ADS8509IBDWRG4 [TI]

具有可编程 (±10/±5/±3.3V) 输入范围和 SPI 接口的 16 位、250kSPS、单通道 SAR ADC | DW | 20 | -40 to 85;
ADS8509IBDWRG4
型号: ADS8509IBDWRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可编程 (±10/±5/±3.3V) 输入范围和 SPI 接口的 16 位、250kSPS、单通道 SAR ADC | DW | 20 | -40 to 85

文件: 总35页 (文件大小:1123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
16-BIT 250-KSPS SERIAL CMOS SAMPLING ANALOG-TO-DIGITAL CONVERTER  
Check for Samples: ADS8509  
1
FEATURES  
DESCRIPTION  
2
250-kHz Sampling Rate  
The ADS8509 is  
a
complete 16-bit sampling  
analog-to-digital (A/D) converter using state-of-the-art  
CMOS structures. It contains a complete 16-bit,  
capacitor-based, successive approximation register  
(SAR) A/D converter with sample-and-hold,  
reference, clock, and a serial data interface. Data can  
be output using the internal clock or can be  
synchronized to an external data clock. The ADS8509  
also provides an output synchronization pulse for  
ease of use with standard DSP processors.  
4-V, 5-V, 10-V, ±3.33-V, ±5-V, and ±10-V Input  
Ranges  
±2 LSB Max INL  
±1 LSB Max DNL, 16-Bit No Missing Codes  
SPI Compatible Serial Output with Daisy-Chain  
(TAG) Feature  
Single 5-V Supply  
Pin-Compatible with ADS7809 (Low Speed)  
and 12-Bit ADS8508/7808  
The ADS8509 is specified at a 250-kHz sampling rate  
over the full temperature range. Precision resistors  
provide various input ranges including ±10 V and 0 V  
to 5 V, while the innovative design allows operation  
from a single +5-V supply with power dissipation  
under 100 mW.  
Uses Internal or External Reference  
70-mW Typ Power Dissipation at 250 KSPS  
20-Pin SO and 28-Pin SSOP Packages  
Simple DSP Interface  
The ADS8509 is available in 20-pin SO and 28-pin  
SSOP packages, both fully specified for operation  
over the industrial -40°C to 85°C temperature range.  
APPLICATIONS  
Industrial Process Control  
Data Acquisition Systems  
Digital Signal Processing  
Medical Equipment  
Instrumentation  
Successive Approximation Register  
Clock  
EXT/INT  
CDAC  
9.8 k  
R1  
R2  
IN  
BUSY  
4.9 kΩ  
2.5 kΩ  
Serial  
Data  
Out  
&
IN  
DATACLK  
DATA  
R/C  
10 kΩ  
R3  
IN  
Comparator  
Control  
CAP  
SB/BTC  
CS  
Internal  
+2.5 V Ref  
Buffer  
4 kΩ  
PWRD  
REF  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2010, Texas Instruments Incorporated  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
MINIMUM  
NO  
MISSING  
CODE  
MINIMUM  
SINAD  
(dB)  
SPECIFICATION  
TEMPERATURE  
RANGE  
RELATIVE  
ACCURACY  
(LSB)  
PACKAGE  
LEAD  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QTY  
PRODUCT  
ADS8509IBDW  
ADS8509IBDWR  
ADS8509IBDB  
ADS8509IBDBR  
ADS8509IDW  
ADS8509IDWR  
ADS8509IDB  
Tube, 25  
SO-20  
SSOP-28  
SO-20  
DW  
DB  
DW  
DB  
Tape and Reel, 2000  
Tube, 50  
ADS8509IB  
±2  
±3  
16  
15  
85  
83  
–40°C to 85°C  
–40°C to 85°C  
Tape and Reel, 2000  
Tube, 25  
Tape and Reel, 2000  
Tube, 50  
ADS8509I  
SSOP-28  
ADS8509IDBR  
Tape and Reel, 2000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
R1IN  
±25 V  
R2IN  
±25 V  
Analog inputs  
R3IN  
±25 V  
REF  
+VANA + 0.3 V to AGND2 – 0.3 V  
CAP  
Indefinite short to AGND2, momentary short to VANA  
DGND, AGND2  
VANA  
±0.3 V  
6 V  
0.3 V  
Ground voltage differences  
VDIG to VANA  
VDIG  
6 V  
Digital inputs  
–0.3 V to +VDIG + 0.3 V  
165°C  
Maximum junction temperature  
Storage temperature range  
Internal power dissipation  
–65°C to 150°C  
700 mW  
Lead temperature (soldering, 1.6 mm from case 10 seconds)  
260°C  
(1) All voltage values are with respect to network ground terminal.  
2
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
 
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
ELECTRICAL CHARACTERISTICS  
At TA = –40°C to 85°C, fs = 250 kHz, VDIG = VANA = 5 V, using internal reference and 0.1%, 0.25-W fixed resistors (see  
Figure 29 and Figure 30) (unless otherwise specified)  
ADS8509I  
ADS8509IB  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Resolution  
ANALOG INPUT  
16  
16  
Bits  
Voltage range(1)  
Impedance(1)  
Capacitance  
50  
50  
pF  
THROUGHPUT SPEED  
Conversion cycle  
Throughput rate  
Acquire and convert  
4
4
ms  
250  
250  
kHz  
DC ACCURACY  
INL  
Integral linearity error  
Differential linearity error  
No missing codes  
–3  
–2  
15  
3
2
–2  
–1  
16  
2
1
LSB(2)  
LSB  
Bits  
DNL  
Transition noise(3)  
1
1
LSB  
±10-V Range  
All other ranges  
Int. ref. with 0.1% external fixed  
resistors  
–0.5  
–0.5  
0.5  
0.5  
–0.5  
–0.5  
0.5  
0.5  
Full-scale  
%FSR  
ppm/°C  
%FSR  
(5)  
error(4)  
Full-scale error drift  
Int. ref.  
±7  
±7  
±10-V Range  
All other ranges  
Ext. ref. with 0.1% external  
fixed resistors  
–0.5  
–0.5  
0.5  
0.5  
–0.5  
–0.5  
0.5  
0.5  
Full-scale  
(5)  
error(4)  
Full-scale error drift  
Bipolar zero error(4)  
Bipolar zero error drift  
Ext. ref.  
±2  
±2  
ppm/°C  
mV  
–10  
10  
–5  
5
±0.4  
±0.4  
ppm/°C  
10-V Range  
–5  
–3  
5
3
–5  
–3  
5
3
Unipolar zero  
error(4)  
mV  
4-V and 5-V  
Range  
Unipolar zero error drift  
±2  
1
±2  
1
ppm/°C  
ms  
Recovery to rated accuracy after 1-mF Capacitor to CAP  
power down  
Power supply sensitivity  
+4.75 V < VD < +5.25 V  
(VDIG = VANA = VD)  
–8  
8
–8  
8
LSB  
AC ACCURACY  
SFDR  
THD  
Spurious-free dynamic range  
fI = 20 kHz  
fI = 20 kHz  
fI = 20 kHz  
–60-dB Input  
fI = 20 kHz  
90  
83  
83  
99  
–98  
88  
95  
85  
86  
99  
–98  
88  
dB(6)  
dB  
Total harmonic distortion  
–90  
–93  
SINAD  
dB  
Signal-to-(noise+distortion)  
30  
32  
dB  
SNR  
Signal-to-noise ratio  
88  
88  
dB  
Full-power bandwidth(7)  
500  
500  
kHz  
SAMPLING DYNAMICS  
Aperture delay  
5
5
ns  
ms  
ns  
Transient response  
Overvoltage recovery(8)  
FS Step  
2
2
150  
150  
(1) ±10 V, 0 V to 5 V, etc. (see Table 2). For normal operation, the analog input should not exceed configured range ±20%.  
(2) LSB means least significant bit. For the ±10-V input range, one LSB is 305 mV.  
(3) Typical rms noise at worst case transitions and temperatures.  
(4) As measured with fixed resistors shown in Figure 29 and Figure 30. Adjustable to zero with external potentiometer. Factory calibrated  
with 0.1%, 0.25-W resistors.  
(5) For bipolar input ranges, full-scale error is the worst case of –full-scale or +full-scale uncalibrated deviation from ideal first and last code  
transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. For unipolar input  
ranges, full-scale error is the deviation of the last code transition divided by the transition voltage. It also includes the effect of offset  
error.  
(6) All specifications in dB are referred to a full-scale ±10-V input.  
(7) Full-power bandwidth is defined as the full-scale input frequency at which signal-to-(noise + distortion) degrades to 60 dB.  
(8) Recovers to specified performance after 2 x FS input overvoltage.  
Copyright © 2004–2010, Texas Instruments Incorporated  
3
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
At TA = –40°C to 85°C, fs = 250 kHz, VDIG = VANA = 5 V, using internal reference and 0.1%, 0.25-W fixed resistors (see  
Figure 29 and Figure 30) (unless otherwise specified)  
ADS8509I  
ADS8509IB  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
REFERENCE  
Internal reference voltage  
No load  
2.48  
2.5  
1
2.52  
2.48  
2.5  
1
2.52  
V
mA  
Internal reference source current  
(must use external buffer)  
Internal reference drift  
8
8
ppm/°C  
V
External reference voltage range  
for specified linearity  
2.3  
2.5  
2.7  
2.3  
2.5  
2.7  
External reference current drain  
Ext. 2.5-V ref.  
100  
100  
mA  
DIGITAL INPUTS  
Logic levels  
VIL  
VIH  
IIL  
Low-level input voltage  
High-level input voltage  
Low-level input current  
High-level input current  
–0.3  
2.0  
0.8  
VDIG +0.3 V  
±10  
–0.3  
2.0  
0.8  
V
V
VDIG +0.3 V  
±10  
VIL = 0 V  
VIH = 5 V  
mA  
mA  
IIH  
±10  
±10  
DIGITAL OUTPUTS  
Data format (serial 16-bits)  
Data coding (binary 2's  
complement or straight binary)  
Pipeline delay (conversion results  
only available after completed  
conversion)  
Data clock (selectable for internal  
or external data clock)  
Internal clock (output only when  
transmitting data)  
EXT/INT Low  
EXT/INT High  
9
9
MHz  
MHz  
External clock (can run  
continually but not recommended  
for optimum performance)  
0.1  
4
26  
0.1  
4
26  
VOL  
VOH  
Low-level output voltage  
High-level output voltage  
ISINK = 1.6 mA  
0.4  
0.4  
V
V
ISOURCE = 500 mA  
Hi-Z State,  
VOUT = 0 V to VDIG  
±5  
15  
±5  
15  
mA  
Leakage current  
Output capacitance  
Hi-Z State  
pF  
POWER SUPPLIES  
VDIG  
VANA  
IDIG  
Digital input voltage  
4.75  
4.75  
5
5
5.25  
5.25  
4.75  
4.75  
5
5
5.25  
5.25  
V
V
Analog input voltage  
Digital input current  
Analog input current  
Must be VANA  
4
4
mA  
mA  
IANA  
10  
10  
POWER DISSIPATION  
PWRD Low  
fS = 250 kHz  
70  
50  
100  
70  
50  
100  
mW  
PWRD High  
mW  
TEMPERATURE RANGE  
Specified performance  
Derated performance(9)  
–40  
–55  
–65  
85  
125  
150  
–40  
–55  
–65  
85  
125  
150  
°C  
°C  
°C  
Storage  
THERMAL RESISTANCE (qJA  
)
SSOP  
SO  
62  
46  
62  
46  
°C/W  
°C/W  
(9) The internal reference may not be started correctly beyond the industrial temperature range (–40°C to 85°C), therefore use of an  
external reference is recommended.  
4
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
PIN CONFIGURATIONS  
DW PACKAGE  
SO-20  
(TOP VIEW)  
R1IN  
VDIG  
1
2
3
4
5
6
7
8
9
20  
19  
VANA  
AGND1  
R2IN  
18 PWRD  
R3IN  
17  
16  
15  
BUSY  
CS  
CAP  
REF  
R/C  
AGND2  
SB/BTC  
EXT/INT  
14 TAG  
13 DATA  
12 DATACLK  
11 SYNC  
DGND 10  
DB PACKAGE  
SSOP-28  
(TOP VIEW)  
VDIG  
28  
R1IN  
1
VANA  
27  
AGND1  
R2IN  
2
3
4
5
6
7
8
9
26 PWRD  
R3IN  
25  
BUSY  
24  
NC  
CAP  
CS  
23  
NC  
REF  
22 NC  
21  
R/C  
NC  
20 NC  
AGND2  
19 TAG  
NC 10  
NC 11  
18  
17  
NC  
SB/BTC  
EXT/INT  
12  
13  
DATA  
16 DATACLK  
15  
DGND 14  
SYNC  
Copyright © 2004–2010, Texas Instruments Incorporated  
5
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
Terminal Functions  
TERMINAL  
DESCRIPTION  
NAME  
AGND1  
AGND2  
BUSY  
DB NO. DW NO.  
I/O  
2
9
2
7
Analog ground. Used internally as ground reference point. Minimal current flow.  
Analog ground  
25  
17  
O
Busy output. Falls when a conversion is started and remains low until the conversion is completed  
and the data is latched into the output shift register.  
CAP  
CS  
6
5
Reference buffer capacitor. 2.2-mF Tantalum to ground.  
24  
17  
16  
13  
Chip select. Internally ORed with R/C.  
DATA  
O
Serial data output. Data is synchronized to DATACLK with the format determined by the level of  
SB/BTC. In the external clock mode, after 16 bits of data, the ADS8509 outputs the level input on  
TAG as long as CS is low and R/C is high (see Figure 8 and Figure 9). If EXT/INT is low, data is  
valid on both the rising and falling edges of DATACLK, and between conversions DATA stays at  
the level of the TAG input when the conversion was started.  
DATACLK  
16  
12  
I/O Either an input or an output depending on the EXT/INT level. Output data is synchronized to this  
clock. If EXT/INT is low, DATACLK transmits 16 pulses after each conversion and then remains  
low between conversions.  
DGND  
14  
13  
10  
9
Digital ground  
EXT/INT  
Selects external or internal clock for transmitting data. If high, data is output synchronized to the  
clock input on DATACLK. If low, a convert command initiates the transmission of the data from the  
previous conversion, along with 16-clock pulses output on DATACLK.  
NC  
5, 8, 10,  
11, 18,  
20, 22,  
23  
No connect  
PWRD  
R/C  
26  
18  
15  
I
I
Power down input. If high, conversions are inhibited and power consumption is significantly  
reduced. Results from the previous conversion are maintained in the output shift register.  
21  
Read/convert input. With CS low, a falling edge on R/C puts the internal sample-and-hold into the  
hold state and starts a conversion. When EXT/INT is low, this also initiates the transmission of the  
data results from the previous conversion. If EXT/INT is high, a rising edge on R/C with CS low or  
a falling edge on CS with R/C high transmits a pulse on SYNC and initiates the transmission of  
data from the previous conversion.  
REF  
7
6
I/O Reference input/output. Outputs internal 2.5-V reference. Can also be driven by external system  
reference. In both cases, bypass to ground with a 2.2-mF tantalum capacitor.  
R1IN  
1
3
1
3
4
8
I
I
I
I
Analog input. See Table 2 for input range connections.  
Analog input. See Table 2 for input range connections.  
Analog input. See Table 2 for input range connections.  
R2IN  
R3IN  
4
SB/BTC  
12  
Select straight binary or binary 2's complement data output format. If high, data is output in a  
straight binary format. If low, data is output in a binary 2's complement format.  
SYNC  
15  
11  
O
Sync output. This pin is used to supply a data synchronization pulse when the EXT level is high  
and at least one external clock pulse has occurred when not in the read mode. See the external  
clock modes desciptions.  
TAG  
VANA  
VDIG  
19  
27  
28  
14  
19  
20  
I
I
I
Tag input for use in the external clock mode. If EXT is high, digital data input from TAG is output  
on DATA with a delay that is dependent on the external clock mode. See Figure 8 and Figure 9.  
Analog supply input. Nominally +5 V. Connect directly to pin 20 and decouple to ground with  
0.1-mF ceramic and 10-mF tantalum capacitors.  
Digital supply input. Nominally +5 V. Connect directly to pin 19. Must be VANA  
.
6
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
 
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
TIMING REQUIREMENTS, TA = –40°C to 85°C  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
ns  
ms  
ns  
ns  
ms  
ms  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ms  
ns  
ns  
tw1  
td1  
tw2  
td2  
Pulse duration, convert  
Delay time, BUSY from R/C low  
Pulse duration, BUSY low  
Delay time, BUSY, after end of conversion  
Delay time, aperture  
40  
6
20  
2.2  
5
5
td3  
tconv  
tacq  
Conversion time  
2.2  
4
Acquisition time  
1.8  
tconv + tacq Cycle time  
td4  
tc1  
Delay time, R/C low to internal DATACLK output  
270  
110  
35  
Cycle time, internal DATACLK  
td5  
Delay time, data valid to internal DATACLK high  
Delay time, data valid after internal DATACLK low  
Cycle time, external DATACLK  
15  
20  
35  
15  
15  
15  
10  
3
td6  
35  
tc2  
tw3  
tw4  
tsu1  
tsu2  
td7  
Pulse duration, external DATACLK high  
Pulse duration, external DATACLK low  
Setup time, R/C rise/fall to external DATACLK high  
Setup time, R/C transition to CS transition  
Delay time, SYNC, after external DATACLK high  
Delay time, data valid  
35  
20  
td8  
2
td9  
Delay time, CS to rising edge  
10  
2
td10  
tsu3  
td11  
tsu3  
th1  
Delay time, previous data available after CS, R/C low  
Setup time, BUSY transition to first external DATACLK  
Delay time, final external DATACLK to BUSY falling edge  
Setup time, TAG valid  
5
1
0
2
Hold time, TAG valid  
PARAMETER MEASUREMENT INFORMATION  
R/C  
CS  
CS  
R/C  
t
t
su1  
t
t
su1  
su1  
su1  
External  
DATACLK  
External  
DATACLK  
CS Set Low, Discontinuous Ext DATACLK  
CS  
R/C Set Low, Discontinuous Ext DATACLK  
BUSY  
t
t
su2  
su2  
t
su3  
1
2
External  
DATACLK  
R/C  
CS Set Low, Discontinuous Ext DATACLK  
Figure 1. Critical Timing  
Copyright © 2004–2010, Texas Instruments Incorporated  
7
Product Folder Link(s): ADS8509  
 
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
t
t
w1  
w1  
R/C  
t
t
d1  
t
d1  
t
w2  
w2  
BUSY  
t
d2  
t
d2  
t
d3  
t
d3  
t
t
d11  
d11  
Error  
Correction  
Error  
Correction  
(N+1)th Accquisition  
(N+2)th Accquisition  
Nth Conversion  
STATUS  
(N+1)th Conversion  
t
t
t
t
conv  
conv  
acq  
acq  
t
t
c1  
t
d4  
d4  
Internal  
1
2
16  
D0  
2
16  
D0  
1
DATACLK  
t
d6  
t
d5  
TAG = 0  
D15  
D15  
DATA  
TAG = 0  
TAG = 0  
Nth Conversion Data  
(N1)th Conversion Data  
CS, EXT/INT, and TAG are tied low  
8 starts READ  
Figure 2. Basic Conversion Timing (Internal DATACLK - Read Previous Data During Conversion)  
t
t
w1  
w1  
R/C  
t
t
d1  
d1  
t
t
w2  
w2  
BUSY  
t
t
d2  
d2  
t
t
d3  
d3  
t
t
d11  
d11  
Error  
Correction  
Error  
Correction  
STATUS  
Nth Conversion  
(N+1)th Accquisition  
(N+1)th Conversion  
(N+2)th Accquisition  
t
t
t
t
acq  
acq  
conv  
conv  
t
t
t
su3  
su3  
su1  
t
su1  
External  
1
1
16  
2
16  
2
1
16  
1
16  
DATACLK  
No more  
data to  
shift out  
No more  
data to  
shift out  
TAG = 0  
TAG = 0  
Nth Data  
TAG = 0  
(N+1)th Data  
TAG = 0  
DATA  
TAG = 0  
EXT/INT tied high, CS and TAG are tied low  
t
+ t  
starts READ  
su1  
w1  
Figure 3. Basic Conversion Timing (External DATACLK)  
8
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
PARAMETER MEASUREMENT INFORMATION (continued)  
t
w1  
R/C  
t
su1  
t
d1  
t
d1  
t
w2  
BUSY  
t
t
d2  
t
d3  
t
d3  
d11  
Error  
Correction  
(N+1) th Accquisition  
Nth Conversion  
STATUS  
t
su3  
t
t
acq  
conv  
t
t
su1  
c2  
t
w4  
External  
t
w3  
DATACLK  
0
1
2
3
4
5
10  
11  
12  
13  
14  
15  
16  
SYNC = 0  
DATA  
Nth Conversion Data  
t
t
d8  
d8  
Null  
D15 D14 D13 D12 D11 D10  
D05 D04 D03 D02 D01 D00  
T00  
T17  
Txx  
Tyy  
t
h1  
t
su3  
T01 T02 T03  
Null  
TAG  
T00  
T04 T05 T06  
T11 T12 T13 T14 T15 T16  
EXT/INT tied high, CS tied low  
t
+ t  
starts READ  
su1  
w1  
Figure 4. Read After Conversion (Discontinuous External DATACLK)  
t
w1  
R/C  
t
d1  
t
w2  
BUSY  
t
t
d2  
t
d10  
d3  
Error  
Correction  
Nth Conversion  
STATUS  
t
su3  
t
conv  
t
c2  
t
t
t
d11  
w3  
w4  
t
su1  
External  
1
2
3
4
5
10  
11  
12  
13  
14  
15  
16  
0
DATACLK  
SYNC = 0  
DATA  
Nth Conversion Data  
t
t
d8  
d8  
D05 D04 D03 D02 D01 D00  
D15 D14 D13 D12 D11 D10  
Rising DATACLK change DATA, t + t  
Starts READ  
su1  
w1  
EXT/INT tied high, CS and TAG tied low  
TAG is not recommended for this mode. There is not enough  
time to do so without violating t  
.
d11  
Figure 5. Read During Conversion (Discontinuous External DATACLK)  
Copyright © 2004–2010, Texas Instruments Incorporated  
9
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
t
w1  
R/C  
t
t
t
d1  
d1  
t
su1  
su1  
t
w2  
BUSY  
t
d2  
t
t
d3  
d3  
t
d11  
Error  
(N+1)th Accquisition  
Nth Conversion  
STATUS  
Correction  
t
t
conv  
acq  
t
c2  
t
t
su3  
su1  
t
su1  
t
t
w4  
w3  
External  
0
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
17  
18  
DATACLK  
t
c2  
t
d7  
=0  
SYNC  
DATA  
TAG  
Nth Conversion Data  
t
t
d8  
d8  
D15 D14 D13 D12 D11 D10  
D05 D04 D03 D02 D01 D00  
Null  
T00  
Txx  
Tyy  
t
h1  
T01 T02 T03  
t
su3  
T00  
T04 T05 T06  
T11 T12 T13  
T14  
T15 T16  
T17  
t
+ t  
starts READ  
su1  
EXT/INT tied high, CS tied low  
w1  
Figure 6. Read After Conversion With SYNC (Discontinuous External DATACLK)  
t
w1  
R/C  
t
d1  
t
w2  
BUSY  
t
t
d3  
t
d2  
d10  
Error  
Correction  
Nth Conversion  
STATUS  
t
su3  
t
conv  
t
t
c2  
t
t
su1  
su1  
t
t
w3  
d11  
w4  
t
su1  
External  
DATACLK  
0
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
17  
18  
t
d7  
t
c2  
SYNC = 0  
Nth Conversion Data  
t
t
d8  
d8  
D15 D14 D13 D12 D11 D10  
D05 D04 D03 D02 D01 D00  
DATA  
t
+ t  
Starts READ  
su1  
w1  
EXT/INT tied high, CS and TAG tied low  
TAG is not recommended for this mode. There is not enough  
time to do so without violating t  
.
d11  
Figure 7. Read During Conversion With SYNC (Discontinuous External DATACLK)  
10  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
PARAMETER MEASUREMENT INFORMATION (continued)  
Figure 8. Conversion and Read Timing with Continuous External DATACLK (EXT/INT Tied High) Read  
After Conversions (Not Recommended)  
Copyright © 2004–2010, Texas Instruments Incorporated  
11  
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Figure 9. Conversion and Read Timing with Continous External DATACLK (EXT/INT Tied High) Read  
Previous Conversion Results During Conversion (Not Recommended)  
12  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
SPURIOUS FREE DYNAMIC RANGE  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
−100  
105  
100  
95  
−95  
−90  
−85  
−80  
−75  
−70  
90  
85  
f
= 250 KSPS,  
f
= 250 KSPS,  
80  
s
s
f = 20 kHz  
f = 20 kHz  
i
i
75  
−40  
25  
85  
−40  
25  
85  
T
A
− Free-Air Temperature − 5C  
T
A
− Free-Air Temperature − 5C  
Figure 10.  
Figure 11.  
SIGNAL-TO-NOISE RATIO  
vs  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
100  
95  
90  
85  
80  
75  
70  
100  
f
= 250 KSPS,  
f
= 250 KSPS,  
s
s
f = 20 kHz  
f = 20 kHz  
i
i
95  
90  
85  
80  
75  
70  
−40  
25  
85  
−40  
25  
85  
T
A
− Free-Air Temperature − 5C  
T
A
− Free-Air Temperature − 5C  
Figure 12.  
Figure 13.  
SIGNAL-TO-NOISE RATIO  
vs  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
1
10  
100  
1
10  
100  
f − Input Frequency − kHz  
i
f − Input Frequency − kHz  
i
Figure 14.  
Figure 15.  
Copyright © 2004–2010, Texas Instruments Incorporated  
13  
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SPURIOUS FREE DYNAMIC RANGE  
TOTAL HARMONIC DISTORTION  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
105  
100  
95  
−105  
−100  
−95  
−90  
90  
−85  
85  
−80  
80  
−75  
−70  
75  
70  
1
10  
100  
1
10  
100  
f − Input Frequency − kHz  
i
f − Input Frequency − kHz  
i
Figure 16.  
Figure 17.  
INTERNAL REFERENCE VOLTAGE  
BIPOLAR ZERO SCALE ERROR  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
5
External Reference,  
4
±10-V Range  
3
2
1
0
−1  
−2  
−3  
−4  
−5  
−55 −35 −15  
5
25 45 65 85 105  
−40 −25 −10  
5
20 35 50 65 80  
T
A
− Free-Air Temperature − 5C  
T
A
− Free-Air Temperature − 5C  
Figure 18.  
Figure 19.  
FULL SCALE ERROR  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0.20  
0.15  
0.10  
0.05  
0
External Reference,  
±10 V Range  
for 5 Representative  
Parts  
−0.05  
−0.10  
−0.15  
−0.20  
−40 −25 −10  
5
20 35 50 65 80  
−40 −25 −10  
5
20 35 50 65 80  
T
A
− Free-Air Temperature − 5C  
T
A
− Free-Air Temperature − 5C  
Figure 20.  
Figure 21.  
14  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
TYPICAL CHARACTERISTICS (continued)  
PERFORMANCE  
vs  
HISTOGRAM  
CAP PIN CAPACITOR ESR  
4500  
4000  
3500  
3000  
100  
95  
90  
85  
80  
75  
70  
65  
60  
4224  
8192  
Conversions  
of a DC Input  
|THD|  
SINAD  
2500  
2000  
2082  
1484  
1500  
1000  
500  
0
2.2 µF Capacitor on  
CAP Pin (pin 6)  
55  
50  
238  
2
4
149  
−2  
11  
3
−3  
−1  
0
1
10 11  
0
1
2
3
4
5
6
7
8
9
ESR − Resistance − W  
Code  
Figure 22.  
Figure 23.  
INTEGRAL NONLINEARITY  
2.5  
f
= 250 KSPS  
s
2
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
−2.5  
0
16384  
32768  
49152  
65536  
Code  
Figure 24.  
DIFFERENTIAL NONLINEARITY  
2.5  
f
= 250 KSPS  
s
2
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
−2.5  
0
16384  
32768  
49152  
65536  
Code  
Figure 25.  
Copyright © 2004–2010, Texas Instruments Incorporated  
15  
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
FFT (20-kHz Input)  
20  
8192 Points,  
= 250 KSPS,  
0
f
s
f = 20 kHz, 0 dB  
SINAD = 86.0 dB,  
THD = −98.7 dB  
i
−20  
−40  
−60  
−80  
−100  
−120  
−140  
−160  
−180  
0
25  
50  
75  
100  
125  
f − Frequency − kHz  
Figure 26.  
BASIC OPERATION  
Two signals control conversion in the ADS8509: CS and R/C. These two signals are internally ORed together. To  
start a conversion the chip must be selected, CS low, and the conversion signal must be active, R/C low. Either  
signal can be brought low first. Conversion starts on the falling edge of the second signal. BUSY goes low when  
conversion starts and returns high after the data from that conversion is shifted into the internal storage register.  
Sampling begins when BUSY goes high.  
To reduce the number of control pins CS can be tied low permanently. The R/C pin now controls conversion and  
data reading exclusively. In the external clock mode this means that the ADS8509 clocks out data whenever R/C  
is brought high and the external clock is active. In the internal clock mode data is clocked out every convert cycle  
regardless of the states of CS and R/C. The ADS8509 provides a TAG input for cascading multiple converters  
together.  
READING DATA  
The conversion result is available as soon as BUSY returns to high, therefore data always represents the  
conversion previously completed even when it is read during a conversion. The ADS8509 outputs serial data in  
either straight binary or binary two’s compliment format. The SB/BTC pin controls the format. Data is shifted out  
MSB first. The first conversion immediately following a power-up does not produce a valid conversion result.  
Data can be clocked out with either the internally generated clock or with an external clock. The EXT/INT pin  
controls this function. If an external clock is used, the TAG input can be used to daisy-chain multiple ADS8509  
data pins together.  
INTERNAL DATACLK  
In internal clock mode data for the previous conversion is clocked out during each conversion period. The  
internal data clock is synchronized to the internal conversion clock so that is does not interfere with the  
conversion process.  
The DATACLK pin becomes an output when EXT/INT is low. 16 Clock pulses are generated at the beginning of  
each conversion after timing t8 is satisfied, i.e. only the previous conversion result can be read during conversion.  
DATACLK returns to low when it is inactive. The 16 bits of serial data are shifted out the DATA pin synchronous  
to this clock with each bit available on a rising and then a falling edge. The DATA pin returns to the state of the  
TAG pin input sensed at the start of transmission.  
EXTERNAL DATACLK  
The external clock mode offers several ways to retrieve conversion results. However, since the external clock  
cannot be synchronized to the internal conversion clock care must be taken to avoid corrupting the data.  
16  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
When EXT/INT is set high, the R/C and CS signals control the read state. When the read state is initiated, the  
result from the previously completed conversion is shifted out the DATA pin synchronous to the external clock  
that is connected to the DATACLK pin. Each bit is available on a falling and then a rising edge. The maximum  
external clock speed of 28.5 MHz allows data to be shifted out quickly either at the beginning of conversion or  
the beginning of sampling.  
There are several modes of operation available when using an external clock. It is recommended that the  
external clock run only while reading data. This is discontinuous clock mode. Since the external clock is not  
synchronized to the internal clock that controls conversion slight changes in the external clock can cause  
conflicts that can corrupt the conversion process. Specifications with a continuously running external clock  
cannot be ensured. It is especially important that the external clock does not run during the second half of the  
conversion cycle (approximately the time period specified by td11, see the TIMING REQUIREMENTS table).  
In discontinuous clock mode data can be read during conversion or during sampling, with or without a SYNC  
pulse. Data read during conversion must meet the td11 timing specification. Data read during sampling must be  
complete before starting a conversion.  
Whether reading during sampling or during conversion a SYNC pulse is generated whenever at least one rising  
edge of the external clock occurs while the part is not in the read state. In the discontinuous external clock with  
SYNC mode a SYNC pulse follows the first rising edge after the read command. The data is shifted out after the  
SYNC pulse. The first rising clock edge after the read command generates a SYNC pulse. The SYNC pulse can  
be detected on the next falling edge and then the next rising edge. Successively, each bit can be read first on the  
falling edge and then on the next rising edge. Thus 17 clock pulses after the read command are required to read  
on the falling edge. 18 Clock pulses are necessary to read on the rising edge.  
Table 1. DATACLK Pulses  
DATACLK PULSES REQUIRED  
DESCRIPTION  
WITH SYNC  
WITHOUT SYNC  
Read on falling edge of DATACLK  
Read on rising edge of DATACLK  
17  
18  
16  
17  
If the clock is entirely inactive when not in the read state a SYNC pulse is not generated. In this case the first  
rising clock edge shifts out the MSB. The MSB can be read on the first falling edge or on the next rising edge. In  
this discontinuous external clock mode with no SYNC, 16 clocks are necessary to read the data on the falling  
edge and 17 clocks for reading on the rising edge. Data always represents the conversion already completed.  
TAG FEATURE  
The TAG feature allows the data from multiple ADS8509 converters to be read on a single serial line. The  
converters are cascaded together using the DATA pins as outputs and the TAG pins as inputs as illustrated in  
Figure 27. The DATA pin of the last converter drives the processor's serial data input. Data is then shifted  
through each converter, synchronous to the externally supplied data clock, onto the serial data line. The internal  
clock cannot be used for this configuration.  
The preferred timing uses the discontinuous external data clock during the sampling period. Data must be read  
during the sampling period because there is not sufficient time to read data from multiple converters during a  
conversion period without violating the td11 constraint (see the EXTERNAL DATACLOCK section). The sampling  
period must be sufficiently long to allow all data words to be read before starting a new conversion.  
Note, in Figure 27, that a NULL bit separates the data word from each converter. The state of the DATA pin at  
the end of a READ cycle reflects the state of the TAG pin at the start of the cycle. This is true in all READ  
modes, including the internal clock mode. For example, when a single converter is used in internal clock mode,  
the state of the TAG pin determines the state of the DATA pin after all 16 bits have shifted out. When multiple  
converters are cascaded together, this state forms the NULL bit that separates the words. Thus, with the TAG  
pin of the first converter grounded as shown in Figure 27 the NULL bit becomes a zero between each data word.  
Copyright © 2004–2010, Texas Instruments Incorporated  
17  
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
Processor  
ADS8509A  
DATA  
ADS8509B  
DATA (A)  
Null  
Null  
A00  
B00  
A15  
B15  
A16  
B16  
TAG(A)  
TAG(B)  
DATA  
CS  
R/C  
D
D
Q
Q
D
D
Q
Q
D
D
Q
Q
D
D
Q
Q
TAG  
TAG  
CS  
R/C  
DATACLK  
DATACLK  
SCLK  
DATA (B)  
GPIO  
GPIO  
SDI  
DATACLK  
R/C  
(both A & B)  
BUSY  
(both A & B)  
SYNC  
(both A & B)  
External  
DATACLK  
1
2
3
4
16  
17  
19  
20  
21  
34  
35  
36  
18  
Null  
A15 A14 A13  
A01 A00  
DATA ( A )  
DATA ( B )  
TAG(A) = 0  
Nth Conversion Data  
Null  
A
Null  
A
B15  
B00  
A15  
B14 B13  
B01  
A14 A13  
A01 A00  
B
TAG(A) = 0  
EXT/INT tied high, CS of both converter A and B, TAG input of converter A are tied low.  
.
Figure 27. Timing of TAG Feature With Single Conversion (Using External DATACLK)  
ANALOG INPUTS  
The ADS8509 has six analog input ranges as shown in Table 2. The offset and gain specifications are factory  
calibrated with 0.1%, 0.25-W, external resistors as shown in Figure 29 and Figure 30. The external resistors can  
be omitted if larger gain and offset errors are acceptable or if using software calibration. The hardware trim  
circuitry shown in Figure 29 and Figure 30 can reduce the errors to zero.  
The analog input pins R1IN, R2IN, and R3IN have ±25-V overvoltage protection. The input signal must be  
referenced to AGND1. This minimizes the ground loop problem typical to analog designs. The analog input  
should be driven by a low impedance source. A typical driving circuit using OPA627 or OPA132 is shown in  
Figure 28.  
The ADS8509 can operate with its internal 2.5-V reference or an external reference. An external reference  
connected to pin 6 (REF) bypasses the internal reference. The external reference must drive the 4-kresistor  
that separates pin 6 from the internal reference (see the illustration on page 1). The load varies with the  
difference between the internal and external reference voltages. The external reference voltage can vary from  
2.3 V to 2.7 V. The internal reference is approximately 2.5 V. The reference, whether internal or external, is  
buffered internally with a buffer with its output on pin 5 (CAP).  
The ADS8509 is factory tested with 2.2-mF capacitors connected to pins 5 and 6 (CAP and REF). Each capacitor  
should be placed as close as possible to its pin. The capacitor on pin 6 band limits the internal reference noise. A  
smaller capacitor can be used but it may degrade SNR and SINAD. The capacitor on pin 5 stabilizes the  
reference buffer and provides switching charge to the CDAC during conversion. Capacitors smaller than 1 mF  
can cause the buffer to become unstable and may not hold sufficient charge for the CDAC. The parts are tested  
to specifications with 2.2 mF so larger capacitors are not necessary. The equivalent series resistor (ESR) of these  
compensation capacitors is also critical. The total ESR must be kept under 3 . See the TYPICAL  
CHARACTERISTICS section concerning how ESR affects performance.  
Neither the internal reference nor the buffer should be used to drive an external load. Such loading can degrade  
performance. Any load on the internal reference causes a voltage drop across the 4-kresistor and affects gain.  
The internal buffer is capable of driving ±2-mA loads but any load can cause perturbations of the reference at the  
CDAC, degrading performance. It should be pointed out that, unlike other competitor’s parts with similar input  
structure, the ADS8509 does not require a second high-speed amplifier used as a buffer to isolate the CAP pin  
from the signal dependent current in the R3IN pin but can tolerate it if one does exist.  
18  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
The external reference voltage can vary from 2.3 V to 2.7 V. The reference voltage determines the size of the  
least significant bit (LSB). The larger reference voltages produce a larger LSB, which can improve SNR. Smaller  
reference voltages can degrade SNR.  
+15V  
2.2 mF  
22 pF  
ADS8509  
200 W  
100 nF  
R1  
IN  
GND  
2 kW  
AGND1  
Pin 7  
Pin 2  
Pin1  
100 W  
2 kW  
R2  
IN  
Vin  
OPA 627  
22 pF  
or  
33.2 kW  
Pin 6  
GND  
OPA 132  
+
R3  
IN  
Pin3  
Pin4  
CAP  
REF  
2.2 mF  
GND  
2.2 mF  
DGND  
GND  
2.2 mF  
100 nF  
GND  
AGND2  
15V  
GND  
Figure 28. Typical Driving Circuitry (±10 V, No Trim)  
Copyright © 2004–2010, Texas Instruments Incorporated  
19  
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
Table 2. Input Range Connections (See Figure 29 and Figure 30 for Complete  
Information)  
ANALOG  
INPUT RANGE  
CONNECT R1IN VIA CONNECT R2IN VIA  
CONNECT  
R3 TO  
IMPEDANCE  
200 TO  
100 TO  
AGND  
VIN  
±10 V  
±5 V  
VIN  
CAP  
CAP  
CAP  
AGND  
VIN  
11.5 kΩ  
6.7 kΩ  
5.4 kΩ  
6.7 kΩ  
5.0 kΩ  
5.4 kΩ  
AGND  
VIN  
±3.33 V  
VIN  
0 V to 10 V  
0 V to 5 V  
0 V to 4 V  
AGND  
AGND  
VIN  
VIN  
AGND  
AGND  
VIN  
Table 3. Control Truth Table  
SPECIFIC FUNCTION  
CS  
1 > 0  
0
R/C  
0
BUSY  
EXT/INT  
DATACLK  
Output  
PWRD  
SB/BTC  
OPERATION  
Initiate conversion and  
output data using internal  
clock  
1
1
0
0
0
0
x
x
Initiates conversion n. Data from conversion n - 1  
clocked out on DATA synchronized to 16 clock  
pulses output on DATACLK.  
1 > 0  
Output  
1 > 0  
0
0
1 > 0  
1
1
1
1
1
1
1
Input  
Input  
Input  
0
0
x
x
x
x
Initiates conversion n.  
Initiates conversion n.  
Initiate conversion and  
output data using external  
clock  
1 > 0  
Outputs data with or without SYNC pulse. See  
section READING DATA.  
1 > 0  
1
0 > 1  
0
0
0
1
1
x
x
Input  
Input  
x
0
0
0
0
x
x
x
x
Outputs data with or without SYNC pulse. See  
section READING DATA.  
0
0
x
No actions  
0 > 1  
x
This is an acceptable condition.  
x
x
Analog circuitry powered. Conversion can  
proceed..  
Power down  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
0
1
Analog circuitry disabled. Data from previous  
conversion maintained in output registers.  
Serial data is output in binary 2's complement  
format.  
Select output format  
Serial data is output in straight binary format.  
Table 4. Output Codes and Ideal Input Voltages  
DIGITAL OUTPUT  
BINARY 2'S  
COMPLEMENT  
(SB/BTC LOW)  
STRAIGHT  
BINARY  
(SB/BTC HIGH)  
DESCRIPTI  
ON  
ANALOG INPUT  
BINARY CODE  
HEX CODE  
BINARY CODE  
HEX CODE  
Full-scale  
±10  
±5  
±3.33 V  
0 V to 10 V  
0 V to 5 V  
0 V to 4 V  
range  
Least  
significant  
bit (LSB)  
305 mV  
153 mV  
102 mV  
153 mV  
76 mV  
61 mV  
Full scale  
(FS - 1LSB)  
4.999847  
V
9.999695 V  
0 V  
3.333231 V  
0 V  
9.999847 V  
5 V  
4.999924 V  
2.5 V  
3.999939 V  
2 V  
0111 1111 1111 1111  
0000 0000 0000 0000  
7FFF  
0000  
1111 1111 1111 1111  
1000 0000 0000 0000  
FFFF  
8000  
Midscale  
0 V  
153 mV  
–5 V  
One LSB  
below  
midscale  
–305 mV  
±102 µV  
4.999847 V  
0 V  
2.499924 V  
0 V  
1.999939 V  
0 V  
1111 1111 1111 1111  
1000 0000 0000 0000  
FFFF  
8000  
0111 1111 1111 1111  
0000 0000 0000 0000  
7FFF  
0000  
–Full scale  
–10 V  
–3.333333 V  
20  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
With Trim  
Input Range  
Without Trim  
(Adjust Offset First at 0 V, Then Adjust Gain)  
200 Ω  
200 Ω  
R1  
R1  
IN  
IN  
AGND1  
AGND1  
100 Ω  
2.2 µF  
100 Ω  
0 V − 10 V  
R2  
R2  
V
IN  
V
IN  
IN  
33.2 kΩ  
IN  
R3  
R3  
33.2 kΩ  
IN  
IN  
+ 5 V  
+
+ 5 V  
CAP  
REF  
CAP  
REF  
+
50 kΩ  
576 kΩ  
2.2 µF  
2.2 µF  
200 Ω  
50 kΩ  
+
+
2.2 µF  
AGND2  
AGND2  
200 Ω  
R1  
IN  
R1  
IN  
AGND1  
AGND1  
100 Ω  
100 Ω  
R2  
R3  
IN  
R2  
33.2 kΩ  
IN  
33.2 kΩ  
IN  
V
IN  
V
IN  
R3  
0 V − 5 V  
IN  
+5 V  
CAP  
REF  
CAP  
REF  
+5 V  
+
50 kΩ  
576 kΩ  
2.2 µF  
2.2 µF  
+
2.2 µF  
+
+
50 kΩ  
2.2 µF  
AGND2  
AGND2  
200 Ω  
200 Ω  
V
IN  
R1  
V
IN  
R1  
IN  
IN  
AGND1  
AGND1  
100 Ω  
100 Ω  
R2  
R2  
IN  
IN  
R3  
R3  
IN  
IN  
0 V − 4 V  
33.2 kΩ  
+5 V  
33.2 kΩ  
+5 V  
+
+
2.2 µF  
576 kΩ  
CAP  
REF  
+
CAP  
REF  
2.2 µF  
50 kΩ  
50 kΩ  
+
2.2 µF  
2.2 µF  
AGND2  
AGND2  
Figure 29. Offset/Gain Circuits for Unipolar Input Ranges  
Copyright © 2004–2010, Texas Instruments Incorporated  
21  
Product Folder Link(s): ADS8509  
ADS8509  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
www.ti.com  
With Trim  
Input Range  
Without Trim  
(Adjust Offset First at 0 V, Then Adjust Gain)  
200 Ω  
200 Ω  
V
IN  
R1  
IN  
R1  
V
IN  
IN  
AGND1  
AGND1  
100 Ω  
100 Ω  
R2  
R2  
IN  
IN  
±10 V  
+5 V  
33.2 kΩ  
+5 V  
R3  
33.2 kΩ  
R3  
IN  
IN  
50 kΩ  
+
+
CAP  
REF  
+
CAP  
REF  
2.2 µF  
2.2F  
576 kΩ  
+
50 kΩ  
2.2F  
2.2 µF  
AGND2  
AGND2  
200 Ω  
200 Ω  
R1  
R1  
IN  
IN  
AGND1  
AGND1  
100 Ω  
100 Ω  
V
IN  
33.2 kΩ  
V
IN  
R2  
R2  
IN  
IN  
33.2 kΩ  
R3  
R3  
IN  
± 5 V  
IN  
+
+5 V  
2.2 µF  
+5 V  
CAP  
REF  
CAP  
REF  
+
50 kΩ  
576 kΩ  
2.2 µF  
50 kΩ  
+
+
2.2 µF  
2.2 µF  
AGND2  
AGND2  
200 Ω  
200 Ω  
V
IN  
R1  
R1  
IN  
IN  
V
IN  
100 Ω  
AGND1  
AGND1  
100 Ω  
R2  
R2  
IN  
IN  
R3  
R3  
33.2 kΩ  
2.2 µF  
+5 V  
33.2 kΩ  
IN  
IN  
+
±3.3 V  
+5 V  
CAP  
CAP  
50 kΩ  
576 kΩ  
+
2.2 F  
REF  
50 kΩ  
REF  
+
+
2.2 F  
2.2 µF  
AGND2  
AGND2  
Figure 30. Offset/Gain Circuits for Bipolar Input Ranges  
22  
Copyright © 2004–2010, Texas Instruments Incorporated  
Product Folder Link(s): ADS8509  
ADS8509  
www.ti.com  
SLAS324C OCTOBER 2004REVISED APRIL 2010  
REVISION HISTORY  
Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (April 2007) to Revision C  
Page  
Deleted Lead Temperature from Absolute Maximum Ratings .............................................................................................. 2  
Changed SB/BTC pin from "O" to "I" .................................................................................................................................... 6  
Changed location of Timing Requirements table to be closer to timing diagrams ............................................................... 7  
Copyright © 2004–2010, Texas Instruments Incorporated  
23  
Product Folder Link(s): ADS8509  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8509IBDB  
ADS8509IBDW  
ACTIVE  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
DB  
28  
20  
20  
20  
20  
50  
RoHS & Green  
RoHS & Green  
RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
ADS8509I  
B
Samples  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DW  
25  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ADS8509I  
B
ADS8509IBDWG4  
ADS8509IBDWR  
ADS8509IBDWRG4  
DW  
25  
ADS8509I  
B
DW  
2000 RoHS & Green  
2000 RoHS & Green  
ADS8509I  
B
DW  
ADS8509I  
B
ADS8509IDB  
ADS8509IDBR  
ADS8509IDW  
ADS8509IDWG4  
ADS8509IDWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SOIC  
SOIC  
SOIC  
DB  
DB  
28  
28  
20  
20  
20  
50  
RoHS & Green  
Call TI  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
ADS8509I  
ADS8509I  
ADS8509I  
ADS8509I  
ADS8509I  
Samples  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
DW  
DW  
DW  
25  
25  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8509IBDWR  
ADS8509IDBR  
ADS8509IDWR  
SOIC  
SSOP  
SOIC  
DW  
DB  
20  
28  
20  
2000  
2000  
2000  
330.0  
330.0  
330.0  
24.4  
16.4  
24.4  
10.8  
8.1  
13.3  
10.4  
13.3  
2.7  
2.5  
2.7  
12.0  
12.0  
12.0  
24.0  
16.0  
24.0  
Q1  
Q1  
Q1  
DW  
10.8  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8509IBDWR  
ADS8509IDBR  
ADS8509IDWR  
SOIC  
SSOP  
SOIC  
DW  
DB  
20  
28  
20  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
DW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ADS8509IBDB  
ADS8509IBDW  
ADS8509IBDWG4  
ADS8509IDB  
DB  
DW  
DW  
DB  
SSOP  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
28  
20  
20  
28  
20  
20  
50  
25  
25  
50  
25  
25  
530  
10.5  
12.7  
12.7  
10.5  
12.7  
12.7  
4000  
4826  
4826  
4000  
4826  
4826  
4.1  
6.6  
6.6  
4.1  
6.6  
6.6  
506.98  
506.98  
530  
ADS8509IDW  
DW  
DW  
506.98  
506.98  
ADS8509IDWG4  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DB0028A  
SSOP - 2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
C
8.2  
7.4  
TYP  
A
0.1 C  
SEATING  
PIN 1 INDEX AREA  
PLANE  
26X 0.65  
28  
1
2X  
10.5  
9.9  
8.45  
NOTE 3  
14  
15  
0.38  
0.22  
28X  
0.15  
C A B  
5.6  
5.0  
B
NOTE 4  
2 MAX  
0.25  
GAGE PLANE  
(0.15) TYP  
SEE DETAIL A  
0.95  
0.55  
0.05 MIN  
0 -8  
A
15  
DETAIL A  
TYPICAL  
4214853/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-150.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
28X (1.85)  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4214853/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
28X (1.85)  
SYMM  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4214853/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DW0020A  
SOIC - 2.65 mm max height  
SCALE 1.200  
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
18X 1.27  
20  
1
13.0  
12.6  
NOTE 3  
2X  
11.43  
10  
11  
0.51  
0.31  
20X  
2.65 MAX  
7.6  
7.4  
B
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
0.25  
SEE DETAIL A  
GAGE PLANE  
0 - 8  
0.3  
0.1  
1.27  
0.40  
DETAIL A  
TYPICAL  
4220724/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0020A  
SOIC - 2.65 mm max height  
SOIC  
20X (2)  
SYMM  
1
20  
20X (0.6)  
18X (1.27)  
SYMM  
(R0.05)  
TYP  
10  
11  
(9.3)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220724/A 05/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0020A  
SOIC - 2.65 mm max height  
SOIC  
20X (2)  
SYMM  
1
20  
20X (0.6)  
18X (1.27)  
SYMM  
10  
11  
(9.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4220724/A 05/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY