digital power supply  
V
V
3.3  
6.4 Thermal Information  
ADS7250, ADS7850, ADS8350  
THERMAL METRIC  
RTE (WQFN)  
16 PINS  
33.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
29.5  
7.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
7.4  
RθJCbot  
0.9  
4
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
6.5 Electrical Characteristics: All Devices  
minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, VREFIN_A = VREFIN_B = VREF, and tDATA  
750 kSPS (unless otherwise noted); typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V  
=
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
Full-scale input range,  
(AINP_x – AINM_x)  
AVDD 2 x VREF  
AINM_x = VREF  
,
FSR  
VINP  
VINM  
–VREF  
0
VREF  
2 × VREF  
V
V
V
(1)  
Absolute input voltage,  
(AINP_x to REFGND)  
AVDD 2 x VREF  
AINM_x = VREF  
,
Absolute input voltage,  
(AINM_x to REFGND)  
VREF – 0.1  
VREF  
VREF + 0.1  
In sample mode  
In hold mode  
40  
4
CIN  
IIN  
Input capacitance  
pF  
nA  
Input leakage current  
1.5  
SAMPLING DYNAMICS  
fDATA  
tA  
Data rate  
750  
kSPS  
ns  
Aperture delay  
tA match  
8
40  
10  
ADC_A to ADC_B  
ps  
Aperture jitter  
Clock frequency  
ps  
fCLK  
24  
AVDD / 2(1)  
1
MHz  
VOLTAGE REFERENCE INPUT  
VREF  
IREF  
Reference input voltage  
Reference input current  
Reference leakage current  
2.25  
2.5  
V
300  
µA  
µA  
External ceramic reference  
capacitance  
CREF  
10  
µF  
DIGITAL INPUTS(2)  
VIH  
Input voltage, high  
0.7 DVDD  
–0.3  
DVDD + 0.3  
0.3 DVDD  
V
V
VIL  
Input voltage, low  
DIGITAL OUTPUTS(2)  
VOH  
VOL  
Output voltage, high  
Output voltage, low  
IOH = 500-µA source  
IOH = 500-µA sink  
0.8 DVDD  
0
DVDD  
V
V
0.2 DVDD  
POWER SUPPLY  
Analog supply voltage,  
AVDD to GND  
AVDD  
DVDD  
IA-DYNA  
IA-STAT  
4.5(1)  
1.65  
5.0  
5.5  
5.5  
9
V
V
Digital supply voltage,  
DVDD to GND  
Analog supply current,  
during conversion  
AVDD = 5 V, throughput = max  
AVDD = 5 V, static  
8
5
mA  
Analog supply current,  
no conversion  
7
mA  
mA  
IDVDD  
Digital supply current  
DVDD = 3.3 V  
0.25  
40  
PD-DYNA  
PD-STAT  
AVDD = 5 V, throughput = max  
AVDD = 5 V, static  
45  
35  
Power dissipation  
mW  
25  
(1) The AVDD supply voltage defines the permissible voltage swing on the analog input pins. To use the maximum dynamic range of the  
analog input pins, VREFIN_x and AVDD must be in the respective permissible range with AVDD 2 x VREFIN_x  
.
(2) Specified by design; not production tested.  
Copyright © 2013–2018, Texas Instruments Incorporated  
5
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
6.6 Electrical Characteristics: ADS7250  
minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, VREFIN_A = VREFIN_B = VREF, and tDATA  
750 kSPS (unless otherwise noted); typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V  
=
PARAMETER  
RESOLUTION  
Resolution  
DC ACCURACY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
12  
Bits  
INL  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
VOS match  
–1  
–0.99  
–2  
±0.5  
±0.4  
1
1
2
2
LSB  
LSB  
mV  
DNL  
VOS  
±0.75  
±0.75  
1
ADC_A to ADC_B  
–2  
mV  
dVOS/dT Input offset thermal drift  
µV/°C  
GERR  
Gain error  
Referenced to voltage at REFIN_x  
ADC_A to ADC_B  
–0.1%  
–0.1%  
±0.05%  
±0.05%  
1
0.1%  
0.1%  
GERR match  
GERR/dT Gain error thermal drift  
Referenced to voltage at REFIN_x  
ppm/°C  
dB  
CMRR  
Common-mode rejection ratio Both ADCs, dc to 20 kHz  
74  
AC ACCURACY  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
71.5  
72  
72.9  
72.9  
72.5  
73  
SINAD  
SNR  
Signal-to-noise + distortion  
dB  
dB  
dB  
dB  
Signal-to-noise ratio  
73  
73  
–90  
–90  
–82  
90  
THD  
Total harmonic distortion  
SFDR  
Spurious-free dynamic range –0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
90  
82  
Isolation between ADC_A and  
fIN = 15 kHz, fNOISE = 25 kHz  
ADC_B  
–85  
dB  
At –3 dB  
Full-power bandwidth  
25  
5
BW(FP)  
MHz  
At –0.1 dB  
6
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
6.7 Electrical Characteristics: ADS7850  
minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, VREFIN_A = VREFIN_B = VREF, and tDATA  
750 kSPS (unless otherwise noted); typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V  
=
PARAMETER  
RESOLUTION  
Resolution  
DC ACCURACY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
14  
Bits  
INL  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
VOS match  
–1.5  
–0.99  
–1  
±0.8  
±0.7  
1.5  
1
LSB  
LSB  
mV  
DNL  
VOS  
±0.25  
±0.25  
1
1
ADC_A to ADC_B  
–1  
1
mV  
dVOS/dT Input offset thermal drift  
µV/°C  
GERR  
Gain error  
Referenced to voltage at REFIN_x  
ADC_A to ADC_B  
–0.1%  
–0.1%  
±0.05%  
±0.05%  
1
0.1%  
0.1%  
GERR match  
GERR/dT Gain error thermal drift  
Referenced to voltage at REFIN_x  
ppm/°C  
dB  
CMRR  
Common-mode rejection ratio Both ADCs, dc to 20 kHz  
74  
AC ACCURACY  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
79  
81  
81  
SINAD  
SNR  
Signal-to-noise + distortion  
dB  
dB  
dB  
dB  
79.9  
81.5  
81.5  
81  
79.5  
Signal-to-noise ratio  
–90  
–90  
–86  
90  
THD  
Total harmonic distortion  
SFDR  
Spurious-free dynamic range –0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
90  
86  
Isolation between ADC_A and  
fIN = 15 kHz, fNOISE = 25 kHz  
ADC_B  
–90  
dB  
At –3 dB  
Full-power bandwidth  
25  
5
BW(FP)  
MHz  
At –0.1 dB  
Copyright © 2013–2018, Texas Instruments Incorporated  
7
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
6.8 Electrical Characteristics: ADS8350  
minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, VREFIN_A = VREFIN_B = VREF, and tDATA  
750 kSPS (unless otherwise noted); typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V  
=
PARAMETER  
RESOLUTION  
Resolution  
DC ACCURACY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
Bits  
INL  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
VOS match  
–2.5  
–0.99  
–1  
±1  
±0.7  
2.5  
2
LSB  
LSB  
mV  
DNL  
VOS  
±0.25  
±0.25  
1
1
ADC_A to ADC_B  
–1  
1
mV  
dVOS/dT Input offset thermal drift  
µV/°C  
GERR  
Gain error  
Referenced to voltage at REFIN_x  
ADC_A to ADC_B  
–0.1%  
–0.1%  
±0.05%  
±0.05%  
1
0.1%  
0.1%  
GERR match  
GERR/dT Gain error thermal drift  
Referenced to voltage at REFIN_x  
ppm/°C  
dB  
CMRR  
Common-mode rejection ratio Both ADCs, dc to 20 kHz  
74  
AC ACCURACY  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
–0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
–0.5 dBFS at 20-kHz input  
83.5  
84  
84.7  
83.7  
83  
SINAD  
SNR  
Signal-to-noise + distortion  
dB  
dB  
dB  
dB  
85  
Signal-to-noise ratio  
84.8  
84  
–96  
–90  
–90  
96  
THD  
Total harmonic distortion  
SFDR  
Spurious-free dynamic range –0.5 dBFS at 100-kHz input  
–0.5 dBFS at 250-kHz input  
90  
90  
Isolation between ADC_A and  
fIN = 15 kHz, fNOISE = 25 kHz  
ADC_B  
–90  
dB  
At –3 dB  
Full-power bandwidth  
25  
5
BW(FP)  
MHz  
At –0.1 dB  
8
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
6.9 Timing Requirements  
MIN  
NOM  
MAX UNIT  
750 kSPS  
µs  
fCLK = max  
fTHROUGHPUT Sample taken to data read  
fCLK = max  
1.33  
fCLK  
CLOCK frequency  
CLOCK period  
fTHROUGHPUT = max  
fTHROUGHPUT = max  
24  
MHz  
ns  
tCLK  
41.66  
0.4  
0.4  
120  
100  
70  
tPH_CK  
tPL_CK  
CLOCK high time  
CLOCK low time  
0.6  
0.6  
tCLK  
tCLK  
ADS8350, fCLK = max  
ADS7850, fCLK = max  
ADS7250, fCLK = max  
tACQ  
Acquisition time  
ns  
ns  
ns  
tPH_CS  
CS high time  
20  
ADS8350  
ADS7850  
ADS7250  
120  
100  
70  
tPH_CS_SHRT  
CS high time after frame abort  
tD_CKCS  
Delay time from last SCLK falling to CS rising  
Setup time from CS falling to SCLK falling  
15  
ns  
ns  
tSU_CSCK  
15  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Conversion time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
590  
12  
UNIT  
tCONV  
ns  
ns  
tDV_CSDO  
Delay time from CS falling to data enable  
Delay time from CS rising to DOUT going to  
3-state  
tDZ_CSDO  
tD_CKDO  
10  
20  
ns  
ns  
Delay time from SCLK falling to (next) data  
valid on SDO  
3
Sample  
N
Sample  
N + 1  
tTHROUGHPUT  
tCONV  
tACQ  
tPH_CS  
CS  
tSCLK  
tD_CKCS  
tSU_CSCK  
tPH_CK  
tPL_CK  
22  
23  
25  
1
2
13  
14  
15  
16  
17  
24  
26  
27  
28  
SCLK  
30  
30  
31  
32  
tDZ_CSDO  
D1 D0  
tDV_CSDO  
tD_CKDO  
SDO-A  
SDO-B  
ADS8350  
D15  
D13  
D11  
D14  
D12  
D10  
D9  
D8  
D7  
D6  
D5  
D3  
D1  
D4  
D3  
D2  
D0  
0
Data From Sample N  
D6 D5 D4  
SDO-A  
SDO-B  
ADS7850  
D7  
D5  
D2  
D0  
D1  
0
0
0
0
0
Data From Sample N  
D4 D3 D2  
SDO-A  
SDO-B  
ADS7250  
Data From Sample N  
Figure 1. Timing Diagram  
Copyright © 2013–2018, Texas Instruments Incorporated  
9
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
6.11 Typical Characteristics: ADS7250  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
1
0.75  
0.5  
1
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
0
1024  
2048  
Code  
3072  
4096  
0
1024  
2048  
Code  
3072  
4096  
C01  
C01  
Figure 2. Typical DNL  
Figure 3. Typical INL  
1
0.75  
0.5  
1
0.75  
0.5  
Maximum INL  
Minimum INL  
Maximum DNL  
Minimum DNL  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
-40  
-7  
26  
59  
92  
125  
C01  
-40  
-7  
26  
59  
92  
125  
C01  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Figure 4. DNL vs Device Temperature  
Figure 5. INL vs Device Temperature  
0
-20  
0
-20  
fIN = 2 kHz  
fIN = 250 kHz  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
0
75  
150  
225  
300  
375  
0
75  
150  
225  
300  
375  
Input Frequency (kHz)  
C00  
C00  
Input Frequency (kHz)  
Figure 6. Typical FFT at 2-kHz Input  
Figure 7. Typical FFT at 250-kHz Input  
10  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Characteristics: ADS7250 (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
75  
74.5  
74  
-80  
-84  
73.5  
73  
-88  
-92  
72.5  
72  
-96  
71.5  
71  
-100  
0
75  
150  
225  
300  
375  
0
75  
150  
225  
300  
375  
Input Frequency (kHz)  
C00  
Input Frequency (kHz)  
C00  
Figure 8. SNR vs Input Frequency  
Figure 9. THD vs Input Frequency  
75  
74.5  
74  
74  
73.5  
73  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
71  
70.5  
70  
fIN = 2 kHz  
0
75  
150  
225  
300  
375  
C00  
-40  
-7  
26  
59  
92  
125  
C00  
Input Frequency (kHz)  
Free-Air Temperature (oC)  
Figure 10. SINAD vs Input Frequency  
Figure 11. SNR vs Device Temperature  
-88  
-88.5  
-89  
74  
73.5  
73  
fIN = 2 kHz  
-89.5  
-90  
72.5  
72  
-90.5  
-91  
71.5  
71  
-91.5  
-92  
70.5  
70  
fIN = 2 kHz  
-40  
-7  
26  
59  
92  
125  
C00  
-40  
-7  
26  
59  
92  
125  
C00  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Figure 12. THD vs Device Temperature  
Figure 13. SINAD vs Device Temperature  
Copyright © 2013–2018, Texas Instruments Incorporated  
11  
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics: ADS7250 (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
100  
1000  
600  
60  
20  
200  
-20  
-60  
-100  
-200  
-600  
-1000  
-40  
-7  
26  
59  
92  
125  
C01  
-40  
-7  
26  
59  
92  
125  
C01  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Figure 14. Offset Error vs Device Temperature  
Figure 15. Gain Error vs Device Temperature  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
2045  
2046  
Code  
2047  
C01  
Figure 16. DC Histogram  
12  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
6.12 Typical Characteristics: ADS7850  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
1
1
0.75  
0.75  
0.5  
0.5  
0.25  
0.25  
0
0
-0.25  
-0.25  
-0.5  
-0.5  
-0.75  
-0.75  
-1  
-1  
0
4096  
8192  
Code  
12288  
16384  
C01  
0
4096  
8192  
Code  
12288  
16384  
C01  
Figure 18. Typical INL  
Figure 17. Typical DNL  
2
1.5  
1
2
1.5  
1
Maximum INL  
Minimum INL  
0.5  
0
Maximum DNL  
Minimum DNL  
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
C01  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C01  
Figure 19. DNL vs Device Temperature  
Figure 20. INL vs Device Temperature  
0
-20  
0
fIN = 2 kHz  
fIN = 250 kHz  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
0
75  
150  
225  
300  
375  
0
75  
150  
225  
300  
375  
C00  
C00  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 21. Typical FFT at 2-kHz Input  
Figure 22. Typical FFT at 250-kHz Input  
Copyright © 2013–2018, Texas Instruments Incorporated  
13  
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics: ADS7850 (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
-80  
84  
83.5  
83  
-84  
82.5  
82  
-88  
-92  
81.5  
81  
-96  
80.5  
80  
-100  
0
75  
150  
225  
300  
375  
C00  
0
75  
150  
225  
300  
375  
C00  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 23. SNR vs Input Frequency  
Figure 24. THD vs Input Frequency  
86  
85  
84  
83  
82  
81  
80  
79  
78  
84  
83  
82  
81  
80  
79  
78  
fIN = 2 kHz  
0
75  
150  
225  
300  
375  
-40  
-7  
26  
59  
92  
125  
C00  
Input Frequency (kHz)  
Free-Air Temperature (oC)  
C00  
Figure 25. SINAD vs Input Frequency  
Figure 26. SNR vs Device Temperature  
-88  
-89  
-90  
-91  
-92  
-93  
-94  
84  
83  
82  
81  
80  
79  
78  
fIN = 2 kHz  
fIN = 2 kHz  
-40  
-7  
26  
59  
92  
125  
C00  
-40  
-7  
26  
59  
92  
125  
C00  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Figure 27. THD vs Device Temperature  
Figure 28. SINAD vs Device Temperature  
14  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Characteristics: ADS7850 (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
100  
1000  
750  
75  
50  
500  
25  
250  
0
0
-25  
-50  
-75  
-100  
-250  
-500  
-750  
-1000  
-40  
-7  
26  
59  
92  
125  
C01  
-40  
-7  
26  
59  
92  
125  
C01  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Figure 29. Offset Error vs Device Temperature  
Figure 30. Gain Error vs Device Temperature  
60000  
50000  
40000  
30000  
20000  
10000  
0
8181  
8182  
8183  
Code  
8184  
8185  
C01  
Figure 31. DC Histogram  
Copyright © 2013–2018, Texas Instruments Incorporated  
15  
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
6.13 Typical Characteristics: ADS8350  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
2
1.5  
1
0.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.5  
-1  
-1.5  
-2  
0
16384  
32768  
49152  
65536  
0
œ40  
0
16384  
32768  
49152  
65536  
ADC Output Code (LSB)  
C010  
C011  
ADC Output Code (LSB)  
Figure 32. Typical DNL  
Figure 33. Typical INL  
2
1.5  
1
2
1.5  
1
Maximum INL  
Maximum DNL  
0.5  
0
0.5  
0
-0.5  
-1  
Minimum INL  
Minimum DNL  
-0.5  
-1  
-1.5  
-2  
26  
59  
92  
125  
26  
59  
92  
125  
œ7  
œ40  
œ7  
C015  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
C013  
Figure 35. INL vs Device Temperature  
Figure 34. DNL vs Device Temperature  
0
œ50  
0
œ20  
fIN = 2 kHz  
fIN = 100 kHz  
œ40  
œ60  
œ80  
œ100  
œ150  
œ200  
œ100  
œ120  
œ140  
œ160  
œ180  
œ200  
0
75  
150  
225  
300  
375  
75  
150  
225  
300  
375  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
C001  
C002  
Figure 36. Typical FFT at 2-kHz Input  
Figure 37. Typical FFT at 100-kHz Input  
16  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Characteristics: ADS8350 (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
œ80  
œ82  
œ84  
œ86  
œ88  
œ90  
œ92  
œ94  
œ96  
œ98  
œ100  
86  
85.5  
85  
84.5  
84  
83.5  
83  
82.5  
82  
0
75  
150  
225  
300  
375  
0
75  
150  
225  
300  
375  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
C005  
C003  
Figure 38. SNR vs Input Frequency  
Figure 39. THD vs Input Frequency  
86  
85.5  
85  
88  
87.5  
87  
fIN = 2 kHz  
84.5  
84  
86.5  
86  
83.5  
83  
85.5  
85  
82.5  
82  
84.5  
84  
0
75  
150  
225  
300  
375  
26  
59  
92  
125  
œ40  
œ7  
C004  
C018  
fIN, Input Frequency (kHz)  
Free-Air Temperature (°C)  
Figure 40. SINAD vs Input Frequency  
Figure 41. SNR vs Device Temperature  
88  
87.5  
87  
œ90  
œ92  
fIN = 2 kHz  
fIN = 2 kHz  
œ94  
86.5  
86  
œ96  
œ98  
œ100  
œ102  
œ104  
œ106  
85.5  
85  
84.5  
84  
26  
59  
92  
125  
œ40  
œ7  
26  
59  
92  
125  
œ40  
œ7  
C021  
C019  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
Figure 42. THD vs Device Temperature  
Figure 43. SINAD vs Device Temperature  
Copyright © 2013–2018, Texas Instruments Incorporated  
17  
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics: ADS8350 (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
1000  
100  
750  
75  
500  
50  
250  
25  
0
0
-250  
-500  
-750  
-1000  
-25  
-50  
-75  
-100  
26  
59  
92  
125  
26  
59  
92  
125  
œ40  
œ7  
œ40  
œ7  
C008  
C009  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
Figure 44. Offset Error vs Device Temperature  
Figure 45. Gain Error vs Device Temperature  
25000  
20000  
15000  
10000  
5000  
0
C007  
Code  
Figure 46. DC Histogram  
18  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
6.14 Typical Characteristics: All Devices  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V, and fDATA = 750 kSPS (unless otherwise noted)  
8
7.8  
7.6  
7.4  
7.2  
7
8
7.5  
7
6.5  
6
5.5  
5
6.8  
6.6  
6.4  
6.2  
6
4.5  
4
3.5  
3
26  
59  
92  
125  
0
6
12  
18  
24  
œ40  
œ7  
C016  
C017  
Free-Air Temperature (°C)  
SCLK Frequency (MHz)  
Figure 47. Dynamic Current vs Device Temperature  
Figure 48. Supply Current vs SCLK Frequency  
Copyright © 2013–2018, Texas Instruments Incorporated  
19  
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS8350, ADS7850, and ADS7250 belong to a family of dual, high-speed, simultaneous-sampling, analog-  
to-digital converters (ADCs). The devices support pseudo-differential input signals with the input common-mode  
equal to the reference voltage and the full-scale input range equal to twice the reference voltage. The devices  
provide a simple serial interface to the host controller and operate over a wide range of digital power supplies.  
7.2 Functional Block Diagram  
Comparator  
S/H  
CDAC  
SAR  
SAR  
ADC_A  
ADC_B  
Serial  
Interface  
CDAC  
S/H  
Comparator  
20  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
7.3 Feature Description  
7.3.1 Reference  
Each device has two simultaneous-sampling ADCs (ADC_A and ADC_B). ADC_A operates with reference  
voltage VREFIN_A and ADC_B operates with reference voltage VREFIN_B. These reference voltages must be  
provided on the REFIN_A and REFIN_B pins, respectively. REFIN_A and REFIN_B may be set to different  
values as per the application requirement.  
As shown in Figure 49, decouple the REFIN_A and REFIN_B pins with the REFGND_A and REFGND_B pins,  
respectively, with individual 10-µF decoupling capacitors.  
AINP_A  
ADC_A  
VREFIN_A  
AINM_A  
REFIN_A  
10 mF  
REFGND_A  
Serial  
Interface  
AINP_B  
ADC_B  
VREFIN_B  
AINM_B  
REFIN_B  
10 mF  
REFGND_B  
Figure 49. Reference Block Diagram  
Copyright © 2013–2018, Texas Instruments Incorporated  
21  
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Analog Input  
The devices support pseudo-differential analog input signals. These inputs are sampled and converted  
simultaneously by the two ADCs (ADC_A and ADC_B). ADC_A samples and converts (VAINP_A – VAINM_A), and  
ADC_B samples and converts (VAINP_B – VAINM_B).  
Figure 50a and Figure 50b show equivalent circuits for the ADC_A and ADC_B analog input pins, respectively.  
RS (typically 50 Ω) represents the on-state sampling switch resistance, and CSAMPLE represents the device  
sampling capacitor (typically 40 pF).  
AVDD  
AVDD  
RS  
CSAMPLE  
RS  
CSAMPLE  
AINP_A  
AINP_B  
GND  
GND  
AVDD  
AVDD  
RS  
CSAMPLE  
RS  
CSAMPLE  
AINM_A  
AINM_B  
GND  
GND  
a) ADC_A  
b) ADC_B  
Figure 50. Equivalent Circuit for Analog Input Pins  
7.3.2.1 Analog Input Full-Scale Range  
The analog input full-scale range (FSR) for ADC_A and ADC_B is twice the reference voltage provided to the  
particular ADC. By providing different reference voltages (VREFIN_A and VREFIN_B), ADC_A and ADC_B can have  
different full-scale input ranges. Therefore, the FSR for ADC_A and ADC_B can be determined by Equation 1  
and Equation 2, respectively:  
FSR_ADC_A = 2 × VREFIN_A  
,
(1)  
VAINP_A = 0 to 2 × VREFIN_A  
,
VAINM_A = VREFIN_A  
The REFIN_A and AINM_A pins must be shorted and connected to the external reference voltage, VREFIN_A  
.
FSR_ADC_B = 2 × VREFIN_B  
,
(2)  
VAINP_B = 0 to 2 × VREFIN_B  
,
VAINM_B = VREFIN_B  
The REFIN_B and AINM_B pins must be shorted and connected to the external reference voltage, VREFIN_B  
.
To use the full dynamic input range on the analog input pins, AVDD must be as shown in Equation 3, Equation 4,  
and Equation 5:  
AVDD 2 × VREFIN_A  
AVDD 2 × VREFIN_B  
4.5 V AVDD 5.5 V  
(3)  
(4)  
(5)  
22  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Feature Description (continued)  
7.3.3 ADC Transfer Function  
The device output is in binary twos complement format. Device resolution is calculated by Equation 6:  
1 LSB = (FSR_ADC_x) / (2N)  
where:  
FSR_ADC_x = 2 x VREFIN_x and  
N is the resolution of the ADC : N = 16 for the ADS8350, N = 14 for the ADS7850, and N = 12 for the  
ADS7250  
(6)  
Table 1 shows the different input voltages and the corresponding device output codes.  
Table 1. Transfer Characteristics  
INPUT  
VOLTAGE  
(AINM_x)  
PSEUDO-DIFFERENTIAL INPUT TO  
ADC  
OUTPUT CODE (HEX)  
INPUT VOLTAGE  
(AINP_x)  
CODE  
ADS7250  
ADS7850  
ADS8350  
(AINP_x - AINM_x)  
0
–VREFIN_x  
– VREFIN_x + 1 LSB  
–1 LSB  
NFSR  
NFSR + 1 LSB  
–1 LSB  
NFSC  
NFSC + 1  
MC  
800  
801  
FFF  
000  
7FF  
2000  
2001  
3FFF  
0000  
1FFF  
8000  
8001  
FFFF  
0000  
7FFF  
1 LSB  
VREFIN_x  
VREFIN_x – 1 LSB  
VREFIN_x  
0
0
PLC  
2 × VREFIN_x – 1 LSB  
VREFIN_x – 1 LSB  
PFSR – 1 LSB  
PFSC  
Figure 51 shows the ideal transfer characteristics for the device.  
PFSC  
PLC  
MC  
NFSC + 1  
NFSC  
VIN  
0
PFSR œ 1 LSB  
NFSR  
-1 LSB  
Pseudo-Differential Analog Input  
(AINP_x œ AINM_x)  
Figure 51. Ideal Transfer Characteristics  
Copyright © 2013–2018, Texas Instruments Incorporated  
23  
 
 
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Serial Interface  
The devices support a simple, SPI-compatible serial interface to the external digital host. The CS signal defines  
one conversion and serial transfer frame. A frame starts with a CS falling edge and ends with a CS rising edge.  
The SDO_A and SDO_B pins output the ADC_A and ADC_B conversion results, respectively. Figure 52 shows a  
detailed timing diagram for these devices.  
Sample  
N
Sample  
N + 1  
tTHROUGHPUT  
tCONV  
tACQ  
CS  
22  
D9  
D7  
D5  
23  
25  
1
2
13  
14  
15  
16  
17  
24  
26  
27  
28  
SCLK  
30  
30  
31  
32  
SDO-A  
SDO-B  
ADS8350  
D15  
D13  
D11  
D14  
D12  
D10  
D8  
D7  
D6  
D5  
D3  
D1  
D4  
D3  
D2  
D1  
D0  
Data From Sample N  
D6 D5 D4  
SDO-A  
SDO-B  
ADS7850  
D2  
D0  
D1  
0
D0  
0
0
0
0
0
Data From Sample N  
D4 D3 D2  
SDO-A  
SDO-B  
ADS7850  
Data From Sample N  
Figure 52. Serial Interface Timing Diagram  
A CS falling edge brings the serial data bus out of 3-state and also outputs a '0' on the SDO_A and SDO_B pins.  
The device converts the sampled analog input during the next 14 clocks. SDO_A and SDO_B read '0' during this  
period. The sample-and-hold circuit goes back into sample mode on the 15th SCLK falling edge and the MSBs of  
ADC_A and ADC_B are output on SDO_A and SDO_B, respectively. The subsequent clock edges are used to  
shift out the conversion result using the serial interface, as shown in Table 2. Output data are in binary twos  
complement format. A CS rising edge ends the frame and puts the serial bus into 3-state.  
Table 2. Data Launch Edge  
LAUNCH EDGE  
SCLK  
DEVICE  
PIN  
CS  
1  
0
14  
0
15  
26  
27  
28  
29  
30  
31  
0
CS ↑  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
SDO-A  
SDO-B  
SDO-A  
SDO-B  
SDO-A  
SDO-B  
0
0
0
0
0
0
D15_A  
D15_B  
D13_A  
D13_B  
D11_A  
D11_B  
D4_A D3_A D2_A D1_A D0_A  
D4_B D3_B D2_B D1_B D0_B  
ADS8350  
0
0
0
0
0
D2_A D1_A D0_A  
D2_B D1_B D0_B  
0
0
0
0
0
0
0
0
0
ADS7850  
ADS7250  
0
0
0
0
0
D0_A  
D0_B  
0
0
0
0
0
0
0
0
24  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
7.4.2 Short-Cycling, Frame Abort, and Reconversion Feature  
Referring to Table 2, the ADS8350 requires a minimum of 31 SCLK falling edges between the beginning and end  
of the frame to complete the 16-bit data transfer, the ADS7850 requires a minimum of 29 SCLK falling edges  
between the beginning and end of the frame to complete the 14-bit data transfer, and the ADS7250 requires a  
minimum of 27 SCLK falling edges between the beginning and end of the frame to complete the 12-bit data  
transfer. However, CS can be brought high at any time during the frame to abort the frame or to short-cycle the  
converter.  
As shown in Figure 53, if CS is brought high before the 15th SCLK falling edge, the device aborts the conversion  
and starts sampling the new analog input signal.  
tPL_CS  
tPH_CS_SHRT  
CS  
1
2
SCLK  
tDZ_CSDO  
SDO  
Figure 53. Frame Aborted before 15th SCLK Falling Edge  
If CS is brought high after the 15th SCLK falling edge (as shown in Figure 54), the output data bits latched into  
the digital host before this CS rising edge are still valid data corresponding to sample N.  
Sample  
N
Sample  
N + 1  
tCONV  
tACQ  
tPH_CS_SHRT  
CS  
22  
tDZ_CSDO  
D9 D8  
23  
1
2
13  
14  
15  
16  
17  
24  
SCLK  
SDO-A  
SDO-B  
ADS8350  
D14  
D15  
D13  
D11  
D7  
Data From Sample N  
D12  
SDO-A  
SDO-B  
ADS7850  
D7  
D6  
D5  
Data From Sample N  
D10  
SDO-A  
SDO-B  
ADS7250  
D5  
D4  
D3  
Data From Sample N  
Figure 54. Frame Aborted after 15th SCLK Falling Edge  
After aborting the current frame, CS must be kept high for tPH_CS_SHRT to ensure that the minimum acquisition  
time (tACQ) is provided for the next conversion.  
Copyright © 2013–2018, Texas Instruments Incorporated  
25  
 
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing these circuits and provides some application circuits  
designed using these devices.  
8.2 Typical Applications  
8.2.1 DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at 750-kSPS Throughput  
10 µF  
5 V+  
X5R  
REFGND-A  
1 k  
0.1 ꢀ  
+
-
ADC_A  
REF5025  
REFIN-A  
1 µF  
VOUT  
TRIM  
ADS8350  
5 V+  
0.22 ꢀ  
1 kꢀ  
+
-
1 µF  
X5R  
REFIN-B  
10 µF  
X5R  
1 µF  
ADC_B  
0.1 ꢀ  
REFGND-B  
10 µF  
X5R  
OPA2350  
Figure 55. Reference Drive Circuit with VREF = 2.5 V  
26  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Applications (continued)  
AVDD  
VCM = VREF/2  
AVDD  
OPA836  
+
+
10  
1 kꢀ  
AVDD  
AINP  
-
VIN+  
3.9 nF  
ADS8350  
1kꢀ  
AINM  
GND  
10 ꢀ  
VREF = 2.5 V  
ADS8350 : 16-bit, 750kSPS, Pseudo Differential  
Input  
INPUT DRIVER  
Figure 56. DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at 750-kSPS Throughput  
8.2.1.1 Design Requirements  
For the ADS8350, design an input driver and reference driver circuit to achieve > 84-dB SNR and < –90-dB THD  
at a 100-kHz input frequency.  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 ADC Reference Driver  
The external reference source to the device must provide low-drift and very accurate voltage for the ADC  
reference input and support the dynamic charge requirements without affecting the noise and linearity  
performance of the device. The output broadband noise of most references can be in the order of a few  
100 µVRMS. Therefore, in order to prevent any degradation in the noise performance of the ADC, the output of  
the voltage reference must be appropriately filtered by using a low-pass filter with a cutoff frequency of a few  
hundred Hertz.  
After band-limiting the noise from the reference source, the next important step is to design a reference buffer  
that can drive the dynamic load posed by the reference input of the ADC. At the start of each conversion, the  
reference buffer must regulate the voltage of the reference pin within 1 LSB of the intended value. This condition  
necessitates the use of a large filter capacitor at the reference pin of the ADC. The amplifier selected to drive this  
large capacitor should have low output impedance, low offset, and temperature drift specifications.  
To reduce the dynamic current requirements and crosstalk between the channels, a separate reference buffer is  
recommended for driving the reference input of each ADC channel.  
The application circuit in Figure 55 shows the schematic of a complete reference driver circuit that generates a  
voltage of 2.5-V dc using a single 5-V supply.  
The 2.5-V reference voltage is generated by the high-precision, low-noise REF5025 circuit. The output  
broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz.  
The decoupling capacitor on each reference pin is selected to be 10 µF. The low output impedance, low noise,  
and fast settling time makes the OPA2350 a good choice for driving this high capacitive load.  
8.2.1.2.2 ADC Input Driver  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel  
RC filter. The amplifier is used for signal conditioning of the input voltage and its low output impedance provides  
a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate  
the sampling charge injection from the switched-capacitor input stage of the ADC and functions as an antialiasing  
filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-end circuit is  
critical to meet the linearity and noise performance of a high-precision ADC.  
Copyright © 2013–2018, Texas Instruments Incorporated  
27  
 
 
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.2.2.1 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider while selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter at the ADC  
inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. In order to  
maintain the overall stability of the input driver circuit, the amplifier bandwidth should be selected as  
described in Equation 7:  
1
÷
÷
Unity - Gain Bandwidth í 4ì  
2p  
ì(RFLT + RFLT )ìCFLT  
«
(7)  
Noise. Noise contribution of the front-end amplifiers should be as low as possible to prevent any degradation  
in SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the data  
acquisition system is not limited by the front-end circuit, the total noise contribution from the front-end circuit  
should be kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is band-  
limited by designing a low cutoff frequency RC filter, as explained in Equation 8.  
2
SNR  
(
dB  
)
÷
V
÷
-
1
_ AMP_PP  
p
2
1
5
VREF  
2
20  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
f
«
NG ì 2 ì  
÷
÷
6.6  
«
where:  
V1 / f_AMP_PP is the peak-to-peak flicker noise in µVRMS  
,
en_RMS is the amplifier broadband noise density in nV/Hz,  
f–3dB is the 3-dB bandwidth of the RC filter, and  
NG is the noise gain of the front-end circuit, which is equal to '1' in a buffer configuration.  
(8)  
Distortion. Both the ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of  
thumb, to ensure that the distortion performance of the data acquisition system is not limited by the front-end  
circuit, the distortion of the input driver should be at least 10 dB lower than the distortion of the ADC, as  
shown in Equation 9.  
THDAMP Ç THDADC - 10  
(
dB  
)
(9)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, the settling behavior of the input driver should always be verified by TINA™-  
SPICE simulations before selecting the amplifier.  
28  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Applications (continued)  
8.2.1.2.2.2 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, antialiasing filter must be used to remove the  
harmonic content from the input signal before being sampled by the ADC. An antialiasing filter is designed as a  
low-pass, RC filter, for which the 3-dB bandwidth is optimized based on specific application requirements. For dc  
signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow  
accurately settling the signal at the ADC inputs during the small acquisition time window. For ac signals, the filter  
bandwidth should be kept low to band-limit the noise fed into the ADC input, thereby increasing the signal-to-  
noise ratio (SNR) of the system.  
Besides filtering noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling charge  
injection from the switched-capacitor input stage of the ADC. A filter capacitor, CFLT, is connected across the  
ADC inputs (as shown in Figure 57).  
RFLT 22  
AINP  
1
f-3dB  
=
ADS8350  
CFLT 400 pF  
2p ì  
(
RFLT + RFLT ì CFLT  
)
AINM  
GND  
RFLT 22 ꢀ  
Figure 57. Antialiasing Filter  
This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the  
internal sample-and-hold capacitors during the acquisition process. As a rule of thumb, the value of this capacitor  
should be at least 10 times the specified value of the ADC sampling capacitance. For these devices, the input  
sampling capacitance is equal to 40 pF. Thus, the value of CFLT should be greater than 400 pF. The capacitor  
should be a COG- or NPO-type because these capacitor types have a high-Q, low-temperature coefficient, and  
stable electrical characteristics under varying voltages, frequency, and time.  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design. For these devices, TI recommends limiting the value of RFLT to a maximum of 22 Ω  
in order to avoid any significant degradation in linearity performance. The tolerance of the selected resistors can  
be chosen as 1% because the use of a differential capacitor at the input balances the effects resulting from any  
resistor mismatch.  
The input amplifier bandwidth should be much higher than the cutoff frequency of the antialiasing filter. TI  
strongly recommends performing a SPICE simulation to confirm that the amplifier has more than 40° phase  
margin with the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some amplifiers  
might require more bandwidth than others to drive similar filters. If an amplifier has less than a 40° phase margin  
with 22-Ω resistors, using a different amplifier with higher bandwidth or reducing the filter cutoff frequency with a  
larger differential capacitor is advisable.  
The application circuit shown in Figure 56 is optimized to achieve lowest distortion and lowest noise for a 10-kHz  
input signal. The input signal is processed through a high-bandwidth, low-distortion amplifier in an inverting gain  
configuration and a low-pass RC filter before being fed into the ADS8350 operating at 750-kSPS throughput.  
Copyright © 2013–2018, Texas Instruments Incorporated  
29  
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (continued)  
As a rule of thumb, the distortion from the input driver should be at least 10 dB less than the ADC distortion. The  
distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting  
gain configuration that establishes a fixed common-mode level for the circuit. The low-power OPA836, used as  
an input driver, provides exceptional ac performance because of its extremely low-distortion, high-bandwidth  
specifications. In addition, the components of the antialiasing filter are such that the noise from the front-end  
circuit is kept low without adding distortion to the input signal.  
NOTE  
The same circuit can be used with the ADS7250 and ADS7850 to achieve their rated  
specifications.  
8.2.1.3 Application Curve  
Figure 58 shows FFT plot and test results obtained with circuit configuration shown in Figure 56.  
0
AVDD = 5 V  
-20  
REF = 2.5 V  
TA = 25oC  
-40  
fIN = 10 kHz  
SNR = 85.5 dB  
THD = -94 dB  
-60  
-80  
-100  
-120  
-140  
-160  
0
75  
150  
225  
300  
375  
C10  
Input Frequency (kHz)  
Figure 58. FFT Plot and Test Results with ADS8350  
30  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Applications (continued)  
8.2.2 DAQ Circuit: Maximum SINAD for a 100-kHz Input Signal at 750-kSPS Throughput  
10 µF  
5 V+  
X5R  
REFGND-A  
1 kꢀ  
0.1 ꢀ  
+
-
ADC_A  
REF5025  
REFIN-A  
1 µF  
VOUT  
TRIM  
ADS8350  
5 V+  
0.22 ꢀ  
1 kꢀ  
+
-
1 µF  
X5R  
REFIN-B  
10 µF  
X5R  
1 µF  
ADC_B  
0.1 ꢀ  
REFGND-B  
10 µF  
X5R  
OPA2350  
Figure 59. Reference Drive Circuit with VREF = 2.5 V  
+15 V  
VREF/2  
AVDD  
THS4032  
+
4.7  
602 ꢀ  
AVDD  
-
AINP  
VIN+  
1 nF  
ADS8350  
-15 V  
602 ꢀ  
AINM  
GND  
10 pF  
4.7 ꢀ  
+15 V  
VREF  
ADS8350 : 16-bit, 750kSPS, Pseudo  
Differential Input  
+
-
-15 V  
INPUT DRIVER  
THS4032  
Figure 60. DAQ Circuit: Maximum SINAD for a 100-kHz Input Signal at 750-kSPS Throughput  
Copyright © 2013–2018, Texas Instruments Incorporated  
31  
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.2.1 Design Requirements  
For the ADS8350, design an input driver and reference driver circuit to achieve > 84-dB SNR and < –90-dB THD  
at a 100-kHz input frequency.  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 ADC Reference Driver  
Refer to the ADC Reference Driver section for a detailed design procedure for the ADC reference driver.  
The application circuit in Figure 55 shows the schematic of a complete reference driver circuit that generates a  
voltage of 2.5-V dc using a single 5-V supply. This circuit is suitable to drive the reference of the ADS8350 at  
sampling rates up to 750 kSPS.  
The 2.5-V reference voltage is generated by the high-precision, low-noise REF5025 circuit. The output  
broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz.  
The decoupling capacitor on each reference pin is selected to be 10 µF. The low output impedance, low noise,  
and fast settling time makes the OPA2350 a good choice for driving this high capacitive load.  
8.2.2.2.2 ADC Input Driver  
Refer to ADC Input Driver section for the detailed design procedure for an ADC input driver.  
The application circuit shown in Figure 60 is optimized to achieve lowest distortion and lowest noise for a 100-  
kHz input signal. The input signal is processed through a high-bandwidth, low-distortion amplifier in an inverting  
gain configuration and a low-pass RC filter before being fed into the ADS8350 operating at 750-kSPS  
throughput.  
As a rule of thumb, the distortion from the input driver should be at least 10 dB less than the ADC distortion. The  
distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting  
gain configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates  
the requirement of a rail-to-rail swing at the input of the amplifier. The THS4032, used as an input driver,  
provides exceptional ac performance because of its extremely low-distortion, low-noise, and high-bandwidth  
specifications. The ADC AINM pin is also driven to VREF with the same amplifier to match the source impedance  
and to take full advantage of the pseudo-differential input structure of the ADC. In addition, the components of  
the antialiasing filter are such that the noise from the front-end circuit is kept low without adding distortion to the  
input signal.  
NOTE  
The same circuit can be used with the ADS7250 and ADS7850 to achieve their rated  
specifications.  
32  
Copyright © 2013–2018, Texas Instruments Incorporated  
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
Typical Applications (continued)  
8.2.2.3 Application Curve  
Figure 61 shows FFT plot and test results obtained with circuit configuration shown in Figure 60.  
0
AVDD = 5 V  
-20  
-40  
REF = 2.5 V  
TA = 25oC  
fIN = 100 kHz  
SNR = 85 dB  
THD = -91 dB  
-60  
-80  
-100  
-120  
-140  
-160  
0
75  
150  
225  
300  
375  
C10  
Input Frequency (kHz)  
Figure 61. FFT Plot and Test Results with ADS8350  
9 Power Supply Recommendations  
The devices have two separate power supplies: AVDD and DVDD. The ADC operates on AVDD; DVDD is used  
for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible range.  
The AVDD supply voltage value defines the permissible voltage swing on the analog input pins. To avoid  
saturation of output codes, the external reference voltages VREFIN_A and VREFIN_B should be as shown in  
Equation 10:  
2 V VREFIN_x AVDD / 2  
(10)  
In other words, in order to use the VREFIN_x external reference voltage and use the full dynamic range on the  
analog input pins, AVDD must be set as shown in Equation 11, Equation 12, and Equation 13:  
AVDD 2 × VREFIN_A  
AVDD 2 × VREFIN_B  
4.5 V AVDD 5.5 V  
(11)  
(12)  
(13)  
Decouple the AVDD and DVDD pins with the GND pin using individual 10-µF decoupling capacitors, as shown in  
Figure 62.  
AVDD  
AVDD (pin 14)  
GND (pin 13)  
DVDD (pin 7)  
10 mF  
10 mF  
DVDD  
Figure 62. Power-Supply Decoupling  
Copyright © 2013–2018, Texas Instruments Incorporated  
33  
 
 
 
 
 
 
ADS8350, ADS7850, ADS7250  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Figure 63 shows a board layout example for the ADS7250, ADS7850, and ADS8350. Use a ground plane  
underneath the device and partition the PCB into analog and digital sections. Avoid crossing digital lines with the  
analog signal path and keep the analog input signals and the reference input signals away from noise sources.  
As shown in Figure 63, the analog input and reference signals are routed on the left side of the board and the  
digital connections are routed on the right side of the device.  
The power sources to the ADS8350 must be clean and well-bypassed. Use 10-µF ceramic bypass capacitors in  
close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the  
AVDD and DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low-  
impedance paths.  
The REFIN-A and REFIN-B reference inputs are bypassed with 10-µF, X7R-grade ceramic capacitors (CREF-x).  
Although the reference inputs of the device draw little current on average, there are instantaneous dynamic  
current demands placed on the reference circuitry characteristic of SAR ADCs. Place the reference bypass  
capacitors as close as possible to the reference REFIN-x pins and connect the bypass capacitors using short,  
low-inductance connections. Avoid placing vias between the REFIN-x pins and the bypass capacitors. If the  
reference voltage originates from an op amp, make sure that the op amp can drive the bypass capacitor without  
oscillation. Small 0.1-Ω to 0.2-Ω resistors (RREF-x) are used in series with the reference bypass capacitors to  
improve stability.  
The fly-wheel RC filters are placed immediately next to the input pins. Among ceramic surface-mount capacitors,  
COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG  
(NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and temperature  
changes. Figure 63 shows the CIN-A and CIN-B filter capacitors placed across the analog input pins of the device.  
10.2 Layout Example  
AVDD  
GND  
CREF-A  
CIN-A  
CAVDD  
GND  
SDO-A  
SDO-B  
SCLK  
/CS  
REFIN-A  
GND  
GND  
REFGND-A  
REFGND-B  
GND  
REFIN-B  
GND  
CDVDD  
CREF-B  
CIN-B  
DVDD  
GND  
GND  
Figure 63. Layout Example  
34  
版权 © 2013–2018, Texas Instruments Incorporated  
 
ADS8350, ADS7850, ADS7250  
www.ti.com.cn  
ZHCSCC6D MAY 2013REVISED MARCH 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
如需相关文档,请参阅:  
REF50xx 低噪声、极低温漂、高精度电压基准  
MicroAmplifier 系列 OPAx350 高速单电源轨至轨运算放大器  
OPAx836 极低功耗、轨至轨输出、负轨输入、电压反馈运算放大器  
THS403x 100MHz 低噪声高速放大器  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
ADS8350  
ADS7850  
ADS7250  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
TINA, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2013–2018, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7250IRTER  
ADS7250IRTET  
ADS7850IRTER  
ADS7850IRTET  
ADS8350IRTER  
ADS8350IRTET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7250  
7250  
7850  
7850  
8350  
8350  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7250IRTER  
ADS7250IRTET  
ADS7850IRTER  
ADS7850IRTET  
ADS8350IRTER  
ADS8350IRTET  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
16  
16  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7250IRTER  
ADS7250IRTET  
ADS7850IRTER  
ADS7850IRTET  
ADS8350IRTER  
ADS8350IRTET  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016D  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
SYMM  
17  
2X 1.5  
0.8 0.1  
12X 0.5  
1
12  
PIN 1 ID  
0.30  
0.18  
16X  
16  
13  
0.5  
0.3  
0.1  
C A B  
16X  
0.05  
4219118/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
SEE SOLDER MASK  
DETAIL  
16  
13  
16X (0.6)  
12  
16X (0.24)  
1
17  
SYMM  
(2.8)  
12X (0.5)  
(R0.05) TYP  
4
9
(
0.2) TYP  
VIA  
5
8
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219118/A 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
12X (0.5)  
(2.8)  
9
4
(R0.05) TYP  
5
8
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219118/A 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY