ADS8517IPW [TI]

Low-Power 16-Bit 200kSPS ±10V Bipolar Input SAR ADC With S/P Interface 28-TSSOP -40 to 85;
ADS8517IPW
型号: ADS8517IPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Low-Power 16-Bit 200kSPS ±10V Bipolar Input SAR ADC With S/P Interface 28-TSSOP -40 to 85

转换器
文件: 总34页 (文件大小:801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
16-Bit, 200-kSPS, Low-Power, Sampling ANALOG-TO-DIGITAL CONVERTER  
with Internal Reference and Parallel/Serial Interface  
1
FEATURES  
APPLICATIONS  
Portable Test Equipment  
USB Data Acquisition Module  
Medical Equipment  
Industrial Process Control  
Digital Signal Processing  
Instrumentation  
23  
200-kHz Minimum Sampling Rate  
4-V, 5-V, and ±10-V Input Ranges with  
High-Impedance Input  
±1.5 LSB Max INL  
+1.5/–1 LSB Max/Min DNL, 16 Bits NMC  
±2-mV Max BPZ, ±0.6 ppm/°C BPZ Drift  
±2-mV Max UPZ, ±0.15 ppm/°C UPZ Drift  
88.8-dB SINAD with 10-kHz Input  
DESCRIPTION  
The ADS8517 is a complete low-power, single 5-V  
supply, 16-bit sampling analog-to-digital (A/D)  
converter.  
capacitor-based, successive approximation register  
(SAR) A/D converter with sample-and-hold, clock,  
reference, and data interface. The converter can be  
configured for a variety of input ranges including ±10  
V, 4 V, and 5 V. For most input ranges, the input  
voltage can swing to 25 V or –25 V without damage  
to the device.  
SPI™-Compatible Serial Output With  
Daisy-Chain (TAG), SPI Master/Slave Feature  
It  
contains  
a
complete,  
16-bit,  
Full Parallel Interface  
Binary Twos Complement or Straight Binary  
Output Code Formats  
Single 4.5-V to 5.5-V Analog Supply, 1.65-V to  
5.5-V Interface Supply  
Uses Internal 2.5-V or External Reference  
No External Precision Resistors Required  
Low Power Dissipation (ADC+REF+BUF):  
An SPI-compatible serial interface allows data to be  
synchronized to an internal or external clock. A full  
parallel interface using the selectable BYTE pin is  
also provided to allow the maximum system design  
flexibility. The ADS8517 is specified at a 200-kHz  
sampling rate over the industrial –40°C to +85°C  
temperature range.  
47 mW Typ, 60 mW Max at 200 kSPS  
50-µW Max Power-Down Mode  
Pin-Compatible with 16-Bit ADS7807 and  
ADS8507, and 12-Bit ADS7806 and ADS8506  
SO-28 Package (TSSOP-28 Available Q2, 2009)  
ADC  
Parallel  
Data  
Successive Approximation Register (SAR)  
PWRD  
BYTE  
BUSY  
CS  
Parallel  
and  
CDAC  
40 kW  
10 kW  
Serial  
Data Out  
and  
R1IN  
R/C  
SB/BTC  
TAG  
Control  
SDATA  
DATACLK  
20 kW  
40 kW  
R2IN  
CAP  
Comparator  
EXT/INT  
REFD  
Clock  
BUF  
Ref  
Buffer  
REF  
6 kW  
2.5-V  
Internal Reference  
REF  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
PACKAGE/ORDERING INFORMATION(1)  
MINIMUM  
RELATIVE  
ACCURACY  
(LSB)  
NO  
MISSING  
CODE  
MINIMUM  
SINAD  
(dB)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QTY  
PRODUCT  
ADS8517IBDW  
ADS8517IBDWR  
ADS8517IBPW  
ADS8517IBPWR  
ADS8517IDW  
ADS8517IDWR  
ADS8517W  
Tube, 20  
Tape and Reel, 1000  
Tube, 50  
SO-28  
TSSOP-28(2)  
SO-28  
DW  
PW  
DW  
PW  
ADS8517IB  
±1.5  
±3  
16  
15  
87  
85  
-40°C to +85°C  
-40°C to +85°C  
Tape and Reel, 2000  
Tube, 20  
Tape and Reel, 1000  
Tube, 50  
ADS8517I  
TSSOP-28(2)  
ADS8517IPWR  
Tape and Reel, 2000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) TSSOP-28 (PW) package available Q2, 2009.  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
R1IN  
UNIT  
±25 V  
Analog inputs  
R2IN  
±25 V  
REF  
+VANA + 0.3 V to AGND2 – 0.3 V  
DGND, AGND2  
±0.3 V  
6 V  
VANA  
Ground voltage differences  
VDIG to VANA  
VDIG  
0.3 V  
6 V  
Digital inputs  
-0.3 V to +VDIG + 0.3 V  
+165°C  
Maximum junction temperature  
Storage temperature range  
Internal power dissipation  
–65°C to +150°C  
700 mW  
Lead temperature (soldering, 1.6 mm from case, 10 seconds)  
+260°C  
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
ELECTRICAL CHARACTERISTICS  
At TA = -40°C to +85°C, fS = 200 kHz, VDIG = VANA = 5 V, using internal reference (see Figure 39), unless otherwise noted.  
ADS8517I  
TYP  
ADS8517IB(1)  
PARAMETER  
Resolution  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNIT  
16  
16  
Bits  
–10  
0
10  
–10  
0
10  
5
Voltage ranges  
See Table 1  
5
4
V
0
0
4
Impedance  
See Table 1  
Capacitance  
45  
45  
pF  
(1) Shaded cells indicate different specifications for high-grade version of the device.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS (continued)  
At TA = -40°C to +85°C, fS = 200 kHz, VDIG = VANA = 5 V, using internal reference (see Figure 39), unless otherwise noted.  
ADS8517I  
TYP  
ADS8517IB(1)  
PARAMETER  
THROUGHPUT SPEED  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNIT  
Conversion time  
Complete cycle  
Throughput rate  
2.5  
5
2.5  
5
µs  
µs  
Acquire and convert  
200  
200  
kHz  
DC ACCURACY  
INL  
Integral linearity error  
Differential linearity error  
No missing codes  
Transition noise(3)  
Gain error  
–3  
–2  
15  
3
3
–1.5  
–1  
1.5 LSB(2)  
DNL  
1.5  
LSB  
Bits  
16  
0.9  
0.8  
LSB  
±0.2  
±0.1  
%
Internal reference  
–0.75  
–0.75  
0.75  
0.75  
–0.75  
–0.75  
0.75  
0.75  
%
Full-scale error(4)  
External 2.5-V reference  
Internal reference  
%
±9  
±1  
±9  
±1  
ppm/°C  
ppm/°C  
mV  
Full-scale error drift  
External 2.5-V reference  
±10 V range  
BPZ  
UPZ  
Bipolar zero error  
–5  
–3  
±1  
5
3
–2  
–2  
±1  
2
2
Bipolar zero error drift  
Unipolar zero error  
Unipolar zero error drift  
±10 V range  
±0.6  
±0.1  
±0.15  
±0.6  
±0.1  
±0.15  
ppm/°C  
mV  
0 V to 5 V, 0 V to 4 V ranges  
0 V to 5 V, 0 V to 4 V ranges  
ppm/°C  
Recovery time to rated accuracy  
from power down(5)  
2.2-µF capacitor to CAP  
1
1
ms  
+4.75 V < VANA < +5.25 V  
+4.5 V < VANA < +5.5 V  
–8  
+8  
–6  
+6  
Power-supply sensitivity  
(VDIG = VANA = VS)  
LSB  
–20  
+20  
–12  
+12  
AC ACCURACY  
SFDR  
THD  
Spurious-free dynamic range  
Total harmonic distortion  
fIN = 10 kHz, ±10 V  
fIN = 10 kHz, ±10 V  
fIN = 10 kHz, ±10 V  
–60 dB Input  
92  
85  
85  
100  
–97  
88  
96  
87  
88  
101  
–98  
88.5  
29  
dB(6)  
dB  
–92  
–95  
SINAD Signal-to-(noise+distortion)  
dB  
29  
SNR  
Signal-to-noise ratio  
SNR usable bandwidth(7)  
fIN = 10 kHz, ±10 V  
fIN = 10 kHz, ±10 V  
88  
89  
dB  
130  
600  
130  
600  
kHz  
kHz  
SNR full-power bandwidth (–3 dB) fIN = 10 kHz, ±10 V  
SAMPLING DYNAMICS  
Aperture delay  
40  
20  
40  
20  
ns  
ps  
µs  
ns  
Aperture jitter  
Transient response  
Overvoltage recovery(8)  
FS step  
5
5
750  
750  
(2) LSB means Least Significant Bit. One LSB for the ±10 V input range is 305 µV.  
(3) Typical rms noise at worst-case transitions.  
(4) Full-scale error is the worst case of –Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by  
the transition voltage (not divided by the full-scale range) and includes the effect of offset error.  
(5) This is the time delay after the ADS8517 is brought out of Power-Down mode until all internal settling occurs and the analog input is  
acquired to rated accuracy. A Convert command after this delay will yield accurate results.  
(6) All specifications in dB are referred to a full-scale input.  
(7) Usable bandwidth defined as full-scale input frequency at which Signal-to-(Noise + Distortion) degrades to 60 dB.  
(8) Recovers to specified performance after 2 x FS input overvoltage.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS8517  
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
At TA = -40°C to +85°C, fS = 200 kHz, VDIG = VANA = 5 V, using internal reference (see Figure 39), unless otherwise noted.  
ADS8517I  
TYP  
ADS8517IB(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNIT  
REFERENCE  
Internal reference voltage  
No load  
2.48  
2.5  
1
2.52  
2.48  
2.5  
1
2.52  
V
µA  
Internal reference source current  
(must use external buffer)  
Internal reference drift  
8
8
ppm/°C  
V
External reference voltage range  
for specified linearity  
2.3  
2.5  
2.7  
2.3  
2.5  
2.7  
External reference current drain  
External 2.5-V reference  
100  
100  
µA  
DIGITAL INPUTS  
VIL  
VIH  
IIL  
Low-level input voltage(9)  
High-level input voltage(9)  
Low-level input current  
High-level input current  
VDIG = 1.65 V to 5.5 V  
VDIG = 1.65 V to 5.5 V  
VIL = 0 V  
–0.3  
0.6  
VDIG + 0.3  
±10  
–0.3  
0.6  
VDIG + 0.3  
±10  
V
V
0.5 x VDIG  
0.5 x VDIG  
µA  
µA  
IIH  
VIH = 5 V  
±10  
±10  
DIGITAL OUTPUTS  
Data format - Parallel 16-bits in 2-bytes, Serial  
Data coding - Binary twos complement or straight binary  
ISINK = 1.6mA,  
Low-level output voltage  
VOL  
VOH  
0.45  
0.45  
V
V
VDIG = 1.65V to 5.5V  
ISOURCE = 500µA,  
High-level output voltage  
VDIG – 0.45  
VDIG – 0.45  
VDIG = 1.65V to 5.5V  
High-Z state,  
Leakage current  
±5  
15  
±5  
15  
µA  
VOUT = 0 V to VDIG  
Output capacitance  
DIGITAL TIMING  
Bus access time  
Bus relinquish time  
POWER SUPPLIES  
High-Z state  
pF  
RL = 3.3 k, CL = 50 pF  
RL = 3.3 k, CL = 10 pF  
83  
83  
83  
83  
ns  
ns  
VDIG  
VANA  
IDIG  
Interface voltage  
ADC core voltage  
Interface current  
ADC core current  
1.65  
4.5  
1.8  
5
5.5  
5.5  
1.65  
4.5  
1.8  
5
5.5  
5.5  
V
V
VDIG = 5 V  
VANA = 5 V  
0.3  
9
0.3  
9
mA  
mA  
IANA  
VANA = VDIG = 5 V,  
fS = 200 kHz  
47  
60  
47  
60  
mW  
Power dissipation  
REFD high with BUF on  
PWRD and REFD high  
42  
50  
42  
50  
mW  
µW  
TEMPERATURE RANGE  
Specified performance  
–40  
–55  
–65  
+85  
+125  
+150  
–40  
–55  
–65  
+85  
+125  
+150  
°C  
°C  
°C  
Derated performance  
Storage temperature  
TSSOP  
SO  
62  
46  
62  
46  
θJA  
Thermal impedance  
°C/W  
(9) TTL-compatible at 5V supply.  
Table 1. Analog Input Range Connections (see Figure 38 and Figure 39)  
ANALOG INPUT  
RANGE  
CONNECT R1IN VIA 200 TO  
CONNECT R2IN VIA 100 TO  
IMPEDANCE  
45.7 k  
±10 V  
VIN  
AGND  
VIN  
CAP  
VIN  
0 V to 5 V  
0 V to 4 V  
20.0 kΩ  
VIN  
21.4 kΩ  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
PIN CONFIGURATION  
DW, PW PACKAGES  
SO-28, TSSOP-28(1)  
(TOP VIEW)  
R1IN  
AGND1  
R2IN  
1
2
3
4
5
6
7
8
9
28 VDIG  
27 VANA  
26  
25  
24  
REFD  
PWRD  
BUSY  
CAP  
REF  
23 CS  
AGND2  
SB/BTC  
EXT/INT  
D7  
R/C  
22  
21  
ADS8517  
BYTE  
20 TAG  
D6 10  
19 SDATA  
11  
12  
13  
18  
17  
16  
15  
D5  
D4  
D3  
DATACLK  
D0  
D1  
D2  
DGND 14  
(1) TSSOP-28 (PW) package available Q2, 2009.  
Pin Assignments  
PIN  
DIGITAL  
NAME  
R1IN  
NO.  
1
I/O  
DESCRIPTION  
Analog Input.  
AGND1  
R2IN  
2
Analog sense ground. Used internally as ground reference point. Minimal current flow  
Analog Input.  
3
CAP  
4
Reference buffer output. 2.2-µF tantalum capacitor to ground.  
Reference input/output. Outputs internal 2.5-V reference. Can also be driven by external system  
reference. In both cases, bypass to ground with a 2.2-µF tantalum capacitor.  
REF  
5
6
AGND2  
Analog ground  
Output mode select. Selects straight binary or binary twos complement for output data format. If  
high, data are output in a straight binary format. If low, data are output in a binary twos  
complement format.  
SB/BTC  
7
I
External/internal data select. Selects external/internal data clock for transmitting data. If high,  
data is output synchronized to the clock input on DATACLK. If low, a convert command initiates  
the transmission of the data from the previous conversion, along with 16-clock pulses output on  
DATACLK.  
EXT/INT  
D7  
8
9
I
Data bit 7 if BYTE is high. Data bit 15 (MSB) if BYTE is low. High-Z when CS is high and/or R/C  
is low. Leave unconnected when using serial output.  
O
D6  
D5  
10  
11  
12  
13  
14  
15  
16  
O
O
O
O
Data bit 6 if BYTE is high. Data bit 14 if BYTE is low. High-Z when CS is high and/or R/C is low.  
Data bit 5 if BYTE is high. Data bit 13 if BYTE is low. High-Z when CS is high and/or R/C is low.  
Data bit 4 if BYTE is high. Data bit 12 if BYTE is low. High-Z when CS is high and/or R/C is low.  
Data bit 3 if BYTE is high. Data bit 11 if BYTE is low. High-Z when CS is high and/or R/C is low.  
Digital ground  
D4  
D3  
DGND  
D2  
O
O
Data bit 2 if BYTE is high. Data bit 10 if BYTE is low. High-Z when CS is high and/or R/C is low.  
Data bit 1 if BYTE is high. Data bit 9 if BYTE is low. High-Z when CS is high and/or R/C is low.  
D1  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS8517  
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
Pin Assignments (continued)  
Data bit 0 (LSB) if BYTE is high. Data bit 8 if BYTE is low. High-Z when CS is high and/or R/C is  
low.  
D0  
17  
18  
O
Data clock. Either an input or an output, depending on the EXT/INT level. Output data are  
synchronized to this clock. If EXT/INT is low, DATACLK transmits 16 pulses after each  
conversion, and then remains low between conversions.  
DATACLK  
I/O  
Serial data output. Data are synchronized to DATACLK, with the format determined by the level  
of SB/BTC. In the external clock mode, after 16 bits of data, the ADC outputs the level input on  
TAG as long as CS is low and R/C is high. If EXT/INT is low, data are valid on both the rising  
and falling edges of DATACLK, and between conversions SDATA stays at the level of the TAG  
input when the conversion was started.  
SDATA  
19  
O
Tag input for use in the external clock mode. If EXT is high, digital data input from TAG is output  
on DATA with a delay that depends on the external clock mode.  
TAG  
20  
21  
I
I
Byte select. Selects the eight most significant bits (low) or eight least significant bits (high) on  
parallel output pins.  
BYTE  
Read/convert input. With CS low, a falling edge on R/C puts the internal sample-and-hold circuit  
into the hold state and starts a conversion. With EXT/INT is low, the transmission of the data  
results from the previous conversion is initiated.  
R/C  
CS  
22  
23  
I
I
Chip select. Internally ORed with R/C. If R/C is low, a falling edge on CS initiates a new  
conversion. If EXT/INT is low, this same falling edge will start the transmission of serial data  
results from the previous conversion.  
Busy output. At the start of a conversion, BUSY goes low and stays low until the conversion is  
completed and the digital outputs have been updated.  
BUSY  
PWRD  
REFD  
24  
25  
26  
O
I
Power-down input. If high, conversions are inhibited and power consumption is significantly  
reduced. Results from the previous conversion are maintained in the output shift register.  
Reference disable. REFD high shuts down the internal reference. The external reference is  
required for conversions.  
I
VANA  
VDIG  
27  
28  
ADC core supply. Nominally +5 V. Decouple with 0.1-µF ceramic and 10-µF tantalum capacitors.  
I/O supply. Nominally +1.8 V.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
At fS = 200 kHz, VDIG = VANA = 5 V, and using internal reference (see Figure 39), unless otherwise specified.  
POWER-SUPPLY CURRENT  
vs FREE-AIR TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs FREE-AIR TEMPERATURE  
10.0  
9.5  
9.0  
8.5  
8.0  
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 1.  
Figure 2.  
POWER-SUPPLY CURRENT  
vs SAMPLING FREQUENCY  
BIPOLAR OFFSET ERROR  
vs FREE-AIR TEMPERATURE  
10.0  
9.5  
9.0  
8.5  
8.0  
2
1
Bipolar ±10 V Range  
0
-1  
-2  
50  
100  
150  
200  
-50  
-25  
0
25  
50  
75  
100  
125  
Sampling Frequency (kHz)  
Temperature (°C)  
Figure 3.  
Figure 4.  
BIPOLAR POSITIVE FULL-SCALE ERROR  
vs FREE-AIR TEMPERATURE  
BIPOLAR NEGATIVE FULL-SCALE ERROR  
vs FREE-AIR TEMPERATURE  
0.10  
0.05  
0
0
-0.05  
-0.10  
Bipolar 10 V Range  
Bipolar 10 V Range  
-40  
-50  
0
25  
50  
75  
100  
125  
-50  
-45  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 5.  
Figure 6.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS8517  
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At fS = 200 kHz, VDIG = VANA = 5 V, and using internal reference (see Figure 39), unless otherwise specified.  
UNIPOLAR OFFSET ERROR  
vs FREE-AIR TEMPERATURE  
UNIPOLAR OFFSET ERROR  
vs FREE-AIR TEMPERATURE  
0.2  
0.1  
0.2  
0.1  
Unipolar 4 V Range  
Unipolar 5 V Range  
0
0
-0.1  
-0.2  
-0.1  
-0.2  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 7.  
Figure 8.  
UNIPOLAR FULL-SCALE ERROR  
vs FREE-AIR TEMPERATURE  
UNIPOLAR FULL-SCALE ERROR  
vs FREE-AIR TEMPERATURE  
0.10  
0.05  
0
0.10  
0.05  
0
Unipolar 4 V Range  
Unipolar 5 V Range  
-0.05  
-0.10  
-0.05  
-0.10  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 9.  
Figure 10.  
AC PARAMETERS  
vs FREE-AIR TEMPERATURE  
SIGNAL-TO-(NOISE+DISTORTION)  
vs FREE-AIR TEMPERATURE  
110  
-80  
89.5  
89.0  
88.5  
88.0  
87.5  
fIN = 10 kHz, 0 dB  
fIN = 10 kHz, 0 dB  
fS = 150 kHz  
105  
100  
95  
-85  
SFDR  
-90  
fS = 200 kHz  
-95  
THD  
SNR  
fS = 50 kHz  
fS = 100 kHz  
90  
-100  
-105  
-110  
SINAD  
85  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 11.  
Figure 12.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
At fS = 200 kHz, VDIG = VANA = 5 V, and using internal reference (see Figure 39), unless otherwise specified.  
SIGNAL-TO-(NOISE+DISTORTION)  
vs INPUT FREQUENCY AND INPUT AMPLITUDE  
SIGNAL-TO-NOISE RATIO  
vs INPUT FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
0 dB  
-20 dB  
90  
-60 dB  
80  
0
2
4
6
8
10  
12  
14  
16  
18 20  
1
10  
100  
Input Signal Frequency (kHz)  
Input Sampling Frequency (kHz)  
Figure 13.  
Figure 14.  
SIGNAL-TO-(NOISE+DISTORTION)  
vs INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs INPUT FREQUENCY  
100  
110  
100  
90  
90  
80  
80  
70  
1
10  
100  
1
10  
100  
Input Sampling Frequency (kHz)  
Input Sampling Frequency (kHz)  
Figure 15.  
Figure 16.  
TOTAL HARMONIC DISTORTION  
vs INPUT FREQUENCY  
AC PARAMETERS  
vs CAP PIN CAPACITOR ESR  
-70  
-80  
110  
105  
100  
95  
-80  
fIN = 10 kHz, 0 dB  
-85  
SFDR  
-90  
-90  
-95  
THD  
-100  
-110  
-120  
90  
-100  
-105  
-110  
SNR  
SINAD  
85  
80  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
Input Sampling Frequency (kHz)  
ESR (W)  
Figure 17.  
Figure 18.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS8517  
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At fS = 200 kHz, VDIG = VANA = 5 V, and using internal reference (see Figure 39), unless otherwise specified.  
AC PARAMETERS  
vs POWER-SUPPLY VOLTAGE  
OUTPUT REJECTION  
vs POWER-SUPPLY RIPPLE FREQUENCY  
110  
105  
100  
95  
-70  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
fIN = 10 kHz, 0 dB  
-75  
SFDR  
-80  
-85  
SNR  
90  
-90  
SINAD  
85  
-95  
THD  
80  
-100  
-105  
-110  
75  
70  
4.00  
4.25  
4.50  
4.75  
5.00  
5.25  
5.50  
10  
100  
1k  
10k  
100k  
1M  
Power-Supply Voltage (V)  
Power-Supply Ripple Frequency (Hz)  
Figure 19.  
Figure 20.  
INTEGRAL LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs POWER-SUPPLY VOLTAGE  
CONVERSION TIME  
vs FREE-AIR TEMPERATURE  
2.40  
2.35  
2.30  
2.25  
2.20  
2.0  
1.5  
1.0  
INL Max  
0.5  
DNL Max  
DNL Min  
0
-0.5  
-1.0  
-1.5  
-2.0  
INL Min  
-50  
-25  
0
25  
50  
75  
100  
125  
4.00  
4.25  
4.50  
4.75  
5.00  
5.25  
5.50  
Temperature (°C)  
Power-Supply Voltage (V)  
Figure 21.  
Figure 22.  
INTEGRAL LINEARITY ERROR  
DIFFERENTIAL LINEARITY ERROR  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
All Codes INL  
All Codes DNL  
0
8192 16384 24576 32768 40960 49152 57344 65535  
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Code  
Figure 23.  
Figure 24.  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
At fS = 200 kHz, VDIG = VANA = 5 V, and using internal reference (see Figure 39), unless otherwise specified.  
FFT  
FFT  
0
-10  
0
-10  
4096 Point FFT  
fIN = 1 kHz, 0 dB  
4096 Point FFT  
fIN = 10 kHz, 0 dB  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Frequency (kHz)  
Frequency (kHz)  
Figure 25.  
Figure 26.  
FFT  
0
4096 Point FFT  
-10  
-20  
fIN = 20 kHz, 0 dB  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
0
25  
50  
75  
100  
Frequency (kHz)  
Figure 27.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS8517  
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
BASIC OPERATION  
PARALLEL OUTPUT  
Figure 28 shows a basic circuit for operating the ADS8517 with a ±10-V input range and parallel output. Taking  
R/C (pin 22) low for a minimum of 40 ns (5 µs max) initiates a conversion. BUSY (pin 24) goes low and stays low  
until the conversion completes and the output register updates. If BYTE (pin 21) is low, the eight most significant  
bits (MSBs) will be valid when BUSY rises; if BYTE is high, the eight least significant bits (LSBs) will be valid  
when BUSY rises. Data are output in binary twos complement (BTC) format. BUSY going high can be used to  
latch the data. After the first byte has been read, BYTE can be toggled, allowing the remaining byte to be read.  
All convert commands are ignored while BUSY is low.  
The ADS8517 begins tracking the input signal at the end of the conversion. Allowing 5 µs between convert  
commands assures accurate acquisition of a new signal.  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
±10 V  
+1.8 V  
0.1 mF  
+5 V  
10 mF  
+
+
3
0.1 mF  
4
5
BUSY  
+
2.2 mF  
2.2 mF  
Convert Pulse  
40 ns min  
6
7
R/C  
ADS8517  
8
+5 V  
BYTE  
9
NC(1)  
10  
11  
12  
13  
14  
Pin 21  
LOW  
B15 B14 B13 B12 B11  
(MSB)  
B10 B9 B8  
Pin 21  
HIGH  
B7 B6 B5 B4 B3  
B2 B1 B0  
(LSB)  
NOTE: (1) NC = not connected.  
Figure 28. Basic ±10-V Operation, Both Parallel and Serial Output  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
SERIAL OUTPUT  
Figure 29 shows a basic circuit to operate the ADS8517 with a ±10-V input range and serial output. Taking R/C  
(pin 22) low for 40 ns (5 µs max) initiates a conversion and outputs valid data from the previous conversion on  
SDATA (pin 19) synchronized to 16 clock pulses output on DATACLK (pin 18). BUSY (pin 24) goes low and  
stays low until the conversion completes and the serial data have been transmitted. Data are output in BTC  
format, MSB first, and are valid on both the rising and falling edges of the data clock. BUSY going high can be  
used to latch the data. All convert commands are ignored while BUSY is low.  
The ADS8517 begins tracking the input signal at the end of the conversion. Allowing 5 µs between convert  
commands assures accurate acquisition of a new signal.  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
+1.8 V  
0.1 mF  
±10 V  
+5 V  
10 mF  
+
+
3
0.1 mF  
4
5
BUSY  
R/C  
+
+
22 mF  
2.2 mF  
Convert Pulse  
40 ns min  
6
7
ADS8517  
8
NC(1)  
NC(1)  
NC(1)  
9
SDATA  
10  
11  
12  
13  
14  
DATACLK  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NOTE: (1) NC = not connected.  
Figure 29. Basic ±10-V Operation with Serial Output  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS8517  
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
STARTING A CONVERSION  
The combination of CS (pin 23) and R/C (pin 22) held low for a minimum of 40 ns puts the sample-and-hold of  
the ADS8517 in the hold state and starts conversion N. BUSY (pin 24) goes low and stays low until conversion N  
completes and the internal output register has been updated. All new convert commands received while BUSY is  
low are ignored.  
The ADS8517 begins tracking the input signal at the end of the conversion. Allowing 5 µs between convert  
commands assures accurate acquisition of a new signal. Refer to Table 2 and Table 3 for a summary of CS,  
R/C, and BUSY states, and Figure 30 through Figure 36 for timing diagrams.  
Table 2. Control Functions When Using Parallel Output (DATACLK Tied Low, EXT/INT Tied High)  
CS  
1
R/C  
X
0
BUSY  
OPERATION  
X
1
1
None. Data bus is in High-Z state.  
Initiates conversion N. Data bus remains in High-Z state.  
0
Initiates conversion N. Data bus enters High-Z state.  
0
1
Conversion N completed. Valid data from conversion N on the data bus.  
1
1
0
0
Enables data bus with valid data from conversion N.  
1
Enables data bus with valid data from conversion N–1(1). Conversion N in progress.  
Enables data bus with valid data from conversion N–1(1). Conversion N in progress.  
0
0
0
New conversion initiated without acquisition of a new signal. Data are invalid. CS and/or R/C  
must be high when BUSY goes high.  
X
X
0
New convert commands ignored. Conversion N in progress.  
(1) See Figure 30 and Figure 31 for constraints on data valid from conversion N–1.  
CS and R/C are internally ORed and level-triggered. It does not matter which input goes low first when initiating a  
conversion. If, however, it is critical that CS or R/C initiates conversion N, be sure the less critical input is low at  
least tsu2 10 ns before the initiating input. If EXT/INT (pin 8) is low when initiating conversion N, serial data from  
conversion N–1 is output on SDATA (pin 19) following the start of conversion N. See Internal Data Clock in the  
Reading Data section for more information.  
To reduce the number of control pins, CS can be tied low using R/C to control the read and convert modes. This  
configuration has no effect when using the internal data clock in the serial output mode. However, when using an  
active external data clock, the parallel and serial outputs are affected whenever R/C goes high; refer to the  
Reading Data section for more information. In the internal clock mode, data are clocked out every convert cycle  
regardless of the states of CS and R/C. The conversion result is available as soon as BUSY returns to high.  
Therefore, data always represent the previously-completed conversion, even when read during a conversion.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
READING DATA  
The ADS8517 outputs serial or parallel data in straight binary (SB) or binary twos complement data output  
format. If SB/BTC (pin 7) is high, the output is in SB format; if it is low, the output is in BTC format. Refer to  
Table 4 for the ideal output codes. The first conversion immediately following a power-up does not produce a  
valid conversion result.  
The parallel output can be read without affecting the internal output registers; however, reading the data through  
the serial port shifts the internal output registers one bit per data clock pulse. As a result, data can be read on the  
parallel port before reading the same data on the serial port, but data cannot be read through the serial port  
before reading the same data on the parallel port.  
Table 3. Control Functions When Using Serial Output(1)  
CS  
R/C  
0
BUSY EXT/INT DATACLK  
OPERATION  
1
1
1
1
1
0
0
1
1
1
Output  
Output  
Input  
Initiates conversion N. Valid data from conversion N–1 clocked out on SDATA.  
Initiates conversion N. Valid data from conversion N–1 clocked out on SDATA.  
Initiates conversion N. Internal clock still runs conversion process.  
Initiates conversion N. Internal clock still runs conversion process.  
0
0
0
1
Input  
Input  
Input  
Input  
X
Conversion N completed. Valid data from conversion N clocked out on SDATA  
synchronized to external data clock.  
0
0
X
1
0
0
0
1
1
Valid data from conversion N–1 output on SDATA synchronized to external data clock.  
Conversion N in progress.  
Valid data from conversion N–1 output on SDATA synchronized to external data clock.  
Conversion N in progress.  
0
X
X
X
New conversion initiated without acquisition of a new signal. Data are invalid. CS and/or  
R/C must be high when BUSY goes high.  
New convert commands ignored. Conversion N in progress..  
(1) See Figure 34, Figure 35, and Figure 36 for constraints on data valid from conversion N–1.  
Table 4. Output Codes and Ideal Input Voltages  
DIGITAL OUTPUT  
BINARY TWOS COMPLEMENT  
(SB/BTC LOW)  
STRAIGHT BINARY (SB/BTC HIGH)  
DESCRIPTION  
Full-scale range  
ANALOG INPUT  
0 V to 5 V  
76 µV  
±10  
305 µV  
9.999695 V  
0 V  
0 V to 4 V  
HEX  
Least significant bit (LSB)  
+Full-scale (FS – 1LSB)  
Midscale  
61 µV  
BINARY CODE  
CODE  
7FFF  
0000  
FFFF  
8000  
BINARY CODE  
HEX CODE  
FFFF  
4.999924 V 3.999939 V  
2.5 V 2 V  
2.499924 V 1.999939 V  
0 V 0 V  
0111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
1000 0000 0000 0000  
1111 1111 1111 1111  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
8000  
1 LSB below midscale  
–Full-scale  
305 µV  
-10 V  
7FFF  
0000  
Parallel Output  
To use the parallel output, tie EXT/INT (pin 8) high and DATACLK (pin 18) low. SDATA (pin 19) should be left  
unconnected. The parallel output is active when R/C (pin 22) is high and CS (pin 23) is low. Any other  
combination of CS and R/C 3-states the parallel output. Valid conversion data can be read in two 8-bit bytes on  
D7-D0 (pins 9-13 and 15-17). When BYTE (pin 21) is low, the eight most significant bits are valid with the MSB  
on D7. When BYTE is high, the eight least significant bits are valid with the LSB on D0. BYTE can be toggled to  
read both bytes within one conversion cycle.  
Upon initial device power-up, the parallel output contains indeterminate data.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS8517  
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
Parallel Output (After a Conversion)  
After conversion N is completed and the output registers have been updated, BUSY (pin 24) goes high. Valid  
data from conversion N are available on D7-D0 (pin 9-13 and 15-17). BUSY going high can be used to latch the  
data. Refer to Table 5, Figure 30, and Figure 31 for timing specifications.  
t
1
t
1
R/C  
t
3
t
3
t
4
BUSY  
t
6
t
5
t
6
t
7
t
8
Acquire  
Convert  
Acquire  
Convert  
MODE  
t
12  
t
12  
t
10  
t
11  
Parallel  
Data Bus  
Previous  
High Byte Valid  
Previous High Previous Low  
High Byte  
Valid  
Low Byte  
Valid  
High Byte  
Valid  
Hi-Z  
Not Valid  
Hi-Z  
Byte Valid  
Byte Valid  
t
2
t
9
t
12  
t
12  
t
12  
t
9
t
12  
BYTE  
Figure 30. Conversion Timing With Parallel Output (CS and DATACLK Tied Low, EXT/INT Tied High)  
t
21  
t
21  
t
21  
t
21  
t
1
R/C  
CS  
t
21  
t
21  
t
3
t
4
BUSY  
t
21  
t
21  
BYTE  
t
21  
t
21  
Data Bus  
Hi-Z State  
High Byte Hi-Z State Low Byte  
Hi-Z State  
t
21  
t
21  
t
9
t
9
Figure 31. CS to Control Conversion and Read Timing With Parallel Outputs  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
Parallel Output (During a Conversion)  
After conversion N has been initiated, valid data from conversion N–1 can be read and are valid up to 2.2 µs  
after the start of conversion N. Do not attempt to read data beyond 2.2 µs after the start of conversion N until  
BUSY (pin 24) goes high; doing so may result in reading invalid data. Refer to Table 5, Figure 30, and Figure 31  
for timing constraints.  
Table 5. Conversion and Data Timing with Parallel Interface at TA = –40°C to +85°C  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
MAX  
5
UNITS  
µs  
t1  
t2  
Convert pulse width  
0.04  
Data valid delay after R/C low  
2.3  
20  
2.5  
85  
µs  
t3  
BUSY delay from start of conversion  
BUSY low  
ns  
t4  
2.3  
90  
2.5  
µs  
t5  
BUSY delay after end of conversion  
Aperture delay  
ns  
t6  
40  
ns  
t7  
Conversion time  
1.8  
2.2  
2.7  
µs  
t8  
Acquisition time  
µs  
t9  
Bus relinquish time  
10  
20  
1.8  
10  
83  
5
ns  
t10  
t11  
t21  
t7 + t8  
BUSY delay after data valid  
Previous data valid after start of conversion  
R/C to CS setup time  
Throughput time  
60  
ns  
2.2  
µs  
ns  
µs  
Serial Output  
Data can be clocked out with the internal data clock or an external data clock. When using the serial output, be  
careful with the parallel outputs, D7-D0 (pins 9-13 and 15-17), because these pins come out of a High-Z state  
whenever CS (pin 23) is low and R/C (pin 22) is high. The serial output cannot be 3-stated and is always active.  
Refer to the Applications Information section for specific serial interfaces. If an external clock is used, the TAG  
input can be used to daisy-chain multiple ADS8517 data pins together.  
Internal Data Clock (During a Conversion)  
To use the internal data clock, tie EXT/INT (pin 8) low. The combination of R/C (pin 22) and CS (pin 23) low  
initiates conversion N and activates the internal data clock (typically, a 900-kHz clock rate). The ADS8517  
outputs 16 bits of valid data, MSB first, from conversion N–1 on SDATA (pin 19), synchronized to 16 clock pulses  
output on DATACLK (pin 18). The data are valid on both the rising and falling edges of the internal data clock.  
The rising edge of BUSY (pin 24) can be used to latch the data. After the 16th clock pulse, DATACLK remains  
low until the next conversion is initiated, while SDATA returns to the state of the TAG pin input sensed at the  
start of transmission. Refer to Table 6 and Figure 33 for more information.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS8517  
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
External Data Clock  
To use an external data clock, tie EXT/INT (pin 8) high. The external data clock is not and cannot be  
synchronized with the internal conversion clock; care must be taken to avoid corrupting the data. To enable the  
output mode of the ADS8517, CS (pin 23) must be low and R/C (pin 22) must be high. DATACLK must be high  
for 20% to 70% of the total data clock period; the clock rate can be between dc and 10 MHz. Serial data from  
conversion N can be output on SDATA (pin 19) after conversion N completes or during conversion N+1.  
An obvious way to simplify control of the converter is to tie CS low and use R/C to initiate conversions.  
While this configuration is perfectly acceptable, there is a possible problem when using an external data clock. At  
an indeterminate point from 12 µs after the start of conversion N until BUSY rises, the internal logic shifts the  
results of conversion N into the output register. If CS is low, R/C high, and the external clock is high at this point,  
data are lost. Consequently, with CS low, either R/C and/or DATACLK must be low during this period to avoid  
losing valid data.  
External Data Clock (After a Conversion)  
After conversion N is completed and the output registers have been updated, BUSY (pin 24) goes high. With CS  
low and R/C high, valid data from conversion N are output on SDATA (pin 19) synchronized to the external data  
clock input on DATACLK (pin 18). The MSB is valid on the first falling edge and the second rising edge of the  
external data clock. The LSB is valid on the 16th falling edge and 17th rising edge of the data clock. TAG (pin  
20) inputs a bit of data for every external clock pulse. The first bit input on TAG is valid on SDATA on the 17th  
falling edge and the 18th rising edge of DATACLK; the second input bit is valid on the 18th falling edge and the  
19th rising edge, etc. With a continuous data clock, TAG data is output on SDATA until the internal output  
registers are updated with the results from the next conversion. Refer to Table 6 and Figure 35 for more  
information.  
External Data Clock (During a Conversion)  
After conversion N has been initiated, valid data from conversion N–1 can be read and are valid up to 2.2 µs  
after the start of conversion N. Do not attempt to clock out data from 2.2 µs after the start of conversion N until  
BUSY (pin 24) rises; doing so results in data loss.  
NOTE:  
For the best possible performance when using an external data clock, data should not  
be clocked out during a conversion.  
The switching noise of the asynchronous data clock can cause digital feedthrough, degrading converter  
performance. Refer to Table 6 and Figure 36 for more information.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
Table 6. Timing Requirements (TA = –40°C to +85°C)  
PARAMETER  
MIN  
TYP  
MAX  
5
UNIT  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
tw1  
td1  
tw2  
td2  
Pulse duration, convert  
0.04  
Delay time, BUSY from R/C low  
Pulse duration, BUSY low  
20  
2.3  
90  
85  
2.5  
Delay time, BUSY, after end of conversion  
Delay time, aperture  
td3  
40  
tconv  
tacq  
Conversion time  
2.0  
2.6  
2.2  
2.7  
2.4  
5
Acquisition time  
tconv + tacq Cycle time  
td4  
tc1  
Delay time, R/C low to internal DATACLK output  
171  
96  
Cycle time, internal DATACLK  
92  
2
98  
td5  
Delay time, data valid to internal DATACLK high  
Delay time, data valid after internal DATACLK low  
Cycle time, external DATACLK  
3.5  
43  
td6  
41  
35  
15  
15  
15  
10  
2
tc2  
tw3  
tw4  
tsu1  
tsu2  
td8  
Pulse duration, external DATACLK high  
Pulse duration, external DATACLK low  
Setup time, R/C rise/fall to external DATACLK high  
Setup time, R/C transition to CS transition  
Delay time, data valid from external DATCLK high  
Delay time, CS rising edge to external DATACLK rising edge  
Delay time, previous data available after CS, R/C low  
Setup time, BUSY transition to first external DATACLK  
Delay time, final external DATACLK to BUSY rising edge  
Setup time, TAG valid before rising edge of DATACLK  
Hold time, TAG valid after rising edge of DATACLK  
25  
40  
td9  
15  
1.8  
5
td10  
tsu3  
td11  
tsu4  
th1  
2.2  
825  
2
2
R/C  
CS  
CS  
t
d9  
R/C  
t
t
su1  
t
t
su1  
su1  
su1  
External  
DATACLK  
External  
DATACLK  
CS Set Low, Discontinuous Ext DATACLK  
CS  
R/C Set Low, Discontinuous Ext DATACLK  
BUSY  
t
t
su2  
su2  
t
su3  
1
2
External  
DATACLK  
R/C  
CS Set Low, Discontinuous Ext DATACLK  
Figure 32. Critical Timing Parameters  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS8517  
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
t
t
w1  
w1  
R/C  
t
t
d1  
t
d1  
t
w2  
w2  
(N + 1)th  
(N + 2)th  
BUSY  
t
d2  
t
t
d2  
t
t
d3  
t
d3  
d11  
d11  
Error  
Correction  
Error  
Correction  
(N+1)th Accquisition  
(N+2)th Accquisition  
Nth Conversion  
STATUS  
(N+1)th Conversion  
t
t
t
t
conv  
conv  
acq  
acq  
t
t
c1  
t
d4  
d4  
Internal  
1
2
16  
D0  
2
16  
D0  
1
DATACLK  
t
d6  
t
d5  
TAG = 0  
D15  
D15  
SDATA  
TAG = 0  
TAG = 0  
Nth Conversion Data  
(N1)th Conversion Data  
CS, EXT/INT, and TAG are tied low  
8 starts READ  
Figure 33. Basic Conversion Timing: Internal DATACLK (Read Previous Data During Conversion)  
t
t
w1  
w1  
R/C  
t
t
d1  
d1  
t
t
w2  
w2  
BUSY  
(N + 1)th  
(N + 2)th  
t
t
d2  
d2  
t
t
d3  
d3  
t
t
d11  
d11  
Error  
Correction  
Error  
Correction  
STATUS  
Nth Conversion  
(N+1)th Accquisition  
(N+1)th Conversion  
(N+2)th Accquisition  
t
t
t
t
acq  
acq  
conv  
conv  
t
t
t
su3  
su3  
su1  
t
su1  
External  
1
1
16  
2
16  
2
1
16  
1
16  
DATACLK  
No more  
data to  
shift out  
No more  
data to  
shift out  
TAG = 0  
TAG = 0  
Nth Data  
TAG = 0  
(N+1)th Data  
TAG = 0  
SDATA  
TAG = 0  
EXT/INT tied high, CS and TAG are tied low  
t
+ t starts READ  
su1  
w1  
Figure 34. Basic Conversion Timing: External DATACLK  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
t
w1  
R/C  
t
su1  
t
d1  
t
d1  
t
w2  
BUSY  
t
t
d2  
t
d3  
t
d3  
d11  
Error  
Correction  
(N+1) th Accquisition  
Nth Conversion  
STATUS  
t
su3  
t
t
conv  
acq  
t
t
su1  
c2  
t
w4  
External  
t
w3  
DATACLK  
0
1
2
3
4
5
10  
11  
12  
13  
14  
15  
16  
SYNC = 0  
DATA  
Nth Conversion Data  
D05 D04 D03 D02 D01 D00  
t
t
d8  
d8  
D15  
D14 D13 D12 D11 D10  
T00  
T17  
Txx  
Tyy  
t
t
h1  
su4  
T02 T03  
T01  
T11 T12 T13 T14  
T16  
T00  
T04 T05 T06  
T15  
TAG  
EXT/INT tied high, CS tied low  
t
+ t  
starts READ  
su1  
w1  
Figure 35. Read After Conversion (Discontinuous External DATACLK)  
t
w1  
R/C  
t
d1  
t
w2  
BUSY  
t
t
d2  
t
d10  
d3  
Error  
Correction  
(N + 1)th Conversion  
STATUS  
t
su3  
t
conv  
t
c2  
t
t
t
d11  
w3  
w4  
t
su1  
External  
1
2
3
4
5
10  
11  
12  
13  
14  
15  
16  
0
DATACLK  
Nth Conversion Data  
t
t
d8  
d8  
D05 D04 D03 D02 D01 D00  
D15 D14 D13 D12 D11 D10  
SDATA  
Rising DATACLK change DATA, t + t  
w1 su1  
Starts READ  
EXT/INT tied high, CS and TAG tied low  
TAG is not recommended for this mode. There is not enough  
time to do so without violating t  
.
d11  
Figure 36. Read During Conversion (Discontinuous External DATACLK)  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS8517  
 
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
TAG FEATURE  
The TAG feature allows data from multiple ADS8517 converters to be read on a single serial line. The converters  
are cascaded together using the DATA pins as outputs and the TAG pins as inputs, as illustrated in Figure 37.  
The DATA pin of the last converter drives the processor serial data input. Data are then shifted through each  
converter, synchronous to the externally supplied data clock, onto the serial data line. The internal clock cannot  
be used for this configuration.  
The preferred timing uses the discontinuous, external data clock during the sampling period. Data must be read  
during the sampling period because there is not sufficient time to read data from multiple converters during a  
conversion period without violating the td11 constraint (see the External Data Clock section). The sampling period  
must be sufficiently long enough to allow all data words to be read before starting a new conversion.  
Note that in Figure 37, the state of the DATA pin at the end of a READ cycle reflects the state of the TAG pin at  
the start of the cycle for each converter. The ADS8517 works the same way when it is running in external or  
internal clock mode. That is, the state of the TAG pin is shown on the DATA pin at the 17th clock after all 16 bits  
have shifted out. However, it is only practical to use the TAG feature with the external clock mode when multiple  
ADS8517s are daisy-chained, so that they are running at the same clock speed. For example, when two  
converters (ADS8517A and ADS8517B) are cascaded together, the 17th external clock cycle brings the MSB  
data of ADS8517A onto the DATA pin of ADS8517B.  
ADS8517A  
ADS8517B  
Processor  
DATA (A)  
TAG DATA  
CS  
TAG DATA  
A00  
B00  
A15  
B15  
D
D
Q
Q
D
D
Q
Q
CS  
R/C  
R/C  
DATACLK  
DATACLK  
SCLK  
GPIO  
GPIO  
SDI  
DATA (B)  
TAG (B)  
DATACLK  
R/C  
(both A and B)  
BUSY  
(both A and B)  
SYNC  
(both A and B)  
External  
DATACLK  
1
2
3
4
15  
16  
18  
19  
20  
21  
32  
33  
34  
17  
DATA (A)  
DATA (B)  
A15 A14 A13  
B15 B14 B13  
A01 A00  
TAG(A) = 0  
Nth Conversion Data  
B01  
B00 A15 A14 A13 A12  
A00  
TAG(A) = 0  
EXT/INT tied high, CS of both converter A and B, TAG input of converter A are tied low.  
Figure 37. Timing of TAG Feature With Single Conversion (Using External DATACLK)  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
ANALOG INPUTS  
The ADS8517 offers three analog input ranges, as shown in Table 1. The offset specification is factory-calibrated  
with internal resistors. The gain specification is factory-calibrated with 0.1%, 0.25-W external resistors, as shown  
in Figure 38 and Figure 39. The external resistors can be omitted if a larger gain error is acceptable or if using  
software calibration. The hardware trim circuitry shown in Figure 38 and Figure 39 can reduce the error to zero.  
±10 V  
0 V to 5 V  
0 V to 4 V  
1
2
1
2
3
4
5
6
1
2
3
4
5
6
R1  
R1  
VIN  
IN  
IN  
R1  
IN  
VIN  
AGND1  
AGND1  
AGND1  
3
4
R2  
IN  
R2  
IN  
VIN  
R2  
IN  
+5 V  
+5 V  
+
+
+5 V  
CAP  
CAP  
CAP  
+
+
2.2 mF  
2.2 mF  
2.2 mF  
2.2 mF  
1 MW  
1 MW  
1 MW  
5
6
50 kW  
50 kW  
50 kW  
REF  
REF  
REF  
+
+
2.2 mF  
2.2 mF  
AGND2  
AGND2  
AGND2  
Figure 38. Circuit Diagrams (with Gain Adjust Trim)  
±10 V  
0 V to 5 V  
0 V to 4 V  
1
2
1
1
2
3
4
5
6
R1  
R1  
VIN  
IN  
IN  
R1  
IN  
2
3
4
5
6
VIN  
AGND1  
AGND1  
AGND1  
3
4
R2  
IN  
R2  
IN  
VIN  
R2  
IN  
+
+
+
CAP  
CAP  
CAP  
+
+
2.2 mF  
2.2 mF  
2.2 mF  
2.2 mF  
1 MW  
5
6
REF  
REF  
REF  
+
2.2 mF  
2.2 mF  
AGND2  
AGND2  
AGND2  
Figure 39. Circuit Diagrams (Without Gain Adjust Trim)  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS8517  
 
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
Analog input pins R1IN and R2IN have ±25-V overvoltage protection. The input signal must be referenced to  
AGND1. This referencing minimizes ground-loop problems typical to analog designs. The analog input should be  
driven by a low-impedance source. A typical driving circuit using the OPA627 or OPA132 is shown in Figure 40.  
+15 V  
22 pF  
2.2 mF  
ADS8517  
R1IN  
2 kW  
100 nF  
Pin 7  
Pin 1  
AGND1  
R2IN  
2 kW  
Pin 2  
Pin 3  
VIN  
OPA627  
or  
OPA132  
Pin 6  
22 pF  
CAP  
REF  
Pin 4  
EXT/INT  
DGND  
2.2 mF  
2.2 mF  
2.2 mF  
100 nF  
AGND2  
-15 V  
GND  
GND  
GND  
GND  
GND  
GND  
Figure 40. Typical Driving Circuit (±10 V, No Trim)  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
REFERENCE  
The ADS8517 can operate with the internal 2.5 V reference or an external reference. An external reference  
connected to pin 5 (REF) bypasses the internal reference. The external reference must drive the 6-kresistor  
that separates pin 5 from the internal reference (see the front page diagram). The load varies with the difference  
between the internal and external reference voltages. The internal reference is approximately 2.5 V (range is  
from 2.48 V to 2.52 V). The external reference voltage can vary from 2.3 V to 2.7 V. The reference, whether  
internal or external, is buffered internally with the output on pin 4 (CAP). Figure 41 shows characteristic  
impedances at the input and output of the buffer with all combinations of power-down and reference power-down.  
The reference voltage determines the size of the least significant bit (LSB). The larger reference voltages  
produce a larger LSB, which can improve SNR. Smaller reference voltages can degrade SNR.  
Z
CAP  
CAP  
CDAC  
(Pin 4)  
Buffer  
Z
REF  
Internal  
REF  
Reference  
(Pin 5)  
PWRD 0  
REFD 0  
1
PWRD 0  
REFD 1  
1
PWRD 1  
REFD 0  
200  
PWRD 1  
REFD 1  
200  
Z
W
W
CAP  
Z
6 k  
1 M  
6 k  
1 M  
REF  
Figure 41. Characteristic Impedances of the Internal Buffer  
The ADS8517 is factory-tested with 2.2 µF capacitors connected to pin 4 (CAP) and pin 5 (REF). Each capacitor  
should be placed as close as possible to the pin. The capacitor on pin 5 band-limits the internal reference noise.  
A smaller capacitor can be used, but it may degrade SNR and SINAD. The capacitor on pin 4 stabilizes the  
reference buffer and provides switching charge to the CDAC during conversion. Capacitors smaller than 1 µF  
may cause the buffer to become unstable and not hold sufficient charge for the CDAC. The devices are tested to  
specifications with 2.2 µF, making larger capacitors unnecessary (Figure 42 shows how capacitor values larger  
than 2.2 µF have little effect on improving performance). The equivalent series resistance (ESR) of these  
compensation capacitors is also critical; keep the total ESR under 3 . See the Typical Characteristics section  
concerning how ESR affects performance.  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0.1  
1
10  
100  
CAP − Pin Value − mF  
Figure 42. Power-Down to Power-Up Time versus Capacitor Value on CAP  
Neither the internal reference nor the buffer should be used to drive an external load. Such loading can degrade  
performance, as shown in Figure 41. Any load on the internal reference causes a voltage drop across the 6-kΩ  
resistor and affects gain. The internal buffer is capable of driving ±2-mA loads, but any load can cause  
perturbations of the reference at the CDAC, thus degrading performance.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS8517  
 
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
POWER-DOWN  
The ADS8517 has analog power-down and reference power-down capabilities via PWRD (pin 25) and REFD (pin  
26), respectively. PWRD and REFD high powers down all analog circuitry, maintaining data from the previous  
conversion in the internal registers, provided that the data have not already been shifted out through the serial  
port. Typical power consumption in this mode is 50 µW. Power recovery is typically 1 ms, using a 2.2-µF  
capacitor connected to CAP. Figure 42 shows power-down to power-up recovery time relative to the capacitor  
value on CAP. With +5 V applied to VDIG, the digital circuitry of the ADS8517 remains active at all times,  
regardless of PWRD and REFD states.  
PWRD  
PWRD high powers down all of the analog circuitry except for the reference. Data from the previous conversion  
are maintained in the internal registers and can still be read. With PWRD high, a convert command yields  
meaningless data.  
REFD  
REFD high powers down the internal 2.5-V reference. All other analog circuitry, including the reference buffer, is  
active. REFD should be high when using an external reference to minimize power consumption and the loading  
effects on the external reference. See Figure 41 for the characteristic impedance of the reference buffer input for  
both REFD high and low. The internal reference consumes approximately 5 mW.  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
LAYOUT  
POWER  
For host processors that are able to advantage of a lower interface supply voltage, the ADS8517 offers a wide  
range of voltages—from 5.5V to as low as 1.65V. The ADS8517 should be considered as an analog component  
because, as noted in the Electrical Characteristics, it uses 95% of its power for the analog circuitry. If the  
interface is at the same +5V as the analog supply, the two +5-V supplies should be separate. Connecting VDIG  
(pin 28) directly to a digital supply can reduce converter performance because of switching noise from the digital  
logic. For best performance, the +5-V supply should be produced from whichever analog supply is present for the  
rest of the analog signal conditioning. If a +12-V or +15-V suppy is present in the system, a simple +5-V regulator  
can be used. Although it is not suggested, if the digital supply in the system must be used to power the  
converter, be sure it is properly filtered.  
POWER-ON SEQUENCE  
Care must be taken with power sequencing when the interface and analog supplies are different. Refer to the  
Absolute Maximum Ratings for details. The analog supply should be powered on before the digital supply (used  
for the interface). It is important that the voltage difference between VDIG and the digital inputs does not exceed  
the limit of –0.3V to VDIG + 0.3V. All digital inputs should be kept inactive (logic low) until the digital (interface)  
supply is steady.  
GROUNDING  
Three ground pins are present on the ADS8517. DGND is the digital supply ground. AGND2 is the analog supply  
ground. AGND1 is the ground to which all analog signals internal to the A/D converter are referenced. AGND1 is  
more susceptible to current induced voltage drops and must have the path of least resistance back to the power  
supply.  
To achieve optimum performance, all the ground pins of the A/D converter should be tied to an analog ground  
plane, separated from the system digital logic ground. Both analog and digital ground planes should be tied to  
the system ground as near to the power supplies as possible. This configuration helps to prevent dynamic digital  
ground currents from modulating the analog ground through a common impedance to power ground.  
SIGNAL CONDITIONING  
The ADS8517 features high-impedance inputs as the result of the resistive input attenuation circuit. For ±10V, 0V  
to 5V, and 0V to 4V inputs, the equivalent input impedances are 45.7k, 20kand 21.4krespectively. Lower  
cost op amps may be used to drive the ADC inputs because the driving requirement is not as high compared to  
other converters. This input circuit not only reduces the power consumption on the signal conditioning op amp,  
but it also works as a buffer to attenuate any charge injection resulting from the operation of the CDAC FET  
sample switches, even though the design of those FET switches is optimized to give minimal charge injection.  
Another benefit provided by the ADS8517 high-impedance front-end is assured ±25V overvoltage protection. In  
most cases, this internal protection eliminates the need for external input protection circuitry.  
INTERMEDIATE LATCHES  
The ADS8517 does have 3-state outputs for the parallel port, but intermediate latches should be used if the bus  
is active during conversion. If the bus is not active during conversion, the 3-state outputs can be used to isolate  
the A/D converter from other peripherals on the same bus.  
Intermediate latches are beneficial on any monolithic A/D converter. The ADS8517 has an internal LSB size of  
38 µV (with a 2.5-V internal reference). Transients from fast-switching signals on the parallel port, even when the  
A/D converter is 3-stated, can be coupled through the substrate to the analog circuitry, causing degradation of  
converter performance.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS8517  
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
TRANSITION NOISE  
Apply a dc input to the ADS8517 and initiate 1000 conversions. The digital output of the converter varies in  
output codes because of the internal noise of the ADS8517. This variance is true for all 16-bit SAR converters.  
The transition noise specification found in the Electrical Characteristics section is a statistical figure that  
represents the one sigma limit or rms value of these output codes.  
Using a histogram to plot the output codes, the distribution should appear bell-shaped, with the peak of the bell  
curve representing the nominal output code for the input voltage value. The ±1σ, ±2σ, and ±3σ distributions  
represent 68.3%, 95.5%, and 99.7%, respectively, of all codes. Multiplying the transition noise (TN) by 6 yields  
the ±3σ distribution, or 99.7%, of all codes. Statistically, up to three codes could fall outside the five-code  
distribution when executing 1000 conversions. The ADS8517 has a TN of 0.8 LSBs, which yields five output  
codes for a ±3σ distribution. Figure 43 shows 16,384 conversion histogram results.  
7740  
4230  
3855  
288  
247  
16  
8
8003  
7FFD 7FFE 7FFF  
8000  
8001  
8002  
Figure 43. Histogram of 16,384 Conversions with VIN = 0 V in ±10 V Bipolar Range  
AVERAGING  
The noise of the converter can be compensated by averaging the digital codes. By averaging conversion results,  
transition noise is reduced by a factor of 1/n where n is the number of averages. For example, averaging four  
conversion results reduces the TN by 1/2 to 0.4 LSBs. Averaging should only be used for input signals with  
frequencies near dc.  
For ac signals, a digital filter can be used to low-pass filter and decimate the output codes. This action works in a  
similar manner to averaging: for every decimation by 2, the signal-to-noise ratio improves by 3 dB.  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
ADS8517  
www.ti.com.......................................................................................................................................................................................... SLAS527SEPTEMBER 2008  
ADS8517 AS AN SPI MASTER DEVICE (INT/EXT TIED LOW)  
Figure 44 shows a simple interface between the ADS8517 and an SPI-equipped microcontroller or TMS320  
series digital signal processor (DSP) when using the internal serial data clock. This interface assumes that the  
microcontroller or DSP is configured as an SPI slave, is capable of receiving 16-bit transfers, and that the  
ADS8517 is the only serial peripheral on the SPI bus.  
Microcontroller  
ADS8517  
TOUT  
SS  
R/C  
BUSY  
MOSI  
SCLK  
SDATA  
DATACLK  
EXT/INT  
SPI Slave  
CS  
BYTE  
SPI Master  
NOTE: CPOL = 0 (inactive SCLK is LOW)  
CPHA = 0 or 1 (data valid on either SCLK edge)  
Figure 44. ADS8517 as SPI Master  
To maintain synchronization with the ADS8517, the microcontroller slave select (SS) input should be connected  
to the BUSY output of the ADS8517. When a transition from high-to-low occurs on BUSY (indicating the current  
conversion is in process), the ADS8517 internal SCLK begins shifting the previous conversion data into the  
MOSI pin of the microcontroller. In this scenario, the CONV input to the ADS8517 can be controlled from an  
external trigger source, or a trigger generated by the microcontroller. The ADS8517 internal SCLK provides 2 ns  
(min) of setup time and 41 ns (min) of hold time on the SDATA output (see td5 and td6 in Table 6), allowing the  
microcontroller to sample data on either the rising or falling edge of SCLK.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS8517  
 
ADS8517  
SLAS527SEPTEMBER 2008.......................................................................................................................................................................................... www.ti.com  
ADS8517 AS AN SPI SLAVE DEVICE (INT/EXT TIED HIGH)  
Figure 45 shows another interface between the ADS8517 and an SPI-equipped microcontroller or DSP in which  
the host processor acts as an SPI master device.  
VS  
Microcontroller  
ADS8517  
R/C EXT/INT  
TOUT  
INT  
BUSY  
MOSI  
SCLK  
SDATA  
DATACLK  
CS  
SPI Master  
BYTE  
SPI Slave  
NOTE: CPOL = 0 (inactive SCLK is LOW)  
CPHA = 1 (data valid on SCLK falling edge)  
Figure 45. ADS8517 as SPI Slave  
In this configuration, the data transfer from the ADS8517 is triggered by the rising edge of the serial data clock  
provided by the SPI master. The SPI interface should be configured to read valid SDATA on the falling edge of  
SCLK. When a minimum of 17 SCLKs are provided to the ADS8517, data can be strobed to the host processor  
on the rising SCLK edge providing a 2ns (min) hold time (see td8 in Table 6).  
When using an external interrupt to facilitate serial data transfers, as shown in Figure 45, there are two options  
for the configuration of the interrupt service routine (ISR): falling-edge-triggered or rising-edge-triggered.  
A falling-edge-triggered transfer would initiate an SPI transfer after the falling edge of BUSY, providing the host  
controller with the previous conversion results, while the current conversion cycle is underway. The timing for this  
type of interface is described in detail in Figure 36. Care must be taken to ensure the entire 16-bit conversion  
result is retrieved from the ADS8517 before BUSY returns high to avoid the potential corruption of the current  
conversion cycle.  
A rising-edge-triggered transfer is the preferred method of obtaining the conversion results. This timing is  
depicted in Figure 35. This method of obtaining data ensures that SCLK is static during the conversion cycle and  
provides the host processor with current cycle conversion results.  
8-BIT SPI INTERFACE  
For microcontrollers that only support 8-bit SPI transfers, it is recommended to configure the ADS8517 for SPI  
slave operation, as depicted in Figure 45. With the microcontroller configured as the SPI master, two 8-bit  
transfers are required to obtain full 16-bit conversion results from the ADS8517. The eight MSBs of the  
conversion result are considered valid on the falling SCLK edges of the first transfer, with the remaining four  
LSBs being valid on the first four falling SCLK edges in the second transfer.  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS8517  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Oct-2008  
PACKAGING INFORMATION  
Orderable Device  
ADS8517IBDW  
ADS8517IBDWR  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
28  
20 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
DW  
28  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
ADS8517IBPW  
ADS8517IBPWR  
ADS8517IDW  
PREVIEW  
PREVIEW  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
DW  
28  
28  
28  
50  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
2000  
20 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
ADS8517IDWR  
ACTIVE  
SOIC  
DW  
28  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
ADS8517IPW  
PREVIEW  
PREVIEW  
TSSOP  
TSSOP  
PW  
PW  
28  
28  
50  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
ADS8517IPWR  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY