ADS9226IRHBT [TI]

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125;
ADS9226IRHBT
型号: ADS9226IRHBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125

文件: 总36页 (文件大小:2163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS9226  
ZHCSLM5 JULY 2020  
ADS9226 16 位双通道、低延迟、同步采SAR ADC  
1 特性  
3 说明  
• 高分辨率、高吞吐量  
ADS9226 是一款 16 位双通道同步采样模数转换器  
(ADC)具有集成式基准缓冲器。该器件可由 5V 单电  
源供电运行支持单极和伪差分模拟输入信号具有出  
色的直流和交流规格。  
16 2.048MSPS  
• 低延迟快速响应时间488ns  
• 两个同步采样通道  
• 单极伪差分输入  
• 出色的直流和交流性能:  
该器件支持 SPI 兼容串行增强型 SPI接口因此  
易于与多种微控制器、数字信号处理器 (DSP) 和现场  
可编程门阵(FPGA) 搭配使用。  
16 无丢码  
±2.75LSB INL  
该器件采用节省空间的 5mm × 5mm VQFN 封装。  
ADS9226 的额定工作温度范围40°C +125°C。  
90.8dB SNR-100dB THD  
• 宽模拟电源电压范围4V 5.5V  
• 集成式基准缓冲器  
SPI 兼容串行接口  
• 工作温度范围40°C +125°C  
• 小尺寸5mm × 5mm VQFN  
器件信息(1)  
封装尺寸标称值)  
器件型号  
ADS9226  
封装  
VQFN (32)  
5.00mm x 5.00mm  
(1) 如需了解所有可用封装请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
伺服驱动器位置反馈  
伺服驱动器功率级模块  
电信光模块  
电能质量分析仪  
直流/交流电源电子负载  
Absolute/Incremental Encoder  
SONAR  
Reference  
Position  
I
ADC  
sine  
0°  
ADC  
Baseband  
Signal  
Host  
Host  
Encoder  
Q
ADC  
cosine  
ADC  
90°  
Low Latency SAR  
Low Latency SAR  
Local Oscillator  
典型应用图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS842  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 24  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 28  
11 Device and Documentation Support..........................29  
11.1 Related Documentation...........................................29  
11.2 Receiving Notification of Documentation Updates..29  
11.3 Support Resources................................................. 29  
11.4 Trademarks............................................................. 29  
11.5 Electrostatic Discharge Caution..............................29  
11.6 Glossary..................................................................29  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Switching Characteristics............................................8  
6.8 Timing Diagrams.........................................................9  
6.9 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
July 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
24  
23  
22  
21  
20  
19  
18  
17  
AINP_A  
SDO-0A  
SDO-1A  
2
AINM_A  
3
NC  
4
GND  
Thermal Pad  
5
SDO-0B  
SDO-1B  
REFIN  
6
NC  
7
AINM_B  
8
AINP_B  
5-1. RHB Package, 5-mm × 5-mm, 32-Pin VQFN, Top View  
Pin Functions  
PIN  
NAME  
NO.  
2
FUNCTION  
Analog input  
Analog input  
Analog input  
Analog input  
DESCRIPTION  
Negative analog input for channel A.  
AINM_A  
AINM_B  
7
Negative analog input for channel B.  
Positive analog input for channel A.  
Positive analog input for channel B.  
AINP_A  
1
AINP_B  
8
Analog power-supply pin. Short pins 12 and 29 together.  
Place a 1-µF decoupling capacitor between pins 11 and 12.  
Place a 1-µF decoupling capacitor between pins 29 and 30.  
AVDD  
CS  
12, 29  
13, 14  
26, 28  
Power supply  
Digital input  
Power supply  
Chip-select input pin; active low.  
The device takes control of the data bus when CS is low.  
The SDO-xy pins go to Hi-Z when CS is high.  
Connect these pins together externally with a short trace.  
Interface power-supply pin.  
Place a 1-µF decoupling capacitor between pins 27 and 26 and pins 27  
and 28.  
DVDD  
4, 11, 15, 27,  
30  
GND  
NC  
Power supply  
No connection  
Device ground.  
3, 6, 17, 18,  
21, 22, 25  
No external connection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS9226  
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
PIN  
NAME  
NO.  
FUNCTION  
DESCRIPTION  
Reference voltage for the ADC.  
REFIN  
5
Analog input  
ADC_A negative reference input.  
Externally connect to the device GND.  
REFM_A  
REFM_B  
REFP_A  
REFP_B  
32  
9
Analog input  
Analog input  
Analog output  
Analog output  
ADC_B negative reference input.  
Externally connect to the device GND.  
Positive output of reference buffer A. ADC_A positive reference input.  
Place a 10-µF decoupling capacitor between pins 31 and 32.  
31  
10  
Positive output of reference buffer B. ADC_B positive reference input.  
Place a 10-µF decoupling capacitor between pins 9 and 10.  
SCLK  
16  
24  
20  
23  
19  
Digital input  
Digital output  
Digital output  
Digital output  
Digital output  
Clock input pin for the serial interface.  
Data output 0 for channel A.  
Data output 0 for channel B.  
Data output 1 for channel A.  
Data output 1 for channel B.  
SDO-0A  
SDO-0B  
SDO-1A  
SDO-1B  
Exposed thermal pad. TI recommends connecting this pin to the printed  
circuit board (PCB) ground.  
Thermal pad  
Supply  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS9226  
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
6
UNIT  
V
AVDD to GND  
DVDD to GND  
6
V
0.3  
Digital input pins  
DVDD + 0.3  
DVDD + 0.3  
AVDD + 0.3  
GND + 0.1  
AVDD + 0.3  
AVDD + 0.3  
10  
V
GND 0.3  
GND 0.3  
0.3  
Digital output pins  
V
AINP_A, AINP_B to GND, AINM_A, AINM_B to GND  
REFM_A, REFM_B  
V
V
GND 0.1  
GND 0.3  
0.3  
REFP_A, REFP_B to GND  
V
Reference input voltage  
REFIN to GND  
V
Input or output current to any pin except power-supply pin  
Junction temperature, TJ  
mA  
°C  
°C  
10  
150  
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
AVDD  
4
1.65  
2.35  
5
3
3
5.5  
5.5  
5.5  
V
V
Operating  
SCLK > 20 MHz  
DVDD  
EXTERNAL REFERENCE INPUT  
External reference  
VREFIN  
1.4  
AVDD/2  
V
AVDD/1.75 0.2  
input voltage  
ANALOG INPUTS  
FSR  
Full-scale input range  
VREFIN  
V
V
VREFIN  
0.1  
Absolute input voltage  
AINP_x(1)  
VINP_x  
AVDD + 0.1  
Absolute input voltage  
AINM_x(2)  
VINM_x  
VREFIN  
VREFIN + 0.1  
V
V
REFIN 0.1  
TEMPERATURE RANGE  
TA Ambient temperature  
25  
125  
°C  
40  
(1) AINP_x refers to AINP_A and AINP_B positive input pins for ADC_A and ADC_B respectively.  
(2) AINM_x refers to AINM_A and AINM_B positive input pins for ADC_A and ADC_B respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS9226  
 
 
 
 
 
 
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
ADS9226  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
29  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.1  
9.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
9.4  
ΨJB  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at AVDD = 4 V to 5.5 V, DVDD = 3.3 V, VREFIN = AVDD / 2 and maximum throughput (unless otherwise noted); minimum and  
maximum values at TA = 40°C to +125°C; typical values at TA = 25°C and AVDD = 5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT  
IIN  
Analog input leakage current  
±1  
16  
1
µA  
pF  
Sample mode  
Ci  
Input capacitance  
Hold mode  
52  
4.2  
3-dB input signal  
0.1-dB input signal  
BW  
Analog input bandwidth  
MHz  
DC ACCURACY  
Resolution  
No missing codes  
16  
0.55  
2.75  
9  
bit  
DNL  
INL  
EO  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
±0.25  
±1  
0.55  
2.75  
9
LSB  
LSB  
LSB  
LSB  
±2  
Offset error matching  
±0.5  
ΔEO/  
ΔT  
Offset error temperature drift  
1
ppm/℃  
GE  
Gain error  
±0.01  
0.2  
0.027 %FSR  
%FSR  
0.027  
Gain error matching  
ΔGE/  
ΔT  
Gain drift  
5
ppm/°C  
LSB  
Mid code, PFS 1000, NFS +  
1000  
Transition noise  
0.675  
AC ACCURACY  
fIN = 2 kHz  
88  
87  
90.8  
90  
SNR  
Signal-to-noise ratio  
dB  
dB  
dB  
fIN = 100 kHz  
fIN = 2 kHz  
90.5  
89.6  
100  
95  
105  
SINAD  
THD  
Signal-to-noise plus distortion  
Total harmonic distortion  
fIN = 100 kHz  
fIN = 2 kHz  
fIN = 100 kHz  
fIN = 2 kHz  
SFDR  
Spurious-free dynamic range  
Channel to channel isolation  
dB  
dB  
fIN = 100 kHz  
100  
fIN_ADCA = 15 kHz at 10% FSR  
fIN_ADCB = 25 kHz at 100% FSR  
ISOXT  
115  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
at AVDD = 4 V to 5.5 V, DVDD = 3.3 V, VREFIN = AVDD / 2 and maximum throughput (unless otherwise noted); minimum and  
maximum values at TA = 40°C to +125°C; typical values at TA = 25°C and AVDD = 5 V  
PARAMETER  
INTERNAL REFERENCE BUFFER  
GREFBUF Reference buffer gain  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.75  
0
V/V  
Reference buffer output offset  
1
mV  
µV/C  
µV  
1  
(1)  
(VREFP_x - VREFIN  
)
Reference buffer output offset  
temperature drift  
10  
±50  
10  
Reference buffer output mismatch  
500  
27  
500  
(VREFP_A - VREFP_B  
)
For specified performance, between  
each pair of REFP_x and REFM_x  
CREFP_x Reference buffer output capacitor  
7
µF  
DIGITAL INPUTS  
VIH  
VIL  
VIH  
VIL  
High-level input voltage  
Low-level intput voltage  
High-level input voltage  
Low-level intput voltage  
0.7 × DVDD  
0.3  
DVDD +0.3  
0.3 × DVDD  
DVDD +0.3  
0.2 × DVDD  
V
V
V
V
DVDD > 2.3 V  
0.8 × DVDD  
0.3  
DVDD 2.3 V  
DIGITAL OUTPUTS  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = 500-µA source  
IOH = 500-µA sink  
0.8 × DVDD  
0
DVDD  
V
V
0.2 × DVDD  
POWER SUPPLY  
AVDD = 5 V, fDATA = 2.048 MSPS  
AVDD = 5 V, no conversion  
16.5  
9
20  
IAVDD  
Analog supply current  
mA  
dB  
100-mVp-p ripple on AVDD,  
frequency < 100 kHz  
PSRR  
Power supply rejection ratio  
70  
(1) REFP_x refers to the REFP_A and REFP_B reference pins for the ADC_A and ADC_B respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6.6 Timing Requirements  
at AVDD = 4 V to 5.5 V, DVDD = 2.35 V to 5.5 V and maximum throughput (unless otherwise noted); minimum and maximum  
values at TA = 40°C to +125°C; typical values at TA = 25°C, AVDD = 5 V and DVDD = 3.3 V  
MIN  
NOM  
MAX  
UNIT  
CONVERSION CONTROL  
tCycle  
Cycle time  
488  
ns  
kSPS  
ns  
fSample  
tACQ  
Sampling rate  
2048  
Acquisition time  
Pulse duration: CS high  
Pulse duration: CS low  
tCYCLE - 160  
tWH_CS  
tWL_CS  
SPI MODES  
fCLK  
15  
15  
ns  
ns  
Serial clock frequency  
32.768  
MHz  
tCLK  
Serial clock time period  
1/ fCLK  
0.45  
0.45  
14  
tPH_CLK  
tPL_CLK  
tSU_CSCK  
tHT_CKCS  
SCLK high time  
0.55  
0.55  
tCLK  
tCLK  
ns  
SCLK low time  
Setup time: CS faling to first SCLK capture edge  
Delay time: last SCLK launch edge to CS rising  
8
ns  
6.7 Switching Characteristics  
at AVDD = 4 V to 5.5 V, DVDD = 2.35 V to 5.5 V and maximum throughput (unless otherwise noted); minimum and maximum  
values at TA = 40°C to +125°C; typical values at TA = 25°C, AVDD = 5 V and DVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONVERSION  
tCONV  
Conversion time  
422  
ns  
SPI MODES  
tDEN_CSDO  
tDZ_CSDO  
Delay time: CS falling to data valid on SDO-x  
Delay time: CS rising edge to SDO-x tristate  
14  
13  
ns  
ns  
Delay time: SCLK launch edge to next data valid on  
SDO-x  
tD_CKDO  
16  
ns  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6.8 Timing Diagrams  
Sample  
N‘  
Sample  
N+1‘  
tcycle  
> tCONV  
CAVDD  
CS  
SCLK  
Output Data ADCx  
Sample N‘  
SDO-0x  
SDO-1x  
CDVDD  
Output Data ADCx  
Sample N‘  
6-1. Conversion Control Latency-0 Data Capture  
Sample  
N‘  
Sample  
N+1‘  
Sample  
N+2‘  
tcycle  
tWH_CS  
tWL_CS  
CAVDD  
CS  
tCLK  
SCLK  
Output Data ADCx  
Sample N-1‘  
Output Data ADCx  
Sample N‘  
SDO-0x  
SDO-1x  
CDVDD  
Output Data ADCx  
Sample N-1‘  
Output Data ADCx  
Sample N‘  
6-2. Conversion Control Latency-1 Data Capture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
tCLK  
tPL_CK  
tPH_CK  
CS  
SCLK  
tD_CKDO  
tSU_CSCK  
tHT_CKCS  
SDO-xy  
SCLK  
tDEN_CSDO  
tDZ_CSDO  
SDO-xy  
6-3. SPI-Compatible Serial Interface Timing  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS9226  
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6.9 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREFIN = 2.5 V, and fSample = 2.048 MSPS (unless otherwise noted)  
0
-40  
0
-40  
-80  
-80  
-120  
-160  
-200  
-120  
-160  
-200  
0
250  
500  
Frequency (kHz)  
750  
1000  
0
250  
500  
Frequency (kHz)  
750  
1000  
D001  
D002  
fIN = 100 kHz, SNR = 90.1 dB, THD = 99.3 dB  
6-4. Typical FFT at fIN = 100 kHz  
fIN = 500 kHz, SNR = 90 dB, THD = 90.9 dB  
6-5. Typical FFT at fIN = 500 kHz  
95  
93  
91  
89  
87  
85  
95  
93  
91  
89  
87  
85  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
D004  
D005  
fIN = 2 kHz  
fIN = 2 kHz  
6-6. SNR vs Free-Air Temperature  
6-7. SINAD vs Free-Air Temperature  
-98  
-100  
-102  
-104  
-106  
-108  
94  
92  
90  
88  
86  
84  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
0
250  
500  
Frequency (KHz)  
750  
1000  
D006  
D007  
fIN = 2 kHz  
6-8. THD vs Free-Air Temperature  
6-9. SNR vs Input Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREFIN = 2.5 V, and fSample = 2.048 MSPS (unless otherwise noted)  
93  
91  
89  
87  
85  
83  
-85  
-89  
-93  
-97  
-101  
-105  
0
250  
500  
Frequency (KHz)  
750  
1000  
0
250  
500  
Frequency (KHz)  
750  
1000  
D008  
D009  
6-10. SINAD vs Input Frequency  
6-11. THD vs Input Frequency  
45000  
40000  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
0
-40  
-7  
26 59  
Free-Air Temperature (°C)  
92  
125  
D031  
-4  
-3  
-2  
-1  
0
1
2
3
ADC Code  
D010  
Standard deviation = 0.65 LSB  
6-13. Offset Error vs Free-Air Temperature  
6-12. DC Input Histogram  
0.01  
0.005  
0
1
0.6  
0.2  
-0.2  
-0.6  
-1  
-0.005  
-0.01  
-0.015  
-0.02  
-40  
-7  
26 59  
Free-Air Temperature (°C)  
92  
125  
D032  
-32768  
-16384  
0
ADC A Code  
16384  
32768  
D022  
6-14. Gain Error vs Free-Air Temperature  
6-15. Typical DNL ADC A  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS9226  
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREFIN = 2.5 V, and fSample = 2.048 MSPS (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
-32768  
-16384  
0
ADC B Code  
16384  
32768  
-32768  
-16384  
0
ADC A Code  
16384  
32768  
D023  
D024  
6-16. Typical DNL ADC B  
6-17. Typical INL ADC A  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
DNL Max  
DNL Min  
-32768  
-16384  
0
ADC B Code  
16384  
32768  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
D025  
D026  
6-18. Typical INL ADC B  
6-19. DNL vs Free-Air Temperature  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
20  
16  
12  
8
INL Max  
INL Min  
4
0
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
0
512  
1024  
fsample (kSPS)  
1536  
2048  
D027  
D028  
6-20. INL vs Free-Air Temperature  
6-21. Dynamic AVDD Current vs Sampling Rate  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS9226  
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREFIN = 2.5 V, and fSample = 2.048 MSPS (unless otherwise noted)  
20  
19  
18  
17  
16  
15  
10  
9
8
7
6
5
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
-50  
0
50  
Free-Air Temperature (°C)  
100  
150  
D029  
D030  
6-22. Dynamic AVDD Current vs Free-Air Temperature  
6-23. Static AVDD Current vs Free-Air Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS9226  
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADS9226 is a 16-bit, dual-channel, high-speed, simultaneous-sampling, analog-to-digital converter (ADC).  
The device supports pseudo-differential input signals and a full-scale range equal to 2 × VREFIN  
.
When a conversion is initiated, the difference between the AINP_x and AINM_x pins is sampled on the internal  
capacitor array. The device uses an internal clock to perform conversions. During the conversion process, both  
analog inputs are disconnected from the internal circuit. At the end of the conversion process, the device  
reconnects the sampling capacitors to the AINP_x and AINM_x pins and enters an acquisition phase. The device  
includes reference buffers to provide the charge required by the ADCs during conversion.  
The device includes a traditional serial programming interface (SPI)-compatible serial interface to interface with a  
variety of microcontrollers, digital signal processors (DSPs), and field-programmable gate arrays (FPGAs).  
7.2 Functional Block Diagram  
REFM_A  
REFP_A  
REFIN  
DVDD  
AVDD  
REFBUF_A  
AINP_A  
AINM_A  
CS  
ADC_A  
SCLK  
AVDD  
Serial  
Interface  
SDO-0A  
AINP_B  
AINM_B  
ADC_B  
SDO-1B  
AVDD  
REFIN  
REFBUF_B  
REFM_B  
REFP_B  
GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7.3 Feature Description  
From a functional perspective, the device is comprised of five modules: two converters (ADC_A, ADC_B), two  
reference buffers (REFBUF_A, REFBUF_B), and the serial interface, as illustrated in 7.2.  
The converter module samples and converts the analog input into an equivalent digital output code. The  
reference buffers provide the charge required by the converters for the conversion process. The serial interface  
module facilitates communication and data transfer between the device and the host controller.  
7.3.1 Converter Modules  
As shown in 7-1, both converter modules sample the analog input signal (provided between the AINP_x and  
AINM_x pins), compare this signal with the reference voltage (between the pair of REFP_x and REFM_x pins),  
and generate an equivalent digital output code. The converter modules receive the CS input from the interface  
module, and output the ADCST signal and the conversion result back to the interface module.  
REFP_x  
DVDD  
AVDD  
OSC  
CS  
SCLK  
AINP_x  
AINM_x  
CONVST  
ADCST  
Sample-  
and-Hold  
Circuit  
SDO-0A  
Interface  
Module  
Conversion  
Result  
SDO-1B  
AGND  
ADC_A  
ADC_B  
GND  
REFM_x  
7-1. Converter Modules  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7.3.1.1 Analog Input With Sample-and-Hold  
This device supports unipolar, pseudo-differential analog input signals. 7-2 shows a small-signal equivalent  
circuit of the sample-and-hold circuit. Each sampling switch is represented by a resistance (RS1 and RS2,  
typically 120 Ω) in series with an ideal switch (SW1 and SW2). The sampling capacitors, CS1 and CS2, are  
typically 16 pF.  
RS1  
SW1  
AINP_x  
1 pF  
1 pF  
CS1  
AVDD  
CS2  
GND  
GND  
RS2  
SW2  
AINM_x  
Device in Hold Mode  
7-2. Analog Input Structure for Converter Module  
During the acquisition process, both inputs are individually sampled on CS1 and CS2, respectively. During the  
conversion process, both converters convert for the respective voltage difference between the sampled values:  
V
AINP_x VINM_x.  
Equation 1 and Equation 2 provide the full-scale input range (FSR) and bias voltage (VBIAS) at the negative  
input), supported at the analog inputs for the reference voltage (VREFIN) on the REFIN pin.  
FSR = ±VREFIN = 2 × VREFIN  
VBIAS = VREFIN ± 0.1 V  
(1)  
(2)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7.3.1.2 ADC Transfer Function  
This device supports unipolar, pseudo-differential input signals. The device output is in two's complement format.  
7-3 and 7-1 show the ideal transfer characteristics for the device. Equation 3 gives the least significant bit  
(LSB) for the ADC.  
1 LSB = FSR / 2n  
(3)  
where  
FSR is defined in 方程1  
n = Resolution of the device  
PFSC  
MC  
NFSC  
A
B
C
VIN  
Analog Input  
(AINP_x œ AINM_x)  
7-3. Ideal Transfer Characteristics  
7-1. Transfer Characteristics  
INPUT VOLTAGE  
(AINP_x-AINM_x)  
IDEAL OUTPUT CODE  
(R = 16)  
STEP  
CODE  
DESCRIPTION  
A
B
C
NFSC  
MC  
Negative full-scale code  
Mid code  
8000  
0000  
7FFF  
(VREF 0.5 LSB)  
0.5 LSB to 0.5 LSB  
(VREF 1.5 LSB)  
PFSC  
Positive full-scale code  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7.3.2 External Reference Voltage  
The device requires an external reference voltage of the value VREFIN, as specified in 6. 7-4 shows the  
connections for using the device with an external reference. A reference without an integrated buffer can be  
used because of the high input impedance of the REFIN pin.  
AVDD  
œ
REFP_x  
REFBUF_x  
External  
+
Reference  
Voltage  
REFIN  
CFLT  
CREFBUF  
REFM_x  
GND  
7-4. Connection Diagram for Reference and Reference Buffers  
7.3.3 Reference Buffers  
On the CS rising edge, both converters start converting the sampled value on the analog input, and the internal  
capacitors are switched to the REFP_x pins. Most of the switching charge required during the conversion  
process is provided by the external decoupling capacitor CREFP_x. If the charge lost from CREFP_x is not  
replenished before the next CS rising edge, the subsequent conversion occurs with this different reference  
voltage and causes a proportional error in the output code. To eliminate these errors, the internal reference  
buffers of the device maintains the voltage on the REFP_x pins.  
All performance characteristics of the device are specified with the internal reference buffer and a specified value  
of CREFP_x. As shown in 7-4, place a decoupling capacitor CREFP_x between the REFP_x pins and the  
REFM_x pin as close to the device as possible.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
This device supports two functional states: acquisition phase (ACQ) and conversion phase (CNV).  
7.4.1 ACQ State  
In ACQ state, the device acquires the analog input signal. The device enters ACQ state at power-up, when  
coming out of power down and by the ADCST signal (internal). A CS rising edge takes the device from ACQ  
state to CNV state.  
7.4.2 CNV State  
The device moves from ACQ state to CNV state and starts conversion on a rising edge of the CS pin. The  
conversion process uses an internal clock. The host must provide a minimum time of tCYCLE between two  
subsequent start of conversions.  
7.4.3 Output Data Word  
The output data word consists of a conversion result of N bits where N = 16 for the ADS9226. The output data  
word D[N-1:0], as shown in 7-5, is left-justified and split into two data lines (SDO-xy) for each ADC.  
SCLK  
1
2
8
9
0
SDO-1x  
D15  
D13  
D1  
SDO-0x  
D14  
D12  
D0  
0
For ADC_A, x = A. For ADC_B, x = B.  
7-5. Output Data Word  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
7.4.4 Conversion Control and Data Transfer Frame  
A data transfer frame starts with a falling edge of the CS signal. In any frame, the clocks provided on the SCLK  
pin are used to transfer the output data for the completed conversion. The device has two SDOs (SDO-0x and  
SDO-1x) for each ADC. For ADC_A, the device provides data on SDO-0A and SDO-1A, whereas for ADC_B,  
the device provides data on SDO-0B and SDO-1B. The most significant bit (Dn-1x) of the output data is launched  
on the SDO-1x pins and the MSB-1 (Dn-2x) bit is launched on the SDO-0x pins on the falling edge of CS, any  
subsequent output bits are launched on the rising edges provided on SCLK. When all output bits of the  
conversion result are shifted out, the device launches 0's on the subsequent SCLK rising edges. The data  
transfer frame ends with a rising edge of the CS signal. For detailed timing specifications, see 6 and 7-6.  
The CS pulse high time determines if the data being read back is with a 0 sample latency or a 1 sample latency.  
See 6-1 and 6-2 for the respective timing diagrams. The maximum-rated sampling rate of 2.048 MSPS is  
achieved with a latency-1 data capture.  
CS  
SCLK  
SDO-1x  
DN-1 x  
D1 x  
SDO-0x  
DN-2 x  
D0 x  
For ADC_A, x = A. For ADC_B, x = B.  
7-6. Data Transfer Frame for Reading Data  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR) analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section presents general principles for designing these circuits, followed by an application circuit designed using  
the ADS9226.  
8.1.1 ADC Input Driver  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a charge-  
kickback filter. The amplifier is used for signal conditioning of the input signal and the low output impedance of  
the amplifier provides a buffer between the signal source and the switched-capacitor inputs of the ADC. The  
charge-kickback filter helps attenuate the sampling charge injection from the switched-capacitor input stage of  
the ADC, and band-limits the wideband noise contributed by the front-end circuit. Careful design of the front-end  
circuit is critical to meet the linearity and noise performance of the ADS9226.  
8.1.1.1 Charge-Kickback Filter  
The charge-kickback filter is an RC filter at the input pins of the ADC that filters the broadband noise from the  
front-end drive circuitry and attenuates the sampling charge injection from the switched-capacitor input stage of  
the ADC. A filter capacitor, CFLT (as shown in 8-1), is connected from each input pin of the ADC to ground.  
This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the  
internal sample-and-hold capacitors during the acquisition process. Generally, the value of this capacitor must be  
at least 20 times the specified value of the ADC sampling capacitance. For the ADS9226, the input sampling  
capacitance is equal to 16 pF; therefore, for optimal performance, keep CFLT greater than 320 pF. This capacitor  
must be a COG- or NPO-type. The type of dielectric used in COG or NPO ceramic capacitors provides the most  
stable electrical properties over voltage, frequency, and temperature changes.  
RFLT  
CFLT  
Device  
RFLT  
CFLT  
8-1. Charge-Kickback Filter  
Driving capacitive loads can degrade the phase margin of the input amplifier, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT helps with amplifier stability, but adds distortion as a result of interactions  
with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal  
frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability of the  
driver amplifier and distortion performance of the design. Always verify the stability and settling behavior of the  
driving amplifier and charge-kickback filter by TINA-TISPICE simulation. Keep the tolerance of the selected  
resistors less than 1% to keep the inputs balanced.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
8.1.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type, as well as the performance  
goals, of the data acquisition system. Some key amplifier specifications to consider when selecting an  
appropriate amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the ADC sample-and-hold capacitor and the  
RC filter (the charge-kickback filter) at the inputs of the ADC. Higher bandwidth amplifiers offer faster settling  
times when driving the capacitive load of the charge-kickback filter, thus reducing harmonic distortion at  
higher input frequencies. Equation 4 describes the unity-gain bandwidth (UGB) of the amplifier to be selected  
in order to maintain the overall stability of the input driver circuit:  
«
÷
1
UGB í 4 ì  
2p  
ì RFLT ì CFLT  
(4)  
Distortion. Both the ADC and the input driver introduce distortion in a data acquisition block. Equation 5  
shows that to make sure that the distortion performance of the data acquisition system is not limited by the  
front-end circuit, the distortion of the input driver must be at least 10 dB less than the distortion of the ADC:  
THDAMP Ç THDADC - 10  
(
dB  
)
(5)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. Generally, to make sure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be  
kept below 20% of the input-referred noise of the ADC. Equation 6 explains that noise from the input driver  
circuit is band-limited by designing a low cutoff frequency, charge-kickback filter:  
2
SNR dB  
(
20  
)
÷
V
÷
-
1
f
_ AMP_PP  
p
2
1
5
VREF  
2
NG ì 2 ì  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
«
÷
÷
6.6  
«
(6)  
where  
V1 / f_AMP_PP is the peak-to-peak flicker noise in μV  
en_RMS is the amplifier broadband noise density in nV/Hz  
f3dB is the 3-dB bandwidth of the charge-kickback filter  
NG is the noise gain of the front-end circuit that is equal to 1 in a buffer configuration  
Settling Time. For DC signals with fast transients that are common in a multiplexed application, the input  
signal must settle within an 16-bit accuracy at the device inputs during the acquisition time window. This  
condition is critical to maintain the overall linearity performance of the ADC. Settling accuracy for DC  
transients directly translates to the linear performance for AC input signals, especially those that may use the  
ADC full-scale range. Typically, amplifier data sheets specify the output settling performance only up to 0.1%  
to 0.001%, which may not be sufficient for the desired 16-bit accuracy. Therefore, always verify the settling  
behavior of the input driver by TINA-TI SPICE simulations before selecting the amplifier.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
8.2 Typical Application  
AVDD  
AVDD  
REFIN / 2  
OPA836  
+
15.8 Ω  
œ
AINP_x  
AINM_x  
330 pF  
330 pF  
1 kΩ  
ADS9226  
ADC_x  
VIN  
1 kΩ  
15.8 Ω  
REFIN  
Input Driver  
8-2. Typical Connection Diagram of the ADS9226 Application Circuit  
8.2.1 Design Requirements  
The design parameters are listed in 8-1 for this example.  
8-1. Design Parameters  
DESIGN PARAMETER  
ADC sample rate  
Analog input signal  
SNR  
EXAMPLE VALUE  
2 MSPS  
2 kHz, ±2.5 V, pseudo-differential  
> 87 dB  
THD  
< 100 dB  
Power supply  
5-V analog, 3.3-V digital  
8.2.2 Detailed Design Procedure  
8-2 shows an application circuit for this example. The device incorporates two independently matched  
reference buffers for each ADC. Decouple the reference buffer outputs (the REFP_A and REFP_B pins) with the  
REFM_A and REFM_B pins, respectively, with 10-µF decoupling capacitors. The circuit in 8-2 shows a  
pseudo-differential data acquisition (DAQ) block optimized for low distortion and noise using the OPA836 and the  
ADS9226. The single-ended inputs are level-shifted and driven using a high-bandwidth, low-distortion,  
operational amplifier configured with a gain of 1 V/V and an optimal RC charge-kickback filter before going to  
the ADC. Generally, the distortion from the input driver must be at least 10 dB less than the ADC distortion.  
Therefore, these circuits use the OPA836 as an input driver that provides exceptional AC performance because  
of its extremely low-distortion and high bandwidth specifications. In addition, the components of the charge-  
kickback filter are selected to keep the noise from the front-end circuit low without adding distortion.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
8.2.3 Application Curve  
8-3 provides the typical FFT for the circuit shown in 8-2.  
0
-50  
-100  
-150  
-200  
1
2
3 4 567 10  
20 30 50 70100 200  
Frequency (kHz)  
500 1000  
D031  
SNR = 89.9 dB, THD = 102.9 dB  
8-3. Typical FFT With a 2-kHz Signal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. The reference buffers and converter modules  
(ADC_A and ADC_B) operate on AVDD. The serial interface operates on DVDD. AVDD and DVDD can be  
independently set to any value within their permissible ranges.  
As shown in 9-1, connect pins 12 and 29 together and place 1-µF decoupling capacitors between pin 12  
(AVDD) and pin 11 (GND), and between pin 29 (AVDD) and pin 30 (GND). To decouple the DVDD supply, place  
a 1-µF decoupling capacitor between pin 28 (DVDD) and pin 27 (GND), and between pin 26 (DVDD) and pin 27  
(GND).  
1 µF  
1 µF  
12  
AVDD  
29  
30  
GND  
AVDD  
11  
GND  
REFIN  
AVDD  
DVDD  
28  
REFBUF_A  
AVDD  
DVDD  
1 µF  
1 µF  
AINP_A  
27  
26  
GND  
ADC_A  
DVDD  
AINM_A  
AINP_B  
Serial  
Interface  
ADC_B  
AINM_B  
AVDD  
REFBUF_B  
AVDD  
REFIN  
9-1. Power-Supply Decoupling  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
This section provides some layout guidelines for achieving optimum performance with the ADS9226.  
10.1.1 Signal Path  
Route the analog input signals in opposite directions to the digital connections. The reference decoupling  
components are kept away from the switching digital signals. This arrangement prevents noise generated by  
digital switching activity from coupling to sensitive analog signals.  
10.1.2 Grounding and PCB Stack-Up  
Low inductance grounding is critical for achieving optimum performance. Grounding inductance is kept below 1  
nH with 15-mil grounding vias and a printed circuit board (PCB) layout design that has at least four layers. Place  
all critical components of the signal chain on the top layer with a solid analog ground from subsequent inner  
layers to minimize via length to ground.  
10.1.3 Decoupling of Power Supplies  
Place the decoupling capacitors on AVDD and DVDD within 20 mil from the respective pins, and use a 15-mil via  
to ground from each capacitor. Avoid placing vias between any supply pin and the respective decoupling  
capacitor.  
10.1.4 Reference Decoupling  
Dynamic currents are present at the REFP_x and REFM_x pins during the conversion phase, and excellent  
decoupling is required to achieve optimum performance. Place a 10-µF, X7R-grade, ceramic capacitor with at  
least a 10-V rating. Select 0603- or 0805-size capacitors to keep equivalent series inductance (ESL) low.  
Connect the REFM_x pins to the decoupling capacitor before a ground via. Also place decoupling capacitors on  
the REFby2 pin.  
10.1.5 Analog Input Decoupling  
Dynamic currents are also present at the pseudo-differential analog inputs of the ADS9226. Use C0G- or NPO-  
type capacitors to decouple these inputs because with these types of capacitors, capacitance stays almost  
constant over the full input voltage range. Lower-quality capacitors (such as X5R and X7R) have large  
capacitance changes over the full input-voltage range that may cause degradation in the performance of the  
device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS9226  
 
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
10.2 Layout Example  
CFILT  
CREFP_A  
RFILT  
RFILT  
32  
25  
CFILT  
1
24  
ADS9226  
CREFIN  
8
17  
9
16  
CFILT  
CREFP_B  
RFILT  
RFILT  
CFILT  
10-1. Example Layout for the ADS9226  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS9226  
 
ADS9226  
ZHCSLM5 JULY 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference data sheet  
Texas Instruments, OPAx836 Very Low Power, Rail-ro-Rail Out Operational Amplifiers data sheet  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS9226  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS9226IRHBR  
ADS9226IRHBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ADS9226  
ADS9226  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY