ADS8353IPWR [TI]

具有单端输入的 16 位 600kSPS 双通道同步采样 SAR ADC | PW | 16 | -40 to 125;
ADS8353IPWR
型号: ADS8353IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有单端输入的 16 位 600kSPS 双通道同步采样 SAR ADC | PW | 16 | -40 to 125

文件: 总74页 (文件大小:3674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
ADSxx53 双路高速 16 位、14 位和 12 位  
同步采样模数转换器  
1 特性  
(3mm × 3mm) 16 引脚薄型小外形尺寸  
(TSSOP) 封装  
1
16 位、14 位和 12 位引脚兼容系列  
双通道同步采样  
支持单端和伪差分输入  
高速:  
2 应用  
电机控制:  
使用编码器进行位置测量  
ADS835316 位,600kSPS  
ADS785314 位,1MSPS  
ADS725312 位,1MSPS  
光纤网络:掺铒光纤放大器 (EDFA) 增益控制环路  
保护中继器  
电源质量测量  
三相电源控制  
可编程逻辑控制器  
出色的直流性能:  
ADS8353:  
16 位丢码率 (NMC) 差分非线性  
(DNL)±2.5 最低有效位 (LSB),最大积分  
非线性 (INL)  
3 说明  
ADS8353ADS7853 ADS7253 均属于引脚兼容的  
双路高速同步采样模数转换器 (ADC) 产品系列,支持  
单端和伪差分模拟输入。  
ADS7853:  
14 NMC DNL±2 LSB,最大 INL  
ADS7253:  
每个器件均包含两个可独立编程的基准电压源,可用于  
系统级的增益校准。 并且配有一个可在宽电源供电范  
围内运行的灵活串行接口,从而轻松实现与多种主机控  
制器的通信。 该系列器件支持两种低功耗模式,可针  
对给定输出优化功耗。 所有器件都在扩展工业温度范  
围(-40°C + 125°C)内完全额定运行,并且采用引  
脚兼容的 WQFN-16 (3mm ×  
12 NMC DNL±1 LSB,最大 INL  
出色的交流性能:  
ADS8353:  
89dB 信噪比 (SNR)-100dB 总谐波失真  
(THD)  
ADS7853:  
82dB SNR-90dB THD  
3mm) TSSOP-16 封装。  
ADS7253:  
器件信息(1)  
72dB SNR-90dB THD  
双路、可编程和经缓冲的  
2.5V 内部基准电压  
部件号  
ADSxx53  
封装  
TSSOP (16)  
WQFN (16)  
封装尺寸(标称值)  
5.00mm x 4.40mm  
3.00mm x 3.00mm  
-40°C 125℃ 的扩展工业温度范围内完全额定  
运行  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
小封装尺寸:  
16 引脚超薄型四方扁平无引线 (WQFN) 封装  
典型应用图  
AVDD  
VCM  
AVDD  
OPA836  
+
4  
+
1 kꢀ  
AVDD  
AINP  
-
VIN+  
1.8 nF  
ADSxx53  
1kꢀ  
AINM  
GND  
4 ꢀ  
VDC  
INPUT DRIVER  
ADS8353 : 16-bit, 600 kSPS  
ADS7853 : 14-bit, 1 MSPS  
ADS7253 : 12-bit, 1 MSPS  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBAS584  
 
 
 
 
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
目录  
ADS7853, and ADS7253 ......................................... 27  
Detailed Description ............................................ 28  
8.1 Overview ................................................................. 28  
8.2 Functional Block Diagram ....................................... 28  
8.3 Feature Description................................................. 29  
8.4 Device Functional Modes........................................ 35  
8.5 Register Maps and Serial Interface......................... 35  
Application and Implementation ........................ 49  
9.1 Application Information............................................ 49  
9.2 Typical Applications ................................................ 51  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configurations and Functions....................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 Handling Ratings....................................................... 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics: ADS8353 ......................... 6  
7.6 Electrical Characteristics: ADS7853 ......................... 7  
7.7 Electrical Characteristics: ADS7253 ......................... 8  
7.8 Electrical Characteristics: All Devices....................... 9  
7.9 Timing Requirements: Interface Mode.................... 11  
7.10 Timing Characteristics: Serial Interface ................ 11  
7.11 Typical Characteristics: ADS8353 ........................ 13  
7.12 Typical Characteristics: ADS7853 ........................ 17  
7.13 Typical Characteristics: ADS7253 ........................ 22  
7.14 Typical Characteristics: Common to ADS8353,  
8
9
10 Power-Supply Recommendations ..................... 59  
11 Layout................................................................... 60  
11.1 Layout Guidelines ................................................. 60  
11.2 Layout Example .................................................... 60  
12 器件和文档支持 ..................................................... 61  
12.1 相关链接................................................................ 61  
12.2 相关文档ꢀ ............................................................ 61  
12.3 Trademarks........................................................... 61  
12.4 Electrostatic Discharge Caution............................ 61  
12.5 术语表 ................................................................... 61  
13 机械封装和可订购信息 .......................................... 61  
4 修订历史记录  
Changes from Revision A (July 2014) to Revision B  
Page  
更改了 ADS8353 预览器件并移动到了生产数据状态.............................................................................................................. 1  
将文档状态从混合状态更改为生产数据................................................................................................................................... 1  
Corrected cross-reference for Figure 99 .............................................................................................................................. 48  
Changes from Original (October 2013) to Revision A  
Page  
更改了产品预览数据表............................................................................................................................................................ 1  
2
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
5 Device Comparison Table  
RESOLUTION  
PRODUCT  
ADS8354  
ADS7854  
ADS7254  
(Bits)  
INPUT CONFIGURATION  
Fully-differential  
NMC (Bits)  
INL (LSB)  
±2.5  
SNR (dB)  
93 (typ)  
88 (typ)  
74 (typ)  
16  
16  
14  
12  
14  
Fully-differential  
±1.5  
12  
Fully-differential  
±1  
Single-ended and  
pseudo-differential  
ADS8353  
ADS7853  
ADS7253  
16  
14  
12  
16  
14  
12  
±2.5  
±2  
89 (typ)  
84 (typ)  
Single-ended and  
pseudo-differential  
Single-ended and  
pseudo-differential  
±1  
73.5 (typ)  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
6 Pin Configurations and Functions  
RTE Package  
WQFN-16  
(Top View)  
PW Package  
TSSOP-16  
(Top View)  
AINP_A  
AINM_A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AVDD  
GND  
REFIO_A  
REFGND_A  
REFGND_B  
REFIO_B  
1
2
3
4
12 SDO_B  
REFIO_A  
REFGND_A  
REFGND_B  
REFIO_B  
AINM_B  
SDO_B  
SDO_A  
SCLK  
CS  
11  
10  
9
SDO_A  
SCLK  
CS  
Thermal Pad  
SDI  
AINP_B  
DVDD  
Pin Functions  
PIN  
NO.  
NAME  
TSSOP  
WQFN  
16  
5
I/O  
DESCRIPTION  
AINM_A  
AINM_B  
AINP_A  
AINP_B  
AVDD  
2
7
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
Negative analog input, channel A  
Negative analog input, channel B  
Positive analog input, channel A  
Positive analog input, channel B  
Supply voltage for ADC operation  
Chip-select signal; active low  
Digital I/O supply  
1
15  
6
8
16  
11  
9
14  
9
CS  
Digital input  
Digital I/O supply  
Supply  
DVDD  
7
GND  
15  
4
13  
2
Digital ground  
REFGND_A  
REFGND_B  
REFIO_A  
REFIO_B  
SCLK  
Supply  
Reference ground potential A  
Reference ground potential B  
Reference voltage input/output, channel A  
Reference voltage input/output, channel B  
Clock for serial communication  
Data input for serial communication  
5
3
Supply  
3
1
Analog input/output  
Analog input/output  
Digital input  
Digital input  
Digital output  
Digital output  
6
4
12  
10  
13  
14  
10  
8
SDI  
SDO_A  
SDO_B  
11  
12  
Data output for serial communication, channel A and channel B  
Data output for serial communication, channel B  
Thermal  
pad  
Exposed thermal pad (only for WQFN). TI recommends  
connecting this pin to the printed circuit board (PCB) ground.  
Thermal pad  
Supply  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
AVDD to REFGND_x or DVDD to GND  
–0.3  
6
V
Analog (AINP_x and AINM_x) and reference input (REFIO_x) voltage with  
respect to REFGND_x  
REFGND_x – 0.3  
GND – 0.3  
AVDD + 0.3  
V
Digital input voltage with respect to GND  
Ground voltage difference |REFGND_x-GND|  
Input current to any pin except supply pins  
Maximum virtual junction temperature, TJ  
DVDD + 0.3  
V
V
0.3  
±10  
150  
mA  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
–2000  
–500  
2000  
500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
5
MAX  
UNIT  
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
V
V
3.3  
7.4 Thermal Information  
ADS8353, ADS7853, ADS7253  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
33.3  
PW (TSSOP)  
16 PINS  
86.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
29.5  
21  
7.3  
39.1  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
0.8  
ψJB  
7.4  
38.4  
RθJC(bot)  
0.9  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
7.5 Electrical Characteristics: ADS8353  
All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF  
2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.  
=
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RESOLUTION  
Resolution  
16  
Bits  
DC ACCURACY(1)  
NMC  
INL  
No missing codes  
32-clock mode  
16  
–2.5  
–0.99  
–1  
Bits  
LSB  
LSB  
mV  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
EIO match  
32-clock mode  
32-clock mode  
±1  
±0.6  
±0.5  
±0.5  
1
2.5  
2
DNL  
EIO  
1
ADC_A to ADC_B  
–1  
1
mV  
dEIO/dT  
EG  
Input offset thermal drift  
Gain error  
μV/°C  
Referenced to the voltage at REFIO_x  
ADC_A to ADC_B  
–0.1  
–0.1  
±0.05  
±0.05  
1
0.1 %FS  
0.1 %FS  
ppm/°C  
EG match  
dEG/dT  
Gain error thermal drift  
Referenced to the voltage at REFIO_x  
AC ACCURACY(2)  
VREF = 2.5 V,  
VREF input range, 32-clock mode  
80.2  
80.5  
83  
83.9  
88.7  
83  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VREF = 2.5 V,  
2 × VREF input range, 32-clock mode  
SINAD  
SNR  
Signal-to-noise + distortion  
VREF = 5 V (external),  
VREF input range, 32-clock mode  
VREF = 2.5 V,  
VREF input range, 32-clock mode  
VREF = 2.5 V,  
2 × VREF input range, 32-clock mode  
Signal-to-noise ratio  
84  
VREF = 5 V (external),  
VREF input range, 32-clock mode  
89  
VREF = 2.5 V,  
VREF input range, 32-clock mode  
–100  
–100  
–100  
105  
105  
105  
VREF = 2.5 V,  
2 × VREF input range, 32-clock mode  
THD  
Total harmonic distortion  
Spurious-free dynamic range  
VREF = 5 V (external),  
VREF input range, 32-clock mode  
VREF = 2.5 V,  
VREF input range, 32-clock mode  
VREF = 2.5 V,  
2 × VREF input range, 32-clock mode  
SFDR  
VREF = 5 V (external),  
VREF input range, 32-clock mode  
(1) LSB = least significant bit.  
(2) All ac parameters are tested at –0.5 dBFS and a 2-kHz input frequency.  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7.6 Electrical Characteristics: ADS7853  
All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF  
=
2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RESOLUTION  
Resolution  
14  
Bits  
DC ACCURACY(1)  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
14  
13  
Bits  
Bits  
NMC  
INL  
No missing codes  
–2  
±0.7  
±1  
2
2.5  
1
LSB  
LSB  
LSB  
LSB  
mV  
Integral nonlinearity  
–2.5  
–0.99  
–1  
±0.5  
±0.9  
±0.5  
±0.5  
±1  
DNL  
EIO  
Differential nonlinearity  
2
Input offset error  
EIO match  
–1  
1
ADC_A to ADC_B  
–1  
1
mV  
dEIO/dT  
EG  
Input offset thermal drift  
Gain error  
μV/°C  
Referenced to the voltage at REFIO_x  
ADC_A to ADC_B  
–0.1  
–0.1  
±0.05  
±0.05  
±1  
0.1 %FS  
0.1 %FS  
ppm/°C  
EG match  
dEG/dT  
Gain error thermal drift  
Referenced to the voltage at REFIO_x  
AC ACCURACY(2)  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
32-clock mode  
16-clock mode  
78.4  
80.9  
80.3  
81.4  
80.8  
83.9  
82.9  
81  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VREF = 2.5 V,  
VREF input range  
VREF = 2.5 V,  
2 × VREF input range  
SINAD  
Signal-to-noise + distortion  
VREF = 5 V (external),  
VREF input range  
78.5  
VREF = 2.5 V,  
VREF input range  
80.5  
81.5  
81  
VREF = 2.5 V,  
2 × VREF input range  
SNR  
Signal-to-noise ratio  
84  
VREF = 5 V (external),  
VREF input range  
83.5  
–100  
–93  
–98  
–94  
–102  
–92  
100  
95  
VREF = 2.5 V,  
VREF input range  
VREF = 2.5 V,  
2 × VREF input range  
THD  
Total harmonic distortion  
VREF = 5 V (external),  
VREF input range  
VREF = 2.5 V,  
VREF input range  
100  
95  
VREF = 2.5 V,  
2 × VREF input range  
SFDR  
Spurious-free dynamic range  
ADC-to-ADC isolation  
102  
95  
VREF = 5 V (external),  
VREF input range  
fIN = 15 kHz at 10 %FS,  
fNOISE = 25 kHz at FS  
ISOXT  
–100  
dB  
(1) LSB = least significant bit.  
(2) All ac parameters are tested at –0.5 dBFS and a 2-kHz input frequency.  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
7.7 Electrical Characteristics: ADS7253  
All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF  
2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
=
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RESOLUTION  
Resolution  
12  
Bits  
DC ACCURACY(1)  
NMC  
INL  
No missing codes  
12  
–1  
Bits  
LSB  
LSB  
mV  
Integral nonlinearity  
Differential nonlinearity  
Input offset error  
EIO match  
±0.3  
±0.3  
±0.5  
±0.5  
±1  
1
1
2
2
DNL  
EIO  
–0.99  
–2  
ADC_A to ADC_B  
–2  
mV  
dEIO/dT  
EG  
Input offset thermal drift  
Gain error  
μV/°C  
Referenced to the voltage at REFIO_x  
ADC_A to ADC_B  
–0.2  
–0.2  
±0.05  
±0.05  
±1  
0.2 %FS  
0.2 %FS  
ppm/°C  
EG match  
dEG/dT  
Gain error thermal drift  
Referenced to the voltage at REFIO_x  
AC ACCURACY(2)  
VREF = 2.5 V,  
VREF input range  
71  
72.9  
72.9  
73.4  
73  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VREF = 2.5 V,  
2 × VREF input range  
SINAD  
SNR  
Signal-to-noise + distortion  
VREF = 5 V (external),  
VREF input range  
VREF = 2.5 V,  
VREF input range  
71.5  
VREF = 2.5 V,  
2 × VREF input range  
Signal-to-noise ratio  
73  
VREF = 5 V (external),  
VREF input range  
73.5  
–90  
–90  
–90  
93.5  
93.5  
93.5  
–80  
VREF = 2.5 V,  
VREF input range  
VREF = 2.5 V,  
2 × VREF input range  
THD  
Total harmonic distortion  
VREF = 5 V (external),  
VREF input range  
VREF = 2.5 V,  
VREF input range  
VREF = 2.5 V,  
2 × VREF input range  
SFDR  
Spurious-free dynamic range  
ADC-to-ADC isolation  
VREF = 5 V (external),  
VREF input range  
fIN = 15 kHz at 10 %FS,  
fNOISE = 25 kHz at FS  
ISOXT  
(1) LSB = least significant bit.  
(2) All ac parameters are tested at –0.5 dBFS and a 2-kHz input frequency.  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7.8 Electrical Characteristics: All Devices  
All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF  
=
2.5 V, and fDATA = maximum, unless otherwise noted.  
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Single-ended input,  
AINM_x = GND  
0
VREF  
V
V
VREF  
range  
Pseudo-differential input,  
AINM_x = +VREF / 2  
–VREF / 2  
VREF / 2  
Full-scale input range(1)  
(AINP_x – AINM_x)  
Single-ended input,  
AINM_x = GND,  
AVDD 2 × VREF  
FSR  
0
2 × VREF  
V
V
2 × VREF  
range  
Pseudo-differential input,  
AINM_x = +VREF,  
–VREF  
VREF  
AVDD 2 × VREF  
VREF range  
0
0
VREF  
2 × VREF  
0.1  
V
V
V
V
Absolute input voltage  
(AINP_x to REFGND)  
VINP  
2 × VREF range, AVDD 2 × VREF  
Single-ended input  
–0.1  
VREF  
range  
Pseudo-differential input  
VREF / 2 – 0.1 VREF / 2 VREF / 2 + 0.1  
Absolute input voltage  
(AINM_x to REFGND)  
Single-ended input,  
AVDD 2 × VREF  
VINM  
–0.1  
0.1  
V
V
2 × VREF  
range  
Pseudo-differential input,  
AVDD 2 × VREF  
VREF – 0.1  
VREF  
VREF + 0.1  
In sample mode  
In hold mode  
40  
4
pF  
pF  
µA  
Ci  
Input capacitance  
Ilkg(i)  
Input leakage current  
0.1  
INTERNAL VOLTAGE REFERENCE  
REFDAC_x = 1FFh (default),  
at 25°C  
VREFOUT  
Reference output voltage  
2.495  
2.500  
2.505  
V
REFDAC_x = 1FFh (default),  
at 25°C  
VREF-match  
VREF_A to VREF_B matching  
REFDAC_x resolution(2)  
±1  
1.1  
±10  
150  
1
mV  
mV  
Reference voltage  
temperature drift  
dVREFOUT/dT  
dVREFOUT/dt  
RO  
REFDAC_x = 1FFh (default)  
1000 hours  
ppm/°C  
ppm  
Ω
Long-term stability  
Internal reference output  
impedance  
Reference output dc  
current  
IREFOUT  
CREFOUT  
tREFON  
2
10  
8
mA  
µF  
Recommended output  
capacitor  
Reference output settling  
time  
For CREF = 10 μF  
ms  
VOLTAGE REFERENCE INPUT  
VREF Reference voltage (input)  
IREF  
VREF range  
2.4  
2.4  
2.5  
2.5  
AVDD  
V
V
2 × VREF range  
AVDD / 2  
Average Reference input  
current  
Per ADC  
300  
μA  
External ceramic  
reference capacitance  
CREF  
10  
μF  
μA  
Ilkg(dc)  
DC leakage current  
±0.1  
(1) Ideal input span, does not include gain or offset error.  
(2) Refer to the Reference section for more details.  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Electrical Characteristics: All Devices (continued)  
All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF  
2.5 V, and fDATA = maximum, unless otherwise noted.  
=
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.  
PARAMETER  
SAMPLING DYNAMICS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tA  
Aperture delay  
tA match  
8
40  
50  
ns  
ps  
ps  
ADC_A to ADC_B  
tAJIT  
Aperture jitter  
DIGITAL INPUTS(3)  
DVDD > 2.3 V  
DVDD 2.3 V  
DVDD > 2.3 V  
DVDD 2.3 V  
0.7 DVDD  
0.8 DVDD  
–0.3  
DVDD + 0.3  
DVDD + 0.3  
0.3 DVDD  
0.2 DVDD  
V
V
VIH  
VIL  
High-level input voltage  
V
Low-level input voltage  
Input current  
–0.3  
V
±10  
nA  
DIGITAL OUTPUTS(3)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = 500-µA source  
IOH = 500-µA sink  
0.8 DVDD  
0
DVDD  
V
V
0.2 DVDD  
POWER SUPPLY  
Internal reference  
4.5  
4.5  
5.0  
5.0  
5.5  
5.5  
V
V
External reference:  
VEXT_REF < 4.5 V  
±VREF  
range  
Analog supply voltage  
(AVDD to AGND)  
AVDD  
DVDD  
External reference:  
VEXT_REF > 4.5 V  
VEXT_REF  
5.0  
5.5  
V
Internal reference  
External reference  
5.0  
5.0  
5.0  
5.5  
5.5  
V
V
±2 × VREF  
range  
2 × VREF_EXT  
Digital supply voltage  
(DVDD to AGND)  
1.65  
5.5  
10  
V
AVDD = 5 V, fastest throughput  
internal reference  
8.5  
7.5  
5.5  
4.5  
2.5  
mA  
mA  
mA  
mA  
mA  
AVDD = 5 V, fastest throughput  
external reference(4)  
AVDD = 5 V, no conversion  
internal reference  
7
AIDD  
Analog supply current  
AVDD = 5 V, no conversion  
external reference(4)  
AVDD = 5 V, STANDBY mode  
Internal Reference  
AVDD = 5 V, STANDBY mode  
external reference(4)  
1
10  
mA  
μA  
Power-down mode  
50  
50  
DVDD = 3.3 V, CLOAD = 10 pF,  
fastest throughput  
0.5  
mA  
DIDD  
PD  
Digital supply current  
DVDD = 5 V, CLOAD = 10 pF  
fastest throughput  
1
mA  
Power dissipation  
(normal operation)  
AVDD = 5V, fastest throughput,  
internal reference  
42.5  
mW  
(3) Specified by design; not production tested.  
(4) With internal reference powered down, CFR.B6 = 0.  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7.9 Timing Requirements: Interface Mode(1)  
PARAMETER  
ASSOCIATED FIGURES  
Figure 1, Figure 91, Figure 92, Figure 93, Figure 94  
Figure 91, Figure 92, Figure 93, Figure 94  
Figure 91, Figure 92, Figure 93, Figure 94  
tCLK  
CLOCK period  
Acquisition time  
Conversion time  
tACQ  
tCONV  
(1) These parameters are specific to the interface mode of operation. Refer to the Conversion Data Read section for more details.  
7.10 Timing Characteristics: Serial Interface  
PARAMETER  
TEST CONDITIONS  
ASSOCIATED FIGURES  
MIN  
TYP  
MAX UNIT  
TIMING REQUIREMENTS  
tPH_CK  
tPL_CK  
fCLK  
CLOCK high time  
CLOCK low time  
CLOCK frequency  
CS high time  
0.4  
0.4  
0.6 tCLK  
Figure 1  
Figure 1  
Figure 99  
0.6 tCLK  
1 / tCLK MHz  
tPH_CS  
40  
150  
100  
70  
ns  
ns  
ns  
ns  
ADS8353  
tPH_CS_SHRT  
CS high time after frame abort  
ADS7853  
ADS7253  
Setup time: CS falling edge to  
SCLK falling edge  
tSU_CSCK  
tD_CKCS  
15  
15  
5
ns  
ns  
ns  
ns  
µs  
Delay time: Last SCLK falling edge  
to CS rising edge  
Figure 1  
Setup time: DIN data valid to SCLK  
falling edge  
tSU_CKDI  
tHT_CKDI  
tPU_STDBY  
Hold time: SCLK falling edge to  
(previous) data valid on DIN  
5
Power-up time from STANDBY  
mode  
Figure 96  
Figure 98  
1
With internal reference  
With external reference  
3
1
ms  
ms  
tPU_SPD  
Power-up time from SPD mode  
TIMING SPECIFICATIONS  
ADS8353  
ADS7853  
32-CLK mode  
1.666  
µs  
µs  
µs  
µs  
µs  
Figure 91, Figure 92  
32-CLK mode  
16-CLK mode  
32-CLK mode  
16-CLK mode  
1
1
1
1
tTHROUGHPUT  
Throughput time  
Figure 93, Figure 94  
Figure 91, Figure 92  
Figure 93, Figure 94  
ADS7253  
Figure 91, Figure 92,  
Figure 93, Figure 94  
fTHROUGHPUT  
tDV_CSDO  
tDZ_CSDO  
tD_CKDO  
Throughput  
1 / tTHROUGHPUT kSPS  
Delay time: CS falling edge to data  
enable  
12  
12  
20  
ns  
ns  
ns  
Delay time: CS rising edge to data  
going to 3-state  
Figure 1  
Delay time: SCLK falling edge to  
next data valid  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Figure 1 shows the details of the serial interface between the device and the digital host controller.  
CS  
CS  
SCLK  
SDO  
tSU_CSCK  
2
tDV_CSDO  
1
2
12  
13  
14  
15  
16  
1
SCLK  
tSU_CKDI  
tHT_CKDI  
B2  
B14  
B4  
B15  
B3  
B1  
SDI  
Sample  
N + 1  
Sample  
N
tPH_CS  
CS  
tSCLK  
tD_CKCS  
tPH_CK  
tPL_CK  
N-  
N-  
1
N-  
8
N-  
4
N-  
3
N-  
2
N-  
9
N-  
7
N-  
6
1
2
SCLK  
N
5
tD_CKDO  
D9  
tDZ_CSDO  
D1 D0  
SDO-  
ADS8353/4  
D6  
D4  
D5  
D4  
D3  
D2  
D0  
0
V
V
D8  
D6  
D4  
D7  
SDO-  
ADS7853/4  
D3  
D1  
D2  
D0  
D1  
0
0
0
0
0
V
V
V
V
D7  
D5  
D5  
D3  
SDO-  
ADS7253/4  
D2  
Figure 1. Serial Interface Timing Diagram  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7.11 Typical Characteristics: ADS8353  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±140  
±160  
±180  
±200  
±100  
±120  
±140  
±160  
±180  
±200  
0
60  
120  
180  
240  
300  
0
60  
120  
180  
240  
300  
C201  
C202  
Input Frequency (kHz)  
Input Frequency (kHz)  
fIN = 2 kHz  
SNR = 84.2 dB  
THD = -101.3 dB  
fIN = 100 kHz  
SNR = 80.8 dB  
THD = -99.1 dB  
Figure 2. Typical FFT  
Figure 3. Typical FFT  
87  
87  
86  
85  
84  
83  
82  
81  
86  
85  
84  
83  
82  
81  
80  
80  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±7  
±40  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C203  
C204  
fIN = 2 kHz  
Figure 4. SNR vs Temperature  
fIN = 2 kHz  
Figure 5. SINAD vs Temperature  
90  
90  
89  
88  
87  
86  
85  
84  
83  
82  
89  
88  
87  
86  
85  
84  
83  
82  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C205  
C206  
Reference Voltage (V)  
Reference Voltage (V)  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 7. SINAD vs Reference Voltage  
Figure 6. SNR vs Reference Voltage  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics: ADS8353 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
85  
83  
81  
79  
77  
75  
0
60  
120  
180  
240  
300  
0
60  
120  
180  
240  
300  
C207  
C208  
Input Frequency (kHz)  
Input Frequency (kHz)  
VREF = 5 V  
Figure 8. SNR vs Input Frequency  
VREF = 5 V  
Figure 9. SINAD vs Input Frequency  
±70  
±70  
±80  
±80  
±90  
±90  
±100  
±110  
±120  
±130  
±100  
±110  
±120  
±130  
26  
59  
92  
125  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
±40  
±7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C209  
C211  
fIN = 2 kHz  
Figure 10. THD vs Temperature  
fIN = 2 kHz  
Figure 11. THD vs Reference Voltage  
±70  
10  
9.5  
9
±80  
±90  
8.5  
8
±100  
±110  
±120  
±130  
7.5  
7
6.5  
6
0
60  
120  
180  
240  
300  
26  
59  
92  
125  
±40  
±7  
Free-Air Temperature (oC)  
C213  
C224  
Input Frequency (kHz)  
VREF = 5 V  
Figure 12. THD vs Input Frequency  
Figure 13. Analog Supply Current vs Temperature  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
Typical Characteristics: ADS8353 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.  
40000  
30000  
20000  
10000  
0
10  
9
8
7
6
5
4
3
2
32771 32772 32773 32774 32775 32776 32777  
Code  
0
4
8
12  
16  
20  
C215  
C225  
SCLK Frequency (MHz)  
65536 data points  
VIN-DIFF = 0 V  
Figure 15. DC Histogram  
Figure 14. Analog Supply Current vs SCLK Frequency  
1000  
100  
75  
750  
500  
50  
250  
25  
0
0
±250  
±500  
±750  
±1000  
±25  
±50  
±75  
±100  
±40  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±7  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C216  
C217  
Figure 16. Offset Error vs Temperature  
Figure 17. Gain Error vs Temperature  
2
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-1.5  
-2  
-0.5  
-1  
-2.5  
0
65535  
0
65535  
C218  
C219  
Code  
Code  
Figure 18. Typical DNL  
Figure 19. Typical INL  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics: ADS8353 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.  
2
1.5  
1
2.5  
2
1.5  
1
Maximum  
0.5  
0
Maximum  
Minimum  
0.5  
0
-0.5  
-1  
Minimum  
92  
-1.5  
-2  
-0.5  
-1  
-2.5  
26  
59  
92  
125  
26  
59  
125  
±40  
±7  
±40  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C221  
C220  
Figure 20. DNL vs Temperature  
Figure 21. INL vs Temperature  
2
1.5  
1
2.5  
2
1.5  
1
Maximum  
0.5  
0
Maximum  
Minimum  
0.5  
0
-0.5  
-1  
Minimum  
-1.5  
-2  
-0.5  
-1  
-2.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C222  
C223  
Reference Voltage (V)  
Reference Voltage (V)  
Figure 22. DNL vs Reference Voltage  
Figure 23. INL vs Reference Voltage  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7.12 Typical Characteristics: ADS7853  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±140  
±160  
±180  
±200  
±100  
±120  
±140  
±160  
±180  
±200  
0
100  
100  
±7  
200  
300  
400  
500  
0
100  
100  
±7  
200  
300  
400  
500  
C102  
C101  
Input Frequency (kHz)  
Input Frequency (kHz)  
fIN = 2 kHz  
SNR = 81.1 dB  
THD = –94.2 dB  
fIN = 250 kHz  
SNR = 80.2 dB  
THD = –90.4 dB  
16-CLK interface  
16-CLK interface  
Figure 24. Typical FFT  
Figure 25. Typical FFT  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±140  
±160  
±180  
±100  
±120  
±140  
±160  
±180  
±200  
±200  
0
200  
300  
400  
500  
0
200  
300  
400  
500  
C151  
C152  
Input Frequency (kHz)  
Input Frequency (kHz)  
fIN = 2 kHz  
SNR = 81.9 dB  
THD = –98.1 dB  
fIN = 250 kHz  
SNR = 80.8 dB  
THD = –92.1 dB  
32-CLK interface  
32-CLK interface  
Figure 26. Typical FFT  
Figure 27. Typical FFT  
85  
84.5  
84  
84  
83.5  
83  
32 CLK Mode  
32 CLK Mode  
83.5  
83  
82.5  
82  
16 CLK Mode  
82.5  
82  
81.5  
81  
16 CLK Mode  
81.5  
80.5  
81  
80  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±40  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C103  
C104  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 28. SNR vs Temperature  
Figure 29. SINAD vs Temperature  
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics: ADS7853 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
84  
83.5  
83  
85  
84.5  
84  
83.5  
83  
82.5  
82  
82.5  
82  
81.5  
81  
81.5  
81  
80.5  
80  
80.5  
80  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C106  
C105  
Reference Voltage (V)  
Reference Voltage (V)  
fIN = 2 kHz  
Figure 30. SNR vs Reference Voltage  
fIN = 2 kHz  
Figure 31. SINAD vs Reference Voltage  
85  
84.5  
84  
85  
84.5  
84  
83.5  
83  
83.5  
83  
82.5  
82  
82.5  
82  
81.5  
81  
81.5  
81  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
C108  
C107  
Input Frequency (kHz)  
Input Frequency (kHz)  
VREF = 5 V  
VREF = 5 V  
Figure 32. SNR vs Input Frequency  
Figure 33. SINAD vs Input Frequency  
±60  
±70  
±60  
±70  
±80  
±80  
16 CLK Mode  
32 CLK Mode  
16 CLK Mode  
32 CLK Mode  
±90  
±90  
±100  
±110  
±120  
±100  
±110  
±120  
26  
59  
92  
125  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
±40  
±7  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C109  
C111  
fIN = 2 kHz  
Figure 34. THD vs Temperature  
fIN = 2 kHz  
Figure 35. THD vs Reference Voltage  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
Typical Characteristics: ADS7853 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
±60  
10  
9.5  
9
±70  
±80  
8.5  
8
±90  
7.5  
7
±100  
±110  
±120  
6.5  
6
0
50  
100  
150  
200  
250  
300  
26  
59  
92  
125  
±40  
±7  
Free-Air Temperature (oC)  
C113  
C124  
Input Frequency (kHz)  
VREF = 5 V  
Figure 36. THD vs Input Frequency  
Figure 37. Analog Supply Current vs Temperature  
10  
10  
9
8
7
6
5
4
3
2
9
8
7
6
5
4
0
8
16  
24  
32  
40  
0
4
8
12  
16  
20  
C125  
C030  
SCLK Frequency (MHz)  
SCLK Frequency (MHz)  
32-CLK interface  
Figure 39. Analog Supply Current vs SCLK Frequency  
16-CLK interface  
Figure 38. Analog Supply Current vs SCLK Frequency  
70000  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
60000  
50000  
40000  
30000  
20000  
10000  
0
8098  
8099  
Code  
8100  
8099  
8100  
Code  
8101  
C115  
C155  
16-CLK interface  
65536 data points  
VIN-DIFF = 0 V  
32-CLK interface  
65536 data points  
VIN-DIFF = 0 V  
Figure 40. DC Histogram  
Figure 41. DC Histogram  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics: ADS7853 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
100  
1000  
75  
750  
32 CLK Mode  
16 CLK Mode  
50  
500  
16 CLK Mode  
25  
250  
0
0
32 CLK Mode  
±25  
±50  
±75  
±100  
±250  
±500  
±750  
±1000  
26  
59  
92  
125  
±40  
±7  
26  
59  
92  
125  
±40  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C11  
C116  
Figure 43. Gain Error vs Temperature  
Figure 42. Offset Error vs Temperature  
1
0.75  
0.5  
2
1.5  
1
0.25  
0
0.5  
0
-0.25  
-0.5  
-0.75  
-1  
-0.5  
-1  
-1.5  
-2  
0
16384  
0
16384  
C119  
C118  
Code  
Code  
16-CLK interface  
16-CLK interface  
Figure 44. Typical DNL  
Figure 45. Typical INL  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1.5  
-1  
0
-2  
0
16384  
16384  
C153  
C154  
Code  
Code  
32-CLK interface  
32-CLK interface  
Figure 46. Typical DNL  
Figure 47. Typical INL  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
Typical Characteristics: ADS7853 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
2
1.5  
1
2
1.5  
1
Maximum 16 CLK Mode  
Maximum 32 CLK Mode  
Maximum 16 CLK Mode  
Maximum 32 CLK Mode  
0.5  
0
0.5  
0
Minimum 32 CLK Mode  
-0.5  
-1  
Minimum 32 CLK Mode  
-0.5  
-1  
Minimum 16 CLK Mode  
-1.5  
-2  
Minimum 16 CLK Mode  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±7  
±40  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C120  
C121  
Figure 48. DNL vs Temperature  
Figure 49. INL vs Temperature  
2
1.5  
1
2
1.5  
1
Maximum 16 CLK Mode  
Maximum 32 CLK Mode  
Maximum 16 CLK Mode  
0.5  
0
0.5  
0
Maximum 32 CLK Mode  
Minimum 16 CLK Mode  
Minimum 32 CLK Mode  
Minimum 32 CLK Mode  
-0.5  
-1  
-0.5  
-1  
Minimum 16 CLK Mode  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C123  
C122  
Reference Voltage (V)  
Reference Voltage (V)  
Figure 50. DNL vs Reference Voltage  
Figure 51. INL vs Reference Voltage  
Copyright © 2013–2014, Texas Instruments Incorporated  
21  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
7.13 Typical Characteristics: ADS7253  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±140  
±160  
±180  
±200  
±100  
±120  
±140  
±160  
±180  
±200  
0
100  
100  
±7  
200  
300  
400  
500  
0
100  
100  
±7  
200  
300  
400  
500  
C002  
C001  
Input Frequency (kHz)  
Input Frequency (kHz)  
fIN = 2 kHz  
SNR = 73.2 dB  
THD = –90.5 dB  
fIN = 250 kHz  
SNR = 73.1 dB  
THD = –90.1 dB  
16-CLK interface  
16-CLK interface  
Figure 52. Typical FFT  
Figure 53. Typical FFT  
0
±20  
0
±20  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±140  
±160  
±180  
±100  
±120  
±140  
±160  
±180  
±200  
±200  
0
200  
300  
400  
500  
0
200  
300  
400  
500  
C052  
C051  
Input Frequency (kHz)  
Input Frequency (kHz)  
fIN = 2 kHz  
SNR = 73.6 dB  
THD = –91.6 dB  
fIN = 250 kHz  
SNR = 73.4 dB  
THD = –90.6 dB  
32-CLK interface  
32-CLK interface  
Figure 54. Typical FFT  
Figure 55. Typical FFT  
74  
73.5  
73  
74  
73.5  
73  
32 CLK Mode  
16 CLK Mode  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
71  
70.5  
70.5  
70  
70  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±40  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C003  
C004  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 56. SNR vs Temperature  
Figure 57. SINAD vs Temperature  
22  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
Typical Characteristics: ADS7253 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
74  
73.5  
73  
74  
73  
72  
71  
70  
32 CLK Mode  
32 CLK Mode  
16 CLK Mode  
16 CLK Mode  
72.5  
72  
71.5  
71  
70.5  
70  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C005  
C00  
Reference Voltage (V)  
Reference Voltage (V)  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 58. SNR vs Reference Voltage  
Figure 59. SINAD vs Reference Voltage  
75  
74.5  
74  
75  
74.5  
74  
16 CLK Mode  
16 CLK Mode  
73.5  
73  
73.5  
73  
32 CLK Mode  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
71  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
C007  
C008  
Input Frequency (kHz)  
Input Frequency (kHz)  
VREF = 5 V  
Figure 60. SNR vs Input Frequency  
VREF = 5 V  
Figure 61. SINAD vs Input Frequency  
±60  
±60  
±70  
±70  
±80  
±80  
32 CLK Mode  
16 CLK Mode  
±90  
±90  
±100  
±110  
±120  
±100  
±110  
±120  
26  
59  
92  
125  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
±40  
±7  
C009  
Free-Air Temperature (oC)  
Reference Voltage (V)  
C011  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 63. THD vs Reference Voltage  
Figure 62. THD vs Temperature  
Copyright © 2013–2014, Texas Instruments Incorporated  
23  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics: ADS7253 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
±60  
8
7.5  
7
±70  
±80  
6.5  
6
16 CLK Mode  
32 CLK Mode  
±90  
5.5  
5
±100  
±110  
±120  
4.5  
4
0
50  
100  
150  
200  
250  
300  
26  
59  
92  
125  
±40  
±7  
Free-Air Temperature (oC)  
C013  
C024  
Input Frequency (kHz)  
VREF = 5 V  
Figure 64. THD vs Input Frequency  
Figure 65. Analog Supply Current vs Temperature  
10  
10  
9
8
7
6
5
4
3
2
9
8
7
6
5
4
0
8
16  
24  
32  
40  
0
4
8
12  
16  
20  
C125  
C030  
SCLK Frequency (MHz)  
SCLK Frequency (MHz)  
32-CLK interface  
Figure 67. Analog Supply Current vs SCLK Frequency  
16-CLK interface  
Figure 66. Analog Supply Current vs SCLK Frequency  
60000  
60000  
50000  
40000  
30000  
20000  
10000  
0
50000  
40000  
30000  
20000  
10000  
0
2024  
2025  
Code  
2026  
2024  
2025  
Code  
2026  
C015  
C015  
16-CLK interface  
65536 data points  
VIN-DIFF = 0 V  
32-CLK interface  
65536 data points  
VIN-DIFF = 0 V  
Figure 68. DC Histogram  
Figure 69. DC Histogram  
24  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
Typical Characteristics: ADS7253 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
2000  
1500  
1000  
500  
100  
32 CLK Mode  
75  
16 CLK Mode  
50  
16 CLK Mode  
25  
32 CLK Mode  
0
0
±500  
±1000  
±1500  
±2000  
±25  
±50  
±75  
±100  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±7  
±40  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature  
C016  
C01  
Figure 70. Offset Error vs Temperature  
Figure 71. Gain Error vs Temperature  
1
0.75  
0.5  
1
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
0
4096  
0
4096  
C019  
C018  
Code  
Code  
16-CLK interface  
16-CLK interface  
Figure 72. Typical DNL  
Figure 73. Typical INL  
1
0.75  
0.5  
1
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-1  
0
-1  
0
4096  
4096  
C053  
C054  
Code  
Code  
32-CLK interface  
32-CLK interface  
Figure 74. Typical DNL  
Figure 75. Typical INL  
Copyright © 2013–2014, Texas Instruments Incorporated  
25  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics: ADS7253 (continued)  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.  
1
0.75  
0.5  
1
0.75  
0.5  
Maximum 16 CLK Mode  
Maximum 32 CLK Mode  
Maximum 16 CLK Mode  
Maximum 32 CLK Mode  
0.25  
0
0.25  
0
Minimum 32 CLK Mode  
Minimum 32 CLK Mode  
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
Minimum 16 CLK Mode  
Minimum 16 CLK Mode  
26  
59  
92  
125  
26  
59  
92  
125  
±40  
±7  
±40  
±7  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C020  
C021  
Figure 76. DNL vs Temperature  
Figure 77. DNL vs Temperature  
1
0.75  
0.5  
1
0.75  
0.5  
Maximum 16 CLK Mode  
Maximum 16 CLK Mode  
0.25  
0
0.25  
0
Maximum 32 CLK Mode  
Minimum 32 CLK Mode  
Maximum 32 CLK Mode  
Minimum 32 CLK Mode  
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
Minimum 16 CLK Mode  
Minimum 16 CLK Mode  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
C022  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
C023  
Figure 78. DNL vs Reference Voltage  
Figure 79. INL vs Reference Voltage  
26  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
7.14 Typical Characteristics: Common to ADS8353, ADS7853, and ADS7253  
At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = maximum, unless otherwise noted.  
200  
160  
120  
80  
3
2.5  
2
16 CLK Mode  
1.5  
1
32 CLK Mode  
40  
0.5  
0
16 CLK Mode  
32 CLK Mode  
0
-40  
-7  
26  
59  
92  
125  
C028  
-40  
-7  
26  
59  
92  
125  
C027  
Free- AirTemperature (oC)  
Free-Air Temperature (oC)  
Figure 80. STANDBY Current vs Temperature  
Figure 81. Power-Down Current vs Temperature  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
2.6  
2.55  
2.5  
2.45  
2.4  
2.35  
2.3  
-40  
-7  
26  
59  
92  
125  
-5  
0
5
10  
15  
20  
25  
30  
C017  
Free-Air Temperature (oC)  
C016  
Load Current (mA)  
ROUT = 0.67 Ω  
Figure 83. Internal Reference Output Impedance  
Figure 82. Internal Reference Output vs Temperature  
Copyright © 2013–2014, Texas Instruments Incorporated  
27  
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
These devices belong to a family of pin-compatible, dual, high-speed, simultaneous-sampling, analog-to-digital  
converters (ADCs). The ADS8353, ADS7853, and ADS7253 support single-ended and pseudo-differential input  
signals. The devices provide a simple, serial interface to the host controller and operate over a wide range of  
analog and digital power supplies.  
These devices have two independently programmable internal references to achieve system-level gain error  
correction. The Functional Block Diagram section provides a functional block diagram of the device.  
8.2 Functional Block Diagram  
REF_A  
Comparator  
S/H  
CDAC  
SAR  
SAR  
ADC_A  
ADC_B  
Serial  
Interface  
CDAC  
S/H  
Comparator  
REF_B  
28  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.3 Feature Description  
8.3.1 Reference  
The device has two simultaneous sampling ADCs (ADC_A and ADC_B). ADC_A and ADC_B operate with  
reference voltages VREF_A and VREF_B present on the REFIO_A and REFIO_B pins, respectively. The REFIO_A  
and REFIO_B pins should be decoupled with the REFGND_A and REFGND_B pins, respectively, with 10-µF  
decoupling capacitors.  
The device supports operation either with an internal or external reference source, as shown in Figure 84. The  
reference voltage source is determined by setting bit 6 of the configuration register (CFR.B6). Note that this bit is  
common to ADC_A and ADC_B.  
AINP_A  
ADC_A  
AINM_A  
REFGND_A  
REFDAC_A  
DAC_A  
REFIO_A  
10 PF  
Enable  
CFR.B6  
INTREF  
DAC_B  
REFIO_B  
REFDAC_B  
10 PF  
REFGND_B  
AINP_B  
AINM_B  
ADC_B  
Figure 84. Reference Configurations and Connections  
When CFR.B6 is 0, the device shuts down the internal reference source (INTREF) and ADC_A and ADC_B  
operate on external reference voltages provided by the user on the REFIO_A and REFIO_B pins, respectively.  
When CFR.B6 is 1, the device operates with the internal reference source (INTREF) connected to REFIO_A and  
REFIO_B via DAC_A and DAC_B, respectively. In this configuration, VREF_A and VREF_B can be changed  
independently by writing to the respective user-programmable registers, REFDAC_A and REFDAC_B,  
respectively. Refer to the REFDAC Registers (REFDAC_A and REFDAC_B) section for more details.  
Copyright © 2013–2014, Texas Instruments Incorporated  
29  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Analog Inputs  
The ADS8353, ADS7853, and ADS7253 support single-ended or pseudo-differential analog inputs on both ADC  
channels. These inputs are sampled and converted simultaneously by the two ADCs, ADC_A and ADC_B.  
ADC_A samples and converts (VAINP_A – VAINM_A), and ADC_B samples and converts (VAINP_B – VAINM_B).  
Figure 85a and Figure 85b show equivalent circuits for the ADC_A and ADC_B analog input pins, respectively.  
Series resistance, RS, represents the on-state sampling switch resistance (typically 50 Ω) and CSAMPLE is the  
device sampling capacitor (typically 40 pF).  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINP_A  
AINP_B  
GND  
GND  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINM_A  
AINM_B  
GND  
GND  
a) ADC_A  
b) ADC_B  
Figure 85. Equivalent Circuit for the Analog Input Pins  
8.3.2.1 Analog Input: Full-Scale Range Selection  
The full-scale range (FSR) supported at the analog inputs of the device is programmable with bit B9 of the  
configuration register (CFR.B9). This bit is common for both ADCs (ADC_A and ADC_B). The FSR is given by  
Equation 1 and Equation 2 :  
For CFR.B9 = 0, FSR_ADC_A = 0 to VREF_A and FSR_ADC_B = 0 to VREF_B  
(1)  
For CFR.B9 = 1, FSR_ADC_A = 0 to 2 × VREF_A and FSR_ADC_B = 0 to 2 × VREF_B  
where:  
VREF_A and VREF_B are the reference voltages going to ADC_A and ADC_B, respectively (as described in the  
Reference section).  
(2)  
Therefore, with appropriate settings of the REFDAC_A and REFDAC_B registers, CFR.B7, and CFR.B9, the  
maximum dynamic range of the ADC can be used.  
Note that while using CFR.B9 set to 1, care must be taken so that the ADC analog supply (AVDD) is as in  
Equation 3 and Equation 4:  
2 × VREF_A AVDD AVDD(max)  
2 × VREF_B AVDD AVDD(max)  
(3)  
(4)  
30  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
Feature Description (continued)  
8.3.2.2 Analog Input: Single-Ended and Pseudo-Differential Configurations  
The ADS8353, ADS7853, and ADS7253 can support single-ended or pseudo-differential input configurations.  
For supporting single-ended inputs, B7 in the configuration register (CFR.B7) must be set to 0 (CFR.B7 = 0) and  
AINM_A and AINM_B must be externally connected to GND.  
For supporting pseudo-differential inputs, CFR.B7 must be set to 1 (CFR.B7 = 1) and AINM_A and AINM_B must  
be externally connected to FSR_ADC_A / 2 and FSR_ADC_B / 2, respectively. Note that CFR.B7 is common to  
both ADCs.  
The CFR.B9 and CFR.B7 settings can be combined to select the desired input configuration, as shown in  
Table 1.  
Table 1. Input Configurations  
INPUT RANGE SELECTION  
AINM SELECTION  
CONNECTION DIAGRAM  
VREF_x  
VREF_x  
REFIO_x  
AINP_x  
CFR.B9 = 0  
CFR.B7 = 0  
(FSR_ADC_A = 0 to VREF_A  
(FSR_ADC_B = 0 to VREF_B  
)
)
(AINM_A = GND)  
(AINM_B = GND)  
0 V  
Device  
AINM_x  
2 u VREF_x  
VREF_x  
REFIO_x  
AINP_x  
CFR.B9 = 1  
CFR.B7 = 0  
(FSR_ADC_A = 0 to 2 x VREF_A  
(FSR_ADC_B = 0 to 2 x VREF_B  
)
)
(AINM_A = GND)  
(AINM_B = GND)  
0 V  
Device  
AINM_x  
Copyright © 2013–2014, Texas Instruments Incorporated  
31  
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
Table 1. Input Configurations (continued)  
INPUT RANGE SELECTION  
AINM SELECTION  
CONNECTION DIAGRAM  
VREF_x  
VREF_x  
REFIO_x  
AINP_x  
0 V  
VREF_x / 2  
2 u VREF_x  
CFR.B9 = 0  
(FSR_ADC_A = VREF_A  
(FSR_ADC_B = VREF_B  
CFR.B7 = 1  
(AINM_A = VREF_A/2)  
(AINM_B = VREF_B/2)  
Device  
)
)
AINM_x  
VREF_x  
REFIO_x  
AINP_x  
0 V  
CFR.B9 = 1  
(FSR_ADC_A = 2 x VREF_A  
(FSR_ADC_B = 2 x VREF_B  
CFR.B7 = 1  
(AINM_A = VREF_A  
(AINM_B = VREF_B  
Device  
)
)
)
)
AINM_x  
VREF_x  
32  
Copyright © 2013–2014, Texas Instruments Incorporated  
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.3.3 Transfer Function  
The device supports two input configurations:  
1. Single-ended inputs, CFR.B7 = 0 (default), or  
2. Pseudo-differential inputs, CFR.B7 = 1.  
The device also supports two output data formats:  
1. Straight binary output, CFR.B4 = 0 (default), or  
2. Twos compliment output, CFR.B4 = 1.  
Device resolution is calculated by Equation 5:  
1 LSB = (FSR_ADC_x) / (2N)  
where:  
N = 16 (ADS8353), 14 (ADS7853), or 12 (ADS7253) and  
FSR_ADC_x is the full-scale input range of the ADC (refer to the Analog Input section for more details)  
(5)  
Table 2 and Table 3 show the different input voltages and the corresponding output codes from the device.  
Table 2. Transfer Characteristics for Straight Binary Output (CFR.B4 = 0, Default)  
OUTPUT CODE (Hex)  
INPUT VOLTAGE  
INPUT  
STRAIGHT BINARY (CFR.B4 = 0, Default)  
CONFIGURATION  
AINP_x  
AINM_x  
AINP_x - AINM_x  
CODE  
ADS8353  
ADS7853  
ADS7253  
1 LSB  
1 LSB  
ZC  
0000  
0000  
000  
7FF  
FFF  
000  
7FF  
FFF  
Single-ended  
(CFR.B7 = 0,  
default)  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
1 LSB  
0
FSR_ADC_x / 2  
MC  
7FFF  
1FFF  
3FFF  
0000  
FSR_ADC_x – 1 LSB  
–FSR_ADC_x / 2 + 1 LSB  
0
FSC  
ZC  
FFFF  
0000  
Pseudo-differential  
(CFR.B7 = 1)  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
FSR_ADC_x / 2  
MC  
7FFF  
1FFF  
3FFF  
FSR_ADC_x / 2 – 1 LSB  
FSC  
FFFF  
Table 3. Transfer Characteristics for Twos Compliment Output (CFR.B4 = 1)  
OUTPUT CODE (Hex)  
TWOS COMPLIMENT (CFR.B4 = 1)  
INPUT VOLTAGE  
AINM_x  
INPUT  
CONFIGURATION  
AINP_x  
1 LSB  
AINP_x - AINM_x  
1 LSB  
CODE  
NFSC  
MC  
ADS8353  
8000  
ADS7853  
2000  
ADS7253  
800  
Single-ended  
(CFR.B7 = 0,  
default)  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
1 LSB  
0
FSR_ADC_x / 2  
0000  
0000  
000  
FSR_ADC_x – 1 LSB  
–FSR_ADC_x / 2 + 1 LSB  
0
PFSC  
NFSC  
MC  
7FFF  
8000  
1FFF  
2000  
7FF  
800  
Pseudo-differential  
(CFR.B7 = 1)  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
FSR_ADC_x / 2  
0000  
0000  
000  
FSR_ADC_x / 2 – 1 LSB  
PFSC  
7FFF  
1FFF  
7FF  
Copyright © 2013–2014, Texas Instruments Incorporated  
33  
 
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Figure 86 shows the ideal device transfer characteristics for the single-ended analog input.  
FSC  
PFSC  
MC  
MC  
NFSC  
ZC  
1 LSB  
FSR_ADC_x / 2  
FSR_ADC_x ± 1 LSB  
Single-Ended Analog Input  
VIN  
(AINP_x ± AINM_x)  
Figure 86. Ideal Transfer Characteristics for a Single-Ended Analog Input  
Figure 87 shows the ideal device transfer characteristics for the pseudo-differential analog input.  
FSC  
PFSC  
-FSR_ADC_x/2  
+ 1 LSB  
0
MC  
FSR_ADC_x/2  
MC  
± 1 LSB  
ZC  
NFSC  
Pseudo-Differential Analog Input  
(AINP_x ± AINM_x)  
Figure 87. Ideal Transfer Characteristics for a Pseudo-Differential Analog Input  
34  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.4 Device Functional Modes  
The device provides three user-programmable registers: the configuration register (CFR), the REFDAC_A  
register, and the REFDAC_B register. These registers support write (refer to the Write to User Programmable  
Registers section) and readback (refer to the Reading User-Programmable Registers section) operations and  
allow the user to customize ADC behavior for specific application requirements.  
The device supports four interface modes (refer to the Conversion Data Read section), two low-power modes  
(refer to the Low-Power Modes section), and short-cycling/reconversion feature (refer to the Frame Abort,  
Reconversion, or Short-Cycling section).  
8.5 Register Maps and Serial Interface  
8.5.1 Serial Interface  
The device uses the serial clock (SCLK) for synchronizing data transfers in and out of the device.  
The CS signal defines one conversion and serial transfer frame. A frame starts with a CS falling edge and ends  
with a CS rising edge. Between the start and end of the frame, a minimum of N SCLK falling edges must be  
provided to validate the read or write operation. As shown in Table 4, N depends upon the interface mode used  
to read the conversion result. When N SCLK falling edges are provided, the write operation attempted in the  
frame is validated and the internal user-programmable registers are updated on the subsequent CS rising edge.  
This CS rising edge also ends the frame.  
Table 4. SCLK Falling Edges for a Valid Write Operation  
MINIMUM SCLK FALLING EDGES REQUIRED TO  
INTERFACE MODE  
VALIDATE WRITE OPERATION N  
32-CLK, dual-SDO mode (default). See the 32-CLK, Dual-SDO Mode section.  
32-CLK, single-SDO mode. See the 32-CLK, Single-SDO Mode section.  
16-CLK, dual-SDO mode. See the 16-CLK, Dual-SDO Mode section.  
16-CLK, single SDO mode. See the 16-CLK, Single SDO Mode section.  
32  
48  
16  
32  
If CS is brought high before providing N SCLK falling edges, the write operation attempted in the frame is not  
valid. Refer to the Frame Abort, Reconversion, or Short-Cycling section for more details.  
8.5.2 Write to User Programmable Registers  
The device features three user-programmable registers: the configuration register (CFR), the REFDAC_A  
register, and the REFDAC_B register. These registers can be written with the device SDI pin. The first 16 bits of  
data on SDI are latched into the device on the first 16 SCLK falling edges. However, the new configuration takes  
effect only when the read or write operation is validated. If these registers are not required to update, SDI must  
remain low during the respective frames.  
The first four SDI data bits (B[15:12]) determine what operation is performed (that is, either a read or write  
operation or no operation), which register address the operation uses, and the function of the next 12 SDI data  
bits (B[11:0]). Table 5 lists the various combinations supported for B[15:12].  
Table 5. Data Write Operation  
B15  
0
B14  
0
B13  
0
B12  
0
OPERATION  
No operation is performed  
REFDAC_A read  
FUNCTION OF BITS B[11:0]  
These bits are ignored  
0
0
0
1
000h; see the Reading User-Programmable Registers section  
000h; see the Reading User-Programmable Registers section  
000h; see the Reading User-Programmable Registers section  
See the Configuration Register (CFR) section  
See the REFDAC_A section  
0
0
1
0
REFDAC_B read  
0
0
1
1
CFR read  
1
0
0
0
CFR write  
1
0
0
1
REFDAC_A write  
REFDAC_B write  
No operation is performed  
No operation is performed  
1
0
1
0
See the REFDAC_B section  
1
0
1
1
These bits are ignored  
X
1
X
X
These bits are ignored  
Copyright © 2013–2014, Texas Instruments Incorporated  
35  
 
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
8.5.2.1 Configuration Register (CFR)  
The device operation configuration is controlled by the configuration register (CFR) status. Data written into the  
CFR in a valid frame (F) determine the device configuration for frame (F+1). The bit functions are outlined in  
Figure 88. On power-up, all bits in the CFR default to 0.  
Figure 88. CFR Bit Functions  
15  
WRITE/READ  
7
14  
13  
ADDR1  
5
12  
ADDR0  
4
11  
10  
9
8
0
0
0
RD_CLK_  
MODE  
RD_DATA_  
LINES  
0
6
INPUT_RANGE  
3
2
1
0
RD_DATA_  
FORMAT  
INM_SEL  
REF_SEL  
STANDBY  
0
0
Table 6. Configuration Register (CFR) Field Descriptions  
Bit  
15  
14  
13  
12  
Field  
WRITE/READ  
Type  
W
Reset  
0h  
Description  
These bits select the user-programmable register.  
1000 = Select this combination to write to the CFR register and  
to enable bits 11:0  
0
R/W  
R/W  
R/W  
0h  
ADDR1  
ADDR0  
0h  
0h  
This bit provides clock mode selection for the serial interface.  
0 = Selects 32-CLK mode (default)  
11  
10  
RD_CLK_MODE  
RD_DATA_LINES  
R/W  
R/W  
0h  
0h  
1 = Selects 16-CLK mode  
(Note that the ADS8353 only supports 32-CLK mode. This bit is  
ignored for the ADS8353.)  
This bit provides data line selection for the serial interface.  
0 = Use SDO_A to output ADC_A data and SDO_B to output of  
ADC_B data (default)  
1 = Use only SDO_A to output of ADC_A data followed by  
ADC_B data  
This bit selects the maximum input range for the ADC as a  
function of the reference voltage provided to the ADC. See the  
Analog Inputs section for more details.  
0 = FSR equals VREF  
9
8
INPUT_RANGE  
0
R/W  
R/W  
0h  
0h  
1 = FSR equals 2 × VREF  
This bit must be set to 0 (default)  
This bit selects the voltage to be externally connected to the  
INM pin.  
0 = INM must be externally connected to the GND potential  
(default)  
7
INM_SEL  
R/W  
0h  
1 = INM must be externally connected to the FSR_ADC_x / 2  
potential  
This bit selects the ADC reference voltage source. Refer to the  
Reference section for more details.  
0 = Use external reference (default)  
6
5
REF_SEL  
STANDBY  
R/W  
W
0h  
0h  
1 = Use internal reference  
This bit is used by the device to enter or exit STANDBY mode.  
Refer to the STANDBY Mode section for more details.  
This bit selects the output data format.  
0 = Output is in straight binary format (default)  
1 = Output is in twos compliment format  
4
RD_DATA_FORMAT  
0
R/W  
R/W  
0h  
0h  
3:0  
These bits must be set to 0 (default)  
36  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.5.2.2 REFDAC Registers (REFDAC_A and REFDAC_B)  
The REFDAC registers, bit functions, and resolution information are described in this section.  
Figure 89. REFDAC_X Bit Functions  
15  
14  
0
13  
ADDR1  
5
12  
ADDR0  
4
11  
D8  
3
10  
D7  
2
9
D6  
1
8
D5  
0
WRITE/READ  
7
6
D4  
D3  
D2  
D1  
D0  
0
0
0
Table 7. REFDAC Registers Field Descriptions  
Bit  
15  
14  
13  
12  
Field  
Type  
W
Reset  
0h  
Description  
WRITE/READ  
0
These bits select the configurable register address.  
1001 = Select this combination to write to the REFDAC_A  
register  
1010 = Select this combination to write to the REFDAC_B  
register  
R/W  
R/W  
R/W  
0h  
ADDR1  
ADDR0  
0h  
0h  
Data to program the individual DAC output voltage.  
Note: These bits are valid only for bits 15:12 = 1001 or bits  
15:12 = 1010.  
Table 8 shows the relationship between the REFDAC_x  
programmed value and the DAC_x output voltage.  
11:3  
2:0  
D[8:0]  
0
R/W  
R/W  
0h  
0h  
This bit must be set to 0 (default)  
Table 8. REFDAC Settings  
REFDAC_x VALUE (Bits 11:3 in Hex)  
B[2:0]  
Typical DAC_x OUPTUT VOLTAGE (V)(1)  
1FF (default)  
000  
000  
000  
2.5000  
2.4989  
2.4978  
1FE  
1FD  
1D7  
000  
2.45  
1AE  
000  
2.40  
186  
000  
2.35  
15D  
000  
2.30  
134  
000  
2.25  
10C  
000  
2.20  
0E3  
000  
2.15  
0BA  
000  
2.10  
091  
000  
2.05  
069  
000  
2.00  
064 to 000  
000  
Do not use  
(1) Actual output voltage may vary by a few millivolts from the specified value. To obtain the desired output voltage, TI recommends starting  
with the specified register setting and then experimenting with five codes on either side of the specified register setting.  
Copyright © 2013–2014, Texas Instruments Incorporated  
37  
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
8.5.3 Data Read Operation  
The device supports two types of read operations: reading user-programmable registers and reading conversion  
results.  
8.5.3.1 Reading User-Programmable Registers  
The device supports a readback option for all user-programmable registers: CFR, REFDAC_A, and REFDAC_B.  
Figure 90 shows a detailed timing diagram for this operation.  
Frame (F)  
Frame (F+1)  
Frame (F+2)  
Frame (F+3)  
CS  
1
2
N
1
2
3
4
5
16  
48  
1
2
1
2
N
15  
16  
47  
48  
SCLK  
R14  
Valid Data  
Valid Data  
Valid data as per device configuration.  
Valid data as per device configuration.  
R15  
R1  
Valid Data  
Valid Data  
R0  
SDO-A  
SDO-B  
SDI  
No change in device  
configuration  
No change in device  
configuration  
B14 B13 B12  
X
X
X
X
B15  
Device configuration for frame (F+3)  
Note that N is a function of the device configuration, as described in Table 4.  
Figure 90. Register Readback Timing  
To readback the user-programmable register settings, the appropriate control word should be transmitted to the  
device during frame (F+1), as shown in Table 9. Frame (F+1) must have at least 48 SCLK falling edges.  
Table 9. Control Word to Readback User-Programmable Registers  
CONTROL WORD TO BE PROGRAMMED IN FRAME (F+1)  
USER-PROGRAMMABLE REGISTER  
B[15:12] (Binary)  
0011b  
B[11:0] (Hex)  
000h  
CFR  
REFDAC_A  
REFDAC_B  
0001b  
000h  
0010b  
000h  
Frame (F+2) must have at least 48 SCLK falling edges. During frame (F+2), SDO_A outputs the contents of the  
selected user-programmable register on the first 16 SCLK falling edges (as shown in Table 10) and then outputs  
0s for any subsequent SCLK falling edges. The SDO_B pin outputs 0s for all the SCLK falling edges.  
Table 10. Register Data Read Back  
USER-  
DATA READ ON SDO-A IN FRAME (F+2)  
PROGRAMMABLE  
REGISTER  
R15  
R14  
R13  
R12 R11  
R3  
R2  
R1  
R0  
CFR  
0
0
0
0
0
0
1
0
1
1
1
0
CFG.B11  
CFG.B3 CFG.B2  
CFG.B1  
CFG.B0  
REFDAC_A  
REFDAC_B  
REFDAC_A.D8  
REFDAC_B.D8  
REFDAC_A.D0  
REFDAC_B.D0  
0
0
0
0
0
0
Register settings programmed during frame (F+2) determine the device configuration in frame (F+3).  
38  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.5.3.2 Conversion Data Read  
The device provides four different interface modes to the user for reading the conversion result. These modes  
offer flexible hardware connections and firmware programming. Table 11 shows how to select one of the four  
interface modes.  
Table 11. Interface Mode Selection  
MINIMUM SCLK FALLING EDGES  
CFR.B11  
CFR.B10  
INTERFACE MODE  
REQUIRED TO VALIDATE WRITE  
OPERATION N  
0
0
1
1
0
1
0
1
32-CLK, dual-SDO mode (default)  
32-CLK, single-SDO mode  
16-CLK, dual-SDO mode  
32  
48  
16  
32  
16-CLK, single SDO mode  
In the 32-CLK interface modes, the device uses an internal clock to convert the sampled analog signal. The  
conversion is completed during the first 16 periods of SCLK and the conversion result can be read on the  
subsequent SCLK falling edges. All devices in the family (that is, ADS8353, ADS7853, and ADS7253) support  
the 32-CLK interface modes.  
In addition to the 32-CLK interface modes, the ADS7853 and ADS7253 also support the 16-CLK interface  
modes. By using the 16-CLK interface modes, the same throughput can be achieved at much lower SCLK  
speeds.  
The following sections detail the various interface modes supported by the device.  
8.5.3.2.1 32-CLK, Dual-SDO Mode (CFR.B11 = 0, CFR.B10 = 0, Default)  
The 32-CLK, dual-SDO mode is the default mode supported by all devices. This mode can also be selected by  
writing CFR.B11 = 0 and CFR.B10 = 0.  
In this mode, the SDO_A pin outputs the ADC_A conversion result and the SDO_B pin outputs the ADC_B  
conversion result. Figure 91 shows a detailed timing diagram for this mode.  
Sample  
N
Sample  
N + 1  
tTHROUGHPUT  
tCONV  
tACQ  
CS  
tSCLK  
1
2
14  
15  
16  
17  
18  
25  
26  
27  
28  
29  
30  
31  
D1  
0
32  
SCLK  
ADS8353, ADS8354  
SDO_A and SDO_B  
D15 D14  
D13 D12  
D11 D10  
X
D7  
D6  
D5  
D4  
D3  
D2  
D0  
0
D0  
Data From Sample N  
D5 D4 D3 D2  
Data From Sample N  
ADS7853, ADS7854  
SDO_A and SDO_B  
D1  
0
0
0
ADS7253, ADS7254  
SDO_A and SDO_B  
D3  
D2  
D1  
D0  
0
Data From Sample N  
B15  
B14  
B2  
B1  
B0  
X
X
X
X
X
X
X
X
X
SDI  
Figure 91. 32-CLK, Dual-SDO Mode Timing Diagram  
Copyright © 2013–2014, Texas Instruments Incorporated  
39  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
A CS falling edge brings the serial data bus out of 3-state and also outputs a 0 on the SDO_A and SDO_B pins.  
The device converts the sampled analog input during the conversion time (tCONV). SDO_A and SDO_B read 0  
during this period. After completing the conversion process, the sample-and-hold circuit returns to sample mode.  
The device outputs the MSBs of ADC_A and ADC_B on SDO_A and SDO_B pins, respectively, on the 16th  
SCLK falling edge. The subsequent SCLK falling edges are used to shift out the rest of the bits of the conversion  
result, as shown in Table 12.  
Table 12. Data Launch Edge  
LAUNCH EDGE  
DEVICE  
PINS  
CS  
SCLK  
28  
CS  
1  
0
15 16  
27  
D4_A  
D4_B  
D2_A  
D2_B  
D0_A  
D0_B  
29  
D2_A  
D2_B  
D0_A  
D0_B  
0
30  
31  
32 ...  
0 ...  
0 ...  
0 ...  
0 ...  
0 ...  
0 ...  
SDO-A  
SDO-B  
SDO-A  
SDO-B  
SDO-A  
SDO-B  
0
0
0
0
0
0
0
D15_A  
D3_A  
D3_B  
D1_A  
D1_B  
0
D1_A  
D0_A  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ADS8353  
ADS7853  
ADS7253  
0
0
D15_B  
D13_A  
D13_B  
D11_A  
D11_B  
D1_B  
D0_B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
In this mode, at least 32 SCLK falling edges must be given to validate the read or write frame. A CS rising edge  
ends the frame and puts the serial bus into 3-state.  
Refer to Table 13 for timing specifications specific to this serial interface mode.  
Table 13. 32-CLK, Dual-SDO Interface Specific Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
ADS8353  
ADS7853  
ADS7253  
50  
29.4  
29.4  
ns  
ns  
ns  
ns  
tCLK  
CLOCK period  
tACQ  
Acquisition time  
33 × tCLK – tCONV  
TIMING SPECIFICATIONS  
ADS8353  
ADS7853  
ADS7253  
730  
450  
450  
ns  
ns  
ns  
tCONV  
Conversion time  
40  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.5.3.2.2 32-CLK, Single-SDO Mode (CFR.B11 = 0, CFR.B10 = 1)  
The 32-CLK, single-SDO mode provides the option of using only one SDO pin (SDO_A) to read conversion  
results from both ADCs (ADC_A and ADC_B). SDO_B remains in 3-state and can be treated as a no connect  
(NC) pin.  
This mode can be selected by writing CFR.B11 = 0 and CFR.B10 = 1. Figure 92 shows a detailed timing diagram  
for this mode.  
Sample  
N
Sample  
N+1  
tTHROUGHPUT  
tCONV  
tACQ  
CS  
1
2
14  
15  
16  
17  
28  
31  
45  
47  
48  
SCLK  
18  
29  
30  
32  
33  
34  
44  
46  
D1  
5-A 4-A  
D1  
D4- D3- D2- D1- D0- D1  
D4- D3- D2- D1- D0-  
ADS8353, ADS8354  
SDO_A  
A
A
A
A
A
5-B  
B
B
B
B
B
Data From Sample N  
D2- D1- D0-  
ADS7853, ADS7854  
SDO_A  
D1  
3-A 2-A  
D1  
D1  
3-B  
D2- D1- D0-  
0
0
0
0
A
A
A
B
B
B
Data From Sample N  
D0-  
ADS7253, ADS7254  
SDO_A  
D1  
1-A 0-A  
D1  
D1  
1-B  
D0-  
B
0
0
0
0
0
0
0
0
A
Data From Sample N  
All Devices  
SDO_B  
B15  
B14 B3  
B2  
B1  
B0  
X
X
X
X
X
X
X
X
X
X
X
X
X
SDI  
Figure 92. 32-CLK, Single-SDO Mode Timing Diagram  
A CS falling edge brings the serial data bus out of 3-state and also outputs a 0 on the SDO_A pin. The device  
converts the sampled analog input during the conversion time (tCONV). SDO_A reads 0 during this period. After  
competing the conversion process, the sample-and-hold circuit goes back into sample mode. The device outputs  
the MSB of ADC_A on the SDO_A pin on the 16th SCLK falling edge. The subsequent SCLK falling edges are  
used to shift out the conversion result of ADC_A followed by the conversion result of ADC_B on the SDO_A pin,  
as shown in Table 14.  
Table 14. Data Launch Edge  
LAUNCH EDGE  
DEVICE  
PIN  
CS  
SCLK  
CS  
1  
0
15 16  
27  
28  
29  
30  
31  
32  
43  
44  
45  
46  
47  
48 ...  
0 ...  
ADS8353 SDO-A  
ADS7853 SDO-A  
ADS7253 SDO-A  
0
0
0
0
D15_A  
D4_A D3_A D2_A D1_A D0_A D15_B  
D4_B D3_B D2_B D1_B D0_B  
Hi-Z  
Hi-Z  
Hi-Z  
0
0
D13_A  
D11_A  
D2_A D1_A D0_A  
D0_A  
0
0
0
0
0
0
D2_B D1_B D0_B  
D0_B  
0
0
0
0
0 ...  
0
0
0
0
0
0
0 ...  
In this mode, at least 48 SCLK falling edges must be given to validate the read or write frame. A CS rising edge  
ends the frame and puts the serial bus into 3-state.  
Copyright © 2013–2014, Texas Instruments Incorporated  
41  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Refer to Table 15 for timing specifications specific to this serial interface mode.  
Table 15. 32-CLK, Single-SDO Interface Specific Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
ADS8353  
ADS7853  
ADS7253  
50  
29.4  
29.4  
ns  
ns  
ns  
ns  
tCLK  
CLOCK period  
tACQ  
Acquisition time  
49 × tCLK – tCONV  
TIMING SPECIFICATIONS  
ADS8353  
ADS7853  
ADS7253  
730  
450  
450  
ns  
ns  
ns  
tCONV  
Conversion time  
8.5.3.2.3 16-CLK, Dual-SDO Mode (CFR.B11 = 1, CFR.B10 = 0)  
The 16-CLK, dual-SDO mode is designed to support the maximum throughput at lower SCLK frequencies. This  
interface mode is not supported by the ADS8353.  
For the ADS7853 and ADS7253, this interface mode can be selected by writing CFR.B11 = 1 and CFR.B10 = 0.  
In this mode, the SDO_A pin outputs the ADC_A conversion result and the SDO_B pin outputs the ADC_B  
conversion result. Figure 93 shows a detailed timing diagram for this mode.  
Sample  
N
Sample  
N + 1  
tTHROUGHPUT  
tPH_CS  
CS  
tSCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
tCONV  
tACQ  
ADS7853, ADS7854  
SDO_A and SDO_B  
0
0
D13  
D11  
D12  
D10  
D11  
D9  
D10  
D8  
D9  
tCONV  
D7  
D8  
D7  
D5  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tACQ  
ADS7253, ADS7254  
SDO_A and SDO_B  
0
0
D6  
D4  
D3  
D2  
D1  
D0  
0
0
Data From Sample N  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SDI  
Figure 93. 16-CLK, Dual-SDO Mode Timing Diagram  
42  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
A CS falling edge brings the serial data bus out of 3-state and also outputs a 0 on the SDO_A and SDO_B pins.  
The subsequent SCLK falling edges are used for conversion and for data transfer using the serial interface, as  
shown in Table 16.  
The sample-and-hold circuit goes back into sample mode as soon as the conversion process is over.  
Table 16. Data Launch Edge  
LAUNCH EDGE  
DEVICE  
PINS  
CS  
SCLK  
13  
CS  
1  
0
2  
14  
D1_A  
D1_B  
0
15  
D0_A  
D0_B  
0
16 ...  
0 ...  
SDO-A  
SDO-B  
SDO-A  
SDO-B  
0
D13_A  
D13_B  
D11_A  
D11_B  
D2_A  
D2_B  
D0_A  
D0_B  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ADS7853  
ADS7253  
0
0
0 ...  
0
0
0 ...  
0
0
0
0
0 ...  
In this mode, at least 16 SCLK falling edges must be given to validate the read or write frame. A CS rising edge  
ends the frame and puts the serial bus into 3-state.  
Refer to Table 17 for timing specifications specific to this serial interface mode.  
Table 17. 16-CLK, Dual-SDO Interface Specific Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
ADS7853  
ADS7253  
ADS7853  
ADS7253  
55.5  
55.5  
ns  
ns  
ns  
ns  
tCLK  
CLOCK period  
Acquisition time  
4 × tCLK  
6 × tCLK  
tACQ  
TIMING SPECIFICATIONS  
tCONV Conversion time  
ADS7853  
ADS7253  
14 × tCLK  
12 × tCLK  
ns  
ns  
Copyright © 2013–2014, Texas Instruments Incorporated  
43  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
8.5.3.2.4 16-CLK, Single-SDO Mode (CFR.B11 = 1, CFR.B10 = 1)  
The 16-CLK, single-SDO mode provides the option of using only one SDO pin (SDO_A) and a lower-speed clock  
to read the conversion results of both ADCs. This interface mode is not supported by the ADS8353.  
For the ADS7853 and ADS7253, this mode can be selected by writing CFR.B11 = 1 and CFR.B10 = 1. The  
SDO_A pin is used to output the conversion results of both ADCs (ADC_A and ADC_B). SDO_B remains in 3-  
state and can be treated as a no connect (NC) pin. Figure 94 shows a detailed timing diagram for this mode.  
Sample  
N
Sample  
N+1  
tTHROUGHPUT  
tPH_CS  
CS  
tSCLK  
1
2
3
4
5
14  
15  
16  
17  
18  
19  
20  
21  
30  
31  
13  
SCLK  
32  
tCONV  
tACQ  
ADS7853, ADS7854  
SDO_A  
D13- D12- D11-  
D13- D12- D11-  
0
0
D2-A D1-A D0-A  
0
0
D2-B D1-B  
D0-B  
D3-A  
D1-A  
A
A
A
B
B
B
tCONV  
tACQ  
ADS7253, ADS7254  
SDO_A  
D11- D10-  
D11- D10-  
0
0
D9-A  
D0-A  
0
0
0
0
D9-B D0-B  
0
0
A
A
B
B
Data From Sample N  
All Devices  
SDO_B  
B15  
B14  
B13  
B12  
B3  
B2  
B1  
B0  
X
X
X
X
X
X
X
X
SDI  
Figure 94. 16-CLK, Single-SDO Mode Timing Diagram  
A CS falling edge brings the serial data bus out of 3-state and also outputs a 0 on the SDO_A pin. The  
subsequent SCLK falling edges are used for conversion and for data transfer using the serial interface, as shown  
in Table 18.  
The sample-and-hold circuit goes back into sample mode as soon as the conversion process is over.  
Table 18. Data Launch Edge  
LAUNCH EDGE  
DEVICE  
PIN  
CS  
SCLK  
CS  
1 2  
13  
D2_A D1_A  
D0_A  
14  
15  
D0_A  
0
16 17 18  
29  
D2_B D1_B  
D0_B  
30  
31  
D0_B  
0
32 ...  
0 ...  
ADS7853  
ADS7253  
SDO-A  
SDO-A  
0
0
0
D13_A  
D11_A  
0
0
0
0
D13_B  
D11_B  
Hi-Z  
Hi-Z  
0
0
0
0 ...  
44  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
In this mode, at least 32 SCLK falling edges must be given to validate the read/write frame. A CS rising edge  
ends the frame and puts the serial bus into 3-state.  
Refer to Table 19 for timing specifications specific to this serial interface mode.  
Table 19. 16-CLK, Single-SDO Interface Specific Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
ADS7853  
ADS7253  
ADS7853  
ADS7253  
55.5  
55.5  
ns  
ns  
ns  
ns  
tCLK  
CLOCK period  
Acquisition time  
19 × tCLK  
21 × tCLK  
tACQ  
TIMING SPECIFICATIONS  
tCONV Conversion time  
ADS7853  
ADS7253  
14 × tCLK  
12 × tCLK  
ns  
ns  
8.5.4 Low-Power Modes  
In normal mode of operation, all internal circuits of the device are always powered up and the device is always  
ready to commence a new conversion. This mode enables the device to support the rated throughput. The  
device also supports two low-power modes to optimize the power consumption at lower throughputs: STANDBY  
mode and software power-down (SPD) mode.  
8.5.4.1 STANDBY Mode  
The device supports a STANDBY mode of operation where some of the internal circuits of the device are  
powered down. However, if bit 6 in configuration register is set to 1 (CFR.B6 = 1), then the internal reference is  
not powered down and the contents of the REFDAC_A and REFDAC_B registers are retained to enable faster  
power-up to a normal mode of operation.  
As shown in Figure 95, a valid write operation in frame (F) to program the configuration register with B5 set to 1  
(CFR.B5 = 1) places the device into a STANDBY mode of operation on the following CS rising edge. While in  
STANDBY mode, SDO_A and SDO_B output all 1s when CS is low and remain in 3-state when CS is high.  
To remain in STANDBY mode, SDI must remain low in the subsequent frames.  
Device enters  
STANDBY mode  
Frame (F)  
Frame (F+1)  
Device in  
STANDBY mode  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1
2
N
SCLK  
16  
SDO-A and  
SDO-B  
Valid Data as per device configuration  
CFG.B[5] = 1  
SDI  
CFG.B[4:0] = 00000b  
CFG.B[15:12] = 1000b  
CFG.B[11:6]  
Note that N is a function of the device configuration, as described in Table 4.  
Figure 95. Enter STANDBY Mode  
Copyright © 2013–2014, Texas Instruments Incorporated  
45  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
As shown in Figure 96, a valid write operation in frame (F+3) by writing the configuration register with B5 set to 0  
(CFR.B5 = 0) brings the device out of STANDBY mode on the following CS rising edge. Frame (F+3) must have  
at least 48 SCLK falling edges.  
After exiting the STANDBY mode, a delay of tPU_STDBY must elapse for the internal circuits to fully power-up and  
resume normal operation in frame (F+4). Device configuration for frame (F+4) is determined by the status of the  
CFR.B[11:6] bits programmed during frame (F+3).  
Frame (F+2)  
Frame (F+3)  
Device exits  
STANDBY mode  
Frame (F+4)  
Device in  
STANDBY  
mode  
tPU_STDBY  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1
2
15  
16  
N
SCLK  
16  
48  
SDO-A  
and  
SDO-B  
Valid Data as per device configuration  
CFG settings for Frame (F+5)  
These bits set device  
configuration for Frame (F+4)  
CFG.B[5] = 0  
SDI  
CFG.B[15:12] = 1000b  
CFG.B[11:6]  
CFG.B[4:0] = 00000b  
Note that N is a function of the device configuration, as described in Table 4.  
Figure 96. Exit STANDBY Mode  
Refer to the Timing Characteristics: Serial Interface for timing specifications for this operating mode.  
46  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
8.5.4.2 Software Power-Down (SPD) Mode  
In software power-down (SPD) mode, all internal circuits (including the internal references) are powered down.  
However, the contents of the REFDAC_A and REFDAC_B registers are retained.  
As shown in Figure 97, to enter SPD mode, the device must be selected (by bringing CS low) and SDI must be  
kept high for a minimum of 48 SCLK cycles during frame (F). The device goes to SPD on the CS rising edge  
following frame (F). While in SPD mode, SDO_A and SDO_B go to 3-state irrespective of the status of the CS  
signal.  
To remain in SPD mode, SDI must remain high in subsequent frames.  
Device enters SPD  
Frame (F)  
Frame (F+1)  
mode  
Device in SPD  
mode  
CS  
1
2
3
47  
1
2
SCLK  
48  
SDO-A and  
SDO-B  
Valid Data as per device configuration  
SDI  
Figure 97. Enter SPD Mode  
As shown in Figure 98, to exit SPD mode, the device must be selected (by bringing CS low) and SDI must be  
kept low for a minimum of 48 SCLK cycles during frame (F+3). The device starts powering-up on a CS rising  
edge following frame (F+3). After frame (F+3), a delay of tPU_SPD must elapse before programming the  
configuration register.  
A valid write operation in frame (F+4) sets the device configuration for frame (F+5). Frame (F+4) must have at  
least 48 SCLK falling edges. The output data in frame (F+4) should be discarded.  
Frame (F+2)  
Frame (F+3)  
Frame (F+4)  
Frame (F+5)  
Device exits  
SPD  
tPU_SPD  
Device in  
SPD  
CS  
SCLK  
1
2
47  
48  
1
2
15  
16  
48  
1
2
15  
16  
N
SDO-A  
and  
SDO-B  
Invalid Data  
Valid Data as per device configuration  
CFG settings for Frame (F+6)  
SDI  
CFG settings for Frame (F+5)  
Note that N is a function of the device configuration, as described in Table 4.  
Figure 98. Exit SPD Mode  
Refer to the Timing Characteristics: Serial Interface for timing specifications for this operating mode.  
Copyright © 2013–2014, Texas Instruments Incorporated  
47  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
8.5.5 Frame Abort, Reconversion, or Short-Cycling  
As discussed in Figure 99, the minimum number of SCLK falling edges (N) that must be provided between the  
beginning and end of the frame depends on the serial interface mode. The SCLK falling edges (N) program the  
device and retrieve the conversion result. If CS is brought high before the expected number of SCLK falling  
edges are provided, the current frame is aborted and the device starts sampling the new analog input signal.  
If frame (F) is aborted, then the register write operation attempted in frame (F) is considered invalid and the  
internal registers are not updated. The device continues to have the same configuration in frame (F+1) from  
frame (F).  
The output data bits latched before the CS rising edge are still valid data that correspond to sample N.  
tPL_CS  
tPH_CS_SHRT  
CS  
1
2
SCLK  
SDO  
Sample  
Sample  
N + 1  
N
tCONV  
tACQ  
tPH_CS_SHRT  
CS  
22  
V
23  
V
1
2
13  
14  
15  
16  
V
17  
V
24  
V
SCLK  
SDO  
Data From Sample N  
Figure 99. Frame Abort, Reconversion, or Short-Cycling Feature  
Refer to the Timing Characteristics: Serial Interface for timing specifications for this operating mode.  
48  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
9 Application and Implementation  
9.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing these circuits, and some application circuits designed using  
these devices.  
The device supports operation either with an internal or external reference source. Refer to the Reference  
section for details about the decoupling requirements.  
The reference source to the ADC must provide low-drift and very accurate dc voltage and support the dynamic  
charge requirements without affecting the noise and linearity performance of the device. The output broadband  
noise (typically in the order of a few 100 μVRMS) of the reference source must be appropriately filtered by using a  
low-pass filter with a cutoff frequency of a few hundred hertz. After band-limiting the noise from the reference  
source, the next important step is to design a reference buffer that can drive the dynamic load posed by the  
reference input of the ADC. At the start of each conversion, the reference buffer must regulate the voltage of the  
reference pin within 1 LSB of the intended value. This condition necessitates the use of a large filter capacitor at  
the reference pin of the ADC. The amplifier selected to drive the reference input pin must be stable while driving  
this large capacitor and should have low output impedance, low offset, and temperature drift specifications. To  
reduce the dynamic current requirements and crosstalk between the channels, a separate reference buffer is  
recommended for driving the reference input of each ADC channel.  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel  
RC filter. The amplifier is used for signal conditioning of the input voltage and its low output impedance provides  
a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate  
the sampling charge injection from the switched-capacitor input stage of the ADC and functions as an antialiasing  
filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-end circuit is  
critical to meet the linearity and noise performance of a high-precision ADC.  
9.1.1 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider while selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter at the ADC  
inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. In order to  
maintain the overall stability of the input driver circuit, the amplifier bandwidth should be selected as  
described in Equation 6:  
§
·
1
¨
¨
¸
¸
Unity Gain Bandwidth t 4u  
2S  
u(RFLT RFLT )uCFLT  
©
¹
(6)  
Noise. Noise contribution of the front-end amplifiers should be as low as possible to prevent any degradation  
in SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the data  
acquisition system is not limited by the front-end circuit, the total noise contribution from the front-end circuit  
should be kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is band-  
limited by designing a low cutoff frequency RC filter and is calculated by Equation 7:  
2
SNR  
dB  
§
¨
·
¸
V
§
¨
·
¸
1
_ AMP_PP  
S
2
1
5
VREF  
2
20  
en2_RMS  
u
u f3dB  
d
u
u10  
f
©
¹
NG u 2 u  
¨
¨
¸
¸
6.6  
©
¹
where:  
V1 / f_AMP_PP is the peak-to-peak flicker noise in µV,  
en_RMS is the amplifier broadband noise density in nV/Hz,  
f–3dB is the 3-dB bandwidth of the RC filter, and  
NG is the noise gain of the front-end circuit, which is equal to 1 in a buffer configuration.  
(7)  
49  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Application Information (continued)  
Distortion. Both the ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of  
thumb, to ensure that the distortion performance of the data acquisition system is not limited by the front-end  
circuit, the distortion of the input driver should be at least 10 dB lower than the distortion of the ADC, as  
shown in Equation 8.  
THDAMP d THDADC 10  
dB  
(8)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, the settling behavior of the input driver should always be verified by TINA™-  
SPICE simulations before selecting the amplifier.  
9.1.2 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, antialiasing filter must be used to remove the  
harmonic content from the input signal before being sampled by the ADC. An antialiasing filter is designed as a  
low-pass, RC filter, for which the 3-dB bandwidth is optimized based on specific application requirements. For dc  
signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow  
accurately settling the signal at the ADC inputs during the small acquisition time window. For ac signals, the filter  
bandwidth should be kept low to band-limit the noise fed into the ADC input, thereby increasing the signal-to-  
noise ratio (SNR) of the system.  
A filter capacitor, CFLT, connected across the ADC inputs (as shown in Figure 100), filters the noise from the  
front-end drive circuitry, reduces the sampling charge injection and provides a charge bucket to quickly charge  
the internal sample-and-hold capacitors during the acquisition process. As a rule of thumb, the value of this  
capacitor should be at least 10 times the specified value of the ADC sampling capacitance. For these devices,  
the input sampling capacitance is equal to 40 pF. Thus, the value of CFLT should be greater than 400 pF. The  
capacitor should be a COG- or NPO-type because these capacitor types have a high-Q, low-temperature  
coefficient, and stable electrical characteristics under varying voltages, frequency, and time.  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design. For these devices, TI recommends limiting the value of RFLT to a maximum of 22 Ω  
in order to avoid any significant degradation in linearity performance. The tolerance of the selected resistors can  
be chosen as 1% because the use of a differential capacitor at the input balances the effects resulting from any  
resistor mismatch.  
RFLT ”ꢀ22 ꢀ  
AINP  
1
ADS8353  
ADS7853  
ADS7253  
f3dB  
 
CFLT •ꢀꢀ400 pF  
2S u  
RFLT  RFLT u CFLT  
AINM  
GND  
RFLT ”ꢀ22 ꢀ  
Figure 100. Antialiasing Filter  
The input amplifier bandwidth should be much higher than the cutoff frequency of the antialiasing filter. TI  
strongly recommends performing a SPICE simulation to confirm that the amplifier has more than 40° phase  
margin with the selected filter. If an amplifier has less than a 40° phase margin with 22-Ω resistors, using a  
different amplifier with higher bandwidth or reducing the filter cutoff frequency with a larger differential capacitor  
is advisable.  
50  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
9.2 Typical Applications  
9.2.1 DAQ Circuit to Achieve Maximum SINAD for a 10-kHz Input Signal at Full Throughput  
AVDD  
VCM  
AVDD  
OPA836  
+
10  
+
1 kꢀ  
AVDD  
-
AINP  
AINM  
8.2 nF  
COG  
(NPO)  
VIN+  
ADSxx53  
1kꢀ  
GND  
10 ꢀ  
VDC  
Where;  
VDC = 0 V for CFR.B7 = 0  
VDC = FSR_ADC_x/2 for CFR.B7 = 1  
VCM = FSR_ADC_x/2  
ADS8353 : 16-bit, 600 kSPS  
ADS7853 : 14-bit, 1 MSPS  
ADS7253 : 12-bit, 1 MSPS  
INPUT DRIVER  
NOTE: Only one ADC channel is shown in this diagram. Replicate the same circuit for other ADC channels.  
Figure 101. DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at Full Throughput, 32-CLK Interface  
AVDD  
VCM  
AVDD  
OPA836  
+
4  
+
1 kꢀ  
AVDD  
-
AINP  
AINM  
1.8 nF  
COG  
(NPO)  
VIN+  
ADSxx53  
1kꢀ  
GND  
4 ꢀ  
VDC  
Where;  
VDC = 0 V for CFR.B7 = 0  
VDC = FSR_ADC_x/2 for CFR.B7 = 1  
VCM = FSR_ADC_x/2  
ADS7853 : 14-bit, 1 MSPS  
ADS7253 : 12-bit, 1 MSPS  
INPUT DRIVER  
NOTE: Only one ADC channel is shown in this diagram. Replicate the same circuit for other ADC channels.  
Figure 102. DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at Full Throughput, 16-CLK Interface  
Copyright © 2013–2014, Texas Instruments Incorporated  
51  
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Applications (continued)  
AVDD  
10 µF  
AVDD  
REF5025,  
REF5040,  
REF5050(1)  
REFGND-A  
1 k  
0.1 ꢀ  
+
-
ADC_A  
AVDD  
REFIN-A  
1 µF  
VOUT  
TRIM  
Device  
AVDD  
0.22 ꢀ  
1 kꢀ  
+
-
REFIN-B  
1 µF  
10 µF  
1 µF  
ADC_B  
0.1 ꢀ  
REFGND-B  
10 µF  
OPA2350  
(1) When using the REF5050, AVDD must be set to 5.5 V.  
Figure 103. Reference Drive Circuit  
9.2.1.1 Design Requirements  
To design an application circuit optimized to achieve target specifications listed in Table 20.  
Table 20. Target Specifications  
TARGET SPECIFICATIONS  
TEST CONDITIONS  
INPUT SIGNAL  
FREQUENCY  
SNR  
THD  
DEVICE  
THROUGHPUT  
INTERFACE MODE  
> 83 dB  
> 81 dB  
< -100 dB  
< –95 dB  
< –85 dB  
< –88 dB  
< –80 dB  
ADS8353  
ADS7853  
ADS7853  
ADS7253  
ADS7253  
10 kHz  
10 kHz  
10 kHz  
10 kHz  
10 kHz  
Maximum supported  
Maximum supported  
Maximum supported  
Maximum supported  
Maximum supported  
32-CLK, dual-SDO  
32-CLK, dual-SDO  
16-CLK, dual-SDO  
32-CLK, dual-SDO  
16-CLK, dual-SDO  
> 77.5 dB  
> 71.5 dB  
> 70.5 dB  
9.2.1.2 Detailed Design Procedure  
Best practice is for the distortion from the input driver to be at least 10 dB less than the ADC distortion. The  
distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting  
gain configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates  
the requirement of rail-to-rail swing at the amplifier input. The low-power OPA836, used as an input driver,  
provides exceptional ac performance because of its extremely low-distortion and high-bandwidth specifications.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal.  
The application circuit illustrated in Figure 101 is optimized to achieve the lowest distortion and lowest noise for a  
10-kHz input signal fed to the ADS8353 or ADS7853 or ADS7253 operating at full throughput with the default 32-  
CLK, dual-SDO interface mode. The input signal is processed through a high-bandwidth, low-distortion amplifier  
in an inverting gain configuration and a low-pass RC filter before being fed into the device.  
52  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
The ADS7853 and the ADS7253 also support 16-CLK interface modes that achieve the rated throughput rate at  
much lower SCLK frequencies. However, when using the 16-CLK interface modes, the device receives less  
acquisition time when compared to the 32-CLK interface modes. The application circuit illustrated in Figure 102 is  
optimized to achieve the lowest distortion and lowest noise for a 10-kHz input signal fed to the ADS7853 or  
ADS7253 operating at full throughput with the 16-CLK, dual-SDO interface mode. The input signal is processed  
through a high-bandwidth, low-distortion amplifier in an inverting gain configuration and a low-pass RC filter  
before being fed into the device.  
Figure 103 illustrates the reference driver circuit when operation with an external reference is desired. The  
reference voltage is generated by the high-precision, low-noise REF50xx circuit. The output broadband noise of  
the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz. The decoupling  
capacitor on each reference pin is selected to be 10 µF. The low output impedance, low noise, and fast settling  
time makes the OPA2350 a good choice for driving this high capacitive load.  
9.2.1.3 Application Curves  
To minimize external components and to maximize the dynamic range of the ADC, device is configured to  
operate with internal reference (CFR.B6 = 1) and 2 x VREF_x input full scale range (CFR.B9 = 1).  
Figure 104, Figure 105, and Figure 106, show the FFT plots and test results obtained with the ADS8353,  
ADS7853, and ADS7253, respectively, operating at full throughput with a 32-CLK interface and the circuit  
configuration of Figure 101.  
0
±20  
0
±30  
±40  
±60  
±80  
±60  
±100  
±120  
±140  
±160  
±180  
±200  
±90  
±120  
±150  
0
60  
120  
180  
240  
300  
0
100  
200  
300  
400  
500  
C301  
Input Frequency (kHz)  
Input Frequency (kHz)  
C003  
SNR = 83.5 dB  
THD = –101.2 dB  
fIN = 10.1 kHz  
SNR = 82.1 dB  
THD = –98.2 dB  
fIN = 10.1 kHz  
Figure 104. ADS8353 in 32-CLK Interface Mode  
Figure 105. ADS7853 in 32-CLK Interface Mode  
0
±30  
±60  
±90  
±120  
±150  
0
100  
200  
300  
400  
500  
C001  
Input Frequency (kHz)  
SNR = 72.5 dB  
THD = –94.2 dB  
Figure 106. ADS7253 in 32-CLK Interface Mode  
fIN = 10.1 kHz  
Copyright © 2013–2014, Texas Instruments Incorporated  
53  
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Figure 107 and Figure 108 show the FFT plots and test results obtained with the ADS7853 and ADS7253,  
respectively, operating at full throughput with 16-CLK interface and the circuit configuration of Figure 102.  
0
±30  
0
±30  
±60  
±60  
±90  
±90  
±120  
±150  
±120  
±150  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
C002  
Input Frequency (kHz)  
C004  
SNR = 78.1 dB  
THD = –89.8 dB  
fIN = 10.1 kHz  
SNR = 71.2 dB  
THD = –84.9 dB  
fIN = 10.1 kHz  
Figure 107. ADS7853 in 16-CLK Interface Mode  
Figure 108. ADS7253 in 16-CLK Interface Mode  
54  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
9.2.2 DAQ Circuit to Achieve Maximum SINAD for a 100-kHz Input Signal at Full Throughput  
+15 V  
VCM  
AVDD  
THS4032  
+
4.7  
602 ꢀ  
AVDD  
-
AINP  
1 nF  
COG  
(NPO)  
VIN+  
ADSxx53  
-15 V  
602 ꢀ  
AINM  
GND  
10 pF  
4.7 ꢀ  
+15 V  
VDC  
+
THS4032  
-
-15 V  
ADS8353 : 16-bit, 600 kSPS  
ADS7853 : 14-bit, 1 MSPS  
ADS7253 : 12-bit, 1 MSPS  
Where;  
VDC = 0 V for CFR.B7 = 0  
VDC = FSR_ADC_x/2 for CFR.B7 = 1  
VCM = FSR_ADC_x/2  
INPUT DRIVER  
NOTE: Only one ADC channel is shown in this diagram. Replicate the same circuit for other ADC channels.  
Figure 109. DAQ Circuit: Maximum SINAD for a 100-kHz Input Signal at Full Throughput  
AVDD  
10 µF  
AVDD  
REF5025,  
REF5040,  
REF5050(1)  
REFGND-A  
1 kꢀ  
0.1 ꢀ  
+
-
ADC_A  
AVDD  
REFIN-A  
1 µF  
VOUT  
TRIM  
Device  
AVDD  
0.22 ꢀ  
1 kꢀ  
+
-
REFIN-B  
1 µF  
10 µF  
1 µF  
ADC_B  
0.1 ꢀ  
REFGND-B  
10 µF  
OPA2350  
(1) When using the REF5050, AVDD must be set to 5.5 V.  
Figure 110. Reference Drive Circuit  
Copyright © 2013–2014, Texas Instruments Incorporated  
55  
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
9.2.2.1 Design Requirements  
To design an application circuit optimized to achieve target specifications listed in Table 21.  
Table 21. Target Specifications  
TARGET SPECIFICATIONS  
TEST CONDITIONS  
INPUT SIGNAL  
FREQUENCY  
SNR  
THD  
DEVICE  
THROUGHPUT  
INTERFACE MODE  
> 83 dB  
> 78.5 dB  
> 77.5 dB  
> 71.5 dB  
> 71 dB  
< -95 dB  
< –88 dB  
< –85 dB  
< –85 dB  
< –84 dB  
ADS8353  
ADS7853  
ADS7853  
ADS7253  
ADS7253  
100 kHz  
100 kHz  
100 kHz  
100 kHz  
100 kHz  
Maximum supported  
Maximum supported  
Maximum supported  
Maximum supported  
Maximum supported  
32-CLK, dual-SDO  
32-CLK, dual-SDO  
16-CLK, dual-SDO  
32-CLK, dual-SDO  
16-CLK, dual-SDO  
9.2.2.2 Detailed Design Procedure  
Best practice is for the distortion from the input driver to be at least 10 dB less than the ADC distortion. The  
distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting  
gain configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates  
the requirement of rail-to-rail swing at the amplifier input. The low-power OPA836, used as an input driver,  
provides exceptional ac performance because of its extremely low-distortion and high-bandwidth specifications.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal. To take full advantage of the pseudo-differential input structure of the  
ADC, the AINM pin must be driven to the appropriate VDC with the same amplifier and matching source  
impedance.  
The application circuit illustrated in Figure 109 is optimized to achieve the lowest distortion and lowest noise for a  
100-kHz input signal fed to the ADS8353 or ADS7853 or ADS7253 operating at full throughput. The THS4032,  
used as an input driver, provides exceptional ac performance because of its extremely low-distortion, low-noise,  
and high-bandwidth specifications. In addition, the components of the antialiasing filter are such that the noise  
from the front-end circuit is kept low without adding distortion to the input signal. External clamp circuit may be  
required to ensure that the inputs to the device do not exceed AVDD.  
Figure 103 illustrates the reference driver circuit when operation with an external reference is desired. The  
reference voltage is generated by the high-precision, low-noise REF50xx circuit. The output broadband noise of  
the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz. The decoupling  
capacitor on each reference pin is selected to be 10 µF. The low output impedance, low noise, and fast settling  
time makes the OPA2350 a good choice for driving this high capacitive load.  
56  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
9.2.2.3 Application Curves  
To minimize external components and to maximize the dynamic range of the ADC, device is configured to  
operate with internal reference (CFR.B6 = 1) and 2 x VREF_x input full scale range (CFR.B9 = 1).  
Figure 111, Figure 112, and Figure 113 show the FFT plots and test results obtained with the ADS8353,  
ADS7853 and ADS7253, respectively, operating at full throughput with a 32-CLK interface and the circuit  
configuration of Figure 109.  
0
0
±20  
±40  
±30  
±60  
±80  
±60  
±100  
±120  
±90  
±140  
±160  
±120  
±180  
±200  
±150  
0
60  
120  
180  
240  
300  
0
100  
200  
300  
400  
500  
C303  
C007  
Input Frequency (kHz)  
Input Frequency (dB)  
SNR = 83.1 dB  
THD = –95.5 dB  
fIN = 100.2 kHz  
SNR = 79.6 dB  
THD = –90.9 dB  
fIN = 100.2 kHz  
Figure 111. ADS8353 in 32-CLK Interface Mode  
Figure 112. ADS7853 in 32-CLK Interface Mode  
0
±30  
±60  
±90  
±120  
±150  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
C005  
SNR = 72.9 dB  
THD = –85.8 dB  
Figure 113. ADS7253 in 32-CLK Interface Mode  
fIN = 100.2 kHz  
Copyright © 2013–2014, Texas Instruments Incorporated  
57  
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
Figure 114 and Figure 115 show the FFT plots and test results obtained with the ADS7853 and ADS7253,  
respectively, operating with a 16-CLK interface and the circuit configuration of Figure 109.  
0
±30  
0
±30  
±60  
±60  
±90  
±90  
±120  
±150  
±120  
±150  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (kHz)  
Input Frequency (kHz)  
C008  
C006  
SNR = 78.2 dB  
THD = –87.2 dB  
fIN = 100.2 kHz  
SNR = 72.3 dB  
THD = –84.3 dB  
fIN = 100.2 kHz  
Figure 114. ADS7853 in 16-CLK Interface Mode  
Figure 115. ADS7253 in 16-CLK Interface Mode  
58  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
10 Power-Supply Recommendations  
The devices have two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible  
ranges.  
When using the device with 2 × VREF input range (CFR.B9 = 1), the AVDD supply voltage value defines the  
permissible voltage swing on the analog input pins. To avoid saturation of output codes, and to use the full  
dynamic range on the analog input pins, AVDD must be set as shown in Equation 9, Equation 10, and  
Equation 11:  
AVDD 2 × VREF_A  
AVDD 2 × VREF_B  
4.75 V AVDD 5.25 V  
(9)  
(10)  
(11)  
Decouple the AVDD and DVDD pins with the GND pin using individual 10-µF decoupling capacitors, as shown in  
Figure 116.  
AVDD  
AVDD (pin 14)  
GND (pin 13)  
DVDD (pin 7)  
10 PF  
10 PF  
DVDD  
Figure 116. Power-Supply Decoupling  
Copyright © 2013–2014, Texas Instruments Incorporated  
59  
 
 
 
 
ADS8353, ADS7853, ADS7253  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Figure 117 shows a board layout example for the ADS8353, ADS7853, and ADS7253 with the WQFN package.  
Use a ground plane underneath the device and partition the PCB into analog and digital sections. Avoid crossing  
digital lines with the analog signal path and keep the analog input signals and the reference input signals away  
from noise sources. As shown in Figure 117, the analog input and reference signals are routed on the left side of  
the board and the digital connections are routed on the right side of the device.  
The power sources to the device must be clean and well-bypassed. Use 10-μF, ceramic bypass capacitors in  
close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the  
AVDD and DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low  
impedance paths.  
The REFIO-A and REFIO-B reference inputs and outputs are bypassed with 10-μF, X7R-grade, 0805-size, 16-V  
rated ceramic capacitors (CREF-x). Place the reference bypass capacitors as close as possible to the reference  
REFIO-x pins and connect the bypass capacitors using short, low-inductance connections. Avoid placing vias  
between the REFIO-x pins and the bypass capacitors. Small 0.1-Ω to 0.2-Ω resistors (RREF-x) are used in series  
with the reference bypass capacitors to improve stability.  
The fly-wheel RC filters are placed immediately next to the input pins. Among ceramic surface-mount capacitors,  
COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG  
(NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and temperature  
changes. Figure 117 shows CIN-A and CIN-B filter capacitors placed across the analog input pins of the device.  
11.2 Layout Example  
AVDD  
GND  
CREF-A  
CIN-A  
CAVDD  
GND  
SDO-A  
SDO-B  
SCLK  
/CS  
REFIO-A  
GND  
GND  
REFGND-A  
REFGND-B  
GND  
REFIO-B  
GND  
CDVDD  
CREF-B  
CIN-B  
DVDD  
GND  
GND  
Figure 117. Recommended Layout  
60  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
ADS8353, ADS7853, ADS7253  
www.ti.com.cn  
ZHCSCQ1B OCTOBER 2013REVISED AUGUST 2014  
12 器件和文档支持  
12.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
Table 22. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
ADS8353  
ADS7853  
ADS7253  
12.2 相关文档ꢀ  
TIPD117 验证设计参考指南:针对电机控制应用中光学编码器的 12 1MSPS 单电源双通道数据采集系统参  
考设计,SLAU517。  
REF5050 数据表,SBOS410。  
OPA2350 数据表,SBOS099。  
OPA836OPA2836 数据表,SLOS712。  
THS4032 数据表,SLOS224。  
12.3 Trademarks  
TINA is a trademark of Texas Instruments Inc..  
All other trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2013–2014, Texas Instruments Incorporated  
61  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7253IPW  
ADS7253IPWR  
ADS7253IRTER  
ADS7253IRTET  
ADS7853IPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
WQFN  
WQFN  
TSSOP  
TSSOP  
WQFN  
WQFN  
TSSOP  
TSSOP  
WQFN  
WQFN  
PW  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ADS7253  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ADS7253  
7253  
RTE  
RTE  
PW  
250  
90  
RoHS & Green  
RoHS & Green  
7253  
ADS7853  
ADS7853  
7853  
ADS7853IPWR  
ADS7853IRTER  
ADS7853IRTET  
ADS8353IPW  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RTE  
RTE  
PW  
250  
90  
RoHS & Green  
RoHS & Green  
7853  
ADS8353  
ADS8353  
8353  
ADS8353IPWR  
ADS8353IRTER  
ADS8353IRTET  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RTE  
RTE  
250  
RoHS & Green  
8353  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7253IPWR  
ADS7253IRTER  
ADS7253IRTET  
ADS7853IPWR  
ADS7853IRTER  
ADS7853IRTET  
ADS8353IPWR  
ADS8353IRTER  
ADS8353IRTET  
TSSOP  
WQFN  
WQFN  
TSSOP  
WQFN  
WQFN  
TSSOP  
WQFN  
WQFN  
PW  
RTE  
RTE  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
3.3  
3.3  
6.9  
3.3  
3.3  
6.9  
3.3  
3.3  
5.6  
3.3  
3.3  
5.6  
3.3  
3.3  
5.6  
3.3  
3.3  
1.6  
1.1  
1.1  
1.6  
1.1  
1.1  
1.6  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
2000  
3000  
250  
RTE  
RTE  
PW  
2000  
3000  
250  
RTE  
RTE  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7253IPWR  
ADS7253IRTER  
ADS7253IRTET  
ADS7853IPWR  
ADS7853IRTER  
ADS7853IRTET  
ADS8353IPWR  
ADS8353IRTER  
ADS8353IRTET  
TSSOP  
WQFN  
WQFN  
TSSOP  
WQFN  
WQFN  
TSSOP  
WQFN  
WQFN  
PW  
RTE  
RTE  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2000  
3000  
250  
367.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2000  
3000  
250  
RTE  
RTE  
PW  
2000  
3000  
250  
RTE  
RTE  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ADS7253IPW  
ADS7853IPW  
ADS8353IPW  
PW  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
90  
90  
90  
530  
530  
530  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016D  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
SYMM  
17  
2X 1.5  
0.8 0.1  
12X 0.5  
1
12  
PIN 1 ID  
0.30  
0.18  
16X  
16  
13  
0.5  
0.3  
0.1  
C A B  
16X  
0.05  
4219118/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
SEE SOLDER MASK  
DETAIL  
16  
13  
16X (0.6)  
12  
16X (0.24)  
1
17  
SYMM  
(2.8)  
12X (0.5)  
(R0.05) TYP  
4
9
(
0.2) TYP  
VIA  
5
8
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219118/A 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
12X (0.5)  
(2.8)  
9
4
(R0.05) TYP  
5
8
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219118/A 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY