AFE539A4 [TI]

具有 PID/TEC 控制功能的四通道 10 位智能模拟前端 (AFE),具有内置 ADC 和 DAC;
AFE539A4
型号: AFE539A4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PID/TEC 控制功能的四通道 10 位智能模拟前端 (AFE),具有内置 ADC 和 DAC

文件: 总65页 (文件大小:2898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFE539A4  
ZHCSNR0 AUGUST 2021  
AFE539A4 智能模拟前(AFE),具有四通10 DAC 和适用于配I2C SPI  
接口的比例积(PI) 控制器ADC  
1 特性  
2 应用  
• 集成式比例积(PI) 控制  
激光  
化学和气体分析仪  
机器人感应模块  
移动机器人感应模块  
导引头前端  
10 ADC 输入DAC 输出  
– 从非易失性存储(NVM) 中独立运行  
– 可编程的比例和积分增益  
– 适合输出钳位的比较器输入  
– 适合输出的可编程最小值、最大值和共模值  
– 可编程的环路-相位反转  
• 聚合酶链反(PCR) 测试  
3 说明  
• 电压输出10 )  
AFE539A4 是一款 10 位四通道智能模拟前端 (AFE)。  
每个模拟通道可配置为数模转换器 (DAC)、模数转换  
(ADC) 或比较器。DAC 输出可以是电压和电流输  
出。AFE539A4 支持高阻态断电模式并在断电情况  
下支持高阻态输出。DAC 输出提供一个强制检测选  
可用作可编程比较器和电流阱。该器件具有一个集  
成的状态机编程为比例积分 (PI) 制器。  
AFE539A4 非常适用于热电制冷 (TEC) 控制、温度控  
制和动态余量控制应用。AFE539A4 是智能 AFE 器  
因为它具有高级集成功能。多功能 GPIO、函数生  
成和 NVM 使这款智能 AFE 适用于无处理器的 应用和  
设计重复使用。  
1 LSB INL DNL  
1x1.5x2x3x 4x 增益  
• 电流输出8 )  
1 LSB INL DNL  
±25 μA±50 μA±125 μA±250 μA 输出  
范围选项  
• 适合所有通道的可编程比较器模式  
• 所有通道均可配置ADC DAC  
VDD 关闭时提供高阻抗输出  
• 自动检I2C SPI 接口  
1.62V VIH (VDD = 5.5V)  
• 通用输入输(GPIO)  
器件信息  
封装(1)  
MODE 引脚可在编程和独立模式之间进行选择  
• 用户可编NVM  
器件型号  
封装尺寸标称值)  
AFE539A4  
WQFN (16)  
3.00mm x 3.00mm  
• 基准内部、外部VDD  
• 宽工作范围  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 电源1.8V 5.5V  
– 温度范围-40˚C +125˚C  
• 微型封装16 WQFN (3mm × 3mm)  
使AFE539A4 的热电制(TEC) 控制  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASAC1  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
Table of Contents  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................17  
7.5 Programming............................................................ 29  
7.6 Register Maps...........................................................36  
8 Application and Implementation..................................54  
8.1 Application Information............................................. 54  
8.2 Typical Application.................................................... 55  
9 Power Supply Recommendations................................57  
10 Layout...........................................................................57  
10.1 Layout Guidelines................................................... 57  
10.2 Layout Example...................................................... 57  
11 Device and Documentation Support..........................58  
11.1 Documentation Support.......................................... 58  
11.2 接收文档更新通知................................................... 58  
11.3 支持资源..................................................................58  
11.4 Trademarks............................................................. 58  
11.5 Electrostatic Discharge Caution..............................58  
11.6 术语表..................................................................... 58  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics: Voltage Output ..................6  
6.6 Electrical Characteristics: Current Output ..................8  
6.7 Electrical Characteristics: Comparator Mode .............9  
6.8 Electrical Characteristics: ADC Input .........................9  
6.9 Electrical Characteristics: General ...........................10  
6.10 Timing Requirements: I2C Standard Mode ............ 11  
6.11 Timing Requirements: I2C Fast Mode .................... 11  
6.12 Timing Requirements: I2C Fast Mode Plus ............ 11  
6.13 Timing Requirements: SPI Write Operation ...........12  
6.14 Timing Requirements: SPI Read and Daisy  
Chain Operation ......................................................... 12  
6.15 Timing Requirements: GPIO ..................................12  
6.16 Timing Diagrams.....................................................13  
Information.................................................................... 58  
4 Revision History  
DATE  
REVISION  
NOTES  
August 2021  
*
Initial release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
FB3  
OUT3/AIN3  
OUT2  
1
2
3
4
12  
11  
10  
9
FB0/AIN0  
OUT0  
Thermal Pad  
OUT1  
FB2/AIN2  
FB1/AIN1  
Not to scale  
5-1. RTE Package, 16-pin WQFN, Top View  
5-1. Pin Functions  
DESCRIPTION  
PIN  
TYPE  
NO.  
NAME  
Voltage feedback input for DAC channel 3.  
In PI control or ADC mode, connect this pin to VDD with a pullup resistor. Do not connect to OUT3.  
In voltage-output mode, connect to OUT3 for closed-loop amplifier output.  
1
FB3  
Input  
In current-output mode, leave this pin unconnected to minimize leakage current.  
2
3
OUT3/AIN3 Input/Output Analog output for DAC channel 3 or analog input for ADC channel 3.  
OUT2  
Output  
Analog output for DAC channel 2.  
Voltage feedback input for DAC channel 2.  
In PI control or ADC mode, this pin is analog input for ADC2. Do not connect to OUT2.  
In voltage-output mode, connect to OUT2 for closed-loop amplifier output.  
In current-output mode, leave this pin unconnected to minimize leakage current.  
4
FB2/AIN2 Input/Output  
General-purpose input/output. This pin is configurable as LDAC, PD, RESET, STATUS, SDO, or  
5
6
GPIO/SDO Input/Output PROTECT. When using the STATUS or SDO functions, connect this pin to the IO voltage with an  
external pullup resistor.  
I2C serial interface clock or SPI chip select input. Connect this pin to the IO voltage using an  
SCL/SYNC  
Output  
external pullup resistor.  
Address configuration input for I2C or serial data input for SPI.  
7
8
A0/SDI  
Input  
In A0 function, connect this pin to VDD, AGND, SDA, or SCL for address configuration.  
In SDI function, this pin does not need to be pulled up or pulled down.  
Bidirectional I2C serial data bus or SPI clock input. Connect this pin to the IO voltage using an  
external pullup resistor.  
SDA/SCLK Input/Output  
FB1/AIN1 Input/Output  
Voltage feedback input for DAC channel 1.  
In PI control or ADC mode, this pin is analog input for ADC1. Do not connect to OUT1.  
In voltage-output mode, connect to OUT1 for closed-loop amplifier output.  
In current-output mode, leave this pin unconnected to minimize leakage current.  
9
10  
11  
OUT1  
OUT0  
Output  
Output  
Analog output for DAC channel 1.  
Analog output for DAC channel 0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Voltage feedback input for DAC channel 0.  
In PI control or ADC mode, this pin is analog input for ADC0. Do not connect to OUT0.  
In voltage-output mode, connect to OUT0 for closed-loop amplifier output.  
In current-output mode, leave this pin unconnected to minimize leakage current.  
12  
FB0/AIN0 Input/Output  
External bypass capacitor for the internal LDO. Connect a capacitor (approximately 1.5 μF)  
between CAP and AGND.  
13  
CAP  
Power  
14  
15  
AGND  
VDD  
Ground  
Power  
Ground reference point for all circuitry on the device.  
Supply voltage: 1.8 V to 5.5 V  
External reference or interface mode select input. Connect a capacitor (approximately 0.1 μF)  
between VREF and AGND. Use a pullup resistor to VDD when the external reference is not used. In  
case an external reference is used or when in interface select mode, make sure the reference  
ramps up after VDD.  
VREF/  
MODE  
16  
Input  
In interface select mode:  
Pull this pin low to enable I2C/SPI communication.  
Pull this pin high to enable standalone mode.  
Thermal  
Pad  
Thermal  
Pad  
Ground  
Connect the thermal pad to AGND.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AFE539A4  
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
6
UNIT  
V
VDD  
Supply voltage, VDD to AGND  
Digital inputs to AGND  
CAP to AGND  
VDD + 0.3  
1.65  
V
V
VFBX to AGND  
VDD + 0.3  
VDD + 0.3  
10  
V
VOUTX to AGND  
V
Current into any pin except the OUTx pins  
Junction temperature  
Storage temperature  
mA  
°C  
°C  
TJ  
150  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
Charged device model (CDM), per JEDEC specification JESD22-C101, pins TBD(2)  
Charged device model (CDM), per JEDEC specification JESD22-C101, pins TBD(2)  
V
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.62  
NOM  
MAX UNIT  
VDD  
VIH  
VIL  
TA  
Positive supply voltage to ground (AGND  
)
5.5  
V
V
V
Digital input high voltage, 1.7 V < VDD 5.5 V  
Digital input low voltage  
0.4  
Ambient temperature  
125 °C  
40  
6.4 Thermal Information  
AFE539A4  
THERMAL METRIC(1)  
RTE (WQFN)  
UNIT  
16 PINS  
49  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
50  
24.1  
1.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
24.1  
8.7  
ΨJB  
RθJC(bot)  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AFE539A4  
 
 
 
 
 
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: Voltage Output  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10  
1  
1  
Bits  
LSB  
LSB  
INL Integral nonlinearity(1)  
DNL Differential nonlinearity(1)  
1
1
Code 0d into DAC, external reference, VDD = 5.5 V  
6
6
12  
Zero-code error(4)  
mV  
Code 0d into DAC, internal VREF, gain = 4x,  
VDD = 5.5 V  
15  
Zero-code error temperature  
coefficient(4)  
±10  
µV/°C  
%FSR  
0.3  
0.75  
0.5  
1.8 V VDD 2.7 V, VFB pin shorted to VOUT  
2.7 V VDD 5.5 V, VFB pin shorted to VOUT  
0.75  
0.5  
Offset error(4)  
0.25  
Offset-error temperature  
coefficient(4)  
±0.0003  
0.25  
%FSR/°C  
%FSR  
Gain error(4)  
0.5  
0.5  
Gain-error temperature  
coefficient(4)  
±0.0008  
%FSR/°C  
1
1.8 V VDD < 2.7 V, program full code into DAC  
2.7 V VDD 5.5 V, program full code into DAC  
1  
Full-scale error(4)  
%FSR  
0.5  
0.5  
Full-scale-error temperature  
coefficient(4)  
±0.0008  
%FSR/°C  
OUTPUT  
Output voltage  
Reference tied to VDD  
0
VDD  
200  
V
RL = infinite, phase margin = 30°  
RL = 5 kΩ, phase margin = 30°  
CL  
Capacitive load(2)  
pF  
1000  
VDD = 1.8 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
15  
50  
60  
VDD = 2.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
Short-circuit current  
mA  
VDD = 5.5 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
To VDD (DAC output unloaded, internal reference =  
1.21 V), VDD 1.21 V gain + 0.2 V  
0.2  
0.8  
V
To VDD  
Output-voltage headroom(2)  
VFB dc output impedance(3)  
(DAC output unloaded, reference tied to VDD  
)
%FSR  
To VDD (ILOAD = 10 mA at VDD = 5.5 V, ILOAD = 3 mA at  
VDD = 2.7 V, ILOAD = 1 mA at VDD = 1.8 V), DAC code  
= full scale  
10  
DAC output enabled, DAC reference tied to VDD (gain  
= 1x) or internal reference (gain = 1.5x or 2x)  
400  
325  
500  
400  
600  
485  
ZO  
kΩ  
DAC output enabled, internal VREF, gain = 3x or 4x  
Power supply rejection ratio  
(dc)  
Internal VREF, gain = 2x, DAC at midscale;  
VDD = 5 V ±10%  
0.25  
mV/V  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: Voltage Output (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V  
20  
tsett Output voltage settling time  
µs  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V, internal VREF, gain = 4x  
25  
0.3  
75  
Slew rate  
VDD = 5.5 V  
V/µs  
mV  
At startup (DAC output disabled), RL = 5 k,  
CL = 200 pF  
Power on glitch magnitude  
200  
250  
50  
At startup (DAC output disabled), RL = 100 kΩ  
DAC output disabled to enabled (DAC registers at zero  
scale, RL = 100 kΩ  
Output enable glitch  
magnitude  
mV  
0.1 Hz to 10 Hz, DAC at midscale, VDD = 5.5 V  
Output noise voltage (peak to  
peak)  
Vn  
µVPP  
Internal VREF, gain = 4x, 0.1 Hz to 10 Hz, DAC at  
midscale, VDD = 5.5 V  
90  
f = 1 kHz, DAC at midscale, VDD = 5.5 V  
0.35  
0.9  
Output noise density  
µV/Hz  
Internal VREF, gain = 4x, f = 1 kHz, DAC at midscale,  
VDD = 5.5 V  
Internal VREF, gain = 4x, 200-mV 50-Hz or 60-Hz sine  
wave superimposed on power supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
-68  
dB  
±1 LSB change around mid code (including  
feedthrough)  
Code change glitch impulse  
10  
15  
nV-s  
mV  
Code change glitch impulse  
magnitude  
±1 LSB change around mid code (including  
feedthrough)  
POWER  
IDD  
Current flowing into VDD(4)  
Normal operation, DACs at full scale, digital pins static  
150  
µA/ch  
(1) Measured with DAC output unloaded. For external reference and internal reference VDD 1.21 x gain + 0.2 V, between end-point  
codes: 2d to 254d for 8-bit resolution.  
(2) Specified by design and characterization, not production tested.  
(3) Specified with 200-mV headroom with respect to reference value when internal reference is used.  
(4) Measured with DAC output unloaded.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AFE539A4  
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.6 Electrical Characteristics: Current Output  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
±250µA output range, and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
8
1  
1  
Bits  
LSB  
LSB  
INL Integral nonlinearity(1)  
DNL Differential nonlinearity(1)  
1
1
DAC output ranges: ±25 µA, ±50 µA, ±125 µA, and  
±250 µA, DAC at midscale  
Offset error  
Gain error(4)  
±1  
%FSR  
%FSR  
DAC output ranges: ±25 µA, ±50 µA, ±125 µA, and  
±250 µA  
±1.3  
OUTPUT  
Output compliance voltage(1)  
DAC output range: 0 µA to 25 µA, To VDD  
200  
400  
100  
mV  
mV  
DAC output ranges: ±25 µA, ±50 µA, ±125 µA, and  
±250 µA, To VDD and to AGND  
Output compliance voltage(1)  
ZO  
IOUT dc output impedance(2)  
DAC code = midscale, DAC output kept at VDD/2  
MΩ  
Power supply rejection ratio  
(dc)  
DAC at midscale, gain setting: 0 µA to 25 µA, VDD  
changed from 4.5 V to 5.5 V  
0.28  
100  
LSB/V  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to 1 LSB  
at 8-bit resolution, VDD = 5.5 V, common-mode voltage  
at OUTx pin is VDD/2  
tsett Output current settling time  
µs  
Output noise current (peak to 0.1 Hz to 10 Hz, DAC at midscale,  
Vn  
150  
1
nAPP  
peak)  
VDD = 5.5 V, ±250-µA output range  
f = 1 kHz, DAC at midscale,  
VDD = 5.5 V, ±250-µA output range  
Output noise density  
nA/Hz  
±250 µA output range, 200-mV 50-Hz or 60-Hz sine  
wave superimposed on power supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
TBD  
LSB/V  
µF  
POWER  
Load capacitor - CAP pin(2)  
0.5  
15  
50  
Normal operation, DACs at full scale, ±25-µA output  
range, digital pins static  
42  
56  
Normal operation, DACs at full scale, ±50-µA output  
range, digital pins static  
70  
120  
200  
IDD  
Current flowing into VDD(3)  
µA/ch  
Normal operation, DACs at full scale, ±125-µA output  
range, digital pins static  
98  
Normal operation, DACs at full scale, ±250-µA output  
range, digital pins static  
167  
(1) Measured between end-point codes 0d to 255d.  
(2) Specified by design and characterization, not production tested.  
(3) The current flowing into VDD does not account for the load current sourced or sinked on the OUTx pins. The VREF pin is connected to  
VDD.  
(4) Measured between DAC codes 10d and 255d.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.7 Electrical Characteristics: Comparator Mode  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x in voltage output mode, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto  
AGND) and capacitive load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
Offset error(1)  
TEST CONDITIONS  
MIN  
TYP  
TBD  
4
MAX  
UNIT  
5
mV  
1.8 V VDD 5.5 V  
5  
VDD = 5.5 V, external reference, TA = 125°C, FB in Hi-  
Z mode, DAC at full-scale and VFB at 0 V or DAC at  
zero-scale and VFB at 1.84 V, drift specified for 10  
years of continuous operation  
Offset error time drift  
mV  
OUTPUT  
VREF connected to VDD, VFB resistor network  
connected to ground  
0
0
VDD  
Input voltage  
V
V
VREF connected to VDD, VFB resistor network  
disconnected from ground  
VDD (1/3  
- 1/100)  
VOL Logic low output voltage  
0.1  
15  
ILOAD = 100 μA  
DYNAMIC PERFORMANCE  
DAC at midscale, FB input at Hi-Z, and transition step  
at FB node is (VDAC 2 LSB) to (VDAC + 2 LSB),  
transition time measured between 10% and 90% of  
output, output current of 100 µA, comparator output  
configured in push-pull mode, load capacitor at DAC  
output is 25 pF  
tresp-  
Output response time  
µs  
comp  
(1) Measured at DAC at mid-scale, comparator input at Hi-Z, and DAC operating with external reference.  
6.8 Electrical Characteristics: ADC Input  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x in voltage output mode or ±250µA output range in current output mode, DAC output  
pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive load (CL = 200 pF to AGND), and digital inputs at  
VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
10  
Bits  
INL Integral nonlinearity(1) (2)  
1
1
LSB  
LSB  
1  
1  
-5  
DNL Differential nonlinearity(1) (2)  
0
0
+5  
+5  
1
1.8 V VDD 2.7 V  
Offset error(3)  
mV  
-5  
2.7 V VDD 5.5 V  
Gain error(3)  
%FSR  
V
1  
Input voltage range  
Data rate  
External VREF = VDD, VFB attenuation is 1  
TBD  
0
VDD  
TBD  
TBD  
TBD  
10  
SPS  
f = 1 kHz, VFB = VDD/2  
ADC noise density  
Sampling capacitor  
µV/Hz  
Internal VREF, gain = 4x, f = 1 kHz, VFB = VDD/2  
pF  
(1) Measured with DAC output unloaded. For external reference and internal reference VDD 1.21 x gain + 0.2 V, between end-point  
codes: 8d to 1008d for 10-bit resolution, 2d to 252d for 8-bit resolution.  
(2) Specified by design and characterization, not production tested.  
(3) Measured at DAC at mid-scale, comparator input at Hi-Z, and DAC operating with external reference.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AFE539A4  
 
 
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.9 Electrical Characteristics: General  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x in voltage output mode or ±250µA output range in current output mode, DAC output  
pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) in voltage-output mode and capacitive load (CL = 200 pF to  
AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
INTERNAL REFERENCE  
Initial accuracy  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
1.212  
V
Reference output temperature  
50 ppm/°C  
coefficient(1)  
EXTERNAL REFERENCE  
External reference input range  
EEPROM  
1.7  
VDD  
V
20000  
1000  
50  
40°C TA 85°C  
TA = 125°C  
Endurance  
Cycles  
Data retention(1)  
TA = 25°C  
Years  
ms  
EEPROM programming write  
cycle time(1)  
200  
DIGITAL INPUTS  
Voltage output mode, DAC output static at midscale,  
fast+ mode, SCL toggling  
Digital feedthrough  
20  
10  
nV-s  
pF  
Pin capacitance  
Per pin  
POWER-DOWN MODE  
IDD  
Current flowing into VDD  
DAC in sleep mode, internal reference powered down  
17  
µA  
HIGH-IMPEDANCE OUTPUT  
10  
nA  
nA  
DAC in Hi-Z output mode, 1.7 V VDD 5.5 V  
VDD = 0 V, VOUT 1.5 V, decoupling capacitor  
between VDD and AGND: 0.1 μF  
200  
Current flowing into VOUTX and  
VFBX  
ILEAK  
VDD = 0 V, 1.5 V < VOUT 5.5 V, decoupling capacitor  
between VDD and AGND: 0.1 μF  
500  
2
nA  
µA  
100 kΩbetween VDD and AGND, VOUT 1.25 V,  
series resistance of 10 kΩat OUT pin  
(1) Specified by design and characterization, not production tested.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.10 Timing Requirements: I2C Standard Mode  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and 1.8 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCLK  
tBUF  
SCL frequency  
100  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
4.7  
4
µs  
µs  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
ns  
300  
ns  
tR  
1000  
ns  
6.11 Timing Requirements: I2C Fast Mode  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and 1.8 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCLK  
tBUF  
SCL frequency  
400  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
0.6  
µs  
0.6  
µs  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
ns  
300  
300  
ns  
tR  
ns  
6.12 Timing Requirements: I2C Fast Mode Plus  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and 1.8 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
1
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
0.5  
µs  
tHIGH  
tF  
SCL clock high period  
Clock and data fall time  
0.26  
µs  
120  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.12 Timing Requirements: I2C Fast Mode Plus (continued)  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and 1.8 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
tR  
Clock and data rise time  
120  
ns  
6.13 Timing Requirements: SPI Write Operation  
all input signals are timed from VIL to 70% of VDD, VDD = 1.8 V to 5.5 V, and 40°C TA +125°C  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SCLK)  
25  
Serial clock frequency, 1.7 V VDD 5.5 V  
SCLK high time, 1.7 V VDD 5.5 V  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
18  
18  
8
ns  
SCLK low time, 1.7 V VDD 5.5 V  
ns  
SDI setup time, 1.7 V VDD 5.5 V  
tSDIH  
8
ns  
SDI hold time, 1.7 V VDD 5.5 V  
tCSS  
18  
10  
50  
2
ns  
CS to SCLK falling edge setup time, 1.7 V VDD 5.5 V  
SCLK falling edge to CS rising edge, 1.7 V VDD 5.5 V  
CS hight time, 1.7 V VDD 5.5 V  
tCSH  
ns  
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
ns  
µs  
Sequential DAC update wait time for same channel, 1.7 V VDD 5.5 V  
Broadcast DAC update wait time, 1.7 V VDD 5.5 V  
2
µs  
6.14 Timing Requirements: SPI Read and Daisy Chain Operation  
all input signals are timed from VIL to 70% of VDD, VDD = 1.8 V to 5.5 V, and 40°C TA +125°C  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SCLK)  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
1
Serial clock frequency, 1.7 V VDD 5.5 V  
SCLK high time, 1.7 V VDD 5.5 V  
400  
400  
8
ns  
SCLK low time, 1.7 V VDD 5.5 V  
ns  
SDI setup time, 1.7 V VDD 5.5 V  
tSDIH  
8
ns  
SDI hold time, 1.7 V VDD 5.5 V  
tCSS  
400  
10  
1
ns  
CS to SCLK falling edge setup time, 1.7 V VDD 5.5 V  
SCLK falling edge to CS rising edge, 1.7 V VDD 5.5 V  
CS hight time, 1.7 V VDD 5.5 V  
tCSH  
ns  
tCSHIGH  
µs  
6.15 Timing Requirements: GPIO  
all input signals are timed from VIL to 70% of VDD, VDD = 1.8 V to 5.5 V, and 40°C TA +125°C  
MIN  
NOM  
MAX  
UNIT  
µs  
GPI high time, 1.7 V VDD 5.5 V(1)  
tGPIHIGH  
tGPILOW  
tGPAWGD  
tCS2LDAC  
tSTP2LDAC  
tLDACW  
2
GPI low time, 1.7 V VDD 5.5 V(1)  
2
µs  
LDAC falling edge to DAC update delay, 1.7 V VDD 5.5 V(2)  
CS rising edge to LDAC falling edge, 1.7 V VDD 5.5 V  
I2C stop bit rising edge to LDAC falling edge, 1.7 V VDD 5.5 V  
LDAC low time, 1.7 V VDD 5.5 V  
2
µs  
1
1
2
µs  
µs  
µs  
(1) The SCL, SDA, A0, and A1 pins can be configured as GPIOs that perform different channel-specific or independent operations.  
(2) The GPIOs can be configured as channel-specific or global LDAC function. In a channel-specific LDAC mode, the LDAC pins can be  
used to trigger DAC code patterns stored in the NVM.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
6.16 Timing Diagrams  
Low byte ACK cycle  
tR  
tLOW  
tF  
SCL  
tSUSTA  
tSUDAT  
tHDSTA  
tHIGH  
tSUSTO  
tHDDAT  
tHDSTA  
SDA  
tBUF  
S
P
S
P
6-1. I2C Timing Diagram  
6-2. SPI Write Timing Diagram  
6-3. SPI Read Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AFE539A4 is a 10-bit, smart analog front end (AFE) that is configurable as a quad-channel, buffered  
voltage-output or current-output DAC, or as a quad-channel ADC. Each analog channel can be independently  
configured as a DAC, a comparator, or an ADC, with the exception that ADC channel 3 must be configured as  
comparator before using other channels as ADCs.  
The AFE539A4 provides a preprogrammed state machine that functions as a proportional-integral (PI) controller.  
This device contains nonvolatile memory (NVM), an internal reference, automatically detects I2C and SPI  
interfaces, a force-sense output, and a general-purpose input. The device supports Hi-Z power-down modes by  
default, which can be configured to 10 k-GND or 100 k-GND using the NVM. The AFE539A4 has a power-  
on-reset (POR) circuit that makes sure all the registers start with default or user-programmed settings using  
NVM. The AFE539A4 operates with either an internal reference, external reference, or with power supply as the  
reference, and provide a full-scale output of 1.8 V to 5.5 V.  
The AFE539A4 supports I2C standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps).  
The I2C interface can be configured with four device addresses using the A0 pin. The SPI mode supports a  
three-wire interface by default, with up to 25-MHz SCLK input. The GPIO input can be configured as SDO in the  
NVM for SPI read capability. The GPIO input can alternatively be configurable as LDAC, PD, STATUS, FAULT-  
DUMP, RESET, and PROTECT functions. The AFE539A4 is designed for closed-loop control applications, such  
as TEC control, car seat heating control, medical in-vitro diagnostics devices, blood gas analyzers, and thermal  
cyclers.  
The AFE539A4 also includes digital slew rate control, and supports standard waveform generation such as sine  
and cosine, triangular, and sawtooth waveforms. This device can generate pulse-width modulation (PWM) output  
with the combination of the triangular or sawtooth waveform and the FB pin. The force-sense outputs of the DAC  
channels can be used as programmable comparators. The comparator mode allows programmable hysteresis,  
latching comparator, window comparator, and fault-dump to the NVM. These features enable the AFE539A4 to  
go beyond the limitations of a conventional AFE that depends on a processor to function. As a result of the  
processor-less operation and the smart feature set, the AFE539A4 is called a smart AFE.  
7.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Smart Analog Front End (AFE) Architecture  
The AFE539A4 consists of quad-channel, 10-bit digital-to-analog converters with string architecture, followed by  
a voltage-output amplifier with an external FB pin and a voltage-to-current converter for each channel. 7.2  
shows the DAC architecture within the block diagram, which operates from a 1.8-V to 5.5-V power supply. The  
DAC has an internal voltage reference of 1.21 V. There is an option to select an external reference on the VREF  
pin or use the power supply as a reference. The voltage output mode uses one of these three reference options.  
The current output mode uses an internal band-gap reference to generate the current outputs. Both the voltage-  
output and current-output modes support multiple programmable output ranges.  
The AFE539A4 supports Hi-Z output when VDD is off, maintaining very low leakage current at the output pins  
with up to 1.25 V of forced voltage.  
The AFE539A4 supports an independent comparator mode for each channel. The respective FBx pins act as the  
inputs for the comparator. The DAC architecture supports inversion of the comparator output using register  
settings. The comparator outputs can be push-pull or open-drain. The comparator mode supports programmable  
hysteresis using margin-high and margin-low register fields, a latching comparator, and a window comparator.  
The comparator outputs are accessible internally by the device.  
The AFE539A4 features an ADC on channel 3, with inputs that are multiplexed to all other channels: FB0/AIN0  
for channel 0, FB1/AIN1 for channel 1, and FB2/AIN2 for channel 2. For channel 3, the ADC input pin is OUT3/  
AIN3, not FB3. Connect FB3 to VDD using a pullup resistor whenever the ADC mode selected. Any channel that  
is used as an ADC must be selected as a comparator. To use any other channel as an ADC, ADC3 must be  
enabled as an ADC or comparator, even if not used.  
The AFE539A4 features a programmable state machine supporting arithmetic, logic, and timing operations, as  
shown in 7-1. This state machine has been preprogrammed as a proportional-integral (PI) controller allowing  
the user to program the coefficients and input-output parameters. The details of the PI controller are discussed in  
7.4.5.2. The state machine can be disabled by writing to the APPLICATION-CONFIG1 register. The user  
configurations are stored in the NVM and the state machine can be operated in standalone mode without  
interfacing to a processor (processor-less operation)  
7-1. Smart AFE Architecture  
The AFE539A4 also supports internal function generation, such as sawtooth, triangular, and sine.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.3.2 Digital Input/Output  
The AFE539A4 have four digital IO pins that include I2C, SPI, and GPIO interfaces. These devices automatically  
detect I2C and SPI protocols at the first successful communication after power on, and then connect to the  
detected interface. After an interface protocol is connected, any change in the protocol is ignored. The I2C  
interface uses the A0 pin to select from among four address options. The SPI is a three-wire interface by default.  
No readback capability is available in the three-wire SPI mode. The GPIO pin can be configured as the SDO  
function in the register map and then programmed into the NVM. With the GPIO pin acting as SDO, the SPI  
works as a four-wire interface. The SPI readback mode is slower than the write mode. The programming  
interface pins are:  
For I2C: SCL, SDA, A0  
For SPI: SCLK, SDI, SYNC, SDO/GPIO  
The GPIO can be configured as multiple functions other than SDO. These functions are LDAC, PD, STATUS,  
PROTECT, FAULT-DUMP, and RESET. All the digital pins are open-drain when used as outputs. Therefore, all  
the output pins must be pulled up to the desired IO voltage using external registers.  
7.3.3 Nonvolatile Memory (NVM)  
The AFE539A4 contain nonvolatile memory (NVM) bits. These memory bits are user programmable and  
erasable, and retain the set values in the absence of a power supply. All the register bits, shown in the  
highlighted gray cells in 7-15 and 7-16, can be stored in the NVM by setting NVM-PROG = 1 in the  
COMMON-TRIGGER register; this bit automatically resets. The NVM-BUSY bit in the GENERAL-STATUS  
register is set to 1 by the device when an NVM write or reload operation is ongoing. During this time, the device  
blocks all read and write operations to the device. The NVM-BUSY bit is set to 0 after the write or reload  
operation is complete; at this point, all read and write operations to the device are allowed. The default value for  
all the registers in the AFE539A4 is loaded from NVM as soon as a POR event is issued.  
The AFE539A4 also reloads the registers with the current values stored in the NVM using the NVM-RELOAD bit  
in the COMMON-TRIGGER register. Set this bit to 1 for the device to start an NVM reload operation. After  
completion, the device automatically resets this bit to 0. During the NVM-RELOAD operation, the NVM-BUSY bit  
is set to 1.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AFE539A4  
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Voltage-Output Mode  
The voltage-output mode for each DAC channel can be entered by selecting the power-up option in the VOUT-  
PDN-X fields in the COMMON-CONFIG register and simultaneously powering down the current output option for  
the respective channels using the IOUT-PDN-X bits in the same register. Short the OUTx and FBx pins of  
respective channels externally for closed-loop amplifier output. An open FBx pin saturates the amplifier output.  
To achieve the desired voltage output, select the correct reference option, select the amplifier gain for the  
required output range, and program the DAC code in the DAC-X-DATA register of the respective channels.  
7.4.1.1 Voltage Reference and DAC Transfer Function  
There are three voltage reference options possible with the AFE539A4: internal reference, external reference,  
and the power supply as reference, as shown in 7-2. The DAC transfer function in the voltage-output and  
comparator modes changes based on the voltage reference selection.  
7-2. Voltage Reference Selection and Power-Down Logic  
7.4.1.2 Internal Reference  
The AFE539A4 contain an internal reference that is disabled by default. To enable the internal reference, write 1  
to bit EN-INT-REF in the COMMON-CONFIG register. The internal reference generates a fixed 1.21-V voltage  
(typical). Use the VOUT-GAIN-X field in the DAC-X-VOUT-CMP-CONFIG register to achieve gains of 1.5x, 2x,  
3x, or 4x for the DAC output voltage (VOUT). 方程1 shows DAC transfer function using the internal reference.  
DAC_DATA  
V
=
× V  
× GAIN  
REF  
(1)  
OUT  
N
2
where:  
N is the resolution in bits, 10 bits for AFE539A4  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA field in the DAC-  
X-DATA register.  
DAC_DATA ranges from 0 to 2N 1.  
VREF is the internal reference voltage = 1.21 V.  
GAIN = 1.5x, 2x, 3x, or 4x, based on VOUT-X-GAIN bits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.1.3 External Reference  
The AFE539A4 provide an external reference input. Select the external reference option by configuring the  
VOUT-GAIN-X field in the DAC-X-VOUT-CMP-CONFIG register appropriately. Write 1 to the DIS-MODE-IN bit in  
the DEVICE-MODE-CONFIG register to minimize quiescent current. The external reference can be between  
1.8 V and VDD. 方程2 shows DAC transfer function when the external reference is used.  
Note  
The external reference must be less than VDD in both transient and steady-state conditions.  
Therefore, the external reference must ramp up after VDD and ramp down before VDD.  
DAC_DATA  
V
=
× V  
(2)  
OUT  
REF  
N
2
where:  
N is the resolution in bits, 10 bits for AFE539A4.  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA field in the DAC-  
X-DATA register.  
DAC_DATA ranges from 0 to 2N 1.  
VREF is the external reference voltage.  
7.4.1.4 Power-Supply as Reference  
By default, the AFE539A4 operate with the power-supply pin (VDD) as a reference. 方程式 3 shows DAC  
transfer function when the power-supply pin is used as reference. The gain at the output stage is always 1x.  
DAC_DATA  
V
=
× V  
(3)  
OUT  
DD  
N
2
where:  
N is the resolution in bits, 10 bits for AFE539A4.  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA field in the DAC-  
X-DATA register.  
DAC_DATA ranges from 0 to 2N 1.  
VDD is used as the DAC reference voltage.  
7.4.2 Current-Output Mode  
The current-output mode for each DAC channel is entered by disabling the respective IOUT-PDN-X bits in the  
COMMON-CONFIG register and putting the respective VOUT-PDN-X fields in the same register in Hi-Z power-  
down. Select the desired current-output range by writing to the IOUT-RANGE-X field in the DAC-X-IOUT-MISC-  
CONFIG register. To minimize leakage in current-output mode, disconnect the FBx pin. The internal trimming  
settings for voltage-output and current-output modes are different; therefore, there may be a momentary dc  
offset when switching between voltage-output to current-output modes. Program the mode selection into the  
NVM to avoid this offset. The transfer function of the current-output is shown in 方程4.  
DAC_DATA × I  
I  
MIN  
MAX  
I
=
+ I  
(4)  
OUT  
MIN  
8
2
where:  
DAC_DATA is the DAC-X-DATA code.  
IMAX is the signed maximum current in the IOUT-RANGE-X setting.  
IMIN is the signed minimum current in the IOUT-RANGE-X setting.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.3 Comparator Mode  
All the DAC channels can be configured as programmable comparators. To enter the comparator mode for a  
channel, write 1 to the CMP-X-EN and the CMP-X-OUT-EN bits in the respective DAC-X-VOUT-CMP-CONFIG  
register. The comparator output can be configured as push-pull or open-drain using the CMP-X-OD-EN bit. To  
invert the comparator output, write 1 to the CMP-X-INV-EN bit. The FBx pin has a finite impedance. To enable  
high-impedance on the FBx pin, write 1 to the CMP-X-HIZ-IN-DIS bit.  
Note  
In the Hi-Z input mode, the comparator input range is limited to:  
For GAIN = 1x, 1.5x, or 2x: VFB (VREF × GAIN) / 3  
For GAIN = 3x, or 4x: VFB (VREF × GAIN) / 6  
Any higher input voltage is clipped.  
Individual comparator channels can be configured in no-hysteresis, with-hysteresis, and window-comparator  
modes using the CMP-X-MODE field in the respective DAC-X-CMP-MODE-CONFIG register.  
7.4.4 Analog-to-Digital Converter (ADC) Mode  
The quad DAC channels of the AFE539A4 can be converted to independent ADC inputs, as shown in 7-3.  
The main ADC channel is ADC3, whereas the other inputs are multiplexed to ADC3. The ADCs can either be  
controlled by the communication register using the register map or by the state machine. By default, the ADCs  
are controlled by the state-machine in this device. To change the controller to the register map, stop the state  
machine and then change the ADC controller in the ADC-CONFIG register. The ADC inputs for different  
channels are listed in 7-1. Whenever any channel is selected as ADC, ADC3 must be configured as a  
comparator and the FB3/AIN3 pin must be connected to VDD using a pullup resistor. The transfer function of the  
ADC is given in 方程5.  
V
× K  
IN  
V
N 1  
ADC_DATA = INTEGER  
× 2  
(5)  
FS  
where:  
ADC_DATA is the ADC-DATA value in the ADC-DATA register.  
VIN is the input voltage at the respective ADC input pin.  
K is the attenuation factor at the ADC input; 1 for finite impedance and 3 for Hi-Z.  
VFS is the full-scale voltage set as per the voltage reference selection and gain setting. For example, if the  
1.21-V internal reference is selected and the gain setting is 2x, then VFS is 2.42 V.  
N is the number of ADC bits. For AFE539A4, N = 10.  
(INTEGER) denotes integer division.  
Follow these steps to configure and read data from ADC channel x:  
1. Configure the full-scale voltage using VOUT-GAIN-X for the corresponding channel in the DAC-X-VOUT-  
CMP-CONFIG register.  
2. Configure DAC channel 3 as comparator by writing 1 to the CMP-X-EN bit in the DAC-3-VOUT-CMP-  
CONFIG register. Only Hi-Z input is allowed in channel 3.  
3. Configure DAC channel-x as comparator by writing 1 to the CMP-X-EN bit in the DAC-X-VOUT-CMP-  
CONFIG register.  
4. Select the ADC controller, number of averages, and ADC channel and then trigger the ADC conversion  
using the ADC-CONFIG-TRIG register.  
5. Read the ADC data using the ADC-DATA register. the data are valid when the ADC-DRDY bit is 1.  
6. Repeat steps 4 and 5 for every ADC readback.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-3. ADC Interface  
7-1. ADC Input Pins  
ADC CHANNEL  
PIN  
INPUT RANGE  
Hi-Z: 0 V to VFS/3  
ADC0  
FB0/AIN0  
FB1/AIN1  
Finite Impedance: 0 V to VFS  
Hi-Z: 0 V to VFS/3  
Finite Impedance: 0 V to VFS  
ADC1  
Hi-Z: 0 V to VFS/3  
Finite Impedance: 0 V to VFS  
ADC2  
ADC3  
FB2/AIN2  
OUT3/AIN3  
Hi-Z: 0 V to VFS/3  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.5 Application-Specific Modes  
This section provides the details of application-specific functional modes available in the AFE539A4.  
7.4.5.1 Function Generation  
The AFE539A4 implements a continuous waveform generation feature. These devices can generate a triangular  
wave, sawtooth wave, and sine wave independently for every channel.  
7.4.5.1.1 Programmable Slew-Rate Control  
When the DAC data registers are written, the voltage on DAC output (VOUT) immediately transitions to the new  
code following the slew rate and settling time specified in the Electrical Characteristics. The slew rate control  
feature allows the user to control the rate at which the output voltage (VOUT) changes. When this feature is  
enabled (using SLEW-RATE-X[3:0] bits), the DAC output changes from the current code to the code in DAC-X-  
MARGIN-HIGH or DAC-X-MARGIN-LOW registers (when margin high or low commands are issued to the DAC)  
using the step and rate set in CODE-STEP-X and SLEW-RATE-X bits in the DAC-X-FUNC-CONFIG register.  
With the default slew rate control setting of no-slew, the output changes smoothly at a rate limited by the output  
drive circuitry and the attached load. Using the slew-rate control feature, the output steps digitally at a rate  
defined by bits CODE-STEP-X and SLEW-RATE-X. SLEW-RATE-X defines the rate at which the digital slew  
updates; CODE-STEP-X defines the amount by which the output value changes at each update, for the  
corresponding channels. 7-2 and 7-3 show different settings available for CODE-STEP-X and SLEW-  
RATE-X.  
When the slew rate control feature is used, the output changes happen at the programmed slew rate. This  
configuration results in a staircase formation at the output as shown in 7-4. Do not write to CODE-STEP-X,  
SLEW-RATE-X, or DAC-X-DATA during the output slew operation.  
7-4. Programmable Slew-Rate Control  
7-2. Code Step  
REGISTER  
CODE-STEP-X[2]  
CODE-STEP-X[1]  
CODE-STEP-X[0]  
CODE STEP SIZE  
1 LSB (default)  
2 LSB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3 LSB  
4 LSB  
DAC-X-FUNC-CONFIG  
6 LSB  
8 LSB  
16 LSB  
32 LSB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-3. Slew Rate  
TIME PERIOD  
REGISTER  
SLEW-RATE-X[3] SLEW-RATE-X[2] SLEW-RATE-X[1] SLEW-RATE-X[0]  
(PER STEP)  
No slew (default)  
4 µs  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
8 µs  
12 µs  
18 µs  
27 µs  
40.5 µs  
60.75 µs  
91.13 µs  
136.69 µs  
239.2 µs  
418.61 µs  
732.56 µs  
1281.98 µs  
1281.98 µs  
5127.92 µs  
DAC-X-FUNC-CONFIG  
7.4.5.1.2 Triangular Waveform Generation  
The triangular waveform uses the DAC-X-MARGIN-LOW and DAC-X-MARGIN-HIGH registers for minimum and  
maximum levels, respectively. The frequency of the waveform depends on the minimum and maximum levels,  
CODE-STEP and SLEW-RATE settings as shown in 方程式 6. An external RC load with a time-constant larger  
than the slew-rate settings can be dominant over the internal frequency calculation. The CODE-STEP-X and  
SLEW-RATE-X settings are available in the DAC-X-FUNC-CONFIG register. Writing 0b000 to the FUNC-  
CONFIG-X bit field in the DAC-X-FUNC-CONFIG register selects triangular waveform.  
1
f
=
(6)  
TRIANGLE_WAVE  
MARGIN_HIGH MARGIN_LOW + 1  
2 × SLEW_RATE ×  
CODE_STEP  
where:  
SLEW_RATE is the SLEW-RATE-X setting as specified in 7-3.  
CODE_STEP is the CODE-STEP-X setting as specified in 7-2.  
MARGIN_HIGH is the DAC-X-MAGIN-HIGH as specified in 7.6.2.  
MARGIN_LOW is the DAC-X-MAGIN-LOW as specified in 7.6.3.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.5.1.3 Sawtooth Waveform Generation  
The sawtooth and the inverse sawtooth waveforms use the DAC-X-MARGIN-LOW and DAC-X-MARGIN-HIGH  
registers for minimum and maximum levels, respectively. The frequency of the waveform depends on the min  
and max levels, CODE-STEP and SLEW-RATE settings as shown in 方程式 7. An external RC load with a time  
constant larger than the slew-rate settings can be dominant over the internal frequency calculation. The CODE-  
STEP-X and SLEW-RATE-X settings are available in the DAC-X-FUNC-CONFIG register. Write 0b001 to the  
FUNC-CONFIG-X bit field in the DAC-X-FUNC-CONFIG register to select sawtooth waveform, and write 0b010  
to select inverse sawtooth waveform.  
1
f
=
(7)  
SAWTOOTH_WAVE  
MARGIN_HIGH MARGIN_LOW + 1  
SLEW_RATE ×  
CODE_STEP  
where:  
SLEW_RATE is the SLEW-RATE-X setting as specified in 7-3.  
CODE_STEP is the CODE-STEP-X setting as specified in 7-2.  
MARGIN_HIGH is the DAC-X-MAGIN-HIGH as specified in 7.6.2.  
MARGIN_LOW is the DAC-X-MAGIN-LOW as specified in 7.6.3.  
7.4.5.1.4 Sine Waveform Generation  
The sine wave function uses 24 preprogrammed points per cycle. The frequency of the sine wave depends on  
the SLEW-RATE settings as shown in 方程式 8. An external RC load with a time constant larger than the slew-  
rate settings can be dominant over the internal frequency calculation. The SLEW-RATE-X setting is available in  
the DAC-X-FUNC-CONFIG register. Writing 0b100 to the FUNC-CONFIG-X bit field in the DAC-X-FUNC-  
CONFIG register selects sine wave. The minimum level for the sine wave is always zero-code and the maximum  
level is always full-code. Use the gain settings at the output amplifier for changing the full-scale output using the  
internal reference option. The gain settings are accessible through the VOUT-GAIN-X bits in the DAC-X-VOUT-  
CMP-CONFIG register. There are four phase settings available for the sine wave that are selected using the  
PHASE-SEL-X bit in the DAC-X-FUNC-CONFIG register.  
1
f
=
(8)  
SINE_WAVE  
24 × SLEW_RATE  
where:  
SLEW_RATE is the SLEW-RATE-X setting as specified in 7-3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.5.2 Proportional-Integral (PI) Controller  
The AFE539A4 provides a preprogrammed PI controller state machine, as shown in 7-5. ADC channel 0 is  
used as the input and DAC channel 1 is used as the output. DAC channel 2 is used as a comparator that is used  
to set the output of DAC channel 1 to a value specified by the SAFE-OUTPUT field. 7-4 lists all the input/  
output pin names and functions.  
7-5. PI Controller Architecture  
7-4. PI Controller Pin Definition  
PIN  
FUNCTION  
RANGE  
Hi-Z: 0 V to VFS/3  
FB0/AIN0  
ADC0 input  
Finite impedance: 0 V to VFS  
OUT0  
Not applicable  
Not connectedleave floating.  
FB1/AIN1  
OUT1  
Not applicable  
Voltage-feedback input for DAC1connect this pin to OUT1  
DAC1 voltage output  
0 V to VFS  
FB2/AIN2  
Hi-Z: 0 V to VFS/3  
DAC2 comparator inputconnect to AGND if unused for safe  
Finite impedance: 0 V to VFS  
output clamping  
OUT2  
Not applicable  
Not applicable  
Not applicable  
Not connectedleave floating  
FB3/AIN3  
OUT3  
Not used for PI contr0lconnect to VDD using a pullup resistor  
Not connectedleave floating  
The PI controller provides many configuration parameters. The following list describes the function of each  
configuration parameter:  
SETPOINT: The 10-bit set point to which the ADC input is compared by the PI controller. The unit of this  
value is the same as the value at the ADC0 input. The PI controller minimizes the error between the set point  
and the sensed ADC data. The SETPOINT value is statically programmed using SRAM address 0x22. To  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
change the SETPOINT value when the PI controller is running, use register address 0x06, as shown in 图  
7-5.  
KP: This 16-bit parameter is used as the proportional gain. KP is multiplied with the instantaneous error. A  
higher KP enables the loop to correct the error faster. However, if the external process has a fast response  
time, a higher KP may cause system instability.  
KI: This 16-bit parameter is used as inverse integral gain. KI is inverted and multiplied to the accumulated  
error. This parameter is important to help minimize the steady-state error under different ambient conditions  
of the process. A higher KI means a weaker response to the steady-state error. A smaller KI can effectively  
correct the steady-state error, but can also lead to bigger oscillations. The integral function is disabled when  
KI = 0.  
MAX-OUTPUT: This 10-bit value limits the maximum value of the PI controller output.  
MIN-OUTPUT: This 10-bit value limits the minimum value of the PI controller output.  
COMMON-MODE: This 10-bit value is present at the PI output when the proportional and integral outputs are  
zero. This parameter is very important to help achieve a uniform response for all set points with fixed KP and  
KI settings. COMMON-MODE represents the nominal output to achieve a given set point. Therefore, for best  
results, use empirically measured COMMON-MODE values for every set point. The COMMON-MODE value  
is statically programmed using the SRAM address 0x25. To change the set-point value when the PI control is  
running, use register address 0x0C, as shown in 7-5.  
LOOP-POLARITY: This 1-bit parameter provides the option to invert the phase of the PI-controller loop. This  
function is useful when the loop external to the device has an additional phase inversion. The sensed data  
after the phase setting can be read at the dynamic address 0x18.  
SAFE-OUTPUT: This 10-bit parameter is used to take the output to this predefined value based on the output  
of comparator channel 2. This function is useful in failure scenarios.  
ADC0-MODE: This 1-bit parameter is used to select between Hi-Z or finite-impedance mode for ADC0.  
ADC0-MODE = 0 corresponds to Hi-Z input; ADC0-MODE = 1 corresponds to finite-impedance input.  
CMP2-THRESHOLD: This 10-bit parameter is used to set the threshold for comparator channel 2.  
Note  
An SRAM location is accessed using the SRAM-ADDR and SRAM-DATA registers. Do not access the  
SRAM registers when the state machine is running. The state machine can be stopped by writing to  
the STATE-MACHINE-CONFIG0 register. The critical parameters that must be updated in run-time  
can be accessed using the dynamic locations as listed in 7-5. The static (SRAM) locations in 7-5  
are mapped to NVM. The dynamic locations are not mapped to the NVM. Set all the unassigned bits  
in the static SRAM locations to 0.  
7-5. PI Controller Parameters  
REGISTER FIELD  
NAME  
STATIC ADDRESS  
LOCATION  
DEFAULT VALUE  
(16-BIT ALIGNED)  
DYNAMIC ADDRESS  
LOCATION  
STATIC ADDRESS  
DYNAMIC ADDRESS  
SETPOINT  
0x22[9:0]  
0x23[15:0]  
0x26[15:0]  
0x20[15:6]  
0x21[15:6]  
0x25[11:2]  
0x27[0]  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
0x0200  
0x0064  
0x0001  
0x7FC0  
0x0000  
0x7FC0  
0x0000  
0x0000  
0x0000  
0x7FC0  
0x06[9:0]  
N/A  
Register  
N/A  
KP  
KI  
N/A  
N/A  
MAX-OUTPUT  
MIN-OUTPUT  
COMMON-MODE  
LOOP-POLARITY  
SAFE-OUTPUT  
ADC0-MODE  
CMP2-THRESHOLD  
N/A  
N/A  
N/A  
N/A  
0x0C[11:2]  
N/A  
Register  
N/A  
0x27[15:6]  
0x27[1]  
N/A  
N/A  
N/A  
N/A  
0x24[15:6]  
N/A  
N/A  
Follow these steps to configure and operate the PI controller:  
1. Stop the state machine by writing 0 to the SM-ABORT and SM-EN bits in the STATE-MACHINE-CONFIG0  
register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
2. Connect the ADC input, comparator input, and DAC output as shown in 7-5.  
3. Write to the COMMON-CONFIG register to enable all the DAC channels.  
4. Write to the DAC-X-VOUT-CMP-CONFIG register for respective channels to select the voltage reference  
and output range for each channel. Configure channels 0, 2, and 3 as comparators.  
5. Calculate the voltage output range for DAC1 and configure MIN-OUTPUT and MAX-OUTPUT accordingly.  
6. Program the configuration parameters LOOP-POLARITY, ADC0-MODE, CMP2-THRESHOLD, and SAFE-  
OUTPUT as appropriate for the system.  
7. Program the initial values of KP and KI.  
8. Maintain a table to SETPOINT versus COMMON-MODE in the host processor and program these values as  
required by the system.  
9. Configure the STATE-MACHINE-CONFIG0 register to start the state machine.  
10. Tune the KP and KI iteratively to achieve the best transient and steady-state response.  
11. Store the values in the NVM by writing to the NVM-PROG bit in the COMMON-TRIGGER register.  
12. Start the state machine by writing 1 to the SM-EN and SM-START bits in the STATE-MACHINE-CONFIG0  
register>  
7.4.6 Device Reset and Fault Management  
This section provides the details of power-on-reset (POR), software reset, and other diagnostics and fault-  
management features of AFE539A4.  
7.4.6.1 Power-On Reset (POR)  
The AFE539A4 family of devices includes a power-on reset (POR) function that controls the output voltage at  
power up. After the VDD supply has been established, a POR event is issued. The POR causes all registers to  
initialize to default values, and communication with the device is valid only after a POR (boot-up) delay. The  
default value for all the registers in the AFE539A4 is loaded from NVM as soon as the POR event is issued.  
When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific  
VDD levels, as indicated in 7-6, to make sure that the internal capacitors discharge and reset the device at  
power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD drops to  
less than 1.65 V, but remains greater than 0.7 V (shown as the undefined region), the device may or may not  
reset under all specified temperature and power-supply conditions. In this case, initiate a POR. When VDD  
remains greater than 1.65 V, a POR does not occur.  
VDD (V)  
5.5 V  
Specified supply  
voltage range  
No power-on reset  
1.71 V  
1.65 V  
Undefined  
0.7 V  
Power-on reset  
0 V  
7-6. Threshold Levels for VDD POR Circuit  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.6.2 External Reset  
An external reset to the device can be triggered through the GPIO pin or through the register map. To initiate a  
device software reset event, write the reserved code 1010 to the RESET field in the COMMON-TRIGGER  
register. A software reset initiates a POR event. The GPIO pin can be configured as a RESET pin as shown in 表  
7-13. This configuration must be programmed into the NVM so that the setting is not cleared after the device  
reset. The RESET input must be a low pulse. The device comes out of reset on the rising edge of the RESET  
input.  
7.4.6.3 Register-Map Lock  
The AFE539A4 implement a register-map lock feature that prevents an accidental or unintended write to the  
DAC registers. The device locks all the registers when the DEV-LOCK bit in the COMMON-CONFIG register is  
set to 1. To bypass the DEV-LOCK setting, write 0101 to the DEV-UNLOCK bits in the COMMON-TRIGGER  
register.  
7.4.6.4 NVM Cyclic Redundancy Check (CRC)  
The AFE539A4 implement a cyclic redundancy check (CRC) feature for the NVM to make sure that the data  
stored in the NVM is uncorrupted. There are two types of CRC alarm bits implemented in AFE539A4:  
NVM-CRC-FAIL-USER  
NVM-CRC-FAIL-INT  
The NVM-CRC-FAIL-USER bit indicates the status of user-programmable NVM bits, and the NVM-CRC-FAIL-  
INT bit indicates the status of internal NVM bits The CRC feature is implemented by storing a 16-Bit CRC  
(CRC-16-CCITT) along with the NVM data each time NVM program operation (write or reload) is performed and  
during the device start up. The device reads the NVM data and validates the data with the stored CRC. The CRC  
alarm bits (NVM-CRC-FAIL-USER and NVM-CRC-FAIL-INT in the GENERAL-STATUS register) report any  
errors after the data are read from the device NVM. The alarm bits are set only at boot-up.  
7.4.6.4.1 NVM-CRC-FAIL-USER Bit  
A logic 1 on NVM-CRC-FAIL-USER bit indicates that the user-programmable NVM data are corrupt. During this  
condition, all registers in the DAC are initialized with factory reset values, and any DAC registers can be written  
to or read from. To reset the alarm bits to 0, issue a software reset (see 7.4.6.2) command, or cycle power to  
the DAC. A software reset or power-cycle also reloads the user-programmable NVM bits. In case the failure  
persists, reprogram the NVM.  
7.4.6.4.2 NVM-CRC-FAIL-INT Bit  
A logic 1 on NVM-CRC-FAIL-INT bit indicates that the internal NVM data are corrupt. During this condition, all  
registers in the DAC are initialized with factory reset values, and any DAC registers can be written to or read  
from. In case of a temporary failure, to reset the alarm bits to 0, issue a software reset (see 7.4.6.2) command  
or cycle power to the DAC. A permanent failure in the NVM makes the device unusable.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.4.7 Power-Down Mode  
The AFE539A4 output amplifier and internal reference can be independently powered down through the EN-INT-  
REF, VOUT-PDN-X, and IOUT-PDN-X bits in the COMMON-CONFIG register, as shown in 7-2. At power up,  
the DAC output and the internal reference are disabled by default. In power-down mode, the DAC outputs (OUTx  
pins) are in a high-impedance state. To change this state to 10 k-AGND or 100 k-AGND in the voltage-output  
mode (at power up), use the VOUT-PDN-X bits. The power-down state for current-output mode is always high-  
impedance.  
The DAC power-up state can be programmed to any state (power-down or normal mode) using the NVM. 7-6  
shows the DAC power-down bits. The individual channel power-down bits or the global device power-down  
function can be mapped to the GPIO pin using the GPIO-CONFIG register.  
7-6. DAC Power-Down Bits  
REGISTER  
VOUT-PDN-X[1]  
VOUT-PDN-X[0]  
IOUT-PDN-X  
DESCRIPTION  
Power up VOUT-X  
0
0
1
Power down VOUT-X with 10 kto AGND.  
0
1
1
1
1
0
1
1
1
1
1
0
Power down IOUT-X to Hi-Z  
Power down VOUT-X with 100 kto AGND.  
Power down IOUT-X to Hi-Z  
COMMON-CONFIG  
Power down VOUT-X to Hi-Z.  
Power down IOUT-X to Hi-Z (default)  
Power down VOUT-X to Hi-Z.  
Power up IOUT-X  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.5 Programming  
7.5.1 SPI Programming Mode  
An SPI access cycle for AFE539A4 is initiated by asserting the SYNC pin low. The serial clock, SCLK, can be a  
continuous or gated clock. SDI data are clocked on SCLK falling edges. The SPI frame for AFE539A4 is 24 bits  
long. Therefore, the SYNC pin must stay low for at least 24 SCLK falling edges. The access cycle ends when the  
SYNC pin is deasserted high. If the access cycle contains less than the minimum clock edges, the  
communication is ignored. By default, the SDO pin is not enabled (3-wire SPI). In the 3-wire SPI mode, if the  
access cycle contains more than the minimum clock edges, only the first 24 bits are used by the device. When  
SYNC is high, the SCLK and SDI signals are blocked, and SDO extends the last bit transmitted.  
Note  
The SDO pin does not become Hi-Z when SYNC is high. Therefore, when sharing a single SPI bus  
across multiple receivers, disable the SDO pin of the DAC before reading from other receivers.  
7-7 describes the format for the 24-bit SPI access cycle. The first byte input to SDI is the instruction cycle.  
The instruction cycle identifies the request as a read or write command and the 7-bit address that is to be  
accessed. The last 16 bits in the cycle form the data cycle.  
7-7. SPI Read/Write Access Cycle  
BIT  
FIELD  
DESCRIPTION  
23  
R/W  
Identifies the communication as a read or write command to the address register:  
R/W = 0 sets a write operation. R/W = 1 sets a read operation  
22 - 16  
15 - 0  
A[6:0]  
DI[15:0]  
Register address: specifies the register to be accessed during the read or write  
operation  
Data cycle bits: If a write command, the data cycle bits are the values to be written  
to the register with address A[6:0]. If a read command, the data cycle bits are don't  
care values.  
Read operations require that the SDO pin is first enabled by setting the SDO-EN bit in the INTERFACE-CONFIG  
register. This is called 4-wire SPI. A read operation is initiated by issuing a read command access cycle. After  
the read command, a second access cycle must be issued to get the requested data. The output data format is  
shown in 7-8. Data are clocked out on the SDO pin either on the falling edge or rising edge of SCLK  
according to the FSDO bit.  
The daisy-chain operation is also enabled with the SDO pin. In the daisy-chain mode, multiple devices are  
connected in a chain with the SDO pin of one device is connected to SDI pin of the following device. The SPI  
host drives the SDI pin of the first device in the chain. The SDO pin of the last device in the chain is connected to  
the MISO pin of the SPI host. In the 4-wire SPI mode, if the access cycle contains multiples of 24 clock edges,  
only the last 24 bits are used by the device first device in the chain. If the access cycle contains clock edges that  
are not in multiples of 24, the SPI packet is ignored by the device.  
7-8. SDO Output Access Cycle  
BIT  
23  
FIELD  
R/W  
DESCRIPTION  
Echo R/W from previous access cycle  
22 - 16  
15 - 0  
A[6:0]  
DI[15:0]  
Echo register address from previous access cycle  
Readback data requested on previous access cycle  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.5.2 I2C Programming Mode  
The AFE539A4 devices have a 2-wire serial interface (SCL and SDA), and one address pin (A0), as shown in  
the pin diagram, 5-1. The I2C bus consists of a data line (SDA) and a clock line (SCL) with pullup structures.  
When the bus is idle, both SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C  
bus through the open drain I/O pins, SDA and SCL.  
The I2C specification states that the device that controls communication is called a master, and the devices that  
are controlled by the master are called slaves. The master device generates the SCL signal. The master device  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the master. The master device  
on an I2C bus is typically a microcontroller or digital signal processor (DSP). The AFE539A4 family operates as a  
slave device on the I2C bus. A slave device acknowledges master commands, and upon master control,  
receives or transmits data.  
Typically, the AFE539A4 family operates as a slave receiver. A master device writes to the AFE539A4, a slave  
receiver. However, if a master device requires the AFE539A4 internal register data, the AFE539A4 operate as a  
slave transmitter. In this case, the master device reads from the AFE539A4. According to I2C terminology, read  
and write refer to the master device.  
The AFE539A4 family is a slave and supports the following data transfer modes:  
Standard mode (100 kbps)  
Fast mode (400 kbps)  
Fast mode plus (1.0 Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, both modes are referred  
to as F/S-mode in this document. The fast mode plus protocol is supported in terms of data transfer speed, but  
not output current. The low-level output current would be 3 mA; similar to the case of standard and fast modes.  
The AFE539A4 family supports 7-bit addressing. The 10-bit addressing mode is not supported. The device  
supports the general call reset function. Sending the following sequence initiates a software reset within the  
device: start or repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the rising edge of the  
ACK bit, following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. An acknowledge is when the SDA line is pulled low during  
the high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high  
period of the ninth clock cycle, as shown in 7-7.  
Data output  
by transmitter  
Not acknowledge  
Data output  
by receiver  
Acknowledge  
2
9
1
8
SCL from  
master  
S
Clock pulse for  
acknowledgement  
Start  
condition  
7-7. Acknowledge and Not Acknowledge on the I2C Bus  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.5.2.1 F/S Mode Protocol  
The following steps explain a complete transaction in F/S mode.  
1. The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 7-8. All I2C-compatible devices  
recognize a start condition.  
2. The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
(R/W) on the SDA line. During all transmissions, the master makes sure that data are valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse, as shown in 图  
7-9. All devices recognize the address sent by the master and compare the address to the respective  
internal fixed address. Only the slave device with a matching address generates an acknowledge by pulling  
the SDA line low during the entire high period of the 9th SCL cycle, as shown in 7-7. When the master  
detects this acknowledge, the communication link with a slave has been established.  
3. The master generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the slave. In  
either case, the receiver must acknowledge the data sent by the transmitter. The acknowledge signal can be  
generated by the master or by the slave, depending on which is the receiver. The 9-bit valid data sequences  
consists of 8-data bits and 1 acknowledge-bit, and can continue as long as necessary.  
4. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from  
low-to-high while the SCL line is high, as shown in 7-8. This action releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices recognize the stop condition. Upon  
receipt of a stop condition, the bus is released, and all slave devices then wait for a start condition followed  
by a matching address.  
SDA  
SDA  
SCL  
SCL  
S
P
Start  
condition  
Stop  
condition  
Change of data  
allowed  
Data line stable  
Data valid  
7-8. Start and Stop Conditions  
7-9. Bit Transfer on the I2C Bus  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.5.2.2 I2C Update Sequence  
For a single update, the AFE539A4 require a start condition, a valid I2C address byte, a command byte, and two  
data bytes, as listed in 7-9.  
7-9. Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
7.5.2.2.1  
Command byte  
7.5.2.2.2  
Data byte - MSDB  
DB [15:8]  
Data byte - LSDB  
DB [7:0]  
DB [31:24]  
DB [23:16]  
After each byte is received, the AFE539A4 family acknowledges the byte by pulling the SDA line low during the  
high period of a single clock pulse, as shown in 7-10. These four bytes and acknowledge cycles make up the  
36 clock cycles required for a single update to occur. A valid I2C address byte selects the AFE539A4 device.  
Recognize  
START or  
REPEATED  
Recognize  
STOP or  
REPEATED  
Generate ACKNOWLEDGE  
START  
START  
signal  
condition  
condition  
P
SDA  
Sr  
MSB  
Acknowledgement  
signal from Slave  
Address  
R/W  
1
SCL  
1
7
8
9
2 - 8  
9
Sr  
or  
P
S
or  
Sr  
ACK  
ACK  
START or  
REPEATED  
START or  
STOP  
REPEATED  
START  
condition  
Clock line held low while  
interrupts are serviced  
condition  
7-10. I2C Bus Protocol  
The command byte sets the operating mode of the selected AFE539A4 device. For a data update to occur when  
the operating mode is selected by this byte, the AFE539A4 device must receive two data bytes: the most  
significant data byte (MSDB) and least significant data byte (LSDB). The AFE539A4 device performs an update  
on the falling edge of the acknowledge signal that follows the LSDB.  
When using fast mode (clock = 400 kHz), the maximum DAC update rate is limited to 10 kSPS. Using fast mode  
plus (clock = 1 MHz), the maximum DAC update rate is limited to 25 kSPS. When a stop condition is received,  
the AFE539A4 device releases the I2C bus and awaits a new start condition.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.5.2.2.1 Address Byte  
The address byte, as shown in 7-10, is the first byte received from the master device following the start  
condition. The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address  
are controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is  
sampled during the first byte of each data frame to determine the address. The device latches the value of the  
address pin, and consequently responds to that particular address according to 7-11.  
7-10. Address Byte  
COMMENT  
MSB  
LSB  
AD6  
1
AD5  
0
AD4  
0
AD3  
AD2  
AD1  
AD0  
R/ W  
See 7-11  
General address  
1
0
0 or 1  
0
(slave address column)  
Broadcast address  
1
0
0
1
1 1  
The AFE539A4 supports broadcast addressing, which is used for synchronously updating or powering down  
multiple AFE539A4 devices. When the broadcast address is used, the AFE539A4 responds regardless of the  
address pin state. Broadcast is supported only in write mode.  
7-11. Address Format  
SLAVE ADDRESS  
A0 PIN  
AGND  
VDD  
000  
001  
010  
011  
SDA  
SCL  
7.5.2.2.2 Command Byte  
7-17 lists the command byte in the ADDRESS column.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AFE539A4  
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.5.2.3 I2C Read Sequence  
To read any register the following command sequence must be used:  
1. Send a start or repeated start command with a slave address and the R/W bit set to 0 for writing. The device  
acknowledges this event.  
2. Send a command byte for the register to be read. The device acknowledges this event again.  
3. Send a repeated start with the slave address and the R/W bit set to 1 for reading. The device acknowledges  
this event.  
4. The device writes the MSDB byte of the addressed register. The master must acknowledge this byte.  
5. Finally, the device writes out the LSDB of the register.  
An alternative reading method allows for reading back the value of the last register written. The sequence is a  
start or repeated start with the slave address and the R/W bit set to 1, and the two bytes of the last register read  
out.  
The broadcast address cannot be used for reading.  
7-12. Read Sequence  
R/W  
(0)  
R/W  
(1)  
S
MSB  
ACK MSB  
LSB ACK Sr MSB  
ACK MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
ADDRESS  
BYTE  
7.5.2.2.1  
COMMAND  
BYTE  
7.5.2.2.2  
ADDRESS  
BYTE  
7.5.2.2.1  
Sr  
MSDB  
From Slave  
LSDB  
From Master  
Slave  
From Master  
Slave  
From Master  
Slave  
Master  
From Slave  
Master  
7.5.3 General-Purpose Input/Output (GPIO) Modes  
Together with I2C and SPI, the AFE539A4 also supports a GPIO that can be configured in the NVM for multiple  
functions. This pin allows for updating the DAC output channels and reading status bits without using the  
programming interface, thus enabling processor-less operation. In the GPIO-CONFIG register, write 1 to the  
GPI1-EN bit to set the GPIO pin as an input, or write 1 to the GPO1-EN bit to set the pin as output. There are  
global and channel-specific functions mapped to the GPIO pin. For channel-specific functions, select the  
channels using the GPI1-CH-SEL field in the GPIO-CONFIG register. 7-13 lists the functional options  
available for the GPIO as input and 7-14 lists the options for the GPIO as output. Some of the GP input  
operations are edge-triggered after the device boots up. After the power supply ramps up, the device registers  
the GPI level and executes the associated command. This feature allows the user to configure the initial output  
state at power-on. By default, the GPIO pin is not mapped to any operation. Pull the GPIO pin to high or low  
when not used. When the GPIO pin is mapped to a specific input function, the corresponding software bit  
functionality is disabled to avoid a race condition. When used as a RESET input, the GPIO pin must transmit an  
active-low pulse for triggering a device reset. All other constraints of the functions are applied to the GPIO-based  
trigger.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AFE539A4  
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
REGISTER  
7-13. General-Purpose Input Function Map  
GPIO EDGE /  
BIT FIELD  
VALUE  
CHANNELS  
FUNCTION  
LEVEL  
Falling-edge  
Rising-edge  
Low  
Trigger FAULT-DUMP  
0010  
All  
No effect  
IOUT power-down  
IOUT power-up  
0011  
0100  
As per GPI1-CH-SEL  
As per GPI1-CH-SEL  
High  
VOUT power-down. Pulldown  
resistor as per the VOUT-PDN-X  
setting  
Low  
High  
VOUT power-up  
Trigger PROTECT function  
No effect  
Falling-edge  
Rising-edge  
Falling-edge  
Rising-edge  
Falling-edge  
0101  
0111  
All  
All  
Trigger CLR function  
No effect  
As per GPI1-CH-SEL. Both  
the SYNC-CONFIG-X and the  
GPI1-CH-SEL must be  
Trigger LDAC function  
1000  
Rising-edge  
No effect  
configured for every channel.  
GPIO-CONFIG  
GPI1-CONFIG  
Falling-edge  
Rising-edge  
Falling-edge  
Rising-edge  
Stop function generation  
Start function generation  
Trigger margin-low  
1001  
1010  
As per GPI1-CH-SEL  
As per GPI1-CH-SEL  
Trigger margin-high  
Trigger device RESET. The RESET  
configuration must be programmed  
into the NVM  
Low pulse  
1011  
1100  
All  
All  
Rising-edge  
Low  
Brings the device out of reset  
NVM programming allowed  
NVM programming blocked  
Write to the register map allowed  
High  
Low  
Write to the register map blocked  
except a write to the DEV-UNLOCK  
field  
1101  
All  
High  
NA  
Others  
NA  
NA  
7-14. General-Purpose Output (STATUS) Function Map  
REGISTER  
BIT FIELD  
VALUE  
0001  
0100  
0101  
0110  
FUNCTION  
NVM-BUSY  
DAC-0-BUSY  
DAC-1-BUSY  
DAC-2-BUSY  
DAC-3-BUSY  
WIN-CMP-0  
WIN-CMP-1  
WIN-CMP-2  
WIN-CMP-3  
NA  
0111  
GPIO-CONFIG  
GPO1-CONFIG  
1000  
1001  
1010  
1011  
Others  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6 Register Maps  
7-15. Register Map (NVM-SAVE-CONFIG = 0b00)  
MOST SIGNIFICANT DATA BYTE (MSDB)  
LEAST SIGNIFICANT DATA BYTE (LSDB)  
REGISTER  
BIT15  
BIT14  
BIT13  
BIT12  
BIT11  
BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NOP  
NOP  
DAC-X-MARGIN-  
HIGH  
DAC-X-MARGIN-HIGH  
DAC-X-MARGIN-LOW  
X
X
DAC-X-MARGIN-  
LOW  
DAC-X-VOUT-  
CMP-CONFIG  
CMP-X-OD-  
EN  
CMP-X-  
OUT-EN  
CMP-X-HIZ- CMP-X-INV-  
X
X
VOUT-X-GAIN  
X
CMP-X-EN  
IN-DIS  
EN  
DAC-X-IOUT-  
MISC-CONFIG  
IOUT-X-RANGE  
X
DAC-X-CMP-  
MODE-CONFIG  
X
CMP-X-MODE  
X
DAC-X-FUNC-  
CLR-SEL-X  
CONFIG  
SYNC-  
CONFIG-X  
BRD-  
CONFIG-X  
FUNC-GEN-CONFIG-BLOCK-X  
DAC-X-DATA  
DAC-X-DATA  
MUX-SEL  
X
ADC-CONFIG-  
ADC-  
CONTROLLER  
X
ADC-EN  
ADC-AVG  
RESERVED  
IOUT-  
X
ADC-TRIG  
ADC-DRDY  
TRIG  
ADC-DATA  
ADC-DATA  
MUX-READBACK  
VOUT-PDN-0  
COMMON-  
CONFIG  
WIN-  
LATCH-EN  
EE-READ-  
ADDR  
IOUT-  
PDN-3  
IOUT-  
PDN-1  
IOUT-  
PDN-0  
DEV-LOCK  
EN-INT-REF  
VOUT-PDN-3  
VOUT-PDN-2  
VOUT-PDN-1  
BIT-FAULT-  
PDN-2  
COMMON-  
TRIGGER  
READ-ONE-  
TRIG  
NVM-  
RELOAD  
DEV-UNLOCK  
RESET  
LDAC  
CLR  
X
PROTECT  
NVM-PROG  
DUMP  
COMMON-DAC-  
TRIG  
RST-CMP-  
FLAG-0  
TRIG-MAR-  
LO-0  
TRIG-MAR-  
HI-0  
START-  
FUNC-0  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-1  
RST-CMP- TRIG-MAR- TRIG-MAR-  
FLAG-2 LO-2 HI-2  
START-  
FUNC-2  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-3  
FLAG-1  
LO-1  
HI-1  
FLAG-3  
LO-3  
HI-3  
GENERAL-  
STATUS  
NVM-CRC-  
FAIL-INT  
NVM-CRC-  
FAIL-USER  
DAC-  
BUSY-3  
DAC-  
BUSY-2  
DAC-  
BUSY-1  
DAC-  
BUSY-0  
ADC-DRDY  
NVM-BUSY  
DEVICE-ID  
PROTECT-  
FLAG  
CMP-  
FLAG-3  
CMP-  
FLAG-2  
CMP-  
FLAG-1  
CMP-  
FLAG-0  
CMP-STATUS  
GPIO-CONFIG  
X
WIN-CMP-3 WIN-CMP-2 WIN-CMP-1 WIN-CMP-0  
GPI-CH-SEL  
GF-EN  
X
GPO1-EN  
GPO1-CONFIG  
GPI1-CONFIG  
GPI1-EN  
DEVICE-MODE-  
CONFIG  
DIS-MODE- PWM-OUT-  
FULL-GPI-  
EN  
APP-IO-  
CTL-EN  
NVM-SAVE-CONFIG  
FB-IN-EN  
PROTECT-CONFIG  
X
X
IN  
EN  
INTERFACE-  
CONFIG  
TIMEOUT-  
EN  
FAST-SDO-  
EN  
X
X
RESERVED  
X
X
SDO-EN  
SM-EN  
STATE-MACHINE-  
CONFIG0  
RESERVED  
SM-ABORT SM-START  
SRAM-CONFIG  
SRAM-DATA  
X
SRAM-ADDR  
SRAM-DATA  
BRDCAST-DATA  
BRDCAST-DATA  
X
Note: Shaded cells indicate the register bits or fields that are stored in NVM.  
Note: X = Don't care.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-16. Register Map (NVM-SAVE-CONFIG = 0b10)  
MOST SIGNIFICANT DATA BYTE (MSDB)  
LEAST SIGNIFICANT DATA BYTE (LSDB)  
REGISTER  
BIT15  
BIT14  
BIT13  
BIT12  
BIT11  
BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NOP  
NOP  
DAC-X-MARGIN-  
HIGH  
DAC-X-MARGIN-HIGH  
DAC-X-MARGIN-LOW  
X
X
DAC-X-MARGIN-  
LOW  
DAC-X-VOUT-  
CMP-CONFIG  
CMP-X-OD-  
EN  
CMP-X-  
OUT-EN  
CMP-X-HIZ- CMP-X-INV-  
IN-DIS EN  
X
X
VOUT-X-GAIN  
X
CMP-X-EN  
DAC-X-IOUT-  
MISC-CONFIG  
IOUT-X-RANGE  
X
DAC-X-CMP-  
MODE-CONFIG  
X
CMP-X-MODE  
X
DAC-X-FUNC-  
CONFIG  
SYNC-  
CONFIG-X  
BRD-  
CONFIG-X  
CLR-SEL-X  
X
FUNC-GEN-CONFIG-BLOCK-X  
RESERVED  
DAC-X-DATA  
DAC-X-DATA  
MUX-SEL  
X
ADC-CONFIG-  
TRIG  
ADC-  
CONTROLLER  
ADC-EN  
ADC-AVG  
X
ADC-TRIG  
ADC-DRDY  
ADC-DATA  
ADC-DATA  
RESET  
MUX-READBACK  
VOUT-PDN-0  
COMMON-  
CONFIG  
WIN-  
LATCH-EN  
DEV-LOCK  
EE-READ- EN-INT-REF  
ADDR  
VOUT-PDN-3  
IOUT-  
VOUT-PDN-2  
IOUT-  
VOUT-PDN-1  
IOUT-  
IOUT-  
PDN-3  
PDN-2  
PDN-1  
PDN-0  
COMMON-  
TRIGGER  
DEV-UNLOCK  
LDAC  
CLR  
X
BIT-FAULT- PROTECT READ-ONE- NVM-PROG  
NVM-  
DUMP  
TRIG  
RELOAD  
COMMON-DAC-  
TRIG  
RST-CMP-  
FLAG-0  
TRIG-MAR-  
LO-0  
TRIG-MAR-  
HI-0  
START-  
FUNC-0  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-1  
RST-CMP- TRIG-MAR- TRIG-MAR-  
FLAG-2 LO-2 HI-2  
START-  
FUNC-2  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-3  
FLAG-1  
LO-1  
HI-1  
FLAG-3  
LO-3  
HI-3  
GENERAL-  
STATUS  
NVM-CRC-  
FAIL-INT  
NVM-CRC-  
FAIL-USER  
ADC-DRDY  
DAC-  
BUSY-3  
DAC-  
BUSY-2  
DAC-  
BUSY-1  
DAC-  
BUSY-0  
NVM-BUSY  
DEVICE-ID  
CMP-STATUS  
X
PROTECT- WIN-CMP-3 WIN-CMP-2 WIN-CMP-1 WIN-CMP-0  
FLAG  
CMP-  
FLAG-3  
CMP-  
FLAG-2  
CMP-  
FLAG-1  
CMP-  
FLAG-0  
GPIO-CONFIG  
GF-EN  
X
GPO1-EN  
GPO1-CONFIG  
GPI-CH-SEL  
GPI1-CONFIG  
GPI1-EN  
DEVICE-MODE-  
CONFIG  
NVM-SAVE-CONFIG  
DIS-MODE- PWM-OUT-  
FB-IN-EN  
FULL-GPI-  
EN  
PROTECT-CONFIG  
X
APP-IO-  
CTL-EN  
X
IN  
EN  
INTERFACE-  
CONFIG  
X
TIMEOUT-  
EN  
X
RESERVED  
X
FAST-SDO-  
EN  
X
SDO-EN  
SM-EN  
STATE-MACHINE-  
CONFIG1  
RESERVED  
SM-ABORT SM-START  
SRAM-CONFIG  
SRAM-DATA  
X
SRAM-ADDR  
X
SRAM-DATA  
DAC-X-DATA-8BIT  
BRDCAST-DATA  
DAC-X-DATA-8BIT  
BRDCAST-DATA  
X
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-17. Register Names  
I2C OR SPI  
ADDRESS  
(COMMAND  
BYTE)  
REGISTER NAME  
SECTION  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
NOP  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.8  
7.6.8  
7.6.8  
7.6.8  
DAC-0-MARGIN-HIGH  
DAC-0-MARGIN_LOW  
DAC-0-VOUT-CMP-CONFIG  
DAC-0-IOUT-MISC-CONFIG  
DAC-0-CMP-MODE  
DAC-0-FUNC-CONFIG  
DAC-1-MARGIN-HIGH  
DAC-1-MARGIN_LOW  
DAC-1-VOUT-CMP-CONFIG  
DAC-1-IOUT-MISC-CONFIG  
DAC-1-CMP-MODE  
DAC-1-FUNC-CONFIG  
DAC-2-MARGIN-HIGH  
DAC-2-MARGIN_LOW  
DAC-2-VOUT-CMP-CONFIG  
DAC-2-IOUT-MISC-CONFIG  
DAC-2-CMP-MODE  
DAC-2-FUNC-CONFIG  
DAC-3-MARGIN-HIGH  
DAC-3-MARGIN_LOW  
DAC-3-VOUT-CMP-CONFIG  
DAC-3-IOUT-MISC-CONFIG  
DAC-3-CMP-MODE  
DAC-3-FUNC-CONFIG  
DAC-0-DATA  
DAC-1-DATA  
DAC-2-DATA  
DAC-3-DATA  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-17. Register Names (continued)  
I2C OR SPI  
ADDRESS  
(COMMAND  
BYTE)  
REGISTER NAME  
SECTION  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
2Bh  
2Ch  
50h  
ADC-CONFIG-TRIG  
ADC-DATA  
7.6.9  
7.6.10  
7.6.11  
7.6.12  
7.6.13  
7.6.14  
7.6.15  
7.6.16  
7.6.17  
7.6.18  
7.6.19  
7.6.20  
7.6.21  
7.6.22  
COMMON-CONFIG  
COMMON-TRIGGER  
COMMON-DAC-TRIG  
GENERAL-STATUS  
CMP-STATUS  
GPIO-CONFIG  
DEVICE-MODE-CONFIG  
INTERFACE-CONFIG  
STATE-MACHINE-CONFIG0  
SRAM-CONFIG  
SRAM-DATA  
BRDCAST-DATA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AFE539A4  
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.1 NOP Register (address = 00h) [reset = 0000h]  
7-11. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP  
R/W-0h  
7-18. NOP Register Field Descriptions  
Bit  
15 - 0  
Field  
NOP  
Type  
Reset  
Description  
R/W  
0000h  
No operation  
7.6.2 DAC-X-MARGIN-HIGH Register (address = 01h, 07h, 0Dh, 13h) [reset = 0000h]  
7-12. DAC-X-MARGIN-HIGH Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-MARGIN-HIGH[9:0]  
R/W-0h  
X
X-0h  
7-19. DAC-X-MARGIN-HIGH Register Field Descriptions  
Bit  
15 - 4  
Field  
Type  
Reset  
Description  
DAC-X-MARGIN-HIGH[9:0]  
R/W  
000h  
Margin-high code for DAC output  
Data are in straight-binary format. MSB left-aligned.  
Use the following bit-alignment:  
AFE539A4: {DAC-X-MARGIN-HIGH[9:0], X, X}  
X = Don't care bits.  
3 - 0  
X
X
0
Don't care  
7.6.3 DAC-X-MARGIN-LOW Register (address = 02h, 08h, 0Eh, 14h) [reset = 0000h]  
7-13. DAC-X-MARGIN-LOW Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-MARGIN-LOW[9:0]  
R/W-0h  
X
X-0h  
7-20. DAC-X-MARGIN-LOW Register Field Descriptions  
Bit  
15 - 4  
Field  
Type  
Reset  
Description  
DAC-X-MARGIN-LOW[9:0]  
R/W  
000h  
Margin-low code for DAC output  
Data are in straight-binary format. MSB left-aligned.  
Use the following bit-alignment:  
AFE539A4: {DAC-X-MARGIN-LOW[9:0], X, X}  
X = Don't care bits.  
3 - 0  
X
X
0
Don't care  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.4 DAC-X-VOUT-CMP-CONFIG Register (address = 03h, 09h, 0Fh, 15h) [reset = 0000h]  
7-14. DAC-X-VOUT-CMP-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
X
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VOUT-GAIN-X  
X
CMP-X- CMP-X- CMP-X- CMP-X- CMP-X-  
OD-EN OUT-EN HIZ-IN- INV-EN  
DIS  
EN  
X-0h  
R/W-0h  
X-0h  
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h  
7-21. DAC-X-VOUT-CMP-CONFIG Register Field Descriptions  
Bit  
15 - 13  
12 - 10 VOUT-GAIN-X  
Field  
Type  
Reset  
Description  
X
X
0h  
Don't care  
R/W  
0h  
000: Gain = 1x, external reference on VREF pin.  
001: Gain = 1x, VDD as reference.  
010: Gain = 1.5x, internal reference.  
011: Gain = 2x, internal reference.  
100: Gain = 3x, internal reference.  
101: Gain = 4x, internal reference.  
Others: NA.  
9 - 5  
4
X
X
0h  
0
Don't care  
CMP-X-OD-EN  
R/W  
1: Set OUTx pin as open-drain in comparator mode (CMP-X-EN =  
1 and CMP-X-OUT-EN = 1).  
0: Set OUTx pin as push-pull.  
3
2
CMP-X-OUT-EN  
R/W  
R/W  
0
0
1: Bring comparator output to the respective OUTx pin.  
0: Generate comparator output but consume internally.  
CMP-X-HIZ-IN-DIS  
1: FBx input has high-impedance. Input voltage range is limited.  
0: FBx input is connected to resistor divider and has finite  
impedance. Input voltage range is same as full-scale.  
1
0
CMP-X-INV-EN  
CMP-X-EN  
R/W  
R/W  
0
0
1: Invert the comparator output.  
0: Don't invert the comparator output.  
1: Enable comparator mode. Current-output must be in power-  
down.  
0: Disable comparator mode.  
7.6.5 DAC-X-IOUT-MISC-CONFIG Register (address = 04h, 0Ah, 10h, 16h) [reset = 0000h]  
7-15. DAC-X-IOUT-MISC-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
IOUT-RANGE-X  
R/W-0h  
X
X-0h  
X-0h  
7-22. DAC-X-IOUT-MISC-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 13  
12 - 9  
X
X
0h  
Don't care.  
IOUT-RANGE-X  
R/W  
0000  
1000: -25 μA to +25 μA  
1001: -50 μA to +50 μA  
1010: -125 μA to +125 μA  
1011: -250 μA to +250 μA  
Others: NA.  
8 - 0  
X
X
000h  
Don't care.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.6 DAC-X-CMP-MODE-CONFIG Register (address = 05h, 0Bh, 11h, 17h) [reset = 0000h]  
7-16. DAC-X-CMP-MODE-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
CMP-X-MODE  
R/W-0h  
X
X-0h  
X-0h  
7-23. DAC-X-CMP-MODE-CONFIG Register Field Descriptions  
Bit  
15 - 12  
11 - 10 CMP-X-MODE  
Field  
Type  
Reset  
00h  
00  
Description  
X
X
Don't care.  
R/W  
00: No hysteresis or window function.  
01: Hysteresis provided using DAC-X-MARGIN-HIGH and DAC-  
X-MARGIN-LOW registers.  
10: Window comparator mode with DAC-X-MARGIN-HIGH and  
DAC-X-MARGIN-LOW registers setting window bounds.  
11: Invalid setting.  
9 - 0  
X
X
000h  
Don't care.  
7.6.7 DAC-X-FUNC-CONFIG Register (address = 06h, 0Ch, 12h, 18h) [reset = 0000h]  
7-17. DAC-X-FUNC-CONFIG Register (X = 0, 1, 2, 3) for Linear Slew-Rate Setting  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLR-SEL-X  
SYNC-  
BRD-  
FUNC-GEN-CONFIG-BLOCK  
CONFIG-X CONFIG-X  
R/W-0h  
R/W-0h R/W-0h  
R/W-0h  
7-24. DAC-X-FUNC-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CLR-SEL-X  
R/W  
0
0: Clear DAC-X to zero-scale.  
1: Clear DAC-X to mid-scale.  
14  
13  
SYNC-CONFIG-X  
R/W  
R/W  
0
0
0: DAC-X output updates immediately after a write command.  
1: DAC-X output updates with LDAC pin falling-edge or when the  
LDAC bit in the COMMON-TRIGGER register is set to 1.  
BRD-CONFIG-X  
0: Don't update DAC-X with broadcast command.  
1: Update DAC-X with broadcast command.  
7-25. Linear-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12 - 11 PHASE-SEL-X  
R/W  
0
00: 0 degree.  
01: 120 degree.  
10: 240 degree.  
11: 90 degree.  
10 - 8  
FUNC-CONFIG-X  
R/W  
0
000: Triangular wave.  
001: Sawtooth wave.  
010: Inverse sawtooth wave.  
100: Sine wave.  
111: Disable function generation.  
Others: Invalid.  
7
LOG-SLEW-EN-X  
CODE-STEP-X  
R/W  
R/W  
0
0
0: Enable linear slew.  
6 - 4  
CODE-STEP for linear-slew mode:  
000: 1-LSB.  
001: 2-LSB.  
010: 3-LSB.  
011: 4-LSB.  
100: 6-LSB.  
101: 8-LSB.  
110: 16-LSB.  
111: 32-LSB.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-25. Linear-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3 - 0  
SLEW-RATE-X  
R/W  
0
SLEW-RATE for logarithmic-slew mode:  
0000: No slew for margin-high and margin-low. Invalid for  
waveform generation.  
0001: 4 µs/step.  
0010: 8 µs/step.  
0011: 12 µs/step.  
0100: 18 µs/step.  
0101: 27.04 µs/step.  
0110: 40.48 µs/step.  
0111: 60.72 µs/step.  
1000: 91.12 µs/step.  
1001: 136.72 µs/step.  
1010: 239.2 µs/step.  
1011: 418.64 µs/step.  
1100: 732.56 µs/step.  
1101: 1282 µs/step.  
1110: 2563.92 µs/step.  
1111: 5127.92 µs/step.  
7-26. Logarithmic-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12 - 11  
PHASE-SEL-X  
R/W  
0
00: 0 degree.  
01: 120 degree.  
10: 240 degree.  
11: 90 degree.  
10 - 8  
FUNC-CONFIG-X  
R/W  
0
000: Triangular wave.  
001: Sawtooth wave.  
010: Inverse sawtooth wave.  
100: Sine wave.  
111: Disable function generation.  
Others: Invalid.  
7
LOG-SLEW-EN-X  
RISE-SLEW-X  
R/W  
R/W  
0
0
1: Enable logarithmic slew.  
6 - 4  
SLEW-RATE for log-slew mode:  
000: 4 µs/step.  
001: 12 µs/step.  
010: 27.04 µs/step.  
011: 60.72 µs/step.  
100: 136.72 µs/step.  
101: 418.64 µs/step.  
110: 1282 µs/step.  
111: 5127.92 µs/step.  
3 - 1  
FALL-SLEW-X  
R/W  
0
SLEW-RATE for log-slew mode:  
000: 4 µs/step.  
001: 12 µs/step.  
010: 27.04 µs/step.  
011: 60.72 µs/step.  
100: 136.72 µs/step.  
101: 418.64 µs/step.  
110: 1282 µs/step.  
111: 5127.92 µs/step.  
0
X
X
0
Don't care.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AFE539A4  
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-27. State Machine Mode: Channel-0 FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12 - 10  
9 - 0  
RESERVED  
SETPOINT  
X
0
Always write 0.  
R/W  
0x200  
Run-time set-point location for PI controller.  
7-28. State Machine Mode: Channel-1 FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
12  
Field  
Type  
Reset  
Description  
RESERVED  
COMMON-MODE  
RESERVED  
X
0
Always write 0.  
11 - 2  
1 - 0  
R/W  
X
0x1FF  
0
Run-time common-mode location for PI controller.  
Always write 0.  
7-29. State Machine Mode: Channel-3 FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
12  
Field  
Type  
Reset  
Description  
RESERVED  
PI-OUTPUT  
RESERVED  
X
0
Always write 0.  
11 - 2  
1 - 0  
R
0x000  
0
Run-time PI controller output location.  
Always write 0.  
X
7-30. State Machine Mode: Channel-3 FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12 - 10  
9 - 0  
RESERVED  
SENSED-DATA  
X
0
Always write 0.  
R/W  
0x000  
Run-time sensed data location for PI controller.  
7.6.8 DAC-X-DATA Register (address = 19h, 1Ah, 1Bh, 1Ch) [reset = 0000h]  
7-18. DAC-X-DATA Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-DATA[9:0]  
R/W-0h  
X
X-0h  
7-31. DAC-X-DATA Register Field Descriptions  
Bit  
15 - 4  
Field  
DAC-X-DATA[9:0]  
Type  
Reset  
Description  
R/W  
000h  
Data for DAC output  
Data are in straight-binary format. MSB left-aligned. Use the  
following bit-alignment:  
AFE539A4: {DAC-X-DATA[9:0], X, X}  
X = Don't care bits.  
3 - 0  
X
X
0h  
Don't care.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.9 ADC-CONFIG-TRIG Register (address = 1Dh) [reset = 0000h]  
7-19. ADC-CONFIG-TRIG Register  
15  
X
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ADC-  
CONTROLL  
ER  
ADC-EN  
ADC-AVG  
MUX-SEL  
RESERVED  
X
ADC-  
TRIG  
X-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
X-0h  
W-0h  
7-32. ADC-CONFIG-TRIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
14  
X
X
0
0
Don't care.  
ADC-CONTROLLER  
R/W  
0: ADC is controlled by the communication interface  
1: ADC is controlled by the state-machine.  
13  
ADC-EN  
R/W  
R/W  
0
0: ADC disabled.  
1: ADC enabled.  
12 - 11 ADC-AVG  
00  
Number of ADC samples to be averaged:  
00: 4  
01: 8  
10: 16  
11: 32  
10 - 8  
MUX-SEL  
R/W  
000  
000: ADC0 in Hi-Z input mode.  
001: ADC1 in Hi-Z input mode.  
010: ADC2 in Hi-Z input mode.  
011: ADC3 in Hi-Z input mode.  
100: ADC0 in finite-impedance input mode.  
101: ADC1 in finite-impedance input mode.  
110: ADC2 in finite-impedance input mode.  
111: Invalid.  
7 - 5  
4 - 1  
0
RESERVED  
X
R/W  
R/W  
W
0h  
0h  
0
Always write 110b.  
Don't care.  
ADC-TRIG  
0: Don't care.  
1: Trigger ADC. This bit is auto-resetting.  
Note  
Before setting the ADC-TRIG bit:  
Set ADC-EN to 1.  
Configure the reference and gain for channel-3.  
Configure channel-3 as a comparator.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.10 ADC-DATA Register (address = 1Eh) [reset = 0000h]  
7-20. ADC-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ADC-DATA[9:0]  
MUX-READBACK  
ADC-  
DRDY  
R-0h  
R-0h  
R-0h  
7-33. ADC-DATA Register Field Descriptions  
Bit  
15 - 4  
Field  
Type  
Reset  
Description  
ADC-DATA[9:0]  
R
000h  
Data readback from ADC  
Data are in straight-binary format. MSB left-aligned. Use the  
following bit-alignment:  
AFE539A4: {ADC-DATA[9:0], X, X}  
X = Don't care bits.  
3 - 1  
MUX-READBACK  
R
0h  
000: ADC0 in Hi-Z input mode.  
001: ADC1 in Hi-Z input mode.  
010: ADC2 in Hi-Z input mode.  
011: ADC3 in Hi-Z input mode.  
100: ADC0 in finite-impedance input mode.  
101: ADC1 in finite-impedance input mode.  
110: ADC2 in finite-impedance input mode.  
111: Invalid.  
0
ADC-DRDY  
R
0
0: ADC conversion in progress. ADC-DATA is invalid.  
1: ADC conversion complete. ADC-DATA is valid.  
7.6.11 COMMON-CONFIG Register (address = 1Fh) [reset = 1249h]  
7-21. COMMON-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WINDO  
W-  
DEV-  
LOCK  
EE-READ- EN-INT-  
VOUT-PDN-3  
IOUT-  
PDN-3  
VOUT-PDN-2  
IOUT-  
PDN-2  
VOUT-PDN-1  
IOUT-  
PDN-1  
VOUT-PDN-0  
IOUT-  
PDN-0  
ADDR  
REF  
LATCH-  
EN  
R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-34. COMMON-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
WINDOW-LATCH-EN  
DEV-LOCK  
R/W  
0
0: Non-latching window-comparator output.  
1: Latching window-comparator output  
14  
R/W  
0
0 : Device not locked  
1: Device locked, the device locks all the registers. To set this bit  
back to 0 (unlock device), write to the unlock code to the DEV-  
UNLOCK field in the COMMON-TRIGGER register first, followed  
by a write to the DEV-LOCK bit as 0.  
13  
12  
EE-READ-ADDR  
EN-INT-REF  
R/W  
R/W  
0
0: Fault-dump read enable at address 0x00.  
1: Fault-dump read enable at address 0x01.  
000  
0: Disable internal reference  
1: Enable internal reference. This bit must be set before using  
internal reference gain settings.  
11 - 10, 8 - VOUT-PDN-X  
7, 5 - 4, 2 -  
1
R/W  
R/W  
11  
1
00: Power-up VOUT-X.  
01: Power-down VOUT-X with 10 KΩto AGND.  
10: Power-down VOUT-X with 100 KΩto AGND.  
11: Power-down VOUT-X with Hi-Z to AGND.  
9, 6, 3, 0 IOUT-PDN-X  
0: Power-up IOUT-X.  
1: Power-down IOUT-X  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.12 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]  
7-22. COMMON-TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEV-UNLOCK  
RESET  
LDAC  
CLR  
X
FAULT- PROTECT  
DUMP  
READ-  
ONE-  
TRIG  
NVM-  
PROG RELOAD  
NVM-  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
X-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h R/W-0h  
7-35. COMMON-TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 12 DEV-UNLOCK  
R/W  
0000  
0101: Device unlocking password.  
Others: Don't care.  
11 - 8  
7
RESET  
LDAC  
W
0000  
0
1010 : POR reset triggered. This field is self-resetting.  
Others: Don't care.  
R/W  
0: LDAC operation not triggered.  
1: LDAC operation triggered if the respective SYNC-CONFIG-X  
bit in the DAC-X-FUNC-CONFIG register is 1. This bit is self-  
resetting.  
6
CLR  
R/W  
0
0: DAC registers and outputs unaffected.  
1: DAC registers and outputs set to zero-code or mid-code based  
on the respective CLR-SEL-X bit in the DAC-X-FUNC-CONFIG  
register. This bit is self-resetting.  
5
4
X
X
0
0
Don't care.  
FAULT-DUMP  
R/W  
0: Fault-dump is not triggered.  
1: Triggers fault-dump sequence. This bit is self-resetting.  
3
2
1
0
PROTECT  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: PROTECT function not triggered.  
1: Trigger PROTECT function. This bit is self-resetting.  
READ-ONE-TRIG  
NVM-PROG  
0: Fault-dump read not triggered.  
1: Read one row of NVM for fault-dump. This bit is self-resetting.  
0: NVM write not triggered.  
1: NVM write triggered. This bit is self-resetting.  
NVM-RELOAD  
0: NVM reload not triggered.  
1: Reload data from NVM to register map. This bit is self-  
resetting.  
7.6.13 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]  
7-23. COMMON-DAC-TRIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESET- TRIG- TRIG-MAR-  
START- RESET TRIG- TRIG- START- RESET TRIG- TRIG- START- RESET  
TRIG-  
TRIG- START-  
CMP-  
FLAG-0  
MAR-  
LO-0  
HI-0  
FUNC-0 -CMP- MAR- MAR- FUNC- -CMP- MAR-  
MAR- FUNC- -CMP- MAR-LO-3 MAR- FUNC-  
FLAG-  
1
LO-1  
HI-1  
1
FLAG-  
2
LO-2  
HI-2  
2
FLAG-  
2
HI-3  
3
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h R/W-0h W-0h  
W-0h  
W-0h R/W-0h W-0h  
W-0h  
W-0h R/W-0h  
7-36. COMMON-DAC-TRIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 , 11, 7, RESET-CMP-FLAG-X  
3
W
0
0: Latching-comparator output unaffected.  
1: Reset latching-comparator output. This bit is self-resetting.  
14, 10, 6, TRIG-MAR-LO-X  
2
W
0
0
0
0: Don't care.  
1: Trigger margin-low command. This bit is self-resetting.  
13, 9, 5, 1 TRIG-MAR-HI-X  
W
0: Don't care.  
1: Trigger margin-high command. This bit is self-resetting.  
12, 8, 4, 0 START-FUNC-X  
R/W  
0: Stop function generation.  
1: Start function generation as per FUNC-GEN-CONFIG-X in the  
DAC-X-FUNC-CONFIG register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.14 GENERAL-STATUS Register (address = 22h) [reset = TBD]  
7-24. GENERAL-STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NVM-  
CRC-  
FAIL-  
INT  
NVM-  
CRC-  
FAIL-  
USER  
ADC-DRDY  
DAC-3- DAC-2- DAC-1- DAC-0-  
X
DEVICE-ID  
BUSY  
R-0h  
BUSY BUSY BUSY  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
X-0h  
R-0h  
7-37. GENERAL-STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
NVM-CRC-FAIL-INT  
R
0
0: No CRC error in OTP.  
1: Indicates a failure in OTP loading. A software reset or power-  
cycle can bring the device out of this condition in case of  
temporary failure.  
14  
NVM-CRC-FAIL-USER  
R
0
0: No CRC error in NVM loading.  
1: Indicates a failure in NVM loading. The register settings are  
corrupted. The device allows all operations during this error  
condition. Reprogram the NVM to get original state. A software  
reset brings the device out of this error condition.  
13  
12  
11  
10  
9
ADC-DRDY  
DAC-3-BUSY  
DAC-2-BUSY  
DAC-1-BUSY  
DAC-0-BUSY  
NVM-BUSY  
DEVICE-ID  
R
R
R
R
R
R
R
0
0: ADC conversion is not in progress.  
1: ADC conversion in progress. ADC data is invalid.  
0
0: DAC-3 channel can accept commands.  
1: DAC-3 channel doesn't accept commands.  
0
0: DAC-2 channel can accept commands.  
1: DAC-2 channel doesn't accept commands.  
0
0: DAC-1 channel can accept commands.  
1: DAC-1 channel doesn't accept commands.  
0
0: DAC-0 channel can accept commands.  
1: DAC-0 channel doesn't accept commands.  
8
0
0: NVM is available for read and write.  
1: NVM is not available for read or write.  
7 - 0  
TBD  
Device identifier:  
AFE539A4: 1Ch  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.15 CMP-STATUS Register (address = 23h) [reset = 0000h]  
7-25. CMP-STATUS Register  
15  
14  
13  
12  
X
11  
10  
9
8
7
6
5
4
3
2
1
0
PROTECT- WIN- WIN- WIN- WIN- CMP- CMP- CMP- CMP-  
FLAG  
CMP-3 CMP-2 CMP-1 CMP-0 FLAG- FLAG- FLAG- FLAG-  
3
2
1
0
X-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
7-38. CMP-STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 9  
8
X
X
0
0
Don't care.  
PROTECT-FLAG  
R
0 : PROTECT operation not triggred or in progress.  
1: PROTECT function is completed. This bit resets to 0 when  
read.  
7, 6, 5, 4 WIN-CMP-X  
3, 2, 1, 0 CMP-FLAG-X  
R
R
0
0
Window comparator output from respective channels. The output  
is latched or unlatched based on the WINDOW-LATCH-EN  
setting in the COMMON-CONFIG register.  
Synchronized comparator output from respective channels.  
7.6.16 GPIO-CONFIG Register (address = 24h) [reset = 0000h]  
7-26. GPIO-CONFIG Register  
15  
14  
X
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GF-EN  
GPO1-  
EN  
GPO1-CONFIG  
R/W-0h  
GPI1-CH-SEL  
R/W-0h  
GPI1-CONFIG  
GPI1-EN  
R/W-0h  
X-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-39. GPIO-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
GF-EN  
R/W  
0
0: Glitch filter disabled for GP input. This setting provides faster  
response.  
1: Glitch filter enabled for GPI. This setting introduces additional  
propagation delay but provides robustness.  
14  
13  
X
X
0
0
Don't care.  
GPO1-EN  
R/W  
0: Disable output mode for GPIO pin.  
1: Enable output mode for GPIO pin.  
12 - 9  
GPO1-CONFIG  
R/W  
0000  
STATUS function setting. The GPIO pin is mapped to the  
following register bits as output:0000: ADC-DRDY  
0001: NVM-BUSY  
0100: DAC-0-BUSY  
0101: DAC-1-BUSY  
0110: DAC-2-BUSY  
0111: DAC-3-BUSY  
1000: WIN-CMP-0  
1001: WIN-CMP-1  
1010: WIN-CMP-2  
1011:WIN-CMP-3  
Others: NA  
8 - 5  
GPI1-CH-SEL  
R/W  
0000  
Each bit corresponds to a DAC channel. 0b is disabled and 1b is  
enabled.  
GPI1-CH-SEL[0]: Channel 0  
GPI1-CH-SEL[1]: Channel 1  
GPI1-CH-SEL[2]: Channel 2  
GPI1-CH-SEL[3]: Channel 3  
Example: when GPI1-CH-SEL is 0101, both channel-0 and  
channel-2 are enabled and both channel-1 and channel-3 are  
disabled.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7-39. GPIO-CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4 - 1  
GPI1-CONFIG  
R/W  
0000  
GPIO pin input configuration. Global settings act on the entire  
device. Channel-specific settings are dependent on the channel  
selection by the GPI1-CH-SEL bits:  
0010: FAULT-DUMP (global). GPIO falling-edge triggers fault-  
dump, GPIO = 1 has no effect.  
0011: IOUT power-up, down (channel-specific). GPIO = 0 is  
power-down, GPIO = 1 is power-up.  
0100: VOUT power-up/down (channel-specific). The output load  
is as per the VOUT-PDN-X setting. GPIO = 0 is power-down,  
GPIO = 1 is power-up.  
0101: PROTECT input (global). GPIO falling-edge asserts  
PROTECT function, GPIO = 1 has no effect.  
0111: CLR input (global). GPIO = 0 asserts CLR function, GPIO =  
1has no effect.  
1000: LDAC input (channel-specific). GPIO falling-edge asserts  
LDAC function, GPIO = 1 has no effect. Both the SYNC-CONFIG-  
X and the GPI1-CH-SEL must be configured for every channel.  
1001: Start, stop function generation (channel-specific). GPIO  
falling-edge stops function generation. GPIO rising-edge starts  
function generation.  
1010: Trigger margin-high, low (channel-specific). GPIO falling-  
edge triggers margin-low. GPIO rising-edge triggers margin-high.  
1011:RESET input (global). The falling-edge of the GPIO pin  
asserts the RESET function. The RESET input must be a pulse.  
The GPIO rising-edge brings the device out of reset. The RESET  
configuration must be programmed into the NVM. Otherwise the  
setting will be cleared after the device reset.  
1100: NVM write-protection (global). GPIO falling-edge allows  
NVM programming. GPIO = 1 blocks NVM programming.  
1101: Register-map lock (global). GPIO = 0 allows update to the  
register map. GPIO = 1 blocks any register map update except a  
write to the DEV-UNLOCK field.  
Others: NA  
0
GPI1-EN  
R/W  
0
0: Disable input mode for GPIO pin.  
1: Enable input mode for GPIO pin.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AFE539A4  
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.17 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]  
7-27. DEVICE-MODE-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
DIS-  
MODE-IN  
RESERVED  
PROTECT-  
CONFIG  
RESERVED  
X
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
X-0h  
7-40. DEVICE-MODE-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 14 RESERVED  
R/W  
00  
00: Register map saved in the NVM as per 7-15.  
01: Register map saved in the NVM as per 7-16.  
Others: Invalid.  
13  
DIS-MODE-IN  
R/W  
0
0: MODE function enabled.  
1: MODE function disabled.  
12 - 10 RESERVED  
R/W  
R/W  
0
Always write 0b000.  
9 - 8  
PROTECT-CONFIG  
00  
00: Switch to power-down (no slew).  
01: Switch to DAC code stored in NVM (no slew) and then switch  
to power-down.  
10: Slew to margin-low code and then switch to power-down.  
11: Slew to margin-high code and then switch to power-down.  
7 - 5  
4 - 0  
RESERVED  
X
R/W  
R/W  
0
Always write 0b000.  
Don't care.  
00h  
7.6.18 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]  
7-28. INTERFACE-CONFIG Register  
15  
14  
X
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TIMEOUT-  
EN  
X
FSDO-  
EN  
X
SDO-EN  
X-0h  
R/W-0h  
X-0h  
R/W-0h X-0h  
R/W-0h  
7-41. INTERFACE-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 13  
12  
X
X
0h  
Don't care.  
TIMEOUT-EN  
R/W  
0
0: I2C timeout disabled.  
1: I2C timeout enabled.  
11 - 3  
2
X
X
0h  
0
Don't care.  
FSDO-EN  
R/W  
0: Fast SDO disabled.  
1: Fast SDO enabled.  
1
0
X
X
0
0
Don't care.  
SDO-EN  
R/W  
0: SDO disabled.  
1: SDO enabled on GPIO pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.19 STATE-MACHINE-CONFIG0 Register (address = 27h) [reset = 0000h]  
7-29. STATE-MACHINE-CONFIG0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SM-  
SM-  
SM-EN  
ABORT START  
R/W-0h R/W-0h R/W-0h  
7-42. STATE-MACHINE-CONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000h  
0
Description  
15 - 3  
2
RESERVED  
SM-ABORT  
Always write 0.  
0: State machine not aborted.  
1: State machine aborted.  
1
0
SM-START  
SM-EN  
R/W  
R/W  
0
0
0: State machine stopped.  
1: State machine started. The state machine must be enabled  
using the SM-EN bit.  
0: State machine disabled.  
1: State machine enabled.  
7.6.20 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]  
7-30. SRAM-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
SRAM-ADDR  
R/ W-0h  
X-0h  
7-43. SRAM-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 8  
7 - 0  
X
X
0h  
Don't care.  
SRAM-ADDR  
R/W  
0h  
8-bit SRAM address. Writing to this register field configures the  
SRAM address to be accessed next. This address automatically  
increments after a read or write from the SRAM.  
7.6.21 SRAM-DATA Register (address = 2Ch) [reset = 0000h]  
7-31. SRAM-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SRAM-DATA  
R/ W-0h  
7-44. SRAM-DATA Register Field Descriptions  
Bit  
15 - 0  
Field  
SRAM-ADDR  
Type  
Reset  
Description  
R/W  
0h  
16-bit SRAM data. This data is written to or read from the address  
configured in the SRAM-CONFIG register.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
7.6.22 BRDCAST-DATA Register (address = 50h) [reset = 0000h]  
7-32. BRDCAST-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[9:0]  
R/W-0h  
X
X-0h  
7-45. BRDCAST-DATA Register Field Descriptions  
Bit  
15 - 4  
Field  
BRDCAST-DATA[9:0]  
Type  
Reset  
Description  
R/W  
000h  
Broadcast code for all DAC channels  
Data are in straight-binary format. MSB left-aligned. Use the  
following bit-alignment:  
AFE539A4: {BRDCAST-DATA[9:0], X, X}  
X = Don't care bits.  
The BRD-CONFIG-X bit in the DAC-X-FUNC-CONFIG register  
must be enabled for the respective channels.  
3 - 0  
X
X
0h  
Don't care.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
Follow these guidelines for best performance of the AFE539A4:  
In voltage-output mode, short the OUTx and FBx pins for each channel.  
In current-output mode, leave the FBx pins unconnected.  
The FBx pins function as inputs in comparator mode. Connect FB3 to VDD using a pullup resistor in the ADC  
mode.  
Configure as a comparator each channel that is intended to be used as an ADC.  
Configure ADC3 as a comparator even when other channels are used as ADCs.  
The external reference must not exceed VDD, either during transient or steady-state conditions.  
For the best Hi-Z output performance, use a pullup resistor on the VREF pin to VDD. In case the VDD  
remains floating during the off condition, place a 100-kΩresistor to AGND for proper detection of the VDD off  
condition.  
All the digital outputs are open drain; use external pullup resistors on these pins.  
The interface protocol is detected at power on, and the device locks to the protocol as long as VDD is on.  
When allocating the I2C addresses in the system in I2C mode, consider the broadcast address as well.  
I2C timeout can be enabled for robustness.  
SPI mode is three-wire by default.  
Configure the GPIO pin as SDO in the NVM for SPI readback capability.  
The SPI clock speed in readback mode is slower than that in write mode.  
Power-down mode sets the DAC outputs in Hi-Z by default. Change the configuration appropriately for  
different power-down settings.  
The DAC channels can also power-up with a programmed DAC code in the NVM.  
This device enables the state-machine by default. Stop the state-machine when the device is intended to be  
used as an independent DAC or ADC.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
8.2 Typical Application  
A thermoelectric cooling (TEC) circuit is used in many applications, such as laser diode cooling, medical blood  
analysis and thermal-cycling, central-processing unit (CPU) cooling, portable refrigeration, automotive seat  
heating, and more. A TEC element is controlled by controlling the voltage across the TEC element using a PI  
controller. This application example extends the circuit explained in the Low-Power TEC Driver application  
report. The complete circuit diagram is as shown in 8-1.  
8-1. TEC Control  
8.2.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
Measured temperature range  
AFE output-voltage range  
Temperature set point  
Steady-state error  
VALUE  
55ºC to +150ºC  
0 V to 1.8 V  
30ºC  
< ±0.5ºC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AFE539A4  
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
This design example uses the TPS63020, a buck-boost converter, and connects the TEC element between the  
VIN and VOUT nodes to create bidirectional voltage control of the TEC element. The control voltage to the  
TPS63020 must be between 0 V and 1.8 V to achieve the full range of TEC current. As shown in 8-1, the  
temperature is measured using the LMT70, a high-precision, analog temperature sensor. The LMT70 provides a  
voltage output between 1.38 V and 300 mV for the temperature range of 55ºC to +125ºC. Therefore, configure  
the PI controller output (DAC1) with the internal reference and a gain of 1.5x. Similarly, configure ADC0 to be in  
Hi-Z input mode (ADC0-MODE = 0), with the internal reference, and 4x gain. This configuration sets ADC0 at a  
full-scale input (VFS) range of (1.21 V * 4x) / 3 = 1.613 V. With 10-bit resolution, 1 LSB of ADC0 code  
corresponds to (1.613 V / 1024) = 1.58 mV. The response slope of the LMT70 at 30ºC is 5.194 mV/ºC.  
Therefore, 1 LSB of the ADC0 corresponds to (1.58 / 5.194) = 0.3ºC.  
The voltage output of the LMT70 corresponding to the temperature set point of 30ºC is 943.227 mV. Using 方程  
5, calculate the SETPOINT input as 598d (0x256). For negative feedback, use an odd number of phase  
inversions in the feedback loop. The DAC1 output to the TPS63020 output has one phase inversion; the  
TPS63020 decreases when the DAC1 output increases. The TPS63020 output and the TEC cold-side  
temperature have the second phase inversion; the TEC cold-side temperature decreases when the TPS63020  
output increases. The TEC cold-side and the LMT70 have the third phase inversion; when the TEC cold-side  
temperature decreases, the LMT70 output voltage increases. The external loop of the AFE539A4 has an odd  
number of phase inversions; therefore, make sure that the internal PI control loop has no phase inversion. To  
prevent the phase inversion, configure LOOP-POLARITY = 1. Choose the values of RF and CF in 8-1 based  
on the noise level present in the sensing circuit.  
When the output of the comparator is low, the PI controller output enters safe mode. Therefore, the current  
sense amplifier and the comparator setting must be configured to trigger safe mode at the desired TEC current  
limit.  
Follow the procedure described in 7.4.5.2 to configure the parameters listed in 8-2.  
8-2. PI Controller Parameters  
REGISTER FIELD  
NNAME  
STATIC ADDRESS  
LOCATION  
CONFIGURED  
VALUE (16-BIT)  
DYNAMIC ADDRESS  
LOCATION  
STATIC ADDRESS  
DYNAMIC ADDRESS  
SETPOINT  
0x22[9:0]  
0x23[15:0]  
0x26[15:0]  
0x20[15:6]  
0x21[15:6]  
0x25[11:2]  
0x27[0]  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
0x0256  
0x0FA0  
0x0001  
0xFFC0  
0x0000  
0x7FC0  
0x0001  
0x0000  
0x0002  
0x7FC0  
0x06[9:0]  
N/A  
Register  
N/A  
KP  
KI  
N/A  
N/A  
MAX-OUTPUT  
MIN-OUTPUT  
COMMON-MODE  
LOOP-POLARITY  
SAFE-OUTPUT  
ADC0-MODE  
CMP2-THRESHOLD  
N/A  
N/A  
N/A  
N/A  
0x0C[11:2]  
N/A  
Register  
N/A  
0x27[15:6]  
0x27[1]  
N/A  
N/A  
N/A  
N/A  
0x24[15:6]  
N/A  
N/A  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The AFE539A4 does not require specific power-supply sequencing. These devices require a single power  
supply, VDD. However, make sure the external voltage reference is applied after VDD. Use a 0.1-µF decoupling  
capacitor for the VDD pin. Use a bypass capacitor with a value approximately 1.5 µF for the CAP pin.  
10 Layout  
10.1 Layout Guidelines  
The AFE539A4 pin configuration separates the analog, digital, and power pins for an optimized layout. For  
signal integrity, separate the digital and analog traces, and place decoupling capacitors close to the device pins.  
10.2 Layout Example  
10-1. Layout Example  
Note: The ground and power planes have been omitted for clarity. Connect the thermal pad to ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AFE539A4  
 
 
 
 
AFE539A4  
ZHCSNR0 AUGUST 2021  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
11.1 Documentation Support  
11.1.1 Related Documentation  
The following documentation is available: AFE539A4 Evaluation Module user's guide  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AFE539A4  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PAFE539A4RTET  
ACTIVE  
WQFN  
RTE  
16  
250  
TBD  
Call TI  
Call TI  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY