ADS8924BRGET [TI]

具有内部 VREF 缓冲器、内部 LDO 和增强型 SPI 的 16 位 250kSPS 单通道 SAR ADC | RGE | 24 | -40 to 125;
ADS8924BRGET
型号: ADS8924BRGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有内部 VREF 缓冲器、内部 LDO 和增强型 SPI 的 16 位 250kSPS 单通道 SAR ADC | RGE | 24 | -40 to 125

转换器
文件: 总78页 (文件大小:3280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
具有集成式基准缓冲器和增强性能的 ADS892xB 16 位,高速 SAR ADC  
特性  
1 特性  
3 说明  
1
分辨率:16 位  
无延迟输出的高采样率:  
ADS8920BADS8922B ADS8924B (ADS892xB)  
属于引脚对引脚兼容的高速、单通道、高精度、基于  
16 位逐次逼近型寄存器 (SAR) 的模数转换器 (ADC)  
系列,且带有集成式基准缓冲器和集成式低压差稳压器  
(LDO)。该器件系列包括 ADS890xB20 位)和  
ADS891xB18 位)这两种分辨率型号。  
ADS8920B1MSPS  
ADS8922B500kSPS  
ADS8924B250kSPS  
集成 LDO 支持单电源操作  
无压降的低功耗基准缓冲器  
出色的交流和直流性能:  
借助 TI 的增强型 SPI 特性,ADS892xB 可提高模拟性  
能,同时保持高分辨率数据传输。增强型 SPI 支持  
ADS89xxB 以较低时钟速度实现高吞吐量,从而简化  
板布局并降低系统成本。增强型 SPI 也简化了数据计  
时,从而使器件成为 FPGADSP 等应用的 理想选  
择。ADS89xxB 兼容标准 SPI 接口。  
SNR96.8dBTHD–125dB  
INL±0.25LSB  
DNL±0.2LSB16 位、无丢失码  
宽输入范围:  
单极差分输入范围:±VREF  
VREF 输入范围:2.5V 5V  
ADS892xB 具有内部数据奇偶校验功能,可以将其附  
加到 ADC 数据输出。主机使用奇偶校验位进行的  
ADC 数据验证提高了系统可靠性。  
单电源低功耗运行  
增强型 SPI 数字接口  
接口 SCLK1MSPS 时为 18MHz。  
1MSPS 时的 SPI 接口时钟  
器件分辨率  
20 位  
3 线 SPI  
3 线增强型 SPI  
可配置数据奇偶校验输出  
70MHz  
22MHz  
扩展温度范围:-40°C +125°C  
18 位  
16 位  
58MHz  
52MHz  
20MHz  
18MHz  
小型封装:4mm × 4mm 超薄四方扁平无引线  
(VQFN) 封装  
(1) 有关 增强型 SPI 的 全部特性,请参阅 部分。  
2 应用  
测试和测量  
医疗成像  
高精度、高速数据采集  
使用 ADS89xxB 集成功能轻松实现 系统设计  
Multi-ADC System with Single Supply  
and Reference  
Lowest Clock Speeds at 1-MSPS using 3-Wire Enhanced-  
SPI  
ADS89xxB  
VREF  
MCU  
AINP  
AINM  
CONV  
IN  
Data  
CS  
CS  
IN  
REFIN  
REFBUFOUT  
BUF  
SDO  
SDI  
Parity  
DD  
DD  
DVDD  
18-MHz  
SCK  
SCLK  
ISO  
Quiet time  
AINP  
ADC  
Data  
Data  
Read  
AVDD  
ADC Conversion  
ADC Conversion  
AINM  
Parity  
D  
D  
AVDD  
SPI  
Enhanced SPI (Data + Parity)  
18-MHz  
52-MHz  
ADS89xxB  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS729  
 
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 28  
7.6 Register Maps......................................................... 52  
Application and Implementation ........................ 58  
8.1 Application Information............................................ 58  
8.2 Typical Application .................................................. 60  
Power-Supply Recommendations...................... 65  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ..................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Timing Requirements................................................ 9  
6.7 Switching Characteristics........................................ 10  
6.8 Typical Characteristics............................................ 14  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 20  
7.4 Device Functional Modes........................................ 26  
8
9
10 Layout................................................................... 66  
10.1 Layout Guidelines ................................................. 66  
10.2 Layout Example .................................................... 67  
11 器件和文档支持 ..................................................... 68  
11.1 Documentation Support ........................................ 68  
11.2 相关链接................................................................ 68  
11.3 Receiving Notification of Documentation Updates 68  
11.4 社区资源................................................................ 68  
11.5 ....................................................................... 69  
11.6 静电放电警告......................................................... 69  
11.7 Glossary................................................................ 69  
12 机械、封装和可订购信息....................................... 69  
7
4 Revision History  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (July 2016) to Revision B  
Page  
已更改 将器件信息表更改为 1MSPS 时的 SPI 接口时钟.................................................................................................... 1  
已更改 首页图 ......................................................................................................................................................................... 1  
Changed REFBUFOUT pin description from "Reference buffer output, ADC reference input" to "Internal reference  
buffer output, external reference input" .................................................................................................................................. 4  
Changed DVDD range in condition line of Electrical Characteristics from 2.35 V to 3.6 V to 1.65 V to 5.5 V........................ 7  
Changed maximum value for DVDD range in Electrical Characteristics, Timing Requirements, and Switching  
Characteristics from 3.6 V to 5.5 V......................................................................................................................................... 7  
Added TA = 25°C to reference buffer offset voltage test condition in Electrical Characteristics table ................................... 7  
Changed input offset thermal drift typ value from 10 to 1 ...................................................................................................... 7  
Added fIN = 2 kHz test condition to SFDR in Electrical Characteristics table ........................................................................ 8  
Added new conditions to serial clock frequency in the Timing Requirements table .............................................................. 9  
Changed serial clock time period in Timing Characteristics table ......................................................................................... 9  
Added serial clock frequency conditions in Timing Characteristics table .............................................................................. 9  
Changed serial clock time period in Timing Characteristics table ......................................................................................... 9  
Added strobe output time to Switching Characteristics table ............................................................................................... 10  
Added descriptive text and one figure to the Reference Buffer Module section .................................................................. 20  
Deleted text from first note element regarding data transfer activity in zone 2.................................................................... 35  
Added new option bullet for multiSPI digital interface module in Data Transfer Protocols section ..................................... 35  
Added new note (1) for SCLK in Table 9 ............................................................................................................................ 45  
Deleted "For the ADS892xB, limit the value of RFLT to a maximum of 2.5-Ω in order to avoid any significant  
degradation in linearity performance. " from the last paragraph of the Charge Kickback Filter section .............................. 59  
Changed Data Acquisition (DAQ) Circuit for Lowest Distortion and Noise Performance... section for clarity ..................... 60  
Added more design parameters to Design Parameters table .............................................................................................. 60  
Changed Detailed Design Procedure section for clarity....................................................................................................... 61  
Added two new application curves ....................................................................................................................................... 61  
2
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Revision History (接下页)  
Added new typical application subsection ........................................................................................................................... 62  
Added text to Power-Supply Recommendations section for clarity ..................................................................................... 65  
Changes from Original (June 2016) to Revision A  
Page  
已更改 将产品预览更改为生产数据” ................................................................................................................................... 1  
Changed DVDD specified throughput value in the Recommended Operating Conditions from 3.6 V to 5.5 V....................... 6  
版权 © 2016–2017, Texas Instruments Incorporated  
3
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
CONVST  
RST  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
SDO-2  
SDO-3  
DVDD  
GND  
REFIN  
Thermal  
Pad  
REFM  
REFBUFOUT  
NC  
DECAP  
DECAP  
Not to scale  
Pin Functions  
PIN  
NAME  
AINM  
NO.  
10  
9
FUNCTION  
Analog input  
Analog input  
DESCRIPTION  
Negative analog input  
AINP  
Positive analog input  
Chip-select input pin; active low  
CS  
24  
Digital input  
The device takes control of the data bus when CS is low.  
The SDO-x pins go to Hi-Z when CS is high.  
Conversion start input pin.  
A CONVST rising edge brings the device from ACQ state to CNV state.  
CONVST  
1
Digital input  
DECAP  
DVDD  
GND  
13, 14  
16  
Power supply  
Power supply  
Power supply  
No connection  
Place decoupling capacitor here for internal power supply. Short pin 13 and 14 together.  
Interface power supply pin  
Ground  
11, 15  
6
NC  
Float these pins; no external connection.  
REFBUFOUT  
REFIN  
5, 7  
3
Analog input/output Internal reference buffer output, external reference input. Short pin 5 and 7 together.  
Analog input  
Analog input  
Reference voltage input  
REFM  
4, 8  
Reference ground potential  
Asynchronous reset input pin.  
A low pulse on the RST pin resets the device. All register bits return to the default state.  
RST  
2
Digital input  
RVDD  
12  
Power supply  
Analog power supply pin.  
Multifunction output pin.  
RVS  
21  
Digital output  
With CS held high, RVS reflects the status of the internal ADCST signal.  
With CS low, the status of RVS depends on the output protocol selection.  
Clock input pin for the serial interface.  
All system-synchronous data transfer protocols are timed with respect to the SCLK signal.  
SCLK  
SDI  
23  
22  
Digital input  
Digital input  
Serial data input pin.  
This pin is used to feed data or commands into the device.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Pin Functions (continued)  
PIN  
NAME  
SDO-0  
NO.  
20  
FUNCTION  
Digital output  
Digital output  
Digital output  
Digital output  
Supply  
DESCRIPTION  
Serial communication pin: data output 0  
Serial communication pin: data output 1  
Serial communication pin: data output 2  
Serial communication pin: data output 3  
Exposed thermal pad; connect to GND.  
SDO-1  
19  
SDO-2  
18  
SDO-3  
17  
Thermal pad  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–0.3  
–130  
–40  
MAX  
7
UNIT  
V
RVDD to GND  
DVDD to GND  
7
V
REFIN to REFM  
RVDD + 0.3  
0.1  
V
REFM to GND  
V
Analog Input (AINP, AINM) to GND  
Digital input (RST, CONVST, CS, SCLK, SDI) to GND  
Digital output (RVS, SDO-0, SDO-1, SDO-2, SDO-3) to GND  
Analog Input (AINP, AINM) to RVDD and GND  
Operating free-air temperature, TA  
Storage temperature, Tstg  
VREF + 0.3  
DVDD + 0.3  
DVDD + 0.3  
130  
V
V
V
mA  
°C  
°C  
125  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
5.5  
UNIT  
RVDD  
DVDD  
Analog supply voltage (RVDD to AGND)  
Digital supply voltage (DVDD to AGND)  
5
3
3
V
Operating  
1.65  
2.35  
2.5  
10  
5.5  
V
Specified throughput  
5.5  
VREF  
CREFBUF  
RESR  
TA  
Reference input voltage on REFIN  
External ceramic decoupling capacitor  
External series resistor  
RVDD – 0.3  
V
µF  
Ω
0
1.3  
Specified free-air operating temperature  
–40  
25  
125  
°C  
6.4 Thermal Information  
ADS892xB  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
31.9  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
29.9  
8.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.9  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
6.5 Electrical Characteristics  
At RVDD = 5.5 V, DVDD = 1.65 V to 5.5 V, VREF = 5 V, and maximum throughput (unless otherwise noted).  
Minimum and maximum values at TA = –40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Full-scale input range  
(AINP – AINM)  
FSR  
VIN  
–VREF  
0
VREF  
VREF  
V
V
V
Absolute input voltage  
(AINP and AINM to REFM)  
Common-mode voltage  
(AINP + AINM) / 2  
(VREF / 2) –  
0.1  
(VREF / 2) +  
0.1  
VCM  
VREF / 2  
Sample mode  
60  
4
pF  
pF  
CIN  
Input capacitance  
Hold mode  
VOLTAGE REFERENCE INPUT (REFIN)  
IREF  
Reference input current  
Internal capacitance  
VREF = 5 V  
0.1  
10  
1
µA  
pF  
CREF  
REFERENCE BUFFER OUTPUT (REFBUFOUT)  
Reference buffer offset voltage  
V(RO)  
With EN_MARG = 0b(1), TA = 25°C(2)  
–250  
250  
1.3  
µV  
µF  
(VREFBUFOUT – VREF  
)
External ceramic decoupling  
capacitor  
CREFBUF  
10  
0
RESR  
ISHRT  
External series resistor  
Short-circuit current  
Margining range  
Ω
30  
±4.5  
280  
mA  
mV  
µV  
With EN_MARG = 1b(1)  
With EN_MARG = 1b(1)  
Margining resolution  
DC ACCURACY(3) (CREFBUF = 10 µF, RESR = 0 Ω)  
Resolution  
16  
Bits  
Bits  
0.5 LSB(5)  
0.5 LSB(5)  
NMC  
INL  
No missing codes  
16  
-0.5  
-0.5  
-3  
Integral nonlinearity(4)  
Differential nonlinearity(4)  
±0.3  
±0.2  
±0.5  
±3  
DNL  
TA = 25°C(2)  
TA = –40°C to +125°C(2)  
3
E(IO)  
Input offset error(4)  
LSB(5)  
5
-5  
dVOS/dT  
GE  
Input offset thermal drift(2)  
Gain error(4)  
1
μV/°C  
0.03 %FSR  
ppm/°C  
EN_MARG = 0b(1)(6)  
EN_MARG = 0b(1)(6)  
-0.03  
–3  
±0.005  
3.6  
dGE/dT  
TNS  
Gain error thermal drift  
Transition noise  
0.5  
LSB(5)  
First output code deviation for  
burst-mode data acquisition  
See Reference Buffer Module  
3
TNS  
dB  
CMRR  
Common-mode rejection ratio dc to 20 kHz  
80  
SAMPLING DYNAMICS  
Aperture delay  
4
2
ns  
tj-rms  
Aperture jitter  
ps RMS  
MHz  
f3-DB(small) Small-signal bandwidth  
23  
(1) See the REF_MRG Register.  
(2) For selected VREF, see the OFST_CAL Register.  
(3) While operating with internal reference buffer and LDO.  
(4) See Figure 8, Figure 9, Figure 14, and Figure 15 for statistical distribution data for DNL, INL, offset, and gain error parameters.  
(5) LSB = least-significant bit. 1 LSB at 16-bit resolution is approximately 15 ppm.  
(6) Includes internal reference buffer errors and drifts.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
At RVDD = 5.5 V, DVDD = 1.65 V to 5.5 V, VREF = 5 V, and maximum throughput (unless otherwise noted).  
Minimum and maximum values at TA = –40°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC ACCURACY(3)(7) (CREFBUF = 10 µF, RESR = 0 Ω)  
SINAD  
Signal-to-noise + distortion  
fIN = 2 kHz  
95.7  
96  
95.9  
96.8  
95  
dB  
dB  
fIN = 2 kHz  
fIN = 100 kHz  
fIN = 2 kHz  
fIN = 100 kHz  
fIN = 2 kHz  
SNR  
Signal-to-noise ratio  
–125  
–110  
125  
THD  
Total harmonic distortion  
dB  
dB  
SFDR  
Spurious-free dynamic range  
LDO OUTPUT (DECAP)  
LDO output voltage  
VLDO  
2.85  
V
(DECAP pins)  
External ceramic capacitor on  
DECAP pins  
CLDO  
1
µF  
tPU_LDO  
LDO power-up time  
Short-circuit current  
CLDO = 1 µF, RVDD > VLDO  
1
ms  
ISHRT-LDO  
100  
mA  
DIGITAL INPUTS  
1.65 V < DVDD < 2.3 V  
2.3 V < DVDD < 5.5 V  
1.65 V < DVDD < 2.3 V  
2.3 V < DVDD < 5.5 V  
0.8 DVDD  
0.7 DVDD  
–0.3  
DVDD + 0.3  
VIH  
VIL  
High-level input voltage  
V
DVDD + 0.3  
0.2 DVDD  
0.3 DVDD  
0.1  
Low-level input voltage  
Input current  
V
–0.3  
±0.01  
μA  
DIGITAL OUTPUTS  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = 500-µA source  
IOH = 500-µA sink  
0.8 DVDD  
0
DVDD  
V
V
0.2 DVDD  
POWER SUPPLY  
ADS8920B at RVDD = 5 V, 1-MSPS  
ADS8922B at RVDD = 5 V, 500-KSPS  
ADS8924B at RVDD = 5 V, 250-KSPS  
Static, no conversion  
Static, PD_ADC = 1b(8)  
Static, PD_REFBUF = 1b(8)  
4.2  
3.2  
5.3  
4
mA  
mA  
mA  
μA  
2.8  
3.5  
970  
900  
120  
IRVDD  
Analog supply current  
μA  
μA  
Static, PD_ADC = 1b and  
PD_REFBUF = 1b(8)  
40  
1
μA  
μA  
DVDD = 3 V, CLOAD = 10 pF, no  
conversion  
IDVDD  
Digital supply current  
Power dissipation  
ADS8920B at RVDD = 5 V, 1-MSPS  
ADS8922B at RVDD = 5 V, 500-KSPS  
ADS8924B at RVDD = 5 V, 250-KSPS  
21  
16  
14  
26.5  
20  
PRVDD  
mW  
17.5  
(7) For VIN = –0.1 dBFS.  
(8) See the PD_CNTL Register.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
6.6 Timing Requirements  
TIMING  
DIAGRAM  
MIN  
TYP  
MAX  
UNIT  
CONVERSION CYCLE  
ADS8920B  
ADS8922B  
ADS8924B  
ADS8920B  
1000  
500  
fcycle  
Sampling frequency  
kHz  
µs  
250  
1
2
tcycle  
ADC cycle-time period ADS8922B  
ADS8924B  
Figure 1  
4
twh_CONVST Pulse duration: CONVST high  
twl_CONVST Pulse duration: CONVST low  
30  
30  
300  
30  
ns  
ns  
ns  
ns  
tacq  
Acquisition time  
tqt_acq  
Quiet acquisition time  
Figure 46,  
see Data  
Transfer  
td_cnvcap  
Quiet aperture time  
20  
ns  
Protocols  
ASYNCHRONOUS RESET, AND LOW POWER MODES  
twl_RST Pulse duration: RST low  
SPI-COMPATIBLE SERIAL INTERFACE  
2.35 V DVDD 5.5 V,  
100  
ns  
Figure 2  
TA = –40°C to +125°C,  
VIH > 0.7 DVDD, VIL < 0.3 DVDD  
70  
20  
57  
68  
1.65 V DVDD < 2.35 V,  
TA = –40°C to +125°C,  
VIH > 0.8 DVDD, VIL < 0.2 DVDD  
fCLK  
Serial clock frequency  
MHz  
Figure 3  
1.65 V DVDD < 2.35 V,  
TA = 0°C to +60°C,  
VIH > 0.8 DVDD, VIL < 0.2 DVDD  
1.65 V DVDD < 2.35 V,  
TA = –40°C to +125°C,  
VIH > 0.9 DVDD, VIL < 0.1 DVDD  
tCLK  
Serial clock time period  
SCLK high time  
1/fCLK  
0.45  
0.45  
12  
ns  
tCLK  
tCLK  
ns  
Figure 3  
Figure 3  
tph_CK  
0.55  
0.55  
tpl_CK  
SCLK low time  
tsu_CSCK  
tsu_CKDI  
tht_CKDI  
tht_CKCS  
Setup time: CS falling to the first SCLK capture edge  
Setup time: SDI data valid to the SCLK capture edge  
Hold time: SCLK capture edge to (previous) data valid on SDI  
Delay time: last SCLK falling to CS rising  
1.5  
1
ns  
ns  
7
ns  
SOURCE-SYNCHRONOUS SERIAL INTERFACE (External Clock)(1)  
SDR (DATA_RATE = 0b),  
2.35 V DVDD 5.5 V  
70  
35  
Figure 4,  
see Data  
Transfer  
Protocols  
fCLK  
Serial clock frequency  
Serial clock time period  
MHz  
ns  
DDR (DATA_RATE = 1b),  
2.35 V DVDD 5.5 V  
tCLK  
1/fCLK  
(1) The external clock option is not recommended when operating with DVDD < 2.35 V. See Table 9.  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
6.7 Switching Characteristics  
At RVDD = 5.5 V, DVDD = 1.65 V to 5.5 V, VREF = 5 V, and maximum throughput (unless otherwise noted).  
Minimum and maximum values at TA = –40°C to +125°C; typical values at TA = 25°C.  
TIMING  
DIAGRAM  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONVERSION CYCLE  
ADS8920B  
580  
1100  
2400  
640  
1200  
2500  
tconv  
Conversion time  
ADS8922B  
ADS8924B  
ns  
Figure 1  
Figure 2  
ASYNCHRONOUS RESET, AND LOW POWER MODES  
td_rst  
Delay time: RST rising to RVS rising  
Power-up time for converter module  
3
ms  
ms  
ms  
tPU_ADC  
1
See  
PD_CNTL  
Register  
tPU_REFBUF Power-up time for internal reference buffer, CREFBUF = 10 µF  
Power-up time for  
10  
tPU_Device  
CLDO = 1 µF, CREFBUF = 10 µF  
10  
ms  
device  
SPI-COMPATIBLE SERIAL INTERFACE  
tden_CSDO  
tdz_CSDO  
td_CKDO  
Delay time: CS falling to data enable  
9
10  
ns  
ns  
ns  
ns  
Delay time: CS rising to SDO going to Hi-Z  
Delay time: SCLK launch edge to (next) data valid on SDO  
Figure 3  
13  
td_CSRDY_f Delay time: CS falling to RVS falling  
12  
Figure 4  
Figure 4  
After NOP operation  
30  
Delay time:  
td_CSRDY_r  
ns  
CS rising to RVS rising  
After WR or RD operation  
120  
SOURCE-SYNCHRONOUS SERIAL INTERFACE (External Clock)(1)  
td_CKSTR_r Delay time: SCLK launch edge to RVS rising  
td_CKSTR_f Delay time: SCLK launch edge to RVS falling  
toff_STRDO_f Time offset: RVS falling to (next) data valid on SDO  
toff_STRDO_r Time offset: RVS rising to (next) data valid on SDO  
13  
13  
ns  
ns  
-2  
-2  
2
ns  
Figure 4  
2
ns  
tph_STR  
tpl_STR  
Strobe output high time, 2.35 V DVDD 5.5 V  
Strobe output low time, 2.35 V DVDD 5.5 V  
0.45  
0.45  
0.55  
0.55  
tSTR  
tSTR  
SOURCE-SYNCHRONOUS SERIAL INTERFACE (Internal Clock)  
td_CSSTR Delay time: CS falling to RVS rising  
INTCLK option  
15  
50  
ns  
ns  
15  
30  
60  
Strobe output time  
period  
tSTR  
INTCLK / 2 option  
INTCLK / 4 option  
Figure 5  
tph_STR  
tpl_STR  
Strobe output high time  
Strobe output low time  
0.45  
0.45  
0.55  
0.55  
tSTR  
tSTR  
(1) The external clock option is not recommended when operating with DVDD < 2.35 V. See Table 9.  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Sample  
S
Sample  
S + 1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (C)  
ACQ (C + 1)  
CS  
RVS  
Figure 1. Conversion Cycle Timing  
trst  
twl_RST  
RST  
td_rst  
CONVST  
CS  
SCLK  
RVS  
SDO-x  
Figure 2. Asynchronous Reset Timing  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
tCLK  
tph_CK  
tpl_CK  
SCLK(1)  
CS  
tsu_CKDI  
tht_CKDI  
tsu_CSCK  
tht_CKCS  
SCLK(1)  
SDI  
tden_CSDO  
tdz_CSDO  
td_CKDO  
SDO-x  
SDO-x  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.  
Figure 3. SPI-Compatible Serial Interface Timing  
tCLK  
tph_CK  
tpl_CK  
CS  
SCLK  
td_CKSTR_f  
tsu_CSCK  
tht_CKCS  
td_CKSTR_r  
SCLK  
SDO-x  
RVS  
RVS  
tden_CSDO  
tdz_CSDO  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
SDO-x  
(SDR)  
Figure 4. Source-Synchronous Serial Interface Timing (External Clock)  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
tSTR  
RVS  
CS  
tph_STR  
tpl_STR  
tden_CSDO  
tdz_CSDO  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
SDO-x  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
SDO-x  
(SDR)  
RVS  
td_CSSTR  
Figure 5. Source-Synchronous Serial Interface Timing (Internal Clock)  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, RVDD = 5.5 V, DVDD = 3 V, VREF = 5 V, and maximum-rated throughput (unless otherwise noted)  
0.5  
0.25  
0
0.5  
0.25  
0
-0.25  
-0.25  
-0.5  
-0.5  
-32768  
32767  
-32768  
32767  
ADC Output Code  
ADC Output Code  
D001  
D002  
Typical DNL = ±0.2 LSB  
Typical INL = ±0.3 LSB  
Figure 6. Typical DNL  
Figure 7. Typical INL  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
5
-0.  
4
-0.  
3
-0.  
2
-0.  
1
-0.  
0
5
-0.  
4
-0.  
3
-0.  
2
-0.  
1
-0.  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
D007  
D008  
1000 devices  
Figure 8. Typical DNL Distribution  
1000 devices  
Figure 9. Typical INL Distribution  
0.5  
0.5  
Maximum  
Minimum  
Maximum  
Minimum  
0.25  
0
0.25  
0
-0.25  
-0.25  
-0.5  
-0.5  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D003  
D004  
Figure 10. DNL vs Temperature  
Figure 11. INL vs Temperature  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Typical Characteristics (continued)  
at TA = 25°C, RVDD = 5.5 V, DVDD = 3 V, VREF = 5 V, and maximum-rated throughput (unless otherwise noted)  
0.5  
0.25  
0
0.5  
0.25  
0
Maximum  
Minimum  
Maximum  
Minimum  
-0.25  
-0.25  
-0.5  
-0.5  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
Reference Voltage (V)  
Reference Voltage (V)  
D005  
D006  
Figure 12. DNL vs Reference Voltage  
Figure 13. INL vs Reference Voltage  
2000  
1600  
1200  
800  
400  
0
3000  
2500  
2000  
1500  
1000  
500  
0
3
5
-2.  
2
5
-1.  
1
-
5
-0.  
0
1
2
3
3
00  
2
00  
1
00  
0
-
-
01  
0.0  
02  
0.0  
03  
0.0  
0.5  
1.5  
2.5  
-0.  
-0.  
-0.  
D019  
D022  
4000 devices  
Figure 14. Typical Offset Distribution  
4000 devices  
Figure 15. Typical Gain Error Distribution  
5
3
10  
6
2
1
-2  
-6  
-10  
-1  
-3  
-5  
-40  
-7  
26  
59  
92  
125  
2.5  
3
3.5  
4
4.5  
5
Free-Air Temperature (èC)  
Reference Voltage (V)  
D020  
D021  
REF_SEL[2:0] = 000b  
With appropriate REF_SEL[2:0], see OFST_CAL  
Figure 16. Offset vs Temperature  
Figure 17. Offset vs Reference Voltage  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, RVDD = 5.5 V, DVDD = 3 V, VREF = 5 V, and maximum-rated throughput (unless otherwise noted)  
2
0.02  
0.01  
0
Gain (%FS) ADC only  
Gain (%FS) ADC + REFBUF  
Gain (%FS) ADC only  
Gain (%FS) ADC + REFBUF  
1
0
-1  
-0.01  
-0.02  
-2  
-40  
-7  
26  
59  
92  
125  
2.5  
3.5  
4.5  
5
Free-Air Temperature (èC)  
Reference Voltage (V)  
D023  
D024  
EN_MARG = 0b  
EN_MARG = 0b  
Figure 18. Gain Error vs Temperature  
Figure 19. Gain Error vs Reference Voltage  
1500  
1250  
1000  
750  
500  
250  
0
0
-50  
-100  
-150  
-200  
2
-1  
0
1
2
0
100  
200  
300  
400  
500  
fIN, Input Frequency (kHz)  
D009  
D011  
Standard Deviation = 0.47 LSB  
fIN = 2 kHz  
SNR = 96.8 dB  
THD = –125 dB  
Figure 20. DC Input Histogram  
Figure 21. Typical FFT - ADS8920B  
0
-50  
0
-50  
-100  
-150  
-100  
-150  
-200  
-200  
0
0
50  
100  
150  
200  
250  
25  
50  
75  
100  
125  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D029  
D030  
fIN = 2 kHz  
SNR = 96.8 dB  
THD = –125 dB  
fIN = 2 kHz  
SNR = 96.8 dB  
THD = –125 dB  
Figure 22. Typical FFT - ADS8922B  
Figure 23. Typical FFT - ADS8924B  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Typical Characteristics (continued)  
at TA = 25°C, RVDD = 5.5 V, DVDD = 3 V, VREF = 5 V, and maximum-rated throughput (unless otherwise noted)  
98  
97.75  
97.5  
97.25  
97  
16.5  
16.25  
16  
-116  
-118  
-120  
-122  
-124  
132  
128  
124  
120  
116  
SNR  
SINAD  
ENOB  
THD  
SFDR  
15.75  
15.5  
15.25  
15  
96.75  
96.5  
96.25  
96  
14.75  
14.5  
-40  
-7  
26  
59  
92  
125  
-40  
-7  
26  
59  
92  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D013  
D014  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 24. Noise Performance vs Temperature  
Figure 25. Distortion Performance vs Temperature  
-116  
-119  
-122  
-125  
-128  
132  
100  
98  
96  
94  
92  
90  
16  
THD  
SFDR  
SNR  
SINAD  
ENOB  
15.8  
15.6  
15.4  
15.2  
15  
128  
124  
120  
116  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
Reference Voltage (V)  
Reference Voltage (V)  
D015  
D016  
fIN = 2 kHz  
fIN = 2 kHz  
Figure 26. Noise Performance vs Reference Voltage  
Figure 27. Distortion Performance vs Reference Voltage  
-92  
124  
120  
116  
112  
108  
104  
100  
96  
100  
98  
96  
94  
92  
90  
88  
17  
SNR  
THD  
SFDR  
SINAD  
ENOB  
-96  
-100  
-104  
-108  
-112  
-116  
-120  
-124  
16.5  
16  
15.5  
15  
14.5  
14  
92  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D017  
D018  
Figure 28. Noise Performance vs Input Frequency  
Figure 29. Distortion Performance vs Input Frequency  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, RVDD = 5.5 V, DVDD = 3 V, VREF = 5 V, and maximum-rated throughput (unless otherwise noted)  
4.5  
4
5
4.5  
4
ADS8920B  
ADS8922B  
ADS8924B  
3.5  
3
3.5  
3
2.5  
2
ADS8920B  
ADS8922B  
ADS8924B  
2.5  
1.5  
2
3
3.5  
4
4.5  
5
5.5  
-40  
-7  
26  
59  
92  
125  
RVDD  
Free-Air Temperature (èC)  
D026  
D028  
RVDD = 5 V  
Figure 30. Analog Supply Current vs Supply Voltage  
Figure 31. Analog Supply Current vs Temperature  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7 Detailed Description  
7.1 Overview  
The ADS892xB is a family of high-speed, successive approximation register (SAR), analog-to-digital converters  
(ADC) based on a charge redistribution architecture. These compact devices integrate a reference buffer and  
LDO, and feature high performance at a high throughput rate with low power consumption.  
This device family supports unipolar, fully differential, analog input signals. The integrated reference buffer  
supports the burst mode of data acquisition for external reference voltages in the range 2.5 V to 5 V, and offers a  
wide selection of input ranges without additional input scaling.  
When a conversion is initiated, the differential input between the AINP and AINM pins is sampled on the internal  
capacitor array. The device uses an internal clock to perform conversions. During the conversion process, both  
analog inputs are disconnected from the internal circuit. At the end of conversion process, the device reconnects  
the sampling capacitors to the AINP and AINM pins and enters an acquisition phase.  
The integrated LDO allows the device to operate on a single supply, RVDD. The device consumes only 21 mW,  
16 mW, or 14 mW of power when operating at the rated maximum throughput of 1 MSPS, 500 kSPS, or 250  
kSPS, respectively, with the internal reference buffer and LDO enabled.  
The enhanced multiSPI™ digital interface is backward-compatible with traditional SPI protocol. Configurable  
features simplify board layout, timing, and firmware, and support high throughput at lower clock speeds, thus  
allowing an easy interface with a variety of microcontrollers, DSPs, and FPGAs.  
The ADS892xB enables test and measurement, medical, and industrial applications to achieve fast, low-noise,  
low-distortion, low-power data acquisition in small form factors.  
7.2 Functional Block Diagram  
REFIN  
BUF  
REFBUFOUT  
REFM  
RVDD  
LDO  
DVDD  
DECAP  
multiSPITM  
Digital  
AINP  
AINM  
To  
Digital  
Host  
SAR ADC  
Interface  
GND  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.3 Feature Description  
From a functional perspective, the device comprises four modules: the low-dropout regulator (LDO), the  
reference buffer (BUF), the converter (SAR ADC), and the interface (multiSPI digital interface), as shown in the  
Functional Block Diagram section.  
The LDO module is powered by the RVDD supply, and generates the bias voltage for internal circuit blocks of the  
device. The reference buffer module buffers the external reference voltage source from the dynamic, capacitive  
switching load present on the reference pins during the conversion process. The converter module samples and  
converts the analog input into an equivalent digital output code. The interface module facilitates communication  
and data transfer between the device and the host controller.  
7.3.1 LDO Module  
To enable single-supply operation, the device features an internal low-dropout regulator (LDO). The LDO is  
powered by the RVDD supply, and the output is available on the two DECAP pins. This LDO output powers the  
critical analog blocks within the device, and must not be used for any other external purposes.  
Short the two DECAP pins together, and decouple with the GND pin by placing a 1-μF, X7R-grade, ceramic  
capacitor with a 10-V rating, as shown in Figure 32. There is no upper limit on the value of the decoupling  
capacitor; however, a larger decoupling capacitor results in a longer power-up time for the device. See the  
Layout section for layout recommendations.  
RVDD  
DECAP  
DECAP  
LDO  
CLDO  
1 F  
GND  
Figure 32. Internal LDO Connections  
7.3.2 Reference Buffer Module  
On the CONVST rising edge, the device moves from ACQ state to CONV state, and the internal capacitors are  
switched to the REFBUFOUT pins as per the successive approximation algorithm. Most of the switching charge  
required during the conversion process is provided by external decoupling capacitor CREFBUF. If the charge lost  
from the CREFBUF is not replenished before the next CONVST rising edge, the voltage on REFBUFOUT pins is  
less than VREFBUFOUT. The subsequent conversion occurs with this different reference voltage, and causes a  
proportional error in the output code. The internal reference buffer of the device maintains the voltage on  
REFBUFOUT pins within 0.5-LSB of VREFBUFOUT. All the performance characteristics of the device are specified  
with the internal reference buffer and specified values of CREFBUF and RESR  
.
In burst-mode of operation, the device stays in ACQ state for a long duration of time and then performs a burst of  
conversions. During the acquisition state (ACQ), the sampling capacitor (CS) is connected to the differential input  
pins and no charge is drawn from the REFBUFOUT pins. However, during the very first conversion cycle, there  
is a step change in the current drawn from the REFBUFOUT pins. This sudden change in load triggers a  
transient settling response in the reference buffer. For a fixed input voltage, any transient settling error at the end  
of the conversion cycle results in a change in output codes over the subsequent conversions, as shown in  
Figure 33. The internal reference buffer of the ADS89xxB, when used with the recommended values of CREFBUF  
and RESR, keeps the transient settling error at the end of each conversion cycle within 0.5-LSB. Therefore, the  
device supports burst-mode of operation with every conversion result being as per the datasheet specifications.  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Feature Description (continued)  
3
With External Series Reference Directly Driving SAR ADC  
With External Reference Buffer Driving SAR ADC  
With ADS892xB Internal Reference Buffer  
0
-3  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (µs)  
Figure 33. ADC Output Codes in Burst-Mode Operation With Various ADC Reference Buffers  
Figure 34 shows the block diagram of the internal reference buffer.  
ADS89xxB  
RVDD  
œ
BUF  
REFBUFOUT  
REFBUFOUT  
REFIN  
+
Margin  
REFM  
REFM  
GND  
Figure 34. Internal Reference Buffer Block Diagram  
The input range for the device is set by the external voltage applied at the REFIN pin (VREF). The REFIN pin has  
electrostatic discharge (ESD) protection diodes to the RVDD and GND pins. For minimum input offset error (see  
E(IO) specified in the Electrical Characteristics), set the REF_SEL[2:0] bits to the value closest to VREF (see the  
OFST_CAL register).  
The internal reference buffer has a typical gain of 1 V/V with minimal offset error (see V(RO) specified in the  
Electrical Characteristics), and the output of the buffer is available between the REFBUFOUT pins and the REFM  
pins. Set the REF_OFST[4:0] bits to add or subtract an intentional offset voltage (see the REF_MRG register).  
Figure 35 shows the external connections required for the internal reference buffer.  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
+VA  
RVDD  
REFIN  
ADS89xxB  
-
REFBUFOUT  
REFBUFOUT  
IREF  
VREF  
BUF  
External  
Reference  
Source  
+
RREF_FLT  
RESR  
Margin  
REFM  
REFM  
CREFBUF  
CREF_FLT  
GND  
Figure 35. External Connections for the Internal Reference Buffer  
Select RREF_FLT and CREF_FLT to limit the broadband noise contribution from the external reference source. The  
device takes very little current, IREF, from the REFIN pin (typically, 0.1 µA). However, this current flows through  
RREF_FLT and may result in additional gain error.  
Short the two REFBUFOUT pins externally. Short the two REFM pins to GND externally. As shown in Figure 35,  
place a combination of RESR and CREFBUF (see the Electrical Characteristics) between the REFBUFOUT pins and  
the REFM pins as close to the device as possible. See the Layout section for layout recommendations.  
7.3.3 Converter Module  
As shown in Figure 36, the converter module samples the analog input signal (provided between the AINP and  
AINM pins), compares this signal with the reference voltage (between the pair of REFBUFOUT and REFM pins),  
and generates an equivalent digital output code.  
The converter module receives RST and CONVST inputs from the interface module, and outputs the ADCST  
signal and the conversion result back to the interface module.  
REFP  
DVDD  
AVDD  
RST  
OSC  
CONVST  
CS  
RST  
SCLK  
SDI  
AINP  
AINM  
CONVST  
ADCST  
Sample-  
and-Hold  
Circuit  
Interface  
Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
ADC  
Conversion  
Result  
AGND  
Converter Module  
DGND  
REFM  
GND  
Figure 36. Converter Module  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Feature Description (continued)  
7.3.3.1 Sample-and-Hold Circuit  
These devices support unipolar, fully differential, analog input signals. Figure 37 shows a small-signal equivalent  
circuit of the sample-and-hold circuit. Each sampling switch is represented by a resistance (RS1 and RS2, typically  
50 Ω) in series with an ideal switch (SW1 and SW2). The sampling capacitors, CS1 and CS2, are typically 60 pF.  
RS1  
SW1  
AINP  
4 pF  
4 pF  
CS1  
REFBUFOUT  
CS2  
GND  
GND  
RS2  
SW2  
AINM  
Device in Hold Mode  
Figure 37. Input Sampling Stage Equivalent Circuit  
During the acquisition process (ACQ state), both positive and negative inputs are individually sampled on CS1  
and CS2, respectively. During the conversion process (CNV state), the device converts for the voltage difference  
between the two sampled values: VAINP – VAINM  
.
Each analog input pin has electrostatic discharge (ESD) protection diodes to REFBUFOUT and GND. Keep the  
analog inputs within the specified range to avoid turning the diodes on.  
Equation 1 and Equation 2 show the full-scale input range (FSR) and common-mode voltage (VCM), respectively,  
supported at the analog inputs for any external reference voltage provided on the REFIN pin (VREF).  
FSR = êVREF  
(1)  
V
REF  
VCM  
=
ê 0.1 V  
«
÷
2
(2)  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.3.2 Internal Oscillator  
The device family features an internal oscillator (OSC) that provides the conversion clock; see Figure 36. The  
conversion duration is bound by the minimum and maximum value of tconv, as specified in the Switching  
Characteristics table.  
The interface module uses this internal clock (OSC), an external clock (provided by the host controller on the  
SCLK pin), or a combination of both the internal and external clocks, to execute the data transfer operations  
between the device and host controller; see the Interface Module section for more details.  
7.3.3.3 ADC Transfer Function  
The device family supports unipolar, fully differential analog inputs. The device output is in two's compliment  
format. Figure 38 and Table 1 show the ideal transfer characteristics for the device.  
The least significant bit (LSB) for the ADC is given by Equation 3:  
FSR  
216  
VREF  
216  
1 LSB =  
= 2ì  
(3)  
7FFF  
0000  
FFFF  
8001  
8000  
VIN  
œVREF + 1 LSB  
œ1 LSB  
0
VREF œ 1 LSB  
Differential Analog Input  
(AINP - AINM)  
Figure 38. Differential Transfer Characteristics  
Table 1. Transfer Characteristics  
DIFFERENTIAL ANALOG INPUT VOLTAGE  
(AINP – AINM)  
OUTPUT CODE  
(HEX)  
< –VREF  
–VREF + 1 LSB  
–1 LSB  
8000  
8001  
FFFF  
0000  
0001  
7FFF  
0
1 LSB  
> VREF – 1 LSB  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.3.4 Interface Module  
The interface module facilitates the communication and data transfer between the device and the host controller.  
As shown in Figure 39, the module consists of shift registers (both input and output), configuration registers, and  
a protocol unit.  
Shift Registers  
RST  
Output Data Register (ODR)  
CONVST  
D21 D20  
D1  
D0  
CS  
22 Bits  
22 Bits  
SCLK  
SDI  
B21  
B20  
B1  
B0  
Converter Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Input Data Register (IDR)  
Command Processor  
SCLK  
Counter  
Configuration Registers  
Interface Module  
Figure 39. Interface Module  
The Pin Configuration and Functions section provides descriptions of the interface pins. The Data Transfer  
Frame section details the functions of shift registers, the SCLK counter, and the command processor. The Data  
Transfer Protocols section details supported protocols. The Register Maps section explains the configuration  
registers and bit settings.  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.4 Device Functional Modes  
As shown in Figure 40, this device family supports three functional states: RST, ACQ, and CNV. The device  
state is determined by the status of the CONVST and RST control signals provided by the host controller.  
Power Up  
ACQ  
RST Rising Edge  
CONVST Rising Edge  
RST Falling Edge  
End of Conversion  
CNV  
RST  
RST Falling Edge  
Figure 40. Device Functional States  
7.4.1 RST State  
The RST pin is an asynchronous digital input for the device. To enter RST state, the host controller pulls the RST  
pin low and keeps it low for the twl_RST duration (as specified in the Timing Requirements table).  
In RST state, all configuration registers (see the Register Maps section) are reset to their default values, the RVS  
pin remains low, and the SDO-x pins are Hi-Z.  
To exit RST state, the host controller pulls the RST pin high, with CONVST and SCLK held low and CS held  
high, as shown in Figure 41. After a delay of td_rst, the device enters ACQ state and the RVS pin goes high.  
trst  
twl_RST  
RST  
td_rst  
CONVST  
CS  
SCLK  
RVS  
SDO-x  
Figure 41. Asynchronous Reset  
To operate the device in either ACQ or CNV state, RST must be held high. With RST held high, transitions on  
the CONVST pin determine the functional state of the device.  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Device Functional Modes (continued)  
Figure 42 shows a typical conversion process. The internal ADCST signal goes low during conversion and goes  
high at the end of conversion. With CS held high, RVS reflects the status of ADCST.  
Sample  
S
Sample  
S + 1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (C)  
ACQ (C + 1)  
CS  
RVS  
Figure 42. Typical Conversion Process  
7.4.2 ACQ State  
In ACQ state, the device acquires the analog input signal. The device enters ACQ state at power-up, when  
coming out of power down (See the PD Control section), after any asynchronous reset, and at the end of every  
conversion.  
An RST falling edge takes the device from ACQ state to RST state. A CONVST rising edge takes the device  
from ACQ state to CNV state.  
7.4.3 CNV State  
The device moves from ACQ state to CNV state on a rising edge of the CONVST pin. The conversion process  
uses an internal clock. The device ignores any further transitions on the CONVST signal until the ongoing  
conversion is complete (that is, during the time interval of tconv).  
At the end of conversion, the device enters ACQ state. The cycle time for the device is given by Equation 4:  
tcycle-min = tconv + tacq-min  
(4)  
NOTE  
The conversion time, tconv, varies within the specified limits of tconv_min and tconv_max (as  
specified in the Switching Characteristics table). After initiating a conversion, the host  
controller must monitor for a low-to-high transition on the RVS pin or wait for the tconv_max  
duration to elapse before initiating a new operation (data transfer or conversion). If RVS is  
not monitored, substitute tconv in Equation 4 with tconv_max  
.
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.5 Programming  
This device family features nine configuration registers (as described in the Register Maps section). To access  
the internal configuration registers, these devices support the commands listed in Table 2.  
Table 2. Supported Commands  
COMMAND  
ACRONYM  
B[21:17]  
B[16:8]  
B[7:0]  
COMMAND DESCRIPTION  
00000  
10000  
10001  
10010  
10011  
11111  
000000000  
<9-bit address>  
<9-bit address>  
<9-bit address>  
<9-bit address>  
111111111  
00000000  
<8-bit unmasked bits>  
00000000  
NOP  
No operation  
CLR_BITS Clear <8-bit unmasked bits> from <9-bit address>  
RD_REG Read contents from the <9-bit address>  
WR_REG Write <8-bit data> to the <9-bit address>  
SET_BITS Set <8-bit unmasked bits> from <9-bit address>  
<8-bit data>  
<8-bit unmasked bits>  
11111111  
NOP  
No operation  
Remaining  
combinations  
These commands are reserved and treated by the  
device as no operation  
xxxxxxxxx  
xxxxxxxx  
Reserved  
These devices support two types of data transfer operations: data write (the host controller configures the  
device), and data read (the host controller reads data from the device).  
Any data write to the device is always synchronous to the external clock provided on the SCLK pin. The  
WR_REG command writes the 8-bit data into the 9-bit address specified in the command string. The CLR_BITS  
command clears the specified bits (identified by 1) at the 9-bit address (without affecting the other bits), and the  
SET_BITS command sets the specified bits (identified by 1) at the 9-bit address (without affecting the other bits).  
The data read from the device can be synchronized to the same external clock or to an internal clock of the  
device by programming the configuration registers (see the Data Transfer Protocols section for details).  
7.5.1 Output Data Word  
In any data transfer frame, the contents of an internal, 22-bit, output data word are shifted out on the SDO pins.  
The D[21:6] bits of the 22-bit output data word for any frame F + 1, are determined by:  
Value of the DATA_VAL bit applicable to frame F + 1 (see the DATA_CNTL register)  
The command issued in frame F  
If a valid RD_REG command is executed in frame F, then the D[21:14] bits in frame F + 1 reflect the contents of  
the selected register, and the D[13:0] bits are zeros.  
If the DATA_VAL bit for frame F + 1 is set to 1, then the D[21:6] bits in frame F + 1 are replaced by the  
DATA_PATN[15:0] bits.  
For all other combinations, the D[21:6] bits for frame F + 1 are the latest conversion result.  
Figure 43 shows the output data word. Figure 44 shows further details of the parity computation unit illustrated in  
Figure 43.  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Output Data  
Word D[21:0]  
A valid RG_READ command is received in  
the previous frame?  
D21  
D20  
Yes  
Register Data  
<8-bit REGDATA>_<8-bit 0's>  
D[21:6]  
0
16-bit Conversion Result  
16-bit DATA_PATN[15:0]  
No  
1
D7  
D6  
D5  
D4  
DATA_VAL  
Parity Computation Unit  
0b  
0b  
0b  
0b  
D3  
D2  
D1  
D0  
Figure 43. Output Data Word (D[21:0])  
Copyright © 2016–2017, Texas Instruments Incorporated  
29  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Output Data Word D[21:0]  
Parity Computation Unit  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
XOR  
XOR  
XOR  
XOR  
XOR  
XOR  
XOR  
D8  
D7  
D6  
FLPAR  
FTPAR  
D5  
D4  
D3  
D2  
D1  
D0  
)
)
11  
0
0
0
0
16 MSBs  
10  
01  
00  
MUX  
12 MSBs  
8 MSBs  
4 MSBs  
PAR_EN  
FPAR_LOC[1:0]  
Figure 44. Parity Bits Computation  
With the PAR_EN bit set to 0, the D[5] and D[4] bits of the output data word are set to 0 (default configuration).  
When the PAR_EN bit is set to 1, the device calculates the parity bits (FLPAR and FTPAR) and appends them  
as bits D[5] and D[4].  
FLPAR is the even parity calculated on bits D[21:6].  
FTPAR is the even parity calculated on the bits defined by FPAR_LOC[1:0].  
See the DATA_CNTL register for more details on the FPAR_LOC[1:0] bit settings. Bits D[3:0] are set to 0000b.  
30  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.2 Data Transfer Frame  
A data transfer frame between the device and the host controller is bounded between a CS falling edge and the  
subsequent CS rising edge. The host controller can initiate a data transfer frame (as shown in Figure 45) at any  
time irrespective of the status of the CONVST signal; however, the data read during such a data transfer frame is  
a function of relative timing between the CONVST and CS signals.  
Frame F  
CONVST  
CS  
RVS  
As per output protocol selection.  
td_CSRDY_r  
SCLK  
N SCLKs  
SDI  
Valid Command  
SDO-x  
ODR Data  
SCLK Counter  
0
SCLK Counter  
N
Output Data Word  
Input Data Register (IDR)  
D21  
D0  
D0  
B21  
B0  
D21  
D21  
D0  
Output Data Register (ODR)  
Command Processor  
Figure 45. Data Transfer Frame  
For this discussion, assume that the CONVST signal remains low.  
A typical data transfer frame F follows this order:  
1. The host controller pulls CS low to initiate a data transfer frame. On the CS falling edge:  
RVS goes low, indicating the beginning of the data transfer frame.  
The SCLK counter is reset to 0.  
The device takes control of the data bus. As shown in Figure 45, the 22-bit contents of the output data  
word (see Figure 43) are loaded in to the 22-bit output data register (ODR; see Figure 39).  
The 22-bit input data register (IDR; see Figure 39) is reset to 000000h, corresponding to a NOP  
command.  
Copyright © 2016–2017, Texas Instruments Incorporated  
31  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
2. During the frame, the host controller provides clocks on the SCLK pin. Inside the device:  
For each SCLK capture edge, the SCLK counter is incremented and the data bit received on the SDI pin  
is shifted in to the IDR.  
For each launch edge of the output clock (SCLK in this case), ODR data are shifted out on the selected  
SDO-x pins.  
The status of the RVS pin depends on the output protocol selection (see the Protocols for Reading From  
the Device section).  
3. The host controller pulls CS high to end the data transfer frame. On the CS rising edge:  
The SDO-x pins go to Hi-Z.  
RVS goes high (after a delay of td_CSRDY_r).  
As illustrated in Figure 45, the 22-bit contents of the IDR are transferred to the command processor (see  
Figure 39) for decoding and further action.  
After pulling CS high, the host controller monitors for a low-to-high transition on the RVS pin, or waits for the  
td_CSRDY_r time (see the Switching Characteristics table) to elapse before initiating a new operation (data transfer  
or conversion). The delay, td_CSRDY_r, for any data transfer frame F varies based on the data transfer operation  
executed in frame F.  
At the end of data transfer frame F:  
If the SCLK counter is < 22, then the IDR captured less than 22 bits from the SDI. In this case, the device  
treats frame F as a short command frame. At the end of a short command frame, the IDR is not updated and  
the device treats the frame as a no operation (NOP) command.  
If the SCLK counter = 22, then the IDR captured exactly 22 bits from SDI. In this case, the device treats the  
frame F as a optimal command frame. At the end of an optimal command frame, the command processor  
decodes the 22-bit contents of the IDR as a valid command word.  
If the SCLK counter > 22, then the IDR captured more than 22 bits from the SDI; however, only the last 22  
bits are retained. In this case, the device treats frame F as a long command frame. At the end of a long  
command frame, the command processor treats the 22-bit contents of the IDR as a valid command word.  
There is no restriction on the maximum number of clocks that can be provided within any data transfer frame  
F. However, as explained above, make sure that the last 22 bits shifted into the device before the CS rising  
edge constitute the desired command.  
In a short command frame, the write operation to the device is invalidated; however, the output data bits  
transferred during the short command frame are still valid output data. Therefore, the host controller can use  
such shorter data transfer frames to read only the required number of MSB bits from the 22-bit output data word.  
As shown in Figure 43, an optimal read frame for the ADS892xB devices must read only the 16 MSB bits of the  
output data word. The length of an optimal read frame depends on the output protocol selection; see the  
Protocols for Reading From the Device section for more details.  
NOTE  
The previous example shows data-read and data-write operations synchronous to the  
external clock provided on the SCLK pin.  
However, the device also supports data read operation synchronous to the internal clock;  
see the Protocols for Reading From the Device section for more details. In this case, while  
the ODR contents are shifted on the SDO (or SDOs) on the launch edge of the internal  
clock, the device continues to capture the SDI data into the IDR (and increment the SCLK  
counter) on SCLK capture edges.  
32  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.3 Interleaving Conversion Cycles and Data Transfer Frames  
The host controller operates the device at the desired throughput by interleaving the conversion cycles and the  
data transfer frames.  
The cycle time of the device, tcycle, is the time difference between two consecutive CONVST rising edges  
provided by the host controller. The response time of the device, tresp, is the time difference between the host  
controller initiating conversion C, and the host controller receiving the complete result for conversion C.  
Figure 46 shows three conversion cycles: C, C + 1, and C + 2. Conversion C is initiated by a CONVST rising  
edge at time t = 0, and the conversion result becomes available for data transfer at tconv. However, this result is  
loaded into the ODR only on the subsequent CS falling edge. This CS falling edge must be provided before the  
completion of conversion C + 1 (that is, before tcycle + tconv).  
To achieve the rated performance specifications, the host controller must make sure that no digital signals toggle  
during the quiet acquisition time (tqt_acq) and quiet aperture time (td_cnvcap). Any noise during td_cnvcap may  
negatively affect the result of the ongoing conversion, whereas any noise during tqt_acq may negatively affect the  
result of the subsequent conversion.  
Sample  
Sample  
Sample  
S
S + 1  
S + 2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone 1  
Zone 2  
Conversion  
Conversion  
C + 1  
Conversion  
C + 2  
C
t = 0  
Figure 46. Data Transfer Zones  
This architecture allows for two distinct time zones (zone 1 and zone 2) to transfer data for each conversion.  
Zone 1 and zone 2 for conversion C are defined in Table 3.  
Table 3. Data Transfer Zones Timing  
ZONE  
STARTING TIME  
ENDING TIME  
tcycle - tqt_acq  
tconv  
Zone 1 for conversion C  
tcycle + td_cnvcap  
tcycle + tcycle - tqt_acq  
Zone 2 for conversion C  
The response time includes the conversion time and the data transfer time, and thus is a function of the selected  
data transfer zone.  
Copyright © 2016–2017, Texas Instruments Incorporated  
33  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Figure 47 and Figure 48 illustrate interleaving of three conversion cycles (C, C + 1, and C + 2) with three data  
transfer frames (F, F + 1, and F + 2) in zone 1 and in zone 2, respectively.  
Sample  
Sample  
Sample  
S
S + 1  
S + 2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone 1  
C
Zone 1  
C + 1  
Zone 1  
C + 2  
Conversion  
C
Conversion  
C + 1  
Conversion  
C + 2  
Frame  
Frame  
Frame  
F
F + 1  
F + 2  
CS  
SDO  
tread-Z1  
tresp-Z1  
C
C + 1  
C + 2  
SCLK  
t = 0  
Figure 47. Zone 1 Data Transfer  
Sample  
S
Sample  
S + 1  
Sample  
S + 2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone 2  
C
Zone 2  
C + 1  
Zone 2  
C + 2  
Conversion  
Conversion  
C + 1  
Conversion  
C + 2  
C
Frame  
Frame  
Frame  
F
F + 1  
F + 2  
CS  
SDO  
tread-Z2  
tresp-Z2  
C œ 1  
C
C + 1  
SCLK  
t = 0  
Figure 48. Zone 2 Data Transfer  
34  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
To achieve cycle time tcycle, the read time in zone 1 is given by Equation 5:  
tread-Z1 Ç tcycle - tconv - tqt_acq  
(5)  
For an optimal data transfer frame, Equation 5 results in an SCLK frequency given by Equation 6:  
16  
fSCLK  
í
tread-Z1  
(6)  
(7)  
Then, the zone 1 data transfer achieves a response time defined by Equation 7:  
tresp-Z1-min = tconv + tread-Z1  
At lower SCLK speeds, tread-Z1 increases, resulting in slower response times and higher cycle times.  
To achieve the same cycle time, tcycle, the read time in zone 2 is given by Equation 8:  
tread-Z2 Ç tcycle - td_cnvcap - tqt_acq  
(8)  
For an optimal data transfer frame, Equation 8 results in an SCLK frequency given by Equation 9:  
16  
fSCLK  
í
tread_Z2  
(9)  
Then, the zone 2 data transfer achieves a response time defined by Equation 10:  
tresp-Z2-min = tcycle + td_cnvcap + tread-Z2  
(10)  
Any increase in tread-Z2 increases response time and may increase cycle time.  
For a given cycle time, the zone 1 data transfer clearly achieves faster response time, but also requires a higher  
SCLK speed (as evident from Equation 5, Equation 6, and Equation 7); whereas, the zone 2 data transfer clearly  
requires a lower SCLK speed but has a slower response time (as evident from Equation 8, Equation 9, and  
Equation 10). For more information about benefits of zone 2 data transfer when using isolated digital interface or  
MCU refer to TI TechNote - Simplify Isolation Designs Using an Enhanced-SPI ADC Interface.  
NOTE  
A data transfer frame can begin in zone 1, and then extend into zone 2; however, the host  
controller must make sure that no digital transitions occur during the tqt_acq and td_cnvcap  
time intervals.  
NOTE  
For data transfer operations in zone  
2 using the ADC-Clock-Master protocol  
(SDO_MODE[1:0] = 11b), the device supports only the external-clock-echo option  
(SSYNC_CLK_SEL[1:0] = 00b); see Table 9.  
7.5.4 Data Transfer Protocols  
This device family features a multiSPI digital interface that allows the host controller to operate at slower SCLK  
speeds and still achieve the required throughput and response time. The multiSPI digital interface module offers  
three options to reduce the SCLK speed required for data transfer:  
Increase the width of the output data bus.  
Enable double data rate (DDR) transfer.  
Extended data transfer window, as shown in Figure 48.  
These three options can be combined to achieve further reduction in SCLK speed.  
Copyright © 2016–2017, Texas Instruments Incorporated  
35  
 
 
 
 
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
There are various factors that limit the maximum SCLK frequency in a system.  
Figure 49 shows the delays in the communication channel between the host controller and the device in a typical  
serial communication.  
Digital Isolator  
(Optional)  
TI Device  
Host Controller  
tpcb_CK  
SCLK  
SCLK  
td_ckdo  
tsu_h  
td_ISO  
SDI  
SDO-x  
td_ISO  
tpcb_SDO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 49. Delays in Serial Communication  
For example, if tpcb_CK and tpcb_SDO are the delays introduced by the printed circuit board (PCB) traces for the  
serial clock and SDO signals, td_CKDO is the clock-to-data delay of the device, td_ISO is the propagation delay  
introduced by the digital isolator, and tsu_h is the setup time specification of the host controller, then the total  
delay in the path is given by Equation 11:  
td_total_serial = tpcb_CK + td_iso + td_ckdo + td_iso + tpcb_SDO + tsu_h  
(11)  
In a standard SPI protocol, the host controller and the device launch and capture data bits on alternate SCLK  
edges. Therefore, the td_total_serial delay must be kept to less than half of the SCLK duration. Equation 12 shows  
the fastest clock allowed by the SPI protocol:  
1
fclk-SPI  
Ç
2ìtd_total-serial  
(12)  
Larger values of the td_total_serial delay restricts the maximum SCLK speed for the SPI protocol, resulting in higher  
read and response times, and can possibly limit the throughput.  
Figure 50 shows a delay (td_delcap) introduced in the capture path (inside the host controller).  
Digital Isolator  
(Optional)  
Device  
Host Controller  
tpcb_CK  
td_delcap  
SCLK  
tsu_h  
SCLK  
td_ckdo  
td_ISO  
SDI  
SDO-x  
td_ISO  
tpcb_SDO  
Figure 50. Delayed Capture  
The total delay in the path modifies to Equation 13:  
td_total_serial = tpcb_CK + td_iso + td_ckdo + td_iso + tpcb_SDO + tsu_h - td_ delcap  
(13)  
This reduction in total delay allows the SPI protocol to operate at higher clock speeds.  
36  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
The multiSPI digital interface module offers two additional options to remove the restriction on the SCLK speed:  
Early data launch (EDL) mode of operation  
In EDL mode, the device launches the output data on SDO-x pin (or pins) half a clock earlier compared to the  
standard SPI protocol. Therefore, Equation 12 modifies to Equation 14:  
1
fclk-SPI  
Ç
td_total-serial  
(14)  
The reduction in total delay allows the serial interface to operate at higher clock speeds.  
ADC-Clock-Master (source-synchronous) mode of operation  
As illustrated in Figure 51, in ADC-Clock-Master mode, the device provides a synchronous output clock (on  
the RVS pin) along with the output data (on the SDO-x pins).  
Digital Isolator  
(Optional)  
TI Device  
Host Controller  
tpcb_CK  
SCLK  
SCLK  
td_ckdo  
td_ISO  
SDO-x  
td_ckstr  
SDI  
td_ISO  
tsu_h  
toff_strdo  
tpcb_SDO  
RVS  
td_ISO  
tpcb_RVS  
Copyright © 2016, Texas Instruments Incorporated  
Figure 51. Delays in ADC-Clock-Master (Source-Synchronous) Mode  
For negligible values of toff_STRDO, the total delay in the path for a source-synchronous data transfer, is given  
by Equation 15:  
td_total_srcsync = tpcb_RVS -tpcb_SDO + tsu_h  
(15)  
As shown by the difference between Equation 11 and Equation 15, using ADC-Clock-Master mode  
completely eliminates the effect of isolator delays (td_ISO) and clock-to-data delays (td_CKDO); typically, the  
largest contributors in the overall delay computation.  
Furthermore, the actual values of tpcb_RVS and tpcb_SDO do not matter. In most cases, the td_total_srcsync delay  
can be kept at a minimum by routing the RVS and SDO lines together on the PCB. Therefore, the ADC-  
Clock-Master mode allows the data transfer between the host controller and the device to operate at much  
higher SCLK speeds. For more information about using ADC-Clock-Master to mode to achieve fast SCLK  
speeds, with an isolated interface or high routing delays, see Optimizing Data Transfer on High-Resolution,  
High Throughput Data Converters. Zone 2 data transfer also enables longer quiet time for analog input  
settling, and is discussed in Improving Input Settling for Precision Data Converters.  
Copyright © 2016–2017, Texas Instruments Incorporated  
37  
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.5.4.1 Protocols for Configuring the Device  
As shown in Table 4, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI-  
01-S, SPI-10-S, or SPI-11-S) to write data to the device.  
Table 4. SPI Protocols for Configuring the Device  
NO. OF SCLK  
(Optimal Command  
Frame)  
SCLK POLARITY  
(At CS Falling Edge)  
SCLK PHASE  
(Capture Edge)  
TIMING  
DIAGRAM  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
22  
22  
22  
22  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
At power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data-  
read and data-write operations.  
To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits in the SDI_CNTL register. This  
first write operation must adhere to the SPI-00-S protocol. Any subsequent data transfer frames must adhere to  
the newly selected protocol.  
Figure 52 to Figure 55 detail the four protocols using an optimal command frame; see the Timing Requirements  
and Switching Characteristics tables for associated timing parameters.  
NOTE  
As explained in the Data Transfer Frame section, a valid write operation to the device  
requires a minimum of 22 SCLKs to be provided within a data transfer frame.  
Any data write operation to the device must continue to follow the SPI-compatible protocol  
selected in the SDI_CNTL register, irrespective of the protocol selected for the data-read  
operation.  
CS  
SCLK  
SDI  
CS  
SCLK  
SDI  
B21  
B20  
B1  
B0  
B21  
B20  
B19  
B1  
B0  
RVS  
RVS  
Figure 52. SPI-00-S Protocol, Optimal Command  
Frame  
Figure 53. SPI-01-S Protocol, Optimal Command  
Frame  
CS  
CS  
SCLK  
SCLK  
SDI  
B21  
B20  
B19  
B1  
B0  
SDI  
B21  
B20  
B2  
B1  
B0  
RVS  
RVS  
Figure 54. SPI-10-S Protocol, Optimal Command  
Frame  
Figure 55. SPI-11-S Protocol, Optimal Command  
Frame  
38  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.4.2 Protocols for Reading From the Device  
The protocols for the data-read operation can be broadly classified into three categories:  
1. Legacy, SPI-compatible (SPI-xy-S) protocol  
2. SPI-compatible protocols with bus width options (SPI-xy-D and SPI-xy-Q)  
3. Source-synchronous (SRC) protocols  
7.5.4.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols  
As shown in Table 5, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI-  
01-S, SPI-10-S, or SPI-11-S) to read data from the device.  
Table 5. SPI Protocols for Reading From the Device  
SCLK  
NO. OF SCLK  
(Optimal Read  
Frame)  
POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
TIMING  
DIAGRAM  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
CS falling  
1st SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
16  
16  
16  
16  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
1st SCLK falling  
At power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data-  
read and data-write operations. To select a different SPI-compatible protocol for both the data transfer  
operations:  
1. Program the SDI_MODE[1:0] bits in the SDI_CNTL register. This first write operation must adhere to the SPI-  
00-S protocol. Any subsequent data transfer frames must adhere to the newly selected protocol.  
2. Set the SDO_MODE[1:0] bits = 00b in the SDO_CNTL register.  
Figure 56 to Figure 59 explain the details of the four protocols using an optimal command frame to read all 22  
bits of the output data word. Table 5 shows the number of SCLK required in an optimal read frame for the  
different output protocol selections.  
D21  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D21  
D20  
D1  
D0  
D20  
D20  
D20  
D19  
D1  
D1  
D0  
D0  
D21  
D21  
D20  
D20  
D19  
D0  
D21  
D21  
D19  
D1  
D0  
0
D1  
D0  
Figure 56. SPI-00-S Protocol, 22 SCLKs  
Figure 57. SPI-01-S Protocol, 22 SCLKs  
D21  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D21  
D20  
D19  
D1  
D0  
D21  
D20  
D20  
D19  
D19  
D1  
D1  
D0  
D0  
D21  
D21  
D20  
D20  
D2  
D1  
D0  
D0  
D21  
D20  
D1  
D0  
0
D2  
D1  
Figure 58. SPI-10-S Protocol, 22 SCLKs  
Figure 59. SPI-11-S Protocol, 22 SCLKs  
Copyright © 2016–2017, Texas Instruments Incorporated  
39  
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
For SDI_MODE[1:0] = 00b or 10b, the device supports an Early Data Launch (EDL) option. Set SDO_MODE[1:0]  
= 01b in the SDO_CNTL register to enable the feature (see Table 6). Setting SDO_MODE[1:0] = 01b has no  
effect if SDI_MODE[1:0] = 01b or 11b.  
Table 6. SPI Protocols with Early Data Launch  
SCLK POLARITY  
(At CS Falling  
Edge)  
NO. OF SCLK  
(Optimal Read  
Frame)  
SCLK PHASE  
(Capture Edge)  
MSB BIT LAUNCH  
EDGE  
TIMING  
DIAGRAM  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
SPI-00-S-EDL  
SPI-10-S-EDL  
Low  
Rising  
Falling  
CS falling  
CS falling  
00h  
02h  
01h  
01h  
16  
16  
Figure 56  
Figure 58  
High  
As shown in Figure 60, and Figure 61, the device launches the output data bit on the SDO-0 pin half clock earlier  
compared to the standard SPI protocol.  
D21  
D21  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D21  
D20  
D19  
D1  
D1  
D0  
D0  
D20  
D19  
D18  
D0  
0
D21  
D21  
D20  
D20  
D19  
D1  
D1  
D0  
D20  
D20  
D19  
D19  
D18  
D0  
D19  
D0  
D21  
Figure 60. SPI-00-S-EDL Protocol, 22 SCLKs  
Figure 61. SPI-10-S-EDL Protocol, 22 SCLKs  
When using these SPI-compatible protocols, the RVS output remains low throughout the data transfer frame; see  
the Timing Requirements and Switching Characteristics tables for associated timing parameters.  
With SDO_CNTL[7:0] = 00h or 01h, if the host controller uses a long data transfer frame, the device exhibits  
daisy-chain operation (see the Multiple Devices: Daisy-Chain Topology section).  
NOTE  
Use SPI-compatible protocols to execute the RD_REG, WR_REG, CLR_BITS, and  
SET_BITS commands specified in Table 2.  
40  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.4.2.2 SPI-Compatible Protocols with Bus Width Options  
The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual  
SDO) or four bits (quad SDO) when operating with any of the four legacy, SPI-compatible protocols.  
Set the SDO_WIDTH[1:0] bits in the SDO_CNTL register to select the SDO bus width. The SCLK launch edge  
depends on the SPI protocol selection (as shown in Table 7).  
Table 7. SPI-Compatible Protocols with Bus Width Options  
SCLK  
#SCLK  
(Optimal Read  
Frame)  
POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
TIMING  
DIAGRAM  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
SPI-00-D  
SPI-01-D  
SPI-10-D  
SPI-11-D  
SPI-00-Q  
SPI-01-Q  
SPI-10-Q  
SPI-11-Q  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
Rising  
Falling  
Falling  
Rising  
CS falling  
First SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
01h  
02h  
03h  
08h  
08h  
08h  
08h  
0Ch  
0Ch  
0Ch  
0Ch  
8
8
8
8
4
4
4
4
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
Figure 68  
Figure 69  
First SCLK falling  
CS falling  
First SCLK rising  
CS falling  
First SCLK falling  
In dual-SDO mode (SDO_WIDTH[1:0] = 10b), two bits of data are launched on the two SDO pins (SDO-0 and  
SDO-1) on every SCLK launch edge.  
In quad-SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0,  
SDO-1, SDO-2, and SDO-3) on every SCLK launch edge.  
CS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
SCLK  
SDO-1  
SDO-0  
0
0
D21  
D20  
D19  
D18  
D3  
D2  
D1  
D0  
D21  
D20  
D19  
D18  
D3  
D2  
D1  
D0  
RVS  
Figure 62. SPI-00-D Protocol  
Figure 63. SPI-01-D Protocol  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D3  
D2  
D1  
D0  
0
0
D21  
D20  
D19  
D18  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 64. SPI-10-D Protocol  
Figure 65. SPI-11-D Protocol  
Copyright © 2016–2017, Texas Instruments Incorporated  
41  
 
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
CS  
CS  
SCLK  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D1  
D0  
0
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
0
0
0
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
Figure 66. SPI-00-Q Protocol  
Figure 67. SPI-01-Q Protocol  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
0
0
0
0
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D5  
D4  
D3  
D2  
D1  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D1  
D0  
0
D0  
0
0
0
Figure 68. SPI-10-Q Protocol  
Figure 69. SPI-11-Q Protocol  
For SDI_MODE[1:0] = 00b or 10b, the device supports an early data launch (EDL) option. Set SDO_MODE[1:0]  
= 01b in the SDO_CNTL register to enable the feature (see Table 8). Setting SDO_MODE[1:0] = 01b has no  
effect if SDI_MODE[1:0] = 01b or 11b.  
Table 8. SPI Protocols with Early Data Launch  
SCLK  
NO. OF SCLK  
(Optimal Read  
Frame)  
POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
TIMING  
DIAGRAM  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
SPI-00-D-  
EDL  
Low  
High  
Low  
High  
Rising  
Falling  
Rising  
Falling  
CS falling  
CS falling  
CS falling  
CS falling  
00h  
02h  
00h  
02h  
09h  
09h  
0Dh  
0Dh  
8
8
4
4
Figure 62  
Figure 64  
Figure 66  
Figure 68  
SPI-10-D-  
EDL  
SPI-00-Q-  
EDL  
SPI-10-Q-  
EDL  
42  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
As shown in Figure 60, and Figure 61, the device launches the output data bits on the SDO-x pins half clock  
earlier compared to the standard SPI protocol.  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
D21  
D20  
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
Figure 70. SPI-00-D-EDL Protocol  
Figure 71. SPI-10-D-EDL Protocol  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D1  
D0  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D1  
D0  
0
0
0
0
Figure 72. SPI-00-Q-EDL Protocol  
Figure 73. SPI-10-Q-EDL Protocol  
When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame;  
see the Timing Requirements and Switching Characteristics tables for associated timing parameters.  
Figure 62 to Figure 73 illustrate how the wider data bus allows the host controller to read all 22 bits of the output  
data word using shorter data transfer frames. Table 7 and Table 8 show the number of SCLK required in an  
optimal read frame for the different output protocol selections.  
NOTE  
With SDO_CNTL[7:0] 00h or 01h, a long data transfer frame does not result in daisy-  
chain operation. On SDO pin (or pins), the 22 bits of output data word are followed by  
zeros.  
Copyright © 2016–2017, Texas Instruments Incorporated  
43  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.5.4.2.3 Source-Synchronous (SRC) Protocols  
As described in the Data Transfer Protocols section, the multiSPI digital interface supports an ADC-Clock-Master  
or a source-synchronous mode of data transfer between the device and host controller. In this mode, the device  
provides an output clock that is synchronous with the output data. Furthermore, the host controller can also  
select the output clock source, data bus width, and data transfer rate.  
7.5.4.2.3.1 Output Clock Source Options with SRC Protocols  
In all SRC protocols, the RVS pin provides the output clock. The device allows this output clock to be  
synchronous to either the external clock provided on the SCLK pin or to the internal clock of the device.  
Furthermore, this internal clock can be divided by a factor of two or four to lower the data rates.  
As shown in Figure 74, set the SSYNC_CLK_SEL[1:0] bits in the SDO_CNTL register to select the output clock  
source.  
SCLK  
OSC  
00  
INTCLK  
01  
Output Clock  
RVS  
INTCLK / 2  
INTCLK / 4  
10  
11  
/ 2  
/ 4  
SSYNC_CLK_SEL [1:0]  
Figure 74. Output Clock Source Options With SRC Protocols  
44  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.4.2.3.2 Bus Width Options With SRC Protocols  
The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual  
SDO) or to four bits (quad SDO) when operating with any of the SRC protocols. Set the SDO_WIDTH[1:0] bits in  
the SDO_CNTL register to select the SDO bus width.  
In dual-SDO mode (SDO_WIDTH[1:0] = 10b), two bits of data are launched on the two SDO pins (SDO-0 and  
SDO-1) on every SCLK rising edge.  
In quad-SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0,  
SDO-1, SDO-2, and SDO-3) on every SCLK rising edge.  
7.5.4.2.3.3 Output Data Rate Options With SRC Protocols  
The device provides an option to transfer the data to the host controller at a single data rate (default, SDR) or at  
a double data rate (DDR). Set the DATA_RATE bit in the SDO_CNTL register to select the data transfer rate.  
In SDR mode (DATA_RATE = 0b), the RVS pin toggles from low to high, and the output data bits are launched  
on the SDO pins on the output clock rising edge.  
In DDR mode (DTA_RATE = 1b), the RVS pin toggles (from low-to-high or high-to-low), and the output data bits  
are launched on the SDO pins on every output clock edge, starting with the first rising edge.  
The device supports all 24 combinations of output clock source, bus width, and output data rate, as shown in  
Table 9.  
Table 9. SRC Protocol Combinations  
#OUTPUT CLOCK  
(Optimal Read  
Frame)  
OUTPUT CLOCK  
SOURCE  
OUTPUT DATA  
RATE  
TIMING  
DIAGRAM  
PROTOCOL  
BUS WIDTH  
SDI_CNTL  
SDO_CNTL  
SRC-EXT-SS  
SRC-INT-SS  
SRC-IB2-SS  
SRC-IB4-SS  
SRC-EXT-DS  
SRC-INT-DS  
SRC-IB2-DS  
SRC-IB4-DS  
SRC-EXT-QS  
SRC-INT-QS  
SRC-IB2-QS  
SRC-IB4-QS  
SRC-EXT-SD  
SRC-INT-SD  
SRC-IB2-SD  
SRC-IB4-SD  
SRC-EXT-DD  
SRC-INT-DD  
SRC-IB2-DD  
SRC-IB4-DD  
SRC-EXT-QD  
SRC-INT-QD  
SRC-IB2-QD  
SRC-IB4-QD  
SCLK(1)  
INTCLK(3)  
INTCLK / 2(3)  
INTCLK / 4(3)  
SCLK(1)  
Single  
Single  
Single  
Single  
Dual  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
03h  
43h  
83h  
C3h  
0Bh  
4Bh  
8Bh  
CBh  
0Fh  
4Fh  
8Fh  
CFh  
13h  
53h  
93h  
D3h  
1Bh  
5Bh  
9Bh  
DBh  
1Fh  
5Fh  
9Fh  
DFh  
8
8
8
8
8
8
8
8
4
4
4
4
8
8
8
8
4
4
4
4
2
2
2
2
Figure 75  
Figure 76  
Figure 79  
Figure 80  
Figure 83  
Figure 84  
Figure 77  
Figure 78  
Figure 81  
Figure 82  
Figure 85  
Figure 86  
INTCLK(3)  
Dual  
INTCLK / 2(3)  
INTCLK / 4(3)  
SCLK(1)  
Dual  
Dual  
Quad  
Quad  
Quad  
Quad  
Single  
Single  
Single  
Single  
Dual  
INTCLK(3)  
INTCLK / 2(3)  
INTCLK / 4(3)  
SCLK(1)  
00h, 01h,  
02h, or 03h(2)  
INTCLK(3)  
INTCLK / 2(3)  
INTCLK / 4(3)  
SCLK(1)  
INTCLK(3)  
Dual  
INTCLK / 2(3)  
INTCLK / 4(3)  
SCLK(1)  
INTCLK(3)  
INTCLK / 2(3)  
INTCLK / 4(3)  
Dual  
Dual  
Quad  
Quad  
Quad  
Quad  
(1) The EXTCLK option is not recommended when operating with DVDD < 2.35 V.  
(2) Any of the four values can be used; see the Protocols for Configuring the Device section for more information.  
(3) The device supports INTCLK, INTCLK / 2, and INTCLK / 4 options only for data transfer operations in zone 1. The EXTCLK option is  
supported in zone 1 and zone 2; see Figure 46.  
Copyright © 2016–2017, Texas Instruments Incorporated  
45  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
Figure 75 to Figure 86 show the details of various source synchronous protocols. Table 9 shows the number of  
output clocks required in an optimal read frame for the different output protocol selections.  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D21  
D20  
D21  
D19  
D20  
D1  
D2  
D0  
D1  
D0  
D21  
D20  
D2  
D1  
D0  
Figure 75. SRC-EXT-SS: SRC, SCLK, Single SDO,  
SDR  
Figure 76. SRC-INT-SS: SRC, INTCLK, Single SDO,  
SDR  
CS  
CS  
D20  
D2  
D0  
D1  
SCLK  
SCLK  
SDO-0  
RVS  
D21  
D19  
D21 D20  
D1  
D2  
SDO-0  
RVS  
D21 D20  
D3  
D2  
D1  
D0  
D3  
D0  
Figure 77. SRC-EXT-SD: SRC, SCLK, Single SDO, Figure 78. SRC-INT-SD: SRC, INTCLK, Single SDO,  
DDR  
DDR  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
D21  
D20  
D19  
D18  
D5  
D4  
D3  
D2  
D1  
D0  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 79. SRC-EXT-DS: SRC, SCLK, Dual SDO,  
SDR  
Figure 80. SRC-INT-DS: SRC, INTCLK, Dual SDO,  
SDR  
46  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
CS  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
SCLK  
D21 D19  
D20 D18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO-1  
SDO-0  
RVS  
D21 D19  
D20 D18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 81. SRC-EXT-DD: SRC, SCLK, Dual SDO,  
DDR  
Figure 82. SRC-INT-DD: SRC, INTCLK, Dual SDO,  
DDR  
CS  
CS  
SCLK  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
Figure 83. SRC-EXT-QS: SRC, SCLK, Quad SDO,  
SDR  
Figure 84. SRC-INT-QS: SRC, INTCLK, Quad SDO,  
SDR  
CS  
CS  
SCLK  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D21 D17 D13 D9  
D20 D16 D12 D8  
D19 D15 D11 D7  
D18 D14 D10 D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D21 D17 D13 D9  
D20 D16 D12 D8  
D19 D15 D11 D7  
D18 D14 D10 D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
Figure 85. SRC-EXT-QD: SRC, SCLK, Quad SDO,  
DDR  
Figure 86. SRC-INT-QD: SRC, INTCLK, Quad SDO,  
DDR  
Copyright © 2016–2017, Texas Instruments Incorporated  
47  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.5.5 Device Setup  
The multiSPI digital interface and the device configuration registers offer multiple operation modes. This section  
describes how to select the hardware connection topology to meet different system requirements.  
7.5.5.1 Single Device: All multiSPI Options  
Figure 87 shows the connections between a host controller and a single device in order to exercise all options  
provided by the multiSPI digital interface.  
DVDD  
Isolation  
(Optional)  
RST  
CONVST  
CS  
SCLK  
SDI  
Host  
TI Device  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Controller  
Copyright © 2016, Texas Instruments Incorporated  
Figure 87. MultiSPI Digital Interface, All Pins  
7.5.5.2 Single Device: Minimum Pins for a Standard SPI Interface  
Figure 88 shows the minimum-pin interface for applications using a standard SPI protocol.  
DVDD  
Isolation  
(Optional)  
(Optional)  
RST  
(Optional)  
CONVST  
CS  
SCLK  
SDI  
Host  
Controller  
TI Device  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
(Optional)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 88. SPI Interface, Minimum Pins  
The CS, SCLK, SDI, and SDO-0 pins constitute a standard SPI port of the host controller. The CONVST pin is  
tied to CS, and the RST pin is tied to DVDD. The SDO-1, SDO-2, and SDO-3 pins have no external connections.  
The following features are also available:  
Control the CONVST pin independently to get additional timing flexibility.  
Control RST pin independently to add asynchronous reset functionality.  
Monitor the RVS pin for additional timing benefits.  
48  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.5.3 Multiple Devices: Daisy-Chain Topology  
A typical connection diagram showing multiple devices in a daisy-chain topology is shown in Figure 89.  
Host Controller  
Device 1  
Device 2  
Device N  
Figure 89. Daisy-Chain Connections  
The CONVST, CS, and SCLK inputs of all devices are connected together and controlled by a single CONVST,  
CS, and SCLK pin of the host controller, respectively. The SDI input pin of the first device in the chain (Device 1)  
is connected to the SDO pin of the host controller, the SDO-0 output pin of Device 1 is connected to the SDI  
input pin of Device 2, and so on. The SDO-0 output pin of the last device in the chain (Device N) is connected to  
the SDI pin of the host controller.  
To operate multiple devices in a daisy-chain topology, the host controller sets the configuration registers in each  
device with identical values and operates with any of the legacy, SPI-compatible protocols for data-read and  
data-write operations (SDO_CNT[7:0] = 00h or 01h). With these configurations settings, the 22-bit ODR and 22-  
bit IDR registers in each device collapse to form a single, 22-bit unified shift register (USR) per device, as shown  
in Figure 90.  
Host Controller  
SDO  
CONVST  
SCLK  
SDI  
CS  
22 Bits  
22 Bits  
22 Bits  
SDI  
SDO-0  
SDI  
SDO-0  
SDI  
SDO-0  
DB DB  
DB DB  
20 21  
DB DB  
DB DB  
20 21  
DB DB  
DB DB  
20 21  
0
1
0
1
0
1
Unified Shift Register (USR)  
Device 1  
Unified Shift Register (USR)  
Device 2  
Unified Shift Register (USR)  
Device N  
Figure 90. Unified Shift Register  
Copyright © 2016–2017, Texas Instruments Incorporated  
49  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
All devices in the daisy-chain topology sample the respective device analog input signals on the CONVST rising  
edge. The data transfer frame starts with a CS falling edge. On each SCLK launch edge, every device in the  
chain shifts out the MSB of the respective USR on to the respective SDO-0 pin. On every SCLK capture edge,  
each device in the chain shifts in data received on the respective SDI pin as the LSB bit of the respective USR.  
Therefore, in a daisy-chain configuration, the host controller receives the data of Device N, followed by the data  
of Device N – 1, and so on (MSB-first). On the CS rising edge, each device decodes the contents in the  
respective USR, and takes appropriate action.  
A typical timing diagram for three devices connected in daisy-chain topology using the SPI-00-S protocol is  
shown in Figure 91.  
CS  
SCLK  
1
2
21  
22  
23  
24  
43  
44  
45  
46  
Configuration Data Device 1  
B20 B1  
Configuration Data Device 2  
B42 B23  
Configuration Data Device 3  
B64 B45  
Output Data œ Device 1  
{D20}1 {D1}1  
65  
66  
{SDO}HOST  
{SDI}1  
B65  
B64  
B45  
B44  
B43  
B42  
B23  
B22  
B21  
B0  
{SDO-0}1  
{SDI}2  
{D21}1  
{D21}2  
{D21}3  
{D20}1  
{D20}2  
{D1}1  
{D1}2  
{D0}1  
{D0}2  
{D0}3  
B65  
B64  
B45  
B44  
{D0}1  
{D0}2  
B43  
B65  
B22  
B44  
{SDO-0}2  
{SDI}3  
{D21}1  
{D21}2  
{D20}1  
{D1}1  
Output Data œ Device 3  
{D20}3 {D1}3  
Output Data œ Device 2  
{D20}2 {D1}2  
{SDO-0}3  
{SDI}HOST  
{D21}1  
{D0}1  
Figure 91. Three-Device, Daisy-Chain Timing  
In daisy-chain topology, the overall throughput of the system is proportionally reduced as more devices are  
connected in the daisy-chain.  
NOTE  
For N devices connected in daisy-chain topology, an optimal data transfer frame must  
contain 22 × N SCLK capture edges. For a longer data transfer frame (number of SCLK in  
the frame > 22 × N), the host controller must appropriately align the configuration data for  
each device before bringing CS high. A shorter data transfer frame (number of SCLK in  
the frame < 22 × N) might result in an erroneous device configuration, and must be  
avoided.  
50  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.5.5.4 Multiple Devices: Star Topology  
A typical connection diagram showing multiple devices in a star topology is shown in Figure 92. The CONVST,  
SDI, and SCLK inputs of all devices are connected together, and are controlled by a single CONVST, SDO, and  
SCLK pin of the host controller, respectively. Similarly, the SDO output pin of all devices are tied together and  
connected to the a single SDI input pin of the host controller. The CS input pin of each device is individually  
controlled by separate CS control lines from the host controller.  
Host Controller  
TI Device 1  
TI Device 2  
TI Device N  
Copyright © 2016, Texas Instruments Incorporated  
Figure 92. Star-Topology Connection  
The timing diagram for three devices connected in the star topology is shown in Figure 93. In order to avoid any  
conflict related to multiple devices driving the SDO line at the same time, make sure that the host controller pulls  
down the CS signal for only one device at any particular time.  
SCLK  
{CS}1  
{CS}2  
{CS}3  
1
2
21  
22  
23  
24  
43  
44  
45  
46  
65  
66  
Configuration Data Device 1  
{B20}1 {B1}1  
Output Data œ Device 1  
{D20}1 {D1}1  
Configuration Data Device 2  
{B20}2 {B1}2  
Output Data œ Device 2  
{D20}2 {D1}2  
Configuration Data Device 3  
{B20}3 {B1}3  
Output Data œ Device 3  
{D20}3 {D1}3  
{SDO}HOST  
{SDI}1,2,3  
{B21}1  
{B0}1  
{B21}2  
{B0}2  
{B21}3  
{B0}3  
{SDO-0}1,2,3  
{SDI}HOST  
{D21}1  
{D0}1  
{D21}2  
{D0}2  
{D21}3  
{D0}3  
Figure 93. Three-Device, Star Connection Timing  
Copyright © 2016–2017, Texas Instruments Incorporated  
51  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Device Configuration and Register Maps  
The device features nine configuration registers, mapped as described in Table 10.  
Table 10. Configuration Registers Mapping  
ADDRESS  
004h  
REGISTER NAME  
PD_CNTL  
REGISTER DESCRIPTION  
Low-power modes control  
008h  
SDI_CNTL  
SDI input protocol selection  
00Ch  
010h  
SDO_CNTL  
DATA_CNTL  
PATN_LSB  
PATN_MID  
PATN_MSB  
OFST_CAL  
REF_MRG  
SDO output protocol selection  
Output data word configuration  
Eight least significant bits (LSB) of the output pattern  
Eight middle bits of the output pattern  
Four most significant bits (MSB) of the output pattern  
Offset calibration  
014h  
015h  
016h  
020h  
030h  
Reference margin  
7.6.1.1 PD_CNTL Register (address = 04h) [reset = 00h]  
This register controls the low-power modes offered by the device.  
Figure 94. PD_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
PD_REFBUF  
R/W-0b  
PD_ADC  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. PD_CNTL Register Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R
Reset  
00000b  
0b  
Description  
0
Reserved bits. Reads return 00000b.  
PD_REFBUF  
R/W  
This bit powers down the internal reference buffer.  
0b = Internal reference buffer is powered up  
1b = Internal reference buffer is powered down  
1
PD_ADC  
R/W  
0b  
This bit powers down the converter module.  
0b = converter module is powered up  
1b = converter module is powered down  
0
0
R
0b  
Reserved bits. Do not write. Reads return 0b.  
To power-down the converter module, set the PD_ADC bit in the PD_CNTL register. The converter module  
powers down on the rising edge of CS. To power-up the converter module, reset the PD_ADC bit in the  
PD_CNTL register. The converter module starts to power-up on the rising edge of CS. Wait for tPU_ADC before  
initiating any conversion or data transfer operation.  
To power-down the internal reference buffer, set the PD_REFBUF bit in the PD_CNTL register. The internal  
reference buffer powers down on the rising edge of CS. To power-up the internal reference buffer, reset the  
PD_REFBUF bit in the PD_CNTL register. The internal reference buffer starts to power-up on the rising edge of  
CS. Wait for tPU_REFBUF before initiating any conversion.  
52  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.6.1.2 SDI_CNTL Register (address = 008h) [reset = 00h]  
This register selects the SPI protocol for writing data to the device.  
Figure 95. SDI_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SDI_MODE[1:0]  
R/W-00b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. SDI_CNTL Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
Description  
0
000000b Reserved bits. Do not write. Reads return 000000b.  
SDI_MODE[1:0]  
R/W  
00b  
These bits select the protocol for writing data into the device.  
00b = Standard SPI with CPOL = 0 and CPHASE = 0  
01b = Standard SPI with CPOL = 0 and CPHASE = 1  
10b = Standard SPI with CPOL = 1 and CPHASE = 0  
11b = Standard SPI with CPOL = 1 and CPHASE = 1  
7.6.1.3 SDO_CNTL Register (address = 0Ch) [reset = 00h]  
This register configures the protocol for reading data from the device.  
Figure 96. SDO_CNTL Register  
7
6
5
0
4
3
2
1
0
SDO_MODE[1:0]  
R/W-00b  
SSYNC_CLK_SEL[1:0]  
R/W-00b  
DATA_RATE  
R/W-0b  
SDO_WIDTH[1:0]  
R/W-00b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. SDO_CNTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SSYNC_CLK_SEL[1:0]  
R/W  
00b  
These bits select the source and frequency of the clock for the ADC-  
Clock-Master mode, and are valid only if SDO_MODE[1:0] = 11b.  
00b = External SCLK echo  
01b = Internal clock (INTCLK)  
10b = Internal clock / 2 (INTCLK / 2)  
11b = Internal clock / 4 (INTCLK / 4)  
5
4
0
R
0b  
0b  
Reserved bit. Do not write. Reads return 0b.  
DATA_RATE  
R/W  
This bit is ignored if SDO_MODE[1:0] = 00b. When SDO_MODE[1:0] =  
11b:  
0b = SDOs are updated at single data rate (SDR) with respect to the  
output clock  
1b = SDOs are updated at double data rate (DDR) with respect to the  
output clock  
3-2  
1-0  
SDO_WIDTH[1:0]  
SDO_MODE[1:0]  
R/W  
R/W  
00b  
00b  
These bits set the width of the output bus.  
0xb = Data are output only on SDO-0  
10b = Data are output only on SDO-0 and SDO-1  
11b = Data are output on SDO-0, SDO-1, SDO-2, and SDO-3  
These bits select the protocol for reading data from the device.  
00b = SDO follows the SPI protocol selected in the SDI_CNTL register  
01b = SDO follows the SPI protocol selected in the SDI_CNTL register  
but with Early Data Launch feature enabled. See Table 6.  
10b = Invalid configuration, not supported by the device  
11b = SDO follows the source-synchronous protocol  
Copyright © 2016–2017, Texas Instruments Incorporated  
53  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.6.1.4 DATA_CNTL Register (address = 010h) [reset = 00h]  
This register configures the contents of the 22-bit output data word (D[21:0]).  
Figure 97. DATA_CNTL Register  
7
0
6
0
5
0
4
0
3
2
1
0
FPAR_LOC[1:0]  
R/W-00b  
PAR_EN  
R/W-0b  
DATA_VAL  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. DATA_CNTL Register Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R
Reset  
0000b  
00b  
Description  
0
Reserved bits. Reads return 0000b.  
FPAR_LOC[1:0]  
R/W  
These bits control the data span for calculating the FTPAR bit (bit D[4] in  
the output data word).  
00b = D[4] reflects even parity calculated for 4 MSB  
01b = D[4] reflects even parity calculated for 8 MSB  
10b = D[4] reflects even parity calculated for 12 MSB  
11b = D[4] reflects even parity calculated for all 16 bits (that is, the same  
as FLPAR)  
1
0
PAR_EN  
R/W  
R/W  
0b  
0b  
0b = Output data does not contain any parity information  
D[5] = 0  
D[4] = 0  
1b = Parity information is appended to the LSB of the output data  
D[5] = Even parity calculated on bits D[21:6]  
D[4] = Even parity computed on selected number of MSB of D[21:6]  
as per FPAR_LOC[1:0] setting  
See Figure 44 for further details of parity computation.  
DATA_VAL  
These bits control bits D[21:6] of the output data word.  
0b = 16-bit conversion output  
1b = 16-bit contents of the fixed-pattern registers  
See PATN CNTL for more details.  
54  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.6.1.5 PATN_LSB Register (address = 014h) [reset = 00h]  
This register controls the eight LSB of the output pattern when DATA_VAL = 1b; see Figure 101.  
Figure 98. PATN_LSB Register  
7
6
5
4
3
2
1
0
PATN_LSB_BITS  
R/W-00000000b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. PATN_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PATN_LSB_BITS  
R/W  
00000000b  
8 LSB of the output pattern  
7.6.1.6 PATN_MID Register (address = 015h) [reset = 00h]  
This register controls the middle eight bits of the output pattern when DATA_VAL = 1b; see Figure 101.  
Figure 99. PATN_MID Register  
7
6
5
4
3
2
1
0
PATN_MID_BITS  
R/W-00000000b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. PATN_MID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PATN_MID_BITS  
R/W  
00000000b  
8 middle bits of the output pattern  
7.6.1.7 PATN_MSB Register (address = 016h) [reset = 00h]  
This register controls the four MSB of the output pattern when DATA_VAL = 1b; see Figure 101.  
Figure 100. PATN_MSB Register  
7
0
6
0
5
0
4
0
3
2
1
0
PATN_MSB_BITS  
R/W-0000b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. PATN_MSB Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
0000b  
0000b  
Description  
0
Reserved bits. Reads return 0000b.  
4 MSB of the output pattern  
PATN_MSB_BITS  
R/W  
16-bit pattern  
DATA_PATN[15:0]  
P15  
P12  
P11  
P4  
P3  
P0  
PATN_MSB[3:0]  
4-bits  
PATN_MID[7:0]  
8-bits  
PATN_LSB[7:4]  
4-bits  
Figure 101. DATA_PATN[15:0]  
Copyright © 2016–2017, Texas Instruments Incorporated  
55  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.6.1.8 OFST_CAL Register (address = 020h) [reset = 00h]  
This register selects the external reference range for optimal offset calibration.  
Figure 102. OFST_CAL Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
REF_SEL[2:0]  
R/W-000b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. OFST_CAL Register Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R
Reset  
00000b  
000b  
Description  
0
Reserved bits. Reads return 00000b.  
REF_SEL[2:0]  
R/W  
These bits select the external reference range for optimal offset.  
000b = Optimum offset calibration for VREF = 5.0 V  
001b = Optimum offset calibration for VREF = 4.5 V  
010b = Optimum offset calibration for VREF = 4.096 V  
011b = Optimum offset calibration for VREF = 3.3 V  
100b = Optimum offset calibration for VREF = 3.0 V  
101b = Optimum offset calibration for VREF = 2.5 V  
110b = Optimum offset calibration for VREF = 5.0 V  
111b = Optimum offset calibration for VREF = 5.0 V  
56  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
7.6.1.9 REF_MRG Register (address = 030h) [reset = 00h]  
This register selects the margining to be added to or subtracted from the reference buffer output; see the  
Reference Buffer Module section.  
Figure 103. REF_MRG Register  
7
0
6
0
5
4
3
2
1
0
EN_MARG  
R/W-0b  
REF_OFST[4:0]  
R/W-00000b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. REF_MRG Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R
Reset  
00b  
0b  
Description  
0
Reserved bits. Reads return 00b.  
EN_MARG  
R/W  
This bit enables margining feature.  
0b = Margining is disabled  
1b = Margining is enabled  
4-0  
REF_OFST[4:0]  
R/W  
00000b  
These bits select the reference offset value as per Table 20.  
Table 20. REF_OFST[4:0] settings  
REF_OFST[4:0]  
ΔVREFBUFOUT (typical(1)  
0 mV  
)
00000b  
00001b  
00010b  
00011b  
00100b  
00101b  
00110b  
00111b  
01000b  
01001b  
01010b  
01011b  
01100b  
01101b  
01110b  
01111b  
10000b  
10001b  
10010b  
10011b  
10100b  
10101b  
10110b  
10111b  
11000b  
11001b  
11010b  
11011b  
11100b  
11101b  
11110b  
11111b  
280 µV  
580 µV  
840 µV  
1.12 mV  
1.4 mV  
1.68 mV  
1.96 mV  
2.24 mV  
2.52 mV  
2.8 mV  
3.08 mV  
3.36 mV  
3.64 mV  
3.92 mV  
4.2 mV  
–4.5 mV  
–4.22 mV  
–3.94 mV  
–3.66 mV  
–3.38 mV  
–3.1 mV  
–2.82 mV  
–2.54 mV  
–2.26 mV  
–1.98 mV  
–1.7 mV  
–1.42 mV  
–1.14 mV  
–860 µV  
–580 µV  
–280 µV  
(1) The actual VREFBUFOUT value may vary by ±10% from Table 20  
Copyright © 2016–2017, Texas Instruments Incorporated  
57  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section presents general principles for designing these circuits, followed by an application circuit designed using  
the ADS892xB.  
8.1.1 ADC Reference Driver  
The external reference source must provide low-drift and very accurate voltage at the REFIN pin of the  
ADS892xB. The output broadband noise of most references can be in the order of a few hundred μVRMS  
.
Therefore, to prevent any degradation in the noise performance of the ADC, appropriately filter the output of the  
voltage reference by using a low-pass filter with a cutoff frequency of a few hundred hertz.  
The internal reference buffer of the ADS892xB provides the dynamic load posed on the REFBUFOUT pin during  
the conversion process. Decouple the REFBUFOUT pin with the REFM pin using the recommended CREFBUF and  
RESR. See the Layout section for layout recommendations.  
8.1.2 ADC Input Driver  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a charge  
kickback filter. The amplifier is used for signal conditioning of the input signal and the low output impedance of  
the amplifier provides a buffer between the signal source and the switched capacitor inputs of the ADC. The  
charge kickback filter helps attenuate the sampling charge injection from the switched-capacitor input stage of  
the ADC, and band-limits the wideband noise contributed by the front-end circuit. Careful design of the front-end  
circuit is critical to meet the linearity and noise performance of the ADS892xB.  
8.1.2.1 Charge-Kickback Filter  
The charge-kickback filter is an RC filter at the input pins of the ADC that filters the broadband noise from the  
front-end drive circuitry, and attenuates the sampling charge injection from the switched-capacitor input stage of  
the ADC. A filter capacitor, CFLT, is connected from each input pin of the ADC to the ground (as shown in  
Figure 104). This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly  
charge the internal sample-and-hold capacitors during the acquisition process. Generally, the value of this  
capacitor must be at least 20 times the specified value of the ADC sampling capacitance. For the ADS892xB, the  
input sampling capacitance is equal to 60 pF; therefore, for optimal performance, keep CFLT greater than 1.2 nF.  
This capacitor must be a COG- or NPO-type. The type of dielectric used in COG or NPO ceramic capacitors  
provides the most stable electrical properties over voltage, frequency, and temperature changes.  
RFLT  
2.2  
CFLT  
10 nF  
ADS89xxB  
RFLT  
2.2 ꢀ  
CFLT  
10 nF  
Figure 104. Charge Kickback Filter Configuration  
58  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Application Information (continued)  
Driving capacitive loads can degrade the phase margin of the input amplifier, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT helps with amplifier stability, but adds distortion as a result of interactions  
with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal  
frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability of the  
driver amplifier and distortion performance of the design. Always verify the stability and settling behavior of the  
driving amplifier and charge-kickback filter by TINA-TI™ SPICE simulation. Keep the tolerance of the selected  
resistors less than 1% to keep the inputs balanced.  
8.1.2.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type, as well as the performance  
goals, of the data acquisition system. Some key amplifier specifications to consider when selecting an  
appropriate amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the ADC sample-and-hold capacitor and the  
RC filter (Charge-Kickback Filter) at the inputs of the ADC. Higher bandwidth amplifiers offer faster settling  
times while driving the capacitive load of the charge-kickback filter, thus reducing harmonic distortion at  
higher input frequencies. In order to maintain the overall stability of the input driver circuit, select the amplifier  
with a unity gain bandwidth (UGB) as described in Equation 16:  
«
÷
1
UGB í 4 ì  
2p  
ì RFLT ì CFLT  
(16)  
Distortion. Both the ADC and the input driver introduce distortion in a data acquisition block. To make sure  
that the distortion performance of the data acquisition system is not limited by the front-end circuit, the  
distortion of the input driver must be at least 10 dB less than the distortion of the ADC, as shown in  
Equation 17.  
THDAMP Ç THDADC - 10  
(
dB  
)
(17)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. Generally, to make sure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be  
kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is band-limited by  
designing a low cutoff frequency, charge-kickback filter, as explained in Equation 18.  
2
SNR  
(
dB  
)
÷
V
÷
-
1
_ AMP_PP  
p
2
1
5
VREF  
2
20  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
f
«
NG ì 2 ì  
÷
÷
6.6  
«
where:  
V1 / f_AMP_PP is the peak-to-peak flicker noise in µV  
en_RMS is the amplifier broadband noise density in nV/Hz  
f–3dB is the 3-dB bandwidth of the charge-kickback filter  
NG is the noise gain of the front-end circuit that is equal to 1 in a buffer configuration  
(18)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle within an 16-bit accuracy at the device inputs during the acquisition time window. This condition is  
critical to maintain the overall linearity performance of the ADC. Typically, amplifier data sheets specify the  
output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 16-bit  
accuracy. Therefore, always verify the settling behavior of the input driver by TINA-TI SPICE simulations  
before selecting the amplifier.  
Copyright © 2016–2017, Texas Instruments Incorporated  
59  
 
 
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
8.2 Typical Application  
8.2.1 Data Acquisition (DAQ) Circuit for Lowest Distortion and Noise Performance With Differential Input  
ADS89xxB  
5 V  
1 k  
REFBUFOUT  
REFIN  
VIN  
VOUT  
BUF  
REF5045  
0.1 ꢁ  
10 F  
1 F  
10 F  
0.1 ꢁ  
22 F  
GND  
REFM  
5 V  
RVDD  
1 nF  
1 F  
1 F  
1 kꢁ  
DECAP  
LDO  
5 V  
1 kꢁ  
2.2 ꢁ  
10 nF  
10 nF  
VCM  
1.12 V  
OPA2625  
ADC  
2.2 ꢁ  
GND  
1 kꢁ  
1 kꢁ  
1 nF  
Figure 105. Differential-Input DAQ Circuit for Lowest Distortion and Noise Using the ADS892xB  
8.2.1.1 Design Requirements  
For this example, the design parameters are listed in Table 21.  
Table 21. Design Parameters  
DESIGN PARAMETER  
ADC sample rate  
Input signal  
EXAMPLE VALUE  
Maximum-specified throughput  
2-kHz input, 4.5-VPP fully differential  
> 96-dB  
Noise performance, SNR  
Distortion, THD  
Linearity, INL  
< –120-dB  
< ±0.5-LSB  
Reference  
4.5 V  
Power supply  
< 5.5-V analog, 3.3-V I/O  
8.2.1.2 Detailed Design Procedure  
The application circuit is illustrated in Figure 105. For simplicity, power-supply decoupling capacitors are not  
shown in these circuit diagrams; see the Power-Supply Recommendations section for suggested guidelines.  
The reference voltage of 4.5 V is generated by the high-precision, low-noise REF5045 circuit. The output  
broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 16 Hz.  
60  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Generally, the distortion from the input driver must be at least 10 dB less than the ADC distortion. The low-power  
OPA2625 (a high-bandwidth, low-distortion, high-precision amplifier in an inverting gain configuration) as an input  
driver provides exceptional ac performance because of its extremely low-distortion and high-bandwidth  
specifications. The distortion resulting from variation in the common-mode signal is eliminated by using the  
OPA2625 in an inverting gain configuration. To exercise the complete dynamic range of the device, the common-  
mode voltage at the ADS892xB inputs is established at a value of 2.25 V (4.5 V / 2) by using the noninverting  
pins of the OPA2625 amplifiers. In addition, the components of the charge kickback filter keep the noise from the  
front-end circuit low without adding distortion to the input signal.  
For a complete schematic, see the ADS8920BEVM-PDK user's guide located in the ADS8920B SAR Analog to  
Digital Converter Evaluation Module web folder at www.ti.com.  
A similar circuit is used in reference design TIPD211, a step-by-step process to design a 20-Bit, 1-MSPS, 4-Ch  
Small Form Factor Design for Test and Measurement Applications using four ADS8900B SAR ADCs, four  
OPA2625 precision amplifiers and one REF5050 precision reference.  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIPD211, 18-Bit, 1-MSPS, 4-Ch Small Form Factor Design for Test and  
Measurement Applications (TIDUBW7).  
8.2.1.3 Application Curves  
0
-50  
0.5  
0.25  
0
-100  
-150  
-200  
-0.25  
-0.5  
-32768  
32767  
0
100  
200  
300  
400  
500  
ADC Output Code  
fIN, Input Frequency (kHz)  
D002  
D011  
16-bit NMC DNL, ±0.2-LSB INL  
96.2-dB SNR, –124-dB THD  
Figure 106. Typical Linearity  
Figure 107. Noise-Performance FFT Plot - ADS8920B  
0
-50  
0
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
50  
100  
150  
200  
250  
0
25  
50  
75  
100  
125  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D029  
D030  
96.2-dB SNR, –124-dB THD  
96.2-dB SNR, –124-dB THD  
Figure 108. Noise-Performance FFT Plot - ADS8922B  
Figure 109. Noise-Performance FFT Plot - ADS8924B  
Copyright © 2016–2017, Texas Instruments Incorporated  
61  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
8.2.2 DAQ Circuit With FDA Input Driver and Single-Ended or Differential Input  
ADS89xxB  
5 V  
1 k  
REFBUFOUT  
REFIN  
VIN  
VOUT  
BUF  
REF5045  
0.1 ꢁ  
10 F  
1 F  
10 F  
0.1 ꢁ  
GND  
22 F  
REFM  
5 V  
RVDD  
1 nF  
1 F  
1 F  
DECAP  
1 k  
LDO  
1 kꢁ  
VOCM  
2.2 ꢁ  
10 ꢁ  
5 V  
THS4551  
10 nF  
ADC  
1 kꢁ  
2.2 ꢁ  
GND  
10 ꢁ  
1 kꢁ  
Copyright © 2017, Texas Instruments Incorporated  
1 nF  
Figure 110. DAQ Circuit With FDA Input Driver and Differential Input  
ADS89xxB  
5 V  
1 k  
REFBUFOUT  
REFIN  
VIN  
REF5045  
GND  
VOUT  
BUF  
0.1 ꢁ  
10 F  
1 F  
10 F  
0.1 ꢁ  
22 F  
REFM  
5 V  
RVDD  
1 F  
1 F  
1 nF  
1 k  
DECAP  
LDO  
1 kꢁ  
VOCM  
2.2 ꢁ  
10 ꢁ  
5 V  
THS4551  
10 nF  
ADC  
1 kꢁ  
2.2 ꢁ  
GND  
10 ꢁ  
1 kꢁ  
Copyright © 2017, Texas Instruments Incorporated  
1 nF  
Figure 111. DAQ Circuit With FDA Input Driver and Single-Ended Input  
8.2.3 Design Requirements  
For this example, the design parameters are listed in Table 22.  
62  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
Table 22. Design Parameters  
DESIGN PARAMETER  
ADC sample rate  
Input signal  
EXAMPLE VALUE  
Maximum-specified throughput  
2-kHz input, ±4.5-VPP fully differential and ±4.5-VPP single-ended bipolar signal  
Noise performance, SNR  
Distortion, THD  
Linearity, INL  
> 96-dB  
< –120-dB  
< ±0.5-LSB  
Reference  
4.5 V  
Power supply  
< 5.4-V analog, 3.3-V I/O  
8.2.4 Detailed Design Procedure  
The application circuits are shown in Figure 110 and Figure 111. In both applications, the input signal is  
processed through a high-bandwidth, low-distortion, fully-differential amplifier (FDA) designed in a gain of 1 V/V  
and a low-pass RC filter before going to the ADC.  
The reference voltage of 4.5 V generated by the high-precision, low-noise REF5045 circuit. The output  
broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 16 Hz.  
Generally, the distortion from the input driver must be at least 10 dB less than the ADC distortion. The distortion  
resulting from variation in the common-mode signal is eliminated by using the FDA in an inverting gain  
configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates the  
requirement of a rail-to-rail swing at the amplifier input. Therefore, these circuits use the low-power THS4551 as  
an input driver that provides exceptional ac performance because of its extremely low-distortion and high  
bandwidth specifications. In addition, the components of the charge kickback filter keep the noise from the front-  
end circuit low without adding distortion to the input signal.  
The circuit in Figure 110 shows a fully-differential data acquisition (DAQ) block optimized for low distortion and  
noise using the THS4551 and ADS892xB. This front-end circuit configuration requires a differential signal at the  
input of the FDA and provides a differential output to drive the ADC inputs. The common-mode voltage of the  
input signal provided to the ADC is set by the VOCM pin of the THS4551 (not shown in Figure 110). To use the  
complete dynamic range of the ADC, VOCM can be set to VREF / 2 by using a simple resistive divider.  
The circuit in Figure 111 shows a single-ended to differential DAQ block optimized for low distortion and noise  
using the THS4551 and the ADS892xB. This front-end circuit configuration requires a single-ended bipolar signal  
at the input of the FDA and provides a fully-differential output to drive the ADC inputs. The common-mode  
voltage of the input signal provided to the ADC is set by the VOCM pin of the THS4551 (not shown in Figure 111).  
To use the complete dynamic range of the ADC, VOCM can be set to VREF / 2 by using a simple resistive divider.  
8.2.5 Application Curves  
0.5  
0.25  
0
0.5  
0.25  
0
-0.25  
-0.25  
-0.5  
-0.5  
-32768  
32767  
-32768  
32767  
ADC Output Code  
ADC Output Code  
D031  
D032  
±0.15-LSB INL  
±0.15-LSB INL  
Figure 112. Typical Linearity, Differential Input  
Figure 113. Typical Linearity, Single-Ended Input  
Copyright © 2016–2017, Texas Instruments Incorporated  
63  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D033  
D034  
SNR = 96.1 dB, THD = –131.7 dB  
SNR = 95.9 dB, THD = –125.9 dB  
Figure 114. Noise-Performance FFT Plot: ADS8920B,  
Differential Input  
Figure 115. Noise-Performance FFT Plot: ADS8920B,  
Single-Ended Input  
0
0
-50  
-100  
-150  
-200  
-50  
-100  
-150  
-200  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D035  
D036  
SNR = 96.2 dB, THD = –132 dB  
SNR = 96 dB, THD = –126 dB  
Figure 116. Noise-Performance FFT Plot: ADS8922B,  
Differential Input  
Figure 117. Noise-Performance FFT Plot: ADS8922B,  
Single-Ended Input  
0
0
-50  
-100  
-150  
-200  
-50  
-100  
-150  
-200  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
D037  
D038  
SNR = 96.1 dB, THD = –131.5 dB  
SNR = 95.9 dB, THD = –125.6 dB  
Figure 118. Noise-Performance FFT Plot: ADS8924B,  
Differential Input  
Figure 119. Noise-Performance FFT Plot: ADS8924B,  
Single-Ended Input  
64  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
9 Power-Supply Recommendations  
The devices have two separate power supplies: RVDD and DVDD. The internal reference buffer and the internal  
LDO operate on RVDD. The ADC core operates on the LDO output (available on the DECAP pins). DVDD is used  
for the interface circuits. RVDD and DVDD can be independently set to any value within their permissible ranges.  
During normal operation, if RVDD supply drops below the RVDD minimum specification, ramp the RVDD supply  
down to 0.7 V before power-up. During power-up, RVDD must rise monotonically to the recommended minimum  
operating voltage.  
The RVDD supply voltage value defines the permissible range for the external reference voltage VREF on REFIN  
pin as:  
2.5 V VREF (RVDD – 0.3) V  
(19)  
Place a 10-µF decoupling capacitor between the RVDD and GND pins, and between the DVDD and GND pins,  
as shown in Figure 120. Use a minimum 1-µF decoupling capacitor between the DECAP pins and the GND pin.  
ADS89xxB  
RVDD  
BUF  
RVDD  
DECAP  
LDO  
DVDD  
10 F  
1 F  
ADC  
DVDD  
10 µF  
GND  
Figure 120. Power-Supply Decoupling  
Copyright © 2016–2017, Texas Instruments Incorporated  
65  
 
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
This section provides some layout guidelines for achieving optimum performance with the ADS892xB device  
family.  
10.1.1 Signal Path  
As illustrated in Figure 121, the analog input signals are routed in opposite directions to the digital connections.  
The reference decoupling components are kept away from the switching digital signals. This arrangement  
prevents noise generated by digital switching activity from coupling to sensitive analog signals.  
10.1.2 Grounding and PCB Stack-Up  
Low inductance grounding is critical for achieving optimum performance. Grounding inductance is kept below 1  
nH with 15-mil grounding vias and a printed circuit board (PCB) layout design that has at least four layers. Place  
all critical components of the signal chain on the top layer with a solid analog ground from subsequent inner  
layers to minimize via length to ground.  
For lowest inductance grounding, connect the GND pins of the ADS892xB (pin 11 and pin 15) directly to the  
device thermal pad and place at least four 8-mil grounding vias on the device thermal pad.  
10.1.3 Decoupling of Power Supplies  
Place the decoupling capacitors on RVDD, the LDO output, and DVDD within 20 mil from the respective pins, and  
use a 15-mil via to ground from each capacitor. Avoid placing vias between any supply pin and the respective  
decoupling capacitor.  
10.1.4 Reference Decoupling  
Dynamic currents are also present at the REFBUFOUT and REFM pins during the conversion phase, and  
excellent decoupling is required to achieve optimum performance. Place a 10-μF, X7R-grade, ceramic capacitor  
with at least 10-V rating and an ESR of 1-Ω between the REFBUFOUT and the REFM pins, as illustrated in  
Figure 121. Select 0603- or 0805-size capacitors to keep equivalent series inductance (ESL) low. Connect the  
REFM pins to the decoupling capacitor before a ground via.  
10.1.5 Differential Input Decoupling  
Dynamic currents are also present at the differential analog inputs of the ADS892xB. Use C0G- or NPO-type  
capacitors to decouple these inputs because with these type of capacitors, capacitance stays almost constant  
over the full input voltage range. Lower-quality capacitors (such as X5R and X7R) have large capacitance  
changes over the full input-voltage range that may cause degradation in the performance of the device.  
66  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
10.2 Layout Example  
REFM  
GND  
External  
Reference  
Input  
CREFBUF  
Reference  
Decoupling  
RESR  
GND  
REFIN  
REFBUFOUT  
RST  
1
CONVST  
CS  
GND  
7
GND  
GND  
SCLK  
SDI  
AINP  
RVS  
AINM  
GND  
SDO-0  
SDO-1  
19  
SDO-2  
SDO-3  
+
Differential  
Analog Input  
Digital Inputs  
and Outputs  
-
GND  
Analog Input  
GND  
GND  
GND  
Power Supply  
Figure 121. Recommended Layout  
版权 © 2016–2017, Texas Instruments Incorporated  
67  
ADS8920B  
ADS8922B  
ADS8924B  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 Documentation Support  
11.1.1 相关文档  
如需相关文档,请参阅:  
ADS8920BEVM-PDK 用户指南》(文献编号:SBAU270)  
《通过 TI multiSPI™ 数字接口为 SAR ADC 实现更快、更智能、更强大的系统解决方案》  
《超声波 CW 多普勒求和及 20 位真正原始数据转换参考设计》  
《适用于测试和测量应用的 20 位、1MSPS4 通道 接收器 参考设计  
《可实现最大 SNR 和采样率的 20 位、1MSPS 隔离器优化数据采集参考设计》  
《优化抖动以实现最大 SNR 和采样率的 20 位、1MSPS 隔离式数据采集 (DAQ) 参考设计》  
《使用增强型 SPI ADC 接口简化隔离设计》  
《优化高分辨率和高吞吐量数据转换器上的数据传输》  
《改善精密数据转换器的输入趋稳》  
OPAx625 高带宽、高精度、低 THD+N16 位和 18 位模数转换器 (ADC) 驱动器数据表》  
REF5050 低噪声、极低漂移、精密电压基准数据表》  
THS4551 低噪声、高精度 150MHz 全差分放大器》  
11.2 相关链接  
下面的表格中列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链  
接。  
23. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
ADS8920B  
ADS8922B  
ADS8924B  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. 有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
68  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS8920B  
ADS8922B  
ADS8924B  
www.ti.com.cn  
ZHCSFE1B JUNE 2016REVISED AUGUST 2017  
11.5 商标  
multiSPI, TINA-TI, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
69  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS8920BRGER  
ADS8920BRGET  
ADS8922BRGER  
ADS8922BRGET  
ADS8924BRGER  
ADS8924BRGET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
8920B  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
8920B  
8922B  
8922B  
8924B  
8924B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS8920BRGER  
ADS8920BRGET  
ADS8922BRGER  
ADS8922BRGET  
ADS8924BRGER  
ADS8924BRGET  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS8920BRGER  
ADS8920BRGET  
ADS8922BRGER  
ADS8922BRGET  
ADS8924BRGER  
ADS8924BRGET  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY