ADS8665IPWR [TI]

具有可编程 (±12/±10/±6/±5/±2.5V) 输入范围、+5V 电源的 12 位、500kSPS、单通道 SAR ADC | PW | 16 | -40 to 125;
ADS8665IPWR
型号: ADS8665IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可编程 (±12/±10/±6/±5/±2.5V) 输入范围、+5V 电源的 12 位、500kSPS、单通道 SAR ADC | PW | 16 | -40 to 125

光电二极管 转换器
文件: 总72页 (文件大小:2951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
具有可编程双极输入范围的 ADS866x 12 位、高速、单电源、SAR ADC 数据采  
集系统  
1 特性  
3 说明  
具有集成模拟前端的 12 ADC  
高速  
ADS86611.25MSPS  
ADS8665500kSPS  
可通过软件编程的输入范围:  
– 双极范围±12.288V±10.24V±6.144V、  
±5.12V ±2.56V  
ADS8661 ADS8665 属于基于逐次逼近型 (SAR) 模  
数转换器 (ADC) 的集成数据采集系统系列。此类器件  
采用高速高精度 SAR ADC、集成模拟前端 (AFE) 输入  
驱动器电路、高达 ±20V 的过压保护电路以及一个温度  
漂移极低的 4.096V 片上基准电压。  
此类器件由 5V 模拟电源供电但支持 ±12.288V、  
±6.144V±10.24V±5.12V ±2.56V 实际双极输入  
范围以及 0V 12.288V0V 10.24V0V 至  
6.144V 0V 5.12V 的单极输入范围。各输入范围  
的增益和偏移误差均可在特定数值范围内进行调节确  
保直流精度较高。通过针对器件内部寄存器进行编程可  
选择输入范围。此类器件提供高阻性输入阻抗 (≥  
1MΩ)不受所选输入范围的影响。  
– 单极范围0V12.288V0V10.24V0V–  
6.144V 以及 0V5.12V  
5V 模拟电源1.65V 5V I/O 电源  
恒定的阻性输入阻抗 ≥ 1MΩ  
输入过压保护高达 ±20V  
4.096V 片上低漂移基准电压  
出色的性能:  
multiSPI 数字接口向后兼容传统 SPI 协议。此外可  
配置特性简化了与各种主机控制器的接口。  
DNL±0.1LSBINL±0.15LSB  
SNR74dBTHD-102dB  
警报 → 高低阈值  
器件信息(1)  
multiSPI 增强型 SPI 兼容接口支持菊花链连接  
工业级工作温度范围:  
封装尺寸标称值)  
器件型号  
ADS866x  
封装  
TSSOP (16)  
5.00mm × 4.40mm  
40°C +125°C  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
模拟输入模块  
混合模块AIAODIDO)  
数据采集 (DAQ)  
轨道旁信令和控制  
DVDD  
AVDD  
ADS866x  
REFIO  
4.096-V  
Reference  
REFCAP  
CONVST/CS  
SCLK  
1 MW  
AIN_P  
OVP  
OVP  
2nd-Order  
LPF  
Digital Logic  
12-Bit  
ADC  
Driver  
PGA  
SDI  
AIN_GND  
and Interface  
SAR ADC  
SDO  
1 MW  
VBIAS  
Oscillator  
AGND  
DGND  
REFGND  
方框图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS780  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................20  
7.3 Feature Description...................................................21  
7.4 Device Functional Modes..........................................33  
7.5 Programming............................................................ 38  
7.6 Register Maps...........................................................47  
8 Application and Implementation..................................56  
8.1 Application Information............................................. 56  
8.2 Typical Application.................................................... 56  
9 Power Supply Recommendations................................59  
9.1 Power Supply Decoupling.........................................59  
9.2 Power Saving............................................................59  
10 Layout...........................................................................61  
10.1 Layout Guidelines................................................... 61  
10.2 Layout Example...................................................... 62  
11 Device and Documentation Support..........................63  
11.1 Documentation Support.......................................... 63  
11.2 接收文档更新通知................................................... 63  
11.3 支持资源..................................................................63  
11.4 Trademarks............................................................. 63  
11.5 静电放电警告...........................................................63  
11.6 术语表..................................................................... 63  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements: Conversion Cycle....................8  
6.7 Timing Requirements: Asynchronous Reset...............8  
6.8 Timing Requirements: SPI-Compatible Serial  
Interface........................................................................ 8  
6.9 Timing Requirements: Source-Synchronous  
Serial Interface (External Clock)....................................9  
6.10 Timing Requirements: Source-Synchronous  
Serial Interface (Internal Clock).....................................9  
6.11 Timing Diagrams..................................................... 10  
6.12 Typical Characteristics............................................13  
7 Detailed Description......................................................20  
4 Revision History  
Changes from Revision A (October 2018) to Revision B (March 2021)  
Page  
更新了整个文档的表、图和交叉参考的编号格式 ............................................................................................... 1  
更改了应用 部分..................................................................................................................................................1  
Changed AIN_P, AIN_GND to GND specification in Absolute Maximum Ratings table .................................... 4  
Updated specification of Input Overvoltage Protection Circuit, VOVP parameter, to ±15 V for test condition  
AVDD = floating.................................................................................................................................................. 5  
Changed Standard SPI Timing Protocol figures...............................................................................................45  
Changed DEVICE_ADDR[3:0] type to R/W from R in DEVICE_ID_REG Register .........................................47  
Changed the description of PAR_EN bit in DATAOUT_CTL_REG Register ................................................... 51  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
DGND  
AVDD  
1
2
3
4
5
6
7
8
16 DVDD  
15 RVS  
AGND  
14 ALARM/SDO-1/GPO  
13 SDO-0  
REFIO  
REFGND  
REFCAP  
AIN_P  
12 SCLK  
11 CONVST/CS  
10 SDI  
AIN_GND  
9
RST  
5-1. PW Package, 16-Pin TSSOP, Top View (Not to Scale)  
5-1. Pin Functions  
NO.  
NAME  
TYPE(1)  
DESCRIPTION  
TSSOP  
AGND  
3
8
7
P
Analog ground pin. Decouple with the AVDD pin.  
AIN_GND  
AIN_P  
AI  
AI  
Analog input: negative. Decouple with the AIN_P pin.  
Analog input: positive. Decouple with the AIN_GND pin.  
Multi-function output pin. Active high alarm.  
Data output 1 for serial communication. General-purpose output pin.  
ALARM/SDO-1/GPO  
AVDD  
14  
2
DO  
P
Analog supply pin. Decouple with the AGND pin.  
Dual-functionality pin.  
Active high logic: conversion start input pin; a CONVST rising edge brings the device from  
acquisition phase to conversion phase.  
CONVST/CS  
11  
DI  
Active low logic: chip-select input pin; the device takes control of the data bus when CS is  
low; the SDO-x pins go to tri-state when CS is high.  
DGND  
1
16  
6
P
P
Digital ground pin. Decouple with the DVDD pin.  
DVDD  
Digital supply pin. Decouple with the DGND pin.  
REFCAP  
AO  
ADC reference buffer decoupling capacitor pin. Decouple with the REFGND pin.  
Reference ground pin; short to the analog ground plane. Decouple with the REFIO and  
REFCAP pins.  
REFGND  
5
P
REFIO  
RST  
4
9
AIO  
DI  
Internal reference output and external reference input pin. Decouple with REFGND.  
Active low logic input to reset the device.  
Multi-function output pin for serial interface; see the RESET State section.  
With CS held high, RVS reflects the status of the internal ADCST signal.  
With CS low, the status of RVS depends on the output protocol selection.  
RVS  
15  
12  
DO  
DI  
Serial communication: clock input pin for the serial interface.  
All system-synchronous data transfer protocols are timed with respect to the SCLK signal.  
SCLK  
Dual function: data input pin for serial communication.  
Chain data input during serial communication in daisy-chain mode.  
SDI  
10  
13  
DI  
SDO-0  
DO  
Serial communication: data output 0  
(1) AI = analog input, AIO = analog input/output, DI = digital input, DO = digital output, and P = power supply.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
20  
15  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
65  
MAX  
UNIT  
AVDD = 5 V(2)  
AIN_P, AIN_GND to GND  
20  
V
AVDD = floating(3)  
15  
7
5.7  
AVDD to GND or DVDD to GND  
REFCAP to REFGND or REFIO to REFGND  
GND to REFGND  
V
V
V
V
V
0.3  
DVDD + 0.3  
DVDD + 0.3  
125  
Digital input pins to GND  
Digital output pins to GND  
Operating, TA  
Temperature  
Storage, Tstg  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) AVDD = 5 V.  
(3) AVDD = floating.  
6.2 ESD Ratings  
VALUE UNIT  
Analog input pins  
±4000  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
(AIN_P, AIN_GND)  
V(ESD) Electrostatic discharge  
V
All other pins  
±2000  
±500  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.75  
1.65  
NOM  
5
MAX  
5.25  
UNIT  
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
V
V
3.3  
AVDD  
6.4 Thermal Information  
ADS8661,  
ADS8665  
PW (TSSOP)  
16 PINS  
95.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
29.3  
41.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJT  
40.8  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
 
 
 
 
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Input range = ±3 × VREF  
12.288  
10.24  
6.144  
5.12  
12.288  
10.24  
6.144  
5.12  
2.56  
0
Input range = ±2.5 × VREF  
Input range = ±1.5 × VREF  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
Input range = 3 × VREF  
Input range = 2.5 × VREF  
Input range = 1.5 × VREF  
Input range = 1.25 × VREF  
Input range = ±3 × VREF  
Input range = ±2.5 × VREF  
Input range = ±1.5 × VREF  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
Input range = 3 × VREF  
Input range = 2.5 × VREF  
Input range = 1.5 × VREF  
Input range = 1.25 × VREF  
All input ranges  
Full-scale input span(1)  
(AIN_P to AIN_GND)  
VIN  
V
2.56  
12.288  
10.24  
6.144  
5.12  
0
0
0
12.288  
10.24  
6.144  
5.12  
12.288  
10.24  
6.144  
5.12  
2.56  
0
AIN_P  
Operating input range  
V
2.56  
12.288  
10.24  
6.144  
5.12  
0
0
0
AIN_GND  
Operating input range  
0
1.2  
1.2  
1.2  
1.2  
1
0.1  
V
0.1  
1.02  
1.02  
1.02  
1.02  
0.85  
0.85  
0.85  
0.85  
0.85  
Input range = ±3 × VREF  
1.38  
Input range = ±1.5 × VREF  
Input range = 3 × VREF  
1.38  
1.38  
Input range = 1.5 × VREF  
Input range = ±2.5 × VREF  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
Input range = 2.5 × VREF  
Input range = 1.25 × VREF  
1.38  
RIN  
Input impedance  
At TA = 25°C  
1.15  
MΩ  
1
1.15  
1
1.15  
1
1.15  
1
1.15  
Input impedance drift  
7
25 ppm/°C  
Input range = ±3 × VREF  
Input range = ±2.5 × VREF  
Input range = ±1.5 × VREF  
Input range = ±1.25 × VREF  
(VIN 2.5) / RIN  
(VIN 2.2) / RIN  
(VIN 2.0) / RIN  
(VIN 2.0) / RIN  
(VIN 1.6) / RIN  
(VIN 2.6) / RIN  
(VIN 2.5) / RIN  
(VIN 2.7) / RIN  
(VIN 2.5) / RIN  
With voltage at  
IIN  
Input current  
the AIN_P pin Input range = ±0.625 × VREF  
µA  
= VIN  
Input range = 3 × VREF  
Input range = 2.5 × VREF  
Input range = 1.5 × VREF  
Input range = 1.25 × VREF  
INPUT OVERVOLTAGE PROTECTION CIRCUIT  
VOVP All input ranges  
AVDD = 5 V, all input ranges  
20  
V
15  
20  
15  
AVDD = floating, all input ranges  
INPUT BANDWIDTH  
f3 dB  
All input ranges  
All input ranges  
15  
3 dB  
Small-signal Input  
bandwidth  
kHz  
f0.1 dB  
2.5  
0.1 dB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SYSTEM PERFORMANCE  
Resolution  
12  
12  
Bits  
Bits  
LSB  
LSB  
NMC  
DNL  
INL  
No missing codes  
Differential nonlinearity(4)  
Integral nonlinearity(4)  
All input ranges  
All input ranges  
±0.1  
±0.15  
±0.2  
0.35  
0.35  
1
0.35  
0.35  
1  
All bipolar ranges(8)  
All unipolar ranges(9)  
EO  
Offset error(2)  
At TA = 25°C  
mV  
±0.2  
2
2  
Offset error drift with temperature  
Gain error(5)  
All input ranges  
±0.75  
±0.01  
±1  
3
ppm/°C  
3  
EG  
At TA = 25°C, all input ranges  
All input ranges  
0.025 %FSR  
0.025  
5  
Gain error drift with temperature(6)  
5
ppm/°C  
DYNAMIC CHARACTERISTICS  
SNR  
Signal-to-noise ratio(7)  
All input ranges  
All input ranges  
All input ranges  
All input ranges  
73  
73.5  
102  
73.4  
dB  
dB  
dB  
dB  
THD  
Total harmonic distortion(3) (7)  
Signal-to-noise + distortion(7)  
Spurious-free dynamic range(7)  
SINAD  
SFDR  
72.9  
103  
SAMPLING DYNAMICS  
ADS8661  
ADS8665  
ADS8661  
ADS8665  
ADS8661  
ADS8665  
550  
tCONV Conversion time  
ns  
ns  
1000  
250  
tACQ  
Acquisition time  
1000  
1250  
500  
Maximum throughput rate  
without latency  
fcycle  
kSPS  
INTERNAL REFERENCE OUTPUT  
On the REFIO pin  
VREFIO  
At TA = 25°C  
At TA = 25°C  
4.095  
4.096  
4
4.097  
V
(configured as an output)  
dVREFIO/dTA  
COUT_REFIO  
Internal reference temperature drift  
Decoupling capacitor on REFIO pin  
ppm/°C  
µF  
4.7  
Reference voltage to the ADC  
(on the REFCAP pin)  
VREFCAP  
4.095  
4.096  
0.5  
4.097  
2
V
REFCAP temperature drift  
Decoupling capacitor on REFCAP pin  
Turn-on time  
ppm/°C  
μF  
COUT_REFCAP  
10  
COUT_REFCAP = 10 µF, COUT_REFIO = 10 µF  
REFIO pin configured as an input  
20  
ms  
EXTERNAL REFERENCE INPUT  
VREFIO_EXT  
External reference voltage on REFIO  
4.046  
4.096  
4.146  
V
AVDD COMPARATOR  
VTH_HIGH  
VTH_LOW  
High threshold voltage  
Low threshold voltage  
5.3  
4.7  
V
V
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER-SUPPLY REQUIREMENTS  
AVDD  
Analog power-supply voltage  
4.75  
1.65  
2.7  
5
3.3  
3.3  
7
5.25  
AVDD  
AVDD  
9
Operating range  
V
DVDD  
Digital power-supply voltage  
Supply range for specified performance  
ADS8661  
Internal  
Analog supply current,  
device converting at maximum  
throughput  
reference  
ADS8665  
4.9  
5.8  
3.7  
2.9  
1.7  
2.8  
1.6  
10  
6.5  
IAVDD_DYN  
mA  
ADS8661  
External  
reference  
7.25  
4.5  
ADS8665  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
4
Analog supply current,  
device not converting  
IAVDD_STC  
IAVDD_STDBY  
IAVDD_PD  
mA  
mA  
μA  
2.25  
Analog supply current,  
device in STANDBY mode  
Analog supply current,  
device in PD mode  
10  
Digital supply current,  
maximum throughput  
IDVDD_DYN  
IDVDD_STDBY  
IDVDD_PD  
0.2  
1
0.25  
mA  
μA  
μA  
Digital supply current,  
device in STANDBY mode  
Digital supply current,  
device in PD mode  
1
DIGITAL INPUTS (CMOS)  
0.7 ×  
DVDD  
DVDD +  
0.3  
DVDD > 2.35 V  
DVDD 2.35 V  
DVDD > 2.35 V  
DVDD 2.35 V  
VIH  
Digital high input voltage logic level  
V
V
0.8 ×  
DVDD  
DVDD +  
0.3  
0.3 ×  
DVDD  
0.3  
0.3  
VIL  
Digital low input voltage logic level  
0.2 ×  
DVDD  
Input leakage current  
Input pin capacitance  
100  
5
nA  
pF  
DIGITAL OUTPUTS (CMOS)  
0.8 ×  
DVDD  
VOH  
VOL  
Digital high output voltage logic level  
DVDD  
V
V
IO = 500-μA source  
0.2 ×  
DVDD  
Digital low output voltage logic level  
0
IO = 500-μA sink  
Floating state leakage current  
Internal pin capacitance  
Only for digital output pins  
1
5
µA  
pF  
TEMPERATURE RANGE  
TA Operating free-air temperature  
125  
°C  
40  
(1) Ideal input span, does not include gain or offset error.  
(2) Measured relative to actual measured reference.  
(3) Calculated on the first nine harmonics of the input frequency.  
(4) This specification indicates the endpoint INL, not best-fit INL.  
(5) Excludes internal reference accuracy error.  
(6) Excludes internal reference temperature drift.  
(7) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with a 1-kHz input signal 0.25 dB below  
full-scale, unless otherwise specified.  
(8) Bipolar ranges are ±12.288 V, ±10.24 V, ±6.144 V, ±5.12 V, and ±2.56 V.  
(9) Unipolar ranges are 0 V12.288 V, 0 V10.24 V, 0 V6.144 V, and 0 V5.12 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
 
 
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.6 Timing Requirements: Conversion Cycle  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
ADS8661  
ADS8665  
1250  
500  
fcycle  
tcycle  
tacq  
Sampling frequency  
ADC cycle time period  
Acquisition time  
kSPS  
1/fcycle  
250  
ADS8661  
ADS8665  
ns  
ns  
1000  
TIMING SPECIFICATIONS  
tconv Conversion time  
ADS8661  
ADS8665  
550  
1000  
6.7 Timing Requirements: Asynchronous Reset  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
twl_RST  
Pulse duration: RST high  
100  
ns  
TIMING SPECIFICATIONS  
tD_RST_POR Delay time for POR reset: RST rising to RVS rising  
20  
20  
ms  
µs  
tD_RST_APP  
tNAP_WKUP  
tPWRUP  
Delay time for application reset: RST rising to CONVST/CS rising  
Wake-up time: NAP mode  
1
20  
µs  
Power-up time: PD mode  
ms  
6.8 Timing Requirements: SPI-Compatible Serial Interface  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fCLK  
Serial clock frequency  
66.67  
MHz  
tCLK  
Serial clock time period  
1/fCLK  
0.45  
0.45  
7.5  
tPH_CK  
tPL_CK  
SCLK high time  
0.55  
0.55  
tCLK  
tCLK  
ns  
SCLK low time  
tSU_CSCK  
tSU_CKDI  
tHT_CKDI  
tHT_CKCS  
Setup time: CONVST/CS falling to first SCLK capture edge  
Setup time: SDI data valid to SCLK capture edge  
Hold time: SCLK capture edge to (previous) data valid on SDI  
Delay time: last SCLK capture edge to CONVST/CS rising  
7.5  
ns  
7.5  
ns  
7.5  
ns  
TIMING SPECIFICATIONS  
tDEN_CSDO  
tDZ_CSDO  
tD_CKDO  
Delay time: CONVST/CS falling edge to data enable  
9.5  
10  
12  
14  
ns  
ns  
ns  
ns  
Delay time: CONVST/CS rising to SDO-x going to 3-state  
Delay time: SCLK launch edge to (next) data valid on SDO-x  
Delay time: CONVST/CS rising edge to RVS falling  
tD_CSRVS  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.9 Timing Requirements: Source-Synchronous Serial Interface (External Clock)  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fCLK  
Serial clock frequency  
66.67  
MHz  
tCLK  
Serial clock time period  
SCLK high time  
1/fCLK  
0.45  
tPH_CK  
tPL_CK  
0.55  
0.55  
tCLK  
tCLK  
SCLK low time  
0.45  
TIMING SPECIFICATIONS  
tDEN_CSDO  
tDZ_CSDO  
tD_CKRVS_r  
tD_CKRVS_f  
tD_RVSDO  
tD_CSRVS  
Delay time: CONVST/CS falling edge to data enable  
9.5  
10  
14  
14  
2.5  
15  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time: CONVST/CS rising to SDO-x going to 3-state  
Delay time: SCLK rising edge to RVS rising  
Delay time: SCLK falling edge to RVS falling  
Delay time: RVS rising to (next) data valid on SDO-x  
Delay time: CONVST/CS rising edge to RVS displaying internal device state  
6.10 Timing Requirements: Source-Synchronous Serial Interface (Internal Clock)  
all minimum and maximum specifications are at TA = 40°C to +125°C; typical specifications are at TA = 25°C; AVDD = 5 V,  
DVDD = 3.3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
TIMING SPECIFICATIONS  
tDEN_CSDO Delay time: CONVST/CS falling edge to data enable  
tDZ_CSDO Delay time: CONVST/CS rising to SDO-x going to 3-state  
tDEN_CSRVS Delay time: CONVST/CS falling edge to first rising edge on RVS  
9.5  
10  
ns  
ns  
50  
ns  
tD_RVSDO  
tINTCLK  
Delay time: RVS rising to (next) data valid on SDO-x  
Time period: internal clock  
Time period: RVS signal  
RVS high time  
2.5  
ns  
15  
15  
ns  
tCYC_RVS  
tWH_RVS  
tWL_RVS  
ns  
0.4  
0.4  
0.6  
0.6  
tINTCLK  
tINTCLK  
RVS low time  
Delay time: CONVST/CS rising edge to RVS displaying internal  
device state  
tD_CSRVS  
15  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.11 Timing Diagrams  
The CS falling edge can  
be issued after tconv_max  
or when RVS goes high.  
tcycle  
CONVST/CS  
tconv  
tacq  
ADCST (Internal)  
RVS  
6-1. Conversion Cycle Timing Diagram  
trst  
twl_RST  
RST  
RVS  
td_rst  
6-2. Asynchronous Reset Timing Diagram  
tcycle  
Data Read Time  
tconv_max  
CONVST/CS  
tD_CSRVS  
tD_CSRVS  
RVS  
tHT_CKCS  
tSU_CSCK  
CPOL = 0  
SCLK  
CPOL = 1  
tD_CSDO  
tD_CKDO  
tDEN_CSDO  
M
M-1  
L+1  
L
M-2  
SDO-0  
tSU_CKDI  
tHT_CKDI  
SDI  
6-3. Standard SPI Interface Timing Diagram for CPHA = 0  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
tcycle  
tconv_max  
Data Read Time  
CONVST/CS  
RVS  
tD_CSRVS  
tD_CSRVS  
tHT_CKCS  
tSU_CSCK  
CPOL = 0  
CPOL = 1  
SCLK  
tD_CKDO  
L+1  
tDZ_CSDO  
tDEN_CSDO  
SDO-0  
SDI  
0
M
M-1  
L
tSU_CKDI  
tHT_CKDI  
6-4. Standard SPI Interface Timing Diagram for CPHA = 1  
tcycle  
Data Read Time  
tconv_max  
CONVST/CS  
tD_CSRVS  
tD_CSRVS  
RVS  
tHT_CKCS  
tSU_CSCK  
CPOL = 0  
SCLK  
CPOL = 1  
tD_CSDO  
tD_CKDO  
tDEN_CSDO  
M
M-2  
M-3  
L+3  
L+2  
L+1  
M-4  
SDO-0  
SDO-1  
M-1  
L
M-5  
tSU_CKDI  
tHT_CKDI  
SDI  
6-5. multiSPI Interface Timing Diagram for Dual SDO-x and CPHA = 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
tcycle  
Data Read Time  
tconv_max  
CONVST/CS  
tD_CSRVS  
tD_CSRVS  
RVS  
tHT_CKCS  
tSU_CSCK  
CPOL = 0  
SCLK  
CPOL = 1  
tD_CKDO  
tDZ_CSDO  
tDEN_CSDO  
SDO-0  
0
0
M
M-2  
M-1  
L+3  
L+1  
L
M-1  
L+2  
SDO-1  
SDI  
tSU_CKDI  
tHT_CKDI  
6-6. multiSPI Interface Timing Diagram for Dual SDO-x and CPHA = 1  
Data Read Time  
tconv  
CONVST/CS  
tSU_CSCK  
SCLK  
tDEN_CSDO  
tDZ_CSDO  
tD_RVSDO  
SDO-0  
RVS  
M
M-1  
M-k  
M-k-1 M-k-2  
L+1  
L
tD_CKRVS_r  
tD_CSRVS  
tD_CKRVS_f  
tD_CSRD  
6-7. multiSPI Source-Synchronous External Clock Serial Interface Timing Diagram  
Data Read Time  
tconv_max  
CONVST/CS  
SCLK  
tDEN_CSDO  
tDZ_CSDO  
SDO-0  
RVS  
L+1  
L
M
M-1  
M-k  
M-k-1  
M-k-2  
tD_RVSDO  
tD_CSRVS  
tWH_RVS  
tDEN_CSRVS  
tCYC_RVS  
tWL_RVS  
6-8. multiSPI Source-Synchronous Internal Clock Serial Interface Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
15  
9
15  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
-40C  
25C  
125C  
9
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
3
3
-3  
-9  
-15  
-3  
-9  
-15  
-12.288 -8.192  
-12.288 -8.192  
-4.096  
0
Input Voltage (V)  
4.096  
8.192  
12.288  
-4.096  
0
Input Voltage (V)  
4.096  
8.192  
12.288  
D001  
D002  
Range = ±12.288 V  
6-9. Input I-V Characteristic Across Input Ranges  
6-10. Input I-V Characteristic Across Temperature  
400  
1600  
1400  
1200  
1000  
800  
200  
0
600  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
400  
-200  
200  
2.56 V  
0
-400  
1.02 1.06 1.1 1.14 1.18 1.22 1.26 1.3 1.34 1.38  
Input Impedance (MW)  
-40  
-7  
26  
59  
92  
125  
Free- Air Temperature (èC)  
D004  
D003  
Number of samples = 3398  
6-12. Typical Distribution of Input Impedance  
75000  
6-11. Input Impedance Drift vs Temperature  
75000  
60000  
45000  
30000  
15000  
0
60000  
45000  
30000  
15000  
0
2045  
2046  
Output Codes  
2047  
2045  
2046  
Output Codes  
2047  
D002  
D001  
Mean = 2046, sigma = 0, input = 0 V  
6-14. DC Histogram for Mid-Scale Inputs (±10.24 V)  
Mean = 2046, sigma = 0, input = 0 V  
6-13. DC Histogram for Mid-Scale Inputs (±12.288 V)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
75000  
60000  
45000  
30000  
15000  
0
75000  
60000  
45000  
30000  
15000  
0
2045  
2046  
Output Codes  
2047  
2045  
2046  
Output Codes  
2047  
D003  
D005  
D007  
D004  
Mean = 2046, sigma = 0, input = 0 V  
Mean = 2046, sigma = 0, input = 0 V  
6-15. DC Histogram for Mid-Scale Inputs (±6.144 V)  
6-16. DC Histogram for Mid-Scale Inputs (±5.12 V)  
75000  
75000  
60000  
45000  
30000  
15000  
0
60000  
45000  
30000  
15000  
0
2045  
2046  
Output Codes  
2047  
2048  
2049  
Output Codes  
2050  
D006  
Mean = 2046, sigma = 0, input = 0 V  
Mean = 2049, sigma = 0, input = 6.144 V  
6-17. DC Histogram for Mid-Scale Inputs (±2.56 V)  
6-18. DC Histogram for Mid-Scale Inputs (0 V12.288 V)  
75000  
75000  
60000  
45000  
30000  
15000  
0
60000  
45000  
30000  
15000  
0
2044  
2045  
Output Codes  
2046  
2044  
2045  
Output Codes  
2046  
D008  
Mean = 2045, sigma = 0, input = 3.072 V  
Mean = 2045, sigma = 0, input = 5.12 V  
6-20. DC Histogram for Mid-Scale Inputs (0 V6.144 V)  
6-19. DC Histogram for Mid-Scale Inputs (0 V10.24 V)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
75000  
60000  
45000  
30000  
15000  
0
0.5  
0.25  
0
-0.25  
-0.5  
2045  
2046  
Output Codes  
2047  
0
1024  
2048  
Codes (LSB)  
3072  
4095  
D009  
D010  
Mean = 2046, sigma = 0, input = 2.56 V  
All input ranges  
6-22. Typical DNL for All Codes  
6-21. DC Histogram for Mid-Scale Inputs (0 V5.12 V)  
0.5  
0.5  
0.25  
0
Maximum  
Minimum  
0.25  
0
-0.25  
-0.5  
-0.25  
-0.5  
0
1024  
2048  
Codes (LSB)  
3072  
4095  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D012  
D011  
All input ranges  
6-24. Typical INL for All Codes (All Bipolar Ranges)  
6-23. DNL vs Temperature  
0.5  
0.5  
Maximum  
Minimum  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.25  
-0.5  
0
1024  
2048  
Codes (LSB)  
3072  
4095  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D013  
D014  
6-25. Typical INL for All Codes (All Unipolar Ranges)  
6-26. INL vs Temperature (All Bipolar Ranges)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
0.5  
0.25  
0
1
0.75  
0.5  
Maximum  
Minimum  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (0C)  
Free-Air Temperature (èC)  
D015  
D036  
6-27. INL vs Temperature (All Unipolar Ranges)  
6-28. Offset Error vs Temperature Across Input Ranges  
12.5  
0.025  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
0.015  
0.005  
10  
7.5  
5
-0.005  
-0.015  
-0.025  
2.5  
0
-40  
-7  
26  
59  
92  
125  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
Offset Drift (ppm/ºC)  
3
Free-Air Temperature (0C)  
D038  
D037  
6-30. Gain Error vs Temperature Across Input Ranges  
6-29. Typical Histogram for Offset Drift  
25  
1.1  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
15  
10  
5
-0.1  
0
0
2000  
4000  
6000  
8000  
10000  
0
0.5  
1
1.5  
2
2.5  
3
Gain Drift (ppm/ºC)  
3.5  
4
4.5  
5
Source Resistance (W)  
D040  
D039  
6-32. Gain Error vs External Resistance (REXT  
)
6-31. Typical Histogram for Gain Error Drift  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
0
0
-30  
-30  
-60  
-60  
-90  
-90  
-120  
-150  
-180  
-120  
-150  
-180  
0
125000  
250000 375000  
Input Frequency (Hz)  
500000  
625000  
0
50000  
100000 150000  
Input Frequency (Hz)  
200000  
250000  
D016  
D017  
Number of points = 64k, fIN = 1 kHz  
Number of points = 64k, fIN = 1 kHz  
6-33. Typical FFT Plot (All Ranges) for the ADS8661  
6-34. Typical FFT Plot (All Ranges) for the ADS8665  
74  
74  
73.5  
73  
73.5  
73  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
72.5  
72.5  
2.56 V  
2.56 V  
72  
72  
100  
1k  
Input Frequency (Hz)  
10k  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D018  
D019  
fIN = 1 kHz  
6-35. SNR vs Input Frequency  
6-36. SNR vs Temperature  
74  
73  
72  
71  
70  
74  
73  
72  
71  
70  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
2.56 V  
100  
1k  
Input Frequency (Hz)  
10k  
-40  
-7  
26  
59  
92  
125  
Free-AirTemperature (èC)  
D020  
D021  
fIN = 1 kHz  
6-37. SINAD vs Input Frequency  
6-38. SINAD vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
-80  
-80  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
-90  
-90  
2.56 V  
-100  
-110  
-120  
-100  
-110  
-120  
100  
1k  
Input Frequency (Hz)  
10k  
-40  
-7  
26  
59  
92  
125  
Free-AirTemperature (èC)  
D022  
D023  
fIN = 1 kHz  
6-39. THD vs Input Frequency  
6-40. THD vs Temperature  
9
8
7
6
5
4
3
2
1
7
6.5  
6
5.5  
5
4.5  
4
ADS8661  
ADS8665  
3.5  
0
250  
500 750  
Throughput (ksps)  
1000  
1250  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
D026  
D024  
6-42. AVDD Current vs Throughput  
6-41. AVDD Current vs Temperature  
4
3.5  
3
2.8  
2.7  
2.6  
2.5  
2.4  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
2.5  
2
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (0C)  
D025  
D067  
6-43. AVDD Current vs Temperature (During Sampling)  
6-44. AVDD Current vs Temperature (Standby Mode)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V (internal), and maximum throughput (unless otherwise noted)  
3
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
2.5  
2
1.5  
1
0.5  
0
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (0C)  
D068  
6-45. AVDD Current vs Temperature (Power-Down Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS866x devices belong to a family of high-speed, high-performance, easy-to-use integrated data  
acquisition system. This single-channel device supports true bipolar input voltage swings up to ±12.288 V,  
operating on a single 5-V analog supply. The device features an enhanced SPI interface (multiSPI) that allows  
the sampling rate to be maximized even with lower speed host controllers.  
The device consists of a high-precision successive approximation register (SAR) analog-to-digital converter  
(ADC) and a power-optimized analog front-end (AFE) circuit for signal conditioning that includes:  
A high-resistive input impedance (1 MΩ) that is independent of the sampling rate  
A programmable gain amplifier (PGA) with a pseudo-differential input configuration supporting nine software-  
programmable unipolar and bipolar input ranges  
A second-order, low-pass antialiasing filter  
An ADC driver amplifier that ensures quick settling of the SAR ADC input for high accuracy  
An input overvoltage protection circuit up to ±20 V  
The device also features a low temperature drift, 4.096-V internal reference with a fast-settling buffer and a  
multiSPI serial interface with daisy-chain (DAISY) and ALARM features.  
The integration of the precision AFE circuit with high input impedance and a precision ADC operating from a  
single 5-V supply offers a simplified end solution without requiring external high-voltage bipolar supplies and  
complicated driver circuits.  
7.2 Functional Block Diagram  
DVDD  
AVDD  
ADS866x  
REFIO  
4.096-V  
Reference  
REFCAP  
CONVST/CS  
SCLK  
1 MW  
1 MW  
AIN_P  
OVP  
OVP  
2nd-Order  
LPF  
Digital Logic  
and Interface  
ADC  
Driver  
12-Bit  
SAR ADC  
PGA  
SDI  
AIN_GND  
SDO  
VBIAS  
Oscillator  
AGND  
DGND  
REFGND  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Input Structure  
The device features a pseudo-differential input structure, meaning that the single-ended analog input signal is  
applied at the positive input AIN_P and the negative input AIN_GND is tied to GND. 7-1 shows the simplified  
circuit schematic for the AFE circuit, including the input overvoltage protection circuit, PGA, low-pass filter (LPF),  
and high-speed ADC driver.  
1 MW  
CONVST/CS  
AIN_P  
OVP  
OVP  
2nd-Order  
LPF  
ADC  
Driver  
SCLK  
SDI  
SDO  
PGA  
ADC  
AIN_GND  
1 MW  
VB  
7-1. Simplified Analog Front-End Circuit Schematic  
The device can support multiple unipolar or bipolar, single-ended input voltage ranges based on the  
configuration of the program registers. As explained in the RANGE_SEL_REG register, the input voltage range  
can be configured to bipolar ±3 × VREF, ±2.5 × VREF, ±1.5 × VREF, ±1.25 × VREF, and ±0.625 × VREF or unipolar 0  
to 3 × VREF, 0 to 2.5 × VREF, 0 to 1.5 × VREF and 0 to 1.25 × VREF. With the internal or external reference voltage  
set to 4.096 V, the input ranges of the device can be configured to bipolar ranges of ±12.288 V, ±10.24 V, ±6.144  
V, ±5.12 V, and ±2.56 V or unipolar ranges of 0 V to 12.288 V, 0 V to 10.24 V, 0 V to 6.144 V, and 0 V to 5.12 V.  
The device samples the voltage difference (AIN_P AIN_GND) between the analog input and the AIN_GND  
pin. The device allows a ±0.1-V range on the AIN_GND pin. This feature is useful in modular systems where the  
sensor or signal-conditioning block is further away from the ADC on the board and when a difference in the  
ground potential of the sensor or signal conditioner from the ADC ground is possible. In such cases, running  
separate wires from the AIN_GND pin of the device to the sensor or signal-conditioning ground is recommended.  
In order to obtain optimum performance, the input currents and impedances along each input path are  
recommended to be matched. The two single-ended signals to AIN_P and AIN_GND must be routed as  
symmetrically as possible from the signal source to the ADC input pins.  
If the analog input pin (AIN_P) to the device is left floating, the output of the ADC corresponds to an internal  
biasing voltage. The output from the ADC must be considered as invalid if the device is operated with floating  
input pins. This condition does not cause any damage to the device, which becomes fully functional when a valid  
input voltage is applied to the pins.  
7.3.2 Analog Input Impedance  
The device presents a resistive input impedance 1 MΩ on each of the analog inputs. The input impedance is  
independent of the ADC sampling frequency or the input signal frequency. The primary advantage of such high-  
impedance inputs is the ease of driving the ADC inputs without requiring driving amplifiers with low output  
impedance. Bipolar, high-voltage power supplies are not required in the system because this ADC does not  
require any high-voltage, front-end drivers. In most applications, the signal sources or sensor outputs can be  
directly connected to the ADC input, thus significantly simplifying the design of the signal chain.  
In order to maintain the dc accuracy of the system, matching the external source impedance on the AIN_P input  
pin with an equivalent resistance on the AIN_GND pin is recommended. This matching helps cancel any  
additional offset error contributed by the external resistance.  
7.3.3 Input Protection Circuit  
The device features an internal overvoltage protection (OVP) circuit on each of the analog inputs. Use the  
internal protection circuit only as a secondary protection scheme. The external protection devices in the end  
application are highly recommended to be used to protect against surges, electrostatic discharge (ESD), and  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
electrical fast transient (EFT) conditions. A conceptual block diagram of the internal OVP circuit is shown in 图  
7-2.  
AVDD  
VP+  
RFB  
0 V  
ESD  
AVDD  
1 M  
VP-  
RS  
D1p  
D2p  
AIN_P  
Vœ  
V+  
AVDD  
D1n  
D2n  
VOUT  
RS  
AIN_GND  
+
1 MΩ  
RDC  
ESD  
VB  
GND  
7-2. Input Overvoltage Protection Circuit Schematic  
As shown in 7-2, the combination of the 1-MΩ (or, 1.2 MΩ for appropriate input ranges) input resistors along  
with the PGA gain-setting resistors RFB and RDC limit the current flowing into the input pin. A combination of anti-  
parallel diodes, D1 and D2 are added to protect the internal circuitry and set the overvoltage protection limits.  
7-1 explains the various operating conditions for the device when powered on. This table indicates that when  
the device is properly powered up (AVDD = 5 V) or offers a low impedance of < 30 kΩ, the internal overvoltage  
protection circuit can withstand up to ±20 V on the analog input pins.  
7-1. Input Overvoltage Protection Limits When AVDD = 5 V(1)  
INPUT CONDITION  
(VOVP = ±20 V)  
TEST  
CONDITION  
ADC  
OUTPUT  
COMMENTS  
CONDITION  
RANGE  
All input  
ranges  
|VIN| < |VRANGE  
|
Within operating range  
Valid  
Device functions as per data sheet specifications.  
Beyond operating range but  
within overvoltage range  
All input  
ranges  
ADC output is saturated, but device is internally protected  
(not recommended for extended time).  
|VRANGE| < |VIN| < |VOVP  
|
Saturated  
Saturated  
All input  
ranges  
This usage condition can cause irreversible damage to the  
device.  
|VIN| > |VOVP  
|
Beyond overvoltage range  
(1) GND = 0 V, AIN_GND = 0 V, |VRANGE| is the maximum input voltage for any selected input range, and |VOVP| is the break-down voltage  
for the internal OVP circuit. Assume that RS is approximately 0 Ω.  
The results indicated in 7-1 are based on an assumption that the analog input pin is driven by a very low  
impedance source (RS is approximately 0 Ω). However, if the source driving the input has higher impedance, the  
current flowing through the protection diodes reduces further, thereby increasing the OVP voltage range. Higher  
source impedances result in gain errors and contribute to overall system noise performance.  
7-3 shows the voltage versus current response of the internal overvoltage protection circuit when the device is  
powered on. According to this current-to-voltage (I-V) response, the current flowing into the device input pin is  
limited by the 1-MΩ (or 1.2 MΩ for appropriate input ranges) input impedance. However, for voltages beyond  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
±20 V, the internal node voltages surpass the break-down voltage for internal transistors, thus setting the limit for  
overvoltage protection on the input pin.  
The same overvoltage protection circuit also provides protection to the device when the device is not powered  
on and AVDD is floating. This condition can arise when the input signals are applied before the ADC is fully  
powered on. The overvoltage protection limits for this condition are shown in 7-2.  
7-2. Input Overvoltage Protection Limits When AVDD = Floating(1)  
INPUT CONDITION  
(VOVP = ±15 V)  
TEST CONDITION  
ADC OUTPUT  
COMMENTS  
CONDITION  
RANGE  
Device is not functional but is protected internally by the  
OVP circuit.  
|VIN| < |VOVP  
|
|
Within overvoltage range  
All input ranges  
All input ranges  
Invalid  
Invalid  
This usage condition can cause irreversible damage to the  
device.  
|VIN| > |VOVP  
Beyond overvoltage range  
(1) AVDD = floating, GND = 0 V, AIN_GND = 0 V, |VRANGE| is the maximum input voltage for any selected input range, and |VOVP| is the  
break-down voltage for the internal OVP circuit. Assume that RS is approximately 0 Ω.  
7-4 shows the I-V response of the internal overvoltage protection circuit when the device is not powered on.  
According to this I-V response, the current flowing into the device input pin is limited by the 1-MΩ input  
impedance. However, for voltages beyond ±15 V, the internal node voltage surpasses the break-down voltage  
for internal transistors, thus setting the limit for overvoltage protection on the input pin.  
30  
20  
24  
18  
12  
6
10  
0
0
-6  
-10  
-20  
-30  
-12  
-18  
-24  
-20 -16 -12  
-8  
-4  
0
4
Input voltage (V)  
8
12  
16  
20  
-30 -24 -18 -12  
-6  
Input voltage (V)  
0
6
12  
18  
24  
30  
D006  
D005  
7-3. I-V Curve for the Input OVP Circuit (AVDD =  
7-4. I-V Curve for the Input OVP Circuit (AVDD =  
5 V)  
Floating)  
7.3.4 Programmable Gain Amplifier (PGA)  
The device features a programmable gain amplifier (PGA) as part of the analog signal-conditioning circuit that  
converts the original single-ended input signal into a fully-differential signal to drive the internal SAR ADC. The  
PGA also adjusts the common-mode level of the input signal before feeding it into the SAR ADC to ensure  
maximum usage of the ADC input dynamic range. Depending on the range of the input signal, the PGA gain can  
be adjusted by setting the RANGE_SEL[3:0] bits in the configuration register (see the RANGE_SEL_REG  
register). The default or power-on state for the RANGE_SEL[3:0] bits is 0000, corresponding to an input signal  
range of ±3 × VREF. 7-3 lists the various configurations of the RANGE_SEL[3:0] bits for the different analog  
input voltage ranges.  
The PGA uses a precisely-matched network of resistors for multiple gain configurations. Matching between  
these resistors is accurately trimmed to keep the overall gain error low across all input ranges.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7-3. Input Range Selection Bits Configuration  
RANGE_SEL[3:0]  
ANALOG INPUT RANGE  
BIT 3  
BIT 2 BIT 1  
BIT 0  
±3 × VREF  
±2.5 × VREF  
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
0
0
1
0
1
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
1
±1.5 × VREF  
±1.25 × VREF  
±0.625 × VREF  
03 × VREF  
02.5 × VREF  
01.5 × VREF  
01.25 × VREF  
7.3.5 Second-Order, Low-Pass Filter (LPF)  
In order to mitigate the noise of the front-end amplifier and gain resistors of the PGA, the AFE circuit of the  
device features a second-order, antialiasing LPF at the output of the PGA. The magnitude and phase response  
of the analog antialiasing filter are shown in 7-5 and 7-6, respectively. For maximum performance, the 3-  
dB cutoff frequency for the antialiasing filter is typically set to 15 kHz. The performance of the filter is consistent  
across all input ranges supported by the ADC.  
3
0
45  
0
-3  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
-45  
-90  
-135  
-6  
-9  
-12  
-15  
10  
10  
100  
1k  
Input Frequency (Hz)  
10k  
100k  
100  
1k  
Input Frequency (Hz)  
10k  
100k  
D059  
D058  
7-6. Second-Order LPF Phase Response  
7-5. Second-Order LPF Magnitude Response  
7.3.6 ADC Driver  
In order to meet the performance of the device at the maximum sampling rate, the sample-and-hold capacitors at  
the input of the ADC must be successfully charged and discharged during the acquisition time window. This drive  
requirement at the input of the ADC necessitates the use of a high-bandwidth, low-noise, and stable amplifier  
buffer. Such an input driver is integrated in the front-end signal path of the analog input channel of the device.  
7.3.7 Reference  
The device can operate with either an internal voltage reference or an external voltage reference using the  
internal buffer. The internal or external reference selection is determined by programming the INTREF_DIS bit of  
the RANGE_SEL_REG register. The internal reference source is enabled (INTREF_DIS = 0) by default after  
reset or when the device powers up. The INTREF_DIS bit must be programmed to logic 1 to disable the internal  
reference source whenever an external reference source is used.  
7.3.7.1 Internal Reference  
The device features an internal reference source with a nominal output value of 4.096 V. In order to select the  
internal reference, the INTREF_DIS bit of the RANGE_SEL_REG register must be programmed to logic 0. When  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
the internal reference is used, the REFIO pin becomes an output with the internal reference value. A 4.7-µF  
(minimum) decoupling capacitor is recommended to be placed between the REFIO pin and REFGND, as shown  
in 7-7. The capacitor must be placed as close to the REFIO pin as possible. The output impedance of the  
internal band-gap circuit creates a low-pass filter with this capacitor to band-limit the noise of the reference. The  
use of a smaller capacitor value allows higher reference noise in the system that can potentially degrade SNR  
and SINAD performance. The REFIO pin must not be used to drive external ac or dc loads because of limited  
current output capability. The REFIO pin can be used as a source if followed by a suitable op amp buffer (such  
as the OPA320).  
AVDD  
4.096 VREF  
RANGE_SEL_REG[6] = 0  
(INTREF_DIS)  
REFIO  
4.7 mF  
REFCAP  
10 mF  
1 mF  
REFGND  
ADC  
AGND  
7-7. Device Connections for Using an Internal 4.096-V Reference  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
The device internal reference is factory-trimmed to ensure the initial accuracy specification. The histogram in 图  
7-8 shows the distribution of the internal voltage reference output taken from more than 3420 production  
devices.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.094 4.0945 4.095 4.0955 4.096 4.0965 4.097 4.0975 4.098  
REFIO Voltage (V)  
D060  
7-8. Internal Reference Accuracy Histogram at Room Temperature  
The initial accuracy specification for the internal reference can be degraded if the die is exposed to any  
mechanical or thermal stress. Heating the device when being soldered to a printed circuit board (PCB) and any  
subsequent solder reow is a primary cause for shifts in the VREF value. The main cause of thermal hysteresis is  
a change in die stress and is therefore a function of the package, die-attach material, and molding compound, as  
well as the layout of the device itself.  
In order to illustrate this effect, 30 devices were soldered using lead-free solder paste with the manufacturer  
suggested reflow profile, as explained in the AN-2029 Handling & Process Recommendations application report.  
The internal voltage reference output is measured before and after the reflow process and the typical shift in  
value is shown in 7-9. Although all tested units exhibit a positive shift in their output voltages, negative shifts  
are also possible. The histogram in 7-9 shows the typical shift for exposure to a single reflow profile.  
Exposure to multiple reflows, which is common on PCBs with surface-mount components on both sides, causes  
additional shifts in the output voltage. If the PCB is to be exposed to multiple reflows, solder the ADS866x in the  
second pass to minimize device exposure to thermal stress.  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-7  
-6  
-5  
-4  
-3  
-2  
-1  
Error in REFIO Voltage (mV)  
0
1
D070  
7-9. Solder Heat Shift Distribution Histogram  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
The internal reference is also temperature compensated to provide excellent temperature drift over an extended  
industrial temperature range of 40°C to +125°C. 7-10 shows the variation of the internal reference voltage  
across temperature for different values of the AVDD supply voltage. The temperature drift of the internal  
reference is also a function of the package type. 7-11 shows histogram distribution of the reference voltage  
drift.  
4.1  
4.099  
4.098  
4.097  
4.096  
4.095  
4.094  
4.093  
4.092  
4.091  
4.09  
14  
12  
10  
8
AVDD = 5.25 V  
AVDD = 5 V  
AVDD = 4.75 V  
6
4
2
0
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (0C)  
3.1 3.5 3.9 4.3 4.7 5.1 5.5 5.9 6.3 6.7 7.1  
REFIO Drift (ppm/ºC)  
D061  
D062  
AVDD = 5 V, number of devices = 30, ΔT = 40°C to +125°C  
7-10. REFIO Voltage Variation Across AVDD and  
7-11. Internal Reference Temperature Drift  
Temperature  
Histogram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.3.7.2 External Reference  
For applications that require a better reference voltage or a common reference voltage for multiple devices, the  
device provides a provision to use an external reference source along with an internal buffer to drive the ADC  
reference pin. In order to select the external reference mode, the INTREF_DIS bit of the RANGE_SEL_REG  
register must be programmed to logic 1. In this mode, an external 4.096-V reference must be applied at the  
REFIO pin, which functions as an input. Any low-power, low-drift, or small-size external reference can be used in  
this mode because the internal buffer is optimally designed to handle the dynamic loading on the REFCAP pin  
that is internally connected to the ADC reference input. The output of the external reference must be  
appropriately filtered to minimize the resulting effect of the reference noise on system performance. A typical  
connection diagram for this mode is shown in 7-12.  
AVDD  
4.096 VREF  
AVDD  
RANGE_SEL_REG[6] = 1  
(INTREF_DIS)  
REF5040  
(See the device datasheet for  
a detailed pin configuration.)  
OUT  
REFIO  
CREF  
REFCAP  
1 mF  
10 mF  
REFGND  
AGND  
ADC  
7-12. Device Connections for Using an External 4.096-V Reference  
The output of the internal reference buffer appears at the REFCAP pin. A minimum capacitance of 10 µF must  
be placed between the REFCAP and REFGND pins. Place another capacitor of 1 µF as close to the REFCAP  
pin as possible for decoupling high-frequency signals. Do not use the internal buffer to drive external ac or dc  
loads because of the limited current output capability of this buffer.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
The performance of the internal buffer output is very stable across the entire operating temperature range of –  
40°C to +125°C. 7-13 shows the variation in the REFCAP output across temperature for different values of  
the AVDD supply voltage. The typical specified value of the reference buffer drift over temperature is 0.5 ppm/°C,  
as shown in 7-14, and the maximum specified temperature drift is equal to 2 ppm/°C.  
4.1  
4.099  
4.098  
4.097  
4.096  
4.095  
4.094  
4.093  
4.092  
4.091  
4.09  
24  
20  
16  
12  
8
AVDD = 5.25 V  
AVDD = 5 V  
AVDD = 4.75 V  
4
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
REFCAP Drift (ppm/ºC)  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (0C)  
D064  
D063  
AVDD = 5 V, number of devices = 30, ΔT = 40°C to +125°C  
7-14. Reference Buffer Temperature Drift  
7-13. Reference Buffer Output (REFCAP)  
Histogram  
Variation vs Supply and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.3.8 ADC Transfer Function  
The device supports a pseudo-differential input supporting both bipolar and unipolar input ranges. The output of  
the device is in straight-binary format for both bipolar and unipolar input ranges.  
The ideal transfer characteristic for all input ranges is shown in 7-15. The full-scale range (FSR) for each input  
signal is equal to the difference between the positive full-scale (PFS) input voltage and the negative full-scale  
(NFS) input voltage. The LSB size is equal to FSR / 212. For a reference voltage of VREF = 4.096 V, the LSB  
values corresponding to the different input ranges are listed in 7-4.  
FFFh  
800h  
001h  
FSR œ 1 LSB  
1 LSB  
FSR / 2  
NFS  
PFS  
Analog Input  
(AIN_P œ AIN_GND)  
7-15. Device Transfer Function (Straight-Binary Format)  
7-4. ADC LSB Values for Different Input Ranges (VREF = 4.096 V)  
POSITIVE FULL-SCALE NEGATIVE FULL-SCALE  
FULL-SCALE RANGE  
(V)  
INPUT RANGE  
LSB  
(V)  
(V)  
12.288  
10.24  
6.144  
5.12  
2.56  
0
±3 × VREF  
±2.5 × VREF  
12.288  
10.24  
6.144  
5.12  
24.576  
20.48  
12.288  
10.24  
5.12  
6 mV  
5 mV  
±1.5 × VREF  
3 mV  
±1.25 × VREF  
±0.625 × VREF  
0 to 3 × VREF  
0 to 2.5 × VREF  
0 to 1.5 × VREF  
0 to 1.25 × VREF  
2.5 mV  
1.25 mV  
3 mV  
2.56  
12.288  
10.24  
6.144  
5.12  
12.288  
10.24  
6.144  
5.12  
0
2.5 mV  
1.5 mV  
1.25 mV  
0
0
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.3.9 Alarm Features  
The device features an active-high alarm output on the ALARM/SDO-1/GPO pin, provided that the pin is  
configured for alarm functionality. To enable the ALARM output on the multi-function pin, se the  
SDO1_CONFIG[1:0] bits of the SDO_CTL_REG register to 01b (see the SDO_CTL_REG register).  
The device features two types of alarm functions: an input alarm and an AVDD alarm.  
For the input alarm, the voltage at the input of the ADC is monitored and compared against user-  
programmable high and low threshold values. The device sets an active high alarm output when the  
corresponding digital value of the input signal goes beyond the high or low threshold set by the user; see the  
Input Alarm section for a detailed explanation of the input alarm feature functionality.  
For the AVDD alarm, the analog supply voltage (AVDD) of the ADC is monitored and compared against the  
specified typical low threshold (4.7 V) and high threshold (5.3 V) values of the AVDD supply. The device sets  
an active high alarm output if the value of AVDD crosses the specified low (4.7 V) and high threshold (5.3 V)  
values in either direction.  
When the alarm functionality is turned on, both the input and AVDD alarm functions are enabled by default.  
These alarm functions can be selectively disabled by programming the IN_AL_DIS and VDD_AL_DIS bits  
(respectively) of the RST_PWRCTL_REG register.  
Each alarm (input alarm or AVDD alarm) has two types of alarm flags associated with it: the active alarm flag  
and the tripped alarm flag. All the alarm flags can be read in the ALARM_REG register. Both flags are set when  
the associated alarm is triggered. However while the active alarm is cleared at the end of the current ADC  
conversion (and set again if the alarm condition persists), the tripped flag is cleared only after ALARM_REG is  
read.  
The ALARM output flags are updated internally at the end of every conversion. These output flags can be read  
during any data frame that the user initiates by bringing the CONVST/CS signal to a low level.  
The ALARM output flags can be read in three different ways: either via the ALARM output pin, by reading the  
internal ALARM registers, or by appending the ALARM flags to the data output.  
A high level on the ALARM pin indicates an over- or undervoltage condition on AVDD or on the analog input  
channel of the device. This pin can be wired to interrupt the host input.  
The internal ALARM flag bits in the ALARM_REG register are updated at the end of conversion. After  
receiving an ALARM interrupt on the output pin, the internal alarm flag registers can be read to obtain more  
details on the conditions that generated the alarm.  
The alarm output flags can be selectively appended to the data output bit stream (see the  
DATAOUT_CTL_REG register for configuration details).  
7-16 depicts a functional block diagram for the device alarm functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
AVDD High Alarm  
AVDD Low Alarm  
Other Input Alarm  
Input Alarm Threshold  
+/-  
Hysteresis  
ALARM  
Input Active Alarm Flag  
+
ADC Output  
S
R
Q
Q
Input Tripped Alarm Flag  
Alarm Flag Read  
ADCST Rising  
(End of Conversion)  
ADC  
SDO  
7-16. Alarm Functionality Schematic  
7.3.9.1 Input Alarm  
The device features a high and a low alarm on the analog input. The alarms corresponding to the input signal  
have independently-programmable thresholds and a common hysteresis setting that can be controlled through  
the ALARM_H_TH_REG and ALARM_L_TH_REG registers.  
The device sets the input high alarm when the digital output exceeds the high alarm upper limit [high alarm  
threshold (T)]. The alarm resets when the digital output is less than or equal to the high alarm lower limit [high  
alarm (T) H 1). This function is shown in 7-17.  
Similarly, the input low alarm is triggered when the digital output falls below the low alarm lower limit [low alarm  
threshold (T)]. The alarm resets when the digital output is greater than or equal to the low alarm higher limit [low  
alarm (T) + H + 1]. This function is shown in 7-18.  
L_ALARM On  
H_ALARM On  
L_ALARM Off  
H_ALARM Off  
(T)  
(T + H + 1)  
ADC Output  
(T)  
ADC Output  
(T œ H œ 1)  
7-18. Low ALARM Hysteresis  
7-17. High ALARM Hysteresis  
7.3.9.2 AVDD Alarm  
The device features a high and a low alarm on the analog voltage supply, AVDD. Unlike the input signal alarm,  
the AVDD alarm has fixed trip points that are set by design. The device features an internal analog comparator  
that constantly monitors the analog supply against the high and low threshold voltages. The high alarm is set if  
AVDD exceeds a typical value of 5.3 V and the low alarm is asserted if AVDD drops below 4.7 V. This feature is  
specially useful for debugging unusual device behavior caused by a glitch or brown-out condition on the analog  
AVDD supply.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
The device features the multiSPI digital interface for communication and data transfer between the device and  
the host controller. The multiSPI interface supports many data transfer protocols that the host uses to exchange  
data and commands with the device. The host can transfer data into the device using one of the standard SPI  
modes. However, the device can be configured to output data in a number of ways to suit the application  
demands of throughput and latency. The data output in these modes can be controlled either by the host or the  
device, and the timing can either be system synchronous or source synchronous. For detailed explanation of the  
supported data transfer protocols, see the Data Transfer Protocols section.  
This section describes the main components of the digital interface module as well as supported configurations  
and protocols. As shown in 7-19, the interface module is comprised of shift registers (both input and output),  
configuration registers, and a protocol unit. During any particular data frame, data are transferred both into and  
out of the device. As a result, the host always perceives the device as a 32-bit input-output shift register, as  
shown in 7-19.  
Interface Module  
SDI  
Output Register (Data and Flags from Device)  
D31  
D30  
D1  
MSB-1  
B1  
D0  
MSB  
B0  
Unified Shift Register  
LSB  
B31  
LSB+1  
B30  
SDO-0  
ADC  
RST  
CONVST  
Input Register  
CS  
Digital  
Control  
Logic  
SCLK  
Command Processor  
ALARM/SDO-1/GPO  
RVS  
SCLK  
Counter  
Configuration Registers  
7-19. Device Interface Module  
The Pin Configuration and Functions section provides descriptions of the interface pins; the Data Transfer Frame  
section details the functions of shift registers, the SCLK counter, and the command processor; the Data Transfer  
Protocols section details supported protocols; and the Register Maps section explains the configuration registers  
and bit settings.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.4.1 Host-to-Device Connection Topologies  
The multiSPI interface and device configuration registers offer great flexibility in the ways a host controller can  
exchange data or commands with the device. This section describes how to select the hardware connection  
topology to meet different system requirements.  
7.4.1.1 Single Device: All multiSPI Options  
7-20 shows the pin connection between a host controller and a stand-alone device to exercise all options  
provided by the multiSPI interface.  
DVDD  
Isolation  
(Optional)  
RST  
CONVST/CS  
SCLK  
Host  
Controller  
Device  
SDI  
SDO-0  
ALARM/SDO-1/GPO  
RVS  
7-20. All multiSPI Protocols Pin Configuration  
7.4.1.2 Single Device: Standard SPI Interface  
7-21 shows the minimum pin interface for applications using a standard SPI protocol.  
DVDD  
Isolation  
(Optional)  
(Optional)  
RST  
CONVST/CS  
SCLK  
Host  
Controller  
Device  
SDI  
SDO-0  
ALARM/SDO-1/GPO  
RVS  
(Optional)  
7-21. Standard SPI Protocol Pin Configuration  
The CONVST/CS, SCLK, SDI, and SDO-0 pins constitute a standard SPI port of the host controller. The RST pin  
can be tied to DVDD. The RVS pin can be monitored for timing benefits. The ALARM/SDO-1/GPO pin may not  
have any external connection.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.4.1.3 Multiple Devices: Daisy-Chain Topology  
A typical connection diagram showing multiple devices in a daisy-chain topology is shown in 7-22.  
Host Controller  
Device 1  
Device 2  
Device N  
7-22. Daisy-Chain Connection Schematic  
The CONVST/CS and SCLK inputs of all devices are connected together and controlled by a single CONVST/  
CS and SCLK pin of the host controller, respectively. The SDI input pin of the first device in the chain (device 1)  
is connected to the SDO-x pin of the host controller, the SDO-0 output pin of device 1 is connected to the SDI  
input pin of device 2, and so forth. The SDO-0 output pin of the last device in the chain (device N) is connected  
to the SDI pin of the host controller.  
To operate multiple devices in a daisy-chain topology, the host controller must program the configuration  
registers in each device with identical values. The devices must operate with a single SDO-0 output, using the  
external clock with any of the legacy, SPI-compatible protocols for data read and data write operations. In the  
SDO_CTL_REG register, bits 7-0 must be programmed to 00h.  
All devices in the daisy-chain topology sample their analog input signals on the rising edge of the CONVST/CS  
signal and the data transfer frame starts with a falling edge of the same signal. At the launch edge of the SCLK  
signal, every device in the chain shifts out the MSB to the SDO-0 pin. On every SCLK capture edge, each device  
in the chain shifts in data received on its SDI pin as the LSB bit of the unified shift register; see 7-19.  
Therefore, in a daisy-chain configuration, the host controller receives the data of device N, followed by the data  
of device N-1, and so forth (in MSB-first fashion). On the rising edge of the CONVST/CS signal, each device  
decodes the contents in its unified and takes appropriate action.  
For N devices connected in a daisy-chain topology, an optimal data transfer frame must contain 32 × N SCLK  
capture edges (see 7-23). A shorter data transfer frame can result in an erroneous device configuration and  
must be avoided. For a data transfer frame with > 32 × N SCLK capture edges, the host controller must  
appropriately align the configuration data for each device before bringing CONVST/CS high.  
The overall throughput of the system is proportionally reduced with the number of devices connected in a daisy-  
chain topology.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
A typical timing diagram for three devices connected in a daisy-chain topology and using the SPI-00-S protocol  
is shown in 7-23.  
CONVST/CS  
SCLK  
1
2
31  
Configuration Data: Device 3  
B94 B65  
32  
33  
Configuration Data: Device 2  
B62 B33  
34  
63  
64  
65  
66  
Configuration Data: Device 1  
B30 B1  
Configuration Data: Device 2  
B62 B33  
Configuration Data: Device 3  
B94 B65  
Output Data: Device 1  
{D30}1 {D1}1  
95  
96  
{SDO}HOST  
{SDI}1  
B95  
B64  
B63  
B32  
B31  
B0  
{SDO-0}1  
{SDI}2  
{D31}1  
{D31}2  
{D31}3  
{D30}1  
{D1}1  
{D0}1  
{D0}2  
{D0}3  
B95  
B94  
B65  
B64  
{D0}1  
{D0}2  
B63  
B95  
B32  
B64  
{SDO-0}2  
{SDI}3  
{D30}2  
Output Data: Device 3  
{D30}3 {D1}3  
{D1}2  
{D31}1  
{D31}2  
{D30}1  
Output Data: Device 2  
{D30}2 {D1}2  
{D1}1  
{SDO-0}3  
{SDI}HOST  
{D31}1  
{D0}1  
7-23. Three Devices in Daisy-Chain Mode Timing Diagram  
7.4.2 Device Operational Modes  
As shown in 7-24, the device supports three functional states: RESET, ACQ, and CONV. The device state is  
determined by the status of the CONVST/CS and RST control signals provided by the host controller.  
Power-Up  
ACQ  
)
e
g
Ed  
g
R
n
ST  
si  
i
R
(
(
R
S
i
si  
n
C
/
n
R
g
Ed  
o
ST  
VST  
rsi  
ve  
g
N
(
F
e
)
O
n
o
a
C
l
l
i
C
n
f
g
o
Ed  
g
d
En  
e
)
RST (Falling Edge)  
CONV  
RESET  
7-24. Device Functional States  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.4.2.1 RESET State  
The device features an active-low RST pin that is an asynchronous digital input. In order to enter a RESET state,  
the RST pin must be pulled low and kept low for the twl_RST duration (as specified in the Timing Requirements:  
Asynchronous Reset table).  
The device features two different types of reset functions: an application reset or a power-on reset (POR). The  
functionality of the RST pin is determined by the state of the RSTn_APP bit in the RST_PWRCTL_REG register.  
In order to configure the RST pin to issue an application reset, the RSTn_APP bit in the RST_PWRCTL_REG  
register must be configured to 1b. In this RESET state, all configuration registers (see the Register Maps  
section) are reset to their default values, the RVS pins remain low, and the SDO-x pins are tri-stated.  
The default configuration for the RST pin is to issue a power-on reset when pulled to a low level. The  
RSTn_APP bit is set to 0b in this state. When a POR is issued, all internal circuitry of the device (including  
the PGA, ADC driver, and voltage reference) are reset. When the device comes out of the POR state, the  
tD_RST_POR time duration must be allowed for (see the Timing Requirements: Asynchronous Reset table) in  
order for the internal circuitry to accurately settle.  
In order to exit any of the RESET states, the RST pin must be pulled high with CONVST/CS and SCLK held low.  
After a delay of tD_RST_POR or tD_RST_APP (see the Timing Requirements: Asynchronous Reset table), the device  
enters ACQ state and the RVS pin goes high.  
To operate the device in any of the other two states (ACQ or CONV), the RST pin must be held high. With the  
RST pin held high, transitions on the CONVST/CS pin determine the functional state of the device. A typical  
conversion cycle is illustrated in 6-1.  
7.4.2.2 ACQ State  
In ACQ state, the device acquires the analog input signal. The device enters ACQ state on power-up, after any  
asynchronous reset, or after the end of every conversion.  
The falling edge of the RST falling edge takes the device from an ACQ state to a RESET state. A rising edge of  
the CONVST/CS signal takes the device from ACQ state to a CONV state.  
The device offers a low-power NAP mode to reduce power consumption in the ACQ state; see the NAP Mode  
section for more details on NAP mode.  
7.4.2.3 CONV State  
The device moves from ACQ state to CONV state on the rising edge of the CONVST/CS signal. The conversion  
process uses an internal clock and the device ignores any further transitions on the CONVST/CS signal until the  
ongoing conversion is complete (that is, during the time interval of tconv).  
At the end of conversion, the device enters ACQ state. The cycle time for the device is given by 方程式 1:  
tcycle-min = tconv + tacq-min  
(1)  
Note  
The conversion time, tconv, can vary within the specified limits of tconv_min and tconv_max (as specified in  
the Timing Requirements: Conversion Cycle table). After initiating a conversion, the host controller  
must monitor for a low-to-high transition on the RVS pin or wait for the tconv_max duration to elapse  
before initiating a new operation (data transfer or conversion). If RVS is not monitored, substitute tconv  
in 方程式 1 with tconv_max  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5 Programming  
The device features nine configuration registers (as described in the Register Maps section) and supports two  
types of data transfer operations: data write (the host configures the device), and data read (the host reads data  
from the device).  
7.5.1 Data Transfer Frame  
A data transfer frame between the device and the host controller begins at the falling edge of the CONVST/CS  
pin and ends when the device starts conversion at the subsequent rising edge. The host controller can initiate a  
data transfer frame by bringing the CONVST/CS signal low (as shown in 7-25) after the end of the CONV  
phase, as described in the CONV State section.  
Frame F  
CONVST/CS  
RVS  
As per output protocol selection.  
td_RVS  
SCLK  
N SCLKs  
SDI  
Valid Command  
SDO-x  
Data Output or OSR Contents  
SCLK Counter  
0
SCLK Counter  
N
Output Data Word  
Input Shift Register (ISR)  
B31  
D31  
D0  
D0  
B0  
D31  
B31  
B0  
Output Shift Register (OSR)  
Command Processor  
7-25. Data Transfer Frame  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
For a typical data transfer frame F:  
1. The host controller pulls CONVST/CS low to initiate a data transfer frame. On the falling edge of the  
CONVST/CS signal:  
RVS goes low, indicating the beginning of the data transfer frame.  
The internal SCLK counter is reset to 0.  
The device takes control of the data bus. As illustrated in 7-25, the contents of the output data word  
are loaded into the 32-bit output shift register (OSR).  
The internal configuration register is reset to 0000h, corresponding to a NOP command.  
2. During the frame, the host controller provides clocks on the SCLK pin:  
On each SCLK capture edge, the SCLK counter is incremented and the data bit received on the SDI pin  
is shifted into the LSB of the input shift register.  
On each launch edge of the output clock (SCLK in this case), the MSB of the output shift register data is  
shifted out on the selected SDO-x pins.  
The status of the RVS pin depends on the output protocol selection (see the Protocols for Reading From  
the Device section).  
3. The host controller pulls the CONVST/CS pin high to end the data transfer frame. On the rising edge of  
CONVST/CS:  
The SDO-x pins go to tri-state.  
As illustrated in 7-25, the contents of the input shift register are transferred to the command processor  
for decoding and further action.  
RVS output goes low, indicating the beginning of conversion.  
After pulling CONVST/CS high, the host controller must monitor for a low-to-high transition on the RVS pin or  
wait for the tconv_max time (see the Timing Requirements: Conversion Cycle table) to elapse before initiating a  
new data transfer frame.  
At the end of the data transfer frame F:  
If the SCLK counter = 32, then the device treats the frame F as an optimal data transfer frame for any read or  
write operation. At the end of an optimal data transfer frame, the command processor treats the 32-bit  
contents of the input shift register as a valid command word.  
If the SCLK counter is < 32, then the device treats the frame F as a short data transfer frame.  
The data write operation to the device in invalid and the device treats this frame as an NOP command.  
The output data bits transferred during a short frame on the SDO-x pins are still valid data. The host  
controller can use the short data transfer frame to read only the required number of MSB bits from the 32-  
bit output shift register.  
If the SCLK counter is > 32, then the device treats the frame F as a long data transfer frame. At the end of a  
long data transfer frame, the command processor treats the 32-bit contents of the input shift register as a  
valid command word. There is no restriction on the maximum number of clocks that can be provided within  
any data transfer frame F. However, when the host controller provides a long data transfer frame, the last 32  
bits shifted into the device prior to the CONVST/CS rising edge must constitute the desired command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5.2 Input Command Word and Register Write Operation  
Any data write operation to the device is always synchronous to the external clock provided on the SCLK pin.  
The device allows either one byte or two bytes (equivalent to half a word) to be read or written during any device  
programming operation. 7-5 lists the input commands supported by the device. The input commands  
associated with reading or writing two bytes in a single operation are suffixed as HWORD.  
For any HWORD command, the LSB of the 9-bit address is always ignored and considered as 0b. For example,  
regardless whether address 04h or 05h is entered for any particular HWORD command, the device always  
exercises the command on address 04h.  
7-5. List of Input Commands  
OPCODE  
B[31:0]  
COMMAND  
ACRONYM  
COMMAND DESCRIPTION  
00000000_000000000_  
00000000_00000000  
NOP  
No operation  
Command used to clear any (or a group of) bits of a register.  
Any bit marked 1 in the data field results in that particular bit of the specified register being  
reset to 0, leaving the other bits unchanged.  
11000_xx_<9-bit address>_  
<16-bit data>(1)  
CLEAR_HWORD  
Half-word command (that is, the command functions on 16 bits at a time).  
LSB of the 9-bit address is always ignored and considered as 0b.(2)  
Command used to perform a 16-bit read operation.  
Half-word command (that is, the device outputs 16 bits of register data at a time).  
LSB of the 9-bit address is always ignored and considered as 0b.  
11001_xx_<9-bit address>_  
00000000_00000000  
READ_HWORD  
READ  
Upon receiving this command, the device sends out 16 bits of the register in the next frame.  
Same as the READ_HWORD except that only eight bits of the register (byte read) are  
returned in the next frame.  
01001_xx_<9-bit address>_  
00000000_00000000  
Half-word write command (two bytes of input data are written into the specified address).  
LSB of the 9-bit address is always ignored and considered as 0b.  
11010_00_<9-bit address>_  
<16-bit data>  
Half-word write command.  
LSB of the 9-bit address is always ignored and considered as 0b.  
With this command, only the MS byte of the 16-bit data word is written at the specified register  
address. The LS byte is ignored.  
11010_01_<9-bit address>_  
<16-bit data>  
WRITE  
Half-word write command.  
LSB of the 9-bit address is always ignored and considered as 0b.  
With this command, only the LS byte of the 16-bit data word is written at the specified register  
address. The MS byte is ignored.  
11010_10_<9-bit address>_  
<16-bit data>  
Command used to set any (or a group of) bits of a register.  
Any bit marked 1 in the data field results in that particular bit of the specified register being set  
to 1, leaving the other bits unchanged.  
11011_xx_<9-bit address>_  
<16-bit data>  
SET_HWORD  
NOP  
Half-word command (that is, the command functions on 16 bits at a time).  
LSB of the 9-bit address is always ignored and considered as 0b.  
All other input command combinations  
No operation  
(1) <9-bit address> is realized by adding a 0 at the MSB location followed by an 8-bit register address as defined in 7-10. The <9-bit  
address> for register 0x04h is 0x0-0000-0100b.  
(2) An HWORD command operates on a set of 16 bits in the register map that is usually identified as two registers of eight bits each. For  
example, the command 11000_xx_<0_0000_0101><16-bit data> is treated the same as the command 11000_xx_<0_0000_0100><16-  
bit data> for bits 15:0 of the RST_PWRCTL_REG register.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
All input commands (including the CLEAR_HWORD, WRITE, and SET_HWORD commands listed in 7-5)  
used to configure the internal registers must be 32 bits long. If any of these commands are provided in a  
particular data frame F, that command gets executed at the rising edge of the CONVST/CS signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5.3 Output Data Word  
The data read from the device can be synchronized to the external clock on the SCLK pin or to an internal clock  
of the device by programming the configuration registers (see the Data Transfer Protocols section for details).  
In any data transfer frame, the contents of the internal output shift register are shifted out on the SDO-x pins.  
The output data for any frame (F+1) is determined by the command issued in frame F and the status of  
DATA_VAL[2:0] bits:  
If the DATA_VAL[2:0] bits in the DATAOUT_CTL_REG register are set to 1xxb, then the output data word for  
frame (F+1) contains fixed data pattern as described in the DATAOUT_CTL_REG register.  
If a valid READ command is issued in frame F, the output data word for frame (F+1) contains 8-bit register  
data, followed by 0's.  
If a valid READ_HWORD command is issued in frame F, the output data word for frame (F+1) contains 16-bit  
register data, followed by 0's.  
For all other combinations, the output data word for frame (F+1) contains the latest 12-bit conversion result.  
Program the DATAOUT_CTL_REG register to append various data flags to the conversion result. The data  
flags are appended as per following sequence:  
1. DEVICE_ADDR[3:0] bits are appended if the DEVICE_ADDR_INCL bit is set to 1  
2. AVDD ALARM FLAGS are appended if the VDD_ACTIVE_ALARM_INCL bit is set to 1  
3. INPUT ALARM FLAGS are appended if the IN_ACTIVE_ALARM_INCL bit is set to 1  
4. ADC INPUT RANGE FLAGS are appended if the RANGE_INCL bit is set to 1  
5. PARITY bits are appended if the PAR_EN bit is set to 1  
6. All the remaining bits in the 32-bit output data word are set to 0.  
7-6 shows the output data word with all data flags enabled.  
7-6. Output Data Word With All Data Flags Enabled  
DEVICE_ADDR_INCL = 1b, VDD_ACTIVE_ALARM_INCL = 1b, IN_ACTIVE_ALARM_INCL = 1b, RANGE_INCL = 1b, and PAR_EN = 1b  
D[31:20]  
D[19:16]  
D[15:14]  
D[13:12]  
D[11:8]  
D[7:6]  
D[5:0]  
Conversion result  
Device address  
AVDD alarm flags Input alarm flags  
ADC input range  
Parity bits  
000000b  
7-7 shows output data word with only some of the data flags enabled.  
7-7. Output Data Word With Only Some Data Flags Enabled  
DEVICE_ADDR_INCL = 0b, VDD_ACTIVE_ALARM_INCL = 1b, IN_ACTIVE_ALARM_INCL = 0b, RANGE_INCL = 1b, and PAR_EN = 1b  
D[31:20]  
D[19:18]  
D[17:14]  
D[13:12]  
D[11:0]  
Conversion result  
AVDD alarm flags  
ADC input range  
Parity bits  
000000000000b  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5.4 Data Transfer Protocols  
The device features a multiSPI interface that allows the host controller to operate at slower SCLK speeds and  
still achieve the required cycle time with a faster response time.  
For any data write operation, the host controller can use any of the four legacy, SPI-compatible protocols to  
configure the device, as described in the Protocols for Configuring the Device section.  
For any data read operation from the device, the multiSPI interface module offers the following options:  
Legacy, SPI-compatible protocol with a single SDO-x (see the Legacy, SPI-Compatible (SYS-xy-S)  
Protocols with a Single SDO-x section)  
Legacy, SPI-compatible protocol with dual SDO-x (see the Legacy, SPI-Compatible (SYS-xy-S) Protocols  
With Dual SDO-x section)  
ADC master clock or source-synchronous (SRC) protocol for data transfer (see the Source-Synchronous  
(SRC) Protocols section)  
7.5.4.1 Protocols for Configuring the Device  
As described in 7-8, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S,  
SPI-01-S, SPI-10-S, or SPI-11-S) to write data into the device.  
7-8. SPI Protocols for Configuring the Device  
SCLK POLARITY  
(At CS Falling Edge)  
SCLK PHASE  
(Capture Edge)  
PROTOCOL  
SDI_CTL_REG  
SDO_CTL_REG  
DIAGRAM  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
7-26  
7-26  
7-27  
7-27  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations. To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits  
in the SDI_CNTL_REG register. This first write operation must adhere to the SPI-00-S protocol. Any subsequent  
data transfer frames must adhere to the newly-selected protocol. The SPI protocol selected by the configuration  
of the SDI_MODE[1:0] is applicable to both read and write operations.  
7-26 and 7-27 detail the four protocols using an optimal data frame; see the Timing Requirements: SPI-  
Compatible Serial Interface table for associated timing parameters.  
Note  
As explained in the Data Transfer Frame section, a valid write operation to the device requires a  
minimum of 32 SCLKs to be provided within a data transfer frame.  
CONVST/CS  
CONVST/CS  
RVS  
RVS  
CPOL = 0  
CPOL = 0  
SCLK  
SCLK  
CPOL = 1  
CPOL = 1  
B31  
B30  
B29  
B1  
B0  
SDI  
SDI  
B31  
B30  
B2  
B1  
B0  
7-26. Standard SPI Timing Protocol (CPHA = 0,  
7-27. Standard SPI Timing Protocol (CPHA = 1,  
32 SCLK Cycles)  
32 SCLK Cycles)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5.4.2 Protocols for Reading From the Device  
The protocols for the data read operation can be broadly classified into three categories:  
1. Legacy, SPI-compatible protocols with a single SDO-x  
2. Legacy, SPI-compatible protocols with dual SDO-x  
3. ADC master clock or source-synchronous (SRC) protocol for data transfer  
7.5.4.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols with a Single SDO-x  
As shown in 7-9, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S,  
SPI-01-S, SPI-10-S, or SPI-11-S) to read data from the device.  
7-9. SPI Protocols for Reading From the Device  
SCLK POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
PROTOCOL  
SDI_CTL_REG  
SDO_CTL_REG  
DIAGRAM  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
CS falling  
1st SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
7-28  
7-28  
7-29  
7-29  
1st SCLK falling  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations. To select a different SPI-compatible protocol for both the data transfer  
operations:  
1. Program the SDI_MODE[1:0] bits in the SDI_CTL_REG register. This first write operation must adhere to the  
SPI-00-S protocol. Any subsequent data transfer frames must adhere to the newly-selected protocol.  
2. Set the SDO_MODE[1:0] bits = 00b in the SDO_CTL_REG register.  
Note  
The SPI transfer protocol selected by configuring the SDI_MODE[1:0] bits in the SDI_CTL_REG  
register determines the data transfer protocol for both write and read operations. Either data can be  
read from the device using the selected SPI protocol by configuring the SDO_MODE[1:0] bits = 00b in  
the SDO_CTL_REG register, or one of the SRC protocols can be selected for data read, as explained  
in the Source-Synchronous (SRC) Protocols section.  
When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer  
frame; see the Timing Requirements: SPI-Compatible Serial Interface table for associated timing parameters.  
7-28 and 7-29 explain the details of the four protocols. As explained in the Data Transfer Frame section,  
the host controller can use a short data transfer frame to read only the required number of MSB bits from the 32-  
bit output data word.  
If the host controller uses a long data transfer frame with SDO_CNTL_REG[7:0] = 00h, then the device exhibits  
daisy-chain operation (see the Multiple Devices: Daisy-Chain Topology section).  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
CONVST/CS  
CONVST/CS  
RVS  
RVS  
CPOL = 0  
CPOL = 1  
SCLK  
CPOL = 0  
CPOL = 1  
SCLK  
M
M-1  
L+1  
L
SDO-0  
M-2  
SDO-0  
0
M
M-1  
L+1  
L
7-28. Standard SPI Timing Protocol  
(CPHA = 0, Single SDO-x)  
7-29. Standard SPI Timing Protocol  
(CPHA = 1, Single SDO-x)  
7.5.4.2.2 Legacy, SPI-Compatible (SYS-xy-S) Protocols With Dual SDO-x  
The device provides an option to increase the SDO-x bus width from one bit (default, single SDO-x) to two bits  
(dual SDO-x) when operating with any of the data transfer protocols. In order to operate the device in dual SDO  
mode, the SDO1_CONFIG[1:0] bits in the SDO_CTL_REG register must be set to 11b. In this mode, the  
ALARM/SDO-1/GPO pin functions as SDO-1.  
In dual SDO mode, two bits of data are launched on the two SDO-x pins (SDO-0 and SDO-1) on every SCLK  
launch edge, as shown in 7-30 and 7-31.  
CONVST/CS  
CONVST/CS  
RVS  
RVS  
CPOL = 0  
CPOL = 1  
CPOL = 0  
CPOL = 1  
SCLK  
SCLK  
M
M-2  
M-3  
L+3  
L+2  
L+1  
SDO-1  
SDO-0  
M-4  
M-5  
SDO-1  
SDO-0  
0
0
M
M-2  
M-1  
L+3  
L+2  
L+1  
M-1  
L
M-1  
L
7-30. Standard SPI Timing Protocol  
7-31. Standard SPI Timing Protocol  
(CPHA = 0, Dual SDO-x)  
(CPHA = 1, Dual SDO-x)  
Note  
For any particular SPI protocol, the device follows the same timing specifications for single and dual  
SDO modes. The only difference is that the device requires half as many SCLK cycles to output the  
same number of bits when in single SDO mode, thus reducing the minimum required SCLK frequency  
for a certain sampling rate of the ADC.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5.4.2.3 Source-Synchronous (SRC) Protocols  
The multiSPI interface supports an ADC master clock or source-synchronous mode of data transfer between the  
device and host controller. In this mode, the device provides an output clock that is synchronous with the output  
data. Furthermore, the host controller can also select the output clock source and data bus width options in this  
mode of operation. In all SRC modes of operation, the RVS pin provides the output clock, synchronous to the  
device data output.  
The SRC protocol allows the clock source (internal or external) and the width of the output bus to be configured,  
similar to the SPI protocols.  
7.5.4.2.3.1 Output Clock Source Options  
The device allows the output clock on the RVS pin to be synchronous to either the external clock provided on the  
SCLK pin or to the internal clock of the device. This selection is done by configuring the SSYNC_CLK bit, as  
explained in the SDO_CTL_REG register. The timing diagram and specifications for operating the device with an  
SRC protocol in external CLK mode are provided in 6-7 and the Timing Requirements: Source-Synchronous  
Serial Interface (External Clock) table. The timing diagram and specifications for operating the device with an  
SRC protocol in internal CLK mode are provided in 6-8 and the Timing Requirements: Source-Synchronous  
Serial Interface (Internal Clock) table.  
7.5.4.2.3.2 Output Bus Width Options  
The device provides an option to increase the SDO-x bus width from one bit (default, single SDO-x) to two bits  
(dual SDO-x) when operating with any of the SRC protocols. In order to operate the device in dual SDO mode,  
the SDO1_CONFIG[1:0] bits in the SDO_CTL_REG register must be set to 11b. In this mode, the ALARM/  
SDO-1/GPO pin functions as SDO-1.  
Note  
For any particular SRC protocol, the device follows the same timing specifications for single and dual  
SDO modes. The only difference is that the device requires half as many clock cycles to output the  
same number of bits when in single SDO mode, thus reducing the minimum required clock frequency  
for a certain sampling rate of the ADC.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Device Configuration and Register Maps  
The device features nine configuration registers, mapped as described in 7-10. Each configuration registers is  
comprised of four registers, each containing a data byte.  
7-10. Configuration Registers Mapping  
ADDRESS  
00h  
REGISTER NAME  
DEVICE_ID_REG  
RST_PWRCTL_REG  
SDI_CTL_REG  
REGISTER FUNCTION  
Device ID register  
04h  
Reset and power control register  
SDI data input control register  
SDO-x data input control register  
Output data control register  
08h  
0Ch  
10h  
SDO_CTL_REG  
DATAOUT_CTL_REG  
RANGE_SEL_REG  
ALARM_REG  
14h  
Input range selection control register  
ALARM output register  
20h  
24h  
ALARM_H_TH_REG  
ALARM_L_TH_REG  
ALARM high threshold and hysteresis register  
ALARM low threshold register  
28h  
7.6.1.1 DEVICE_ID_REG Register (address = 00h)  
This register contains the unique identification numbers associated to a device that is used in a daisy-chain  
configuration involving multiple devices.  
7-17. DEVICE_ID_REG Register  
31  
15  
30  
14  
29  
13  
28  
Reserved  
R-00h  
27  
26  
25  
24  
23  
22  
Reserved  
R-0000b  
21  
20  
4
19  
3
18  
17  
16  
0
DEVICE_ADDR[3:0]  
R/W-0000b  
12  
11  
10  
9
8
7
6
5
2
1
Reserved  
R-0000h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 00h  
Address for bits 15-8 = 01h  
Address for bits 23-16 = 02h  
Address for bits 31-24 = 03h  
7-11. DEVICE_ID_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-24  
23-20  
19-16  
Reserved  
R
00h  
Reserved. Reads return 00h.  
Reserved. Reads return 0000b.  
Reserved  
R
0000b  
0000b  
DEVICE_ADDR[3:0](1)  
R/W  
These bits can be used to identify up to 16 different devices in a  
system.  
15-0  
Reserved  
R
0000h  
Reserved. Reads return 0000h.  
(1) These bits are useful in daisy-chain mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.2 RST_PWRCTL_REG Register (address = 04h)  
This register controls the reset and power-down features offered by the converter.  
Any write operation to the RST_PWRCTL_REG register must be preceded by a write operation with the register  
address set to 05h and the register data set to 69h.  
7-18. RST_PWRCTL_REG Register  
31 30 29 28 27 26 25 24 23 22  
21  
20  
19  
18  
17  
16  
Reserved  
R-0000h  
15 14 13 12 11 10  
WKEY[7:0]  
9
8
7
6
5
4
3
2
1
0
VDD_AL_  
DIS  
Reserved  
R-00b  
IN_AL_DIS  
R/W-0b  
Reserved  
R-0b  
RSTn_APP  
R/W-<0>b  
NAP_EN  
R/W-<0>b  
PWRDN  
R/W-0b  
R/W-00h  
R/W-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 04h  
Address for bits 15-8 = 05h  
Address for bits 23-16 = 06h  
Address for bits 31-24 = 07h  
7-12. RST_PWRCTL_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
00h  
Description  
31-16 Reserved  
R
Reserved. Reads return 0000h.  
15-8  
WKEY[7:0]  
R/W  
This value functions as a protection key to enable writes to bits 5-0.  
Bits are written only if WKEY is set to 69h first.  
7-6  
5
Reserved  
R
00b  
0b  
Reserved. Reads return 00b  
VDD_AL_DIS  
R/W  
0b = VDD alarm is enabled  
1b = VDD alarm is disabled  
4
IN_AL_DIS  
R/W  
0b  
0b = Input alarm is enabled  
1b = Input alarm is disabled  
3
2
Reserved  
R
0b  
0b  
Reserved. Reads return 0h.  
RSTn_APP(1)  
R/W  
0b = RST pin functions as a POR class reset (causes full device  
initialization)  
1b = RST pin functions as an application reset (only user-programmed  
modes are cleared)  
1
0
NAP_EN(2)  
PWRDN(2)  
R/W  
R/W  
0b  
0b  
0b = Disables the NAP mode of the converter  
1b = Enables the converter to enter NAP mode if CONVST/CS is held high  
after the current conversion completes  
0b = Puts the converter into active mode  
1b = Puts the converter into power-down mode  
(1) Setting this bit forces the RST pin to function as an application reset until the next power cycle.  
(2) See the Electrical Characteristics table for details on the latency encountered when entering and exiting the associated low-power  
mode.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.3 SDI_CTL_REG Register (address = 08h)  
This register configures the protocol used for writing data to the device.  
7-19. SDI_CTL_REG Register  
31  
15  
30  
14  
29  
13  
28  
27  
26  
25  
24  
Reserved  
R-0000h  
23  
22  
21  
20  
4
19  
3
18  
2
17  
1
16  
0
12  
11  
10  
9
8
7
6
5
SDI_MODE  
[1:0]  
Reserved  
R-00h  
Reserved  
R-000000b  
R/W-<00>b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 08h  
Address for bits 15-8 = 09h  
Address for bits 23-16 = 0Ah  
Address for bits 31-24 = 0Bh  
7-13. SDI_CTL_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
00h  
Description  
31-16 Reserved  
R
Reserved. Reads return 0000h.  
Reserved. Reads return 00h.  
15-8  
7-2  
Reserved  
R
Reserved  
R
000000b Reserved. Reads return 000000b.  
1-0  
SDI_MODE[1:0]  
R/W  
00b  
These bits select the protocol for reading from or writing to the device.  
00b = Standard SPI with CPOL = 0 and CPHASE = 0  
01b = Standard SPI with CPOL = 0 and CPHASE = 1  
10b = Standard SPI with CPOL = 1 and CPHASE = 0  
11b = Standard SPI with CPOL = 1 and CPHASE = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.4 SDO_CTL_REG Register (address = 0Ch)  
This register controls the data protocol used to transmit data out from the SDO-x pins of the device.  
7-20. SDO_CTL_REG Register  
31  
15  
30  
29  
13  
28  
27  
11  
26  
10  
25  
9
24  
8
23  
Reserved  
R-0000h  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
14  
12  
SDO1_  
CONFIG  
[1:0]  
SDO_  
MODE[1:0]  
Reserved  
R-000b  
GPO_VAL  
R/W-0b  
Reserved  
R-00b  
Reserved SSYNC_CLK  
R-0b R/W-<0>b  
Reserved  
R-0h  
R/W-00b  
R/W-<0>b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 0Ch  
Address for bits 15-8 = 0Dh  
Address for bits 23-16 = 0Eh  
Address for bits 31-24 = 0Fh  
7-14. SDO_CTL_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
000b  
0b  
Description  
31-16 Reserved  
15-13 Reserved  
R
Reserved. Reads return 0h.  
Reserved. Reads return 000b.  
1-bit value for the output on the GPO pin.  
Reserved. Reads return 00b.  
R
12  
GPO_VAL  
R/W  
R
11-10 Reserved  
00b  
9-8  
SDO1_CONFIG[1:0]  
R/W  
00b  
Two bits are used to configure ALARM/SDO-1/GPO:  
00b = SDO-1 is always tri-stated; 1-bit SDO mode  
01b = SDO-1 functions as ALARM; 1-bit SDO mode  
10b = SDO-1 functions as GPO; 1-bit SDO mode  
11b = SDO-1 combined with SDO-0 offers a 2-bit SDO mode  
7
6
Reserved  
R
0b  
Reserved. Reads return 0b.  
This bit controls the source of the clock selected for source-synchronous  
transmission.  
0b = External SCLK (no division)  
SSYNC_CLK(1)  
Reserved  
R/W  
R
0b  
1b = Internal clock (no division)  
5-2  
0000b  
Reserved. Reads return 0000b.  
These bits control the data output modes of the device.  
0xb = SDO mode follows the same SPI protocol as that used for SDI; see  
the SDI_CTL_REG register  
1-0  
SDO_MODE[1:0]  
R/W  
00b  
10b = Invalid configuration  
11b = SDO mode follows the ADC master clock or source-synchronous  
protocol  
(1) This bit takes effect only in the ADC master clock or source-synchronous mode of operation.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.5 DATAOUT_CTL_REG Register (address = 10h)  
This register controls the data output by the device.  
7-21. DATAOUT_CTL_REG Register  
31  
30  
29  
28  
27  
26  
25  
Reserved  
R-0000h  
9
24  
23 22 21 20  
19  
18 17 16  
15  
14  
13  
12  
11  
10  
8
7
6
5
4
3
2
1
0
DEVICE_  
Reserved ADDR_  
INCL  
VDD_ACTIVE_  
ALARM_INCL[1:0]  
IN_ACTIVE_  
ALARM_INCL[1:0]  
RANGE_  
INCL  
DATA_VAL  
[2:0]  
Reserved  
R-0b  
Reserved  
R-0000b  
PAR_EN  
R-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-  
<0>b  
R/W-000b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 10h  
Address for bits 15-8 = 11h  
Address for bits 23-16 = 12h  
Address for bits 31-24 = 13h  
7-15. DATAOUT_CTL_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
0b  
Description  
31-16 Reserved  
R
Reserved. Reads return 0000h.  
Reserved. Reads return 0b.  
15  
14  
Reserved  
R
DEVICE_ADDR_INCL  
R/W  
0b  
Control to include the 4-bit DEVICE_ADDR register value in the  
SDO-x output bit stream.  
0b = Do not include the register value  
1b = Include the register value  
13-12 VDD_ACTIVE_ALARM_INCL[1:0]  
11-10 IN_ACTIVE_ALARM_INCL[1:0]  
R/W  
R/W  
00b  
00b  
Control to include the active VDD ALARM flags in the SDO-x output  
bit stream.  
00b = Do not include  
01b = Include ACTIVE_VDD_H_FLAG  
10b = Include ACTIVE_VDD_L_FLAG  
11b = Include both flags  
Control to include the active input ALARM flags in the SDO-x output  
bit stream.  
00b = Do not include  
01b = Include ACTIVE_IN_H_FLAG  
10b = Include ACTIVE_IN_L_FLAG  
11b = Include both flags  
9
8
Reserved  
R
0b  
0b  
Reserved. Reads return 0h.  
RANGE_INCL  
R/W  
Control to include the 4-bit input range setting in the SDO-x output bit  
stream.  
0b = Do not include the range configuration register value  
1b = Include the range configuration register value  
7-4  
3
Reserved  
R
0000b  
0b  
Reserved. Reads return 0000b.  
0b = Output data does not contain parity information  
1b = Two parity bits (ADC output and output data frame) are  
appended to the LSBs of the output data  
The ADC output parity bit reflects an even parity for the ADC output  
bits only.  
PAR_EN(1)  
R/W  
The output data frame parity bit reflects an even parity signature for  
the entire output data frame, including the ADC output bits and any  
internal flags or register settings. The ADC output parity bit is not  
included in the frame parity bit computation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7-15. DATAOUT_CTL_REG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
DATA_VAL[2:0]  
R/W  
000b  
These bits control the data value output by the converter.  
0xxb = Value output is the conversion data  
100b = Value output is all 0's  
101b = Value output is all 1's  
110b = Value output is alternating 0's and 1's  
111b = Value output is alternating 00's and 11's  
(1) Setting this bit increases the length of the output data by two bits.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.6 RANGE_SEL_REG Register (address = 14h)  
This register controls the configuration of the internal reference and input voltage ranges for the converter.  
7-22. RANGE_SEL_REG Register  
31  
15  
30  
14  
29  
13  
28  
27  
26  
25  
24  
23  
Reserved  
R-0000h  
7
22  
21  
20  
19  
3
18  
17  
16  
0
12  
11  
10  
9
8
6
5
4
2
1
Reser  
ved  
Reserved  
R-00h  
INTREF_ DIS  
R/W-0b  
Reserved  
R-00b  
RANGE_SEL[3:0]  
R/W-<0000>b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 14h  
Address for bits 15-8 = 15h  
Address for bits 23-16 = 16h  
Address for bits 31-24 = 17h  
7-16. RANGE_SEL_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
00h  
Description  
31-16 Reserved  
R
Reserved. Reads return 0000h.  
Reserved. Reads return 00h.  
Reserved. Reads return 0b.  
15-8  
Reserved  
R
7
6
Reserved  
R
0b  
INTREF_DIS  
R/W  
0b  
Control to disable the ADC internal reference.  
0b = Internal reference is enabled  
1b = Internal reference is disabled  
5-4  
3-0  
Reserved  
R
00b  
Reserved. Reads return 00b.  
RANGE_SEL[3:0]  
R/W  
0000b  
These bits comprise the 4-bit register that selects the nine input ranges of  
the ADC.  
0000b = ±3 × VREF  
0001b = ±2.5 × VREF  
0010b = ±1.5 × VREF  
0011b = ±1.25 × VREF  
0100b = ±0.625 × VREF  
1000b = 3 × VREF  
1001b = 2.5 × VREF  
1010b = 1.5 × VREF  
1011b = 1.25 × VREF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.7 ALARM_REG Register (address = 20h)  
This register contains the output alarm flags (active and tripped) for the input and AVDD alarm.  
7-23. ALARM_REG Register  
31  
15  
30  
14  
29 28  
13 12  
27  
11  
26  
10  
25 24  
23  
22  
21  
5
20  
4
19 18 17  
16  
0
Reserved  
R-0000h  
7
9
8
6
3
2
1
ACTIVE_ ACTIVE_  
VDD_L_F VDD_H_ Reserved  
ACTIVE_ ACTIVE_  
TRP_  
TRP_  
TRP_IN_ TRP_IN_  
L_FLAG H_FLAG  
OVW_  
ALARM  
IN_L_  
FLAG  
IN_H_ Reserved VDD_L_ VDD_H_  
FLAG  
Reserved  
R-000b  
LAG  
FLAG  
FLAG  
FLAG  
R-0b  
R-0b  
R-00b  
R-0b  
R-0b  
R-00b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R = Read only; -n = value after reset; -0, -1 = Condition after application reset; -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 20h Address for bits 15-8 = 21h Address for bits 23-16 = 22h Address for bits 31-24 = 23h  
7-17. ALARM_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
0b  
Description  
31-16 Reserved  
R
Reserved. Reads return 0000h.  
15  
14  
ACTIVE_VDD_L_FLAG  
R
Active ALARM output flag for low AVDD voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
ACTIVE_VDD_H_FLAG  
R
0b  
Active ALARM output flag for high AVDD voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
13-12 Reserved  
R
R
00b  
0b  
Reserved. Reads return 00b.  
11  
ACTIVE_IN_L_FLAG  
Active ALARM output flag for high input voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
10  
ACTIVE_IN_H_FLAG  
R
0b  
Active ALARM output flag for low input voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
9-8  
7
Reserved  
R
R
00b  
0b  
Reserved. Reads return 00b.  
TRP_VDD_L_FLAG  
Tripped ALARM output flag for low AVDD voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
6
5
4
TRP_VDD_H_FLAG  
TRP_IN_L_FLAG  
TRP_IN_H_FLAG  
R
R
R
0b  
0b  
0b  
Tripped ALARM output flag for high AVDD voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
Tripped ALARM output flag for high input voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
Tripped ALARM output flag for low input voltage.  
0b = No ALARM condition  
1b = ALARM condition exists  
3-1  
0
Reserved  
R
R
000b  
0b  
Reserved. Reads return 000b.  
OVW_ALARM  
Logical OR outputs all tripped ALARM flags.  
0b = No ALARM condition  
1b = ALARM condition exists  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.8 ALARM_H_TH_REG Register (address = 24h)  
This register controls the hysteresis and high threshold for the input alarm.  
7-24. ALARM_H_TH_REG Register  
31  
15  
30  
14  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
Reserved  
R-00h  
19  
18  
2
17  
1
16  
0
INP_ALRM_HYST[7:0]  
R/W-00h  
13  
12  
11  
10  
9
8
7
6
5
4
3
INP_ALRM_HIGH_TH[15:0]  
R/W-FFFFh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 24h  
Address for bits 15-8 = 25h  
Address for bits 23-16 = 26h  
Address for bits 31-24 = 27h  
7-18. ALARM_H_TH_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-24 INP_ALRM_HYST[7:0]  
R/W  
00h  
INP_ALRM_HYST[7:6]: 2-bit hysteresis value for the input ALARM.  
INP_ALRM_HYST[5:0] must be set to 000000b.  
23-16 Reserved  
R
00h  
Reserved. Reads return 00h.  
15-0  
INP_ALRM_HIGH_TH[15:0]  
R/W  
FFFFh  
Threshold for comparison is INP_ALRM_HIGH_TH[15:4].  
INP_ALRM_HIGH_TH[3:0] must be set to 0000b.  
7.6.1.9 ALARM_L_TH_REG Register (address = 28h)  
This register controls the low threshold for the input alarm.  
7-25. ALARM_L_TH_REG Register  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
24  
Reserved  
R-0000h  
23  
22  
21  
20  
4
19  
3
18  
2
17  
1
16  
0
10  
9
8
7
6
5
INP_ALRM_LOW_TH[15:0]  
R/W-0000h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -0, -1 = Condition after application reset;  
LEGEND: -<0>, -<1> = Condition after power-on reset  
Address for bits 7-0 = 28h  
Address for bits 15-8 = 29h  
Address for bits 23-16 = 2Ah  
Address for bits 31-24 = 2Bh  
7-19. ALARM_L_TH_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
0000h  
Description  
32:16 Reserved  
R
Reserved. Reads return 0000h.  
15-0  
INP_ALRM_LOW_TH[15:0]  
R/W  
Threshold for comparison is INP_ALRM_LOW_TH[15:4].  
INP_ALRM_LOW_TH[3:0] must be set to 0000b.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The ADS866x is a fully-integrated data acquisition (DAQ) system based on a 12-bit successive approximation  
(SAR) analog-to-digital converter (ADC). The device includes an integrated analog front-end (AFE) circuit to  
drive the inputs of the ADC and an integrated precision reference with a buffer. As such, this device does not  
require any additional external circuits for driving the reference or analog input pins of the ADC.  
8.2 Typical Application  
Isolation  
Barrier  
Local Power Supply  
System Power Supply  
Isolated  
DC-DC  
Converter  
GND  
IGND  
VINP  
SAR ADC  
VINM  
Input Signal  
Digital Isolator  
Digital Host  
IGND  
GND  
GND  
IGND  
IGND  
GND  
The potential difference between IGND and GND can be as high as the barrier breakdown voltage (often thousands of volts).  
8-1. 12-Bit Isolated DAQ System for High Common-Mode Rejection  
8.2.1 Design Requirements  
Design a 12-bit DAQ system for processing input signals up to ±12 V superimposed on large dc or ac common-  
mode offsets relative to the ground potential of the system main power supply. The specific performance  
requirements are as follows:  
Input signal: ±12-V amplitude signal of a 1-kHz frequency superimposed on a ±75-V common-mode with  
frequency between dc and 15 kHz  
CMRR > 100 dB over stipulated common-mode frequency range  
SNR > 70 dB  
THD < 96 dB  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The design uses galvanic isolation between the DAQ system inputs and main power supply to achieve extremely  
high CMRR, as indicated by 8-1. The system not only tolerates large common-mode voltages beyond its  
absolute maximum ratings but also delivers excellent performance largely independent of common-mode  
amplitude and frequency (within the specified operating limits). The relevant performance characteristics are  
illustrated in 8-7, 8-3, and 8-4.  
The system performance requirements by itself can be easily satisfied by using the ADS866x. This device  
simplifies system design because the ADS866x eliminates the need for designing a discrete high-performance  
signal chain needed with most other SAR ADCs. In addition, the use of galvanic isolation has the following  
system design implications:  
A local floating supply is needed to power the ADS866x because the device cannot load the system main  
power supply  
A digital isolator is required to facilitate data transfer between the isolated ADS866x serial interface and the  
digital host controller  
The floating power supply can be realized as an isolated transformer-based, push-pull converter followed by a  
rectifier and low-dropout (LDO) regulator to largely eliminate the ADC power-supply ripple by taking advantage  
of the high PSRR provided by most LDOs. A schematic of this design is shown in 8-2.  
Isolation  
Barrier  
Full-Wave Rectifier and  
Smoothing Capacitor  
LDO  
VOUT  
S2  
VIN  
S1  
VIN  
Isolated 5 V  
Main Power Supply  
(> 4.3 V)  
D1  
D2  
CS  
GND  
IGND  
Transformer  
Driver  
M
GND  
IGND  
IGND  
GND  
LDO  
VOUT  
IGND  
GND  
VIN  
Isolated 3.3 V  
1:NS (>1)  
GND  
IGND  
Isolated Switching Power Supply  
8-2. Isolated Power-Supply Design  
Recommended components for the circuit shown in 8-2 are given below:  
The SN6501 transformer driver is selected for its low input voltage requirement, small form-factor, and the  
flexibility offered for easily adjusting the system isolation voltage rating by substituting the transformer  
A miniature printed circuit board (PCB)-mount, center-tapped transformer with a gain > 1 maintains line  
regulation at the LDO outputs  
Schottky rectifiers for minimal forward voltage drop  
Smoothing capacitor for sufficiently low ripple at the LDO input  
The TPS7A4901 LDOs for an ultra-low noise contribution relative to the ADS866x and high PSRR over a  
wide frequency range to attenuate output ripple to levels below the LDO output noise level  
With regard to the digital isolator, the ISO7640FM is recommended for the following reasons:  
Supports > a 50-MHz SCLK and the required logic levels for operating the ADS866x at the full throughput  
Quad-channel device that facilitates excellent delay-matching between critical interface signals for reliable  
operation at high speed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS8661 ADS8665  
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
8.2.3 Application Curves  
0
0
-40  
-40  
-80  
-80  
-120  
-160  
-120  
-160  
0
125  
250 375  
Frequency (kHz)  
500  
625  
0
125  
250 375  
Frequency (kHz)  
500  
625  
D700  
D701  
fSAMPLE = 1.25 MSPS, VIN = ±12 V, fIN = 1 kHz, VCM = 50 VDC  
,
fSAMPLE = 1.25 Msps, VIN = ±12 V, fIN = 1 kHz, VCM = 155 VPP,  
SINAD = 72 dB, THD = 102 dB  
SINAD = 71.9 dB, THD = 102 dB  
8-3. FFT Plot With a DC Common-Mode at  
8-4. FFT Plot With an AC Common-Mode at  
1.25 MSPS  
1.25 MSPS  
0
-40  
0
-40  
-80  
-80  
-120  
-160  
-120  
-160  
0
50  
100 150  
Frequency (kHz)  
200  
250  
0
50  
100 150  
Frequency (kHz)  
200  
250  
D702  
D703  
fSAMPLE = 500 kSPS, VIN = ±12 V, fIN = 1 kHz, VCM = 50 VDC  
,
fSAMPLE = 500 kSPS, VIN = ±12 V, fIN = 1 kHz, VCM = 155 VPP,  
SINAD = 72 dB, THD = 102 dB  
SINAD = 71.9 dB, THD = 102 dB  
8-5. FFT Plot With a DC Common-Mode at  
8-6. FFT Plot With an AC Common-Mode at  
500 kSPS  
500 kSPS  
160  
150  
140  
130  
120  
110  
100  
90  
80  
20  
100 1000  
Common-Mode Signal Frequency (Hz)  
1000020000  
D200  
8-7. Common-Mode Rejection Ratio vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The device uses two separate power supplies: AVDD and DVDD. The internal circuits of the device operate on  
AVDD and DVDD is used for the digital interface. AVDD and DVDD can be independently set to any value within  
the permissible range.  
9.1 Power Supply Decoupling  
The AVDD supply pins must be decoupled with AGND by using a minimum 10-µF and 1-µF capacitor on each  
supply. Place the 1-µF capacitor as close to the supply pins as possible. Place a minimum 10-µF decoupling  
capacitor very close to the DVDD supply to provide the high-frequency digital switching current. The effect of  
using the decoupling capacitor is illustrated in the difference between the power-supply rejection ratio (PSRR)  
performance of the device. 9-1 shows the PSRR of the device without using a decoupling capacitor. The  
PSRR improves when the decoupling capacitors are used, as shown in 9-2.  
-30  
-40  
-50  
-60  
-70  
-80  
-50  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
12.288 V  
10.24 V  
6.144 V  
5.12 V  
2.56 V  
0-12.288 V  
0-10.24 V  
0-6.144 V  
0-5.12 V  
-60  
-70  
-80  
-90  
-100  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Input Frequency (Hz)  
Input Frequency (Hz)  
D056  
D057  
9-2. PSRR With a Decoupling Capacitor  
9-1. PSRR Without a Decoupling Capacitor  
9.2 Power Saving  
In normal mode of operation, the device does not power down between conversions, and therefore achieves  
high throughput.However, the device offers two programmable low-power modes: NAP and power-down (PD) to  
reduce power consumption when the device is operated at lower throughput rates.  
9.2.1 NAP Mode  
In NAP mode, the internal blocks of the device are placed into a low-power mode to reduce the overall power  
consumption of the device in the ACQ state.  
To enable NAP mode:  
Write 69h to register address 05h to unlock the RST_PWRCTL_REG register.  
The NAP_EN bit in the RST_PWRCTL_REG register must be set to 1b. The CONVST/CS pin must be kept  
high at the end of the conversion process. The device then enters NAP mode at the end of conversion and  
remains in NAP mode as long as the CONVST/CS pin is held high.  
A falling edge on the CONVST/CS brings the device out of NAP mode; however, the host controller can initiate a  
new conversion (CONVST/CS rising edge) only after the tNAP_WKUP time has elapsed (see the Timing  
Requirements: Asynchronous Reset table).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
9.2.2 Power-Down (PD) Mode  
The device also features a deep power-down mode (PD) to reduce the power consumption at very low  
throughput rates.  
The following steps must be taken to enter PD mode:  
1. Write 69h to register address 05h to unlock the RST_PWRCTL_REG register.  
2. Set the PWRDN bit in the RST_PWRCTL_REG register to 1b. The device enters PD mode on the rising  
edge of the CONVST/CS signal.  
In PD mode, all analog blocks within the device are powered down; however, the interface remains active and  
the register contents are also retained. The RVS pin is high, indicating that the device is ready to receive the  
next command.  
In order to exit PD mode:  
1. Clear the PWRDN bit in the RST_PWRCTL_REG register to 0b.  
2. The RVS pin goes high, indicating that the device has started coming out of PD mode. However, the host  
controller must wait for the tPWRUP time (see the Timing Requirements: Asynchronous Reset table) to elapse  
before initiating a new conversion.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10-1 illustrates a PCB layout example for the ADS866x.  
Partition the PCB into analog and digital sections. Care must be taken to ensure that the analog signals are  
kept away from the digital lines. This layout helps keep the analog input and reference input signals away  
from the digital noise. In this layout example, the analog input and reference signals are routed on the lower  
side of the board and the digital connections are routed on the top side of the board.  
Using a single dedicated ground plane is strongly encouraged.  
Power sources to the ADS866x must be clean and well-bypassed. Using a 1-μF, X7R-grade, 0603-size  
ceramic capacitor with at least a 10-V rating in close proximity to the analog (AVDD) supply pins is  
recommended. For decoupling the digital supply pin (DVDD), a 1-μF, X7R-grade, 0603-size ceramic  
capacitor with at least a 10-V rating is recommended. Placing vias between the AVDD, DVDD pins and the  
bypass capacitors must be avoided. All ground pins must be connected to the ground plane using short, low-  
impedance paths.  
There are two decoupling capacitors used for the REFCAP pin. The first is a small, 1-μF, 0603-size ceramic  
capacitor placed close to the device pins for decoupling the high-frequency signals and the second is a  
10-μF, 0805-size ceramic capacitor to provide the charge required by the reference circuit of the device. A  
capacitor with an ESR less than 0.2 Ω is recommended for the 10-μF capacitor. Both of these capacitors  
must be directly connected to the device pins without any vias between the pins and capacitors.  
The REFIO pin also must be decoupled with a minimum of 4.7-μF ceramic capacitor if the internal reference  
of the device is used. The capacitor must be placed close to the device pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
10.2 Layout Example  
GND  
External  
Reference  
DVDD  
AVDD  
1µF  
1µF  
GND  
DVDD  
4.7 µF  
16  
AVDD  
RVS  
2
GND  
ALARM/SDO-1/GPO  
GND  
REFIO  
REFGND  
REFCAP  
SDO-0  
SCLK  
4
5
6
1µF  
CONVST/CS  
SDI  
10 µF  
GND  
RST  
Analog Input  
GND  
Optional  
10-1. Board Layout for the ADS866x  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADS8661 ADS8665  
 
 
ADS8661, ADS8665  
ZHCSFU0B DECEMBER 2016 REVISED MARCH 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, OPA320 Precision, 20MHz, 0.9pA, Low-Noise, RRIO, CMOS Operational Amplifier with  
Shutdown data sheet  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, TPS7A49 36-V, 150-mA, Ultralow-Noise, Positive Linear Regulator data sheet  
Texas Instruments, ISO764xFM Low-Power Quad-Channel Digital Isolators data sheet  
Texas Instruments, AN-2029 Handling and Process Recommendations application report  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADS8661 ADS8665  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8661IPW  
ADS8661IPWR  
ADS8665IPW  
ADS8665IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
16  
16  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ADS8661  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ADS8661  
ADS8665  
ADS8665  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8661IPWR  
ADS8665IPWR  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8661IPWR  
ADS8665IPWR  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ADS8661IPW  
ADS8665IPW  
PW  
PW  
TSSOP  
TSSOP  
16  
16  
90  
90  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY