ADS8167IRHBT [TI]

具有基准电压、基准电压缓冲器和直接传感器接口的 16 位、500kSPS、8 通道 SAR ADC | RHB | 32 | -40 to 125;
ADS8167IRHBT
型号: ADS8167IRHBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有基准电压、基准电压缓冲器和直接传感器接口的 16 位、500kSPS、8 通道 SAR ADC | RHB | 32 | -40 to 125

传感器 转换器
文件: 总93页 (文件大小:2300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
具有直接传感器接口的 ADS816x 8 通道、16 1MSPS SAR ADC  
1 特性  
2 应用  
1
紧凑的低功耗数据采集系统:  
模拟输入模块  
多参数患者监视器  
麻醉给药系统  
多路复用器输出引脚支持单个外部驱动器放大器  
16 SAR ADC  
LCD 测试  
低漂移集成基准和缓冲器  
数据中心内部互联(地铁)  
光学模块  
适用于模拟输入直流偏置的 0.5 × VREF 输出  
出色的交流和直流性能:  
SNR92dBTHD–110dB  
3 说明  
INL±0.3LSB16 位,无丢失码  
ADS816x 是一系列 16 位、8 通道、高精度逐次逼近  
型寄存器 (SAR) 模数转换器 (ADC),该器件由 5V 单  
电源供电,具有 (ADS8168)  
具有通道序列发生器的多路复用器:  
多通道定序选项:  
手动模式、动态模式、自动序列模式、自定  
义通道定序  
500kSPS (ADS8166) 250kSPS (ADS8166)的总吞  
吐量。  
早期开关可实现直接传感器接口  
动态模式可缩短响应时间  
输入多路复用器支持更长的建立时间,这使得驱动模拟  
输入更加容易。多路复用器和 ADC 模拟输入的输出可  
作为器件引脚提供。该配置使一个 ADC 驱动器运算放  
大器可用于多路复用器的全部八路模拟输入。  
系统监测 功能:  
每通道可编程窗口比较器  
通过可编程迟滞避免错误触发  
增强型 SPI 数字接口:  
ADS816x 具有 一个数字窗口比较器,其中每个模拟输  
入通道具有可编程高低警报阈值。具有可编程警报阈值  
的单运算放大器解决方案可实现低功耗、低成本且具有  
最小外形尺寸的 应用。  
16MHz SCLK 下具有 1MSPS 的吞吐量  
70MHz 高速数字接口  
宽工作范围:  
外部 VREF 输入范围:2.5V 5V  
AVDD 范围:3V 5.5V  
器件信息  
器件型号  
ADS816x  
封装  
VQFN (32)  
封装尺寸(标称值)  
DVDD 范围:1.65V 5.5V  
温度范围:–40°C +125°C  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
ADS816x 方框图  
Single external op-amp  
(optional)  
AVDD  
DVDD  
Channel  
Sequencer  
HI threshold  
+
+
œ
ALERT  
AINX Data  
LO threshold  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
16-bit  
ADC  
Enhanced-SPI  
SPI  
MUX  
REFIO  
÷2  
4.096V  
REFby2  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS817  
 
 
 
 
 
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 38  
7.6 Register Maps......................................................... 44  
Application and Implementation ........................ 72  
8.1 Application Information............................................ 72  
8.2 Typical Applications ................................................ 75  
Power Supply Recommendations...................... 80  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Timing Requirements.............................................. 10  
6.7 Switching Characteristics........................................ 11  
6.8 Typical Characteristics............................................ 14  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 20  
7.4 Device Functional Modes........................................ 30  
8
9
10 Layout................................................................... 81  
10.1 Layout Guidelines ................................................. 81  
10.2 Layout Example .................................................... 83  
11 器件和文档支持 ..................................................... 84  
11.1 文档支持................................................................ 84  
11.2 相关链接................................................................ 84  
11.3 接收文档更新通知 ................................................. 84  
11.4 社区资源................................................................ 84  
11.5 ....................................................................... 84  
11.6 静电放电警告......................................................... 84  
11.7 Glossary................................................................ 84  
12 机械、封装和可订购信息....................................... 85  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2018) to Revision C  
Page  
已更改 将文档标题从具有易于驱动的模拟输入的 ADS816x 8 通道、16 1MSPS SAR ADC 更改为具有直接传感器  
接口的 ADS816x 8 通道、16 1MSPS SAR ADC............................................................................................................... 1  
已更改 将具有序列发生器的低泄漏多路复用器 更改为具有通道序列发生器的多路复用器(位于特性 部分) ....................... 1  
已更改 将宽输入范围 更改为宽工作范围(位于特性 部分),更改了并将子项目符号添加至此 特性项目符号................... 1  
已删除 删除了警报阈值论述中的迟滞(位于说明 部分) ....................................................................................................... 1  
已更改 更改了 ADS816x 方框图 的标题 ................................................................................................................................. 1  
已更改 AUTO_SEQ_CFG1 = 0x84 to AUTO_SEQ_CFG1 = 0x44 in Auto Sequence Mode section .................................. 34  
已更改 default settings from 1 to 0xFF in Channel Sample Count column of Custom Channel Sequencing  
Configuration Space table .................................................................................................................................................... 36  
已更改 reset value from R/W-0000 0001b to R/W-1111 1111b in REPEAT_INDEX_m Registers section ......................... 60  
已更改 description of registers 78h, 7Ah, 7Ch, and 7Eh in Digital Window Comparator Configuration Registers  
Mapping table ...................................................................................................................................................................... 61  
已更改 ALERT_LO_STATUS Register section and name .................................................................................................. 66  
已更改 ALERT_STATUS Register section and name ......................................................................................................... 68  
已更改 CURR_ALERT_LO_STATUS Register section and name ...................................................................................... 69  
已更改 CURR_ALERT_STATUS Register section and name ............................................................................................. 71  
Changes from Revision A (July 2018) to Revision B  
Page  
已更改 将文档状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
5 Pin Configuration and Functions  
RHB Package  
32-Pin VQFN  
Top View  
GND  
DECAP  
REFIO  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SDI  
CS  
ALERT  
GND  
REFM  
Thermal  
Pad  
REFP  
ADC-INM  
MUXOUT-M  
MUXOUT-P  
ADC-INP  
REFP  
REFby2  
AIN-COM  
Not to scale  
Pin Functions  
PIN  
NAME  
ADC-INM  
ADC-INP  
AIN0  
NO.  
20  
17  
9
FUNCTION  
DESCRIPTION  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Negative ADC analog input  
Positive ADC analog input  
Analog input channel 0  
Analog input channel 1  
Analog input channel 2  
Analog input channel 3  
Analog input channel 4  
Analog input channel 5  
Analog input channel 6  
Analog input channel 7  
Common analog input  
AIN1  
10  
11  
12  
13  
14  
15  
16  
8
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN-COM  
Digital ALERT output; active high.  
This pin is the output of the logical OR of the enabled channel ALERTs.  
ALERT  
AVDD  
22  
32  
Digital output  
Power supply  
Analog power-supply pin. Connect a 1-µF capacitor from this pin to GND.  
Chip-select input pin; active low.  
The device starts converting the active input channel on the rising edge of CS.  
The device takes control of the data bus when CS is low.  
The SDO-x pins go Hi-Z when CS is high.  
CS  
23  
Digital input  
DECAP  
DVDD  
2
Power supply  
Power supply  
Connect a 1-µF capacitor to GND for the internal power supply.  
30  
Interface power-supply pin. Connect a 1-µF capacitor from this pin to GND.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
GND  
NO.  
1, 21, 31  
19  
FUNCTION  
Power supply  
Analog output  
Analog output  
DESCRIPTION  
Ground  
MUXOUT-M  
MUXOUT-P  
MUX negative analog output  
MUX positive analog output  
Multifunction output pin.  
18  
When CS is held high, READY reflects the device conversion status. READY is low when  
a conversion is in process.  
When CS is low, the status of READY depends on the output protocol selection.  
READY  
28  
Digital output  
Analog output  
The output voltage on this pin is equal to half the voltage on the REFP pin.  
Connect a 1-µF capacitor from this pin to GND.  
REFby2  
REFIO  
7
3
Reference voltage input; internal reference is a 4.096-V output.  
Connect a 1-µF capacitor from this pin to GND.  
Analog input/output  
Analog input  
REFM  
REFP  
4
Reference ground potential; short this pin to GND externally.  
5, 6  
Analog input/output Reference buffer output, ADC reference input. Short pins 5 and 6 together.  
Asynchronous reset input pin.  
Digital input  
RST  
29  
25  
A low pulse on the RST pin resets the device. All register bits return to their default states.  
Clock input pin for the serial interface.  
Digital input  
SCLK  
All system-synchronous data transfer protocols are timed with respect to the SCLK signal.  
Serial data input pin.  
Digital input  
SDI  
24  
26  
This pin is used to transfer data or commands into the device.  
SDO-0  
Digital output  
Digital output  
Supply  
Serial communication pin: data output 0.  
Multifunction output pin. By default, this pin indicates the channel scanning status in the  
auto and custom channel sequence modes.  
In dual SDO data transfer mode this pin functions as a serial communication pin: data  
output 1.  
SDO-1/  
SEQSTS  
27  
Thermal pad  
Exposed thermal pad; connect to GND.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
7
UNIT  
V
AVDD to GND  
DVDD to GND  
–0.3  
7
V
AINx(2), AIN-COM, MUXOUT-P, MUXOUT-M, ADC-INP, ADC-INM  
GND – 0.3  
REFM – 0.3  
REFM – 0.3  
GND – 0.1  
GND – 0.3  
GND – 0.3  
–10  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
GND + 0.1  
DVDD + 0.3  
DVDD + 0.3  
10  
V
REFP  
V
REFIO  
V
REFM  
V
Digital input pins  
V
Digital output pins  
Input current to any pin except supply pins  
Junction temperature, TJ  
Storage temperature, Tstg  
V
mA  
°C  
°C  
–40  
125  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) AINx refers to AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7 pins.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
版权 © 2017–2019, Texas Instruments Incorporated  
5
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
MAX UNIT  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
Internal reference  
External reference  
Operating  
4.5  
3
5
5
3
3
5.5  
V
AVDD  
DVDD  
5.5  
1.65  
2.35  
5.5  
V
Specified throughput  
5.5  
ANALOG INPUTS - SINGLE ENDED CONFIGURATION  
FSR  
Full-scale input range  
0
–0.1  
–0.1  
–0.1  
VREF  
VREF + 0.1  
0.1  
V
V
V
AINx(1) to REFM and CHx_CHy_CFG(2) = 00b  
AINy(3) to REFM and CHx_CHy_CFG = 01b  
VIN  
Absolute input voltage  
VIN  
Absolute input voltage AIN-COM  
0.1  
ANALOG INPUTS - PSEUDO-DIFFERENTIAL CONFIGURATION  
FSR  
Full-scale input range  
–VREF/2  
–0.1  
VREF/2  
VREF + 0.1  
V
V
V
AINx to REFM and CHx_CHy_CFG = 00b  
AINy to REFM and CHx_CHy_CFG = 10b  
VIN  
Absolute input voltage  
VREF/2 – 0.1  
VREF/2 – 0.1  
VREF/2 + 0.1  
VREF/2 + 0.1  
VIN  
Absolute input voltage AIN-COM  
EXTERNAL REFERENCE INPUT  
VREFIO REFIO input voltage  
TEMPERATURE RANGE  
TA Ambient temperature  
(1) AINx refers to analog inputs AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
REFIO configured as input pin  
2.5  
AVDD – 0.3  
125  
V
–40  
25  
°C  
(2) CHx_CHy_CFG bits set the analog input configuration as single-ended or pseudo-differential pair. See the AIN_CFG register for more  
details.  
(3) AINy refers to analog inputs AIN1, AIN3, AIN5, and AIN7 when CHx_CHy_CFG = 01b or 10b. See the Multiplexer  
Configurations section for more details.  
6
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
6.4 Thermal Information  
ADS816x  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
29.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
18.6  
10.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJB  
10.2  
RθJC(bot)  
1.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
版权 © 2017–2019, Texas Instruments Incorporated  
7
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise  
noted); minimum and maximum values at TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
ANALOG INPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CSH  
ADC Input capacitance  
MUX Input capacitance  
60  
13  
pF  
pF  
CINMUX  
MUX input on-channel leakage  
current  
ILMUX_ON  
REFM < VIN < REFP  
–750  
±10  
750  
nA  
DC PERFORMANCE  
Resolution  
16  
Bits  
NMC  
INL  
No missing codes  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
16  
–0.8  
–0.5  
–10  
–1  
±0.35  
±0.2  
0.8  
0.5  
10  
1
LSB  
LSB  
DNL  
VOS  
±0.5  
LSB  
Input offset error match  
Input offset thermal drift  
Gain error  
±0.5  
LSB  
dVOS/dT  
GE  
0.25  
µV/°C  
Referred to REFIO  
Referred to REFIO  
Referred to REFIO  
VIN = VREF/2  
–0.06  
±0.002  
±0.0025  
±1  
0.06 %FSR  
0.005 %FSR  
ppm/°C  
Gain error match  
–0.005  
dGE/dT  
TNS  
Gain error thermal drift  
Transition noise  
0.6  
LSB  
AC PERFORMANCE  
SINAD  
SNR  
Signal-to-noise + distortion  
fIN = 2 kHz  
fIN = 2 kHz  
fIN = 2 kHz  
fIN = 2 kHz  
fIN = 100 kHz  
91.6  
91.8  
93.5  
93.6  
-110  
112  
dB  
dB  
dB  
dB  
dB  
Signal-to-noise-ratio  
THD  
Total harmonic distortion  
Spurious-free dynamic range  
Isolation crosstalk  
SFDR  
-115  
REFERENCE BUFFER  
VRO = VREFP - VREFIO, TA  
25°C  
=
VRO  
Reference buffer offset voltage  
–250  
0
250  
1.3  
µV  
CREFP  
RESR  
Decoupling capacitor on REFP  
External series resistance  
22  
µF  
REFby2 BUFFER  
VREFby2 REFby2 output voltage  
VREFP/2  
V
DC Sourcing current from  
REFby2  
IREFby2  
2
mA  
Decoupling capacitor on  
REFby2  
CREFby2  
1
µF  
V
INTERNAL REFERENCE OUTPUT  
TA = 25°C, REFIO configured  
as output pin  
VREFIO  
REFIO output voltage(1)  
4.091  
4.096  
4
4.101  
Internal reference temperature  
drift  
dVREFIO/dT  
CREFIO  
18 ppm/°C  
µF  
Decoupling capacitor on REFIO REFIO configured as output  
1
EXTERNAL REFERENCE INPUT  
IREFIO  
REFIO input current  
REFIO configured as input pin  
REFIO configured as input pin  
0.1  
10  
1
µA  
pF  
Internal capacitance on REFIO  
pin  
CREF  
SAMPLING DYNAMICS  
Aperture delay  
Aperture jitter  
4
2
ns  
tj-RMS  
ps RMS  
(1) Does not include the variation in voltage resulting from solder effects.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Electrical Characteristics (continued)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise  
noted); minimum and maximum values at TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f-3-dB(small)  
Small-signal bandwidth  
Measured at ADC inputs  
23  
MHz  
POWER SUPPLY CURRENTS  
ADS8168, AVDD = 5 V  
ADS8167, AVDD = 5 V  
ADS8166, AVDD = 5 V  
Static, no conversion  
Static, PD_REFBUF = 1  
Static, PD_REF = 1  
5.3  
3.9  
3
6.4  
5
4.1  
mA  
2.3  
1.6  
800  
IAVDD  
Analog supply current  
Digital supply current  
µA  
µA  
Static, PD_REFBUF, PD_REF  
and PD_REFby2 = 1  
180  
DVDD = 3 V, CLOAD = 10 pF,  
no conversion  
IDVDD  
0.45  
µA  
版权 © 2017–2019, Texas Instruments Incorporated  
9
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6.6 Timing Requirements  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C  
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
CONVERSION CYCLE  
ADS8168  
ADS8167  
ADS8166  
ADS8168  
ADS8167  
ADS8166  
1000  
500  
fCYCLE  
Sampling frequency  
250  
1
2
tCYCLE  
ADC cycle-time period  
4
twh_CSZ  
twl_CSZ  
tACQ  
Pulse duration: CS high  
Pulse duration: CS low  
Acquisition time  
30  
30  
300  
30  
20  
ns  
ns  
ns  
ns  
ns  
tqt_ACQ  
td_CNVCAP  
Quite acquisition time  
Quiet aperture time  
ASYNCHRONOUS RESET AND LOW POWER MODES  
twl_RST Pulse duration: RST low  
SPI-COMPATIBLE SERIAL INTERFACE  
100  
ns  
2.35 V DVDD 5.5 V,  
VIH > 0.7 DVDD, VIL < 0.3 DVDD  
70  
20  
68  
1.65 V DVDD < 2.35 V,  
VIH 0.8 DVDD, VIL 0.2 DVDD  
fCLK  
Serial clock frequency  
MHz  
1.65 V DVDD < 2.35 V,  
VIH 0.9 DVDD, VIL 0.1 DVDD  
tCLK  
Serial clock time period  
SCLK high time  
1/fCLK  
0.45  
0.45  
15  
ns  
tCLK  
tCLK  
ns  
tph_CK  
0.55  
0.55  
tpl_CK  
SCLK low time  
tph_CSCK  
tsu_CKDI  
tht_CKDI  
tht_CKCS  
Setup time: CS falling to the first SCLK capture edge  
Setup time: SDI data valid to the SCLK capture edge  
Hold time: SCLK capture edge to (previous) data valid on SDI  
Delay time: last SCLK falling to CS rising  
3
ns  
4
ns  
7.5  
ns  
SOURCE-SYNCHRONOUS SERIAL INTERFACE  
2.35 V DVDD 5.5 V, SDR  
(DATA_RATE = 0b)  
70  
35  
fCLK  
Serial clock frequency  
Serial clock time period  
MHz  
ns  
2.35 V DVDD 5.5 V, DDR  
(DATA_RATE = 1b)  
tCLK  
1/fCLK  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
6.7 Switching Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA= 25°C  
PARAMETER  
CONVERSION CYCLE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADS8168  
660  
1200  
2500  
tCONV  
Conversion time  
ADS8167  
ADS8166  
ns  
ASYNCHRONOUS RESET, AND LOW POWER MODES  
td_RST  
Delay time: RST rising to READY rising  
Power-up time for converter module  
Power-up time for internal reference  
4
ms  
ms  
ms  
tPU_ADC  
tPU_REFIO  
Change PD_ADC = 1b to 0b  
Change PD_REF = 1b to 0b  
1
5
Power-up time for internal reference  
buffer  
tPU_REFBUF  
Change PD_REFBUF = 1b to 0b  
10  
10  
ms  
ms  
tPU_Device  
Power-up time for device  
SPI-COMPATIBLE SERIAL INTERFACE  
tden_CSDO Delay time: CS falling to data enable  
15  
15  
ns  
ns  
Delay time: CS rising to SDO going to  
Hi-Z  
tdz_CSDO  
Delay time: SCLK launch edge to (next)  
data valid on SDO  
td_CKDO  
19  
15  
ns  
ns  
td_CSRDY_t  
Delay time: CS falling to READY falling  
SOURCE-SYNCHRONOUS SERIAL INTERFACE (External Clock)  
Delay time: SCLK launch edge to  
READY rising  
td_CKSTR_r  
23  
23  
2
ns  
ns  
ns  
ns  
Delay time: SCLK launch edge to  
READY falling  
td_CKSTR_f  
Time offset: READY falling to (next) data  
valid on SDO  
toff_STRDO_f  
–2  
–2  
Time offset: READY rising to (next) data  
valid on SDO  
toff_STRDO_r  
2
tph_STR  
tpl_STR  
Strobe output high time  
Strobe output low time  
2.35 V DVDD 5.5 V  
2.35 V DVDD 5.5 V  
0.45  
0.45  
0.55  
0.55  
tSTR  
tSTR  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Sample  
S
Sample  
S + 1  
CS  
ADCST (Internal)  
READY  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
CNV (S)  
ACQ (S + 1)  
1. Conversion Cycle Timing  
twl_RST  
RST  
CS  
td_rst  
SCLK  
READY  
SDO-x  
2. Asynchronous Reset Timing  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
tCLK  
tph_CK  
tpl_CK  
SCLK(1)  
CS  
tsu_CKDI  
tht_CKDI  
tsu_CSCK  
tht_CKCS  
SCLK(1)  
SDI  
tden_CSDO  
tdz_CSDO  
td_CKDO  
SDO-x  
SDO-x  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.  
3. SPI-Compatible Serial Interface Timing  
tCLK  
tph_CK  
tpl_CK  
CS  
SCLK  
td_CKSTR_f  
tsu_CSCK  
tht_CKCS  
td_CKSTR_r  
SCLK  
SDO-x  
READY  
READY  
tden_CSDO  
tdz_CSDO  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
SDO-x  
(SDR)  
4. Source-Synchronous Serial Interface Timing  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted)  
0.3  
0.18  
0.06  
-0.06  
-0.18  
-0.3  
0.5  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
0
13107  
26214 39321  
ADC Output Code  
52428  
65535  
0
13107  
26214 39321  
ADC Output Code  
52428  
65535  
ADD0S048  
D007  
Typical DNL = ±0.15 LSB  
Typical INL = ±0.3 LSB  
5. Typical DNL  
6. Typical INL  
0.3  
0.18  
0.06  
-0.06  
-0.18  
-0.3  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1647  
Maximum  
Minimum  
1004  
952  
319  
278  
223  
50  
21  
6
0
0
0
0
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D005  
ADD0S583  
2250 devices  
7. Typical INL Distribution (LSB)  
8. DNL vs Temperature  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0.5  
0.3  
Maximum  
Minimum  
0.1  
-0.1  
-0.3  
-0.5  
Maximum  
-7  
Minimum  
26  
2.5  
3
3.5 4  
Reference Voltage (V)  
4.5  
5
-40  
59  
92  
125  
Free-Air Temperature (èC)  
D050  
D008  
10. DNL vs Reference Voltage  
9. INL vs Temperature  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted)  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
Maximum  
Minimum  
505  
441  
249  
209  
81  
62  
11  
4
0
0
0
2.5  
3
3.5 4  
Reference Voltage (V)  
4.5  
5
D054  
D051  
2250 devices  
12. Typical Offset Distribution (LSB)  
11. INL vs Reference Voltage  
1200  
1000  
800  
600  
400  
200  
0
10  
0
1101  
-10  
-20  
-30  
-40  
-50  
722  
322  
84  
20  
0
0
1
0
-40  
-7  
26 59  
Temperature (°C)  
92  
125  
D055  
D052  
REF_SEL[2:0] = 000b  
2250 devices  
14. Offset Error vs Temperature  
13. Typical Gain Error Distribution (%FSR)  
50  
40  
0.004  
0.003  
0.002  
0.001  
0
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-0.001  
-0.002  
-0.003  
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D011  
D013  
With the appropriate REF_SEL[2:0]; see the OFST_CAL register  
EN_MARG = 0b  
15. Offset Error vs Reference Voltage  
16. Gain Error (ADC + REFBUF) vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted)  
0.01  
0.008  
0.006  
0.004  
0.002  
0
40000  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
27043  
467  
183  
0
2.5  
3
3.5 4  
Reference Voltage (V)  
4.5  
5
D014  
D002  
EN_MARG = 0b  
Standard deviation = 0.51 LSB  
17. Gain Error (ADC + REFBUF) vs Reference Voltage  
18. DC Input Histogram  
0
0
-40  
-40  
-80  
-80  
-120  
-120  
-160  
-200  
-160  
-200  
0
100  
200 300  
fIN, Input Frequency (kHz)  
400  
500  
0
50  
100 150  
fIN, Input Frequency (kHz)  
200  
250  
D018  
D019  
fIN = 2 kHz, SNR = 93.8 dB, THD = –112.7 dB  
fIN = 2 kHz, SNR = 93.8 dB, THD = –112.4 dB  
19. Typical FFT, ADS8168  
20. Typical FFT, ADS8167  
0
-40  
94.8  
94.4  
94  
16  
SNR  
SINAD  
ENOB  
15.6  
15.2  
14.8  
14.4  
14  
-80  
-120  
-160  
-200  
93.6  
93.2  
92.8  
-40  
0
25  
50 75  
fIN, Input Frequency (kHz)  
100  
125  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D020  
D028  
fIN = 2 kHz, SNR = 93.8 dB, THD = –111.4 dB  
fIN = 2 kHz  
21. Typical FFT, ADS8166  
22. Noise Performance vs Temperature  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted)  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
120  
118  
116  
114  
112  
110  
108  
106  
95  
94.5  
94  
15.6  
15.5  
15.4  
15.3  
15.2  
15.1  
15  
THD  
SFDR  
SNR  
SINAD  
ENOB  
93.5  
93  
92.5  
92  
91.5  
91  
14.9  
14.8  
14.7  
90.5  
-40  
-7  
26  
59  
92  
125  
2.5  
3
3.5  
Reference Voltage (V)  
4
4.5  
5
Free-Air Temperature (èC)  
D031  
D029  
fIN = 2 kHz  
fIN = 2 kHz  
23. Distortion Performance vs Temperature  
24. Noise Performance vs Reference Voltage  
94  
92  
90  
88  
86  
84  
15.6  
-112  
-111.5  
-111  
111  
112  
113  
114  
115  
116  
SNR  
SINAD  
ENOB  
THD  
SFDR  
15.2  
14.8  
14.4  
14  
-110.5  
-110  
13.6  
-109.5  
0
20000  
40000 60000  
fIN, Input Frequency (Hz)  
80000  
100000  
2.5  
3
3.5 4  
Reference Voltage (V)  
4.5  
5
ADD0S285  
D032  
fIN = 2 kHz  
26. Noise Performance vs Input Frequency  
25. Distortion Performance vs Reference Voltage  
7
-70  
-80  
120  
THD  
SFDR  
1000 kSPS  
500 kSPS  
250 kSPS  
6.5  
6
110  
100  
90  
5.5  
5
-90  
4.5  
4
-100  
-110  
-120  
3.5  
3
80  
2.5  
2
70  
100000  
0
20000  
40000 60000  
fIN, Input Frequency (Hz)  
80000  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
AVDD (V)  
D026  
D043  
27. Distortion Performance vs Input Frequency  
28. Analog Supply Current vs Supply Voltage  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted)  
7
1000 kSPS  
500 kSPS  
250 kSPS  
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D037  
AVDD = 5 V  
29. Analog Supply Current vs Temperature  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7 Detailed Description  
7.1 Overview  
The ADS816x is a 16-bit, successive approximation register (SAR) analog-to-digital converter (ADC) with an  
analog multiplexer. This device integrates a reference, reference buffer, REFby2 buffer, low-dropout regulator  
(LDO), and features high performance at full throughput and low power consumption.  
The ADS816x supports unipolar, single-ended and pseudo-differential analog input signals. The analog  
multiplexer is optimized for low distortion and extended settling time. The internal reference generates a low-drift,  
4.096-V reference output. The integrated reference buffer supports burst mode for data acquisition of external  
reference voltages in the range 2.5 V to 5 V. For DC level shifting of the analog input signals, the device has a  
REFby2 output. The REFby2 output is derived from the output of the integrated reference buffer (the REFP pin).  
When a conversion is initiated, the differential input between the ADC-INP and ADC-INM pins is sampled on the  
internal capacitor array. The device uses an internal clock to perform conversions. During the conversion  
process, both analog inputs of the ADC are disconnected from the internal circuit. At the end of conversion  
process, the device reconnects the sampling capacitors to the ADC-INP and ADC-INM pins and enters an  
acquisition phase.  
The integrated LDO allows the device to operate on a single supply, AVDD. The device consumes only  
26.5 mW, 19.5 mW, and 15 mW of power when operating at 1 MSPS (ADS8168), 500 kSPS (ADS8167), and  
250 kSPS (ADS8166), respectively, with the internal reference, reference buffer, REFby2 buffer, and LDO  
enabled.  
The enhanced-SPI digital interface is backward-compatible with traditional SPI protocols. Configurable features  
boost analog performance and simplify board layout, timing, firmware, and support full throughput at lower clock  
speeds. These features enable a variety of microcontrollers, digital signal processors (DSPs), and field-  
programmable gate arrays (FPGAs) to be used.  
The ADS816x enables optical line cards, test and measurement, medical, and industrial applications to achieve  
fast, low-noise, low-distortion, and low-power data acquisition in a small form-factor.  
7.2 Functional Block Diagram  
MUXOUT-P ADC-INP AVDD  
DECAP  
LDO  
Channel  
Sequencer  
DVDD  
ALERT  
READY  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
SDO-1/SEQSTS  
4-WIRE SPI  
RST  
Digital  
ADC  
MUX  
4.096-V  
÷2  
AIN-COM MUXOUT-N ADC-INM REFP REFby2  
REFIO  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.3 Feature Description  
The ADS816x is comprised of five modules: the converter (SAR ADC), multiplexer (MUX), the reference module,  
the enhanced-SPI interface, and the low-dropout regulator (LDO); see the Functional Block Diagram section.  
The LDO module is powered by the AVDD supply, and generates the bias voltage for the internal circuit blocks of  
the device. The reference buffer drives the capacitive switching load present at the reference pins during the  
conversion process. The multiplexer selects among eight analog input channels as the input for the converter  
module. The converter module samples and converts the analog input into an equivalent digital output code. The  
enhanced-SPI interface module facilitates communication and data transfer between the device and the host  
controller.  
7.3.1 Analog Multiplexer  
30 shows the small-signal equivalent circuit of the sample-and-hold circuit. Each sampling switch is  
represented by resistance (RS1 and RS2, typically 50 Ω) in series with an ideal switch (SW). The sampling  
capacitors, CS1 and CS2, are typically 60 pF.  
The multiplexer on-resistance (RMUX), is typically a 40-Ω resistor in series between the ON channel and the  
MUXOUT-P or MUXOUT-M pins. The multiplexer analog input typically has a 13-pF on-channel capacitance  
(CMUX).  
AVDD  
AVDD  
MUX  
ADC  
RMUX  
40  
RS1  
50ꢀ  
SW  
SW  
OR  
AINx  
MUXOUT-P  
ADC-INP  
CMUX  
13pF  
CS1  
60pF  
AVDD  
AVDD  
CS2  
60pF  
RMUX  
40ꢀ  
RS2  
50ꢀ  
SW  
SW  
AINy,  
AIN-COM  
OR  
MUXOUT-M  
ADC-INM  
CMUX  
13pF  
30. Input Sampling Stage Equivalent Circuit  
During the input signal acquisition phase, the ADC-INP and ADC-INM inputs are individually sampled on CS1 and  
CS2, respectively. During the conversion process, the device converts for the voltage difference between the two  
sampled values: VADC-INP – VADC-INM  
.
Each analog input pin has electrostatic discharge (ESD) protection diodes to AVDD and GND. Keep the analog  
inputs within the specified range to avoid turning the diodes on.  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Feature Description (接下页)  
7.3.1.1 Multiplexer Configurations  
The ADS816x supports single-ended and pseudo-differential analog input signals. The flexible analog input  
channel configuration supports interfacing various types of sensors. 31 shows how the analog inputs can be  
configured.  
8-channel MUX  
4-channel MUX  
CHx_CHy_CFG = 00b  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
Input Pair 1  
Input Pair 2  
Input Pair 3  
Input Pair 4  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
Pseudo-differential  
AIN-COM = REFby2  
COM_CFG bit = 1  
REFby2  
REFby2  
AIN-COM  
AIN-COM  
AIN-COM not used  
Single-ended  
CHx_CHy_CFG = 01b  
Pseudo-differential  
CHx_CHy_CFG = 10b  
Single-ended  
AIN-COM = GND  
AINX  
AINY  
COM_CFG bit = 0  
GND or REFby2  
Configuration - 1  
Configuration - 2  
6-channel MUX  
Single-ended  
CHx_CHy_CFG = 01b  
Pseudo-differential  
CHx_CHy_CFG = 10b  
AIN0  
Input Pair 1  
Input Pair 2  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINX  
AINY  
Pseudo-differential  
AIN-COM = REFby2  
GND or REFby2  
4 single inputs  
referred to AIN-COM  
Selectable Channel Configuration  
REFby2  
Channels  
Input Pairs  
Single Inputs  
AIN-COM  
8
6
4
2
0
0
1
2
3
4
8
7
6
5
4
CHx_CHy_CFG = 00b  
Single-ended  
AIN-COM = GND  
Configuration - 3  
31. Analog Input Configurations  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
The analog inputs can be configured as:  
Configuration 1: Eight-channel MUX with the AIN_CFG register set to 00h. The AIN-COM input range is  
decided by the COM_CFG register.  
Single-ended inputs with the AIN-COM input set to GND (set the COM_CFG register to 00h).  
Pseudo-differential inputs with the AIN-COM input set to VREF / 2 (set the COM_CFG register to 01h).  
Configuration 2: Four-channel MUX.  
As shown in 1, the AIN_CFG register selects the analog input range of individual pairs.  
Configuration 3: Single-ended and pseudo-differential inputs.  
Among the eight analog inputs of the MUX, some inputs can be configured as pairs and some inputs are  
configured as individual channels. 1 lists options for channel configuration.  
For channels configured as pairs, the AIN_CFG register selects the single-ended or pseudo-differential  
configuration for individual pairs.  
For individual channels, the COM_CFG register decides the single-ended or pseudo-differential  
configuration.  
1. Channel Configuration Options(1)(2)  
SERIAL NUMBER  
TOTAL CHANNELS  
INPUT PAIRS  
INDIVIDUAL CHANNELS  
1
2
3
4
5
8
7
6
5
4
0
1
2
3
4
8
6
4
2
0
(1) Channel pairs can be formed as [AIN0 - AIN1], [AIN2 - AIN3], [AIN4 - AIN5], and [AIN6 - AIN7].  
(2) When channels are configured as pairs, AIN0, AIN2, AIN4, and AIN6 are positive inputs.  
The COM_CFG register sets the input voltage range of the AIN-COM pin. AIN-COM pin  
must be connected to GND (set the COM_CFG register to 0b) or REFby2 (set the  
COM_CFG register to 1b) externally. When using the MUX in a four-channel configuration,  
the COM_CFG register has no effect; connect the AIN-COM pin to GND to avoid noise  
coupling.  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.3.1.2 Multiplexer With Minimum Crosstalk  
For precision measurement in a multichannel system, coupling (such as crosstalk) from one channel to another  
can distort the measurement. In conventional multiplexers, as shown in 32, the off channel parasitic  
capacitance between the drain and the source of the switch (CDSY) couples the off channel signal to the on  
channel.  
32 shows that the ADS816x uses a T-switch structure. In this switch architecture, the off channel parasitic  
capacitance is connected to ground, which significantly reduces coupling. Care must be taken to avoid signal  
coupling on the printed circuit board (PCB), as described in the Layout section.  
Conventional MUX  
ADS816x MUX  
CHX  
MUXOUT  
CHX  
MUXOUT  
SW  
SW  
SW  
CS  
CD  
CS  
CD  
CHY  
CHY  
SW  
SW  
SW  
CS  
CD  
CS  
CD  
32. Isolation Crosstalk in a Conventional MUX versus the ADS816x  
7.3.1.3 Early Switching for Direct Sensor Interface  
33 shows the small-signal equivalent model of the ADS816x analog inputs. The multiplexer input has a switch  
resistance (RMUX) and parasitic capacitance (CMUX). The parasitic capacitance causes a charge kickback on the  
MUX analog input at the same time as the ADC sampling capacitor causes a charge kickback on ADC inputs.  
RS1  
50  
RMUX  
40ꢀ  
CMUX  
13pF  
SWMUX  
SWADC  
OR  
CS1  
60pF  
AINx  
ADC-AINP  
MUXOUT-P  
RMUX  
40ꢀ  
RS2  
50ꢀ  
SWMUX  
SWADC  
AINy,  
AIN-COM  
CS2  
60pF  
MUXOUT-M  
ADC-AINM  
OR  
CMUX  
13pF  
ADC  
MUX  
33. Synchronous and Timed Switching of the MUX and ADC Input Switches  
In conventional multichannel SAR ADCs, the acquisition time of the ADC is also the settling time available at the  
analog inputs of the multiplexer because these times are internally connected. Thus, high-bandwidth op amps  
are required at the analog inputs of the multiplexer to settle the charge kickback. However, multiple high-  
bandwidth op amps significantly increase power dissipation, cost, and size of the solution.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
The analog inputs of the ADS816x provide a long settling time (tCYCLE – 100 ns), resulting in long acquisition time  
at the MUX inputs when using a driver amplifier between the MUX outputs and the ADC inputs. 34 shows a  
timing diagram of this long acquisition phase. The low parasitic capacitance together with the enhanced settling  
time eliminate the need to use an op amp at the multiplexer input in most applications.  
tCYCLE  
CS  
SWADC  
100-ns  
tACQ  
SWMUX  
CHX Input Settling Time  
34. Early Switching of the MUX Enables a Long Acquisition Phase  
Averaging several output codes of a particular MUX input channel without switching the MUX achieves better  
accuracy and noise performance. The output of the multiplexer does not create a charge kickback as long as SDI  
is set to 0 (that is, as long as SDI returns the NOP command); see 43 and 45. The multiplexer does not  
switch during subsequent conversions except for the first time when a channel is selected. Thus high-impedance  
sources (such as the voltage from the resistor dividers) can be connected to the analog inputs of the multiplexer  
without an op amp.  
7.3.2 Reference  
The ADS816x has a precision, low-drift reference internal to the device. See the Internal Reference section for  
details about using the internal reference.  
For best SNR performance, the input signal range must be equal to the full-scale input range of the ADC. To  
maximize ENOB, an external reference voltage source can be used as described in the External Reference  
section.  
7.3.2.1 Internal Reference  
The device features an internal reference source with a nominal output value of 4.096 V. On power-up, the  
internal reference is enabled by default. A minimum 1-µF decoupling capacitor, as illustrated in 35, is  
recommended to be placed between the REFIO and REFM pins. The capacitor must be placed as close to the  
REFIO pin as possible. The output impedance of the internal band-gap circuit creates a low-pass filter with this  
capacitor to band-limit the noise of the reference. The internal reference is also temperature compensated to  
provide excellent temperature drift over an extended industrial temperature range of –40°C to +125°C. By default  
the internal reference is on and the voltage at REFIO is 4.096 V. The REFIO pin has ESD protection diodes to  
the AVDD and GND pins.  
The initial accuracy specification for the internal reference can be degraded if the die is exposed to any  
mechanical or thermal stress. Heating the device when being soldered to a PCB and any subsequent solder  
reflow is a primary cause for shifts in the internal reference voltage output. The main cause of thermal hysteresis  
is a change in die stress and is therefore a function of the package, die-attach material, and molding compound,  
as well as the layout of the device itself.  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
5-V  
1-k  
4.096-V  
AVDD  
PD_CNTL[3] = 0  
(PD_REF)  
REFIO  
1 F  
REFP  
10 F  
10 F  
REFM  
GND  
ADS816x  
ADC  
35. Device Connections for Using an Internal 4.096-V Reference  
7.3.2.2 External Reference  
36 shows the connections for using the device with an external reference. A reference without a low-  
impedance output buffer can be used because the input leakage current of the internal reference buffer is less  
than 1 µA.  
5-V  
1-k  
4.096-V  
AVDD  
AVDD  
PD_CNTL[3] = 1  
(PD_REF)  
OUT  
REF5040  
REFIO  
REFP  
1 F  
10 F  
10 F  
REFM  
GND  
ADC  
ADS816x  
36. Device Connections for Using an External Reference  
7.3.3 Reference Buffer  
The ADC starts converting the sampled analog input channel on the CS rising edge and the internal capacitors  
are switched to the REFP pins as per the successive approximation algorithm. Most of the switching charge  
required during the conversion process is provided by an external decoupling capacitor CREFP. If the charge lost  
from CREFP is not replenished before the next CS rising edge, the voltage on the REFP pins is less than VREFP  
.
The subsequent conversion occurs with this different reference voltage, and causes a proportional error in the  
output code. The internal reference buffer of the device maintains the voltage on the REFP pins within 0.5 LSB of  
VREFP. All typical characteristics of the device are specified with the internal reference buffer and the specified  
value of CREFP  
.
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
In burst-mode operation, the ADC samples the selected analog input channel for a long duration of time and then  
performs a burst of conversions. During the sampling time, the sampling capacitor (CS) is connected to the  
differential input pins and no charge is drawn from the REFP pins. However, during the very first conversion  
cycle, there is a step change in the current drawn from the REFP pins. This sudden change in load triggers a  
transient settling response in the reference buffer. For a fixed input voltage, any transient settling error at the end  
of the conversion cycle results in a change in output codes over the subsequent conversions. The internal  
reference buffer of the ADS816x, when used with the recommended value of CREFP, keeps the transient settling  
error at the end of each conversion cycle within 0.5 LSB. Therefore, the device supports burst-mode operation  
with every conversion result as per the data sheet specifications.  
37 shows the block diagram of the internal reference and reference buffer.  
ADS816x  
AVDD  
Margin  
œ
BUF  
REFP  
REFP  
REFIO  
+
PD_REF  
4.096-V  
GND  
REFM  
37. Internal Reference and Reference Buffer Block Diagram  
For the minimum ADC input offset error (VOS), set the REF_SEL[2:0] bits to the value closest to VREF (see the  
OFST_CAL register). The internal reference buffer has a typical gain of 1 V/V with a minimal offset error (V(RO)),  
and the output of the buffer is available between the REFP and the REFM pins. Set the REF_OFST[4:0] (see the  
REF_MRG1 register) bits to add or subtract an intentional offset voltage as described in 22.  
Short the two REFP pins externally. Short the REFM pin to GND externally. Place a decoupling capacitor CREFP  
between the REFP and the REFM pins as close to the device as possible; see 36. See the Layout section for  
layout recommendations.  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.3.4 REFby2 Buffer  
To use the maximum dynamic range of the ADC, the input signal must be biased around the mid-scale of the  
ADC input range. In the ADS816x, where the absolute input range is 0 V to the reference voltage (VREF), mid-  
scale is VREF / 2. The REFby2 buffer generates the VREF / 2 signal for mid-scale shifting of the input signal. 38  
shows that REFBy2 can be used in various types of sensor signal conditioning circuits.  
VCC  
VCC  
Current Sense Amplifier  
AC coupled  
sensor  
VLOAD  
ADS816x  
ADC  
ADS816x  
ADC  
-
-
INA Ref  
+
+
Load  
REFby2  
REFby2  
REF  
REF  
Configuration 1: High-side / Low-side Current sensing  
Configuration 2: AC Coupled Sensor Interface  
VCC  
VCC  
VBRIDGE  
R
INA  
ADS816x  
ADC  
ADS816x  
R
-
-
ADC  
Ref  
+
+
REFby2  
REFby2  
REF  
REF  
R
R
Configuration 4: High Impedance Sensor Interface with INA  
Configuration 3:Unity Gain Sensor Interface  
38. Signal Conditioning With the REFby2 Buffer  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
A resistor divider at the output of the reference buffer, as shown in 39, generates the VREF / 2 signal. When  
not using the internal reference buffer (see the PD_CNTL register), any voltage applied at the REFP pin is  
applied to the resistor divider. The output of the resistor divider is buffered and available at the REFby2 pin.  
REFP  
ADS816x  
AVDD  
ADC  
Reference  
œ
œ
REFby2  
BUF  
BUF  
+
+
REFIO  
100-k  
100-kꢀ  
Margin  
GND  
39. REFby2 Buffer Model  
The REFby2 buffer is capable of sourcing up to 2 mA of DC current. The REFby2 pin has ESD diode  
connections to AVDD and GND.  
7.3.5 Converter Module  
The converter module samples the analog input signal (provided between the ADC-INP and ADC-INM pins),  
compares this signal with the reference voltage (between the REFP pins and REFM pin), and generates an  
equivalent digital output code.  
The converter module receives the RST and CS inputs from the interface module, and outputs the conversion  
result back to the interface module.  
7.3.5.1 Internal Oscillator  
The device features an internal oscillator (OSC) that provides the conversion clock. Conversion duration varies,  
but is bounded by the minimum and maximum value of tconv  
.
28  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.3.5.2 ADC Transfer Function  
The device supports single-ended and pseudo-differential analog inputs. The device output is in straight binary  
format. 40 and 2 show the ideal transfer characteristics for a 16-bit ADC with unipolar inputs.  
公式 1 gives the least significant bit (LSB) for the ADC:  
1 LSB = VREF / 216  
(1)  
FFFF  
8000  
7FFF  
1
0
-FSR  
VIN  
MID œ 1 LSB  
-FSR + 1 LSB  
MID  
FSR œ 1 LSB  
Analog Input  
(AINP - AINM)  
40. Converter Transfer Characteristics  
2. Transfer Characteristics  
PSEUDO-DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT VOLTAGE  
OUTPUT CODE  
(HEX)  
DESCRIPTION  
VOLTAGE  
(VREF = 4.096 V)  
(VREF = 4.096 V)  
FSR – 1 LSB  
MID + 1 LSB  
MID  
4.0959375 V  
2.0480625 V  
2.048 V  
2.0479375 V  
0.0000625 V  
0 V  
FFFF  
8001  
8000  
7FFF  
0001  
0000  
MID – 1 LSB  
–FSR + 1 LSB  
–FSR  
2.0479375 V  
0.0000625 V  
0 V  
–0.0000625 V  
–2.0479375 V  
–2.048 V  
版权 © 2017–2019, Texas Instruments Incorporated  
29  
 
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.3.6 Low-Dropout Regulator (LDO)  
To enable single-supply operation, the device features an internal low-dropout regulator (LDO). The LDO is  
powered by the AVDD supply, and the 2.85-V (nominal) output is available on the DECAP pin. This LDO output  
powers the critical analog blocks within the device, and must not be used for any other external purposes.  
Decouple the DECAP pin with the GND pin, as shown in 41, by placing a 1-µF, X7R-grade, ceramic capacitor  
with a 6.3-V rating from DECAP to GND. There is no upper limit on the value of the decoupling capacitor;  
however, a larger decoupling capacitor results in higher power-up time for the device. See the Layout section for  
layout recommendations.  
AVDD  
DECAP  
LDO  
CLDO  
1 F  
GND  
41. Internal LDO Connections  
7.4 Device Functional Modes  
The multiplexer includes a sequence control logic that supports various features as described in the Channel  
Selection Using Internal Multiplexer section.  
7.4.1 Channel Selection Using Internal Multiplexer  
The ADS816x includes an 8-channel, linear, and low-leakage current analog multiplexer. The multiplexer  
performs a break-before-make operation when switching channels. There are four modes of switching the  
multiplexer input channels: manual mode, on-the-fly mode, auto sequence mode, and custom channel  
sequencing mode.  
These modes can be selected by configuring the SEQ_MODE[1:0] bits in the DEVICE_CFG register. On power-  
up the default mode is manual mode, SEQ_MODE[1:0] = 00b, and the default input channel is AIN0. The  
multiplexer configuration registers can be accessed over the SPI; see 50. The SPI interface eliminates the  
need for separate MUX control lines.  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Device Functional Modes (接下页)  
7.4.1.1 Manual Mode  
In manual mode, the channel ID of the desired analog input is configured in the CHANNEL_ID register. On  
power-up or after device reset, AIN0 is selected and CHANNEL_ID[2:0] = 000b. Manual mode can be enabled  
from any other sequencing mode by programming the SEQ_MODE[1:0] bits to 00b in the DEVICE_CFG register.  
42 shows the timing information for changing channels in manual mode.  
The channel information can be updated in a microcontroller (MCU)-friendly 3-byte access. As the 24-bits of  
channel configuration are sent over SDI, conversion data are clocked out over SDO. The data on SDO are MSB  
aligned and the first 16 clocks correspond to 16 bits of conversion data. The last eight bits of the SDO can be  
ignored by the MCU.  
As shown in 42, the command to switch to AINy is sent in the Nth cycle and the data corresponding to  
channel AINy is available in the (N + 2)th cycle. This switch occurs because the SDI commands are processed  
and the ADC starts conversions on the rising edge of CS. Thus, the conversion is processed on the previous  
channel (AINx) and not on the updated channel ID (AINy).  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINz  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
Switch to AINy  
Switch to AINz  
Switch to AINx  
Data AINy  
SDO  
Data AINx  
24 clocks  
Data AINx  
100-ns  
MUX OUT = AINx  
MUX OUT = AINy  
MUX OUT = AINz  
MUX  
Cycle N  
Cycle (N + 1)  
Cycle (N + 2)  
42. Manual Mode Timing Diagram  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
As shown in 43, after selecting AINy the output of the multiplexer does not create a charge kickback as long  
as SDI is set to 0 (that is, as long as SDI returns the NOP command). Therefore, high-impedance sources such  
as the voltage from resistor dividers can be connected to the analog inputs of the multiplexer without an op amp.  
Sample  
AINx  
Sample  
AINy  
Sample  
AINy  
Sample  
AINy  
Sample  
AINy  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
Switch to AINy  
SDO  
Data AINx  
24 clocks  
Data AINy  
16 clocks  
Data AINy  
Data AINy  
MUX OUT = AINx  
MUX OUT = AINx  
MUX  
100-ns  
No MUX switching with SDI = 0 (NOP)  
43. Manual Mode With No Channel Switching Timing Diagram  
7.4.1.2 On-The-Fly Mode  
There is a latency of one cycle when switching channels using the register access, just as in manual mode. The  
newly selected channel data are available two cycles after selecting the desired channel. The ADS816x supports  
on-the-fly switching of the analog input channels of the multiplexer. This mode can be enabled by programming  
the SEQ_MODE[1:0] bits to 01b in the DEVICE_CFG register. When enabled, the analog input channel for the  
next conversion is determined by the first five bits sent over SDI. The desired analog input channel can be  
selected by setting the MSB to 1 and the following four bits as the channel ID. If the MSB is 0 then the SDI  
bitstream is decoded as a normal frame on the rising edge of CS. 3 lists the channel selection commands for  
this mode.  
3. On-the-Fly Mode Channel Selection Commands  
SDI BITS [15:11]  
1 0000  
SDI BITS [10:0]  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
DESCRIPTION  
Select analog input 0  
Select analog input 1  
Select analog input 2  
Select analog input 3  
Select analog input 4  
Select analog input 5  
Select analog input 6  
Select analog input 7  
Error bit is set; select analog input 0  
1 0001  
1 0010  
1 0011  
1 0100  
1 0101  
1 0110  
1 0111  
1 1000 to 1 1111  
32  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
To set the device in on-the-fly mode, configure EN_ON_THE_FLY to 1b in the ON_THE_FLY_CFG register as  
shown in 44 using a 3-byte register access. When in this mode, the 16-bit data transfer can be used to reduce  
the required clock speed for operating at full throughput.  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINz  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
2
2
1
24  
1
3
4
5
16  
1
3
4
5
16  
5 clocks  
Set MODE = 1  
4-bit AINy ID  
1
4-bit AINz ID  
1
16 clocks  
Data AINx  
16 clocks  
SDO  
Data AINx  
24 clocks  
Data AINy  
MUX OUT = AINz  
MUX OUT = AINx  
100-ns  
MUX OUT = AINx  
MUX OUT = AINy  
MUX  
No Cycle Latency  
44. On-the-Fly Mode With No MUX Channel Selection Latency  
After selecting AINy, as shown in 45, the output of the multiplexer does not create a charge kickback as long  
as SDI is set to 0 (that is, as long as SDI returns the NOP command). Thus, high-impedance sources such as  
the voltage from resistor dividers can be connected to the analog inputs of the multiplexer without an op amp.  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINy  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
2
2
1
24  
1
3
4
5
16  
1
3
4
5
16  
5 clocks  
Set MODE = 1  
4-bit AINy ID  
1
16 clocks  
Data AINx  
16 clocks  
Data AINy  
SDO  
Data AINx  
24 clocks  
MUX OUT = AINy  
MUX OUT = AINx  
100-ns  
MUX OUT = AINx  
MUX  
No MUX switching with SDI = 0 (NOP)  
45. On-the-Fly Mode With No Channel Switching Timing Diagram  
版权 © 2017–2019, Texas Instruments Incorporated  
33  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.4.1.3 Auto Sequence Mode  
In auto sequence mode, the internal channel sequencer can selectively scan channels from AIN0 through AIN7  
in ascending order. To select auto sequence mode, configure SEQ_MODE to 10b in the DEVICE_CFG register  
using a 3-byte register access. One or more channels among AIN[7:0] can be enabled by configuring the  
AUTO_SEQ_CFG1 register. By default all analog input channels are enabled. After enabling the desired  
channels, the sequence can be started by setting SEQ_START to 1b. The ADC auto-increments through the  
enabled channels after every CS rising edge. When SEQ_START is set to 1b, the SDO-1/SEQSTS pin is at logic  
1 as shown in 46 until the last channel conversion frame is complete. After the last enabled channel  
conversion is complete, channel AIN0 is selected and SDO-1/SEQSTS is in a high-impedance state.  
Sample  
AINx  
Sample  
AINx  
Sample  
AINx  
Sample  
AIN0  
Sample  
AIN0  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
AUTO_SEQ_CH  
SEQ_START  
SDO  
Data AINx  
24 clocks  
Data AINx  
24 clocks  
Data AINx  
16 clocks  
Data AIN0  
Data CH7  
MUX OUT = AINx  
MUX OUT = AIN0  
MUX OUT = AIN1  
MUX  
MUX OUT = AIN0  
Scan channels AIN0 to AIN7  
SEQSTS  
46. Starting a Sequence in Auto Sequence Mode  
As an example, 47 depicts a timing diagram for when the device is scanning AIN2 and AIN6 in auto sequence  
mode. When AIN6 is converted, SDO-1/SEQSTS is Hi-Z and AIN0 is selected as the active channel. At the end  
of sequence, if more conversion frames are launched the device returns valid data corresponding to AIN0.  
To use the device in auto sequence mode follow these steps:  
Set the SEQ_MODE[1:0] bits in the DEVICE_CFG register to 10b.  
Configure the AUTO_SEQ_CFG1 register. In 47, AUTO_SEQ_CFG1 = 0x44.  
Set the SEQ_START bits in the SEQ_START register to 1b to start executing the sequence.  
34  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Sample  
AINx  
Sample  
AIN2  
Sample  
AIN6  
Sample  
AIN0  
tCYCLE  
CS  
SCLK  
SDI  
SEQ_START  
SDO  
Data AIN6  
16 clocks  
Data AINx  
24 clocks  
Data AINx  
Data AIN2  
16 clocks  
16 clocks  
MUX OUT = AIN0  
MUX OUT = AIN0  
MUX OUT = AIN6  
MUX OUT = AINx  
MUX OUT = AIN2  
MUX  
SEQSTS  
Scan channels AIN2 and AIN6  
47. Example: Scanning Channels 2 and 6 in Auto Sequence Mode  
To repeat a channel sequence indefinitely, set the AUTO_REPEAT bit in the AUTO_SEQ_CFG2 register to 1b.  
48 shows that when the AUTO_REPEAT bit is enabled, the MUX scans through the channels enabled in the  
AUTO_SEQ_CFG1 register and repeats the sequence after the last channel data are converted.  
Sample  
AINx  
Sample  
AIN2  
Sample  
AIN6  
Sample  
AIN2  
Sample  
AIN6  
tCYCLE  
CS  
SCLK  
SDI  
SEQ_START  
SDO  
Data AIN6  
16 clocks  
Data AIN2  
16 clocks  
Data AINx  
24 clocks  
Data AINx  
16 clocks  
Data AIN2  
16 clocks  
MUX OUT = AIN2  
MUX OUT = AIN6  
MUX OUT = AIN2  
MUX OUT = AIN6  
MUX OUT = AINx  
MUX  
SEQSTS  
Scan channels AIN2 and AIN6and repeat  
48. Example: Scanning Channels 2 and 6 in Auto Sequence Mode With AUTO_REPEAT = 1  
版权 © 2017–2019, Texas Instruments Incorporated  
35  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
48 provides a timing diagram for when the device is scanning AIN2 and AIN6 in auto sequence mode with  
AUTO_REPEAT = 1b. When AIN6 is converted, AIN2 is selected as the active channel and the device continues  
scanning through the enabled channels again.  
To use the device in auto sequence with the repeat mode enabled follow these steps:  
Set the SEQ_MODE[1:0] bits in the DEVICE_CFG register to 10b.  
Configure the AUTO_SEQ_CFG1 register. In 47, AUTO_SEQ_CFG1 = 0x44.  
Set AUTO_REPEAT to 1b.  
Set the SEQ_START bit in the SEQ_START register to 1b to start executing the sequence.  
To terminate an ongoing channel sequence set the SEQ_ABORT bit in the SEQ_ABORT register 1. When  
SEQ_ABORT is set, the auto sequence stops and AIN0 is selected as the active input channel.  
7.4.1.4 Custom Channel Sequencing Mode  
In this mode the internal channel sequencer can selectively scan channels from AIN0 through AIN7 in any order  
as defined by a user-programmable lookup table. 4 describes the configurability of this lookup table. The  
device can be configured in custom channel sequencing mode by programming the SEQ_MODE[1:0] bits to 11b  
in the DEVICE_CFG register using a 3-byte register access. 4 shows that the channel scanning sequence is  
programmed by configuring the channel IDs in the register as space. A channel sample count can also be  
programmed and associated with every channel ID. By default the channel sample count is 1, which means the  
sequence executes in the order of programmed channel IDs. If the channel sample count is greater than 1 then  
the corresponding channel is sampled and converted for a programmed number of times before switching to the  
next channel.  
4. Custom Channel Sequencing Configuration Space  
REGISTER  
ADDRESS  
REGISTER  
ADDRESS  
CHANNEL ID[2:0]  
CHANNEL SAMPLE COUNT[7:0]  
0x8C  
0x8E  
0x90  
0x92  
0x94  
0x96  
0x98  
0x9A  
0x9C  
0x9E  
Index 0 : 3-bit channel ID (default = 0)  
Index 1 : 3-bit channel ID (default = 0)  
Index 2 : 3-bit channel ID (default = 0)  
Index 3 : 3-bit channel ID (default = 0)  
Index 4 : 3-bit channel ID (default = 0)  
Index 5 : 3-bit channel ID (default = 0)  
Index 6 : 3-bit channel ID (default = 0)  
Index 7 : 3-bit channel ID (default = 0)  
Index 8 : 3-bit channel ID (default = 0)  
Index 9 : 3-bit channel ID (default = 0)  
0x8D  
0x8F  
0x91  
0x93  
0x95  
0x97  
0x99  
0x9B  
0x9D  
0x9F  
Index 0 : 8-bit sample count (default = 0xFF)  
Index 1 : 8-bit sample count (default = 0xFF)  
Index 2 : 8-bit sample count (default = 0xFF)  
Index 3 : 8-bit sample count (default = 0xFF)  
Index 4 : 8-bit sample count (default = 0xFF)  
Index 5 : 8-bit sample count (default = 0xFF)  
Index 6 : 8-bit sample count (default = 0xFF)  
Index 7 : 8-bit sample count (default = 0xFF)  
Index 8 : 8-bit sample count (default = 0xFF)  
Index 9 : 8-bit sample count (default = 0xFF)  
Index 10 : 8-bit sample count (default =  
0xFF)  
0xA0  
0xA2  
0xA4  
0xA6  
0xA8  
0xAA  
Index 10 : 3-bit channel ID (default = 0)  
Index 11 : 3-bit channel ID (default = 0)  
Index 12 : 3-bit channel ID (default = 0)  
Index 13 : 3-bit channel ID (default = 0)  
Index 14 : 3-bit channel ID (default = 0)  
Index 15: 3-bit channel ID (default = 0)  
0xA1  
0xA3  
0xA5  
0xA7  
0xA9  
0xAB  
Index 11 : 8-bit sample count (default =  
0xFF)  
Index 12 : 8-bit sample count (default =  
0xFF)  
Index 13: 8-bit sample count (default =  
0xFF)  
Index 14 : 8-bit sample count (default =  
0xFF)  
Index 15 : 8-bit sample count (default =  
0xFF)  
For application-specific scanning requirements, start and stop pointers can be used to define the channel  
scanning sequence. The start index can be programmed in the CCS_START_INDEX register and the stop index  
can be programmed in the CCS_END_INDEX register. 4 shows that the 4-bit index corresponds to the  
configuration index. The sequence starts executing from the index programmed in CCS_START_INDEX (default  
0) and stop or loop-back from CCS_STOP_INDEX (default 15). The channel scanning sequence can be looped-  
back to the start index from the stop index by setting the CCS_SEQ_LOOP register to 1b.  
36  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
After configuring the channel scanning order, start index, and stop index the scanning can be initiated by setting  
the SEQ_START bit to 1b. The ADC scans through the enabled channels after every CS rising edge as defined  
by the channel scanning order. When SEQ_START is set to 1b, the SDO-1/SEQSTS pin is pulled high until the  
last channel conversion frame is complete, as described in 46. As illustrated in 47, channel AIN0 is  
selected and SEQSTS/SDO-1 goes to Hi-Z after the last enabled channel conversion is complete.  
As an example, 47 provides a timing diagram for when the channel configuration is set as in 5. When AIN6  
is converted, SEQSTS/SDO-1 goes to Hi-Z and AIN0 is selected as the active channel. If more conversion  
frames are launched at the end of the sequence, the device returns valid data corresponding to AIN0.  
To use the device in easy capture mode follow these steps:  
Set the SEQ_MODE[1:0] bits in the DEVICE_CFG register to 3.  
Configure the channel sequence by setting registers 0x000C to 0x002B.  
Configure the CCS_START_INDEX and the CCS_END_INDEX registers. In 47, CCS_START_INDEX = 0  
and CCS_STOP_INDEX = 1.  
Configure the CCS_SEQ_LOOP register to 1 to indefinitely loop the sequence. In  
CCS_SEQ_LOOP register = 0b.  
Set the SEQ_START register to 1b to start executing the sequence.  
47, the  
5. Custom Channel Sequencing Configuration Example  
REGISTER  
ADDRESS  
REGISTER  
ADDRESS  
CHANNEL ID[2:0]  
CHANNEL SAMPLE COUNT[7:0]  
0x8C  
0x8E  
010b (Channel 2)  
110b (Channel 6)  
0x8D  
0x8F  
1
1
7.4.2 Digital Window Comparator  
The ADS816x has a programmable digital window comparator for every analog input channel. The integrated  
digital window comparator allows the host to not read ADC data over the serial interface for comparison  
purposes. In monitoring applications, the ADC can compare channel data with the set thresholds and alert the  
system host using the ALERT pin. Furthermore, the digital window comparator does not require software high  
and low comparisons and thus saves processing cycles.  
Window comparison is achieved by comparing the channel output code with a programmable high and low digital  
threshold. As shown in 49, each analog input channel has a programable hysteresis that is applicable to both  
the high and low thresholds of the corresponding channel. Thus, low threshold, high threshold, and hysteresis  
configurations are available for each analog input channel.  
AIN7  
AIN1  
AIN0  
High Th + Hysteresis  
AIN7  
Alert  
+
AIN0  
Latch  
Logical OR of All  
Analog Input Alerts  
Low Th - Hysteresis  
VIN  
ADC Data  
ADC  
49. Digital Window Comparator  
The thresholds and hysteresis can be configured independently for each analog input channel. The ALERT  
output of the device is a logical OR of all enabled alert outputs corresponding to the analog inputs. The window  
comparator can be selectively enabled for the analog inputs by configuring the ALERT_CFG register.  
版权 © 2017–2019, Texas Instruments Incorporated  
37  
 
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
The alert status of an individual analog input channel can be read from the ALERT_STATUS register. See the  
ALERT_HI_STATUS and ALERT_LO_STATUS registers for further information on the high or low threshold  
ALERT, respectively. When monitoring only a low threshold, the high threshold can be set to the ADC positive  
full-scale code. Similarly, when monitoring only a high threshold, the low threshold can be set to the negative full-  
scale code.  
7.5 Programming  
7.5.1 Data Transfer Protocols  
7.5.1.1 Enhanced-SPI Interface  
The device features an enhanced-SPI interface that allows the host controller to operate at slower SCLK speeds  
and still achieve the required cycle time with a faster response time. 50 shows the ADS816x Interface  
connections for the minimum number of pins required by the enhanced-SPI interface.  
For any data write operation, the host controller can use any of the four legacy, SPI-compatible protocols to  
configure the device, as described in the Protocols for Configuring the Device section. See the Register  
Read/Write Operation section for details about the register read or write operation.  
For reading ADC conversion data or register data from the device, the enhanced-SPI interface module offers the  
following options:  
SPI protocol with a single data output line: SDO-0 (see the SPI Protocols With a Single SDO section)  
SPI protocol with dual data output lines: SDO-1 and SDO-0 (see the SPI Protocols With Dual SDO section)  
Clock re-timer data transfer (see the Clock Re-Timer Data Transfer section)  
5-V  
VDD  
AVDD  
DVDD  
CS  
SDI  
CS  
MOSI  
MISO  
SCK  
ADS816x  
MCU  
SDO  
SCLK  
GND  
GND  
GND  
GND  
50. 4-Wire SPI Interface Connection Diagram  
7.5.1.1.1 Protocols for Configuring the Device  
As described in 6, the host controller can use any of the four SPI protocols (SPI-00, SPI-01, SPI-10, or SPI-  
11) to write data into the device.  
6. SPI Protocols for Configuring the Device  
SCLK POLARITY  
(At the CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
SDI_MODE[1:0]  
BITS(1)  
SDO_MODE[1:0]  
BITS(2)  
PROTOCOL  
DIAGRAM  
SPI-00  
SPI-01  
SPI-10  
SPI-11  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
51  
51  
52  
52  
(1) See the SDI_CNTL register.  
(2) See the SDO_CNTL1 register.  
38  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations. To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits in  
the SDI_CNTL register. This first write operation must adhere to the SPI-00-S protocol. Any subsequent data  
transfer frames must adhere to the newly-selected protocol. The SPI protocol selected by the SDI_MODE[1:0]  
configuration is applicable to both read and write operations.  
51 and 52 detail the four protocols using an optimal data frame.  
CS  
CS  
READY  
READY  
CPOL = 0  
CPOL = 0  
SCLK  
SCLK  
CPOL = 1  
CPOL = 1  
MSB  
MSB-1  
LSB+1  
LSB  
SDI  
SDI  
MSB  
MSB-1  
LSB+1  
LSB  
51. Standard SPI Timing Protocol  
52. Standard SPI Timing Protocol  
(CPHA = 0)  
(CPHA = 1)  
As explained in the Register Read/Write Operation section, a valid register read or write  
operation to the device requires 24 SCLKs to be provided within a data transfer frame.  
When reading ADC conversion data, a minimum 16 SCLKs are required within a data  
transfer frame.  
7.5.1.1.2 Protocols for Reading From the Device  
The protocols for the data read operation can be broadly classified into three categories:  
1. SPI protocols (SPI-00, SPI-01, SPI-10, and SPI-11) with a single SDO (see the SPI Protocols With a Single  
SDO section); for example, SDO-0  
2. SPI protocols (SPI-00, SPI-01, SPI-10, and SPI-11) with dual SDOs (see the SPI Protocols With Dual SDO  
section); for example, SDO-1 and SDO-0  
3. Source-synchronous protocol for data transfer  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.5.1.1.2.1 SPI Protocols With a Single SDO  
As shown in 7, 53, and 54, the host controller can use any of the four legacy, SPI-compatible protocols  
(SPI-00, SPI-01, SPI-10, or SPI-11) to read data from the device.  
7. SPI Protocols for Reading From the Device  
SCLK POLARITY  
(At the CS  
Falling Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
SDI_MODE[1:0] SDO_MODE[1:0]  
PROTOCOL  
DIAGRAM  
BITS  
BITS  
SPI-00  
SPI-01  
SPI-10  
SPI-11  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
CS falling  
1st SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
53  
53  
54  
54  
1st SCLK falling  
CS  
CS  
READY  
READY  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
MSB  
MSB-1  
LSB+1  
LSB  
SDO-0  
MSB-2  
SDO-0  
0
MSB  
MSB-1  
LSB+1  
LSB  
53. Standard SPI Timing Protocol  
54. Standard SPI Timing Protocol  
(CPHA = 0, Single SDO-0)  
(CPHA = 1, Single SDO-0)  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00 protocol for data  
read and data write operations. To select a different SPI-compatible protocol for both of the data transfer  
operations:  
1. Program the SDI_MODE[1:0] bits in the SDI_CNTL register. This first write operation must adhere to the SPI-  
00 protocol. Any subsequent data transfer frames must adhere to the newly-selected protocol.  
2. Set the SDO_MODE[1:0] bits = 00b in the SDO_CNTL1 register.  
The SPI transfer protocol selected by configuring the SDI_MODE[1:0] bits in the  
SDI_CNTL register determines the data transfer protocol for both write and read  
operations.  
When using any of the SPI-compatible protocols, the READY output remains low throughout the data transfer  
frame.  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.5.1.1.2.2 SPI Protocols With Dual SDO  
The device provides an option to increase the SDO bus width from one bit (default, single SDO-0) to two bits  
(dual SDO) when operating with any of the data transfer protocols. In order to operate the device in dual SDO  
mode, the SDO_WIDTH bit in the SDO_CNTL1 register must be set to 1b. In this mode, the SDO-1/SEQSTS pin  
functions as SDO-1.  
As shown in 55 and 56, two bits of data are launched on the two SDO pins (SDO-0 and SDO-1) on every  
SCLK launch edge in dual SDO mode.  
CS  
CS  
READY  
READY  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
MSB  
MSB-2  
MSB-3  
LSB+3  
LSB+2  
LSB+1  
SDO-1  
SDO-0  
MSB-4  
MSB-5  
SDO-1  
SDO-0  
0
0
MSB  
MSB-2  
MSB-3  
LSB+3  
LSB+2  
LSB+1  
MSB-1  
LSB  
MSB-1  
LSB  
55. Standard SPI Timing Protocol  
56. Standard SPI Timing Protocol  
(CPHA = 0, Dual SDO)  
(CPHA = 1, Dual SDO)  
7.5.1.1.2.3 Clock Re-Timer Data Transfer  
In clock re-timer data transfer mode, the device provides an output clock that is synchronous with the output  
data. Furthermore, the host controller can also select the data bus width in this mode of operation. In all modes  
of operation, the READY pin provides the output clock, synchronous to the device data output.  
The clock re-timer data transfer allows the width of the output bus to be configured, similar to the SPI protocols  
SPI protocols described in 6.  
7.5.1.1.2.3.1 Output Bus Width Options  
The device provides an option to increase the SDO-x bus width from one bit (default, single SDO-x) to two bits  
(dual SDO-x) when operating with clock re-timer data transfer. In order to operate the device in dual SDO mode,  
the SDO_WIDTH bit in the SDO_CNTL1 register must be set to 1b. In this mode, the SDO-1/SEQSTS pin  
functions as SDO-1.  
For any particular data transfer, SPI or clock re-timer, the device follows the same timing  
specifications for single and dual SDO modes. The only difference is that in the dual SDO  
mode the device requires half as many clock cycles to output the same number of bits  
when in single SDO mode, thus reducing the minimum required clock frequency for a  
certain sampling rate of the ADC.  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.5.2 Register Read/Write Operation  
This device features configuration registers (as described in the Interface and Hardware Configuration Registers  
section). These devices support the commands listed in 8 to access the internal configuration registers.  
8. Supported Commands  
COMMAND  
ACRONYM  
B[23:19]  
B[18:8]  
B[7:0]  
COMMAND DESCRIPTION  
00000  
00001  
00010  
00011  
00100  
00000000000  
<11-bit address>  
<11-bit address>  
<11-bit address>  
<11-bit address>  
00000000  
<8-bit data>  
NOP  
No operation  
WR_REG Write <8-bit data> to the <11-bit address>  
RD_REG Read contents from the <11-bit address>  
SET_BITS Set <8-bit unmasked bits> from <11-bit address>  
CLR_BITS Clear <8-bit unmasked bits> from <11-bit address>  
00000000  
<8-bit unmasked bits>  
<8-bit unmasked bits>  
Remaining  
combinations  
These commands are reserved and treated by the  
device as no operation  
xxxxxxxxx  
xxxxxxxx  
Reserved  
The ADS816x supports two types of data transfer operations: data write (the host controller configures the  
device), and data read (the host controller reads data from the device).  
Any data write to the device is always synchronous to the external clock provided on the SCLK pin. The  
WR_REG command writes the 8-bit data into the 11-bit address specified in the command string. The CLR_BITS  
command clears the specified bits (identified by 1) at the 11-bit address (without affecting the other bits), and the  
SET_BITS command sets the specified bits (identified by 1) at the 11-bit address (without affecting the other  
bits).  
57 shows the digital waveform for register read operation. Register read operation consists of two frames: one  
frame to initiate a register read and a second frame to read data from the register address provided in the first  
frame. As shown in 57, the 11-bit register address and the 8-bit dummy data are sent over the SDI pin during  
the first 24-bit frame with the read command (00010b). When CS goes from low to high, this read command is  
decoded and the requested register data are available for reading during the next frame. During the second  
frame, the first eight bits on SDO correspond to the requested register read. During the second frame SDI can be  
used to initiate another operation or can be set to 0.  
CS  
SCLK  
18  
18  
1
2
5
6
7
16  
17  
24  
1
2
5
6
7
16  
17  
24  
0 0010b  
(RD_REG)  
SDI  
11-bit Address  
0000 0000b  
Command  
11-bit Address  
Optional; Can set SDI = 0  
8-bit Data  
SDO  
8-bit Register Data  
57. Register Read Operation  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
58 shows that for writing data to the register, one 24-bit frame is required. The 24-bit data on SDI consists of a  
5-bit write command (00001b), an 11-bit register address, and 8-bit data. The write command is decoded on the  
CS rising edge and the specified register is updated with the 8-bit data specified during register write operation.  
CS  
SCLK  
18  
1
2
5
6
7
16  
17  
24  
0 0001b  
(WR_REG)  
SDI  
11-bit Address  
8-bit Data  
58. Register Write Operation  
版权 © 2017–2019, Texas Instruments Incorporated  
43  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6 Register Maps  
9 lists the access codes for the ADS816x registers.  
9. ADS816x Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
R-W  
R/W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
7.6.1 Interface and Hardware Configuration Registers  
10 maps the device features following a hardware configuration of the registers.  
10. Configuration Registers Mapping  
ADDRESS  
REGISTER NAME  
REGISTER DESCRIPTION  
Enables read/write access to the device configuration registers specified in  
Interface and Hardware Configuration Registers  
00h  
REG_ACCESS  
Enable/disable control for reference, reference buffer, REFby2 buffer, and  
the ADC  
04h  
PD_CNTL  
08h  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
SDI_CNTL  
SDO_CNTL1  
SDO_CNTL2  
SDO_CNTL3  
SDO_CNTL4  
DATA_CNTL  
PARITY_CNTL  
SPI-00, SPI-01, SPI-10, or SPI-11 protocol selection.  
SDO output protocol selection  
Output data rate selection  
Reserved  
Configuration for the SEQSTS pin when not using SDO-1 for data transfer.  
Output data word configuration  
Parity configuration register  
7.6.1.1 REG_ACCESS Register (address = 00h) [reset = 00h]  
This register enables or disables write access to the device configuration registers specified in 10.  
59. REG_ACCESS Register  
7
6
5
4
3
2
1
0
REG_ACCESS_BITS  
R/W-0000 0000b  
11. REG_ACCESS Register Field Descriptions  
Bit  
Field  
REG_ACCESS_BITS  
Type  
Reset  
Description  
7-0  
R/W  
0000  
0000b  
Enables or disables write access to the device configuration  
registers specified in 10.  
Write 1010 1010b to this register to enable write access.  
Write access is disabled for all values other than  
REG_ACCESS_BITS = 1010 1010b.  
44  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.1.2 PD_CNTL Register (address = 04h) [reset = 00h]  
This register controls the low-power modes offered by the device. Write access to this register is disabled on  
power-up. To enable write access, configure the REG_ACCESS register.  
60. PD_CNTL Register  
7
0
6
0
5
0
4
3
2
1
0
0
PD_REFby2  
R/W-0b  
PD_REF  
R/W-0b  
PD_REFBUF  
R/W-0b  
PD_ADC  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
12. PD_CNTL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000b  
0b  
Description  
7-5  
4
0
Reserved bits. Reads return 000b.  
PD_REFby2  
PD_REF  
PD_REFBUF  
PD_ADC  
0
R/W  
This bit powers down the internal REFby2 buffer.  
0b = REFby2 buffer is powered up  
1b = REFby2 buffer is powered down  
3
2
1
0
R/W  
R/W  
R/W  
R
0b  
0b  
0b  
0b  
This bit powers down the internal reference.  
0b = Internal reference is powered up  
1b = Internal reference is powered down  
This bit powers down the internal reference buffer.  
0b = Internal reference buffer is powered up  
1b = Internal reference buffer is powered down  
This bit powers down the converter module.  
0b = Converter module is powered up  
1b = Converter module is powered down  
Reserved bits. Do not write. Reads return 0b.  
To power-down the converter module, set the PD_ADC bit in the PD_CNTL register. The converter module  
powers down on the rising edge of CS. To power-up the converter module, reset the PD_ADC bit in the  
PD_CNTL register. The converter module starts to power-up on the rising edge of CS. Wait for tPU_ADC before  
initiating any conversion or data transfer operation.  
To power-down the internal reference buffer, set the PD_REFBUF bit in the PD_CNTL register. The internal  
reference buffer powers down on the rising edge of CS.  
To power-down the internal reference, set the PD_REF bit in the PD_CNTL register. The internal reference  
powers down on the rising edge of CS.  
7.6.1.3 SDI_CNTL Register (address = 008h) [reset = 00h]  
This register selects the SPI protocol for writing data to the device. Write access to this register is disabled on  
power-up. To enable write access, configure the REG_ACCESS register.  
61. SDI_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SDI_MODE[1:0]  
R/W-00b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
13. SDI_CNTL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
Description  
7-2  
1-0  
0
000000b Reserved bits. Do not write. Reads return 000000b.  
SDI_MODE[1:0]  
R/W  
00b  
These bits select the protocol for writing data into the device.  
00b = Standard SPI with CPOL = 0 and CPHASE = 0  
01b = Standard SPI with CPOL = 0 and CPHASE = 1  
10b = Standard SPI with CPOL = 1 and CPHASE = 0  
11b = Standard SPI with CPOL = 1 and CPHASE = 1  
版权 © 2017–2019, Texas Instruments Incorporated  
45  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.1.4 SDO_CNTL1 Register (address = 0Ch) [reset = 00h]  
This register configures the protocol for reading data from the device. Write access to this register is disabled on  
power-up. To enable write access, configure the REG_ACCESS register.  
62. SDO_CNTL1 Register  
7
0
6
5
4
3
0
2
1
0
OUTDATA_uC DATA_RIGHT_  
BYTE_  
INTERLEAVE  
SDO_WIDTH  
R/W-0b  
SDO_MODE[1:0]  
R/W-00b  
_MODE  
ALIGNED  
R-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R-0b  
14. SDO_CNTL1 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7
6
0
Reserved bit. Do not write. Read returns 0b.  
OUTDATA_uC_MODE  
DATA_RIGHT_ALIGNED  
BYTE_INTERLEAVE  
R/W  
0b  
Enables the MCU or processor-friendly data interface.  
0b = Length of output data is determined by the DATA_OUT_FORMAT  
field in the DATA_CNTL register.  
1b = Length of output data is fixed to 16-bits when the length based on  
DATA_OUT_FORMAT is 16 or 32-bits when the length based on  
DATA_OUT_FORMAT is > 16.  
5
4
R/W  
R/W  
0b  
0b  
This bit is ignored if OUTDATA_uC_MODE = 0b. When  
OUTDATA_uC_MODE = 1b:  
0b = Data frame is left aligned. The SDOs output the device data bits  
followed by 0s in a 32-bit output frame.  
1b = Data frame is right aligned. The SDOs output 0s followed by device  
data bits in a 32-bit output frame.  
This bit is ignored if OUTDATA_uC_MODE = 0b or SDO_WIDTH = 0b.  
When OUTDATA_uC_MODE = 1b and SDO_WIDTH = 1b:  
0b = Bit mode. SDO-1 outputs (MSB, MSB - 2 ..., LSB + 1) and SDO-0  
outputs (MSB - 1, MSB - 3, ..., LSB).  
1b = Byte mode. If the total number of bits to be read from the device is N  
(conversion result, parity, channel ID, and so forth) then SDO-1 outputs 8  
MSB bits and SDO-0 outputs (N-8) bits when N 16 and SDO-1 outputs  
16 MSB bits and SDO-0 outputs (N-16) bits when 16 < N 32.  
3
2
0
R
0b  
0b  
Reserved bit. Do not write. Read returns 0b.  
SDO_WIDTH  
R/W  
This bit sets the width of the output bus.  
0b = Data bits are output only on SDO-0  
1b = Data bits are output on SDO-0 (MSB - 1, MSB - 3 ..., LSB) and  
SDO-1 (MSB, MSB - 2 ..., LSB + 1)  
1-0  
SDO_MODE[1:0]  
R/W  
00b  
These bits select the protocol for reading data from the device.  
00b = SDO follows the SPI protocol selected in the SDI_CNTL register  
01b = Invalid configuration, not supported by the device  
10b = Invalid configuration, not supported by the device  
11b = SDO follows the Clock Re-Timer Data Transfer section  
46  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.1.5 SDO_CNTL2 Register (address = 0Dh) [reset = 00h]  
This register configures the output data rates, SDR or DDR, when using the clock re-timer data transfer. Write  
access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.  
63. SDO_CNTL2 Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DATA_RATE  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
15. SDO_CNTL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved bit. Do not write. Reads return 000 0000b.  
7-1  
000 0000  
R
000  
0000b  
0
DATA_RATE  
R/W  
0b  
This bit is ignored if SDO_MODE[1:0] = 0xb. When SDO_MODE[1:0] =  
11b:  
0b = SDOs are updated at a single data rate (SDR) with respect to the  
output clock  
1b = SDOs are updated at double data rate (DDR) with respect to the  
output clock  
7.6.1.6 SDO_CNTL3 Register (address = 0Eh) [reset = 00h]  
The bits in this register are reserved.  
64. SDO_CNTL3 Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
16. SDO_CNTL3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
Reserved bits. Do not write. Reads return 0000 0000b.  
0000 0000  
R
0000  
0000b  
7.6.1.7 SDO_CNTL4 Register (address = 0Fh) [reset = 00h]  
This register configures the behaviour of the SEQ_STS pin when not using dual SDO mode (SDO_WIDTH = 0b).  
Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS  
register.  
65. SDO_CNTL4 Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SEQSTS_CFG  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
17. SDO_CNTL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved bits. Do not write. Reads return 000 0000b.  
7-1  
000 0000  
R
000  
0000b  
0
SEQSTS_CFG  
R/W  
0b  
This pin decides the behaviour of SDO-1 when SDO_WIDTH = 0b.  
0b = SDO-1 is Hi-Z  
1b = SDO-1 indicates the sequence of the active status  
版权 © 2017–2019, Texas Instruments Incorporated  
47  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.1.8 DATA_CNTL Register (address = 10h) [reset = 00h]  
This register configures the contents of the output data word. Write access to this register is disabled on power-  
up. To enable write access, configure the REG_ACCESS register.  
66. DATA_CNTL Register  
7
0
6
0
5
4
3
0
2
0
1
0
0
DATA_OUT_FORMAT[1:0]  
R/W-00b  
DATA_VAL  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
18. DATA_CNTL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000b  
00b  
Description  
7-6  
5-4  
00  
Reserved bits. Reads return 00b.  
DATA_OUT_FORMAT[1:0]  
R/W  
These bits control the composition of the output data frame.  
00b = ADC conversion result  
01b = ADC conversion result + 4-bit channel ID  
10b = ADC conversion result + 4-bit channel ID + 4-bit device status (see  
32) + 2-bit channel configuration  
11b = Reserved  
Parity bits can be appended to the data output frame. See the  
PARITY_CNTL register for details.  
3-1  
0
000  
R
000b  
0b  
Reserved bits. Reads return 00b.  
DATA_VAL  
R/W  
Setting this bit enables debug mode for SDO capture.  
0b = Normal operation; device data are output on SDO  
1b = The device outputs a fixed 1010 0110 patten that is useful for  
debugging data capture from the device  
7.6.1.9 PARITY_CNTL Register (address = 11h) [reset = 00h]  
This register enables or disables the computing parity status for the output from the device. Write access to this  
register is disabled on power-up. To enable write access, configure the REG_ACCESS register.  
67. PARITY_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
PARITY_EN  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
19. PARITY_CNTL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
Description  
7-3  
2
0 0000  
0 0000b Reserved bits. Do not write. Reads return 0 0000b.  
PARITY_EN  
R/W  
0b  
Enables the parity computation on the data output bits.  
0b = Parity disabled  
1b = A 1-bit parity is appended to the data output frame. Data length is 1-  
bit more than the length specified by DATA_OUT_FORMAT in the  
DATA_CNTL register.  
1-0  
00  
R
00b  
Reserved bits. Do not write. Reads return 00b.  
48  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.2 Device Calibration Registers  
20 maps the device features following register calibration.  
20. Calibration Registers Mapping  
ADDRESS  
REGISTER NAME  
REGISTER DESCRIPTION  
Setting for optimum ADC offset calibration when using an external  
reference input  
18h  
OFST_CAL  
Margin setting for the reference buffer to compensate for initial accuracy of  
the reference voltage  
19h  
REF_MRG1  
Enable margin setting of the reference buffer as configured in the  
REF_MRG1 register  
1Ah  
1Bh  
REF_MRG2  
REFby2_MRG  
REFby2 buffer margin configuration  
7.6.2.1 OFST_CAL Register (address = 18h) [reset = 00h]  
This register selects the optimal offset calibration when using an external reference input. When using an internal  
reference, do not write to this register. See the Reference Buffer section for more details.  
68. OFST_CAL Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
REF_SEL[2:0]  
R/W-000b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
21. OFST_CAL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
Description  
7-3  
2-0  
0
0 0000b Reserved bits. Reads return 0 0000b.  
REF_SEL[2:0]  
R/W  
000b  
These bits select the external reference range for optimal offset.  
000b = Optimum offset calibration for VREF = 5.0 V  
001b = Optimum offset calibration for VREF = 4.5 V  
010b = Optimum offset calibration for VREF = 4.096 V  
011b = Optimum offset calibration for VREF = 3.3 V  
100b = Optimum offset calibration for VREF = 3.0 V  
101b = Optimum offset calibration for VREF = 2.5 V  
110b = Optimum offset calibration for VREF = 5.0 V  
111b = Optimum offset calibration for VREF = 5.0 V  
版权 © 2017–2019, Texas Instruments Incorporated  
49  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.2.2 REF_MRG1 Register (address = 19h) [reset = 00h]  
This register selects the margining to be added to or subtracted from the reference buffer output; see the  
Reference Buffer section.  
69. REF_MRG1 Register  
7
0
6
0
5
0
4
3
2
1
0
REF_OFST[4:0]  
R/W-00000b  
R-0b  
R-0b  
R-0b  
22. REF_MRG1 Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000b  
Description  
7-5  
4-0  
0
Reserved bits. Reads return 000b.  
REF_OFST[4:0]  
R/W  
00000b  
These bits select the reference offset value as per 23.  
23. REF_OFST[4:0] Settings  
(1)  
(1)  
REF_OFST[4:0]  
00000b  
00001b  
00010b  
00011b  
00100b  
00101b  
00110b  
00111b  
01000b  
01001b  
01010b  
01011b  
01100b  
01101b  
01110b  
01111b  
ΔVREFBUFOUT  
REF_OFST[4:0]  
ΔVREFBUFOUT  
–4.5 mV  
0 mV  
10000b  
10001b  
10010b  
10011b  
10100b  
10101b  
10110b  
10111b  
11000b  
11001b  
11010b  
11011b  
11100b  
11101b  
11110b  
11111b  
280 µV  
580 µV  
840 µV  
–4.22 mV  
–3.94 mV  
–3.66 mV  
–3.38 mV  
–3.1 mV  
1.12 mV  
1.4 mV  
1.68 mV  
1.96 mV  
2.24 mV  
2.52 mV  
2.8 mV  
–2.82 mV  
–2.54 mV  
–2.26 mV  
–1.98 mV  
–1.70 mV  
–1.42 mV  
–1.14 mV  
–860 µV  
3.08 mV  
3.36 mV  
3.64 mV  
3.92 mV  
4.2 mV  
–580 µV  
–280 µV  
(1) The actual VREFBUFOUT value may vary by ±10% from 23.  
7.6.2.3 REF_MRG2 Register (address = 1Ah) [reset = 00h]  
This register enables or disables the reference buffer margin configuration in the REF_MRG1 register.  
70. REF_MRG2 Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
EN_MARG  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
24. REF_MRG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
R
000  
Reserved bits. Reads return 000 0000b.  
0000b  
0
EN_MARG  
R/W  
0b  
This bit enables the reference buffer margining feature.  
0b = Margining is disabled  
1b = Margining is enabled  
50  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.2.4 REFby2_MRG Register (address = 1Bh) [reset = 00h]  
This register selects the margining to be added to or subtracted from the REFFby2 buffer output; see the  
REFby2 Buffer section.  
71. REFby2_MRG Register  
7
0
6
5
4
3
0
2
0
1
0
0
REFby2_OFST[2:0]  
R/W-000b  
EN_REFby2_MARG  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
25. REFby2_MRG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7
0
Reserved bit. Do not write. Reads return 0b.  
6-4  
3-1  
0
REFBY2_OFST[2:0]  
0
R/W  
R
000b  
000b  
0b  
These bits select the REFby2 offset value as per 26.  
Reserved bits. Do not write. Reads return 000b.  
EN_REFby2_MARG  
R/W  
This bit enables the REFby2 buffer margining feature.  
0b = Margining is disabled  
1b = Margining is enabled  
26. REFby2_OFST[2:0] Settings  
(1)  
(1)  
VREFby2  
VREFby2  
REFby2_OFST[2:0]  
(VREF = 4.096 V)  
(VREF = 5 V)  
EN_REFby2_MARG = 0b  
2.04800 V  
2.12611 V  
2.13008 V  
2.13406 V  
2.13804 V  
2.14203 V  
2.14602 V  
2.14999 V  
2.15397 V  
2.50000 V  
2.59155 V  
2.59640 V  
2.60124 V  
2.60610 V  
2.61096 V  
2.61581 V  
2.62065 V  
2.62550 V  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
(1) The actual VREFby2 value may vary by ±10% from 26.  
版权 © 2017–2019, Texas Instruments Incorporated  
51  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.3 Analog Input Configuration Registers  
27 maps the device features following channel configuration of the registers.  
27. Analog Input Configuration Registers Mapping  
ADDRESS  
24h  
REGISTER NAME  
AIN_CFG  
REGISTER DESCRIPTION  
Analog input signal configuration selection  
AIN-COM pin configuration  
27h  
COM_CFG  
7.6.3.1 AIN_CFG Register (address = 24h) [reset = 00h]  
This register configures the analog inputs as single-ended or pseudo-differential with or without a common input.  
72. AIN_CFG Register  
7
6
5
4
3
2
1
0
CH7_CH6_CFG[1:0]  
R/W-00b  
CH5_CH4_CFG[1:0]  
R/W-00b  
CH3_CH2_CFG[1:0]  
R/W-00b  
CH1_CH0_CFG[1:0]  
R/W-00b  
28. AIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CH1_CH0_CFG[1:0]  
R/W  
00b  
00b = AIN0 and AIN1 are two separate channels. The MUXOUT-M pin is  
connected to the AIN-COM pin. See the COM_CFG register for selecting  
single-ended or pseudo-differential operation.  
01b = AIN0 and AIN1 are a single-ended pair. AIN0 connects to  
MUXOUT-P and AIN1 connects to MUXOUT-M.  
10b = AIN0 and AIN1 are a pseudo-differential pair. AIN0 connects to  
MUXOUT-P and AIN1 connects to MUXOUT-M.  
11b = Same as 00b  
5-4  
3-2  
1-0  
CH3_CH2_CFG[1:0]  
CH5_CH4_CFG[1:0]  
CH7_CH6_CFG[1:0]  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = AIN2 and AIN3 are two separate channels. The MUXOUT-M pin is  
connected to the AIN-COM pin. See the COM_CFG register for selecting  
single-ended or pseudo-differential operation.  
01b = AIN2 and AIN3 are a single-ended pair. AIN2 connects to  
MUXOUT-P and AIN3 connects to MUXOUT-M.  
10b = AIN2 and AIN3 are a pseudo-differential pair. AIN2 connects to  
MUXOUT-P and AIN3 connects to MUXOUT-M.  
11b = Same as 00b  
00b = AIN4 and AIN5 are two separate channels. The MUXOUT-M pin is  
connected to the AIN-COM pin. See the COM_CFG register for selecting  
single-ended or pseudo-differential operation.  
01b = AIN4 and AIN5 are a single-ended pair. AIN4 connects to  
MUXOUT-P and AIN5 connects to MUXOUT-M.  
10b = AIN4 and AIN5 are a pseudo-differential pair. AIN4 connects to  
MUXOUT-P and AIN5 connects to MUXOUT-M.  
11b = Same as 00b  
00b = AIN6 and AIN7 are two separate channels. MUXOUT-M pin  
connected to AIN-COM pin. See the COM_CFG register for selecting  
single-ended or pseudo-differential operation.  
01b = AIN6 and AIN7 are a single-ended pair. AIN6 connects to  
MUXOUT-P and AIN7 connects to MUXOUT-M.  
10b = AIN6 and AIN7 are a pseudo-differential pair. AIN6 connects to  
MUXOUT-P and AIN7 connects to MUXOUT-M.  
11b = Same as 00b  
52  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.3.2 COM_CFG Register (address = 27h) [reset = 00h]  
This register selects single-ended or pseudo-differential operation for any analog input channels that are not  
configured as pairs (see the AIN_CFG register). Depending on the contents of this register, AIN-COM must be  
connected to either GND or REFby2 on the PCB.  
73. COM_CFG Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
COM_CFG  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
29. COM_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
R
000  
Reserved bits. Reads return 000 0000b.  
0000b  
0
COM_CFG  
R/W  
0b  
This bit selects the analog input channel configuration when = 00b or 11b  
in the AIN_CFG register:  
0b = All individual channels are single-ended inputs; connect the AIN-  
COM pin to GND  
1b = All individual channels are pseudo-differential inputs; connect the  
AIN-COM pin to REFby2  
版权 © 2017–2019, Texas Instruments Incorporated  
53  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.4 Channel Sequence Configuration Registers Map  
30 maps the device features following channel configuration of the registers.  
30. Channel Sequence Configuration Registers Mapping  
ADDRESS  
REGISTER NAME  
REGISTER DESCRIPTION  
1Ch  
DEVICE_CFG  
MUX sequence configuration and device status bits  
Analog input channel selection in manual mode (see the Manual Mode  
section)  
1Dh  
CHANNEL_ID  
1Eh  
1Fh  
2Ah  
SEQ_START  
SEQ_STOP  
Control for starting the multiplexer sequence  
Control for aborting the multiplexer sequence  
ON_THE_FLY_CFG  
Enables or disables on-the-fly mode (see the On-The-Fly Mode section)  
Channel selection register for auto sequence mode (see the Auto Sequence  
Mode section)  
80h  
82h  
AUTO_SEQ_CFG1  
AUTO_SEQ_CFG2  
Control for repeating the channels in auto sequence mode  
7.6.4.1 DEVICE_CFG Register (address = 1Ch) [reset = 00h]  
This register selects the mode of channel sequencing and reading this register returns device status information.  
74. DEVICE_CFG Register  
7
0
6
0
5
0
4
0
3
2
1
0
ALERT_STATUS  
R-0b  
ERROR_STATUS  
R-0b  
SEQ_MODE[1:0]  
R/W-00b  
R-0b  
R-0b  
R-0b  
R-0b  
31. DEVICE_CFG Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R
Reset  
0000b  
0b  
Description  
0
Reserved bits. Do not write. Reads return 0000b.  
ALERT_STATUS  
ERROR_STATUS  
R
Read only. This bit reflects the ALERT pin logic level.  
2
R
0b  
Read only. This bit indicates a device configuration error:  
0b = No error  
1b = Error in configuration  
1-0  
SEQ_MODE[1:0]  
R/W  
00b  
Sets the MUX channel selection operation:  
00b = Manual mode  
01b = On-the-fly mode  
10b = Auto sequence mode  
11b = Custom channel sequencing mode (see the Custom Channel  
Sequencing Mode section)  
32 describes how the ALERT_STATUS, ERROR_STATUS, and SEQ_MODE[1:0] bits can be collectively  
decoded to indicate events.  
54  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
32. Decoding the DEVICE_CFG Read Value  
ALERT_STATUS  
ERROR_STATUS  
SEQ_MODE[1:0]  
EVENT DESCRIPTION  
0
0
0
0
0
0
00  
01  
10  
No ALERT, no error, manual mode  
No ALERT, no error, on-the-fly mode  
No ALERT, no error, auto sequence mode  
No ALERT, no error, custom channel sequencing  
mode  
0
0
11  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
No ALERT, error, manual mode  
No ALERT, error, on-the-fly mode  
No ALERT, error, auto sequence mode  
No ALERT, error, custom channel sequencing mode  
ALERT, no error, manual mode  
ALERT, no error, on-the-fly mode  
ALERT, no error, auto sequence mode  
ALERT, no error, custom channel sequencing mode  
ALERT, error, manual mode  
ALERT, error, on-the-fly mode  
ALERT, error, auto sequence mode  
ALERT, error, custom channel sequencing mode  
7.6.4.2 CHANNEL_ID Register (address = 1Dh) [reset = 00h]  
This register selects the analog input channel; see the Manual Mode section.  
75. CHANNEL_ID Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
CHANNEL_ID[2:0]  
R/W-000b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
33. CHANNEL_ID Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0 0000b Reserved bits. Reads return 0 0000b.  
000b These bits select the analog input channel as per 34.  
Description  
7-3  
2-0  
0
CHANNEL_ID[2:0]  
R/W  
34. Analog Input Channel Selection Settings  
CHANNEL_ID[2:0]  
ANALOG INPUT SELECTED  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
Writing to the CHANNEL_ID register when the device is actively operating in auto  
sequence mode or custom channel sequencing mode aborts the on-going sequence and  
the DEVICE_CFG register is set to manual mode.  
版权 © 2017–2019, Texas Instruments Incorporated  
55  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.4.3 SEQ_START Register (address = 1Eh) [reset = 00h]  
This register starts the channel selection sequence when in auto sequence mode or custom channel sequencing  
mode. Writing to this register has no effect when in manual mode or on-the-fly mode.  
76. SEQ_START Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SEQ_START  
W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
35. SEQ_START Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-1  
0
0
Reserved bits. Do not write.  
SEQ_START  
W
0b  
This bit starts the channel scanning sequence when SEQ_MODE[1:0] =  
auto sequence mode or custom channel sequencing mode.  
0b = No effect; any on-going sequence is not stopped  
1b = Start channel sequence  
7.6.4.4 SEQ_ABORT Register (address = 1Fh) [reset = 00h]  
This register stops the channel selection sequence when in auto channel sequence mode or custom channel  
sequencing mode. Writing to this register has no effect when in manual mode or on-the-fly mode.  
77. SEQ_ABORT Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SEQ_ABORT  
W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
36. SEQ_ABORT Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-1  
0
0
Reserved bits. Do not write.  
SEQ_ABORT  
W
0b  
This bit stops the channel scanning sequence when SEQ_MODE[1:0] =  
auto sequence mode or custom channel sequencing mode.  
0b = No effect  
1b = Stop channel sequence  
7.6.4.5 ON_THE_FLY_CFG Register (address = 2Ah) [reset = 00h]  
This register enables on-the-fly mode of operation. This mode of operation helps select analog input channels  
without having to write to device configuration registers.  
78. ON_THE_FLY_CFG Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
EN_ON_THE_FLY  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
37. ON_THE_FLY_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
R
000  
Reserved bits. Reads return 000 0000b.  
0000b  
0
EN_ON_THE_FLY  
R/W  
0b  
This bit enables on-the-fly mode.  
0b = On-the-fly mode disabled  
1b = On-the-fly mode enabled; the first five bits on SDI select the analog  
input channel for next conversion (see 44)  
56  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.4.6 AUTO_SEQ_CFG1 Register (address = 80h) [reset = 00h]  
This register selects the channels enabled for auto sequence mode.  
79. AUTO_SEQ_CFG1 Register  
7
6
5
4
3
2
1
0
EN_AIN7  
R/W-0b  
EN_AIN6  
R/W-0b  
EN_AIN5  
R/W-0b  
EN_AIN4  
R/W-0b  
EN_AIN3  
R/W-0b  
EN_AIN2  
R/W-0b  
EN_AIN1  
R/W-0b  
EN_AIN0  
R/W-0b  
38. AUTO_SEQ_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
EN_AIN7  
R/W  
0b  
This bit enables analog input channel 7 in the auto channel sequence  
mode; see the Auto Sequence Mode section.  
0b = AIN7 is not enabled in the scanning sequence  
1b = AIN7 is enabled in the scanning sequence  
6
5
4
3
2
1
0
EN_AIN6  
EN_AIN5  
EN_AIN4  
EN_AIN3  
EN_AIN2  
EN_AIN1  
EN_AIN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit enables analog input channel 6 in the auto sequence mode.  
0b = AIN6 is not enabled in the scanning sequence  
1b = AIN6 is enabled in the scanning sequence  
This bit enables analog input channel 5 in the auto sequence mode.  
0b = AIN5 is not enabled in the scanning sequence  
1b = AIN5 is enabled in the scanning sequence  
This bit enables analog input channel 4 in the auto sequence mode.  
0b = AIN4 is not enabled in the scanning sequence  
1b = AIN4 is enabled in the scanning sequence  
This bit enables analog input channel 3 in the auto sequence mode.  
0b = AIN3 is not enabled in the scanning sequence  
1b = AIN3 is enabled in the scanning sequence  
This bit enables analog input channel 2 in the auto sequence mode.  
0b = AIN2 is not enabled in the scanning sequence  
1b = AIN2 is enabled in the scanning sequence  
This bit enables analog input channel 1 in the auto sequence mode.  
0b = AIN1 is not enabled in the scanning sequence  
1b = AIN1 is enabled in the scanning sequence  
This bit enables analog input channel 0 in the auto sequence mode.  
0b = AIN0 is not enabled in the scanning sequence  
1b = AIN0 is enabled in the scanning sequence  
7.6.4.7 AUTO_SEQ_CFG2 Register (address = 82h) [reset = 00h]  
This register enables the sequence loop for auto sequence mode.  
80. AUTO_SEQ_CFG2 Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
AUTO_REPEAT  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
39. AUTO_SEQ_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
R
000  
Reserved bits. Reads return 000 0000b.  
0000b  
0
AUTO_REPEAT  
R/W  
0b  
This bit enables looping the sequence indefinitely in auto sequence  
mode.  
0b = Sequence terminates after all enabled channels are scanned  
1b = Sequence repeats after scanning all enabled channels  
版权 © 2017–2019, Texas Instruments Incorporated  
57  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.4.8 Custom Channel Sequencing Mode Registers  
20 maps the device features for the custom channel sequencing mode registers; see the Custom Channel  
Sequencing Mode section for mode details.  
40. Custom Channel Sequencing Registers  
ADDRESS  
88h  
REGISTER NAME  
CCS_START_INDEX  
CCS_END_INDEX  
REGISTER DESCRIPTION  
Start index for the custom channel sequencing mode sequence  
End index for the custom channel sequencing mode sequence  
Custom channel sequencing mode loop control  
Channel ID configuration register index 0  
Repeat count register index 0  
89h  
8Ah  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
CCS_SEQ_LOOP  
CCS_CHID_INDEX_0  
REPEAT_INDEX_0  
CCS_CHID_INDEX_1  
REPEAT_INDEX_1  
CCS_CHID_INDEX_2  
REPEAT_INDEX_2  
CCS_CHID_INDEX_3  
REPEAT_INDEX_3  
CCS_CHID_INDEX_4  
REPEAT_INDEX_4  
CCS_CHID_INDEX_5  
REPEAT_INDEX_5  
CCS_CHID_INDEX_6  
REPEAT_INDEX_6  
CCS_CHID_INDEX_7  
REPEAT_INDEX_7  
CCS_CHID_INDEX_8  
REPEAT_INDEX_8  
CCS_CHID_INDEX_9  
REPEAT_INDEX_9  
CCS_CHID_INDEX_10  
REPEAT_INDEX_10  
CCS_CHID_INDEX_11  
REPEAT_INDEX_11  
CCS_CHID_INDEX_12  
REPEAT_INDEX_12  
CCS_CHID_INDEX_13  
REPEAT_INDEX_13  
CCS_CHID_INDEX_14  
REPEAT_INDEX_14  
CCS_CHID_INDEX_15  
REPEAT_INDEX_15  
Channel ID configuration register index 1  
Repeat count register index 1  
Channel ID configuration register index 2  
Repeat count register index 2  
91h  
92h  
Channel ID configuration register index 3  
Repeat count register index 3  
93h  
94h  
Channel ID configuration register index 4  
Repeat count register index 4  
95h  
96h  
Channel ID configuration register index 5  
Repeat count register index 5  
97h  
98h  
Channel ID configuration register index 6  
Repeat count register index 6  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
Channel ID configuration register index 7  
Repeat count register index 7  
Channel ID configuration register index 8  
Repeat count register index 8  
Channel ID configuration register index 9  
Repeat count register index 9  
Channel ID configuration register index 10  
Repeat count register index 10  
Channel ID configuration register index 11  
Repeat count register index 11  
Channel ID configuration register index 12  
Repeat count register index 12  
Channel ID configuration register index 13  
Repeat count register index 13  
Channel ID configuration register index 14  
Repeat count register index 14  
Channel ID configuration register index 15  
Repeat count register index 15  
58  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.4.8.1 CCS_START_INDEX Register (address = 88h) [reset = 00h]  
This register sets the relative sequence index where the custom channel sequencing mode starts execution from.  
81. CCS_START_INDEX Register  
7
0
6
0
5
0
4
0
3
2
1
0
SEQ_START_INDEX[3:0]  
R/W-0000b  
R-0b  
R-0b  
R-0b  
R-0b  
41. CCS_START_INDEX Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
0
Reserved bits. Reads return 0000b.  
SEQ_START_INDEX[3:0]  
R/W  
Relative pointer to the index for the start of the sequence in custom  
channel sequencing mode.  
7.6.4.8.2 CCS_END_INDEX Register (address = 89h) [reset = 00h]  
This register sets the relative sequence index where the custom channel sequencing mode stops execution at.  
The value in the CCS_END_INDEX register must not be less than the value in the CCS_START_INDEX register.  
82. CCS_END_INDEX Register  
7
0
6
0
5
0
4
0
3
2
1
0
SEQ_END_INDEX[3:0]  
R/W-0000b  
R-0b  
R-0b  
R-0b  
R-0b  
42. CCS_END_INDEX Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
0
Reserved bits. Reads return 0000b.  
SEQ_END_INDEX[3:0]  
R/W  
Relative pointer to the index for the end of the sequence in custom  
channel sequencing mode.  
7.6.4.8.3 CCS_SEQ_LOOP Register (address = 8Bh) [reset = 00h]  
This register controls the looping of the sequence in custom channel sequencing mode.  
83. CCS_SEQ_LOOP Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SEQ_LOOP  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
43. CCS_SEQ_LOOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
R
000  
Reserved bits. Reads return 000 0000b.  
0000b  
0
SEQ_LOOP  
R/W  
0b  
Configures the looping of sequence in custom channel sequencing mode.  
0b = Sequence ends at the index location configured in the  
CCS_END_INDEX[3:0] bits; see the CCS_END_INDEX register  
1b = Sequence resumes from the CCS_START_INDEX[3:0] bits (see the  
CCS_START_INDEX register) after executing the CCS_END_INDEX[3:0]  
bits.  
版权 © 2017–2019, Texas Instruments Incorporated  
59  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.4.8.4 CCS_CHID_INDEX_m Registers (address = 8C, 8E, 90, 92, 94, 96, 98, 9A, 9C, 9E, A0, A2, A4, A6, A8, and  
AAh) [reset = 00h]  
In custom channel sequencing mode, the intended sequence of the analog input channels can be programmed in  
these 16 registers. See the REPEAT_INDEX_m registers for details about repeating a particular channel before  
switching to the next index.  
84. CCS_CHID_INDEX_m Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
CHID[2:0]  
R/W-000b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
44. CCS_CHID_INDEX_m Register Field Descriptions  
Bit  
Field  
0
Type  
R
Reset  
Description  
7-3  
2-0  
0 0000b Reserved bits. Reads return 0 0000b.  
CHID[2:0]  
R/W  
000b  
These bits configure the analog input channel associated with the index in  
custom channel sequencing mode.  
000b = AIN0  
001b = AIN1  
010b = AIN2  
011b = AIN3  
100b = AIN4  
101b = AIN5  
110b = AIN6  
111b = AIN7  
7.6.4.8.5 REPEAT_INDEX_m Registers (address = 8D, 8F, 91, 93, 95, 97, 99, 9B, 9D, 9F, A1, A3, A5, A7, A9, and ABh)  
[reset = 00h]  
In custom channel sequencing mode, the analog input selected in the corresponding CCS_CHID_INDEX register  
can be repeated by configuring the respective register.  
85. REPEAT_INDEX_m Register  
7
6
5
4
3
2
1
0
REPEAT[7:0]  
R/W-1111 1111b  
45. REPEAT_INDEX_m Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REPEAT[7:0]  
R/W  
1111  
1111b  
These bits configure the number of times the analog input configured in  
the corresponding CCS_CHID_INDEX register is repeated. Configuring  
0000 0000b in this register results in an error.  
60  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.5 Digital Window Comparator Configuration Registers Map  
46 maps the device features for the digital window comparator; see the Digital Window Comparator section.  
46. Digital Window Comparator Configuration Registers Mapping  
ADDRESS  
2Eh  
REGISTER NAME  
ALERT_CFG  
REGISTER DESCRIPTION  
ALERT enable control for individual analog input channels  
High threshold input for the AIN7 digital window comparator  
High threshold input for the AIN6 digital window comparator  
High threshold input for AIN5 digital window comparator  
High threshold input for the AIN4 digital window comparator  
High threshold input for the AIN3 digital window comparator  
High threshold input for the AIN2 digital window comparator  
High threshold input for the AIN1 digital window comparator  
High threshold input for the AIN0 digital window comparator  
Low threshold input for the AIN7 digital window comparator  
Low threshold input for the AIN6 digital window comparator  
Low threshold input for the AIN5 digital window comparator  
Low threshold input for the AIN4 digital window comparator  
Low threshold input for the AIN3 digital window comparator  
Low threshold input for the AIN2 digital window comparator  
Low threshold input for the AIN1 digital window comparator  
Low threshold input for the AIN0 digital window comparator  
Threshold hysteresis for the AIN7 digital window comparator  
Threshold hysteresis for the AIN6 digital window comparator  
Threshold hysteresis for the AIN5 digital window comparator  
Threshold hysteresis for the AIN4 digital window comparator  
Threshold hysteresis for the AIN3 digital window comparator  
Threshold hysteresis for the AIN2 digital window comparator  
Threshold hysteresis for the AIN1 digital window comparator  
Threshold hysteresis for the AIN0 digital window comparator  
31h and 30h  
35h and 34h  
39h and 38h  
3Dh and 3Ch  
41h and 40h  
45h and 44h  
49h and 48h  
4Dh and 4Ch  
55h and 54h  
59h and 58h  
5Dh and 5Ch  
61h and 60h  
65h and 64h  
69h and 68h  
6Dh and 6Ch  
71h and 70h  
33h  
HI_TRIG_AIN7  
HI_TRIG_AIN6  
HI_TRIG_AIN5  
HI_TRIG_AIN4  
HI_TRIG_AIN3  
HI_TRIG_AIN2  
HI_TRIG_AIN1  
HI_TRIG_AIN0  
LO_TRIG_AIN7  
LO_TRIG_AIN6  
LO_TRIG_AIN5  
LO_TRIG_AIN4  
LO_TRIG_AIN3  
LO_TRIG_AIN2  
LO_TRIG_AIN1  
LO_TRIG_AIN0  
HYSTERESIS_AIN7  
HYSTERESIS_AIN6  
HYSTERESIS_AIN5  
HYSTERESIS_AIN4  
HYSTERESIS_AIN3  
HYSTERESIS_AIN2  
HYSTERESIS_AIN1  
HYSTERESIS_AIN0  
37h  
3Bh  
3Fh  
43h  
47h  
4Bh  
4Fh  
Indicates the analog input channel-wise ALERT resulting from a low  
threshold  
78h  
ALERT_LO_STATUS  
Indicates the analog input channel-wise ALERT resulting from a high  
threshold  
79h  
7Ah  
7Ch  
ALERT_HI_STATUS  
ALERT_STATUS  
Indicates the analog input channel-wise ALERT status  
Indicates the analog input channel-wise ALERT resulting from a low  
threshold for the last conversion data  
CURR_ALERT_LO_STATUS  
Indicates the analog input channel-wise ALERT resulting from a high  
threshold for the last conversion data  
7Dh  
7Eh  
CURR_ALERT_HI_STATUS  
CURR_ALERT_STATUS  
Indicates the analog input channel-wise ALERT status for the last  
conversion data  
版权 © 2017–2019, Texas Instruments Incorporated  
61  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.5.1 ALERT_CFG Register (address = 2Eh) [reset = 00h]  
This register enables or disables the digital window comparator for the individual analog input channels.  
86. ALERT_CFG Register  
7
6
5
4
3
2
1
0
ALERT_EN_  
AIN7  
ALERT_EN_  
AIN6  
ALERT_EN_  
AIN5  
ALERT_EN_  
AIN4  
ALERT_EN_  
AIN3  
ALERT_EN_  
AIN2  
ALERT_EN_  
AIN1  
ALERT_EN_  
AIN0  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
47. ALERT_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALERT_EN_AIN7  
ALERT_EN_AIN6  
ALERT_EN_AIN5  
ALERT_EN_AIN4  
ALERT_EN_AIN3  
ALERT_EN_AIN2  
ALERT_EN_AIN1  
ALERT_EN_AIN0  
R/W  
0b  
Digital window comparator control for AIN7.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Digital window comparator control for AIN6.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
Digital window comparator control for AIN5.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
Digital window comparator control for AIN4.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
Digital window comparator control for AIN3.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
Digital window comparator control for AIN2.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
Digital window comparator control for AIN1.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
Digital window comparator control for AIN0.  
0b = Digital window comparator disabled  
1b = Digital window comparator enabled  
When the digital window comparator is disabled, the bits corresponding to the disabled digital window  
comparator are not updated in the ALERT_STATUS, ALERT_HI_STATUS, ALERT_LO_STATUS,  
CURR_ALERT_STATUS, CURR_ALERT_HI_STATUS, or CURR_ALERT_LO_STATUS registers.  
62  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.5.2 HI_TRIG_AINx[15:0] Register (address = 4Dh to 30h) [reset = 0000h]  
This bank of registers configures the high threshold for the digital window comparator. For 16-bit ADC data  
output, the comparator thresholds are 16-bits wide and are spread over two 8-bit registers. Use the registers  
listed in 48 to configure the high threshold for the individual analog input channels.  
48. HI_TRIG_AINx[15:0] Register Address Map(1)  
ANALOG INPUT  
AIN7  
REGISTER ADDRESS FOR HI_TRIG_AINx[15:8]  
REGISTER ADDRESS FOR HI_TRIG_AINx[7:0]  
031h  
035h  
039h  
03Dh  
041h  
045h  
049h  
04Dh  
030h  
034h  
038h  
03Ch  
040h  
044h  
048h  
04Ch  
AIN6  
AIN5  
AIN4  
AIN3  
AIN2  
AIN1  
AIN0  
(1) AINx refers to analog inputs channels AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
87. MSB Byte Register for HI_TRIG_AINx[15:8]  
7
6
5
4
3
2
1
1
0
0
HI_TRIG[15:8]  
R/W-0000 0000b  
88. LSB Byte Register for HI_TRIG_AINx[7:0]  
7
6
5
4
3
2
HI_TRIG[7:0]  
R/W-0000 0000b  
49. HI_TRIG_AINx[15:0] Registers Field Descriptions  
Bit  
Field  
HI_TRIG[15:0]  
Type  
Reset  
Description  
High threshold for the digital window comparator  
15:0  
R/W  
0000  
0000  
0000  
0000b  
版权 © 2017–2019, Texas Instruments Incorporated  
63  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.5.3 LO_TRIG_AINx[15:0] Register (address = 71h to 54h) [reset = 0000h]  
This bank of registers configures the low threshold for the digital window comparator. For 16-bit ADC data output,  
the comparator thresholds are 16-bits wide and are spread over two 8-bit registers. Use the registers listed in 表  
50 to configure the low threshold for the individual analog input channels  
50. LO_TRIG_AINx[15:0] Register Address Map(1)  
ANALOG INPUT  
AIN7  
REGISTER ADDRESS FOR LO_TRIG_AINx[15:8]  
REGISTER ADDRESS FOR LO_TRIG_AINx[7:0]  
051h  
059h  
05Dh  
061h  
065h  
069h  
06Dh  
071h  
054h  
058h  
05Ch  
060h  
064h  
068h  
06Ch  
070h  
AIN6  
AIN5  
AIN4  
AIN3  
AIN2  
AIN1  
AIN0  
(1) AINx refers to analog inputs channels AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
89. MSB Byte Register for LO_TRIG_AINx[15:8]  
7
6
5
4
3
2
1
1
0
0
LO_TRIG[15:8]  
R/W-0000 0000b  
90. LSB Byte Register for LO_TRIG_AINx[7:0]  
7
6
5
4
3
2
LO_TRIG[7:0]  
R/W-0000 0000b  
51. LO_TRIG_AINx[15:0] Registers Field Descriptions  
Bit  
Field  
LO_TRIG[15:0]  
Type  
Reset  
Description  
Low threshold for the digital window comparator  
15:0  
R/W  
0000  
0000  
0000  
0000b  
64  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.5.4 HYSTERESIS_AINx[7:0] Register (address = 4Fh to 33h) [reset = 00h]  
This bank of registers configures the hysteresis around the high and low thresholds for the digital window  
comparator. For 16-bit ADC data output, the hysteresis is six bits wide.  
91. HYSTERESIS_AINx[7:0] Registers  
7
6
5
4
3
2
1
0
0
0
HYSTERESIS[5:0]  
R/W-00 0000b  
R-0b  
R-0b  
52. HYSTERESIS_AINx[7:0](1) Register Field Descriptions  
Bit  
Field  
HYSTERESIS[5:0]  
Type  
Reset  
Description  
Low threshold for the digital window comparator  
7:2  
R/W  
000  
0000b  
(1) AINx refers to analog inputs channels AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
版权 © 2017–2019, Texas Instruments Incorporated  
65  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.5.5 ALERT_LO_STATUS Register (address = 78h) [reset = 00h]  
This register reflects the status of the ALERT pin resulting from the low thresholds of the respective analog input  
channels.  
92. ALERT_LO_STATUS Register  
7
6
5
4
3
2
1
0
ALERT_LO_  
AIN7  
ALERT_LO_  
AIN6  
ALERT_LO_  
AIN5  
ALERT_LO_  
AIN4  
ALERT_LO_  
AIN3  
ALERT_LO_  
AIN2  
ALERT_LO_  
AIN1  
ALERT_LO_  
AIN0  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
53. ALERT_LO_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALERT_LO_AIN7  
ALERT_LO_AIN6  
ALERT_LO_AIN5  
ALERT_LO_AIN4  
ALERT_LO_AIN3  
ALERT_LO_AIN2  
ALERT_LO_AIN1  
ALERT_LO_AIN0  
R/W  
0b  
This bit indicates that the low threshold for AIN7 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit indicates that the low threshold for AIN6 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the low threshold for AIN5 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the low threshold for AIN4 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the low threshold for AIN3 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the low threshold for AIN2 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the low threshold for AIN1 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the low threshold for AIN0 has been exceeded.  
0b = Low threshold is not exceeded  
1b = Low threshold has been exceeded; clear this bit by writing 1b  
66  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.5.6 ALERT_HI_STATUS Register (address = 79h) [reset = 00h]  
This register reflects the status of the ALERT pin resulting from the high thresholds of the respective analog input  
channels.  
93. ALERT_HI_STATUS Register  
7
6
5
4
3
2
1
0
ALERT_HI_  
AIN7  
ALERT_HI_  
AIN6  
ALERT_HI_  
AIN5  
ALERT_HI_  
AIN4  
ALERT_HI_  
AIN3  
ALERT_HI_  
AIN2  
ALERT_HI_  
AIN1  
ALERT_HI_  
AIN0  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
54. ALERT_HI_STATUS Register Field Descriptions  
Bit  
Field  
ALERT_HI_AIN7  
Type  
Reset  
Description  
7
R/W  
0b  
This bit indicates that the high threshold for AIN7 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
6
5
4
3
2
1
0
ALERT_HI_AIN6  
ALERT_HI_AIN5  
ALERT_HI_AIN4  
ALERT_HI_AIN3  
ALERT_HI_AIN2  
ALERT_HI_AIN1  
ALERT_HI_AIN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit indicates that the high threshold for AIN6 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the high threshold for AIN5 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the high threshold for AIN4 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the high threshold for AIN3 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the high threshold for AIN2 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the high threshold for AIN1 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
This bit indicates that the high threshold for AIN0 has been exceeded.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded; clear this bit by writing 1b  
版权 © 2017–2019, Texas Instruments Incorporated  
67  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.5.7 ALERT_STATUS Register (address = 7Ah) [reset = 00h]  
This register reflects the ALERT status for the analog input channels.  
94. ALERT_STATUS Register  
7
6
5
4
3
2
1
0
ALERT_AIN7  
R-0b  
ALERT_AIN6  
R-0b  
ALERT_AIN5  
R-0b  
ALERT_AIN4  
R-0b  
ALERT_AIN3  
R-0b  
ALERT_AIN2  
R-0b  
ALERT_AIN1  
R-0b  
ALERT_AIN0  
R-0b  
55. ALERT_STATUS Register Field Descriptions  
Bit  
Field  
ALERT_AIN7  
Type  
Reset  
Description  
7
R
0b  
This bit indicates if either the high or low threshold for AIN7 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
6
5
4
3
2
1
0
ALERT_AIN6  
ALERT_AIN5  
ALERT_AIN4  
ALERT_AIN3  
ALERT_AIN2  
ALERT_AIN1  
ALERT_AIN0  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit indicates if either the high or low threshold for AIN6 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates if either the high or low threshold for AIN5 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates if either the high or low threshold for AIN4 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates if either the high or low threshold for AIN3 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates if either the high or low threshold for AIN2 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates if either the high or low threshold for AIN1 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates if either the high or low threshold for AIN0 has been  
exceeded.  
0b = Neither the high are low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
If the ALERT bit for a particular channel is set in the ALERT_STATUS register, then the ALERT bit can be  
cleared by writing 1b to the corresponding bit in the ALERT_HI_STATUS or ALERT_LO_STATUS registers. If  
both the high and low thresholds have been exceeded for a particular analog input channel, then the  
corresponding ALERT bit in both the ALERT_HI_STATUS or ALERT_LO_STATUS registers must be set to 1b to  
clear the ALERT bit.  
68  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.5.8 CURR_ALERT_LO_STATUS Register (address = 7Ch) [reset = 00h]  
This register reflects the low threshold ALERT status for the analog input channels. The bits in this register are  
updated after every conversion.  
95. CURR_ALERT_LO_STATUS Register  
7
6
5
4
3
2
1
0
ALERT_LO_  
AIN7  
ALERT_LO_  
AIN6  
ALERT_LO_  
AIN5  
ALERT_LO_  
AIN4  
ALERT_LO_  
AIN3  
ALERT_LO_  
AIN2  
ALERT_LO_  
AIN1  
ALERT_LO_  
AIN0  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
56. CURR_ALERT_LO_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALERT_LO_AIN7  
ALERT_LO_AIN6  
ALERT_LO_AIN5  
ALERT_LO_AIN4  
ALERT_LO_AIN3  
ALERT_LO_AIN2  
ALERT_LO_AIN1  
ALERT_LO_AIN0  
R
0b  
This bit indicates if the low threshold for AIN7 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit indicates if the low threshold for AIN6 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
This bit indicates if the low threshold for AIN5 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
This bit indicates if the low threshold for AIN4 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
This bit indicates if the low threshold for AIN3 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
This bit indicates if the low threshold for AIN2 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
This bit indicates if the low threshold for AIN1 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
This bit indicates if the low threshold for AIN0 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = Low threshold has been exceeded  
The status of the individual bits in this register is evaluated after every conversion. The contents of this register  
can be used to ascertain if the last output data are within the specified high threshold for the respective analog  
input channels.  
版权 © 2017–2019, Texas Instruments Incorporated  
69  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6.5.9 CURR_ALERT_HI_STATUS Register (address = 7Dh) [reset = 00h]  
This register reflects the high threshold ALERT status for the analog input channels. The bits in this register are  
updated after every conversion.  
96. CURR_ALERT_HI_STATUS Register  
7
6
5
4
3
2
1
0
ALERT_HI_  
AIN7  
ALERT_HI_  
AIN6  
ALERT_HI_  
AIN5  
ALERT_HI_  
AIN4  
ALERT_HI_  
AIN3  
ALERT_HI_  
AIN2  
ALERT_HI_  
AIN1  
ALERT_HI_  
AIN0  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
57. CURR_ALERT_HI_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALERT_HI_AIN7  
ALERT_HI_AIN6  
ALERT_HI_AIN5  
ALERT_HI_AIN4  
ALERT_HI_AIN3  
ALERT_HI_AIN2  
ALERT_HI_AIN1  
ALERT_HI_AIN0  
R
0b  
This bit indicates if the high threshold for AIN7 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit indicates if the high threshold for AIN6 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
This bit indicates if the high threshold for AIN5 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
This bit indicates if the high threshold for AIN4 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
This bit indicates if the high threshold for AIN3 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
This bit indicates if the high threshold for AIN2 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
This bit indicates if the high threshold for AIN1 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
This bit indicates if the high threshold for AIN0 has been exceeded by the  
last converted data from channel AIN7.  
0b = High threshold is not exceeded  
1b = High threshold has been exceeded  
The status of the individual bits in this register is evaluated after every conversion. The contents of this register  
can be used to ascertain if the last output data are within the specified high threshold for the respective analog  
input channels.  
70  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
7.6.5.10 CURR_ALERT_STATUS Register (address = 7Eh) [reset = 00h]  
This register reflects the ALERT pin status for the analog input channels. The bits in this register are updated  
after every conversion.  
97. CURR_ALERT_STATUS Register  
7
6
5
4
3
2
1
0
ALERT_AIN7  
R-0b  
ALERT_AIN6  
R-0b  
ALERT_AIN5  
R-0b  
ALERT_AIN4  
R-0b  
ALERT_AIN3  
R-0b  
ALERT_AIN2  
R-0b  
ALERT_AIN1  
R-0b  
ALERT_AIN0  
R-0b  
58. CURR_ALERT_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALERT_AIN7  
ALERT_AIN6  
ALERT_AIN5  
ALERT_AIN4  
ALERT_AIN3  
ALERT_AIN2  
ALERT_AIN1  
ALERT_AIN0  
R
0b  
This bit indicates that either the high or low threshold for AIN7 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
This bit indicates that either the high or low threshold for AIN6 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates that either the high or low threshold for AIN5 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates that either the high or low threshold for AIN4 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates that either the high or low threshold for AIN3 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates that either the high or low threshold for AIN2 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates that either the high or low threshold for AIN1 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
This bit indicates that either the high or low threshold for AIN0 has been  
exceeded by the last converted data from channel AIN7.  
0b = Neither the high or low threshold have been exceeded  
1b = Either the high threshold, the low threshold, or both thresholds have  
been exceeded  
Bits in this register reflect the result of the logical OR of the corresponding channel bits in the  
CURR_ALERT_HI_STATUS and CURR_ALERT_LO_STATUS registers. The status of the individual bits in this  
register is evaluated after every conversion. The contents of this register can be used to ascertain if the last  
output data are within the specified high and low thresholds for the respective analog input channels.  
版权 © 2017–2019, Texas Instruments Incorporated  
71  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Multiplexer Input Connection  
Conventional multichannel ADC solutions internally connect the multiplexer output directly to the switched  
capacitor input of the ADC. Conventionally, a wide bandwidth amplifier is required for each channel. For the  
ADS816x, only one amplifier is required for many applications. The ADS816x solution shown in 98 has lower  
power, a smaller PCB area, and lower cost compared to the comparative solution. Furthermore, from a  
calibration perspective, the offset error in the ADS816x solution is the same in each channel and is set by the  
multiplexer output amplifier. The offset error in the conventional solution, on the other hand, is different for each  
channel. Calibrating the offset error for the conventional solution also requires a separate calibration for each  
channel.  
High Bandwidth Amplifier  
OPA320  
VIN0  
AIN0  
ADC-INP  
AIN0  
VIN1  
VIN2  
AIN1  
AIN2  
VIN0  
+
+
ADC  
AIN1  
AIN2  
+
ADC  
MUXOUT-P  
VIN7  
AIN7  
AIN7  
VIN7  
Sequencer  
ADS8168 Solution œ Single Wide Bandwidth Amplifier  
Conventional Solution œ Eight Wide Bandwidth Amplifiers  
98. Small-Size and Low-Power 8-Channel DAQ System Using the ADS816x  
When connecting the sensor directly to the input of the ADS816x, the maximum switching speed of the  
multiplexer is limited by multiplexer on-resistance and parasitic capacitance. 99 illustrates the source  
resistance (RS0, RS1…), multiplexer impedance (RMUX), multiplexer capacitance (CMUX), op amp input  
capacitance (COPA), and the stray PCB capacitance at the output of the multiplexer (CSTRAY). In this example, the  
total output capacitance is the combination of the multiplexer output capacitance, the op amp input capacitance,  
and the stray capacitance (CMUX + COPA + CSTRAY) = 15 pF. When switching to a channel, this capacitance must  
be charged to the sensor output voltage via the source resistance and the multiplexer resistance (RS0 + RMUX).  
公式 2 can be used to estimate the number of time constants required for N bits of settling. For this example, to  
achieve 16-bit settling, 11.09 time constants are required. Thus, as computed in 公式 3 and 公式 4, for channel 0  
the required settling time is 167 ns.  
NTC = ln (216) = 11.09  
(2)  
(3)  
(4)  
Settling Time Required = (RS0 + RMUX) × (CMUX + COPA + CSTRAY) × NTC  
Settling Time Required = (1 kΩ) × (15 pF) × 11.09 = 167 ns  
72  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Application Information (接下页)  
OPA320  
RFLT  
50  
RS1  
50ꢀ  
ADC-INP  
SW  
RMUX  
40ꢀ  
RS0  
1000ꢀ  
MUXOUT-P  
AIN0  
SW  
+
CMUX  
13pF  
CFLT  
1.2nF  
CS1  
60pF  
AIN1  
AIN2  
SW  
SW  
COPA + CSTRAY  
Sensor 0  
CS2  
60pF  
RS7  
1000ꢀ  
RS2  
50ꢀ  
AIN7  
SW  
SW  
ADC-INM  
MUXOUT-M  
RFLT  
50  
CFLT  
1.2nF  
MUX  
ADC  
AIN-COM  
Sensor 7  
99. Direct Sensor Interface With the ADS816x in an 8-Channel, Single-Ended Configuration  
When operating at 1 MSPS in either manual mode, auto sequence mode, or custom channel sequencing mode,  
a 900-ns settling time is available at the analog inputs of the multiplexer; see the Early Switching for Direct  
Sensor Interface section. Using 公式 4, the maximum sensor output impedance for a direct connection is 5.4 kΩ.  
In some applications, such as temperature sensing, the sensor output impedance can be greater than 10 kΩ.  
When scanning the multiplexer channels at high throughput, the relatively higher driving impedance results in a  
settling error. In such cases, 100 shows that the multiplexer inputs can be driven using an amplifier. The  
multiplexer outputs can be connected to the ADC inputs directly. For best distortion performance, an amplifier  
can be used between the multiplexer and the ADC as described in the Selecting an ADC Input Buffer section.  
MUXOUT-P  
ADC-INP  
RFLT_MUX  
55  
RS0  
>10 kꢀ  
AIN0  
ADS816x  
+
AIN1  
AIN2  
OPA320  
CFLT_MUX  
1 nF  
ADC  
Sensor 0  
RFLT_MUX  
55  
RS7  
>10 kꢀ  
AIN7  
+
OPA320  
CFLT_MUX  
1 nF  
ADC-INM  
MUXOUT-M  
Sensor 7  
100. High Output Impedance Sensor Interface  
版权 © 2017–2019, Texas Instruments Incorporated  
73  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.2 Selecting an ADC Input Buffer  
101 shows the external amplifier, charge bucket filter, and sample-and-hold circuit at the ADC input for the  
ADS816x. Having a short background on the conversion process helps to understand the design procedure for  
selecting the amplifier and RC filter. The conversion process is broken up into two phases: the acquisition phase  
and the conversion phase. During the acquisition phase the SW switches are closed, and the input signal is  
stored on the sample-and-hold capacitors, CS1 and CS2. After the acquisition phase, the switches opens and the  
voltage stored on the capacitors is converted to a digital code by the SAR algorithm. This conversion process  
depletes the charge on the sample-and-hold capacitors.  
OPA320  
RFLT  
50  
RS1  
50ꢀ  
ADC-INP  
SW  
MUXOUT-P  
+
CFLT  
1.2nF  
CS1  
60pF  
CS2  
60pF  
RS2  
50ꢀ  
SW  
ADC-INM  
MUXOUT-M  
RFLT  
50  
CFLT  
1.2nF  
ADC  
101. Driving the ADC Inputs (ADC-INP and ADC-INM)  
During subsequent acquisition cycles, the sample-and-hold capacitor must be charged to the ADC input voltage  
that can make step changes in the value because each input may be from a different multiplexer channel. For  
example, if AIN0 is connected to 4 V and AIN1 is connected to 0.5 V, the sample-and-hold capacitor must charge  
to 4 V for the first acquisition cycle and then must charge to 0.5 V for the second acquisition cycle. When running  
at high throughput, the acquisition time is small and a wide bandwidth amplifier is required for proper settling at  
the ADC inputs (minimum acquisition time for the ADS816x is tACQ = 330 ns). The RC filter (RFLT and CFLT) is  
designed to provide a reservoir of charge that helps rapidly charge the internal sample-and-hold capacitor at the  
start of the acquisition period. For this reason, the RC filter is sometimes called a charge bucket or charge  
kickback filter. A method for determining the required amplifier bandwidth and the values of the RC charge  
bucket filter is provided in this section.  
A summary of the equations and an example calculation is provided to determine the amplifier bandwidth and RC  
charge bucket circuit for the ADS816x assuming a minimum ADC acquisition time is used. 公式 5 finds the  
amplifier time constant and 公式 6 uses this to computer the amplifiers required unity-gain bandwidth.  
tC  
40.9ns  
tAMP  
=
=
= 9.917ns  
17  
17  
(5)  
(6)  
1
1
UGBW =  
=
= 16MHz  
2pì tAMP 2pì(9.917ns)  
公式 7, 公式 8, and 公式 9 calculate CSH, the LSB value, and τC, respectively.  
CSH = 60pF,tACQ = 330ns,N = 16bits,VREF = 4.096V  
(7)  
(8)  
VREF  
4.096V  
216  
LSB =  
=
= 62.5mV  
2N  
-tACQ  
-330ns  
tC  
=
=
= 40.9ns  
0.5ìLSB  
100mV  
0.5ì(62.5mV)  
100mV  
In  
In  
«
÷
«
÷
(9)  
74  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
Application Information (接下页)  
The value of CFLT is computed in 公式 10 by taking 20 times the internal sample-and-hold capacitance. The  
factor of 20 is a rule of thumb that is intended to minimize the droop in voltage on the charge bucket capacitor,  
CFLT, after the start of the acquisition period. The filter resistor, RFLT, is computed in 公式 11 using the op amp  
time constant and CFLT. These equations model the system as a first-order system, but in reality the system is a  
higher order. Consequently, the values may need to be adjusted to optimize performance. This optimization and  
more details on the math behind the component selection are covered in the ADC Precision Labs training videos.  
CFLT = 20ìCFLT = 20ì(60pF) = 1.2nF  
(10)  
4ì tAMP  
CFLT  
4ì(9.917ns)  
1.2nF  
RFLT  
=
=
= 33.05W  
(11)  
8.2 Typical Applications  
8.2.1 1-MSPS DAQ Circuit With Lowest Distortion and Noise Performance  
102 shows an 8-channel and 1-MSPS solution with minimum external components. This solution significantly  
reduces solution size and power by not requiring amplifiers on every analog input.  
IO Supply  
5-V  
1.2 F  
49.9  
1 F  
1 F  
1 F  
+
OPA320  
DECAP DVDD  
AVDD  
ADS816x  
107 ꢀ  
AIN0  
AIN1  
AIN2  
ADC-INP  
Interface  
ADC  
560 pF  
ADC-INM  
1 F  
REFIO  
REFP  
AIN7  
22 F  
1 F  
107 ꢀ  
AIN-COM  
REFby2  
÷2  
4.096 V  
560 pF  
49.9 ꢀ  
1.2 F  
102. 1-MSPS DAQ Circuit With Lowest Distortion and Noise Performance  
8.2.1.1 Design Requirements  
59 lists the design parameters for this example.  
59. Design Parameters  
DESIGN PARAMETER  
SNR  
EXAMPLE VALUE  
92 dB  
THD  
–108 dB  
Throughput  
1 MSPS  
Input signal frequency  
100 kSPS  
8.2.1.2 Detailed Design Procedure  
The procedure discussed in this section can be used for any ADS816x application circuit. See the Example  
Schematic section for the final design for this example.  
All ADS816x applications require the supply and reference decoupling as given in the Example Schematic  
版权 © 2017–2019, Texas Instruments Incorporated  
75  
 
 
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
and Layout sections.  
Select the buffer amplifier and associated charge bucket filter between the multiplexer output and the ADC  
input using the method described in the Selecting an ADC Input Buffer section. The values given in this  
section meet the maximum throughput and input signal frequency design requirements given. A lower  
bandwidth solution can be used in cases where lower power is required.  
Select an input amplifier for rapid settling when the multiplexer switches channels. This selection is covered in  
the Multiplexer Input Connection section. The OPA320 buffer and associated RC filter illustrated in 100  
meet these requirements.  
8.2.1.3 Application Curve  
0
-36  
-72  
-108  
-144  
-180  
0
100  
200 300  
fIN, Input Frequency (kHz)  
400  
500  
D001  
fIN = 2 kHz, SNR = 92 dB, THD = –109 dB  
103. FFT Plot: ADS8168  
76  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
8.2.2 8-Channel Photodiode Detector With Smallest Size and Lowest Number of Components  
The circuit in 104 shows an 8-channel photodiode detector using the ADS816x. In this example, one common  
amplifier is used for eight photodiodes. See the 1 MHz, Single-Supply, Photodiode Amplifier Reference Design  
reference guide for a detailed description of the transimpedance amplifier.  
3.6 pF  
43.2 k  
5V  
0 µA to 90 µA  
49.9 ꢀ  
+
VB = 0.1V  
OPA320  
3.6 pF  
0 µA to 90 µA  
ADC-INP  
AIN0  
AIN0  
ADC  
AIN1  
AIN1  
MUXOUT-P  
VREF  
VB = 0.1V  
AIN7  
AIN7  
10 kꢀ  
4.096V  
÷2  
SFH213  
REFby2  
Sequencer  
500 ꢀ  
ADS816x  
ADS816x Solution œ Single Wide Bandwidth Amplifier  
104. Small Size, 8-Channel Photodetector  
8.2.2.1 Design Requirements  
The objective of this design is to achieve:  
Smallest solution size  
Transimpedance output of 0.1 V to 4 V for a 0-µA to 90-µA input with a bandwidth of 1 MHz  
The voltage divider is designed to provide a minimum amplifier output of 0.1 V when the photodiode  
current is zero (dark current) to prevent the amplifier from saturating to the negative rail  
8.2.2.2 Detailed Design Procedure  
In 104, the photodiodes are connected to the multiplexer input in photovoltaic mode. Depending on the  
application requirements, either photovoltaic mode or photoconductive mode can be used. The multiplexer in the  
ADS816x is used as a current multiplexer in this example. One common amplifier for all photodiodes reduces  
cost, complexity, PCB area, and power consumption. This common amplifier also simplifies system calibration  
because the gain and offset error are the same for all channels. Finally, the low leakage current of the  
multiplexer is ideal for photodiode applications.  
The OPA320 is used as a transimpedance amplifier that can also drive the ADC inputs. In order to set the output  
voltage of the OPA320 to 0.1 V in dark conditions, an equivalent bias voltage (VB) is applied at the noninverting  
terminal. 公式 12 shows that this bias voltage is derived using a resistive voltage divider on the REFby2 output  
(2.048V).  
500W  
10kW + 500W  
VB = (VREFby2V)ì  
= 97.5mV  
«
÷
(12)  
版权 © 2017–2019, Texas Instruments Incorporated  
77  
 
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
公式 13 shows that the feedback resistor for the transimpedance amplifier can be selected by designing for a 4-V  
output for a 90-µA input.  
VOUT _MAX - VOUT _MIN  
4V - 0.1V  
90mA  
RF =  
=
= 43.3kW  
I
IN_MAX  
(13)  
公式 14 computes the value of the feedback capacitance to limit the bandwidth of the transimpedance circuit to 1  
MHz.  
1
1
CF =  
=
= 3.6pF  
2pì fC ìRF 2pì(1MHz)ì(43.3kW)  
(14)  
Transimpedance amplifiers can have potential stability concerns. Stability is a function of the feedback  
capacitance, the capacitance on the inverting input of the amplifier, and the amplifier gain bandwidth. In this case  
the capacitance on the inverting amplifier input (CIN, as calculated by 公式 15 and 公式 16) includes the  
photodiode junction capacitance (CJ), the multiplexer capacitance (CMUX), the trace capacitance, and the op amp  
input differential (CD) and common-mode (CCM2) capacitances. 公式 17 and 公式 18 compute the minimum gain  
bandwidth of the amplifier for stability for a given CIN. The minimum required gain bandwidth is 10.9 MHz and the  
gain bandwidth for the OPA320 is 20 MHz, so the stability test passes.  
CIN = CJ + CD + CCM2 + CMUX  
CIN = 11pF + 5pF + 4pF +15pF = 35pF  
CIN + CF  
(15)  
(16)  
FGBW  
>
2pìRF ì(CF )2  
(17)  
(18)  
35pF + 3.6pF  
2pì 43.3kWì(3.6pF)2  
FGBW  
>
= 10.9MHz  
78  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
8.2.3 1-MSPS DAQ Circuit for Factory Automation  
The circuit in 105 shows an example of how the ADS816x can be used for a factory automation application.  
AVDD +5V  
Supply Current  
Sensor 1  
Supply  
Wiring Impedance  
VSUP_DROP  
T
GND1 -80mV  
VGND_DROP  
AVDD  
Sensor 2  
AIN0  
ADS816x  
AIN1  
VSUP_DROP  
AIN2  
AIN3  
T
ADC  
GND2 -60mV  
AIN4  
AIN5  
AIN6  
AIN7  
VGND_DROP  
Sensor 3  
VSUP_DROP  
GND  
Ground  
Wiring Impedance  
T
GND3 -40mV  
VGND_DROP  
ADC GND  
0V  
Sensor 4  
T
GND4 -20mV  
VGND_DROP  
Ground return current  
105. Remote Ground Sense With the ADS816x in Factory Automation  
8.2.3.1 Design Requirements  
The goal of this design to sense outputs from four sensors, with each sensor being at a different ground  
potential.  
8.2.3.2 Detailed Design Procedure  
In 105, the sensors are connected over long leads to the supply, ground, and ADC inputs. Voltage drop  
resulting from ground wiring impedance causes the ground connections to be at different potentials for each  
sensor. The ADS816x can be configured into four single-ended pairs with a remote ground sense; see the  
Multiplexer Configurations section. In this input configuration, the error in ground potential is sensed and  
accounted for in the measurement.  
The ADC negative input can sense ground voltages of ±100 mV. The ADC has digital window comparators that  
can be programed to set an alarm if the sensor output is out of range. Many industrial applications require  
isolation. When scanning all the channels at 1 MSPS, the serial clock rate can be as low as 16 MHz. This clock  
rate is suitable for most isolators. Using a common amplifier to drive the ADC input simplifies calibration because  
all channels have a common error.  
版权 © 2017–2019, Texas Instruments Incorporated  
79  
 
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The ADS816x has two separate power supplies: AVDD and DVDD. The internal reference, reference buffer,  
multiplexer, and the internal LDO operate on AVDD. The ADC core operates on the LDO output (available on the  
DECAP pin). DVDD is used for setting the logic levels on the digital interface. AVDD and DVDD can be  
independently set to any value within their permissible ranges. During normal operation, if any voltage on the  
AVDD supply drops below the AVDD minimum specification, then the AVDD supply is recommended to be  
ramped down to 0.7 V before power-up. Also during power-up, AVDD must monotonously rise to the desired  
operating voltage above the minimum AVDD specification.  
When using an internal reference, set AVDD so that 4.5 V AVDD 5.5 V.  
The AVDD supply voltage value defines the permissible range for the external reference voltage, VREF, on the  
REFIO pin. To use the external reference voltage (VREF), set AVDD such that 3 V AVDD (AVDD + 0.3) V.  
As shown in 106, place a minimum 1-µF decoupling capacitor between the AVDD and GND pins and between  
the DVDD and GND pins. Use a minimum 1-µF decoupling capacitor between the DECAP and GND pins.  
There are no specific requirements with regard to the power-supply sequencing of the device. However, issue a  
reset after the supplies are powered and stable to ensure the device is properly configured.  
AVDD  
1 F  
1 F  
AVDD  
DECAP  
DVDD  
DVDD  
MUX Control  
LDO  
1 F  
ALERT  
READY  
Digital  
GND  
Interface  
RST  
ADC  
MUX  
4.096-V  
÷2  
106. Power-Supply Decoupling  
80  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
10 Layout  
10.1 Layout Guidelines  
This section provides some layout guidelines for achieving optimum performance with the ADS816x.  
10.1.1 Analog Signal Path  
As illustrated in 108, the analog input signals are routed in opposite directions to the digital connections. The  
reference decoupling components are kept away from the switching digital signals. This arrangement prevents  
noise generated by digital switching activity from coupling to sensitive analog signals.  
10.1.2 Grounding and PCB Stack-Up  
Low inductance grounding is critical for achieving optimum performance. Place all critical components of the  
signal chain on the same PCB layer as the ADS816x.  
For lowest inductance grounding, connect the GND pins of the ADS816x (pins 1, 21, and 31) and reference  
ground REFM (pin 4) directly to the device thermal pad. Connect the device thermal pad to the PCB ground  
using four vias; see 108.  
10.1.3 Decoupling of Power Supplies  
Use wide traces or a dedicated power-supply plane to minimize trace inductance. Place 1-µF, X7R-grade,  
ceramic decoupling capacitors in close proximity on AVDD (pin 32), DECAP (pin 2), DVDD (pin 30), and REFby2  
(pin 7). Avoid placing vias between any supply pin and the respective decoupling capacitor.  
10.1.4 Reference Decoupling  
When using the internal reference (see the External Reference section), REFIO (pin 3) must have a 1-µF, X7R-  
grade, ceramic capacitor with at least a 10-V rating. This capacitor must be placed close to the REFIO pin, as  
illustrated in 108. In cases where an external reference is used, refer to the reference component data sheet  
for filtering capacitor requirements.  
10.1.5 Reference Buffer Decoupling  
Dynamic currents are present at the REFP and REFM pins during the conversion phase, and excellent  
decoupling is required to achieve optimum performance. Place a 22-µF, X7R-grade, ceramic capacitor with at  
least a 10-V rating between the REFP and the REFM pins, as illustrated in 108. Select 0603- or 0805-size  
capacitors to keep the equivalent series inductance (ESL) low. Connect the REFM pin to the decoupling  
capacitor before connecting to a ground via.  
10.1.6 Multiplexer Input Decoupling  
Minimizing channel-to-channel parasitic capacitance reduces the crosstalk induced on the PCB. This lower  
capacitance can be achieved by increasing the spacing between the analog traces to the multiplexer input.  
In 108, each multiplexer input has an RC filter. Use C0G- or NPO-type capacitors in the RC filter to help  
reduce settling when switching between multiplexer channels. When not switching the multiplexer, as discussed  
in 43 and 44, the RC filter can be omitted.  
10.1.7 ADC Input Decoupling  
Dynamic currents are also present at the ADC analog inputs (pins 18 and 19) of the ADS816x. Use C0G- or  
NPO-type capacitors to decouple these inputs. With these type of capacitors, capacitance remains almost  
constant over the full input voltage range. Lower-quality capacitors (such as X5R and X7R) have large  
capacitance changes over the full input voltage range that may cause degradation in device performance.  
In 108, each multiplexer input has an RC filter that helps reduce settling when switching between multiplexer  
channels. When not switching the multiplexer, as discussed in 43 and 44, the RC filter can be omitted.  
版权 © 2017–2019, Texas Instruments Incorporated  
81  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.8 Example Schematic  
107 shows the schematic used for 108.  
DVDD  
AVDD  
DECAP  
REFP  
REFby2  
REFIO  
1 F  
10 F  
10 F  
1 F  
1 F  
1 F  
1 F  
30  
32  
2
3
7
5
Reference  
4.096V  
LDO  
107  
÷2  
AIN0  
9
REFP  
ALARM  
READY  
560 pF  
INP  
ADC  
Analog In  
SDO-1  
4-wire SPI  
INM  
RST  
107 ꢀ  
AIN7  
16  
560 pF  
107 ꢀ  
19  
18  
17  
20  
8
OPA320  
1.2 nF  
560 pF  
49.9 ꢀ  
+
1.2 F  
5.5V  
0.1 F  
49.9 ꢀ  
107. Example Schematic for 108  
82  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
10.2 Layout Example  
GND  
REFby2  
GND  
CREF1  
CREFby2  
R
C
GND  
CREFIO  
CREF2  
CDECAP  
AVDD  
GND  
1
CAVDD  
8
DVDD  
GND  
9
32  
CDVDD  
ADS8168  
16  
25  
CFLT+  
CFLT-  
RFLT+  
RFLT-  
ADC-INM  
ADC-INP  
GND  
MUXOUT-P  
108. Recommended Layout  
版权 © 2017–2019, Texas Instruments Incorporated  
83  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)适用于单端多路复用器应用的 16 1MSPS 数据采集参考 设计设计指南  
德州仪器 (TI)OPAx625 高带宽、高精度、低 THD+N16 位和 18 位模数转换器 (ADC) 驱动器产品说明书  
德州仪器 (TI)THS4551 低噪声、高精度的 150MHz 全差分放大器产品说明书  
德州仪器 (TI)具有关断功能的 OPAx320x 高精度 20MHz0.9pA、低噪声、RRIOCMOS 运算放大器产品  
说明书  
德州仪器 (TI)1MHz 单电源光电二极管放大器参考设计参考指南  
德州仪器 (TI)具有精密多通道 ADC 应用的简化系统设计概要  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
60. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
ADS8166  
ADS8167  
ADS8168  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
84  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
85  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
2X  
SYMM  
33  
3.5  
0.3  
32X  
0.2  
24  
0.1  
C A B  
1
0.05  
C
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
86  
版权 © 2017–2019, Texas Instruments Incorporated  
ADS8166, ADS8167, ADS8168  
www.ti.com.cn  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223442/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
版权 © 2017–2019, Texas Instruments Incorporated  
87  
ADS8166, ADS8167, ADS8168  
ZHCSIK6C NOVEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
88  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8166IRHBR  
ADS8166IRHBT  
ADS8167IRHBR  
ADS8167IRHBT  
ADS8168IRHBR  
ADS8168IRHBT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
32  
32  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ADS  
8166  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RHB  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ADS  
8166  
RHB  
ADS  
8167  
RHB  
ADS  
8167  
RHB  
ADS  
8168  
RHB  
ADS  
8168  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8166IRHBR  
ADS8166IRHBT  
ADS8167IRHBR  
ADS8167IRHBT  
ADS8168IRHBR  
ADS8168IRHBT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8166IRHBR  
ADS8166IRHBT  
ADS8167IRHBR  
ADS8167IRHBT  
ADS8168IRHBR  
ADS8168IRHBT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY