ADS8471IBRGZT [TI]

具有基准的 16 位 1MSPS 伪差动 SAR ADC | RGZ | 48 | -40 to 85;
ADS8471IBRGZT
型号: ADS8471IBRGZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有基准的 16 位 1MSPS 伪差动 SAR ADC | RGZ | 48 | -40 to 85

转换器
文件: 总30页 (文件大小:2123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
ADS8471  
SLAS517DECEMBER 2007  
16-BIT, 1-MSPS, PSEUDO-BIPOLAR, UNIPOLAR INPUT, MICROPOWER SAMPLING  
ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE  
1
FEATURES  
48-Pin 7x7 QFN Package  
0 to 1 MSPS Sampling Rate  
±0.7 LSB Typ, ±1 LSB Max INL  
±0.4 LSB Typ, ±0.75 LSB Max DNL  
16-Bit NMC Ensured Over Temperature  
±0.1 mV Offset Error  
APPLICATIONS  
Medical Instruments  
Optical Networking  
Transducer Interface  
High Accuracy Data Acquisition Systems  
Magnetometers  
±0.15 ppm/°C Offset Error Drift  
±0.015 %FSR Gain Error  
DESCRIPTION  
±0.7 ppm/°C Gain Error Drift  
93 dB SNR, -110dB THD, 112dB SFDR  
Zero Latency  
The ADS8471 is an 16-bit, 1-MSPS A/D converter  
with an internal 4.096-V reference and  
pseudo-bipolar, unipolar input. The device includes a  
16-bit capacitor-based SAR A/D converter with  
inherent sample and hold. The ADS8471 offers a full  
16-bit interface or an 8-bit bus option using two read  
cycles.  
a
Low Power: 220 mW at 1 MSPS  
Unipolar Input Range: 0 V to Vref  
Onboard Reference  
Onboard Reference Buffer  
High-Speed Parallel Interface  
Wide Digital Supply 2.7 V ~ 5.25 V  
8-/16-Bit Bus Transfer  
The ADS8471 is available in a 48-lead 7x7 QFN  
package and is characterized over the industrial  
–40°C to 85°C temperature range.  
HIGH-SPEED SAR CONVERTER FAMILY(1)  
TYPE/SPEED  
18-Bit Pseudo-Diff  
500 kHz  
580 kHz  
750 kHz  
1 MHz  
1.25 MHz  
2 MHz  
3 MHz  
4MHz  
ADS8383  
ADS8381  
ADS8380 (S)  
ADS8382 (S)  
ADS8370 (S)  
18-Bit Pseudo-Bipolar, Fully Diff  
16-Bit Pseudo-Diff  
ADS8482  
ADS8471  
ADS8484  
ADS8401  
ADS8405  
ADS8402  
ADS8406  
ADS7890 (S)  
ADS8327 (S)  
ADS8328 (S)  
ADS8371  
ADS8411  
ADS8410 (S)  
ADS8412  
ADS8329/30 (S)  
ADS8472  
ADS8372 (S)  
ADS8422  
ADS7881  
16-Bit Pseudo-Bipolar, Fully Diff  
ADS8413 (S)  
14-Bit Pseudo-Diff  
12-Bit Pseudo-Diff  
ADS7891  
ADS7886  
(1) S: Serial  
BYTE  
16-/8-Bit  
Parallel DATA  
Output Bus  
Output  
Latches  
and  
3-State  
Drivers  
SAR  
+
+IN  
CDAC  
_
−IN  
Comparator  
REFIN  
CONVST  
BUSY  
CS  
Conversion  
and  
Control Logic  
4.096-V  
Internal  
Reference  
REFOUT  
Clock  
RD  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)  
MAXIMUM  
INTEGRAL  
LINEARITY  
(LSB)  
MAXIMUM  
DIFFERENTIAL  
LINEARITY (LSB)  
NO MISSING  
CODES  
RESOLUTION  
(BIT)  
TRANS-  
PORT  
MEDIA  
QTY.  
TEMPER-  
ATURE  
RANGE  
PACKAGE  
TYPE  
PACKAGE  
DESIGNATOR  
ORDERING  
INFORMATION  
MODEL  
ADS8471IRGZT  
ADS8471IRGZR  
ADS8471IBRGZT  
ADS8471IBRGZR  
Tape and  
reel 250  
7x7 48 Pin  
QFN  
–40°C to  
85°C  
ADS8471I  
±2  
±1  
±1  
16  
16  
RGZ  
RGZ  
Tape and  
reel 1000  
Tape and  
reel 250  
7x7 48 Pin  
QFN  
–40°C to  
85°C  
ADS8471IB  
±0.75  
Tape and  
reel 1000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
–0.4 to +VA + 0.1  
–0.4 to 0.5  
–0.3 to 7  
UNIT  
V
+IN to AGND  
–IN to AGND  
+VA to AGND  
+VBD to BDGND  
+VA to +VBD  
V
Voltage  
V
–0.3 to 7  
V
–0.3 to 2.55  
–0.3 to +VBD + 0.3  
–0.3 to +VBD + 0.3  
–40 to 85  
V
Digital input voltage to BDGND  
Digital output voltage to BDGND  
V
V
TA  
Operating free-air temperature range  
Storage temperature range  
°C  
°C  
°C  
Tstg  
–65 to 150  
150  
Junction temperature (TJ max)  
Power dissipation  
(TJMax – TA)/θJA  
22  
QFN package  
θJA thermal impedance  
Vapor phase (60 sec)  
Infrared (15 sec)  
°C/W  
°C  
215  
Lead temperature, soldering  
220  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
SPECIFICATIONS  
TA = –40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, Vref = 4.096 V, fSAMPLE = 1 MSPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage(1)  
+IN – (–IN)  
0
–0.2  
–0.2  
Vref  
Vref +0.2  
0.2  
V
V
+IN  
–IN  
Absolute input voltage  
Input capacitance  
Input leakage current  
SYSTEM PERFORMANCE  
Resolution  
65  
1
pF  
nA  
16  
Bits  
Bits  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
16  
16  
No missing codes  
–2  
±0.7  
±0.7  
2
1
LSB  
(16 bit)  
INL  
Integral linearity(2) (3)  
Differential linearity  
Offset error(4)  
–1  
–1  
±0.4  
1
LSB  
(16 bit)  
DNL  
–0.75  
–0.5  
–0.5  
±0.4  
0.75  
0.5  
0.5  
±0.1  
mV  
±0.1  
±0.15  
±0.15  
Offset error temperature drift  
Gain error(4) (5)  
ppm/°C  
Vref = 4.096 V  
Vref = 4.096 V  
–0.075 ±0.015  
0.075  
0.075  
%FS  
%FS  
–0.075 ±0.015  
±0.7  
±0.7  
25  
Gain error temperature drift  
ppm/°C  
Noise  
µV RMS  
Power supply rejection ratio  
At FFFFh output code  
60  
dB  
SAMPLING DYNAMICS  
Conversion time  
Acquisition time  
Throughput rate  
Aperture delay  
670  
700  
1
ns  
ns  
270  
300  
MHz  
ns  
4
5
Aperture jitter  
ps  
Step response  
150  
150  
ns  
Overvoltage recovery  
ns  
(1) Ideal input span, does not include gain or offset error.  
(2) LSB means least significant bit  
(3) This is endpoint INL, not best fit.  
(4) Measured relative to an ideal full-scale input [+IN – (–IN)] of 8.192 V  
(5) This specification does not include the internal reference voltage error and drift.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
SPECIFICATIONS (Continued)  
TA = –40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, Vref = 4.096 V, fSAMPLE = 1 MSPS (unless otherwise noted)  
PARAMETER  
DYNAMIC CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
ADS8471I  
ADS8471IB  
–110  
–112  
–105  
–107  
–101  
–102  
93  
VIN = 4 Vpp at 2 kHz  
THD  
SNR  
Total harmonic distortion(1)  
VIN = 4 Vpp at 20 kHz  
VIN = 4 Vpp at 100 kHz  
VIN = 4 Vpp at 2 kHz  
VIN = 4 Vpp at 20 kHz  
VIN = 4 Vpp at 100 kHz  
VIN = 4 Vpp at 2 kHz  
VIN = 4 Vpp at 20 kHz  
VIN = 4 Vpp at 100 kHz  
VIN = 4 Vpp at 2 kHz  
VIN = 4 Vpp at 20 kHz  
VIN = 4 Vpp at 100 kHz  
dB  
dB  
dB  
93  
92.5  
92.7  
91.5  
91.6  
93  
Signal-to-noise ratio(1)  
93  
92.4  
92.6  
91  
(1)  
SINAD Signal-to-noise + distortion  
91.1  
112  
114  
107  
109  
102  
103  
15  
(1)  
SFDR  
Spurious free dynamic range  
dB  
–3dB Small signal bandwidth  
VOLTAGE REFERENCE INPUT  
MHz  
Vref  
Reference voltage at REFIN,  
Reference resistance(2)  
Reference current drain  
3.0  
4.096 +VA – 0.8  
V
500  
k  
mA  
fs = 1 MHz  
1
(1) Calculated on the first nine harmonics of the input frequency.  
(2) Can vary ±20%  
4
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
SPECIFICATIONS (Continued)  
TA = –40C to 85C, +VA = 5 V, +VBD = 3 V or 5 V, Vref = 4.096 V, fSAMPLE = 1 MSPS (unless otherwise noted)  
PARAMETER  
INTERNAL REFERENCE OUTPUT  
Internal reference start-up time  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
From 95% (+VA), with 1-µF storage  
120  
ms  
capacitor  
Vref  
Reference voltage range  
Source current  
Line regulation  
Drift  
IO = 0 A  
4.081 4.096  
4.111  
10  
V
µA  
Static load  
+VA = 4.75 V to 5.25 V  
IO = 0 A  
60  
±6  
µV  
PPM/°C  
DIGITAL INPUT/OUTPUT  
Logic family – CMOS  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Data format – Straight binary  
IIH = 5 µA  
+VBD–1  
+VBD +0.3  
0.8  
IIL = 5 µA  
–0.3  
V
VOH  
VOL  
IOH = 2 TTL loads  
IOL = 2 TTL loads  
+VBD – 0.6  
0.4  
POWER SUPPLY REQUIREMENTS  
+VBD  
+VA  
2.7  
3.3  
5
5.25  
5.25  
48  
V
V
Power supply voltage  
4.75  
Supply current(1)  
Power dissipation(1)  
fs = 1 MHz  
fs = 1 MHz  
44  
mA  
mW  
220  
240  
TEMPERATURE RANGE  
Operating free-air  
–40  
85  
°C  
(1) This includes only +VA current. +VBD current is typical 1 mA with 5-pF load capacitance on all output pins.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TIMING CHARACTERISTICS  
All specifications typical at –40°C to 85°C, +VA =+VBD = 5 V  
(1) (2) (3)  
PARAMETER  
MIN TYP  
MAX UNIT  
t(CONV)  
t(ACQ)  
t(HOLD)  
tpd1  
Conversion time  
670  
700  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
Acquisition time  
270  
300  
Sample capacitor hold time  
CONVST low to BUSY high  
Propagation delay time, end of conversion to BUSY low  
25  
40  
15  
15  
tpd2  
tpd3  
Propagation delay time, start of convert state to rising edge of BUSY  
Pulse duration, CONVST low  
tw1  
40  
20  
20  
tsu1  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
tw2  
CONVST falling edge jitter  
10  
tw3  
tw4  
th1  
Pulse duration, BUSY signal low  
t(ACQ)min  
Pulse duration, BUSY signal high  
700  
Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE input  
changes) after CONVST low  
40  
ns  
td1  
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu2  
tw5  
ten  
Setup time, RD high to CS high  
Pulse duration, RD low  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
20  
20  
td2  
5
10  
20  
20  
50  
td3  
Delay time, BYTE rising edge or falling edge to data valid  
Pulse duration, RD high  
tw6  
tw7  
th2  
Pulse duration, CS high  
Hold time, last RD (or CS for read cycle ) rising edge to CONVST falling edge  
tpd4  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling  
edge  
0
ns  
td4  
tsu3  
th3  
tdis  
td5  
td6  
td7  
tsu5  
Delay time, BYTE edge to edge skew  
0
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, BYTE transition to RD falling edge  
Hold time, BYTE transition to RD falling edge  
Disable time, RD high (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid delay  
20  
0
Delay time, CS rising edge to BUSY falling edge  
Delay time, BUSY falling edge to CS rising edge  
BYTE transition setup time, from BYTE transition to next BYTE transition  
50  
50  
50  
tsu(ABORT) Setup time from the falling edge of CONVST (used to start the valid conversion) to the  
next falling edge of CONVST (when CS = 0 and CONVST are used to abort) or to the  
next falling edge of CS (when CS is used to abort).  
60  
600  
ns  
(1) All input signals are specified with tr = tf = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See timing diagrams.  
(3) All timing are measured with 20-pF equivalent loads on all data bits and BUSY pins.  
6
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TIMING CHARACTERISTICS  
All specifications typical at –40°C to 85°C, +VA = 5 V +VBD = 3 V  
(1) (2) (3)  
PARAMETER  
MIN TYP  
MAX UNIT  
t(CONV)  
t(ACQ)  
t(HOLD)  
tpd1  
Conversion time  
67  
700  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
Acquisition time  
270  
300  
Sample capacitor hold time  
CONVST low to BUSY high  
Propagation delay time, end of conversion to BUSY low  
25  
40  
25  
25  
tpd2  
tpd3  
Propagation delay time, start of convert state to rising edge of BUSY  
Pulse duration, CONVST low  
tw1  
40  
20  
20  
tsu1  
Setup time, CS low to CONVST low  
Pulse duration, CONVST high  
tw2  
CONVST falling edge jitter  
10  
tw3  
tw4  
th1  
Pulse duration, BUSY signal low  
t(ACQ)min  
Pulse duration, BUSY signal high  
700  
Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE input  
changes) after CONVST low  
40  
ns  
td1  
Delay time, CS low to RD low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu2  
tw5  
ten  
Setup time, RD high to CS high  
Pulse duration, RD low  
50  
Enable time, RD low (or CS low for read cycle) to data valid  
Delay time, data hold from RD high  
30  
30  
td2  
5
10  
20  
20  
50  
td3  
Delay time, BYTE rising edge or falling edge to data valid  
Pulse duration, RD high  
tw6  
tw7  
th2  
Pulse duration, CS high  
Hold time, last RD (or CS for read cycle ) rising edge to CONVST falling edge  
tpd4  
Propagation delay time, BUSY falling edge to next RD (or CS for read cycle) falling  
edge  
0
ns  
td4  
tsu3  
th3  
tdis  
td5  
td6  
td7  
tsu5  
Delay time, BYTE edge to edge skew  
0
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, BYTE or transition to RD falling edge  
Hold time, BYTE or transition to RD falling edge  
Disable time, RD high (CS high for read cycle) to 3-stated data bus  
Delay time, BUSY low to MSB data valid delay  
30  
0
Delay time, CS rising edge to BUSY falling edge  
Delay time, BUSY falling edge to CS rising edge  
BYTE transition setup time, from BYTE transition to next BYTE transition  
50  
50  
50  
tsu(ABORT) Setup time from the falling edge of CONVST (used to start the valid conversion) to the  
next falling edge of CONVST (when CS = 0 and CONVST are used to abort) or to the  
next falling edge of CS (when CS is used to abort).  
60  
600  
ns  
(1) All input signals are specified with tr = tf = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See timing diagrams.  
(3) All timing are measured with 20-pF equivalent loads on all data bits and BUSY pins.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
PIN ASSIGNMENTS  
RGZ PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
+VBD  
BDGND  
BYTE  
CONVST  
RD  
+VBD  
DB8  
DB9  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
AGND  
AGND  
+VA  
4
5
CS  
+VA  
6
7
AGND  
AGND  
+VA  
REFM  
REFM  
8
9
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
NC − No internal connection  
NOTE: The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
TERMINAL FUNCTIONS  
NAME  
NO  
I/O  
DESCRIPTION  
8, 9, 17, 20,  
23, 24, 26,  
27  
AGND  
Analog ground  
BDGND  
BUSY  
2, 37  
48  
Digital ground for bus interface digital supply  
O
Status output. High when a conversion is in progress.  
Byte select input. Used for 8-bit bus reading.  
0: No fold back  
BYTE  
3
I
1: Low byte D[9:2] of the 16 most significant bits is folded back to high byte of the 16 most significant pins DB[17:10].  
Convert start. The falling edge of this input ends the acquisition period and starts the hold period.  
Chip select. The falling edge of this input starts the acquisition period.  
CONVST  
CS  
4
6
I
I
8-BIT BUS  
16-BIT BUS  
BYTE = 0  
Data Bus  
BYTE = 0  
BYTE = 1  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
28  
29  
30  
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
O
O
O
O
O
O
O
O
O
O
O
O
O
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D15(MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
D6  
D5  
D4  
D3  
D2  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
All ones  
DB8  
D8  
D8  
DB7  
D7  
D7  
DB6  
D6  
D6  
DB5  
D5  
D5  
DB4  
D4  
D4  
DB3  
D3  
D3  
8
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TERMINAL FUNCTIONS (continued)  
NAME  
NO  
43  
44  
45  
I/O  
O
DESCRIPTION  
DB2  
DB1  
DB0  
D2  
All ones  
All ones  
All ones  
D2  
O
D1  
D1  
O
D0 (LSB)  
D0 (LSB)  
–IN  
19  
18  
I
I
Inverting input channel  
Noninverting input channel  
No connection  
+IN  
NC  
15, 46, 47  
13  
REFIN  
REFOUT  
REFM  
I
O
I
Reference input  
14  
Reference output. Add 1-µF capacitor between the REFOUT pin and REFM pin when internal reference is used.  
11, 12  
Reference ground  
Synchronization pulse for the parallel output. When CS is low, this serves as output enable and puts the previous  
conversion results on the bus.  
RD  
5
I
7, 10, 16,  
21, 22, 25  
+VA  
Analog power supplies, 5-V DC  
Digital power supply for bus  
+VBD  
1, 36  
TYPICAL CHARACTERISTICS  
INTERNAL REFERENCE VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
DC HISTOGRAM  
(8192 Conversion Outputs)  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
7000  
4.098  
4.0972  
4.09719  
4.09718  
+VA = 5 V,  
+VBD = 5 V  
T
= 25°C  
6140  
A
6000  
5000  
4.0975  
4.097  
+VA = 5 V,  
+VBD = 5 V,  
T
= 25°C,  
A
f
= 1 MSPS,  
= 4.096 V,  
S
4000  
4.09717  
4.09716  
V
ref  
Input = Midscale  
4.0965  
4.096  
3000  
2000  
1000  
0
4.09715  
1621  
4.09714  
4.09713  
4.0955  
4.095  
426  
1
4
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
32766 32767 32768 32769 32770  
-40 -25 -10  
5
20 35  
50 65 80  
Supply Voltage - V  
Code  
T
- Free-Air Temperature - °C  
A
Figure 1.  
Figure 2.  
Figure 3.  
SUPPLY CURRENT  
vs  
FREE-AIR TEM PERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
SAMPLE RATE  
44  
43.8  
43.6  
43.5  
43  
43.25  
43.2  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
T
f
= 25°C,  
A
= 1 MSPS,  
= 4.096 V,  
T = 25°C,  
A
S
f
= 1 MSPS,  
42.5  
42  
S
V
V
= 4.096 V  
ref  
V
= 4.096 V,  
ref  
ref  
43.4  
43.2  
43  
41.5  
41  
43.15  
40.5  
40  
43.1  
43.05  
43  
42.8  
39.5  
39  
42.6  
42.4  
42.2  
38.5  
38  
-40 -25 -10  
5
20 35 50 65 80  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
250  
500  
750  
1000  
Supply Voltage - V  
T
- Free-Air Temperature - °C  
Sample Rate - KSPS  
A
Figure 4.  
Figure 5.  
Figure 6.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
DIFFERENTIAL NONLINEARITY  
INTEGRAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
1
0.8  
0.6  
0.4  
0.2  
0.75  
0.5  
0.75  
0.5  
+VA = 5 V,  
+VBD = 5 V,  
T
f
= 25°C,  
Max  
A
= 1 MSPS,  
= 4.096 V,  
S
f
= 1 MSPS,  
S
V
ref  
V
= 4.096 V,  
ref  
+VA = 5 V,  
+VBD = 5 V,  
Max  
Max  
0.25  
0
0.25  
0
f
= 1 MSPS,  
S
V
= 4.096 V,  
ref  
0
-0.2  
-0.4  
Min  
-0.25  
-0.25  
Min  
Min  
-0.6  
-0.5  
-0.5  
-0.8  
-1  
-0.75  
-0.75  
-40 -25 -10  
5
20 35 50 65 80  
4.75  
4.85  
4.95 5.05  
Supply Voltage - V  
5.15  
5.25  
-40 -25 -10  
5
20 35 50 65 80  
T - Free-Air Temperature - °C  
A
T
- Free-Air Temperature - °C  
A
Figure 7.  
Figure 8.  
Figure 9.  
INTEGRAL NONLINEARITY  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
INTEGRAL NONLINEARITY  
vs  
REFERENCE VOLTAGE  
SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
1
0.8  
0.6  
1
0.8  
0.6  
0.4  
0.2  
0.75  
0.5  
Max  
T
f
= 25°C,  
Max  
A
= 1 MSPS,  
= 5 V  
S
V
DD  
Max  
T = 25°C,  
A
+VA = 5 V,  
+VBD = 5 V,  
0.4  
0.2  
0
f
= 1 MSPS,  
= 5 V  
0.25  
0
S
f
= 1 MSPS,  
S
V
DD  
V
= 4.096 V,  
ref  
0
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Min  
Min  
-0.25  
Min  
-0.50  
-0.75  
-0.8  
-1  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
Reference Voltage - V  
Supply Voltage - V  
Reference Voltage - V  
Figure 10.  
Figure 11.  
Figure 12.  
OFFSET ERROR  
vs  
FREE-AIR TEMPERATURE  
OFFSET ERROR  
vs  
SUPPLY VOLTAGE  
OFFSET ERROR  
vs  
REFERENCE VOLTAGE  
0.1  
0.08  
0.06  
0.04  
0.25  
0.2  
0.1  
0.08  
0.06  
0.04  
0.02  
T
= 25°C,  
+VA = 5 V,  
+VBD = 5 V,  
T
f
= 25°C,  
A
A
f
= 1 MSPS,  
= 4.096 V,  
= 1 MSPS,  
= 5 V  
S
S
f
= 1 MSPS,  
0.15  
0.1  
S
V
V
ref  
DD  
V
= 4.096 V,  
ref  
0.02  
0
0.05  
0
-0.05  
-0.1  
0
-0.02  
-0.04  
-0.02  
-0.04  
-0.15  
-0.06  
-0.08  
-0.10  
-0.06  
-0.08  
-0.1  
-0.2  
-0.25  
-40 -25 -10  
4.75  
4.85  
4.95 5.05  
Supply Voltage - V  
5.15  
5.25  
5
20 35 50 65 80  
3
3.2  
3.4  
3.6  
3.8  
Reference Voltage - V  
4
4.2  
T
- Free-Air Temperature - °C  
A
Figure 13.  
Figure 14.  
Figure 15.  
10  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
GAIN ERROR  
vs  
SUPPLY VOLTAGE  
GAIN ERROR  
vs  
FREE-AIR TEMPERATURE  
GAIN ERROR  
vs  
REFERENCE VOLTAGE  
0.1  
0.02  
0.018  
0.016  
0.03  
0.025  
0.02  
V = 5 V,  
DD  
0.08  
+VA = 5 V,  
+VBD = 5 V,  
T
f
= 25°C,  
A
T
= 25°C,  
A
= 1 MSPS,  
= 4.096 V,  
S
f = 1 MSPS  
i
0.06  
0.04  
f
= 1 MSPS,  
S
V
ref  
V
= 4.096 V,  
ref  
0.014  
0.012  
0.02  
0
0.01  
0.008  
0.006  
0.004  
0.002  
0
0.015  
0.01  
-0.02  
-0.04  
-0.06  
0.005  
0
-0.08  
-0.1  
-40 -25 -10  
5
20 35 50 65 80  
4.75  
4.85  
4.95 5.05  
Supply Voltage - V  
5.15  
5.25  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
T
- Free-Air Temperature - °C  
A
Reference Voltage - V  
Figure 16.  
Figure 17.  
Figure 18.  
TOTAL HARMONIC DISTORTION  
OFFSET ERROR TEMPERATURE  
DRIFT DISTRIBUTION (25 Samples)  
GAIN ERROR TEMPERATURE  
DRIFT DISTRIBUTION (25 Samples)  
vs  
REFERENCE VOLTAGE  
12  
-106  
-107  
-108  
-109  
-110  
10  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
10  
8
10  
8
f = 1 MSPS,  
i
f = 1 MSPS  
i
8
6
4
T
= 25°C,  
A
V
= 4.096 V  
ref  
V
= 4.096 V  
ref  
f
= 1 MSPS,  
S
V = 2 kHz  
I
7
5
6
4
4
4
3
3
2
2
2
0
-111  
-112  
2
0
1
1
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
-0.54 -0.16 0.21  
0.59 0.97  
1.30  
0.02 0.06  
0.10 0.14 0.18 0.22  
V
- Reference Voltage - V  
Gain Error Drift - ppm/C  
Offset Drift - ppm/C  
ref  
Figure 19.  
Figure 20.  
Figure 21.  
SIGNAL-TO-NOISE RATIO  
vs  
REFERENCE VOLTAGE  
SIGNAL-TO-NOISE + DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
REFERENCE VOLTAGE  
FREE-AIR TEMPERATURE  
93.5  
93  
93.5  
-109  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
-109.2  
-109.4  
-109.6  
-109.8  
-110  
T
= 25°C,  
A
T
= 25°C,  
T
= 25°C,  
93  
92.5  
92  
A
A
V
= 4.096 V,  
ref  
V
= 4.096 V,  
f
= 1 MSPS,  
ref  
S
f = 2 kHz  
I
f = 2 kHz  
I
f = 2 kHz  
I
92.5  
92  
SNR  
SINAD  
-110.2  
-110.4  
-110.6  
91.5  
91  
91.5  
91  
-110.8  
-111  
-40 -25 -10  
5
20 35 50 65 80  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
V
- Reference Voltage - V  
V
- Reference Voltage - V  
T
- Free-Air Temperature - °C  
ref  
ref  
A
Figure 22.  
Figure 23.  
Figure 24.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
SPURIOUS FREE DYNAMIC RANGE  
SIGNAL-TO-NOISE RATIO  
vs  
FREE-AIR TEMPERATURE  
SIGNAL-TO-NOISE + DISTORTION  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
113  
112.8  
112.6  
112.4  
93.05  
93  
93.05  
+VA = 5 V,  
+VBD = 5 V,  
+VA = 5 V,  
+VBD = 5 V,  
93  
92.95  
92.9  
f
= 1 MSPS,  
f
= 1 MSPS,  
S
S
92.95  
92.9  
92.85  
92.8  
92.75  
92.7  
V
= 4.096 V,  
V
= 4.096 V,  
ref  
ref  
f = 2 kHz  
I
f = 2 kHz  
I
SNR  
112.2  
92.85  
92.8  
112  
SINAD  
+VA = 5 V,  
+VBD = 5 V,  
111.8  
f
= 1 MSPS,  
S
92.75  
92.7  
111.6  
111.4  
V
= 4.096 V,  
ref  
f = 2 kHz  
I
92.65  
92.6  
92.65  
92.6  
111.2  
111  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
T
- Free-Air Temperature - °C  
A
A
A
Figure 25.  
Figure 26.  
Figure 27.  
0.75  
+VA = 5 V, +VBD = 5 V,  
T
= 25°C, f = 1 MSPS,  
S
= 4.096 V,  
A
0.5  
0.25  
0
V
ref  
-0.25  
-0.5  
-0.75  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65536  
Output Code  
Figure 28.  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
+VA = 5 V, +VBD = 5 V,  
= 25°C, f = 1 MSPS,  
S
T
-0.6  
A
V
= 4.096 V,  
-0.8  
-1  
ref  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65536  
Output Code  
Figure 29.  
12  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
0
+VA = 5 V +VBD = 5 V,  
= 25°C, f = 1 MSPS,  
T
A
S
= 4.096 V, Points = 65536,  
-50  
V
ref  
Amplitude = 4 V  
PP  
-100  
-150  
-200  
0
50000 100000 150000 200000 250000 300000 350000 400000 450000 500000  
f - Frequency - Hz  
Figure 30.  
TIMING DIAGRAMS  
t
w2  
t
w1  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
t
t
w7  
su1  
CS  
t
pd3  
CONVERT  
t
(CONV)  
t
(CONV)  
t
(HOLD)  
SAMPLING  
(When CS Toggle)  
t
(ACQ)  
t
t
su(ABORT)  
su(ABORT)  
t
su5  
BYTE  
t
su5  
t
su5  
t
h1  
t
su5  
t
su2  
t
pd4  
t
h2  
t
d1  
RD  
t
dis  
t
en  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
DB[15:8]  
D[15:8]  
D[7:0]  
D[7:0]  
DB[7:0]  
Signal internal to device  
Figure 31. Timing for Conversion and Acquisition Cycles With CS and RD Toggling  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
t
w1  
t
w2  
CONVST  
BUSY  
t
t
pd2  
pd1  
t
w4  
t
w3  
t
w7  
t
su6  
CS  
t
pd3  
CONVERT  
t
(CONV)  
t
(CONV)  
t
(HOLD)  
SAMPLING  
(When CS Toggle)  
t
(ACQ)  
t
t
su(ABORT)  
su(ABORT)  
t
su5  
BYTE  
t
su5  
t
h1  
t
su5  
t
su5  
t
dis  
t
su2  
t
pd4  
t
h2  
t
en  
RD = 0  
t
en  
t
en  
t
dis  
Previous  
D [15:8]  
Previous  
D [15:8]  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
DB[15:8]  
D[15:8]  
D[7:0]  
D[7:0]  
Previous  
D [7:0]  
Previous  
D [7:0]  
DB[7:0]  
Signal internal to device  
Figure 32. Timing for Conversion and Acquisition Cycles With CS Toggling, RD Tied to BDGND  
14  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
t
w1  
t
w2  
CONVST  
t
t
pd1  
pd2  
t
w4  
t
w3  
BUSY  
CS = 0  
t
pd3  
CONVERT  
t
(CONV)  
t
(CONV)  
t
(HOLD)  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
t
t
su(ABORT)  
su(ABORT)  
t
su5  
BYTE  
t
su5  
t
h1  
t
pd4  
t
h2  
RD  
t
dis  
t
en  
Hi−Z  
Hi−Z  
Hi−Z  
Hi−Z  
DB[15:8]  
D[15:8]  
D[7:0]  
D[7:0]  
DB[7:0]  
Signal internal to device  
Figure 33. Timing for Conversion and Acquisition Cycles With CS Tied to BDGND, RD Toggling  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
t
w2  
t
w1  
CONVST  
t
t
pd2  
pd1  
t
w4  
t
w3  
BUSY  
CS = 0  
CONVERT  
t
t
(CONV)  
(CONV)  
t
pd3  
t
pd3  
t
(HOLD)  
t
(HOLD)  
t
(ACQ)  
SAMPLING  
(When CS = 0)  
t
t
su(ABORT)  
su(ABORT)  
BYTE  
t
su5  
t
su5  
t
h1  
t
h1  
t
dis  
t
su5  
t
su5  
RD = 0  
t
d5  
DB[15:8]  
Previous D[7:0]  
D[7:0]  
Next D[15:8]  
Next D[7:0]  
D[15:8]  
D[7:0]  
DB[7:0]  
Signal internal to device  
Figure 34. Timing for Conversion and Acquisition Cycles With CS and RD Tied to BDGND - Auto Read  
16  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
CS  
RD  
t
su4  
BYTE  
t
en  
t
d3  
t
dis  
t
dis  
t
en  
Hi−Z  
Hi−Z  
Hi−Z  
Valid  
Valid  
Valid  
DB[15:0]  
Figure 35. Detailed Timing for Read Cycles  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
APPLICATION INFORMATION  
ADS8471 TO A HIGH PERFORMANCE DSP INTERFACE  
Figure 36 shows a parallel interface between the ADS8471 and a Texas instruments high performance DSP  
such as the TMS320C6713 using the full 16-bit bus. The ADS8471 is mapped onto the CE2 memory space of  
the TMS320C6713 DSP. The read and reset signals are generated by using a 3-to-8 decoder. A read operation  
from the address 0xA000C000 generates a pulse on the RD pin of the data converter, wheras a read operation  
form word address 0xA0014000 generates a pulse on the RESET/PD1 pin. The CE2 signal of the DSP acts as  
CS (chip select) for the converter. As the TMS320C6713 features a 32-bit external memory interface, the BYTE  
input of the converter can be tied permanently low, disabling the foldback of the data bus. The BUSY signal of  
the ADS8471 is appiled to the EXT_INT6 interrupt input of the DSP, enabling the EDMA controller to react on the  
falling edge of this signal and to collect the conversion result. The TOUT1 (timer out 1) pin of the TMS320C6713  
is used to source the CONVST signal of the converter.  
+VA = 5 V  
0.1 mF  
AGND  
10 mF  
Ext Ref  
Input  
1 mF  
Analog  
Input  
CE2  
CS  
TMS320C6713  
DSP  
I/O Supply  
+VBD +2.7 V  
Address  
Decoder  
+VBD  
ADS8471  
RD  
EA[16:14]  
ARE  
0.1 mF  
BDGND  
BYTE  
TOUT1  
CONVST  
BUSY  
EXT_INT6  
ED[15:0]  
I/O Digital Ground  
DB[15:0]  
BDGND  
Figure 36. ADS8471 Application Circuitry  
Analog 5 V  
AGND  
0.1 µF  
10 µF  
0.1 µF  
1 µF  
AGND  
ADS8471  
Figure 37. ADS8471 Using Internal Reference  
18  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
 
 
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
PRINCIPLES OF OPERATION  
The ADS8471 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The  
architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 36 for  
the application circuit for the ADS8471.  
The conversion clock is generated internally. The conversion time of 700 ns is capable of sustaining a 1-MHz  
throughput.  
The analog input is provided to two input pins: +IN and –IN. When a conversion is initiated, the differential input  
on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are  
disconnected from any internal function.  
REFERENCE  
The ADS8471 can operate with an external reference with a range from 3.0 V to 4.2 V. The reference voltage on  
the input pin 13 (REFIN) of the converter is internally buffered. A clean, low noise, well-decoupled reference  
voltage on this pin is required to ensure good performance of the converter. A low noise band-gap reference like  
the REF5040 can be used to drive this pin. A 0.1-µF decoupling capacitor is required between REFIN and REFM  
pins (pin 13 and pin 12) of the converter. This capacitor should be placed as close as possible to the pins of the  
device. Designers should strive to minimize the routing length of the traces that connect the terminals of the  
capacitor to the pins of the converter. An RC network can also be used to filter the reference voltage. A 100-  
series resistor and a 0.1-µF capacitor, which can also serve as the decoupling capacitor can be used to filter the  
reference voltage.  
REFM  
ADS8471  
0.1 mF  
100 W  
REFIN  
REF5040  
Figure 38. ADS8471 Using External Reference  
The ADS8471 also has limited low pass filtering capability built into the converter. The equivalent circuitry on the  
REFIN input is as shown in Figure 39.  
10 kW  
REFIN  
+
_
To CDAC  
300 pF  
830 pF  
REFM  
To CDAC  
Figure 39. Reference Circuit  
The REFM input of the ADS8471 should always be shorted to AGND.  
A 4.096-V internal reference is included. When internal reference is used, pin 14 (REFOUT) is connected to pin  
13 (REFIN) with a 0.1-µF decoupling capacitor and 1-µF storage capacitor between pin 14 (REFOUT) and pins  
11 and 12 (REFM) (see Figure 37). The internal reference of the converter is double buffered. If an external  
reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer  
is also used to recharge all of the capacitors of the CDAC during conversion. Pin 14 (REFOUT) can be left  
unconnected (floating) if an external reference is used.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS8471  
 
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
ANALOG INPUT  
When the converter enters the hold mode, the voltage difference between the +IN and –IN inputs is captured on  
the internal capacitor array. The voltage on the -IN input is limited between –0.2 V and 0.2 V, allowing the input  
to reject small signals which are common to both the +IN and –IN inputs. The +IN input has a range of –0.2 V to  
Vref + 0.2 V. The input span [+IN – (–IN)] is limited to 0 V to Vref.  
The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source  
impedance. Essentially, the current into the ADS8471 charges the internal capacitor array during the sample  
period. After this capacitance has been fully charged, there is no further input current. The source of the analog  
input voltage must be able to charge the input capacitance (65 pF) to an 16-bit settling level within the acquisition  
time (270 ns) of the device. When the converter goes into the hold mode, the input impedance is greater than 1  
G.  
Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the  
+IN and –IN inputs and the span [+IN – (–IN)] must be within the limits specified. Outside of these ranges, the  
converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass  
filters are used.  
Care must be taken to ensure that the output impedance of the sources driving the +IN and –IN inputs are  
matched. If this is not observed, the two inputs could have different settling times. This may result in offset error,  
gain error, and linearity error which varies with temperature and input voltage.  
The analog input to the converter needs to be driven with a low noise, high-speed op-amp like the THS4031. An  
RC filter is recommended at the input pins to low-pass filter the noise from the source. A series resistor of 20 Ω  
and a decoupling capacitor of 680 pF is recommended. The input to the converter is a uni-polar input voltage in  
the range 0 to Vref. The THS4031 can be used in the source follower configuration to drive the converter (see  
Figure 40).  
Low-Pass Filter  
V
+
20 W  
IN  
THS4031  
_
INP  
50 W  
ADS8471  
680 pF  
INM  
Figure 40. Unipolar Input Driving Circuit  
In systems, where the input is bi-polar, the THS4031 can be used in the inverting configuration with an additional  
DC bias applied to its + input so as to keep the input to the ADS8471 within its rated operating voltage range  
(see Figure 41). This configuration is also recommended when the ADS8471 is used in signal processing  
applications where good SNR and THD performance is required. The DC bias can be derived from the REF3220  
or the REF5040 reference voltage ICs. The input configuration shown below is capable of delivering better than  
91dB SNR and -100db THD at an input frequency of 100 kHz. In case band-pass filters are used to filter the  
input, care should be taken to ensure that the signal swing at the input of the band-pass filter is small so as to  
keep the distortion introduced by the filter minimal. In such cases, the gain of the circuit shown below can be  
increased to keep the input to the ADS8471 large to keep the SNR of the system high. Note that the gain of the  
system from the + input to the output of the THS4031 in such a configuration is a function of the gain of the AC  
signal. A resistor divider can be used to scale the output of the REF3220 or REF5040 to reduce the voltage at  
the DC input to THS4031 to keep the voltage at the input of the converter within its rated operating range.  
20  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
 
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
Bipolar to Unipolar Conversion  
Low-Pass Filter  
380 W  
_
V
IN  
20 W  
380 W  
THS4031  
INP  
+
Vdc  
ADS8471  
680 pF  
INM  
Figure 41. Bipolar Input Driving Circuit  
DIGITAL INTERFACE  
Timing and Control  
See the timing diagrams in the specifications section for detailed information on timing signals and their  
requirements.  
The ADS8471 uses an internal oscillator generated clock which controls the conversion rate and in turn the  
throughput of the converter. No external clock input is required.  
Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum  
requirement has been met, the CONVST pin can be brought high), while CS is low. The ADS8471 switches from  
the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of  
this signal is important to the performance of the converter. The BUSY output is brought high immediately  
following CONVST going low. BUSY stays high throughout the conversion process and returns low when the  
conversion has ended.  
Sampling starts with the falling edge of the BUSY signal when CS is tied low or starts with the falling edge of CS  
when BUSY is low.  
Both RD and CS can be high during and before a conversion with one exception (CS must be low when  
CONVST goes low to initiate a conversion). Both the RD and CS pins are brought low in order to enable the  
parallel output bus with the conversion.  
Reading Data  
The ADS8471 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is active  
when CS and RD are both low. There is a minimal quiet zone requirement around the falling edge of CONVST.  
This is 50 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should attempted  
within this zone. Any other combination of CS and RD sets the parallel output to 3-state. BYTE is used for  
multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the  
bus. Refer to Table 1 for ideal output codes.  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
Table 1. Ideal Input Voltages and Output Codes  
DESCRIPTION  
ANALOG VALUE  
DIGITAL OUTPUT STRAIGHT BINARY  
Full scale range  
Least significant bit (LSB)  
+Full scale  
+Vref  
+Vref/65536  
(+Vref) – 1 LSB  
+Vref/2  
BINARY CODE  
HEX CODE  
FFFF  
1111 1111 1111 1111  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
Midscale  
8000  
Midscale – 1 LSB  
Zero  
+Vref/2 – 1 LSB  
0 V  
7FFF  
0000  
The output data is a full 16-bit word (D15–D0) on DB15–DB0 pins (MSB–LSB) if BYTE is low.  
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15–DB8. In this  
case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on  
pins DB15–DB8, then bringing BYTE high. When BYTE is high, the low bits (D7–D0) appear on pins DB15–DB8.  
All of these multiword read operations can be performed with multiple active RD (toggling) or with RD held low  
for simplicity. This is referred to as the AUTO READ operation.  
Table 2. Conversion Data Read Out  
DATA READ OUT  
BYTE  
PINS  
PINS  
DB15–DB8  
DB7–DB0  
High  
Low  
D7-D0  
All One's  
D7–D0  
D15-D8  
RESET  
On power-up, internal POWER-ON RESET circuitry generates the reset required for the device. The first three  
conversions after power-up are used to load factory trimming data for a specific device to assure high accuracy  
of the converter. The results of the first three conversions are invalid and should be discarded.  
The device can also be reset through the use of the combination of CS and CONVST. Since the BUSY signal is  
held at high during the conversion, either one of these conditions triggers an internal self-clear reset to the  
converter.  
Issue a CONVST when CS is low and the internal convert state is high. The falling edge of CONVST starts a  
reset.  
Issue a CS (select the device) while the internal convert state is high. The falling edge of CS causes a reset.  
Once the device is reset, all output latches are cleared (set to zeroes) and the BUSY signal is brought low. A  
new sampling period is started at the falling edge of the BUSY signal immediately after the instant of the internal  
reset.  
22  
Submit Documentation Feedback  
Copyright © 2007, Texas Instruments Incorporated  
Product Folder Link(s): ADS8471  
ADS8471  
www.ti.com  
SLAS517DECEMBER 2007  
LAYOUT  
For optimum performance, care must be taken with the physical layout of the ADS8471 circuitry.  
As the ADS8471 offers single-supply operation, it is often used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and  
the higher the switching speed, the more difficult it is to achieve good performance from the converter.  
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground  
connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving  
any single conversion for an n-bit SAR converter, there are at least n windows in which large external transient  
voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby  
digital logic, or high power devices.  
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the  
external event.  
On average, the ADS8471 draws very little current from an external reference as the reference voltage is  
internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive  
the bypass capacitor or capacitors without oscillation. A 0.1-µF capacitor is recommended from pin 13 (REFIN)  
directly to pin 12 (REFM). REFM and AGND must be shorted on the same ground plane under the device.  
The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the  
analog ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal  
processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal  
layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.  
As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate  
from the connection for digital logic until they are connected at the power entry point. Power to the ADS8471  
should be clean and well bypassed. A 0.1-µF ceramic bypass capacitor should be placed as close to the device  
as possible. See Table 3 for the placement of the capacitor. In addition, a 1-µF to 10-µF capacitor is  
recommended. In some situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor  
or even a Pi filter made up of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply,  
removing the high frequency noise.  
Table 3. Power Supply Decoupling Capacitor Placement  
POWER SUPPLY PLANE  
SUPPLY PINS  
CONVERTER  
DIGITAL SIDE  
CONVERTER ANALOG SIDE  
Pin pairs that require shortest path to decoupling capacitors  
Pins that require no decoupling  
(7,8), (9,10), (16,17), (20,21), (22,23), (25,26)  
24, 26  
36, 37  
1,2  
Copyright © 2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS8471  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
ADS8471IBRGZT  
ADS8471IRGZT  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
VQFN  
VQFN  
RGZ  
48  
48  
250  
RoHS & Green  
RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
ADS  
8471I  
B
ACTIVE  
RGZ  
250  
Call TI  
-40 to 85  
ADS  
8471I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY