ADS8355IRTER [TI]

具有单端输入的 16 位 1MSPS 双通道同步采样 SAR ADC | RTE | 16 | -40 to 125;
ADS8355IRTER
型号: ADS8355IRTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有单端输入的 16 位 1MSPS 双通道同步采样 SAR ADC | RTE | 16 | -40 to 125

文件: 总44页 (文件大小:2202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
ADS8355  
双路、16 位、1MSPS、同步采样,模数转换器  
1 特性  
3 说明  
1
1MSPS 吞吐量、无延迟输出  
ADS8355 是一款双路高速同步采样模数转换器  
(ADC),可支持单端和伪差分模拟输入。  
两个通道同步采样  
支持单端和伪差分输入  
出色的直流和交流性能:  
该器件支持灵活的串行接口,可以在宽电源电压范围内  
正常工作。通过灵活的接口可以方便地与各种主机控制  
器通信。该系列器件支持两种低功耗模式,可针对给定  
输出优化功耗。该器件可在完整的扩展工业温度范围  
–40°C +125°C)内正常工作,并采用 16 引脚  
WQFN3mm × 3mm)封装。  
16 NMC DNL±1LSB INL  
88dB SNR–97dB THD  
双路、可编程  
2.5V 内部基准电压  
完整的扩展工业温度范围:–40°C +125°C  
器件信息(1)  
小型封装:  
WQFN-16 (3mm × 3mm)  
器件型号  
ADS8355  
封装  
WQFN (16)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
伺服驱动器位置反馈  
光学模块  
多功能继电器  
电能质量分析仪  
三相 UPS  
模拟输入模块  
典型方框图  
AVDD  
DVDD  
AINP_A  
AINM_A  
ADC A  
CS  
SCLK  
REFIO_A  
REFA  
REFB  
Serial  
Interface  
SDI  
SDO_A  
REFIO_B  
SDO_B  
AINP_B  
AINM_B  
ADC B  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS761  
 
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 21  
7.6 Register Map........................................................... 23  
Application and Implementation ........................ 28  
8.1 Application Information............................................ 28  
8.2 Typical Application .................................................. 30  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 8  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 19  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example .................................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 器件支持................................................................ 35  
11.2 文档支持................................................................ 35  
11.3 接收文档更新通知 ................................................. 35  
11.4 社区资源................................................................ 35  
11.5 ....................................................................... 35  
11.6 静电放电警告......................................................... 35  
11.7 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 35  
7
4 修订历史记录  
Changes from Original (February 2020) to Revision A  
Page  
Deleted AVDD supply condition and MIN MAX specification for internal reference. ............................................................. 6  
Deleted AVDD supply condition and MIN MAX specification for internal reference. ............................................................. 6  
2
Copyright © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
REFIO_A  
REFGND_A  
REFGND_B  
REFIO_B  
1
2
3
4
12  
11  
10  
9
SDO_B  
SDO_A  
SCLK  
CS  
Thermal  
Pad  
Not to scale  
Pin Functions  
NAME  
NO.  
16  
5
TYPE  
DESCRIPTION  
AINM_A  
AINM_B  
AINP_A  
AINP_B  
AVDD  
Analog input  
Analog input  
Analog input  
Analog input  
Power supply  
Digital input  
Negative analog input, channel A  
Negative analog input, channel B  
Positive analog input, channel A  
Positive analog input, channel B  
Supply voltage for ADC operation  
Chip-select signal; active low  
15  
6
14  
9
CS  
DVDD  
7
Digital I/O supply  
Power supply  
Power supply  
Power supply  
Analog input/output  
Analog input/output  
Digital input  
Digital I/O supply  
GND  
13  
2
Device ground  
REFGND_A  
REFGND_B  
REFIO_A  
REFIO_B  
SCLK  
Reference A ground  
3
Reference B ground  
1
Reference voltage input/output, channel A  
Reference voltage input/output, channel B  
Clock for serial communication  
Data input for serial communication  
Data output A for serial communication, channel A and channel B  
Data output B for serial communication, channel B  
4
10  
8
SDI  
Digital input  
SDO_A  
SDO_B  
11  
12  
Digital output  
Digital output  
Exposed thermal pad. TI recommends connecting this pin to the printed  
circuit board (PCB) ground.  
Thermal pad  
Power supply  
Copyright © 2020, Texas Instruments Incorporated  
3
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
AVDD to REFGND_x(2) or GND  
DVDD to GND  
6
6
V
V
Analog (AINP_x and AINM_x)(3) and reference input  
REFGND_x – 0.3  
AVDD + 0.3  
V
(REFIO_x) voltage with respect to REFGND_x  
Digital input voltage with respect to GND  
REFGND_x  
GND – 0.3  
GND – 0.3  
–10  
DVDD + 0.3  
GND + 0.3  
10  
V
V
Input current to any pin except supply pins  
Junction temperature, TJ  
mA  
°C  
°C  
–40  
125  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) REFGND_x refers to REFGND_A and REFGND_B. REFIO_x refers to REFIO_A and REFIO_B.  
(3) AINP_x refers AINP_A and AINP_B. AINM_x refers to AINM_A and AINM_B.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2020, Texas Instruments Incorporated  
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VREF range, internal reference  
4.5  
4.5  
5
5
5.5  
5.5  
VREF range, external reference VREF < 4.5 V  
VREF range, external reference VREF > 4.5 V  
2 x VREF range, internal reference  
Analog supply voltage  
(AVDD to AGND)  
AVDD  
VREF  
5
5
5.5  
5.5  
5.5  
5.5  
V
V
5
2 x VREF range, external reference  
2 x VREF  
1.65  
5
DVDD  
Digital supply voltage  
3.3  
ANALOG INPUTS (Single-Ended Configuration)  
VREF range  
0
0
0
VREF  
2 x VREF  
VREF  
Full-scale input range  
(AINP_x to AINM_x)(1)  
FSR  
VINP  
V
V
2 x VREF range  
Absolute input voltage VREF range  
(AINP_x to  
REFGND_x)(2)  
2 x VREF range, AVDD 2 x VREF  
0
2 x VREF  
Absolute input voltage  
(AINM_x to  
VINM  
–0.1  
0.1  
V
REFGND_x)  
ANALOG INPUTS (Pseudo-Differential Configuration)  
VREF range  
–VREF / 2  
–VREF  
0
VREF / 2  
VREF  
Full-scale input range  
(AINP_x to AINM_x)(1)  
FSR  
VINP  
V
V
2 x VREF range  
Absolute input voltage VREF range  
(AINP_x to  
VREF  
2 x VREF range  
REFGND_x)  
0
2 x VREF  
VREF / 2 –  
0.1  
VREF / 2 +  
0.1  
VREF range  
VREF / 2  
VREF  
Absolute input voltage  
(AINM_x -REFGND_x)  
VINM  
V
2 x VREF range  
VREF – 0.1  
VREF + 0.1  
EXTERNAL REFERENCE INPUT  
REFIO_x(3) input  
VREF range  
2.4  
2.4  
2.5  
2.5  
AVDD  
VREFIO  
voltage  
V
2 x VREF range  
AVDD / 2  
TEMPERATURE RANGE  
TA  
Ambient temperature  
–40  
25  
125  
°C  
(1) AINP_x refers to analog input pins AINP_A and AINP_B. AINM_x refers to analog input pins AINM_A and AINM_B.  
(2) REFGND_x refers to reference ground pins REFGND_A and REFGND_B.  
(3) REFIO_x refers to voltage reference inputs REFIO_A and REFIO_B.  
Copyright © 2020, Texas Instruments Incorporated  
5
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
6.4 Thermal Information  
ADS8355  
RTE (WQFN)  
16 PINS  
33.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.5  
7.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
YJB  
7.4  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 2.35 V to 5.5 V, VREFIO_A = VREFIO_B = 5 V (external) and fSAMPLE = 1 MSPS (unless otherwise noted);  
minimum and maximum values at TA = –40°C to 125°C; typical values are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RESOLUTION  
Resolution  
16  
Bits  
Bits  
DC ACCURACY  
NMC  
No missing codes  
16  
–3  
±1  
±1  
3
INL  
Integral nonlinearity  
LSB  
VREF input range, internal VREF  
2.5 V  
=
=
–0.99  
±0.5  
±0.5  
0.99  
LSB  
DNL  
Differential nonlinearity  
VREF input range, internal VREF  
2.5 V  
Input offset error  
EIO match  
–1  
–1  
±0.5  
±0.5  
1
1
EIO  
mV  
1
ADC_A to ADC_B  
dEIO/dT  
Input offset thermal drift  
µV/°C  
Referenced to the voltage at  
REFIO_x  
Gain error  
–0.1  
–0.1  
±0.05  
±0.05  
±1  
0.1  
EG  
%FS  
EG match  
ADC_A to ADC_B  
0.1  
Referenced to the voltage at  
REFIO_x  
dEG/dT  
Gain error thermal drift  
ppm/°C  
AC ACCURACY  
VREF input range  
86  
88  
84  
AVDD = 3.3 V, VREF input range,  
internal VREF = 2.5 V  
SNR  
THD  
Signal-to-noise ratio  
dB  
dB  
VREF = 2.5 V internal / external, 2 x  
VREF input range  
84  
–97  
–97  
VREF input range  
AVDD = 3.3 V, VREF input range,  
Total harmonic distortion internal VREF = 2.5 V  
VREF = 2.5 V internal/external, 2 x  
VREF input range  
–97  
6
Copyright © 2020, Texas Instruments Incorporated  
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Electrical Characteristics (continued)  
at AVDD = 5 V, DVDD = 2.35 V to 5.5 V, VREFIO_A = VREFIO_B = 5 V (external) and fSAMPLE = 1 MSPS (unless otherwise noted);  
minimum and maximum values at TA = –40°C to 125°C; typical values are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VREF input range  
MIN  
TYP  
MAX UNIT  
87.5  
AVDD = 3.3 V, VREF input range,  
internal VREF = 2.5 V  
Signal-to-noise +  
distortion  
83  
SINAD  
SFDR  
dB  
VREF = 2.5 V internal / external, 2 x  
VREF input range  
83  
100  
100  
VREF input range  
AVDD = 3.3 V, VREF input range,  
internal VREF = 2.5 V  
Spurious-free dynamic  
range  
dB  
VREF = 2.5 V internal/external, 2 x  
VREF input range  
100  
ANALOG INPUTS  
In sample mode  
In hold mode  
40  
4
Ci  
Input capacitance  
pF  
µA  
Ilkg  
Input leakage current  
0.1  
INTERNAL VOLTAGE REFERENCE  
VREFIO_x  
Reference output voltage REFDAC_x = 1FFh at 25°C  
2.5  
±3  
V
VREF_A to VREF_B  
REFDAC_x = 1FFh at 25°C  
matching  
VREF-match  
mV  
Reference output  
capacitor  
CREFIO  
tREFON  
10  
8
µF  
Reference output settling  
time  
ms  
VOLTAGE REFERENCE INPUT  
Average reference input  
current  
IREF  
Per ADC  
300  
µA  
External reference  
capacitor  
CREF  
10  
µF  
µA  
Ilkg(dc)  
DC leakage current  
±0.1  
SAMPLING DYNAMICS  
tA  
Aperture delay  
8
40  
50  
ns  
ps  
ps  
tA match  
ADC_A to ADC_B  
tAJIT  
Aperture jitter  
DIGITAL INPUTS  
DVDD 2.35 V  
DVDD < 2.35 V  
DVDD 2.35 V  
DVDD < 2.35 V  
0.7 x DVDD  
0.8 x DVDD  
–0.3  
DVDD + 0.3  
(1)  
VIH  
High-level input voltage  
V
DVDD + 0.3  
0.3 x DVDD  
0.2 x DVDD  
(1)  
VIL  
Low-level input voltage  
Input current  
V
–0.3  
±10  
nA  
DIGITAL OUTPUTS  
(1)  
VOH  
High-level output voltage IOH = 500-µA source  
Low-level output voltage IOL = 500-µA sink  
0.8 x DVDD  
0
DVDD  
V
V
(1)  
VOL  
0.2 x DVDD  
(1) Specified by design.  
Copyright © 2020, Texas Instruments Incorporated  
7
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
at AVDD = 5 V, DVDD = 2.35 V to 5.5 V, VREFIO_A = VREFIO_B = 5 V (external) and fSAMPLE = 1 MSPS (unless otherwise noted);  
minimum and maximum values at TA = –40°C to 125°C; typical values are at TA = 25°C  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
11  
12  
13  
AVDD = 5 V, internal reference  
AVDD = 5V, no conversion internal  
reference  
8
7
AVDD = 5 V, no conversion  
external reference(2)  
mA  
AIDD  
Analog supply current  
AVDD = 5 V, STANDBY mode  
internal reference  
2.5  
1
AVDD = 5 V, STANDBY mode  
external reference(2)  
Power-down mode  
10  
0.5  
1
50  
µA  
DVDD = 3.3 V, Cload = 10 pF  
DVDD = 5 V, Cload = 10 pF  
DIDD  
Digital supply current  
mA  
(2) With internal reference powered down, REF_SEL = 1.  
6.6 Timing Requirements  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C.  
MIN  
1
NOM  
MAX  
UNIT  
DVDD 2.35 V  
tCYCLE  
Cycle time  
µs  
1.65 V < DVDD < 2.35 V  
DVDD 2.35 V  
1.5  
50  
24  
fCLK  
Serial clock frequency  
Serial clock time period  
MHz  
ns  
1.65 V < DVDD < 2.35 V  
DVDD 2.35 V  
20  
42  
tCLK  
1.65 V < DVDD < 2.35 V  
tPH_CK  
tPL_CK  
tACQ  
Clock high time  
Clock low time  
0.45  
0.45  
350  
40  
0.55  
0.55  
tCLK  
tCLK  
ns  
Acquisition time  
CS high time, NOP  
tPH_CS  
ns  
DVDD 2.35 V  
12  
Setup time: CS falling edge to SCLK  
falling edge  
tSU_CSCK  
ns  
1.65 V < DVDD < 2.35 V  
20  
Delay time: Last SCLK falling edge to CS  
rising edge  
tD_CKCS  
tSU_CKDI  
tHT_CKDI  
12  
2
ns  
ns  
ns  
Setup time: DIN data valid to SCLK  
falling edge  
Hold time: SCLK falling edge to  
(previous) data valid on DIN  
2
8
Copyright © 2020, Texas Instruments Incorporated  
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
6.7 Switching Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tCONV  
Conversion time  
650  
ns  
Delay time: CS falling edge to data  
enable  
DVDD 2.35 V  
14.5  
14.5  
31  
tDEN_CSDO  
ns  
ns  
ns  
Delay time: CS falling edge to data  
enable  
1.65 V < DVDD < 2.35 V  
DVDD 2.35 V  
Delay time: CS rising edge to data going  
to 3-state  
tDZ_CSDO  
Delay time: CS rising edge to data going  
to 3-state  
1.65 V < DVDD < 2.35 V  
DVDD 2.35 V  
37  
Delay time: SCLK falling edge to next  
data valid  
19.5  
19.5  
tD_CKDO  
Delay time: SCLK falling edge to next  
data valid  
1.65 V < DVDD < 2.35 V  
1 shows the details of the serial interface between the device and the digital host controller.  
Sample  
N+1  
Sample  
N
tCYCLE  
tCONV  
tACQ  
tPH_CS  
tCLK  
CS  
tD_CKCS  
tPH_CK  
SCLK  
1
2
14  
15  
16  
tSU_CSCK  
tDZ_CSDO  
tPL_CK  
tDEN_CSDO  
tD_CKDO  
D0  
SDO_A  
SDO_B  
D14  
D2  
D1  
D15  
Data from sample N  
tHT_CKDI  
tSU_CKDI  
SDI  
DMSB  
1. Serial interface Timing Diagram  
版权 © 2020, Texas Instruments Incorporated  
9
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (external), and fDATA = 1 MSPS (unless otherwise noted)  
0
-40  
0
-40  
-80  
-80  
-120  
-160  
-200  
-120  
-160  
-200  
0
100  
200 300  
Frequency (kHz)  
400  
500  
0
100  
200 300  
Frequency (kHz)  
400  
500  
D001  
D002  
fIN = 2 kHz, SNR = 91.27 dB, THD = –96.78 dB  
fIN = 2 kHz, SNR = 91.31 dB, THD = –96.04 dB  
2. Typical FFT ADC A  
3. Typical FFT ADC B  
93  
92  
92.6  
91.6  
92.2  
91.8  
91.4  
91  
91.2  
90.8  
90.4  
90  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
D003  
D004  
fIN = 2 kHz  
fIN = 2 kHz  
4. SNR vs Free-Air Temperature  
5. SINAD vs Free-Air Temperature  
-97  
-97.4  
-97.8  
-98.2  
-98.6  
-99  
95  
93  
91  
89  
87  
85  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
2
3
4
Reference Voltage (V)  
5
6
D005  
D006  
fIN = 2 kHz  
fIN = 2 kHz  
6. THD vs Free-Air Temperature  
7. SNR vs Reference Voltage  
10  
版权 © 2020, Texas Instruments Incorporated  
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (external), and fDATA = 1 MSPS (unless otherwise noted)  
-96  
95  
93  
91  
89  
87  
85  
-97  
-98  
-99  
-100  
-101  
2
3
4
Reference Voltage (V)  
5
6
2
3
4
Reference Voltage (V)  
5
6
D007  
D008  
fIN = 2 kHz  
fIN = 2 kHz  
8. SINAD vs Reference Voltage  
9. THD vs Reference Voltage  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
50000  
40000  
30000  
20000  
10000  
0
32765 32766 32767 32768 32769 32770 32771  
Output Codes  
-50  
0
50  
Free-Air Temperature (°C)  
100  
140  
D009  
D010  
Number of samples = 65536, standard deviation = 0.59  
VREFIO_x = 2.5 V  
10. DC Histogram  
11. Internal Reference vs Free-Air Temperature  
1
0.1  
0.6  
0.2  
-0.2  
-0.6  
-1  
0.06  
0.02  
-0.02  
-0.06  
-0.1  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
D011  
D012  
12. Offset Error vs Free-Air Temperature  
13. Gain Error vs Free-Air Temperature  
版权 © 2020, Texas Instruments Incorporated  
11  
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (external), and fDATA = 1 MSPS (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0
16384  
32768  
Codes  
49152  
65536  
0
16384  
32768  
Codes  
49152  
65536  
D013  
D014  
14. Differential Nonlinearity ADC A  
15. Differential Nonlinearity ADC B  
3
1.8  
0.6  
-0.6  
-1.8  
-3  
3
1.8  
0.6  
-0.6  
-1.8  
-3  
0
16384  
32768  
Codes  
49152  
65536  
0
16384  
32768  
Codes  
49152  
65536  
D015  
D016  
16. Integral Nonlinearity ADC A  
17. Integral Nonlinearity ADC B  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
3
1.8  
0.6  
-0.6  
-1.8  
-3  
DNL min  
DNL max  
INL min  
INL max  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
D017  
D018  
18. Differential Nonlinearity vs Free-Air Temperature  
19. Integral Nonlinearity vs Free-Air Temperature  
12  
版权 © 2020, Texas Instruments Incorporated  
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (external), and fDATA = 1 MSPS (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
3
1.8  
0.6  
-0.6  
-1.8  
-3  
DNL min  
DNL max  
INL min  
INL max  
2
3
4
Reference Voltage (V)  
5
6
2
3
4
Reference Voltage (V)  
5
6
D019  
D020  
20. Differential Nonlinearity vs Reference Voltage  
21. Integral Nonlinearity vs Reference Voltage  
12  
14  
AVDD = 3.3 V  
AVDD = 5 V  
AVDD = 3.3 V  
AVDD = 5 V  
11.2  
13.2  
12.4  
11.6  
10.8  
10  
10.4  
9.6  
8.8  
8
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
0
10  
20 30  
SCLK Freq (MHz)  
40  
50  
D021  
D022  
22. Analog Supply Current vs Free-Air Temperature  
23. Analog Supply Current vs SCLK Frequency  
版权 © 2020, Texas Instruments Incorporated  
13  
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS8355 is a 16-bit, 1-MSPS, dual, simultaneous-sampling, analog-to-digital converter (ADC) with an  
integrated programmable reference. The ADS8355 supports single-ended and pseudo-differential input signals.  
The device provides a simple, serial interface to the host controller and operates over a wide range of analog  
and digital power supplies.  
7.2 Functional Block Diagram  
AVDD  
DVDD  
AINP_A  
AINM_A  
ADC A  
CS  
SCLK  
REFIO_A  
REFA  
REFB  
Serial  
Interface  
SDI  
SDO_A  
REFIO_B  
SDO_B  
AINP_B  
AINM_B  
ADC B  
GND  
7.3 Feature Description  
7.3.1 Reference  
The device has two simultaneous sampling ADCs: ADC_A and ADC_B. ADC_A and ADC_B operate with  
reference voltages VREF_A and VREF_B present on the REFIO_A and REFIO_B pins, respectively. Decouple the  
REFIO_A and REFIO_B pins with the REFGND_A and REFGND_B pins, respectively, with 10-µF decoupling  
capacitors.  
As illustrated in 24, the device supports operation either with an internal or external reference source. The  
reference voltage source is determined by programming the INT_EXT bit of the REF_SEL register. This bit is  
common to ADC_A and ADC_B.  
14  
版权 © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Feature Description (接下页)  
AINP_A  
ADC_A  
AINM_A  
REFGND_A  
SW  
REFDAC_A  
10 µF  
REFIO_A  
REFIO_B  
Enable  
REF_SEL.B0  
INTREF  
10 µF  
REFDAC_B  
REFGND_B  
AINP_B  
ADC_B  
AINM_B  
24. Reference Configurations and Connections  
The default value of the REF_SEL register bit INT_EXT is set to 0. The device ADC_A and ADC_B operate with  
the external reference voltages provided on the REFIO_A and REFIO_B pins, respectively.  
When the REF_SEL register bit INT_EXT is set to 1, the device operates with the internal reference source  
connected to REFIO_A and REFIO_B. The individual reference voltages can be set independently by  
programming the REFDAC_A and REFDAC_B values, respectively. For a 2.5-V internal reference, program  
REFDAC_x with a 0x1FF value..  
25 shows a typical transfer function for the internal REFDAC when the internal reference is enabled.  
2.6  
2.4  
2.2  
2
1.8  
0
128  
256  
REFDAC_x Code  
384  
512  
D023  
25. REFDAC Transfer Function  
7.3.2 Analog Inputs  
The ADS8355 supports single-ended or pseudo-differential analog input signals on both ADC channels. These  
inputs are sampled and converted simultaneously by the two ADCs, ADC_A and ADC_B. ADC_A samples and  
converts (VAINP_A – VAINM_A), and ADC_B samples and converts (VAINP_B – VAINM_B).  
26 depicts equivalent circuits for the ADC_A and ADC_B analog input pins. Series resistance, RS, represents  
the on-state sampling switch resistance (typically 50 Ω) and CSAMPLE is the device sampling capacitor (typically  
40 pF).  
版权 © 2020, Texas Instruments Incorporated  
15  
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINP_A  
AINP_B  
GND  
GND  
AVDD  
AVDD  
RS CSAMPLE  
RS CSAMPLE  
AINM_A  
AINM_B  
GND  
GND  
a) ADC_A  
b) ADC_B  
26. Equivalent Circuit for the Analog Input Pins  
7.3.2.1 Analog Input: Full-Scale Range Selection  
The full-scale range (FSR) supported at the analog inputs of the device is programmable with the RANGE_SEL  
bit of the INPUT_CONFIG register. The RANGE_SEL bit has a default value of low. This bit is common for both  
ADCs (ADC_A and ADC_B). 公式 1 and 公式 2 give the FSR.  
RANGE_SEL = 0, FSR_ADC_A = 0 to VREF_A and FSR_ADC_B = 0 to VREF_B  
(1)  
(2)  
For RANGE_SEL = 1, FSR_ADC_A = 0 to 2 × VREF_A and FSR_ADC_B = 0 to 2 × VREF_B  
VREF_A and VREF_B are the reference voltages going to ADC_A and ADC_B, respectively (as described in the  
Reference section).  
When operating with internal reference mode, the maximum dynamic range of the ADC can be used by  
programming the appropriate setting for the INPUT_CONFIG and REFDAC_x registers.  
Ensure that the ADC analog supply (AVDD) meets the criteria defined in 公式 3 and 公式 4 when the  
RANGE_SEL bit is set to 1.  
2 × VREF_A AVDD AVDD(max)  
2 × VREF_B AVDD AVDD(max)  
(3)  
(4)  
7.3.2.2 Analog Input: Single-Ended and Pseudo-Differential Configurations  
The ADS8355 can support single-ended or pseudo-differential input configuration. The device operates in single-  
ended configuration by default.  
The AINM_SEL bit in the INPUT_CONFIG register determines the input configuration used for the input pins.  
The selection is common for both input channels.  
Program the AINM_SEL pin to logic low to operate the device in single-ended input configuration. Connect the  
AINM_A and AINM_B inputs to GND.  
Program the AINM_SEL pin to logic high to operate the device in pseudo-differential input configuration. Connect  
the AINM_A and AINM_B inputs to a voltage equivalent to FSR_ADC_A / 2 and FSR_ADC_B / 2, respectively.  
1 summarizes the analog input pin connections based on the various user settings.  
16  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Feature Description (接下页)  
1. Input Configurations and Connections  
INPUT RANGE  
SELECTION  
RANGE_SEL  
INPUT CONFIGURATION SELECTION  
AINP_X  
AINM_X  
AINM_SEL  
Input signal range 0  
to VREF_X  
0
1
0
1
0
0
1
1
Connect to GND  
Connect to GND  
Input signal range 0  
to 2 X VREF_X  
Input signal range 0  
to VREF_X  
Connect to VREF_X / 2  
Connect to VREF_X  
Input signal range 0  
to 2 X VREF_X  
7.3.3 Transfer Function  
The device supports two input configurations:  
1. Default, single-ended inputs, INPUT_CONFIG register bit 0 = 0  
2. Pseudo-differential inputs, INPUT_CONFIG register bit 0 = 1  
The device supports two output data formats:  
1. Default, straight binary output, DATA_OUT_CTRL register bit 0 = 0  
2. Two's compliment output, DATA_OUT_CTRL register bit 0 = 1  
公式 5 calculates the device resolution:  
1 LSB = (FSR_ADC_x) / (2N)  
where:  
N = 16 and  
FSR_ADC_x is the full-scale input range of the ADC  
(5)  
2 and 3 show the different input voltages and the corresponding output codes from the device.  
2. Transfer Characteristics for Straight Binary Output (Default)  
OUTPUT CODE (Hex)  
STRAIGHT BINARY  
INPUT VOLTAGE  
AINM_x  
INPUT  
CONFIGURATION  
AINP_x  
1 LSB  
AINP_x - AINM_x  
1 LSB  
CODE  
ADS8355  
0000  
ZC  
MC  
FSC  
ZC  
Single-ended  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
1 LSB  
0
FSR_ADC_x / 2  
7FFF  
FSR_ADC_x – 1 LSB  
–FSR_ADC_x / 2 + 1 LSB  
0
FFFF  
0000  
Pseudo-differential  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
FSR_ADC_x / 2  
MC  
FSC  
7FFF  
FSR_ADC_x / 2 – 1 LSB  
FFFF  
3. Transfer Characteristics for Twos Compliment Output  
OUTPUT CODE (Hex)  
TWO'S COMPLIMENT  
INPUT VOLTAGE  
INPUT  
CONFIGURATION  
AINP_x  
1 LSB  
AINM_x  
AINP_x - AINM_x  
1 LSB  
CODE  
ADS8355  
8000  
NFSC  
MC  
Single-ended  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
1 LSB  
0
FSR_ADC_x / 2  
0000  
FSR_ADC_x – 1 LSB  
–FSR_ADC_x / 2 + 1 LSB  
0
PFSC  
NFSC  
MC  
7FFF  
8000  
Pseudo-differential  
FSR_ADC_x / 2  
FSR_ADC_x – 1 LSB  
FSR_ADC_x / 2  
0000  
FSR_ADC_x / 2 – 1 LSB  
PFSC  
7FFF  
版权 © 2020, Texas Instruments Incorporated  
17  
 
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
27 shows the ideal device transfer characteristics for the single-ended analog input.  
FSC  
PFSC  
MC  
MC  
NFSC  
ZC  
1 LSB  
FSR_ADC_x/2  
FSR_ADC_x œ 1 LSB  
Single-Ended Analog Input  
(AINP_x œ AINM_x)  
27. Ideal Transfer Characteristics for a Single-Ended Analog Input  
28 shows the ideal device transfer characteristics for the pseudo-differential analog input.  
FSC  
PFSC  
-FSR_ADC_x/2 + 1 LSB  
MC  
MC  
FSR_ADC_x/2 œ 1 LSB  
ZC  
NFSC  
Psuedo-Differential Analog Input  
(AINP_x œ AINM_x)  
28. Ideal Transfer Characteristics for a Pseudo-Differential Analog Input  
18  
版权 © 2020, Texas Instruments Incorporated  
 
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
7.4 Device Functional Modes  
7.4.1 Conversion Data Read: Dual-SDO Mode (Default)  
The dual-SDO mode is designed to support the maximum throughput at lower SCLK frequencies.  
The single-SDO mode is enabled by programming the SDO_MODE bit in the SDO_CTRL register to logic low. In  
this mode, the SDO_A pin outputs the ADC_A conversion result and the SDO_B pin outputs the ADC_B  
conversion result. 29 shows a detailed timing diagram for this mode.  
CS  
SCLK  
1
2
14  
15  
16  
D14  
SDO_A  
SDO_B  
D2  
D1  
D0  
D15  
Data from ADC A  
D14  
D2  
D1  
D0  
D15  
Data from ADC B  
29. Dual-SDO Mode Timing Diagram  
A CS rising edge forces SDO_x to tri-state. CS also samples the input signal and causes the device to enter  
conversion phase. Conversion is done with the internal clock. CS and SCLK must remain high for a minimum  
time of tCONV. A CS falling edge brings the serial data bus out of tri-state and the device outputs the MSB of the  
data. The lower data bits are output on the subsequent SCLK falling edges. SDO_A and SDO_B go low after the  
16th SCLK falling edge. The SDO_x signals remain low until the CS signal is pulled high.  
版权 © 2020, Texas Instruments Incorporated  
19  
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.2 Conversion Data Read: Single-SDO Mode  
The single-SDO mode is designed to support operation with a wide variety of hosts that can support only one  
master in, slave out (MISO) signal for the SPI interface. The maximum throughput is limited based on the SCLK  
frequency supported by the host.  
The single-SDO mode is enabled by programming the SDO_MODE bit in the SDO_CTRL register to logic high.  
In this mode, the SDO_A pin outputs the conversion results for ADC_A followed by ADC_B. 30 shows a  
detailed timing diagram for this mode.  
CS  
SCLK  
1
2
18  
15  
16  
17  
31  
32  
D14  
D14  
SDO_A  
D1  
D1  
D0  
D15  
D0  
D15  
Data from ADC A  
Data from ADC B  
30. Single-SDO Mode Timing Diagram  
A CS rising edge forces SDO_x to tri-state. CS also samples the input signal and causes the device to enter  
conversion phase. Conversion is done with the internal clock. CS and SCLK must remain high for a minimum  
time of tCONV. A CS falling edge brings the serial data bus out of tri-state and the device outputs the MSB of the  
ADC_A conversion result. The lower data bits are output on the subsequent SCLK falling edges. After ADC_A,  
the device outputs the ADC_B conversion result starting from 17th falling edge of SCLK. SDO_A drives the  
output line to a zero logic level after 32nd falling edge of SCLK. SDO_A remains low until the CS signal is pulled  
high. SDO_B is driven low when the SPI interface is active in single-SDO mode.  
7.4.3 Low-Power Modes  
In normal mode of operation, all internal circuits of the device are always powered up and the device is ready to  
commence a new conversion when CS is pulled high. The device also supports two low-power modes to  
optimize the power consumption at lower throughput or when the device is not expected to perform conversions.  
7.4.3.1 STANDBY Mode  
The device supports a standby mode of operation where the ADCs and the internal oscillator are powered down  
to save power. The internal reference, if already enabled, stays enabled and the contents of the REFDAC_A and  
REFDAC_B registers are retained to enable faster power-up to a normal mode of operation.  
Standby mode is enabled by programming the PD_KEY register with 0x09h followed by setting the STANDBY bit  
in the PD_STANDBY register with logic high. See the Register Map section for the register setting information.  
See the Register Read/Write Operation section for timing information for register access.  
Standby mode is disabled by programming the PD_KEY register with 0x09h followed by setting the STANDBY bit  
in the PD_STANDBY register with logic low. After existing standby mode, a delay of 10 µs must elapse for the  
internal circuits to power up and resume normal operation.  
7.4.3.2 PD (Power-Down) Mode  
The device supports a PD (power-down) mode of operation where all internal blocks except the interface and I/O  
are powered down to save power.  
PD mode is enabled by programming the PD_KEY register with 0x09h followed by setting the PD_EN bit in the  
PD_STANDBY register with logic high. See the Register Map section for the register setting information. See the  
Register Read/Write Operation section for timing information for register access.  
20  
版权 © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Device Functional Modes (接下页)  
PD mode is disabled by programming the PD_KEY register with 0x09h followed by setting the PD_EN bit in the  
PD_STANDBY register with logic low. After exiting PD mode, a delay of 1 ms must elapse with the external  
reference mode and 3 ms must elapse with the internal reference mode for the internal circuits to power up and  
resume normal operation.  
7.5 Programming  
7.5.1 Register Read/Write Operation  
This device features configuration registers and supports the commands listed in 4 to access the internal  
configuration registers.  
4. Supported Commands  
COMMAND  
ACRONYM  
B[19:16]  
B[15:8]  
B[7:0]  
COMMAND DESCRIPTION  
No operation. Next frame provides the ADC conversion result  
output on the SDO_X lines.  
0000  
00000000000  
00000000  
NOP  
0001  
0010  
<8-bit address>  
<8-bit address>  
<8-bit data>  
00000000  
WR_REG  
RD_REG  
Write <8-bit data> to the <8-bit address>  
Read contents from the <8-bit address>  
<8-bit  
unmasked bits>  
0011  
0100  
<8-bit address>  
<8-bit address>  
xxxxxxxxx  
SET_BITS  
CLR_BITS  
Reserved  
Set <8-bit unmasked bits> from <8-bit address>  
Clear <8-bit unmasked bits> from <8-bit address>  
<8-bit  
unmasked bits>  
Remaining  
combinations  
These commands are reserved and treated by the device as no  
operation.  
xxxxxxxx  
The ADS8355 supports two types of data transfer operations: data write (the host controller configures the  
device), and data read (the host controller reads data from the device).  
Any data write to the device is always synchronous to the external clock provided on the SCLK pin. The  
WR_REG command writes the 8-bit data into the 8-bit address specified in the command string. The CLR_BITS  
command clears the specified bits (identified by 1) at the 8-bit address (without affecting the other bits), and the  
SET_BITS command sets the specified bits (identified by 1) at the 8-bit address (without affecting the other bits).  
31 shows the digital waveform for a register read operation. A register read operation consists of two frames:  
one frame to initiate a register read and a second frame to read data from the register address provided in the  
first frame. As shown in 31, the 8-bit register address and the 8-bit dummy data are sent over the SDI pin  
during the first 20-bit frame with the read command (0010b). The 20-bit command information is right-aligned  
with the frame. If a command frame is smaller than 20 bits, the contents of the command are discarded. If a  
frame has more than 20 bits, the last 20 bits are used to decode the operation. When CS goes from low to high,  
this read command is decoded and the requested register data are available for reading during the next frame.  
During the second frame, the first eight bits on SDO_A correspond to the requested register read. During the  
second frame, SDI can be used to initiate another operation or can be set to 0.  
CS  
SCLK  
18  
18  
1
2
5
6
7
16  
17  
20  
1
2
5
6
7
16  
17  
20  
Optional; Can set SDI = 0  
8-bit Address  
0010b  
(RD_REG)  
SDI  
8-bit Address  
0000 0000b  
Command  
8-bit Data  
SDO_A  
8-bit Register Data  
31. Register Read Operation  
版权 © 2020, Texas Instruments Incorporated  
21  
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
32 shows that for writing data to the register, one 20-bit frame is required. The frame contents are right-  
aligned. If a command frame is smaller than 20 bits, the contents of the command are discarded. If a frame has  
more than 20 bits, the last 20 bits are used to decode the operation. The 20-bit data on SDI consists of a 4-bit  
write command (0001b), set bit command (0011b), or clear bit command (0100b), an 8-bit register address, and  
8-bit data. The write command is decoded on the CS rising edge and the specified register is updated with the 8-  
bit data specified during the register write operation.  
CS  
SCLK  
18  
1
2
5
6
7
16  
17  
20  
0001b  
(WR_REG)  
SDI  
8-bit Address  
8-bit Data  
32. Register Write Operation  
22  
版权 © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
7.6 Register Map  
7.6.1 ADS8355 Registers  
Table 5 lists the ADS8355 registers. All register offset addresses not listed in Table 5 should be considered as  
reserved locations and the register contents should not be modified.  
Table 5. ADS8355 Registers  
Offset  
Acronym  
Register Name  
Section  
4h  
PD_STANDBY  
Power down configuration register  
PD_STANDBY  
Register (Offset =  
4h) [reset = 0h]  
5h  
Dh  
PD_KEY  
Power down key register  
SDO mode selection register  
Output data format register  
PD_KEY Register  
(Offset = 5h)  
[reset = 0h]  
SDO_CTRL  
SDO_CTRL  
Register (Offset =  
Dh) [reset = 0h]  
11h  
DATA_OUT_CTRL  
DATA_OUT_CTR  
L Register (Offset  
= 11h) [reset =  
0h]  
20h  
24h  
25h  
26h  
27h  
28h  
REF_SEL  
ADC reference selection register  
REF_SEL  
Register (Offset =  
20h) [reset = 0h]  
REFDAC_A_LSB  
REFDAC_A_MSB  
REFDAC_B_LSB  
REFDAC_B_MSB  
INPUT_CONFIG  
REFDACA configuration register (LSB)  
REFDACA configuration register (MSB)  
REFDACB configuration register (LSB)  
REFDACB configuration register (MSB)  
Analog input configuration register  
REFDAC_A_LSB  
Register (Offset =  
24h) [reset = 0h]  
REFDAC_A_MSB  
Register (Offset =  
25h) [reset = 0h]  
REFDAC_B_LSB  
Register (Offset =  
26h) [reset = 0h]  
REFDAC_B_MSB  
Register (Offset =  
27h) [reset = 0h]  
INPUT_CONFIG  
Register (Offset =  
28h) [reset = 0h]  
Complex bit access types are encoded to fit into small table cells. Table 6 shows the codes that are used for  
access types in this section.  
Table 6. ADS8355 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
Copyright © 2020, Texas Instruments Incorporated  
23  
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 6. ADS8355 Access Type Codes (continued)  
Access Type  
Code  
Description  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups form  
a hierarchical structure and the  
array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
7.6.1.1 PD_STANDBY Register (Offset = 4h) [reset = 0h]  
PD_STANDBY is shown in Figure 33 and described in Table 7.  
Return to the Summary Table.  
Power down configuration register  
Figure 33. PD_STANDBY Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
STANDBY  
R/W-0b  
PD_EN  
R/W-0b  
RESERVED  
R-0b  
Table 7. PD_STANDBY Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00000b  
0b  
Description  
7-3  
2
RESERVED  
STANDBY  
R/W  
This bit enables partial powerdown of ADCs and internal oscillator ,  
all other blocks are active  
0b = Disable partial power down  
1b = Enable partial power down  
1
0
PD_EN  
R/W  
R
0b  
0b  
This bit enables all blocks to powerdown except the interface and IO  
0b = Disable power down  
1b = Enable power down  
RESERVED  
7.6.1.2 PD_KEY Register (Offset = 5h) [reset = 0h]  
PD_KEY is shown in Figure 34 and described in Table 8.  
Return to the Summary Table.  
Power down key register  
Figure 34. PD_KEY Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
PD_WKEY[3:0]  
R/W-0000b  
Table 8. PD_KEY Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000b  
0000b  
Description  
7-4  
3-0  
RESERVED  
PD_WKEY[3:0]  
R/W  
Writing 1001 to these bits enable register write operation to  
PD_STANDBY register.  
24  
Copyright © 2020, Texas Instruments Incorporated  
 
 
 
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
7.6.1.3 SDO_CTRL Register (Offset = Dh) [reset = 0h]  
SDO_CTRL is shown in Figure 35 and described in Table 9.  
Return to the Summary Table.  
SDO mode selection register  
Figure 35. SDO_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
SDO_MODE  
R/W-0b  
Table 9. SDO_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
SDO_MODE  
R/W  
This bit selects ADC to output data in either single SDO or Dual  
SDO mode.  
0b = data out on both SDO_A and SDO_B  
1b = data out on SDO_A only  
7.6.1.4 DATA_OUT_CTRL Register (Offset = 11h) [reset = 0h]  
DATA_OUT_CTRL is shown in Figure 36 and described in Table 10.  
Return to the Summary Table.  
Output data format register  
Figure 36. DATA_OUT_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
OP_DATA_FO  
RMAT  
R-0000000b  
R/W-0b  
Table 10. DATA_OUT_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
OP_DATA_FORMAT  
R/W  
This bit selects ADC output data format.  
0b = Straight Binary format  
1b = 2's complements format  
7.6.1.5 REF_SEL Register (Offset = 20h) [reset = 0h]  
REF_SEL is shown in Figure 37 and described in Table 11.  
Return to the Summary Table.  
ADC reference selection register  
Figure 37. REF_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
INT_EXT  
R/W-0b  
Copyright © 2020, Texas Instruments Incorporated  
25  
 
 
 
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 11. REF_SEL Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0000000b  
0b  
Description  
RESERVED  
INT_EXT  
R/W  
This bit selects ADC reference source.  
0b = Device uses external reference for ADC conversion  
1b = Device uses internal reference for ADC conversion  
7.6.1.6 REFDAC_A_LSB Register (Offset = 24h) [reset = 0h]  
REFDAC_A_LSB is shown in Figure 38 and described in Table 12.  
Return to the Summary Table.  
REFDACA configuration register (LSB)  
Figure 38. REFDAC_A_LSB Register  
7
6
5
4
3
2
1
0
REFDAC_A_LSB[7:0]  
R/W-00000000b  
Table 12. REFDAC_A_LSB Register Field Descriptions  
Bit  
7-0  
Field  
REFDAC_A_LSB[7:0]  
Type  
Reset  
Description  
R/W  
00000000b Least significant byte to program the REFDAC_A.  
REFDAC_A _MSB and REFDAC_A_LSB in combination are used to  
set the internal reference for ADC_A. For 2.5V internal reference,  
program 0x1FF to REFDAC_A.  
7.6.1.7 REFDAC_A_MSB Register (Offset = 25h) [reset = 0h]  
REFDAC_A_MSB is shown in Figure 39 and described in Table 13.  
Return to the Summary Table.  
REFDACA configuration register (MSB)  
Figure 39. REFDAC_A_MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
REFDAC_A_M  
SB  
R/W-00000000b  
Table 13. REFDAC_A_MSB Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
REFDAC_A_MSB  
R/W  
Most significant bit to program the REFDAC_A.  
REFDAC_A _MSB and REFDAC_A_LSB in combination are used to  
set the internal reference for ADC_A. For 2.5V internal reference,  
program 0x1FF to REFDAC_A.  
7.6.1.8 REFDAC_B_LSB Register (Offset = 26h) [reset = 0h]  
REFDAC_B_LSB is shown in Figure 40 and described in Table 14.  
Return to the Summary Table.  
REFDACB configuration register (LSB)  
26  
Copyright © 2020, Texas Instruments Incorporated  
 
 
 
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Figure 40. REFDAC_B_LSB Register  
7
6
5
4
3
2
1
0
REFDAC_B_LSB[7:0]  
R/W-00000000b  
Table 14. REFDAC_B_LSB Register Field Descriptions  
Bit  
Field  
REFDAC_B_LSB[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
00000000b Least significant byte to program the REFDAC_B.  
REFDAC_B_MSB and REFDAC_B_LSB in combination are used to  
set the internal reference for ADC_B. For 2.5V internal reference,  
program 0x1FF to REFDAC_B.  
7.6.1.9 REFDAC_B_MSB Register (Offset = 27h) [reset = 0h]  
REFDAC_B_MSB is shown in Figure 41 and described in Table 15.  
Return to the Summary Table.  
REFDACB configuration register (MSB)  
Figure 41. REFDAC_B_MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
REFDAC_B_M  
SB  
R/W-00000000b  
Table 15. REFDAC_B_MSB Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0000000b  
0b  
Description  
7-1  
0
RESERVED  
REFDAC_B_MSB  
R/W  
Most significant bit to program the REFDAC_B.  
REFDAC_B _MSB and REFDAC_B_LSB in combination are used to  
set the internal reference for ADC_B. For 2.5V internal reference,  
program 0x1FF to REFDAC_B.  
7.6.1.10 INPUT_CONFIG Register (Offset = 28h) [reset = 0h]  
INPUT_CONFIG is shown in Figure 42 and described in Table 16.  
Return to the Summary Table.  
Analog input configuration register  
Figure 42. INPUT_CONFIG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
RANGE_SEL  
R/W-0b  
AINM_SEL  
R/W-0b  
Table 16. INPUT_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
000000b  
0b  
Description  
7-2  
1
RESERVED  
RANGE_SEL  
R/W  
This bit selects ADC input full scale range  
0b = ADC operates with full scale range of 0 to VREF  
1b = ADC operates with full scale range of 0 to 2 X VREF  
Copyright © 2020, Texas Instruments Incorporated  
27  
 
 
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 16. INPUT_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
AINM_SEL  
R/W  
0b  
This bit selects ADC input configuration  
0b = ADC operates in single-ended configuration. AINM pin must be  
connected to GND potential.  
1b = ADC operates in pseudo-differential configuration. AINM pin  
must be connected to FSR / 2 potential.  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing these circuits, and some application circuits designed using  
these devices.  
The device supports operation either with an internal or external reference source. See the Reference section for  
details about the decoupling requirements.  
The reference source to the ADC must provide low-drift and very accurate DC voltage and support the dynamic  
charge requirements without affecting the noise and linearity performance of the device. The output broadband  
noise (typically in the order of a few 100 µVRMS) of the reference source must be appropriately filtered by using a  
low-pass filter with a cutoff frequency of a few hundred hertz. After band-limiting the noise from the reference  
source, the next important step is to design a reference buffer that can drive the dynamic load posed by the  
reference input of the ADC. At the start of each conversion, the reference buffer must regulate the voltage of the  
reference pin within 1 LSB of the intended value. This condition necessitates the use of a large filter capacitor at  
the reference pin of the ADC. The amplifier selected to drive the reference input pin must be stable while driving  
this large capacitor and must have low output impedance, low offset, and temperature drift specifications. To  
reduce the dynamic current requirements and crosstalk between the channels, a separate reference buffer is  
recommended for driving the reference input of each ADC channel.  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel  
RC filter. The amplifier is used for signal conditioning of the input voltage and its low output impedance provides  
a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate  
the sampling charge injection from the switched-capacitor input stage of the ADC and functions as an charge  
kickback filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-  
end circuit is critical to meet the linearity and noise performance of a high-precision ADC.  
8.1.1 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals  
of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter at the ADC  
inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. Select the  
amplifier bandwidth as described in 公式 6 to maintain the overall stability of the input driver circuit:  
1
÷
÷
Unity - Gain Bandwidth í 4ì  
2p  
ì(RFLT + RFLT )ìCFLT  
«
(6)  
28  
版权 © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Application Information (接下页)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the data  
acquisition system is not limited by the front-end circuit, keep the total noise contribution from the front-end  
circuit below 20% of the input-referred noise of the ADC. 公式 7 calculates noise from the input driver circuit.  
This noise is band-limited by designing a low cutoff frequency RC filter:  
2
SNR dB  
(
20  
)
÷
V
÷
-
1
f
_ AMP_PP  
p
2
1
5
VREF  
2
NG ì 2 ì  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
«
÷
÷
6.6  
«
where:  
V1/f_AMP_PP = the peak-to-peak flicker noise in µV  
en_RMS = the amplifier broadband noise density in nV/Hz  
f–3dB = the 3-dB bandwidth of the RC filter  
NG = the noise gain of the front-end circuit, which is equal to 1 in a buffer configuration  
(7)  
Distortion. Both the ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of  
thumb, the distortion of the input driver must be at least 10 dB lower than the distortion of the ADC, as shown  
in 公式 8, to ensure that the distortion performance of the data acquisition system is not limited by the front-  
end circuit.  
THDAMP Ç THDADC - 10  
(
dB  
)
(8)  
Settling Time. For DC signals with fast transients that are common in a multiplexed application, the input  
signal must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data  
sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the  
desired accuracy. Therefore, always verify the settling behavior of the input driver with TINA™-SPICE  
simulations before selecting the amplifier.  
8.1.2 Charge Kickback Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, charge kickback filter must be used to remove  
the harmonic content from the input signal before being sampled by the ADC. A charge kickback filter is  
designed as a low-pass, RC filter, for which the 3-dB bandwidth is optimized based on specific application  
requirements. For DC signals with fast transients (including multiplexed input signals), a high-bandwidth filter is  
designed to allow accurately settling the signal at the ADC inputs during the small acquisition time window. For  
AC signals, keep the filter bandwidth low to band-limit the noise fed into the ADC input, thereby increasing the  
signal-to-noise ratio (SNR) of the system.  
A filter capacitor, CFLT, connected across the ADC inputs (see 43), filters the noise from the front-end drive  
circuitry, reduces the sampling charge injection, and provides a charge bucket to quickly charge the internal  
sample-and-hold capacitors during the acquisition process. As a rule of thumb, the value of this capacitor must  
be at least 10 times the specified value of the ADC sampling capacitance. For these devices, the input sampling  
capacitance is equal to 40 pF. Thus, the value of CFLT must be greater than 400 pF. The capacitor must be a  
COG- or NPO-type because these capacitor types have a high-Q, low-temperature coefficient, and stable  
electrical characteristics under varying voltages, frequency, and time.  
版权 © 2020, Texas Instruments Incorporated  
29  
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
Application Information (接下页)  
AVDD  
RFLT  
1
CFLT  
AINP_x  
ADS8355  
AINM_x  
f-3db  
=
2Œ ì RFLT ì CFLT  
GND  
RFLT  
CFLT  
GND  
43. Charge Kickback Filter  
Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design. For more information on ADC input R-C filter component selection, see the TI  
Precision Labs on ti.com.  
8.2 Typical Application  
Input Driver  
AVDD  
AVDD  
OPA320  
œ
49  
AINP_x  
+
3.3 nF  
3.3 nF  
ADS8355  
+
VIN  
œ
AINM_x  
GND  
49 ꢀ  
VDC  
NOTE: Only one ADC channel is shown in this diagram. Replicate the same circuit for the other ADC channel.  
44. DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at Full Throughput  
30  
版权 © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
Typical Application (接下页)  
AVDD  
10 µF  
REFGND_A  
ADC_A  
AVDD  
0.1  
œ
1 kꢀ  
REFIO_A  
+
REF3425  
1µF  
ADS8355  
VOUT  
10 µF  
AVDD  
œ
1 kꢀ  
REFIO_B  
+
ADC_B  
0.1 ꢀ  
1µF  
REFGND_B  
10 µF  
OPA2320  
45. Reference Drive Circuit  
8.2.1 Design Requirements  
17 lists the target specifications for this application.  
17. Target Specifications  
TARGET SPECIFICATIONS  
TEST CONDITIONS  
10-kHz input signal frequency, 1-MSPS throughput  
> 83-dB SNR, < –95-dB THD  
8.2.2 Detailed Design Procedure  
Best practice is for the distortion from the input driver to be at least 10 dB less than the ADC distortion. The  
distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting  
gain configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates  
the requirement of rail-to-rail swing at the amplifier input. The low-power OPA320, used as an input driver,  
provides exceptional AC performance because of its extremely low-distortion and high-bandwidth specifications.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal.  
The application circuit illustrated in 44 is optimized to achieve the lowest distortion and lowest noise for a  
10-kHz input signal fed to the ADS8355 operating at full throughput with the default dual-SDO interface mode.  
The input signal is processed through a high-bandwidth, low-distortion amplifier in an inverting gain configuration  
and a low-pass RC filter before being fed into the device.  
45 illustrates the reference driver circuit when operation with an external reference is desired. The reference  
voltage is generated by the high-precision, low-noise REF3425 circuit. The output broadband noise of the  
reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz. The decoupling capacitor  
on each reference pin is selected to be 10 µF. The low output impedance, low noise, and fast settling time make  
the OPA2320 a good choice for driving this high capacitive load.  
版权 © 2020, Texas Instruments Incorporated  
31  
 
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
8.2.3 Application Curve  
To minimize external components and to maximize the dynamic range of the ADC, the device is configured to  
operate with an internal reference (REF_SEL register, INT_EXT bit = 1) and a 2 × VREF_x input full-scale range  
(INPUT_CONFIG register, RANGE_SEL bit = 1). The REFDAC_x registers are programmed to 0x1FFh to  
program the internal reference to 2.5 V.  
46 shows the FFT plot and test result obtained with the ADS8355 operating at full throughput with a dual-SDO  
interface and the circuit configuration of 44.  
0
-40  
-80  
-120  
-160  
-200  
0
100  
200 300  
Frequency (kHz)  
400  
500  
D024  
SNR = 86.38 dB, THD = –97.24 dB, fIN = 10 kHz  
46. The ADS8355 in Dual-SDO Interface Mode  
32  
版权 © 2020, Texas Instruments Incorporated  
 
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
9 Power Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is used  
for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible ranges.  
When using the device with the 2 × VREF input range (INPUT_CONFIG register, RANGE_SEL bit = 1), the AVDD  
supply voltage value defines the permissible voltage swing on the analog input pins. AVDD must be set as  
described in 公式 3 and 公式 4 to avoid saturation of output codes and to use the full dynamic range on the  
analog input pins.  
Decouple the AVDD and DVDD pins, as shown in 47, with the GND pin using individual 10-µF decoupling  
capacitors.  
ADS8355  
AVDD  
AVDD  
10 F  
GND  
10 F  
DVDD  
DVDD  
47. Power-Supply Decoupling  
10 Layout  
10.1 Layout Guidelines  
48 provides a board layout example for the device WQFN package. Partition the printed circuit board (PCB)  
into analog and digital sections. Avoid crossing digital lines with the analog signal path and keep the analog input  
signals and the reference input signals away from noise sources. As illustrated in 48, the analog input and  
reference signals are routed on the left side of the board and the digital connections are routed on the right side  
of the device.  
The power sources to the device must be clean and well-bypassed. Use 10-µF, ceramic bypass capacitors in  
close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the  
AVDD and DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low  
impedance paths.  
The REFIO_A and REFIO_B reference inputs and outputs are bypassed with 10-µF, X7R-grade, 0805-size, 16-V  
rated ceramic capacitors (CREF_x). Place the reference bypass capacitors as close as possible to the reference  
REFIO_x pins and connect the bypass capacitors using short, low-inductance connections. Avoid placing vias  
between the REFIO_x pins and the bypass capacitors.  
The fly-wheel RC filters are placed immediately next to the input pins. Among ceramic surface-mount capacitors,  
COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG  
(NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and temperature  
changes.  
版权 © 2020, Texas Instruments Incorporated  
33  
 
ADS8355  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
www.ti.com.cn  
10.2 Layout Example  
CAVDD  
CDVDD  
48. Recommended Layout  
34  
版权 © 2020, Texas Instruments Incorporated  
ADS8355  
www.ti.com.cn  
ZHCSKR7A FEBRUARY 2020REVISED FEBRUARY 2020  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
德州仪器 (TI)TI 高精度实验室  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《具有关断功能的 OPAx320x 高精度 20MHz0.9pA、低噪声 RRIO CMOS 运算放大器》 数  
据表  
德州仪器 (TI)REF34xx 低漂移、低功耗、小封装串联电压基准》 数据表  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
TINA, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2020, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8355IRTER  
ADS8355IRTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
8355  
8355  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8355IRTER  
WQFN  
RTE  
16  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RTE 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ADS8355IRTER  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016D  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
SYMM  
17  
2X 1.5  
0.8 0.1  
12X 0.5  
1
12  
PIN 1 ID  
0.30  
0.18  
16X  
16  
13  
0.5  
0.3  
0.1  
C A B  
16X  
0.05  
4219118/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
SEE SOLDER MASK  
DETAIL  
16  
13  
16X (0.6)  
12  
16X (0.24)  
1
17  
SYMM  
(2.8)  
12X (0.5)  
(R0.05) TYP  
4
9
(
0.2) TYP  
VIA  
5
8
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219118/A 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
12X (0.5)  
(2.8)  
9
4
(R0.05) TYP  
5
8
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219118/A 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY