ADS7251IRTER [TI]

SAR ADC、双路、2 MSPS、12 位、同步采样 | RTE | 16 | -40 to 125;
ADS7251IRTER
型号: ADS7251IRTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SAR ADC、双路、2 MSPS、12 位、同步采样 | RTE | 16 | -40 to 125

文件: 总38页 (文件大小:1609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
ADS7x51 12 位,2MSPS 14 位,1.5MSPS,双路,差分输入,同步采  
样模数转换器,具有内部基准  
1 特性  
3 说明  
1
12 14 位引脚兼容系列  
ADS7251 ADS7851 属于引脚兼容、双路、高速、  
同步采样模数转换器 (ADC) 产品系列,此系列产品支  
持全差分模拟输入,并且特有 2 个单独的内部电压基  
准。 ADS7251 提供 12 位分辨率以及高达 2MSPS 的  
采样速度。 ADS7851 提供 14 位分辨率以及高达  
1.5MSPS 的采样速度。  
两个通道同时采样  
支持全差分模拟输入  
独立内部基准(每个 ADC 一个)  
高速:  
使用 ADS725112 位)时高达 2MSPS  
使用 ADS785114 位)时高达 1.5MSPS  
此器件支持宽数字电源电压范围,从而通过一个简单串  
口轻松实现与多种数字主机控制器的通信。 两个器件  
都在扩展工业用温度范围(-40°C +125°C)内完全  
额定运行,并且采用引脚兼容、节省空间的 WQFN-16  
(3mm x 3mm) 封装。  
出色的性能:  
ADS7251:  
信噪比 (SNR)73dB  
积分非线性 (INL)±1 最低有效位 (LSB)  
ADS7851:  
器件信息  
信噪比 (SNR)83.5dB  
积分非线性 (INL)±2LSB  
订货编号  
ADS7251RTE  
ADS7851RTE  
封装  
WQFN (16)  
WQFN (16)  
封装尺寸  
3mm x 3mm  
-40°C +125°C 的扩展工业用温度范围内完全  
额定运行  
3mm x 3mm  
小型封装:超薄四方扁平无引线 (WQFN)-16 (3mm  
x 3mm)  
典型应用图  
C
R
ADS7851,  
ADS7251  
2 应用范围  
电机控制:与 SinCos 编码器的直接对接  
AINP  
光网络互连:掺铒光纤放大器 (EDFA) 增益控制环  
VCM  
+V  
+V  
+V  
保护中继器  
AINM  
电源质量测量  
三相电源控制  
可编程逻辑控制器  
工业自动化  
R
C
Internal  
C
R
Reference  
AINP  
VCM  
+V  
+V  
+V  
AINM  
R
C
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBAS587  
 
 
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application ................................................. 23  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: ADS7251 ......................... 5  
6.6 Electrical Characteristics: ADS7851 ......................... 6  
6.7 Electrical Characteristics: Common .......................... 7  
6.8 ADS7251 Timing Characteristics .............................. 8  
6.9 ADS7851 Timing Characteristics .............................. 9  
6.10 Typical Characteristics: ADS7251 ........................ 10  
6.11 Typical Characteristics: ADS7851 ........................ 13  
6.12 Typical Characteristics: Common ......................... 16  
Detailed Description ............................................ 17  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 28  
11 器件和文档支持 ..................................................... 29  
11.1 文档支持................................................................ 29  
11.2 相关链接................................................................ 29  
11.3 Trademarks........................................................... 29  
11.4 Electrostatic Discharge Caution............................ 29  
11.5 Glossary................................................................ 29  
12 机械封装和可订购信息 .......................................... 29  
7
4 修订历史记录  
Changes from Original (January 2014) to Revision A  
Page  
已将格式更改为最新的数据表标准;已添加 电路板布局 部分,已移动现有部分 ................................................................... 1  
Deleted Ordering Information table ........................................................................................................................................ 3  
Changed Supply Current, IDVDD parameter typical specification in Electrical Characteristics: ADS7251 table...................... 5  
Changed Supply Current, IDVDD parameter typical specification in Electrical Characteristics: ADS7851 table...................... 6  
Changed Input Voltage column in Table 1 ........................................................................................................................... 20  
2
版权 © 2014, Texas Instruments Incorporated  
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
5 Terminal Configuration and Functions  
RTE Package  
WQFN-16  
(Top View)  
REFOUT-A  
REFGND-A  
REFGND-B  
REFOUT-B  
1
2
3
4
12 SDO-B  
11  
10  
9
SDO-A  
SCLK  
CS  
Thermal Pad  
Terminal Descriptions  
TERMINAL  
NAME  
NO.  
16  
15  
5
I/O  
DESCRIPTION  
AINM-A  
AINP-A  
AINM-B  
AINP-B  
AVDD  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
Negative analog input, channel A  
Positive analog input, channel A  
Negative analog input, channel B  
Positive analog input, channel B  
ADC supply voltage  
6
14  
9
CS  
Digital input  
Supply  
Chip-select signal; active low  
Digital I/O supply  
DVDD  
7
GND  
8, 13  
2
Supply  
Digital ground  
REFGND-A  
REFGND-B  
REFOUT-A  
REFOUT-B  
SCLK  
Supply  
Reference ground potential, channel A  
Reference ground potential, channel B  
Reference voltage output, REF_A  
3
Supply  
1
Analog output  
Analog output  
Digital input  
Digital output  
Digital output  
4
Reference voltage output, REF_B  
10  
11  
12  
Serial communication clock  
SDO-A  
Data output for serial communication, channel A  
Data output for serial communication, channel B  
SDO-B  
Exposed thermal pad.  
TI recommends connecting this pin to the printed circuit board (PCB) ground.  
Thermal pad  
Supply  
Copyright © 2014, Texas Instruments Incorporated  
3
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
MAX  
+7  
UNIT  
V
AVDD to GND  
Supply voltage  
DVDD to GND  
–0.3  
+7  
V
AINP_x to REFGND_x  
Analog input voltage  
REFGND_x – 0.3  
REFGND_x – 0.3  
GND – 0.3  
AVDD + 0.3  
AVDD + 0.3  
DVDD + 0.3  
0.3  
V
V
AINM_x to REFGND_x  
Digital input voltage  
Ground voltage difference  
Input current  
CS, SCLK to GND  
V
| REFGND_x – GND |  
Any pin except supply pins  
V
±10  
mA  
°C  
Maximum virtual junction temperature, TJ  
+150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–65  
+150  
°C  
Human body model (HBM) ESD stress voltage(2)  
JEDEC standard 22, test method A114-C.01  
Charged device model (CDM) ESD stress voltage(3)  
JEDEC standard 22, test method C101  
,
±2000  
±500  
V
V
(1)  
VESD  
,
all pins  
,
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that ±2000-V HBM  
allows safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that ±500-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
5
MAX  
UNIT  
V
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
3.3  
V
6.4 Thermal Information  
ADS7251,  
ADS7851  
THERMAL METRIC(1)  
UNIT  
RTE (WQFN)  
16 TERMINALS  
RθJA  
Junction-to-ambient thermal resistance  
33.3  
29.5  
7.3  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
7.4  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
6.5 Electrical Characteristics: ADS7251  
All minimum and maximum specifications are at TA = –40°C to +125°C, AVDD = 5 V, VREF_A = VREF_B = 2.5 V, and fDATA  
2 MSPS, unless otherwise noted. Typical values are at TA = +25°C, AVDD = 5 V, and DVDD = 3.3 V.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESOLUTION  
Resolution  
12  
Bits  
SAMPLING DYNAMICS  
tCONV  
tACQ  
fDATA  
fCLK  
Conversion time  
tSU_CSCK + 12 tCLK  
ns  
ns  
Acquisition time  
Data rate  
75  
2
MSPS  
MHz  
Clock frequency  
32  
DC ACCURACY  
NMC  
DNL  
INL  
No missing codes  
12  
–0.99  
–1  
Bits  
LSB  
LSB  
mV  
Differential nonlinearity  
Integral nonlinearity  
Input offset error  
±0.3  
±0.5  
±0.2  
±0.2  
4
1
1
1
1
VOS  
–1  
VOS match  
ADC_A to ADC_B  
–1  
mV  
dVOS/dT  
GE  
Input offset thermal drift  
μV/°C  
Referenced to the voltage at  
REFOUT_x  
Gain error  
–0.1%  
–0.1%  
±0.05%  
±0.05%  
1
0.1%  
0.1%  
GERR match  
ADC_A to ADC_B  
Referenced to the voltage at  
REFOUT_x  
GE/dT  
Gain error thermal drift  
Common-mode rejection ratio  
ppm/°C  
dB  
CMRR  
Both ADCs, dc to 20 kHz  
72  
AC ACCURACY  
SINAD  
SNR  
Signal-to-noise + distortion  
72.7  
72.8  
72.9  
73  
dB  
dB  
dB  
dB  
Signal-to-noise ratio  
For 20-kHz input frequency,  
at –0.5 dBFS  
THD  
Total harmonic distortion  
Spurious-free dynamic range  
–90  
90  
SFDR  
Isolation between ADC_A and  
ADC_B  
fIN = 15 kHz, fNOISE = 25 kHz  
–105  
dB  
SUPPLY CURRENT  
Analog, during  
conversion  
Throughput = 2 MSPS,  
AVDD = 5 V  
IAVDD-DYNAMIC  
11  
12  
60  
mA  
Supply  
current  
IAVDD-STATIC  
IDVDD  
POWER DISSIPATION  
Analog, static  
5.5  
mA  
mA  
Digital, for code 800  
0.15  
Throughput = 2 MSPS,  
AVDD = 5 V  
PD-ACTIVE  
PD-STATIC  
During conversion  
Static mode  
55  
mW  
mW  
Power  
dissipation  
27.5  
Copyright © 2014, Texas Instruments Incorporated  
5
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
6.6 Electrical Characteristics: ADS7851  
All minimum and maximum specifications are at TA = –40°C to +125°C, AVDD = 5 V, VREF_A = VREF_B = 2.5 V, and fDATA  
1.5 MSPS, unless otherwise noted. Typical values are at TA = +25°C, AVDD = 5 V, and DVDD = 3.3 V.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESOLUTION  
Resolution  
14  
Bits  
SAMPLING DYNAMICS  
tCONV  
tACQ  
fDATA  
fCLK  
Conversion time  
tSU_CSCK + 14 tCLK  
ns  
ns  
Acquisition time  
Data rate  
90  
1500  
27  
kSPS  
MHz  
Clock frequency  
DC ACCURACY  
NMC  
DNL  
INL  
No missing codes  
13  
–1  
–2  
–1  
–1  
Bits  
LSB  
LSB  
mV  
Differential nonlinearity  
Integral nonlinearity  
Input offset error  
±0.75  
±1  
2
2
1
1
VOS  
±0.2  
±0.2  
1
VOS match  
ADC_A to ADC_B  
mV  
dVOS/dT  
GE  
Input offset thermal drift  
μV/°C  
Referenced to the voltage at  
REFOUT_x  
Gain error  
–0.1%  
–0.1%  
±0.05%  
±0.05%  
1
0.1%  
0.1%  
GERR match  
ADC_A to ADC_B  
Referenced to the voltage at  
REFOUT_x  
GE/dT  
Gain error thermal drift  
Common-mode rejection ratio  
ppm/°C  
dB  
CMRR  
Both ADCs, dc to 20 kHz  
72  
AC ACCURACY  
SINAD  
SNR  
Signal-to-noise + distortion  
81.4  
82  
82.6  
83.5  
–90  
90  
dB  
dB  
dB  
dB  
Signal-to-noise ratio  
For 20-kHz input frequency,  
at –0.5 dBFS  
THD  
Total harmonic distortion  
Spurious-free dynamic range  
SFDR  
Isolation between ADC_A and  
ADC_B  
fIN = 15 kHz, fNOISE = 25 kHz  
–120  
dB  
SUPPLY CURRENT  
Analog, during  
conversion  
Throughput = 1.5 MSPS,  
AVDD = 5 V  
IAVDD-DYNAMIC  
10  
5.5  
12  
60  
mA  
mA  
mA  
Supply  
current  
IAVDD-STATIC  
IDVDD  
POWER DISSIPATION  
Analog, static  
Digital, for code  
2000  
0.15  
Throughput = 1.5 MSPS,  
AVDD = 5 V  
PD-ACTIVE  
PD-STATIC  
During conversion  
Static mode  
50  
mW  
mW  
Power  
dissipation  
27.5  
6
Copyright © 2014, Texas Instruments Incorporated  
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
6.7 Electrical Characteristics: Common  
All minimum and maximum specifications are at TA = –40°C to +125°C, AVDD = 5 V, VREF_A = VREF_B = 2.5 V, and fDATA  
2 MSPS, unless otherwise noted. Typical values are at TA = +25°C, AVDD = 5 V, and DVDD = 3.3 V.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
For AVDD 5 V  
–2 VREF  
2 VREF  
AVDD  
2 VREF  
AVDD  
V
V
Full-scale input range  
(AINP_x – AINM_x)  
FSR  
For AVDD < 5 V  
For AVDD 5 V  
For AVDD < 5 V  
VREF_A = VREF_B = VREF  
In sample mode  
In hold mode  
–AVDD  
0
0
V
Absolute input voltage  
(AINP_x or AIM_x to REFGND_x)  
VIN  
V
VCM  
CIN  
Input common-mode voltage range  
Input capacitance  
VREF – 0.1  
VREF VREF + 0.1  
V
40  
4
pF  
pF  
SAMPLING DYNAMICS  
tA  
Aperture delay  
8
40  
25  
5
ns  
ps  
tA match  
ADC_A to ADC_B  
At 3 dB  
MHz  
MHz  
Full-power  
bandwidth  
BW  
At 0.1 dB  
INTERNAL VOLTAGE REFERENCE  
VREFOUT  
Internal reference output voltage  
At +25°C  
2.495  
2.500  
±1  
2.505  
V
mV  
VREFOUT-match VREFOUT matching  
| REFOUT_A – REFOUT_B |  
1000 hours  
dVREFOUT/dt  
Long-term voltage drift  
150  
±10  
1
ppm  
ppm/°C  
Ω
dVREFOUT/dT Reference voltage drift with temperature  
RO  
Internal reference output impedance  
External output capacitor  
COUT  
22  
μF  
Internal reference output settling time  
COUT = 22 μF  
10  
ms  
DIGITAL INPUTS(1)  
VIH  
VIL  
CIN  
IIN  
Input voltage, high  
0.7 DVDD  
–0.3  
DVDD + 0.3  
0.3 DVDD  
V
V
Input voltage, low  
Input capacitance  
Input leakage current  
5
pF  
μA  
0 Vdigital-input DVDD  
±0.1  
1
DIGITAL OUTPUTS(1)  
VOH  
VOL  
Output voltage, high  
Output voltage, low  
IOH = 500-µA source  
IOH = 500-µA sink  
0.8 DVDD  
0
DVDD  
V
V
0.2 DVDD  
POWER SUPPLY  
AVDD  
Analog (AVDD to GND)  
Digital (DVDD to GND)  
4.75(2)  
1.65  
5.0  
3.3  
3
5.25  
5.25  
3.6  
V
V
V
Supply voltage  
Operational range  
DVDD  
For specified performance  
1.65  
TEMPERATURE RANGE  
TA  
Operating free-air temperature  
–40  
+125  
°C  
(1) Specified by design; not production tested.  
(2) The AVDD supply voltage defines the permissible voltage swing on the analog input pins. Refer to the Power Supply Recommendations  
section for more details.  
Copyright © 2014, Texas Instruments Incorporated  
7
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
6.8 ADS7251 Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
fCLK = max  
MIN  
TYP  
MAX  
UNIT  
kSPS  
MHz  
ns  
fTHROUGHPUT Throughput  
2000  
32  
fCLK  
CLOCK frequency  
CLOCK period  
CLOCK high time  
CLOCK low time  
Conversion time  
Acquisition time  
CS high time  
fTHROUGHPUT = max  
fTHROUGHPUT = max  
tCLK  
31.25  
0.45  
0.45  
tPH_CK  
tPL_CK  
tCONV  
0.55  
0.55  
tCLK  
tCLK  
ns  
tSU_CSCK + 12 tCLK  
tACQ  
fCLK = max  
75  
30  
ns  
tPH_CS  
tD_CKDO  
tDV_CSDO  
tD_CKCS  
tDZ_CSDO  
tSU_CSCK  
ns  
SCLK rising edge to (next) data valid  
15  
10  
ns  
CS falling to data enable  
ns  
Delay time  
Last SCLK rising to CS rising  
CS rising to DOUT going to 3-state  
5
ns  
10  
ns  
Setup time CS falling to SCLK falling  
15  
ns  
Figure 1 shows the details of the serial interface between the ADS7251 and the digital host controller.  
Sample  
N + 1  
Sample  
N
tTHROUGHPUT  
tCONV  
tACQ  
tPH_CS  
CS  
tSCLK  
tSU_CSCK  
tPH_CK  
tPL_CK  
tD_CKCS  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
tD_CKDO  
tDV_CSDO  
tDZ_CSDO  
ChA ChA ChA ChA ChA ChA ChA ChA  
D11 D10 D9 D8 D7 D6 D5 D4  
ChA ChA ChA ChA  
D3 D2 D1 D0  
0
0
0
SDO-A  
SDO-B  
Data From Sample N  
ChB ChB ChB ChB ChB ChB ChB ChB  
ChB ChB ChB ChB  
D3 D2 D1 D0  
0
D11 D10 D9 D8 D7 D6 D5 D4  
Figure 1. ADS7251 Serial Interface Timing Diagram  
8
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
6.9 ADS7851 Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
fCLK = max  
MIN  
TYP  
MAX  
1500  
27  
UNIT  
kSPS  
MHz  
ns  
fTHROUGHPUT Sample taken to data read  
fCLK  
CLOCK frequency  
CLOCK period  
CLOCK high time  
CLOCK low time  
Conversion time  
Acquisition time  
CS high time  
fTHROUGHPUT = max  
fTHROUGHPUT = max  
tCLK  
37  
0.45  
0.45  
tPH_CK  
tPL_CK  
tCONV  
0.55  
0.55  
tCLK  
tCLK  
ns  
tSU_CSCK + 14 tCLK  
tACQ  
fCLK = max  
90  
30  
ns  
tPH_CS  
tD_CKDO  
tDV_CSDO  
tD_CKCS  
tDZ_CSDO  
tSU_CSCK  
ns  
SCLK rising edge to (next) data valid  
15  
10  
ns  
CS falling to data enable  
ns  
Delay time  
Last SCLK rising to CS rising  
CS rising to DOUT going to 3-state  
5
ns  
10  
ns  
Setup time CS falling to SCLK falling  
15  
ns  
Figure 2 shows the details of the serial interface between the ADS7851 and the digital host controller.  
Sample  
N + 1  
Sample  
N
tTHROUGHPUT  
tCONV  
tACQ  
tPH_CS  
CS  
tSU_CSCK  
2
tPH_CK  
tPL_CK  
10  
tSCLK  
14  
tD_CKCS  
SCLK  
1
3
4
5
6
7
8
9
11  
12  
13  
15  
16  
tD_CKDO  
tDV_CSDO  
0
tDZ_CSDO  
ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4  
ChA ChA ChA ChA  
D3 D2 D1 D0  
0
0
SDO-A  
SDO-B  
Data From Sample N  
ChB ChB ChB ChB ChB ChB ChB ChB ChB ChB  
ChB ChB ChB ChB  
D3 D2 D1 D0  
0
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4  
Figure 2. ADS7851 Serial Interface Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
9
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
6.10 Typical Characteristics: ADS7251  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
0
75  
-20  
74.5  
-40  
74  
-60  
73.5  
-80  
73  
-100  
72.5  
-120  
72  
71.5  
71  
-140  
-160  
-180  
0
200  
400  
600  
800  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
C00  
C00  
Input Frequency  
fIN = 500 kHz  
fIN = 10 kHz  
Figure 3. Typical FFT for 500-kHz Input  
Figure 4. SNR vs Device Temperature  
75  
74.5  
74  
-87  
-88  
-89  
-90  
-91  
-92  
-93  
-94  
-95  
73.5  
73  
72.5  
72  
71.5  
71  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C00  
C00  
fIN = 10 kHz  
fIN = 10 kHz  
Figure 5. SINAD vs Device Temperature  
Figure 6. THD vs Device Temperature  
75  
74  
73  
72  
71  
75  
74  
73  
72  
71  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
C00  
C00  
Input Frequency (kHz)  
fIN = 10 kHz  
Figure 7. SNR vs Input Frequency  
Figure 8. SINAD vs Input Frequency  
10  
Copyright © 2014, Texas Instruments Incorporated  
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
Typical Characteristics: ADS7251 (continued)  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
-85  
-87  
-89  
-91  
-93  
-95  
-97  
100  
80  
60  
40  
20  
0
0
100  
200  
300  
400  
500  
2046  
2047  
2048  
2049  
2050  
C00  
C01  
Input Frequency (kHz)  
ADC Output Code  
VIN-DIFF = 0 V  
65536 Data Points  
Figure 9. THD vs Input Frequency  
Figure 10. DC Histogram  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
512 1024 1536 2048 2560 3072 3584 4096  
ADC Output Code  
0
512 1024 1536 2048 2560 3072 3584 4096  
C01  
C01  
ADC Output Code  
Figure 11. Typical DNL  
Figure 12. Typical INL  
1
0.75  
0.5  
1
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C01  
C01  
Figure 13. DNL vs Device Temperature  
Figure 14. INL vs Device Temperature  
Copyright © 2014, Texas Instruments Incorporated  
11  
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
Typical Characteristics: ADS7251 (continued)  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
1
0.75  
0.5  
0.1  
0.075  
0.05  
0.25  
0
0.025  
0
-0.25  
-0.5  
-0.75  
-1  
-0.025  
-0.05  
-0.075  
-0.1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C01  
C01  
Figure 15. Offset Error vs Device Temperature  
Figure 16. Gain Error vs Device Temperature  
12  
11.75  
11.5  
11.25  
11  
12  
11  
10  
9
8
10.75  
10.5  
10.25  
10  
7
6
5
4
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
500  
1000  
Throughput (kSPS)  
1500  
2000  
Free-Air Temperature (oC)  
C02  
C02  
Figure 17. IAVDD vs Device Temperature  
Figure 18. IAVDD vs Throughput  
12  
Copyright © 2014, Texas Instruments Incorporated  
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
6.11 Typical Characteristics: ADS7851  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
0
-20  
85  
84.5  
84  
-40  
-60  
83.5  
83  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
82.5  
82  
81.5  
81  
0
150  
300  
450  
600  
750  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Input Frequency (kHz)  
C02  
C02  
fIN = 500 kHz  
fIN = 10 kHz  
Figure 19. Typical FFT for 500-kHz Input  
Figure 20. SNR vs Device Temperature  
-91  
-91.5  
-92  
85  
84.5  
84  
-92.5  
-93  
83.5  
83  
-93.5  
-94  
82.5  
82  
-94.5  
-95  
81.5  
81  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C02  
C02  
fIN = 10 kHz  
fIN = 10 kHz  
Figure 21. SINAD vs Device Temperature  
Figure 22. THD vs Device Temperature  
84  
83.5  
83  
85  
84.5  
84  
82.5  
82  
83.5  
83  
81.5  
81  
82.5  
82  
80.5  
80  
81.5  
81  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
C02  
C02  
Input Frequency (kHz)  
Input Frequency (kHz)  
fIN = 10 kHz  
Figure 23. SNR vs Input Frequency  
Figure 24. SINAD vs Input Frequency  
Copyright © 2014, Texas Instruments Incorporated  
13  
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
Typical Characteristics: ADS7851 (continued)  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
-86  
100  
-87  
80  
-88  
-89  
60  
-90  
40  
20  
0
-91  
-92  
-93  
-94  
0
100  
200  
300  
400  
500  
8190  
8191  
8192  
ADC Output Code  
8193  
8194  
8195  
8196  
Input Frequency (kHz)  
C03  
C03  
VIN-DIFF = 0 V  
65536 Data Points  
Figure 25. THD vs Input Frequency  
Figure 26. DC Histogram  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0
4096  
8192  
12288  
16384  
4096  
8192  
12288  
16384  
ADC Output Code  
C03  
C03  
ADC Output Code  
Figure 27. Typical DNL  
Figure 28. Typical INL  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C03  
C04  
Figure 29. DNL vs Device Temperature  
Figure 30. INL vs Device Temperature  
14  
Copyright © 2014, Texas Instruments Incorporated  
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
Typical Characteristics: ADS7851 (continued)  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
0.1  
1
0.075  
0.75  
0.05  
0.5  
0.025  
0.25  
0
0
-0.025  
-0.25  
-0.05  
-0.5  
-0.075  
-0.75  
-0.1  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C03  
C03  
Figure 31. Offset Error vs Device Temperature  
Figure 32. Gain Error vs Device Temperature  
10  
9
12  
11.5  
11  
8
10.5  
10  
7
9.5  
9
6
5
8.5  
8
4
0
500  
1000  
1500  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (oC)  
Throughtput (kSPS)  
C04  
C04  
Figure 33. IAVDD vs Device Temperature  
Figure 34. IAVDD vs Throughput  
Copyright © 2014, Texas Instruments Incorporated  
15  
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
6.12 Typical Characteristics: Common  
At TA = +25°C, AVDD = 5 V, DVDD = 3.3 V, and VREF = 2.5 V (internal), unless otherwise noted.  
2.502  
30  
2.5015  
25  
2.501  
20  
2.5005  
15  
2.5  
10  
2.4995  
5
2.499  
0
2.4985  
-5  
2.498  
-10  
2.49  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.495  
2.5  
2.505  
Voltage (V)  
2.51  
2.515  
2.52  
C03  
Free-Air Temperature (oC)  
C03  
Rout = 0.75 Ω Typ  
Figure 35. Reference Output vs  
Device Temperature  
Figure 36. Internal Reference:  
Output Current vs Output Voltage  
110  
100  
90  
80  
70  
60  
50  
40  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
C04  
Figure 37. CMRR vs Input Frequency  
16  
Copyright © 2014, Texas Instruments Incorporated  
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
7 Detailed Description  
7.1 Overview  
The ADS7251 and ADS7851 are pin-compatible, dual, simultaneous-sampling, analog-to-digital converters  
(ADCs). Each device features two independent internal voltage references and supports fully-differential input  
signals with the input common-mode on each input pin equal to the reference voltage. The full-scale input signal  
on each input pin is equal to twice the reference voltage. The devices provide a simple, serial interface to the  
host controller and operate over a wide range of digital power supplies.  
7.2 Functional Block Diagram  
REF_A  
Comparator  
S/H  
CDAC  
SAR  
SAR  
ADC_A  
ADC_B  
Serial  
Interface  
CDAC  
S/H  
Comparator  
REF_B  
Copyright © 2014, Texas Instruments Incorporated  
17  
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Reference  
The device has two simultaneous sampling ADCs (ADC_A and ADC_B) and two independent internal reference  
sources (INTREF_A and INTREF_B). INTREF_A outputs voltage VREF_A on pin REFOUT_A and INTREF_B  
outputs voltage VREF_B on pin REFOUT_B. As shown in Figure 38, the REFOUT_A and REFOUT_B pins must  
be decoupled with the REFGND_A and REFGND_B pins, respectively, with individual 22-µF decoupling  
capacitors. ADC_A operates with reference voltage VREF_A and ADC_B operates with reference voltage VREF_B  
.
AINP_A  
ADC_A  
AINM_A  
REFGND_A  
REFOUT_A  
22 PF  
INTREF_A  
REFOUT_B  
INTREF_B  
22 PF  
REFGND_B  
AINP_B  
ADC_B  
AINM_B  
Figure 38. Reference Block Diagram  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
Feature Description (continued)  
7.3.2 Analog Input  
The devices support fully-differential analog input signals. These inputs are sampled and converted  
simultaneously by the two ADCs, ADC_A and ADC_B. Figure 39a and Figure 39b show equivalent circuits for  
the ADC_A and ADC_B analog input pins, respectively.  
Series resistance (RS) represents the on-state sampling switch resistance (typically 50 Ω) and CSAMPLE is the  
device sampling capacitor (typically 40 pF). ADC_A samples VAINP_A and VAINM_A and converts for the difference  
voltage (VAINP_A – VAINM_A). ADC_B samples VAINP_B and VAINM_B and converts for the difference voltage  
(VAINP_B – VAINM_B).  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINP_A  
AINP_B  
GND  
GND  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINM_A  
AINM_B  
GND  
GND  
a) ADC_A  
b) ADC_B  
Figure 39. Equivalent Circuit for the Analog Input Pins  
7.3.2.1 Analog Input Full-Scale Range  
The analog input full-scale range (FSR) for ADC_A and ADC_B is twice the reference voltage provided to the  
particular ADC. Therefore, the FSR for ADC_A and ADC_B can be determined by Equation 1 and Equation 2,  
respectively:  
FSR_ADC_A = 2 × VREF_A  
,
(1)  
VAINP_A and VAINM_A = 0 to 2 × VREF_A  
,
FSR_ADC_B = 2 × VREF_B  
,
(2)  
VAINP_B and VAINM_B = 0 to 2 × VREFIN_B  
To use the full dynamic input range on the analog input pins, AVDD must be as shown in Equation 3, Equation 4,  
and Equation 5:  
AVDD 2 × VREF_A  
AVDD 2 × VREF_B  
4.5 V AVDD 5.5 V  
(3)  
(4)  
(5)  
7.3.2.2 Common-Mode Voltage Range  
For the analog input, the devices support a common-mode voltage equal to the reference voltage provided to the  
ADC. Therefore, the common-mode voltage for the ADC_A and ADC_B must be as shown in Equation 6 and  
Equation 7, respectively.  
VCM_A = VREF_A  
VCM_B = VREF_B  
(6)  
(7)  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
 
 
 
 
 
 
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 ADC Transfer Function  
The device output is in twos compliment format. Device resolution for the fully-differential input can be computed  
by Equation 8:  
1 LSB = (4 × VREF) / (2N)  
where:  
VREF = VREF_A = VREF_B, and  
N = 12 (ADS7251), or 14 (ADS7851).  
(8)  
Table 1 shows the different input voltages and the corresponding device output codes. Figure 40 shows the ideal  
transfer characteristics for the device.  
Table 1. Transfer Characteristics  
OUTPUT CODE (Hex)  
INPUT VOLTAGE  
(AINP_x – AINM_x)  
CODE  
NFSC  
NFSC + 1  
MC  
ADS7251  
800  
ADS7851  
2000  
< –2 × VREF  
–2 × VREF + 1 LSB  
–1 LSB  
801  
2001  
FFF  
3FFF  
0
PLC  
000  
0000  
> 2 × VREF – 1 LSB  
PFSC  
7FF  
1FFF  
PFSC  
PLC  
MC  
NFSC + 1  
NFSC  
VIN  
0
PFSR ± 1 LSB  
NFSR + 1 LSB  
1 LSB  
Fully-Differential Analog Input  
(AINP_x ± AINM_x)  
Figure 40. Ideal Transfer Characteristics  
20  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
7.4 Device Functional Modes  
7.4.1 Serial Interface  
The devices support a simple, SPI-compatible interface to the external digital host. The CS signal defines one  
conversion and serial transfer frame. A frame starts with a CS falling edge and ends with a CS rising edge. The  
SDO_A and SDO_B pins output the ADC_A and ADC_B conversion results, respectively. Figure 41 shows a  
detailed timing diagram for the ADS7251.  
Sample  
N + 1  
Sample  
N
tTHROUGHPUT  
tCONV  
tACQ  
CS  
SCLK  
1
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
ChA ChA ChA ChA ChA ChA ChA ChA  
D11 D10 D9 D8 D7 D6 D5 D4  
ChA ChA ChA ChA  
D3 D2 D1 D0  
0
0
SDO-A  
SDO-B  
Data From Sample N  
ChB ChB ChB ChB ChB ChB ChB ChB  
ChB ChB ChB ChB  
0
D11 D10 D9 D8 D7 D6 D5 D4  
D3  
D2  
D1 D0  
Figure 41. ADS7251 Serial Interface Timing Diagram  
Figure 42 shows a detailed timing diagram for the ADS7851.  
Sample  
N + 1  
Sample  
N
tTHROUGHPUT  
tCONV  
tACQ  
CS  
SCLK  
1
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4  
ChA ChA ChA ChA  
D3 D2 D1 D0  
0
0
SDO-A  
SDO-B  
Data From Sample N  
ChB ChB ChB ChB ChB ChB ChB ChB ChB ChB  
ChB ChB ChB ChB  
D3 D2 D1 D0  
0
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4  
Figure 42. ADS7851 Serial Interface Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
21  
 
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
A CS falling edge brings the serial data bus out of 3-state and also outputs '0' on the SDO_A and SDO_B pins. A  
minimum delay of tSU_CSCK must elapse between the CS falling edge and the first SCLK falling edge. The  
subsequent clock edges are used to shift out the conversion result using the serial interface, as shown in  
Table 2. The sample-and-hold circuit returns to sample mode as soon as the conversion process is over. Any  
extra clock edges output a '0' on the SDO pins. A CS rising edge ends the frame and brings the serial data bus  
to 3-state.  
Table 2. Data Launch Edge  
LAUNCH EDGE  
SCLK  
CS  
DEVICE  
PIN  
CS↓  
0
1  
0
2  
13  
14  
D1_A  
D1_B  
0
15  
D0_A  
D0_B  
0
16  
0
SDO-A  
SDO-B  
SDO-A  
SDO-B  
D13_A  
D13_B  
D11_A  
D11_B  
D2_A  
D2_B  
D0_A  
D0_B  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ADS7851  
0
0
0
0
0
0
ADS7251  
0
0
0
0
0
7.4.2 Short-Cycling Feature  
For the ADS7851, a minimum of 16 SCLK rising edges must be provided between the beginning and end of the  
frame to complete the 14-bit data transfer. For the ADS7251, a minimum of 14 SCLK rising edges must be  
provided between the beginning and end of the frame to complete the 12-bit data transfer. As shown in  
Figure 43, if CS is brought high before the expected number of SCLK rising edges are provided, the current  
frame is aborted and the device starts sampling the new analog input signal. However, the output data bits  
latched into the digital host before this CS rising edge are still valid data corresponding to sample N.  
After aborting the current frame, CS must be kept high for tACQ to ensure minimum acquisition time is provided  
for the next conversion.  
Sample  
N
Sample  
N + 1  
tACQ  
CS  
SCLK  
1
2
3
SDO  
ADS7251  
0
0
0
D11 D10  
Data From Sample N  
D13 D12  
SDO  
ADS7851  
0
Figure 43. Short-Cycling Feature  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
8 Application and Implementation  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. The  
ADS7851 and ADS7251 feature an internal reference designed to support device requirements. This section  
details some general principles for designing the input driver circuit and provides some application circuits  
designed using these devices.  
8.2 Typical Application  
The application circuit shown in Figure 44 is optimized for using the ADS7251 at a 2-MSPS throughput to  
achieve lowest distortion and lowest noise for input signal frequencies up to 100 kHz.  
1 K  
1 Kꢀ  
AVDD  
AVDD  
VIN+  
VCM  
10 ꢀ  
AVDD  
+
VREF  
AINP  
+
-
THS4521  
820 pF  
ADS7251  
+
-
AINM  
GND  
10 ꢀ  
VIN-  
1 Kꢀ  
1 Kꢀ  
AD7251 2 MSPS  
32MHz SCLK  
INPUT DRIVER  
Figure 44. ADS7251 DAQ Circuit: Maximum SINAD for Input Signal Frequencies up to 100 kHz  
The application circuit shown in Figure 45 is optimized for using the ADS7851 at a 1.5-MSPS throughput to  
achieve lowest distortion and lowest noise for input signal frequencies up to 100 kHz.  
1 K  
1 Kꢀ  
AVDD  
AVDD  
VIN+  
VCM  
10 ꢀ  
AVDD  
+
VREF  
AINP  
+
-
THS4521  
820 pF  
ADS7851  
+
-
AINM  
GND  
10 ꢀ  
VIN-  
1 Kꢀ  
1 Kꢀ  
AD7851 1.5 MSPS  
27MHz SCLK  
INPUT DRIVER  
Figure 45. ADS7851 DAQ Circuit: Maximum SINAD for Input Signal Frequencies up to 100 kHz  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
For the ADS7251, design an input driver and reference driver circuit to achieve > 71-dB SNR and < –90-dB THD  
at input frequencies of 10 kHz and 100 kHz.  
For the ADS7851, design an input driver and reference driver circuit to achieve > 81-dB SNR and < –90-dB THD  
at input frequencies of 10 kHz and 100 kHz.  
8.2.2 Detailed Design Procedure  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and an  
antialiasing filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a  
high-precision ADC.  
8.2.2.1 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider while selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter at the ADC  
inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. In order to  
maintain the overall stability of the input driver circuit, the amplifier bandwidth should be selected as  
described in Equation 9:  
§
¨
¨
©
·
¸
¸
¹
1
Unity Gain Bandwidth t 4u  
2SuRFLT uCFLT  
(9)  
Noise. Noise contribution of the front-end amplifiers should be as low as possible to prevent any degradation  
in SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the data  
acquisition system is not limited by the front-end circuit, the total noise contribution from the front-end circuit  
should be kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is  
bandlimited by designing a low cutoff frequency RC filter, as explained in Equation 10.  
2
SNR  
dB  
§
¨
·
¸
V
§
¨
·
¸
1
_ AMP_PP  
S
2
1
5
VREF  
2
20  
en2_RMS  
u
u f3dB  
d
u
u10  
f
©
¹
NG u 2 u  
¨
¨
¸
¸
6.6  
©
¹
where:  
V1 / f_AMP_PP is the peak-to-peak flicker noise in µVRMS  
,
en_RMS is the amplifier broadband noise density in nV/Hz,  
f–3dB is the 3-dB bandwidth of the RC filter, and  
NG is the noise gain of the front-end circuit, which is equal to '1' in a buffer configuration.  
(10)  
Distortion. Both the ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of  
thumb, to ensure that the distortion performance of the data acquisition system is not limited by the front-end  
circuit, the distortion of the input driver should be at least 10 dB lower than the distortion of the ADC, as  
shown in Equation 11.  
THDAMP d THDADC 10  
dB  
(11)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, the settling behavior of the input driver should always be verified by TINA™-  
SPICE simulations before selecting the amplifier.  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
Typical Application (continued)  
The distortion resulting from variation in the common-mode signal is eliminated by using a fully-differential  
amplifier (FDA) in an inverting gain configuration that establishes a fixed common-mode level at the ADC input.  
This configuration also eliminates the requirement of rail-to-rail swing at the amplifier input. The low-power  
THS4521, used as an input driver, provides exceptional ac performance because of its extremely low-distortion  
and high-bandwidth specifications. The device REFOUT_x pin can be directly connected to the VOCM pin of the  
THS4521 to set the output common-mode voltage to 2.5 V, as required by the ADC.  
8.2.2.2 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, antialiasing filter must be used to remove the  
harmonic content from the input signal before being sampled by the ADC. An antialiasing filter is designed as a  
low-pass, RC filter, for which the 3-dB bandwidth is optimized based on specific application requirements (as  
shown in Figure 46). For dc signals with fast transients (including multiplexed input signals), a high-bandwidth  
filter is designed to allow accurately settling the signal at the ADC inputs during the small acquisition time  
window. For ac signals, the filter bandwidth should be kept low to band-limit the noise fed into the ADC input,  
thereby increasing the signal-to-noise ratio (SNR) of the system.  
Besides filtering the noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling  
charge injection from the switched-capacitor input stage of the ADC. A filter capacitor, CFLT, is connected across  
the ADC inputs. This capacitor helps reduce the sampling charge injection and provides a charge bucket to  
quickly charge the internal sample-and-hold capacitors during the acquisition process. As a rule of thumb, the  
value of this capacitor should be at least 10 times the specified value of the ADC sampling capacitance. For  
these devices, the input sampling capacitance is equal to 40 pF. Thus, the value of CFLT should be greater than  
400 pF. The capacitor should be a COG- or NPO-type because these capacitor types have a high-Q, low-  
temperature coefficient, and stable electrical characteristics under varying voltages, frequency, and time.  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design. For these devices, TI recommends limiting the value of RFLT to a maximum of 22 Ω  
in order to avoid any significant degradation in linearity performance. The tolerance of the selected resistors can  
be chosen as 1% because the use of a differential capacitor at the input balances the effects resulting from any  
resistor mismatch.  
RFLT ”ꢀ22 ꢀ  
AINP  
1
f3dB  
 
ADS7851  
ADS7251  
CFLT •ꢀꢀ400 pF  
RFLT ”ꢀ22 ꢀ  
2S u  
RFLT  RFLT u CFLT  
AINM  
GND  
Figure 46. Antialiasing Filter  
The input amplifier bandwidth should be much higher than the cutoff frequency of the antialiasing filter. TI  
strongly recommends performing a SPICE simulation to confirm that the amplifier has more than 40° phase  
margin with the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some amplifiers  
might require more bandwidth than others to drive similar filters. If an amplifier has less than a 40° phase margin  
with 22-Ω resistors, using a different amplifier with higher bandwidth or reducing the filter cutoff frequency with a  
larger differential capacitor is advisable.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal.  
Copyright © 2014, Texas Instruments Incorporated  
25  
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
Typical Application (continued)  
8.2.3 Application Curves  
Figure 47 shows an FFT plot for the ADS7251 with the circuit shown in Figure 44 and an input frequency of  
10 kHz. Figure 48 shows an FFT plot for the ADS7251 with the same circuit configuration but for an input  
frequency of 100 kHz.  
0
-20  
0
-20  
AVDD = 5 V  
TA = 25oC  
AVDD = 5 V  
TA = 25oC  
fIN = 10 kHz  
SNR = 73 dB  
THD = -90 dB  
fIN = 100 kHz  
SNR = 72 dB  
THD = -91 dB  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Input Frequency (kHz)  
C10  
C10  
Input Frequency (kHz)  
Figure 47. Test Results for ADS7251 with a 10-kHz Input  
Figure 48. Test Results for ADS7251 with a 100-kHz Input  
Figure 49 shows an FFT plot for the ADS7851 with the circuit shown in Figure 45 and an input frequency of  
10 kHz. Figure 50 shows an FFT plot for the ADS7251 with the same circuit configuration but for an input  
frequency of 100 kHz.  
0
-20  
0
-20  
AVDD = 5 V  
TA = 25oC  
AVDD = 5 V  
TA = 25oC  
fIN = 10 kHz  
SNR = 82.3 dB  
THD = -91 dB  
fIN = 100 kHz  
SNR = 82.3 dB  
THD = -93 dB  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
150  
300  
450  
600  
750  
0
150  
300  
450  
600  
750  
C10  
C10  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 49. Test Results with a 10-kHz Input  
Figure 50. Test Results with a 100-kHz Input  
26  
Copyright © 2014, Texas Instruments Incorporated  
 
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
9 Power Supply Recommendations  
The devices have two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible  
ranges.  
The AVDD supply voltage value defines the permissible voltage swing on the analog input pins. To avoid  
saturation of output codes, and to use the full dynamic range on the analog input pins, AVDD must be set as  
shown in Equation 12, Equation 13, and Equation 14:  
AVDD 2 × VREF_A  
AVDD 2 × VREF_B  
4.75 V AVDD 5.25 V  
(12)  
(13)  
(14)  
Decouple the AVDD and DVDD pins with the GND pin using individual 10-µF decoupling capacitors, as shown in  
Figure 51.  
AVDD  
AVDD (pin 14)  
GND (pin 13)  
DVDD (pin 7)  
10 PF  
10 PF  
DVDD  
Figure 51. Power-Supply Decoupling  
Copyright © 2014, Texas Instruments Incorporated  
27  
 
 
 
 
ADS7251, ADS7851  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Figure 52 shows a board layout example for the ADS7251 and ADS7851. Use a ground plane underneath the  
device and partition the PCB into analog and digital sections. Avoid crossing digital lines with the analog signal  
path and keep the analog input signals and the reference input signals away from noise sources. As shown in  
Figure 52, the analog input and reference signals are routed on the left side of the board and the digital  
connections are routed on the right side of the device.  
The power sources to the device must be clean and well-bypassed. Use 10-μF, ceramic bypass capacitors in  
close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the  
AVDD and DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low-  
impedance paths.  
The REFOUT-A and REFOUT-B reference outputs are bypassed with 10-μF, X7R-grade ceramic capacitors  
(CREF-x). Place the reference bypass capacitors as close as possible to the reference REFOUT-x pins and  
connect the bypass capacitors using short, low-inductance connections. Avoid placing vias between the  
REFOUT-x pins and the bypass capacitors. Small 0.1-Ω to 0.2-Ω resistors (RREF-x) are used in series with the  
reference bypass capacitors to improve stability.  
The fly-wheel RC filters are placed immediately next to the input pins. Among ceramic surface-mount capacitors,  
COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG  
(NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and temperature  
changes. Figure 52 shows CIN-A and CIN-B filter capacitors placed across the analog input pins of the device.  
10.2 Layout Example  
AVDD  
GND  
CREF-A  
CIN-A  
CAVDD  
GND  
SDO-A  
SDO-B  
SCLK  
/CS  
REFOUT-A  
REFGND-A  
REFGND-B  
GND  
GND  
GND  
REFOUT-B  
GND  
CDVDD  
CREF-B  
CIN-B  
DVDD  
GND  
GND  
Figure 52. Example Layout for the ADS7251 and ADS7851  
28  
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7251, ADS7851  
www.ti.com.cn  
ZHCSCB7A JANUARY 2014REVISED APRIL 2014  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
THS4521 数据表,SBOS458  
11.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,以及样片与购买的快速访问。  
Table 3. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
ADS7251  
ADS7851  
11.3 Trademarks  
TINA is a trademark of Texas Instruments Inc..  
All other trademarks are the property of their respective owners.  
11.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7251IRTER  
ADS7251IRTET  
ADS7851IRTER  
ADS7851IRTET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7251  
7251  
7851  
7851  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7251IRTET  
ADS7851IRTER  
ADS7851IRTET  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
16  
16  
16  
250  
3000  
250  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7251IRTET  
ADS7851IRTER  
ADS7851IRTET  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
16  
16  
16  
250  
3000  
250  
210.0  
367.0  
210.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016D  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
SYMM  
17  
2X 1.5  
0.8 0.1  
12X 0.5  
1
12  
PIN 1 ID  
0.30  
0.18  
16X  
16  
13  
0.5  
0.3  
0.1  
C A B  
16X  
0.05  
4219118/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
SEE SOLDER MASK  
DETAIL  
16  
13  
16X (0.6)  
12  
16X (0.24)  
1
17  
SYMM  
(2.8)  
12X (0.5)  
(R0.05) TYP  
4
9
(
0.2) TYP  
VIA  
5
8
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219118/A 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
12X (0.5)  
(2.8)  
9
4
(R0.05) TYP  
5
8
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219118/A 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY