AFE5401TRGCTQ1 [TI]

用于汽车雷达的四通道集成模拟前端 | RGC | 64 | -40 to 105;
AFE5401TRGCTQ1
型号: AFE5401TRGCTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于汽车雷达的四通道集成模拟前端 | RGC | 64 | -40 to 105

雷达
文件: 总81页 (文件大小:3452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
适用于汽车雷达基带接收器的四通道模拟前端AFE5401-Q1  
1 特性  
2 应用  
1
符合汽车应用 标准  
具有符合 AEC-Q100 的下列结果:  
汽车雷达  
数据采集  
SONAR™  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
3 说明  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
AFE5401-Q1 是一款模拟前端 (AFE),主要面向 注重  
集成度的应用。此器件包括四个通道,其中每个通道由  
一个低噪声放大器 (LNA),一个可编程均衡器 (EQ),  
一个可编程增益放大器 (PGA),和一个抗混叠滤波  
器,以及后面的高速,12 位模数转换器 (ADC) 组成,  
每通道速度 25MSPS。  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
集成模拟前端包括:  
四路 LNA、均衡器、PGA、抗混叠滤波器和  
ADC  
30dB PGA 增益时的输入相关噪声:  
对于 15dB LNA 增益为 2.9nV/Hz  
四个差分输入对中的每一个由 LNA 放大,之后是一个  
可调增益范围在 0dB 30dB 之间的 PGA。对于每条  
通道,在 PGA ADC 之间还集成了一个抗混叠、低  
通滤波器 (LPF)。  
HIGH_POW_LNA 模式下,对于 18dB LNA 增  
益为 2.0nV/Hz  
通道上的同时采样  
可编程 LNA 增益:  
12dB15dB16.5dB 18dB  
每个 LNAPGA 和抗混叠滤波器输出为差分输出(被  
限制在 2VPP)。抗混叠滤波器驱动片上,12  
位,25MSPS ADC。四个 ADC 输出在一条 12 位,并  
行,CMOS 输出总线上复用。  
可编程均衡器模式  
内置诊断模式  
温度传感器  
可编程增益放大器 (PGA):  
此器件采用 9mm x 9mm VQFN-64 封装,并且在  
-40°C +105°C 的温度范围内额定运行。要获得更多  
信息,请与 AFE5401_info@list.ti.com 联系。  
0dB 30dB(步长 3dB)  
可编程、三阶、抗混叠滤波器:  
7MHz8MHz10.5MHz 12MHz  
模数转换器 (ADC):  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
四通道,每通道 12 位,25 每秒百万次采样  
(MSPS)  
AFE5401-Q1  
VQFN (64)  
9.00mm x 9.00mm  
无需为基准提供外部去耦合  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
并行 CMOS 输出  
每通道速率为 25MSPS 时,每通道总内核功率为  
64mW  
电源:1.8V 3.3V  
封装:9mm x 9mm 超薄四方扁平无引线 (VQFN)-  
64  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS619  
 
 
 
 
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
简化电路原理图  
AVDD3  
DRVDD  
AVDD18  
DVDD18  
Serial Interface  
Antialiasing  
Filter  
Channel  
1 of 4  
PGA  
LNA  
EQ  
EQ  
INx  
D
[11:0]  
ADC  
1
INx_AUX  
BUF  
4:1 MUX  
D_GPO [1:0]  
1x  
ADC_CLK  
CMOS, DIFF  
Support  
4x  
DCLK  
AFE_CLK  
CLKINP  
CLKINM  
DSYNC1  
DSYNC2  
Clock  
+ Timing Generator  
Serialization Factor  
TRIG  
AVSS  
DRVSS  
AVSS  
DVSS  
2
版权 © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
目录  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 33  
8.5 Programming........................................................... 42  
8.6 Register Maps......................................................... 45  
Application and Implementation ........................ 65  
9.1 Application Information............................................ 65  
9.2 Typical Application .................................................. 65  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Digital Characteristics ............................................... 9  
6.7 Timing Requirements: Output Interface.................. 10  
6.8 Timing Requirements: RESET................................ 10  
6.9 Timing Requirements: Serial Interface Operation... 11  
6.10 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 22  
9
10 Power Supply Recommendations ..................... 69  
10.1 Power Supply Sequencing.................................... 69  
10.2 Power Supply Decoupling..................................... 69  
11 Layout................................................................... 69  
11.1 Layout Guidelines ................................................. 69  
11.2 Layout Example .................................................... 70  
12 器件和文档支持 ..................................................... 72  
12.1 文档支持................................................................ 72  
12.2 接收文档更新通知 ................................................. 72  
12.3 社区资源................................................................ 72  
12.4 ....................................................................... 72  
12.5 静电放电警告......................................................... 72  
12.6 Glossary................................................................ 72  
13 机械、封装和可订购信息....................................... 72  
7
8
7.1 Timing Requirements: Across Output Serialization  
Modes ...................................................................... 22  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
8.2 Functional Block Diagram ....................................... 25  
4 修订历史记录  
Changes from Original (March 2014) to Revision A  
Page  
已添加 汽车 特性 项目 ........................................................................................................................................................... 1  
首次公开发布 .......................................................................................................................................................................... 1  
已更改 将器件信息 表更改为最新标准 .................................................................................................................................... 1  
Changed order of Pin Functions table to be sorted by pin name instead of pin number....................................................... 5  
Changed ESD Rating table title and format, moved Storage temperature parameter to Absolute Maximum Ratings table. 6  
已添加 接收文档更新通知社区资源部分.......................................................................................................................... 72  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
RGC Package  
VQFN-64  
Top View  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
D_GPO[1]  
D_GPO[0]  
D[11]  
IN1P_AUX  
2
IN1M_AUX  
3
IN1P  
D[10]  
4
5
6
IN1M  
D[9]  
IN2P_AUX  
D[8]  
IN2M_AUX  
IN2P  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
7
Thermal Pad  
IN2M  
8
9
IN3P_AUX  
10  
11  
12  
13  
14  
15  
16  
IN3M_AUX  
IN3P  
IN3M  
37  
36  
35  
34  
IN4P_AUX  
IN4M_AUX  
IN4P  
DCLK  
33  
DRVDD  
IN4M  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO  
D[11:0]  
D_GPO[1:0]  
AVDD3  
AVDD18  
AVSS  
35-46  
CMOS outputs for channels 1 to 4  
47, 48  
General-purpose CMOS output  
3.3-V analog supply voltage  
1.8-V analog supply voltage  
Analog ground  
18  
19, 24, 62  
20, 23, 61, 63  
CLKINM  
CLKINP  
DCLK  
22  
Negative differential clock input pin. A single-ended clock is also supported.  
Positive differential clock input pin. A single-ended clock is also supported.  
CMOS output clock  
21  
34  
DRVDD  
DRVSS  
DSYNC1  
DSYNC2  
DVDD18  
DVSS  
32, 33, 50  
CMOS output driver supply  
31, 49  
CMOS output driver ground  
26  
Data synchronization clock 1  
27  
Data synchronization clock 2  
28, 30, 51  
1.8-V digital supply voltage  
29, 52  
4
Digital ground  
IN1M  
Negative differential analog input pin for channel 1  
Positive differential analog input pin for channel 1  
Negative differential auxiliary analog input pin for channel 1  
Positive differential auxiliary analog input pin for channel 1  
Negative differential analog input pin for channel 2  
Positive differential analog input pin for channel 2  
Negative differential auxiliary analog input pin for channel 2  
Positive differential auxiliary analog input pin for channel 2  
Negative differential analog input pin for channel 3  
Positive differential analog input pin for channel 3  
Negative differential auxiliary analog input pin for channel 3  
Positive differential auxiliary analog input pin for channel 3  
Negative differential analog input pin for channel 4  
Positive differential analog input pin for channel 4  
Positive differential auxiliary analog input pin for channel 4  
Negative differential auxiliary analog input pin for channel 4  
Do not connect  
IN1P  
3
IN1M_AUX  
IN1P_AUX  
IN2M  
2
1
8
IN2P  
7
IN2M_AUX  
IN2P_AUX  
IN3M  
6
5
12  
11  
10  
9
IN3P  
IN3M_AUX  
IN3P_AUX  
IN4M  
16  
15  
13  
14  
58, 60  
57  
56  
55  
53  
54  
59  
25  
17, 64  
IN4P  
IN4P_AUX  
IN4M_AUX  
NC  
RESET  
SCLK  
Hardware reset pin (active high). This pin has an internal 150-kΩ pull-down resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data readout  
SDATA  
SDOUT  
SEN  
Serial interface enable. This pin has an internal 150-kΩ pull-up resistor.  
Standby control input. This pin has an internal 150-kΩ pull-down resistor.  
Trigger for DSYNC1 and DSYNC2. This pin has an internal 150-kΩ pull-down resistor.  
Output pins for common-mode bias voltage of the auxiliary input signals  
STBY  
TRIG  
VCM  
Located on bottom of package, internally connected to AVSS. Connect to ground plane on the  
board.  
Thermal pad  
Pad  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
DRVDD to DRVSS  
+3.8  
AVDD3 to AVSS  
+3.8  
Voltage range  
V
AVDD18 to AVSS  
+2.2  
DVDD18 to DVSS  
AVSS and DVSS  
+2.2  
+0.3  
Voltage between  
AVSS and DRVSS  
DVSS and DRVSS  
+0.3  
V
+0.3  
Clock input pins (CLKINP and CLKINM) to AVSS  
minimum (2.2, AVDD18 + 0.3)  
minimum (2.2, AVDD18 + 0.3)  
V
V
Analog input pins (INIP, INIM, INIP_AUX, and INIM_AUX) to AVSS  
STBY, RESET, SCLK, SDATA,  
SEN, TRIG  
Digital control pins to DVSS  
–0.3  
+3.6  
V
Maximum operating junction temperature, TJ max  
Storage temperature, Tstg  
+125  
+150  
°C  
°C  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
TEMPERATURE  
TA  
Ambient temperature range  
–40  
+105  
°C  
SUPPLIES  
DRVDD  
Output driver supply  
1.7  
3
3.6  
3.6  
1.9  
1.9  
V
V
V
V
AVDD3  
3-V analog supply voltage  
1.8-V analog supply voltage  
1.8-V digital supply voltage  
3.3  
1.8  
1.8  
AVDD18  
DVDD18  
CLOCK INPUT  
1.7  
1.7  
Default mode (DIV_EN disabled)  
12.5  
25  
25  
50  
With DIV_EN, DIV_FRC enabled and DIV_REG = 1  
With DIV_EN, DIV_FRC enabled and DIV_REG = 2  
With DIV_EN, DIV_FRC enabled and DIV_REG = 3  
37.5  
50  
75  
CLKIN  
Input clock frequency  
MHz  
100  
With decimate-by-2 or decimate-by-4 modes enabled  
(DIV_EN disabled)(1)  
12.5  
50  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
0.2  
0.2  
0.2  
1.5  
1.6  
0.7  
1.8  
Input clock amplitude  
differential  
VCLKINP – VCLKINM  
VPP  
V
Single-ended CMOS clock on CLKINP with CLKINM connected to AVSS  
Input clock duty cycle  
40%  
60%  
DIGITAL OUTPUT  
CLOAD  
Tolerable external load capacitance from each output pin to DRVSS  
5
pF  
(1) In decimation mode, input clock frequency (CLKIN) can be scaled up to maximum of 200 MHz with the input divider.  
6.4 Thermal Information  
AFE5401-Q1  
THERMAL METRIC(1)  
RGC (VQFN)  
UNIT  
64 PINS  
24.9  
8.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
3.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3.9  
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +105°C, DRVDD = 3.3 V,  
AVDD3 = 3.3 V, AVDD18 = 1.8 V, DVDD18 = 1.8 V, –1-dBFS analog input ac-coupled with a 0.1-µF capacitor, AFE_CLK =  
25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, and differential input clock with 50% duty cycle, unless otherwise  
noted. Typical values are at TNOM = +25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FULL-CHANNEL CHARACTERISTICS  
LNA gain = 12 dB  
0.5  
0.35  
LNA gain = 15 dB (default)  
LNA gain = 16.5 dB  
Maximum differential input signal  
amplitude on INIP and INIM  
VPP  
0.3  
LNA gain = 18 dB  
0.25  
Default  
1 ± 20%  
10 ± 20%  
5.5  
Input resistance, from each input to  
internal dc bias level  
kΩ  
TERM_INT_20K_LNA / TERM_INT_20K_AUX = 1  
Differential input capacitance  
Voltage on VCM pins  
CI  
Input capacitance  
VCM output voltage  
VCM output current capability  
Gain matching  
pF  
V
VVCM  
1.45  
For 50-mV drop in VCM voltage  
Across channels and devices  
PGA gain = 30 dB  
3
mA  
0.15  
1
dB  
dB  
EG  
EO  
Gain error  
± 0.6  
± 120  
2.9  
± 1.4  
Offset error  
PGA gain = 30 dB, 1 sigma value  
fIN = 3 MHz, idle channel, PGA gain = 30 dB (default)  
LSB  
3.8  
Input-referred noise voltage  
nV/Hz  
fIN = 3 MHz, idle channel, PGA gain = 30 dB  
(HIGH_POW_LNA mode)  
2.5  
fIN = 3 MHz, main channel  
65  
57  
56  
67.7  
69.2  
66  
SNR  
Signal-to-noise ratio  
dBFS  
dBc  
fIN = 3 MHz, AUX channel  
fIN = 3 MHz, main channel (default)  
fIN = 3 MHz, main channel (HPL_EN mode)  
fIN = 3 MHz, main channel  
SFDR  
Spurious-free dynamic range  
74  
THD  
IMD  
Total harmonic distortion  
Intermodulation distortion  
65  
dBc  
fIN1 = 1.5 MHz, fIN2 = 2 MHz, AIN1 and AIN2 = –7 dBFS  
83  
dBFS  
For a 50-mVPP signal on AVDD18 up to 10 MHz, no input  
applied to analog inputs  
PSRR  
Power-supply rejection ratio  
> 50  
12  
dB  
Bits  
dB  
Number of bits in the ADC  
Aggressor channel: fIN = 2 MHz, 1 dB below ADC full-scale.  
Victim channel: fIN= 3 MHz, 1 dB below ADC full-scale.  
Crosstalk, main channel to main channel  
70  
Maximum channel gain  
Minimum channel gain  
PGA gain resolution  
PGA gain range  
LNA gain = 18 dB, PGA gain = 30 dB  
LNA gain = 12 dB, PGA gain = 0 dB  
48  
12  
3
dB  
dB  
dB  
dB  
Maximum PGA gain – minimum PGA gain  
30  
Differential input voltage range for AUX  
channel  
2
VPP  
ANTIALIAS FILTER (Third-Order Elliptic)  
FILTER_BW = 0 (default)  
FILTER_BW = 1  
8
7
fC  
3-dB filter corner frequency  
MHz  
FILTER_BW = 2  
10.5  
12  
FILTER_BW = 3  
3-dB filter corner frequency tolerance  
Filter attenuation  
For all FILTER_BW settings  
At 2 × fC  
±5%  
30  
ATT2FC  
dBc  
dB  
ATTSTPBND  
RPPSBND  
Stop-band attenuation (fIN > 2.25 × fC)  
40  
Ripple in pass band  
1.5  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Electrical Characteristics (continued)  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +105°C, DRVDD = 3.3 V,  
AVDD3 = 3.3 V, AVDD18 = 1.8 V, DVDD18 = 1.8 V, –1-dBFS analog input ac-coupled with a 0.1-µF capacitor, AFE_CLK =  
25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, and differential input clock with 50% duty cycle, unless otherwise  
noted. Typical values are at TNOM = +25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER  
Total core power, per channel  
AVDD18 current consumption  
Idle channel, excluding DRVDD power  
Default mode  
64  
131  
153  
135  
1.5  
8
mW  
145  
IAVDD18  
With HIGH_POW_LNA mode enabled  
With HPL_EN mode enabled  
mA  
IAVDD3  
AVDD3 current consumption  
DVDD18 current consumption  
3.5  
12  
mA  
mA  
IDVDD18  
DRVDD = 3.3 V  
DRVDD = 1.8 V  
DRVDD = 3.3 V  
DRVDD = 1.8 V  
14  
5-pF load, toggle data test pattern mode  
15-pF load, toggle data test pattern mode  
8.5  
36  
IDRVDD  
DRVDD current consumption  
mA  
20  
Power-down  
STBY power  
5
mW  
mW  
15  
6.6 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +105°C, DRVDD  
= 3.3 V, AVDD3 = 3.3 V, AVDD18 = 1.8 V, and DVDD18 = 1.8 V, unless otherwise noted. Typical values are at TNOM  
+25°C.  
=
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (STBY, RESET, SCLK, CLKIN, SDATA, SEN, TRIG)(1)  
VIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
1.4  
V
V
VIL  
0.4  
IIH  
10  
10  
4
µA  
µA  
pF  
V
IIL  
CI  
VIL_CLKINP  
VIH_CLKINP  
DIGITAL OUTPUTS  
0.25 × AVDD18  
Input clock CMOS single-ended (VCLKINP), VCLKINM  
connected to AVSS  
0.75 × AVDD18  
DRVDD – 0.2  
V
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DRVDD  
0
V
V
0.2  
(1) The SEN pin has an internal 150-kΩ pull-up resistor. The STBY, RESET, SCLK, SDATA, and TRIG pins have an internal 150-kΩ pull-  
down resistor.  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
6.7 Timing Requirements: Output Interface  
Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = +105°C, DRVDD = 3.3 V,  
AVDD3 = 3.3 V, AVDD18 = 1.8 V, DVDD18 = 1.8 V, –1-dBFS analog input ac-coupled with 0.1 µF, AFE_CLK = 25 MHz, LNA  
gain = 15 dB, PGA gain = 0 dB, default mode, and differential input clock with 50% duty cycle, unless otherwise noted.  
Typical values are at TNOM = +25°C.  
MIN  
NOM  
MAX  
UNIT  
Aperture delay between the rising edge of the input sampling clock and the  
actual time at which the sampling occurs  
tADLY  
3
ns  
Time to valid data after coming out of  
STANDBY mode  
500  
2
µs  
ms  
µs  
Time to valid data after coming out of  
GLOBAL_PDN mode  
Wake-up time  
Time to valid data after stopping and  
restarting the input clock  
500  
10.5  
tAFE_CLK  
cycles  
tLAT  
ADC latency (default, after reset)  
Data valid(1) to 50% of DCLK rising edge,  
DRVDD = 3.3 V, load = 5 pF, 4x  
serialization, STR_CTRL_CLK and  
STR_CTRL_CLK_DATA = 0  
Data valid(1) to 50% of DCLK rising edge,  
DRVDD =1.8 V, load = 5 pF, 4x serialization,  
STR_CTRL_CLK and  
STR_CTRL_CLK_DATA = 5  
4.1  
3.7  
2.8  
2.7  
ns  
ns  
ns  
ns  
tSU  
Data setup time  
50% of DCLK rising edge to data becoming  
invalid(1), DRVDD = 3.3 V, load = 5 pF, 4x  
serialization, STR_CTRL_CLK and  
STR_CTRL_CLK_DATA = 0  
tHO  
Data hold time  
50% of DCLK rising edge to data becoming  
invalid(1), DRVDD = 1.8 V, load = 5 pF, 4x  
serialization, STR_CTRL_CLK and  
STR_CTRL_CLK_DATA = 5  
DRVDD = 3.3 V, load = 5 pF, 10% to 90%,  
STR_CTRL_CLK and  
STR_CTRL_CLK_DATA = 0  
1.2  
1.1  
ns  
ns  
ns  
CMOS output data and  
clock rise and fall time  
tR, tF  
DRVDD = 1.8 V, load = 5 pF, 10% to 90%,  
STR_CTRL_CLK and  
STR_CTRL_CLK_DATA = 5  
Delay from CLKIN rising edge to DCLK rising edge, zero-crossing of input  
clock to 50% of DCLK rising edge, DRVDD = 3.3 V, load = 5 pF, 4x  
serialization, STR_CTRL_CLK and STR_CTRL_CLK_DATA = 0  
tOUT  
6.7  
9.5  
tS_TRIG  
tH_TRIG  
TRIG setup time, TRIG pulse duration tAFE_CLK  
TRIG hold time, TRIG pulse duration tAFE_CLK  
4
3
ns  
ns  
(1) Data valid refers to a logic high of 0.7 × DRVDD and a logic low of 0.3 × DRVDD.  
6.8 Timing Requirements: RESET  
Typical values are at TA = +25°C. Minimum and maximum specifications are across the full temperature range of TMIN  
=
–40°C to TMAX = +105°C, DRVDD = 3.3 V, AVDD3 = 3.3 V, AVDD18 = 1.8 V, and DVDD18 = 1.8 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from power-up of AVDD18 and  
DVDD18 to RESET pulse active  
t1  
Power-on to reset delay  
1
ms  
t2  
t3  
Reset pulse duration  
Register write delay  
Pulse duration of active RESET signal  
Delay from RESET disable to SEN active  
40  
ns  
ns  
100  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
6.9 Timing Requirements: Serial Interface Operation  
Minimum specifications are across the full temperature range of TMIN = –40°C to TMAX = +105°C, DRVDD = 3.3 V, AVDD3 =  
3.3 V, AVDD18 = 1.8 V, and DVDD18 = 1.8 V, CLOAD on SDOUT = 5 pF, unless otherwise noted.  
PARAMETER  
MIN  
50  
20  
20  
5
TYP  
MAX  
UNIT  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
SCLK period  
SCLK high time  
SCLK low time  
Data setup time  
Data hold time  
ns  
ns  
ns  
5
ns  
SEN falling to SCLK rising  
8
ns  
Time between last SCLK rising edge to SEN rising edge  
Delay from SCLK falling edge to SDOUT valid  
8
ns  
7
11  
15  
ns  
tLAT  
tADLY  
(1)  
tCLK  
INIP, INIM  
N
N+4  
N+1  
N+3  
N+5  
N+6  
N+7  
CLKIN  
tOUT  
tHO  
DCLK  
tSU  
D[11:0]  
CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4  
(1) tCLK = 1 / fCLKIN  
Figure 1. Output Interface Timing Diagram  
A high pulse on the RESET pin is required for register initialization through the reset pin. Figure 2 shows the  
timing requirement for reset after power-up.  
Power Supply  
(AVDD18, DVDD18,  
AVDD3, DRVDD)  
t1  
t2  
RESET  
t3  
SEN  
Figure 2. Reset Timing  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
SEN  
End Sequence  
t6  
t1  
t7  
Data latched on rising edge of SCLK  
t2  
SCLK  
t3  
A[7]  
A[6] A[5] A[4]  
A[3] A[2] A[1] A[0] D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]  
SDATA  
SDOUT  
t4  
t5  
Figure 3. Serial Interface Register Write Timing Diagram  
SEN  
End Sequence  
t6  
t1  
t7  
t2  
SCLK  
t3  
A[7]  
A[6] A[5] A[4] A[3] A[2] A[1] A[0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SDATA  
t4  
SDOUT to be latched externally on rising  
edge  
t5  
t8  
D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]  
SDOUT  
Figure 4. Serial Interface Register Readout Timing Diagram  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
6.10 Typical Characteristics  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
0
œ10  
0
œ10  
œ20  
œ20  
œ30  
œ30  
œ40  
œ40  
œ50  
œ50  
œ60  
œ60  
œ70  
œ70  
œ80  
œ80  
œ90  
œ90  
œ100  
œ110  
œ120  
œ130  
œ140  
œ100  
œ110  
œ120  
œ130  
œ140  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
C002  
C002  
SNR = 67.7 dBFS  
SFDR = 65.7 dBc  
THD = 65.2 dBc  
SNR = 53.3 dBFS  
SFDR = 63.7 dBc  
THD = 63.6 dBc  
Figure 5. FFT for 3-MHz, –1-dBFS Input Signal,  
0-dB PGA Gain (Sample Rate = 25 MSPS)  
Figure 6. FFT for 3-MHz, –1-dBFS Input Signal,  
30-dB PGA Gain (Sample Rate = 25 MSPS)  
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
85  
80  
75  
70  
65  
60  
PGA Gain = 0 dB  
PGA Gain = 30 dB  
œ90  
œ100  
œ110  
œ120  
œ130  
œ140  
0
2.5  
5
7.5  
10  
12.5  
1
2
3
4
5
Frequency (MHz)  
Input Signal Frequency (MHz)  
C001  
C006  
fIN1 = 1.5 MHz  
fIN2 = 2 MHz  
Each Tone at –7-dBFS Amplitude  
Two-Tone IMD = –83 dBFS  
Figure 7. FFT with Two-Tone Signal  
Figure 8. Spurious-Free Dynamic Range vs  
Input Signal Frequency  
68.3  
68.2  
68.1  
68  
53.5  
53.3  
53.1  
52.9  
52.7  
52.5  
67.9  
67.8  
67.7  
67.6  
67.5  
1
2
3
4
5
1
2
3
4
5
Input Signal Frequency (MHz)  
Input Signal Frequency (MHz)  
C005  
C050  
Figure 9. Signal-to-Noise Ratio vs Input Signal Frequency  
(PGA Gain = 0 dB)  
Figure 10. Signal-To-Noise Ratio vs Input Signal Frequency  
(PGA Gain = 30 dB)  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
68  
66  
64  
62  
60  
58  
56  
54  
52  
80  
77  
74  
71  
68  
65  
62  
Default Mode  
HPL_EN = 1  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
PGA Gain (dB)  
PGA Gain (dB)  
C007  
C008  
Figure 11. Signal-to-Noise Ratio vs PGA Gain  
Figure 12. Spurious-Free Dynamic Range vs PGA Gain  
100  
90  
80  
70  
60  
50  
40  
69  
90  
54  
80  
70  
60  
50  
40  
30  
20  
53.8  
53.6  
53.4  
53.2  
53  
68.7  
68.4  
68.1  
67.8  
67.5  
67.2  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
52.8  
52.6  
-50 -45 -40 -35 -30 -25 -20 -15 -10  
Input Signal Amplitude (dBFS)  
-5  
0
-50 -45 -40 -35 -30 -25 -20 -15 -10  
Input Signal Amplitude (dBFS)  
-5  
0
C001  
C001  
Figure 13. Signal-to-Noise Ratio,  
Spurious-Free Dynamic Range vs  
Figure 14. Signal-to-Noise Ratio,  
Spurious-Free Dynamic Range vs  
Input Signal Amplitude (PGA Gain = 0 dB)  
Input Signal Amplitude (PGA Gain = 30 dB)  
69  
67  
68.6  
68.2  
67.8  
67.4  
67  
66.6  
66.2  
65.8  
65.4  
65  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
Input Clock Amplitude, Differential (VPP  
)
Input Clock Amplitude, Differential (VPP  
)
C011  
C012  
Figure 15. Signal-to-Noise Ratio vs Input Clock Amplitude  
(PGA Gain = 0 dB)  
Figure 16. Spurious-Free Dynamic Range vs  
Input Clock Amplitude (PGA Gain = 0 dB)  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
68  
67.6  
67.2  
66.8  
66.4  
66  
67  
66.6  
66.2  
65.8  
65.4  
65  
35  
40  
45  
50  
55  
60  
65  
35  
40  
45  
50  
55  
60  
65  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
C013  
C014  
Figure 17. Signal-to-Noise Ratio vs Input Clock Duty Cycle  
(PGA Gain = 0 dB)  
Figure 18. Spurious-Free Dynamic Range vs  
Input Clock Amplitude (PGA Gain = 0 dB)  
68.5  
68.3  
68.1  
67.9  
67.7  
67.5  
54  
53.5  
53  
52.5  
52  
12.5  
15  
17.5  
20  
22.5  
25  
12.5  
15  
17.5  
20  
22.5  
25  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
C045  
C046  
Figure 19. Signal-to-Noise Ratio vs Sampling Frequency  
(PGA Gain = 0 dB)  
Figure 20. Signal-to-Noise Ratio vs Sampling Frequency  
(PGA Gain = 30 dB)  
78  
78  
Default Mode  
Default Mode  
76  
76  
HPL_EN = 1  
HPL_EN = 1  
74  
72  
70  
68  
66  
64  
62  
74  
72  
70  
68  
66  
64  
12.5  
15  
17.5  
20  
22.5  
25  
12.5  
15  
17.5  
20  
22.5  
25  
C047  
C048  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
Figure 21. Spurious-Free Dynamic Range vs Sampling  
Frequency (PGA Gain = 0 dB)  
Figure 22. Spurious-Free Dynamic Range vs Sampling  
Frequency (PGA Gain = 30 dB)  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
68.5  
68.2  
67.9  
67.6  
67.3  
67  
53.8  
53.5  
53.2  
52.9  
52.6  
52.3  
52  
AVDD18 = 1.7 V  
AVDD18 = 1.8 V  
AVDD18 = 1.9 V  
AVDD18 = 1.7 V  
AVDD18 = 1.8 V  
AVDD18 = 1.9 V  
-40 -25.5 -11  
3.5  
18 32.5 47 61.5 76 90.5 105  
-40.0 -25.5 -11.0 3.5 18.0 32.5 47.0 61.5 76.0 90.5 105.0  
Temperature (°C)  
Temperature (°C)  
C015  
C016  
Figure 23. Signal-to-Noise Ratio vs AVDD18 and  
Temperature (PGA Gain = 0 dB)  
Figure 24. Signal-to-Noise Ratio vs AVDD18 and  
Temperature (PGA Gain = 30 dB)  
72  
70  
68  
66  
64  
62  
70  
AVDD18 = 1.7 V  
AVDD18 = 1.8 V  
AVDD18 = 1.9 V  
AVDD18 = 1.7 V  
AVDD18 = 1.8 V  
AVDD18 = 1.9 V  
68  
66  
64  
62  
60  
-40 -25.5 -11 3.5  
18 32.5 47 61.5 76 90.5 105  
-40 -25.5 -11  
3.5  
18 32.5 47 61.5 76 90.5 105  
Temperature (°C)  
Temperature (°C)  
C017  
C018  
Figure 25. Spurious-Free Dynamic Range vs AVDD18 and  
Temperature (PGA Gain = 0 dB, Default Mode)  
Figure 26. Spurious-Free Dynamic Range vs AVDD18 and  
Temperature (PGA Gain = 30 dB, Default Mode)  
78  
78  
AVDD18 = 1.7 V  
AVDD18 = 1.7 V  
AVDD18 = 1.8 V  
AVDD18 = 1.8 V  
76  
76  
AVDD18 = 1.9 V  
AVDD18 = 1.9 V  
74  
72  
70  
74  
72  
70  
-40 -25.5 -11 3.5  
18 32.5 47 61.5 76 90.5 105  
-40 -25.5 -11  
3.5  
18 32.5 47 61.5 76 90.5 105  
Temperature (°C)  
Temperature (°C)  
C051  
C052  
Figure 27. Spurious-Free Dynamic Range vs AVDD18 and  
Temperature (PGA Gain = 0 dB, HPL_EN = 1)  
Figure 28. Spurious-Free Dynamic Range vs AVDD18 and  
Temperature (PGA Gain = 30 dB, HPL_EN = 1)  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
56  
55  
54  
53  
52  
51  
65  
64.5  
64  
Default Mode  
Default Mode  
HIGH_POW_LNA = 1  
HIGH_POW_LNA = 1  
63.5  
63  
12  
13  
14  
15  
16  
17  
18  
12  
13  
14  
15  
16  
17  
18  
LNA Gain (dB)  
LNA Gain (dB)  
C019  
C020  
Figure 29. Signal-to-Noise Ratio vs LNA Gain  
(PGA Gain = 30 dB)  
Figure 30. Spurious-Free Dynamic Range vs LNA Gain  
(PGA Gain = 30 dB)  
4
15  
Default Mode  
Default Mode  
14  
13  
12  
11  
10  
9
HIGH_POW_LNA = 1  
HIGH_POW_LNA = 1  
3.5  
3
8
7
6
2.5  
2
5
4
3
2
12  
13  
14  
15  
16  
17  
18  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
LNA Gain (dB)  
PGA Gain (dB)  
C022  
C021  
Figure 31. Input-Referred Noise vs LNA Gain  
(PGA Gain = 30 dB)  
Figure 32. Input-Referred Noise vs PGA Gain  
15  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Default Mode  
Temperature = -40°C  
Temperature = 25°C  
14  
13  
12  
11  
10  
9
HIGH_POW_LNA = 1  
Temperature = 105°C  
8
7
6
5
4
3
2
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
PGA Gain (dB)  
PGA Gain (dB)  
C024  
C023  
Figure 33. Input-Referred Noise vs  
PGA Gain and Temperature  
Figure 34. Output-Referred Noise vs PGA Gain  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
3000  
2500  
2000  
1500  
1000  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Temperature = -40°C  
Temperature = 25°C  
Temperature = 105°C  
0
-0.85 -0.75 -0.65 -0.55 -0.45 -0.35 -0.25 -0.15  
Gain Error (dB)  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
C056  
PGA Gain (dB)  
C025  
Figure 36. Gain Error Histogram for PGA Gain = 30 dB  
Figure 35. Output-Referred Noise vs  
PGA Gain and Temperature  
450  
400  
350  
300  
250  
200  
150  
100  
50  
150  
Device = 1  
100  
Device = 2  
50  
0
œ50  
œ100  
œ150  
0
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4  
Gain Matching ( dB)  
PGA Gain (dB)  
C027  
C057  
Figure 38. Channel Offset vs  
PGA Gain for Two Typical Devices  
Figure 37. Gain Matching Histogram (Maximum Gain  
Difference Among the Four Channels within a Device)  
3000  
20  
10  
2500  
2000  
1500  
1000  
500  
0
œ10  
œ20  
œ30  
œ40  
œ50  
FCF_7 MHz  
FCF_8 MHz  
FCF_10.5 MHz  
FCF_12 MHz  
0
-600-500-400-300-200-100  
0
100 200 300 400 500 600  
0.1  
10  
Offset Error ( LSB)  
C058  
fIN (MHz)  
C028  
Figure 39. Offset Error Histogram at PGA Gain = 30 dB  
Figure 40. Antialias Filter Response vs  
FILTER_BW Settings (PGA Gain = 0 dB)  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
50  
20  
40  
10  
30  
0
20  
œ10  
œ20  
œ30  
œ40  
œ50  
10  
FCF_7 MHz  
FCF_8 MHz  
FCF_10.5 MHz  
FCF_12 MHz  
0
AVDD18 = 1.7 V  
AVDD18 = 1.8 V  
AVDD18 = 1.9 V  
œ10  
œ20  
0.1  
1
10  
0.1  
1
10  
fIN (MHz)  
fIN (MHz)  
C002  
C030  
Figure 41. Antialias Filter Response vs  
FILTER_BW Settings (PGA Gain = 30 dB)  
Figure 42. Antialias Filter Response vs AVDD18  
(PGA Gain = 0 dB, FILTER_BW = 8 MHz)  
20  
10  
30  
20  
10  
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ10  
œ20  
œ30  
œ40  
œ50  
Temperature = -40°C  
Temperature = 25°C  
Temperature = 105°C  
Default Mode (Eq_Dis)  
Eq_EN  
Eq_EN_LOW_FC  
0.1  
1
10  
0.1  
1
10  
fIN (MHz)  
fIN (MHz)  
C053  
C001  
Figure 43. Antialias Filter Response vs Temperature (PGA  
Gain = 0 dB, FILTER_BW = 8 MHz)  
Figure 44. Antialias Filter Response for Equalizer Modes  
(PGA Gain = 0 dB)  
60  
50  
40  
30  
20  
10  
30  
20  
10  
0
œ10  
Eq_EN, Temperature = -40°C  
œ20  
œ30  
œ40  
Default Mode (Eq_Dis)  
0
Eq_EN, Temperature = 105°C  
Eq_EN  
Eq_EN_LOW_FC, Temperature = -40°C  
Eq_EN_LOW_FC, Temperature = 105°C  
œ10  
Eq_EN_LOW_FC  
œ20  
0.1  
1
10  
0.1  
1
10  
fIN (MHz)  
fIN (MHz)  
C001  
C035  
Figure 45. Antialias Filter Response for Equalizer Modes  
(PGA Gain = 30 dB)  
Figure 46. Antialias Filter Response for  
Equalizer Modes across Temperature (PGA Gain = 0 dB)  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
0
œ10  
60  
œ20  
œ30  
œ40  
50  
40  
œ50  
œ60  
œ70  
30  
œ80  
œ90  
20  
Eq_EN, Temperature = -40°C  
10  
œ100  
œ110  
œ120  
œ130  
œ140  
Eq_EN, Temperature = 105°C  
0
Eq_EN_LOW_FC, Temperature = -40°C  
Eq_EN_LOW_FC, Temperature = 105°C  
œ10  
œ20  
0
3
5
8
10  
13  
Frequency (MHz)  
C049  
0.1  
1
10  
SNR = 69.2 dBFS  
SFDR = 69.8 dBc  
THD = 69.7 dBc  
fIN (MHz)  
C036  
Figure 48. FFT for AUX Channel  
(3-MHz, –1-dBFS Input Signal, Sample Rate = 25 MSPS)  
Figure 47. Antialias Filter Response for  
Equalizer Modes across Temperature (PGA Gain = 30 dB)  
20  
10  
10  
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
Default Mode  
DECIMATE_4_EN = 1, Set 2  
œ60  
œ70  
DECIMATE_2_EN = 1  
DECIMATE_4_EN = 1, Set 1  
œ80  
œ70  
0.1  
1
10  
0.1  
1
fIN (MHz)  
fIN (MHz)  
C037  
C038  
Figure 49. Decimate-by-2 Filter Response (Sampling  
Frequency = 50 MHz)  
Figure 50. Decimate-by-4 Filter Response (Sampling  
Frequency = 12.5 MHz)  
120  
131  
Current_AVDD18  
105  
90  
130.5  
130  
75  
129.5  
129  
60  
45  
128.5  
128  
30  
15  
127.5  
127  
0
œ15  
œ30  
œ45  
126.5  
126  
œ45 œ30 œ15  
0
15  
30  
45  
60  
75  
90  
105  
12.5  
15  
17.5  
20  
22.5  
25  
Set Temperature (°C)  
Sampling Frequency (MHz)  
C054  
C039  
Figure 51. Temperature Sensor Response  
Figure 52. AVDD18 Supply Current vs Sampling Frequency  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Typical Characteristics (continued)  
Typical values are at TA = +25°C, AVDD18 = DVDD18 = 1.8 V, AVDD3 = DRVDD = 3.3 V, –1-dBFS analog input ac-coupled  
with a 0.1-μF capacitor, AFE_CLK = 25 MHz, LNA gain = 15 dB, PGA gain = 0 dB, default mode, antialiasing filter corner  
frequency = 8 MHz, and differential input sine wave clock with 50% duty cycle, unless otherwise noted.  
7
6
5
4
3
2
1.8  
1.6  
1.4  
1.2  
1
Current_DVDD18  
Current_AVDD3  
12.5  
15  
17.5  
20  
22.5  
25  
12.5  
15  
17.5  
20  
22.5  
25  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
C040  
C041  
Figure 53. DVDD18 Supply Current vs Sampling Frequency  
Figure 54. AVDD3 Supply Current vs Sampling Frequency  
40  
64  
DRVDD = 3.3 V  
35  
30  
25  
20  
15  
10  
DRVDD = 1.8 V  
63  
62  
61  
60  
59  
12.5  
15  
17.5  
20  
22.5  
25  
12.5  
15  
17.5  
20  
22.5  
25  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
C042  
C044  
Figure 55. DRVDD Supply Current vs Sampling Frequency  
(15-pF Load with Toggle Test Mode)  
Figure 56. AFE Core Power, Channel Excluding DRVDD  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Timing Requirements: Across Output Serialization Modes  
Table 1 and Table 2 provide details for the 4x serialization timing requirements for DRVDD = 3.3 V and DRVDD  
= 1.8 V, respectively. Table 3 and Table 4 provide details for the 3x serialization timing requirements for DRVDD  
= 3.3 V and DRVDD = 1.8 V, respectively. Table 5 provides the details for the 2x and 1x serialization timing  
requirements for DRVDD = 1.8 V to 3.3 V.  
Table 1. Timing Requirements: 4x Serialization (DRVDD = 3.3 V)  
OUTPUT  
CLOCK (DCLK)  
FREQUENCY  
(MHz)  
SETUP TIME (ns)  
tSU  
HOLD TIME (ns)  
tHO  
INPUT CLOCK  
FREQUENCY  
(MHz)  
tOUT (ns)  
TYP  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
MAX  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
12.5  
15  
50  
60  
9.1  
7.9  
6.7  
9.5  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
7.1  
5.3  
4.1  
3.5  
6.1  
4.1  
2.8  
2.6  
6.7  
6.7  
6.7  
6.4  
9.5  
9.5  
9.5  
9.0  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
20  
80  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
25  
100  
100  
CLOAD = 15 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 6  
25  
Table 2. Timing Requirements: 4x Serialization (DRVDD = 1.8 V)  
OUTPUT  
CLOCK (DCLK)  
FREQUENCY  
(MHz)  
SETUP TIME (ns)  
tSU  
HOLD TIME (ns)  
tHO  
INPUT CLOCK  
FREQUENCY  
(MHz)  
tOUT (ns)  
TYP  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
MAX  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
12.5  
15  
50  
60  
9.2  
7.9  
5.6  
10.6  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
7.2  
5.3  
3.7  
2.6  
6.1  
3.9  
2.7  
2.7  
5.6  
5.6  
5.6  
5.3  
10.6  
10.6  
10.6  
10.0  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
20  
80  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
25  
100  
100  
CLOAD = 15 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 14  
25  
Table 3. Timing Requirements: 3x Serialization (DRVDD = 3.3 V)  
OUTPUT  
CLOCK (DCLK)  
FREQUENCY  
(MHz)  
SETUP TIME (ns)  
tSU  
HOLD TIME (ns)  
tHO  
INPUT CLOCK  
FREQUENCY  
(MHz)  
tOUT (ns)  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
12.5  
15  
37.5  
45  
12.4  
11.8  
20.1  
17.4  
15.1  
13.4  
12.8  
23.2  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
9.9  
7.2  
5.7  
5.1  
9.1  
6.3  
4.1  
3.8  
20.4  
18.0  
16.0  
15.3  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
20  
60  
CLOAD = 5 pF,  
STR_CTRL_CLK, STR_CTRL_DATA = 0  
25  
75  
CLOAD = 15 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 6  
25  
75  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Table 4. Timing Requirements: 3x Serialization (DRVDD = 1.8 V)  
OUTPUT  
CLOCK (DCLK)  
FREQUENCY  
(MHz)  
SETUP TIME (ns)  
tSU  
HOLD TIME (ns)  
tHO  
INPUT CLOCK  
FREQUENCY  
(MHz)  
tOUT (ns)  
TYP MAX  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
12.5  
15  
37.5  
45  
12.5  
11.9  
19.2  
23.6  
20.1  
18.4  
16.7  
16.4  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
10.0  
7.3  
9.3  
6.4  
4.7  
4
16.6  
14.0  
12.4  
12.1  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
20  
60  
CLOAD = 5 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 5  
25  
75  
5.7  
CLOAD = 15 pF,  
STR_CTRL_CLK and STR_CTRL_DATA = 14  
25  
75  
4.7  
Table 5. Timing Requirements: 2x and 1x Serialization (DRVDD = 1.8 V to 3.3 V)  
OUTPUT  
CLOCK (DCLK)  
FREQUENCY  
(MHz)  
SETUP TIME (ns)  
tSU  
HOLD TIME (ns)  
tHO  
INPUT CLOCK  
FREQUENCY  
(MHz)  
tOUT (ns)  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
MIN  
TYP MAX  
2x Serialization mode: CLOAD = 5 pF.  
For DRVDD = 1.8 V, STR_CTRL_CLK and  
STR_CTRL_DATA = 5.  
For DRVDD = 3.3 V, STR_CTRL_CLK and  
STR_CTRL_DATA = 0.  
25  
25  
50  
25  
7.3  
8.0  
5.5  
10.5  
1x Serialization mode: CLOAD = 5 pF.  
For DRVDD = 1.8 V, STR_CTRL_CLK and  
STR_CTRL_DATA = 5.  
18.5  
17.5  
25.2  
30.1  
For DRVDD = 3.3 V, STR_CTRL_CLK and  
STR_CTRL_DATA = 0.  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The AFE5401-Q1 is a very low-power, CMOS, monolithic, quad-channel, analog front-end (AFE). The signal path  
of each channel consists of a differential low-noise amplifier (LNA) followed by a differential programmable gain  
amplifier (PGA) in series with a differential antialias filter. The antialiasing filter output is sampled by a 12-bit,  
pipeline, analog-to-digital converter (ADC) based on a switched-capacitor architecture. Each ADC can also be  
differentially driven from INIP_AUX, INIM_AUX through an on-chip buffer (thus bypassing the LNA, PGA, and  
antialiasing filter).  
Each block in the channel operates with a maximum 2-VPP output swing. Each PGA has a programmable gain  
range from 0 dB to 30 dB, with a resolution of 3 dB.  
After the input signals are captured by the sampling circuit, the samples are sequentially converted by a series of  
low-resolution stages inside the pipeline ADC at the clock rising edge. The outputs of these stages are combined  
in a digital logic block to form the final 12-bit word with a latency of 10.5 tAFE_CLK clock cycles. The 12-bit words of  
all active channels are multiplexed and output as parallel CMOS levels. In addition to the data streams, a CMOS  
clock (DCLK) is also output. This clock must be used by the digital receiver [such as a digital signal processor  
(DSP)] to latch the AFE output parallel CMOS data.  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.2 Functional Block Diagram  
VCM  
Reference  
Serial Interface  
PGA  
AAF  
LNA  
EQ  
EQ  
IN1  
ADC 1  
IN1_AUX  
BUF  
EQ  
EQ  
IN2  
ADC 2  
IN2_AUX  
BUF  
D [11:0]  
4:1 MUX  
EQ  
EQ  
IN3  
D_GPO [1:0]  
ADC 3  
IN3_AUX  
BUF  
EQ  
EQ  
IN4  
ADC 4  
IN4_AUX  
BUF  
1x  
ADC_CLK  
4x  
DCLK  
CMOS, Diff  
Support  
Input  
Clock Divider  
CLKINP  
CLKINM  
fCLKIN  
AFE_CLK  
DSYNC1  
DSYNC2  
Clock + Timing Generator  
Serialization Factor  
TRIG  
DRVSS  
AVSS  
DVSS  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Low-Noise Amplifier (LNA)  
The analog input signal is buffered and amplified by an on-chip LNA. LNA gain is programmable with the  
LNA_GAIN register, as shown in Table 6.  
Table 6. LNA_GAIN Register  
LNA_GAIN  
DESCRIPTION (dB)  
LNA_GAIN_Linear  
0
1
2
3
15  
18  
5.5  
8
12  
4
16.5  
6.5  
The LNA output is internally limited to 2 VPP. Thus, the maximum-supported input peak-to-peak swing is set by 2  
V / LNA_GAIN_Linear.  
Input-referred noise in default mode is 2.9 nV/Hz at 30-dB PGA gain and 15-dB LNA gain. Input-referred noise  
can be further improved to 2.5 nV/Hz by enabling the HIGH_POW_LNA register bit. However, this noise  
reduction results in increased power dissipation.  
8.3.2 Programmable Gain Amplifier (PGA)  
The PGA amplifies the analog input signal by a programmable gain. Gain can be programmed using the  
PGA_GAIN register, common to all channels, in 3-dB steps with a gain range of 30 dB. In default mode, PGA  
gain ranges from 0 dB to 30 dB. In equalizer mode, PGA gain ranges from 15 dB to 45 dB. PGA_GAIN register  
settings are listed in Table 7. Figure 57 shows the typical SNR values across PGA gain.  
Table 7. PGA_GAIN Register Settings  
PGA_GAIN Settings  
0 (0 dB)  
PGA GAIN IN DEFAULT MODE (dB)  
PGA GAIN IN EQUALIZER MODE (dB)  
0.0  
2.9  
15.0  
17.9  
21.0  
23.8  
26.9  
29.8  
32.9  
35.8  
38.9  
41.8  
44.9  
1 (3 dB)  
2 (6 dB)  
6.0  
3 (9 dB)  
8.8  
4 (12 dB)  
5 (15 dB)  
6 (18 dB)  
7 (21 dB)  
8 (24 dB)  
9 (27 dB)  
10 (30 dB)  
11.9  
14.8  
17.9  
20.8  
23.9  
26.8  
29.9  
68  
66  
64  
62  
60  
58  
56  
54  
52  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
PGA Gain (dB)  
C007  
Figure 57. SNR Across PGA Gain  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.3.3 Antialiasing Filter  
The device introduces a third-order, elliptic, active, antialias, low-pass filter (LPF) in the analog signal path. The  
filter –3-dB corner frequency can be configured using the FILTER_BW register, as shown in Table 8. The  
corresponding frequency response plots are shown in Figure 58 and Figure 59.  
Table 8. FILTER_BW Register  
FILTER_BW  
CORNER FREQUENCY (MHz)  
0
1
2
3
8
7
10.5  
12  
20  
10  
50  
40  
30  
0
20  
œ10  
œ20  
œ30  
œ40  
œ50  
10  
FCF_7 MHz  
FCF_8 MHz  
FCF_10.5 MHz  
FCF_12 MHz  
FCF_7 MHz  
0
FCF_8 MHz  
FCF_10.5 MHz  
FCF_12 MHz  
œ10  
œ20  
0.1  
1
10  
0.1  
10  
fIN (MHz)  
C002  
fIN (MHz)  
C028  
Figure 59. Filter Response Across Modes  
(PGA Gain = 30 dB)  
Figure 58. Filter Response Across Modes  
(PGA Gain = 0 dB)  
8.3.4 Analog-to-Digital Converter (ADC)  
The filtered analog input signal is sampled and converted into a digital equivalent code using a high-speed, low-  
power, 12-bit, pipeline ADC. The digital output of the device has a latency of 10.5 tAFE_CLK cycles because of the  
pipeline nature of the ADC. The digitized output of the device is in binary twos complement (BTC) format. The  
output format can be changed to offset binary format with the OFF_BIN_DATA_FMT register bit.  
8.3.5 Digital Gain  
The ADC output can be incremented digitally using a digital gain block. Digital gain is common for all channels  
and can be configured by enabling MULT_EN and applying the desired DIG_GAIN. Channel gain is given by  
Equation 1:  
where:  
(DIG_GAIN + 32) is the mod 128 number.  
(1)  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
 
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 60 shows the typical digital gain curve for different DIG_GAIN values.  
(95, 127/32)  
4
(127, 31/32)  
1
0
X Axis  
96  
128  
DIG_GAIN  
Figure 60. Digital Gain Graph  
8.3.6 Input Clock Divider  
The device clock input is passed through a clock divider block that can divide the input clock by a factor of 1, 2,  
3, or 4. This divided clock (AFE_CLK) is used for simultaneously sampling the four ADC inputs. In default mode,  
a division factor of 1 is used where the AFE_CLK frequency is the same as the input clock frequency. The clock  
divider block can be enabled using the DIV_EN register bit and, when enabling this bit, the AFE_CLK frequency  
is automatically determined by the serialization factor set by the CH_OUT_DIS register bits (Table 12). The  
division factor can also be manually specified by enabling the DIV_FRC and DIV_REG register bits. Care must  
be taken to ensure that the input clock frequency is within the recommended operating range specified in the  
Recommended Operating Conditions.  
After device reset, the divider is reset at the first pulse applied on the TRIG pin. This configuration is especially  
useful when using multiple devices in the system, where the sampling instants of all ADCs in the system must be  
synchronized. Figure 61 illustrates the TRIG timing diagram and the various divided-down AFE_CLK signals.  
Figure 62 provides the TRIG input setup and hold time with respect to the device clock input. Bit settings for the  
DIV_EN register, DIV_FRD register, and DIV_REG register are provided in Table 9, Table 10, and Table 11,  
respectively.  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
TRIG  
CLKIN  
TRIG_INT  
AFE_CLK (÷ 2)  
AFE_CLK (÷ 3)  
AFE_CLK (÷ 4)  
Figure 61. Input Clock Divider  
CLKIN  
TRIG  
tS_TRIG  
tH_TRIG  
Figure 62. TRIG CLKIN Setup and Hold  
Table 9. DIV_EN Register  
DIV_EN  
DESCRIPTION  
0
1
Divider disabled and bypassed  
Divider enabled  
Table 10. DIV_FRC Register  
DIV_FRC  
DESCRIPTION  
0
1
Input divider ratio = serialization factor(1) (automatically set)  
Input divider ratio = DIV_REG (manually set)  
(1) The divider ratio is automatically calculated to the serialization factor value based on the CH_OUT_DIS[1:4] register bits; see Table 12.  
Table 11. DIV_REG Register  
DIV_REG  
DESCRIPTION  
Divider disabled and bypassed  
0
1
2
3
Divide-by-2  
Divide-by-3  
Divide-by-4  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8.3.7 Data Output Serialization  
The input signals are digitized by the dedicated channel ADCs. Digitized signals are multiplexed and output on  
D[11:0] as parallel data.  
The output data rate and the DCLK speed are automatically calculated based on the CH_OUT_DIS[1:4] bits. The  
number of zeroes in these four bits is equal to the serialization factor for the output data. When the register bit is  
set to 1, the output for the respective channel is disabled. The channels are arranged in ascending order, with  
the lowest active channel output first and the highest active channel output last. CH_OUT_DIS[1:4] controls only  
the output serialization and does not power-down individual channels. Table 12 lists the register values with the  
respective serialization factors and output sequence.  
Table 12. CH_OUT_DIS Register  
SERIALIZATION  
CH_OUT_DIS[1] CH_OUT_DIS[2] CH_OUT_DIS[3] CH_OUT_DIS[4]  
FACTOR  
OUTPUT  
CH1 CH2 CH3 CH4  
CH2 CH3 CH4  
CH1 CH3 CH4  
CH3 CH4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
4
3
3
2
3
2
2
1
3
2
2
1
2
1
1
1
CH1 CH2 CH4  
CH2 CH4  
CH1 CH4  
CH4  
CH1 CH2 CH3  
CH2 CH3  
CH1 CH3  
CH3  
CH1 CH2  
CH2  
CH1  
Not supported  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.3.8 Setting the Input Common-Mode Voltage for the Analog Inputs  
8.3.8.1 Main Channels  
The device analog input consists of a differential LNA. The common-mode for the LNA inputs is internally set  
using two internal, programmable, single-ended resistors, as shown in Figure 63.  
INIP  
RINTTERM_LNA  
1 k  
LNA  
RINTTERM_LNA  
1 kꢀ  
INIM  
Internal Voltage  
Reference  
CM_LNA Buffer  
Device  
Figure 63. Common-Mode Biasing of LNA Input Pins  
These resistors can be programmed to a higher value using the TERM_INT_20K_LNA register setting as  
described in Table 13.  
Table 13. Internal Termination Register Setting (LNA)  
TERM_INT_20K_LNA  
DESCRIPTION  
0
1
RINTTERM_LNA = 1 kΩ  
RINTTERM_LNA = 10 kΩ  
Hence, for proper operation, the input signal must be ac-coupled. Note that external input ac-coupling capacitors  
form a high-pass filter (HPF) with RINTTERM_LNA. Therefore, the capacitor values should allow the lowest  
frequency of interest to pass with minimum attenuation. For typical frequencies greater than 1 MHz, a value of 50  
nF or greater is recommended. The maximum input swing is limited by the LNA gain setting. LNA output swing is  
limited to 2 VPP before the output becomes saturated or distorted.  
Single ended mode of operation is also possible by connecting non-driven input pin to ground through a  
capacitor of 100 nF. However, this will result in reduced linearity.  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8.3.8.2 Auxiliary Channel  
The auxiliary analog inputs (INIP_AUX, INIM _AUX) can be enabled instead of the INIP, INIM inputs using the  
AUX_CHI_EN bits (Table 14). The auxiliary analog input signal path consists of an input unity-gain buffer  
followed by an ADC. The LNA, PGA, equalizer, and antialiasing filter are bypassed and powered down in this  
mode. Figure 64 shows the internal block diagram for auxiliary channel mode. When this mode is enabled, the  
maximum input swing is limited to 2 VPP before the input becomes saturated or distorted.  
Table 14. AUX_CHI_EN Register  
AUX_CHI_EN  
DESCRIPTION  
0
1
INIP, INIM active, analog  
INIP _AUX, INIM_AUX  
INIP_AUX  
RINTTERM_AUX  
1 k  
1 kꢀ  
BUF  
RINTTERM_AUX  
INIM_AUX  
VCM  
Internal Voltage  
Reference  
CM_AUX Buffer  
Device  
NOTE: Dashed area denotes one of four channels.  
Figure 64. Common-Mode Biasing of Auxiliary Channel Input Pins  
The dc common-mode on the INIP_AUX, INIM _AUX pins are internally biased to the optimum voltage (referred  
to as VCM).  
The dc common-mode biasing is set with two internal, programmable, single-ended resistors (RINTTERM_AUX).  
These resistors can be programmed to a higher value using the TERM_INT_20K_AUX register setting as  
described in Table 15.  
Table 15. Internal Termination Register Setting (AUX)  
TERM_INT_20K_AUX  
DESCRIPTION  
0
1
RINTTERM_AUX = 1 kΩ  
RINTTERM_AUX = 10 kΩ  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
The auxiliary inputs can also be ac-coupled as a result of the internal common-mode setting. The external input  
ac-coupling capacitors form a high-pass filter with RINTTERM_AUX. Therefore, the capacitor values should allow  
the lowest frequency of interest to pass with minimum attenuation.  
For typical frequencies greater than 1 MHz, a value of 50 nF or greater is recommended. For instances where  
the input signal cannot be ac-coupled because of system requirements, it is recommended to use the VCM  
output to set the dc common-mode of the input signal. The driving capability of VCM is limited. A 100-nF  
capacitor should be connected on each VCM input to AVSS.  
8.4 Device Functional Modes  
8.4.1 Equalizer Mode  
In some applications, the input signal power linearly decreases with signal frequency. Such types of input  
spectrum can be equalized using a first-order signal equalizer. The device can be configured in two different  
equalizer modes: EQ_EN and EQ_EN_LOW_FC. Table 16 lists the register settings for these modes.  
EQ_EN mode: In this mode, a high-pass filter (HPF) is added to the analog signal path between the LNA  
output and PGA input.  
EQ_EN_LOW_FC mode: In this mode, attenuation from the HPF is limited to unity in the pass-band  
frequency range.  
Table 16. EQ_EN and EQ_EN_LOW_FC Registers  
EQ_EN  
EQ_EN_LOW_FC  
DESCRIPTION  
0
0
1
1
0
1
0
1
Default mode  
Default mode  
Equalizer enabled  
Equalizer with low-corner frequency enabled  
The HPF and LPF cutoff frequencies (of the antialiasing filter) are the same as per the FILTER_BW setting. In  
this mode, overall channel gain increases by an additional fixed gain of 15 dB from the HPF block. Typical  
frequency response plots showing different equalizer modes along with the default mode are shown in Figure 65  
and Figure 66.  
30  
20  
60  
50  
10  
40  
0
30  
œ10  
œ20  
œ30  
œ40  
œ50  
20  
10  
Default Mode (Eq_Dis)  
Eq_EN  
Default Mode (Eq_Dis)  
Eq_EN  
0
œ10  
œ20  
Eq_EN_LOW_FC  
Eq_EN_LOW_FC  
0.1  
1
10  
0.1  
1
10  
fIN (MHz)  
fIN (MHz)  
C001  
C001  
Figure 65. Filter Response (PGA Gain = 0 dB)  
Figure 66. Filter Response (PGA Gain = 30 dB)  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8.4.2 Data Output Mode  
The functionality of DSYNC1, DSYNC2, DCLK, and D[11:0] are controlled by selecting the data output mode.  
The functionality of the DSYNC1, DSYNC2, DCLK, and D[11:0] output pins for 4x serialization modes are shown  
in Figure 67 and Figure 68. Any event on the TRIG pin triggers the DSYNC1 and DSYNC2 signals. The DSYNC1  
period is determined by the COMP_DSYNC1 register value and the DSYNC2 period is determined by the  
SAMPLE_COUNT register value. When OUT_MODE_EN = 0, data output is continuous. When OUT_MODE_EN  
= 1, data is active only during the sample phase. Output pins are configured using the registers described in  
Table 17 through Table 21.  
CLKIN  
INPUT  
TRIG  
CYCLE RESET  
TRIG_INT  
tAFE_CLK  
Pixel = 0 Pixel = 1 Pixel = 2  
Pixel = 3  
INTERNAL  
AFE_CLK  
tOUT  
Pixel = 0 Pixel = 1 Pixel = 2  
Pixel = 3  
CH4  
(8)  
CH4  
(8)  
CH3  
(5)  
CH3 CH4 CH1  
CH3  
(8)  
CH3  
(8)  
CH1  
(9)  
CH3  
(9)  
D[11:0]  
CH1  
(1)  
CH3  
(1)  
CH1 CH2  
(5) (5)  
CH4 CH1 CH2  
(5) (6) (6)  
CH2 CH3 CH4 CH1 CH2  
CH1 CH2  
(8) (8)  
CH2  
(9)  
CH1 CH2 CH3 CH4  
(0) (0) (0) (0)  
CH2  
(1)  
CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4 CH1  
CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4  
(6)  
(6)  
(7)  
(2)  
(2)  
(2)  
(2)  
(3)  
(3)  
(3)  
(3)  
(4)  
(4)  
(4)  
(4)  
(7)  
(7)  
(7)  
(8)  
(8)  
(1)  
OUT_MODE_EN = 0  
D[11:0]  
OUT_MODE_EN = 1  
CH1 CH2 CH3  
CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2  
CH4  
CH1 CH2 CH3 CH4  
CH1 CH2  
CH1 CH2 CH3  
CH1 CH2 CH3  
CH1 CH2  
CH4  
CH4  
DCLK  
COMP_DSYNC1  
COMP_DSYNC1  
DSYNC1_HIGH  
DSYNC1  
OUTPUT  
DSYNC2_LOW  
BLANKING PHASE  
SAMPLE PHASE  
SAMPLE PHASE  
DELAY PHASE  
TTRIG_DSYNC2_LAT  
DELAY PHASE  
DSYNC2  
SAMPLE COUNT = N  
tDSYNC2 = (N+1) * tAFE_CLK  
SAMPLE COUNT = N  
tDSYNC2 = (N+1) * tAFE_CLK  
Figure 67. Data Output Timing Diagram (4x Serialization)  
CLKIN  
Input  
TRIG  
TRIG_INT  
AFE_CLK  
Internal  
tAFE_CLK  
Pixel = 0  
Pixel = 1  
Pixel = 2  
Pixel = 3  
tOUT  
Pixel = 0  
Pixel = 1  
Pixel = 2  
Pixel = 3  
D[11:0]  
OUT_MODE_EN = 0  
CH4  
(8)  
CH3  
(5)  
CH3 CH4 CH1  
CH3  
(8)  
CH1  
(1)  
CH3  
(1)  
CH1 CH2  
CH1 CH2  
(5) (5)  
CH4 CH1 CH2  
CH2 CH3 CH4 CH1 CH2  
(7) (7) (7) (8) (8)  
CH1 CH2 CH3 CH4  
CH2  
(1)  
CH4  
(1)  
CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4  
(2) (2) (3) (3) (3) (3) (4) (4) (4) (4)  
CH1 CH2 CH3 CH4  
CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2  
CH1 CH2  
CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4  
(6)  
(6)  
(7)  
(0)  
(0)  
(0)  
(0)  
(2)  
(2)  
(5)  
(6)  
(6)  
D[11:0]  
OUT_MODE_EN = 1  
CH3  
(5)  
CH1  
(1)  
CH3  
(1)  
CH1 CH2  
CH1 CH2  
(5) (5)  
CH4  
(5)  
CH1 CH2 CH3 CH4  
(0) (0) (0) (0)  
CH2  
(1)  
CH4  
(1)  
CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4  
(2) (2) (3) (3) (3) (3) (4) (4) (4) (4)  
CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2  
CH1 CH2 CH3 CH4  
CH1 CH2  
(2)  
(2)  
DCLK  
Output  
DSYNC1 COMP_DSYNC1 = 2  
DSYNC2  
SAMPLE_COUNT = N  
tDSYNC2 = (N+1) x tAFE_CLK  
Figure 68. Data Output Timing Diagram (4x Serialization, Input Divider Enabled)  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Table 17. Register Functions  
REGISTER  
FUNCTION  
DELAY_COUNT[23:0]  
SAMPLE_COUNT[23:0]  
COMP_DSYNC1[15:0]  
From a TRIG event, the sample phase is delayed for a DELAY_COUNT number of tAFE_CLK cycles  
From the end of DELAY_PHASE, the sample phase duration is the SAMPLE_COUNT number of  
tAFE_CLK cycles  
DSYNC1 period in number of tAFE_CLKcycles  
Table 18. DSYNC1_START_LOW Register  
DSYNC1_START_LOW  
DESCRIPTION  
DSYNC1 is high at the sample phase start  
0
1
DSYNC1 is low at the sample phase start  
Table 19. OUT_MODE_EN Register  
OUT_MODE_EN  
DESCRIPTION  
Data always active  
0
1
Data active in sample phase  
Table 20. DSYNC_EN Register  
DSYNC_EN  
DESCRIPTION  
Disable DSYNC generation  
0
1
Enable DSYNC generation  
Table 21. OUT_BLANK_HIZ Register  
OUT_BLANK_HIZ  
DESCRIPTION  
D[11:0] is low during inactive phase  
0
1
D[11:0] is high impedance during inactive phase  
NOTE  
The signal processing blocks in the device are always active and are not controlled by  
output mode configuration settings.  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
The functionality of the DSYNC1, DSYNC2, DCLK, and D[11:0] output pins with the input divider enabled for 3x  
serializations is shown in Figure 69.  
CLKIN  
INPUT  
TRIG  
TRIG_INT  
Pixel = 0 Pixel = 1Pixel = 2  
Pixel = 3  
tAFE_CLK  
INTERNAL  
AFE_CLK  
Pixel = 0 Pixel = 1Pixel = 2  
Pixel = 3  
D[11:0]  
OUT_MODE_EN = 0  
CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1  
CH3 CH1 CH2  
(10)  
CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1  
CH3 CH1 CH2  
CH2  
(9)  
CH1 CH2 CH3  
(0) (0) (0)  
CH2 CH3 CH1 CH2 CH3  
CH1 CH2  
(5) (5)  
CH1  
(1)  
CH1 CH2 CH3 CH1 CH2 CH3  
CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3  
(8)  
(9)  
(11) (11) (11) (12) (12) (12) (13)  
(5)  
(6)  
(6)  
(6)  
(7)  
(7)  
(7)  
(8)  
(8)  
(9)  
(10) (10)  
(1)  
(2)  
(2)  
(2)  
(1)  
(3)  
(3)  
(3)  
(4)  
(4)  
(4)  
D[11:0]  
CH3 CH1 CH2 CH3  
CH3 CH1 CH2  
CH1 CH2 CH3  
(0) (0) (0)  
CH2 CH3 CH1 CH2 CH3  
CH1 CH2  
(5) (5)  
CH1  
(1)  
CH1 CH2 CH3 CH1 CH2 CH3  
(3) (3) (3) (4) (4) (4)  
CH1 CH2 CH3 CH1 CH2 CH3 CH1 CH2 CH3  
(5)  
(6)  
(6)  
(6)  
(7)  
(7)  
(7)  
(1)  
(2)  
(2)  
(2)  
(1)  
OUT_MODE_EN = 1  
DCLK  
DSYNC1  
COMP_DSYNC1=2  
OUTPUT  
DSYNC2  
SAMPLE COUNT = N  
tDSYNC2 = (N+1)* tAFE_CLK  
Figure 69. Data Output Timing (3x Serialization, Input Divider Enabled)  
The TRIG to DSYNC2 latency is given by Table 22.  
Table 22. TRIG to DSYNC2 Latency across Serialization Modes for AFE_CLK = 25 MHz  
(1)  
Serialization Modes  
TTRIG_DSYNC2_LAT  
Units  
ns  
4x  
3x  
2x  
1x  
230  
230  
240  
250  
ns  
ns  
ns  
(1) The TRIG_DSYNC2_LAT delay can vary by ± 8 ns.  
8.4.2.1 Header  
Each channel has an associated 12-bit header register. These registers can be written by an SPI write. The  
content of this register can be read out on the CMOS data output (D[11:0]) by configuring the HEADER_MODE  
register, as shown in Table 23.  
Table 23. HEADER_MODE Register  
HEADER_MODE  
DESCRIPTION  
0
1
2
3
ADC data at output  
Header data at output  
[Temperature data, diagnostic data, mean, noise, (-1), (-1), (-1), (-1)]. This data sequence is repeated.  
Header data, temperature data, diagnostic data, mean, noise, ADC data  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
In HEADER_MODE = 3, the header mode data output is shown in Figure 70.  
In this mode, header data is transmitted with a latency with respect to the TRIG input. This latency is given by  
Equation 2:  
TRIG to Header Latency (TTRIG_HEADER_LAT) = tAFE_CLK + TTRIG_DSYNC2_LAT  
(2)  
TRIG  
CLKIN  
AFE_CLK  
TRIG_INT  
DCLK  
DATA  
TTRIG_DSYNC2_LAT  
DSYNC2  
TTRIG_HEADER_LAT  
Figure 70. Header Mode Data Output (HEADER_MODE = 3)  
8.4.2.2 Test Pattern Mode  
In order to check the interface between the AFE and the receiver system, a test pattern can be directly  
programmed on the CMOS output. As shown in Table 24, different test patterns can be selected by setting the  
TST_PAT_MODE register.  
Table 24. TST_PAT_MODE Register(1)  
TST_PAT_MODE  
DESCRIPTION  
0
1
2
3
4
5
6
7
Normal ADC output data  
SYNC pattern (D[11:0] = 111111000000)  
Deskew pattern (D[11:0] = 010101010101)  
Custom pattern as per CUSTOM_PATTERN[11:0] register bits  
All 1s  
Toggle data (output toggles between all 0s and all 1s)  
All 0s  
Full-scale ramp data  
(1) In decimate-by-2 mode, alternate samples are dropped and thus output data D0 does not toggle for full-scale ramp data and output data  
D[11:0] does not toggle for toggle data.  
Similarly, in decimate-by-4 mode, three samples are dropped and thus output data D0 and D1 do not toggle for full-scale ramp data and  
output data D[11:0] does not toggle for toggle data.  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
 
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8.4.3 Parity  
Parity for each output sample of an active channel can be read on the D_GPO[1:0] pins by configuring these pins  
with the DGPO1_MODE, DGPO0_MODE register, as shown in Table 25. Parity generation can be enabled using  
the D_GPO_EN bit, as shown in Table 26. The type of parity generation can be configured to odd or even based  
on the PARITY_ODD bit, as shown in Table 27.  
Table 25. DGPO0_MODE, DGPO1_MODE Register  
DGPO0_MODE, DGPO1_MODE  
DESCRIPTION  
0
1
2
3
Low  
Parity  
Overload  
D[11]  
Table 26. D_GPO_EN Register  
D_GPO_EN  
DESCRIPTION  
0
1
D_GPO[x] pins are disabled  
D_GPO[x] pins are enabled  
Table 27. PARITY_ODD Register  
PARITY_ODD  
DESCRIPTION  
0
1
Even  
Odd  
8.4.4 Standby, Power-Down Mode  
The device can be put into standby mode with the STDBY register bit. In this mode, all blocks except the ADC  
reference blocks are powered down. In GLOBAL_PDN mode, all blocks including the ADC reference blocks are  
powered down. However, in both modes, the serial interface is active.  
8.4.5 Digital Filtering to Improve Stop-Band Attenuation  
The device introduces a standard 11-tap, symmetric finite impulse response (FIR) digital filter for additional stop-  
band attenuation in decimate-by-2 and decimate-by-4 modes. In both modes, the FIR digital filter coefficients (C1  
to C6) must be configured to obtain the desired filter characteristics. However, set 1 coefficients are loaded by  
default at device reset.  
In this mode, device power consumption increases and the DSYNC period scales according to the decimation  
mode (the DSYNC period increases by 2x in decimate-by-2 mode and 4x in decimate-by-4 mode when  
compared to normal mode). Maximum AFE_CLK frequency supported in the decimation modes is 50 MHz.  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.4.5.1 Decimate-by-2 Mode  
In this mode, the DECIMATE_2_EN and FILT_EN register bits must be set, and the filter coefficients should be  
configured. Figure 71 shows typical filter response in decimate-by-2 mode for the filter coefficient of set 1  
(default). Note that the output data rate is reduced by a factor of 2 as compared to default mode for the given  
clock input frequency.  
20  
10  
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
Default Mode  
œ70  
DECIMATE_2_EN = 1  
œ80  
0.1  
1
10  
fIN (MHz)  
C037  
Figure 71. Decimate-by-2 Filter Response (fS = 50 MHz)  
8.4.5.2 Decimate-by-4 Mode  
In this mode, the DECIMATE_2_EN, DECIMATE_4_EN, and FILT_EN register bits must be set, and the filter  
coefficients should be configured. Figure 72 shows a typical filter response in decimate-by-4 mode for the filter  
coefficient of set 1 (default) and set 2. Note that the output data rate is reduced by a factor of 4 as compared to  
default mode for the given clock input frequency.  
10  
0
œ10  
œ20  
œ30  
œ40  
œ50  
DECIMATE_4_EN = 1, Set 2  
œ60  
DECIMATE_4_EN = 1, Set 1  
œ70  
0.1  
1
fIN (MHz)  
C038  
(1) Set 1: C1 = 5, C2 = 2, C3 = –13, C4 = –2, C5 = 38, and C6 = 66. Set 2: C1 = –5, C2 = –2, C3 = 7, C4 = 19, C5 = 30, and C6 = 34.  
Figure 72. Decimate-by-4 Filter Response (fS = 12.5 MHz)  
8.4.6 Diagnostic Mode  
The device offers various diagnostic modes to check proper device operation at a system level. These modes  
can be enabled using the SPI and the outputs of these modes are stored in diagnostic read-only registers.  
1. Internal reference status check: In this mode, the on-chip band-gap voltage, ADC reference, and clock  
generation are verified for functionality. Reading a 0 on these bits indicates that these blocks are functioning  
properly. The DIAG_MODE_EN register bit must be set to 1. The DIG_REG register bits for this mode are:  
DIG_REG[0] for ADC references,  
DIG_REG[1] for band gap, and  
DIG_REG[2] for clock generation.  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
2. DC input force: In this mode, a dc voltage can be internally forced at the LNA input to test the entire signal  
chain. During this test, the device analog inputs should be left floating. This mode can be asserted by setting  
the DC_INP_EN bit to 1 and programming the DC_INP_PROG[0:2] bits. In this mode, the equalizer is  
disabled internally.  
3. Variance (noise) and mean measurement: Variance and mean of the ADC output can be analyzed using the  
on-chip STAT module. The STAT_EN, STAT_CALC_CYCLE, and STAT_CH_SEL, STAT_CH_AUTO_SEL  
options should be set to compute the variance and mean. These values can be monitored using channel-  
specific, read-only registers. Alternatively, these values can also be read using HEADER_MODE. Output  
variance and mean calculation is determined by Equation 3.  
(3)  
STAT_CALC_CYCLE must be set to a large value to obtain better accuracy. Mean provides the average dc  
value of the ADC output (mid code). The STAT module integration time is defined by: tAFE_CLK  
2(STAT_CALC_CYCLE+1) when the STAT_CH_SEL option is selected. When STAT_CH_AUTO_SEL is enabled,  
the STAT module integration time is defined by: 4 × tAFE_CLK × 2(STAT_CALC_CYCLE+1)  
×
.
4. Temperature sensor: The device junction temperature measurement can be enabled and monitored using  
TEMP_SENS_EN and TEMP_CONV_EN. The temperature output is saved in a diagnostic read-only  
register, TEMP_DATA. Alternatively, this data can also be read using HEADER_MODE. The TEMP_DATA  
value is a 9-bit, twos complement data in degrees Celsius. The temperature data is internally updated as per  
Equation 4:  
Temperature Data Update Cycle = 1024 × TAFE_CLK × 16  
(4)  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.4.7 Signal Chain Probe  
To enhance system-level debug capabilities, the device offers a mode where the output of each block in the  
signal chain can be connected to the ADC input. With this mode, internal signals can be easily monitored to  
ensure that each block output is not saturated. Figure 73 shows the device signal chain block diagram. Figure 74  
and Figure 75 show typical frequency response plots at the output of each stage.  
LNA  
AMP 1  
AMP 2  
AMP 3  
MUX  
ADC  
PGA + Antialiasing Filter  
VOUT_ON_ADC[1:0]  
Figure 73. Signal Chain Block Diagram  
20  
15  
45  
40  
35  
30  
25  
20  
15  
10  
10  
5
0
œ5  
œ10  
œ15  
œ20  
œ25  
AMP1_OUT_ADC  
AMP2_OUT_ADC  
LNA_OUT_ADC  
AMP1_OUT_ADC  
AMP2_OUT_ADC  
LNA_OUT_ADC  
5
0
œ5  
0.1  
1
10  
0.1  
1
10  
fIN (MHz)  
fIN (MHz)  
C001  
C001  
Figure 74. Frequency Response for  
VOUT_ON_ADC Settings (PGA Gain = 0 dB)  
Figure 75. Frequency Response for  
VOUT_ON_ADC Settings (PGA Gain = 30 dB)  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
8.5 Programming  
8.5.1 Serial Interface  
Different modes can be programmed through the serial interface formed by the SEN (serial interface enable),  
SCLK (serial interface clock), SDATA (serial interface data) and RESET pins. SCLK and SDATA have a 150-kΩ  
pull-down resistor to ground and SEN has a 150-kΩ pull-up resistor to DVDD18. Serially shifting bits into the  
device is enabled when SEN is low. SDATA serial data bits are latched at every SCLK rising edge when SEN is  
active (low). Serial data bits are loaded into the register at every 24th SCLK rising edge when SEN is low. If the  
word length exceeds a multiple of 24 bits, the excess bits are ignored. Data bits can be loaded in multiples of 24-  
bit words within a single active SEN pulse (an internal counter counts groups of 24 clocks after the SEN falling  
edge). The interface can function with SCLK frequencies from 20 MHz down to very low speeds and even with a  
non-50% duty-cycle SCLK. Data bits are divided into two main portions: a register address (8 bits, A[7:0]) and  
data (16 bits, D[15:0]).  
8.5.2 Register Initialization  
After power up, the internal registers must be initialized to the default value (0). Initialization can be accomplished  
in one of two ways:  
Either through a hardware reset, by applying a positive pulse to the RESET pin, or  
Through a software reset with the serial interface, by setting the SW_RST bit high. Setting this bit initializes  
the internal registers to the respective default values (all 0s) and then self-resets the SW_RST bit low. In this  
case, the RESET pin can stay low (inactive).  
NOTE  
No damage occurs to the part by applying voltage to the RESET pin while device  
power is off.  
For correct device operation, a positive pulse must be applied to the RESET pin. This  
pulse sets the internal control registers to 0. However, no power-supply sequencing is  
required.  
Reset only affects the digital registers and places the device in a default state. Reset  
does not function as a power-down and, therefore, all internal blocks are functional.  
During a register write through the SPI, the effects on data propagate through the pipe while the internal registers  
change values. At the same time, some glitches may be present on the output because of the transition of  
register values (for instance, if any output-controlling modes change). The signal on the RESET pin must be low  
in order to write to the internal registers because reset is level-sensitive and asynchronous with the input clock.  
Although only 40 ns are required after the RESET rising edge to change the registers, the output data may take  
up to 20 clock cycles (worst-case) to be considered stable. For more information on RESET, see the Timing  
Requirements: RESET.  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Programming (continued)  
8.5.2.1 Register Write Mode  
In register write mode, the REG_READ_EN bit must be set to 0. In this mode, the SDOUT signal outputs 0.  
Figure 76 shows this process.  
SEN  
End Sequence  
t6  
t1  
t7  
Data latched on rising edge of SCLK  
t2  
SCLK  
t3  
A[7]  
A[6] A[5] A[4]  
A[3] A[2] A[1] A[0] D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]  
SDATA  
t4  
t5  
SDOUT  
Figure 76. Serial Interface Register Write  
8.5.2.2 Register Read Mode  
In register readout mode, the REG_READ_EN bit must be set to 1. Then, a serial interface cycle should be  
initiated, specifying the address of the register (A[7:0]) whose content must be read out of the device. The data  
bits are don’t care. The device outputs the contents (D[15:0]) of the selected register on the SDOUT pin. The  
external controller latches the data on SDOUT at the SCLK rising edge. Figure 77 shows this process.  
The timing specifications for the serial interface operation is listed in the Timing Requirements: Serial Interface  
Operation.  
SEN  
End Sequence  
t6  
t1  
t7  
t2  
SCLK  
t3  
A[7]  
A[6] A[5] A[4] A[3] A[2] A[1] A[0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SDATA  
t4  
SDOUT to be latched externally on rising  
edge  
t5  
t8  
D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]  
SDOUT  
Figure 77. Serial Interface Register Readout Enable  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
 
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Programming (continued)  
8.5.3 CMOS Output Interface  
The digital data from the four channels are multiplexed and output over a 12-bit parallel CMOS bus to reduce the  
device pin count. In addition to the data, a CMOS clock (DCLK) is also output, which can be used by the digital  
receiver to latch the AFE output data. The output data and clock buffers can typically drive a 5-pF load  
capacitance in default mode. To drive larger loads (10 pF to 15 pF), the strength of the CMOS output buffers can  
be increased using the STR_CTRL_CLK and STR_CTRL_DATA register bits. Note that the setup and hold time  
of the output data (with respect to DCLK) degrade with higher load capacitances. See Table 1, which provides  
timings for 5-pF and 15-pF load capacitances.  
8.5.3.1 Synchronization and Triggering  
While the digital data from the four channels is multiplexed on the output bus, some mechanism is required to  
identify the data from the individual channels. Other than the output data and DCLK, the device also outputs  
DSYNCx signals that can be used for channel identification.  
The DSYNCx output signals function with the TRIG input signal. Every time that a trigger pulse is received on the  
TRIG pin, the device outputs the DSYNC1 and DSYNC2 signals. The DSYNCx signals can be configured in the  
following ways:  
The delay between the arrival of the TRIG signal and the DSYNCx signal becoming active is programmable in  
a number of AFE_CLK cycles (using the DELAY_COUNT register bit).  
The period of the DSYNC1 signal is programmable in terms of AFE_CLK clock cycles by using the  
COMP_DSYNC1 register bits.  
The active time of the DSYNC2 signal is programmable using the SAMPLE_COUNT register bits.  
The rising edge of the DSYNC1 signal coincides with the channel 1 data, as shown in Figure 78. This occurrence  
can be used by the receiving device to identify individual channels.  
The sample phase period corresponds to the period when valid data is available from the device when  
OUT_MODE_EN = 1.  
CLKIN  
INPUT  
TRIG  
CYCLE RESET  
TRIG_INT  
tAFE_CLK  
Pixel = 0 Pixel = 1 Pixel = 2  
Pixel = 3  
INTERNAL  
AFE_CLK  
tOUT  
Pixel = 0 Pixel = 1 Pixel = 2  
Pixel = 3  
CH4  
(8)  
CH4  
(8)  
CH3  
(5)  
CH3 CH4 CH1  
CH3  
(8)  
CH3  
(8)  
CH1  
(9)  
CH3  
(9)  
D[11:0]  
CH1  
(1)  
CH3  
(1)  
CH1 CH2  
(5) (5)  
CH4 CH1 CH2  
(5) (6) (6)  
CH2 CH3 CH4 CH1 CH2  
CH1 CH2  
(8) (8)  
CH2  
(9)  
CH1 CH2 CH3 CH4  
(0) (0) (0) (0)  
CH2  
(1)  
CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4 CH1  
CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4  
CH1 CH2 CH3 CH4  
(6)  
(6)  
(7)  
(2)  
(2)  
(2)  
(2)  
(3)  
(3)  
(3)  
(3)  
(4)  
(4)  
(4)  
(4)  
(7)  
(7)  
(7)  
(8)  
(8)  
(1)  
OUT_MODE_EN = 0  
D[11:0]  
OUT_MODE_EN = 1  
CH1 CH2 CH3  
CH3 CH4 CH1 CH2 CH3 CH4 CH1 CH2  
CH4  
CH1 CH2 CH3 CH4  
CH1 CH2  
CH1 CH2 CH3  
CH1 CH2 CH3  
CH1 CH2  
CH4  
CH4  
DCLK  
COMP_DSYNC1  
COMP_DSYNC1  
DSYNC1_HIGH  
DSYNC1  
OUTPUT  
DSYNC2_LOW  
BLANKING PHASE  
SAMPLE PHASE  
SAMPLE PHASE  
DELAY PHASE  
TTRIG_DSYNC2_LAT  
DELAY PHASE  
DSYNC2  
SAMPLE COUNT = N  
tDSYNC2 = (N+1) * tAFE_CLK  
SAMPLE COUNT = N  
tDSYNC2 = (N+1) * tAFE_CLK  
Figure 78. DSYNCx Timing Diagram  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.6 Register Maps  
8.6.1 Functional Register Map  
Table 28 shows the register map for the AFE5401 registers.  
Table 28. Register Map  
REGISTER  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG_  
READ_EN  
0 (00h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SW_RST  
DECIMATE  
_4_EN  
DECIMATE  
_2_EN  
SE_CLK_  
MODE  
GLOBAL_  
PDN  
1 (01h)  
0
0
0
0
0
STDBY  
0
0
0
0
DIV_REG  
DGPO0_MODE  
DIV_FRC  
DIV_EN  
0
2 (02h)  
3 (03h)  
TST_PAT_MODE  
0
0
0
0
0
0
0
0
DGPO1_MODE  
0
0
0
0
TEMP_DATA  
OUT_  
BLANK_HIZ  
OUT_  
MODE_EN  
DCLK_  
INVERT  
TEMP_  
CONV_EN  
TEMP_  
SENS_EN  
OFF_BIN_  
DATA_FMT  
4 (04h)  
0
0
0
0
0
0
0
0
0
0
0
5 (05h)  
6 (06h)  
CUSTOM_PAT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIAG_REG  
PARITY_  
ODD  
DCP_INP_  
EN  
DIAG_  
MODE_EN  
7 (07h)  
D_GPO_EN  
STAT_ EN  
DCP_INP_PROG  
FILTER_BW  
HEADER_MODE  
8 (08h)  
9 (09h)  
C2_FIR  
DIG_GAIN_C1_FIR  
C3_FIR  
C4_FIR  
C6_FIR  
10 (0Ah)  
C5_FIR  
FAST_  
DGPO  
15 (0Fh)  
19 (13h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OB_  
DISABLE  
STR_CTRL_CLK  
STR_CTRL_DATA  
21 (15h)  
22 (16h)  
23 (17h)  
DELAY_COUNT[23:16]  
SAMPLE_COUNT[23:16]  
DELAY_COUNT[15:0]  
SAMPLE_COUNT[15:0]  
DSYNC1_  
START_  
LOW  
24 (18h)  
TRIG_FALL  
0
DSYNC_EN  
0
COMP_DSYNC1[15:6]  
0
25 (19h)  
26 (1Ah)  
27 (1Bh)  
COMP_DSYNC1[5:0]  
0
0
0
DSYNC2_LOW[23:16]  
DSYNC2_LOW[15:0]  
DSYNC1_HIGH  
OFFSET_  
DIS  
STAT_CH_  
AUTO_SEL  
29 (1Dh)  
0
STAT_CH_SEL  
0
0
0
0
STAT_CALC_CYCLE  
MULT_EN FILT_EN  
0
0
0
0
0
0
0
0
30 (1Eh)  
32 (20h)  
0
0
0
0
0
0
0
0
0
0
0
HEADER_CH1  
CH_OUT_  
DIS1  
AUX_CH1_  
EN  
INVERT_  
CH1  
33 (21h)  
PDN_CH1  
0
0
OFFSET_CH1  
34 (22h)  
35 (23h)  
36 (24h)  
0
0
0
0
0
0
MEAN_CH1  
NOISE_CH1  
0
0
HEADER_CH2  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
 
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 28. Register Map (continued)  
REGISTER  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
CH_OUT_  
DIS2  
AUX_CH2_  
EN  
INVERT_  
CH2  
37 (25h)  
PDN_CH2  
0
0
OFFSET_CH2  
38 (26h)  
39 (27h)  
40 (28h)  
0
0
0
0
0
0
MEAN_CH2  
NOISE_CH2  
0
0
HEADER_CH3  
HEADER_CH4  
CH_OUT_  
DIS3  
AUX_CH3_  
EN  
INVERT_  
CH3  
41 (29h)  
PDN_CH3  
0
0
0
OFFSET_CH3  
OFFSET_CH4  
42 (2A)  
43(2B)  
0
0
0
0
0
0
MEAN_CH3  
NOISE_CH3  
44 (2Ch)  
0
0
CH_OUT_  
DIS4  
AUX_CH4_  
EN  
INVERT_  
CH4  
45 (2Dh)  
PDN_CH4  
0
0
46(2Eh)  
47(2Fh)  
0
0
0
0
MEAN_CH4  
NOISE_CH4  
TERM_INT_  
20K_AUX  
65 (41h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TERM_INT_  
20K_LNA  
69 (45h)  
70 (46h)  
LNA_GAIN  
PGA_GAIN  
EQ_EN  
0
0
0
0
0
0
0
0
0
0
0
0
HPL_EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VOUT_ON_ADC  
EQ_  
EN_LOW  
_FC  
HIGH_  
POW_LNA  
71(47h)  
0
0
0
0
0
0
0
0
0
0
100(64h)  
HF_AFE_CLK_EN  
0
0
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
8.6.2 Register Descriptions  
Figure 79. Register 0 (00h)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
REG_READ_  
EN  
SW_RST  
Bits 15:2  
Bit 1  
Must write 0  
REG_READ_EN: Register read mode  
0 = Write (default)  
1 = Enable register read  
Bit 0  
SW_RST: Software reset  
This bit is the software reset for the entire device. This bit is self-clearing.  
Figure 80. Register 1 (01h)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
0
8
0
STDBY  
7
6
5
4
3
2
1
0
DECIMATE_4_  
EN  
DECIMATE_2_  
EN  
SE_CLK_  
MODE  
DIV_REG  
DIV_FRC  
DIV_EN  
GLOBAL_PDN  
Bits 15:11  
Bit 10  
Must write 0  
STDBY: Full device standby  
0 = Normal (default)  
1 = Standby  
Bits 9:8  
Bit 7  
Must write 0  
DECIMATE_4_EN  
0 = Decimate-by-4 mode not enabled  
1 = Decimate-by-4 mode enabled  
The DECIMATE_2_EN and FILT_EN bits must be set.  
FIR filter coefficients (C1 to C6) must be written for proper operation.  
If the AFE_CLK frequency > 25 MHz, then HF_AFE_CLK_EN must be set.  
Bits 6:5  
DIV_REG: Input clock divider ratio in DIV_FRC mode  
DIV_REG  
fAFE_CLK  
0
1
2
3
CLKIN ÷ 1  
CLKIN ÷ 2  
CLKIN ÷ 3  
CLKIN ÷ 4  
Input divider disabled and bypassed  
Bit 4  
DIV_FRC: Force input divider ratio  
0 = Auto computed based on CH_OUT_DISx (default). For more details, refer to Table 12.  
1 = AFE clock frequency is based on DIV_REG settings  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Bit 3  
DECIMATE_2_EN  
0 = Normal mode  
1 = Decimate-by-2 mode enabled  
The FILT_EN bit must be set for proper operation.  
FIR filter coefficients (C1 to C6) must be written for proper operation.  
If the AFE_CLK frequency > 25 MHz, then HF_AFE_CLK_EN must also be set.  
Bit 2  
Bit 1  
Bit 0  
DIV_EN: Enable CLKIN divider  
0 = Disabled and bypassed (default)  
1 = Enabled  
SE_CLK_MODE: Single-ended input clock configuration  
0 = Differential (default)  
1 = Single-ended  
GLOBAL_PDN: Full device power-down  
0 = Normal (default)  
1 = Global PDN  
Figure 81. Register 2 (02h)  
15  
14  
13  
5
12  
0
11  
0
10  
0
9
0
8
0
TST_PAT_MODE  
7
0
6
4
3
2
0
1
0
0
0
DGPO0_MODE  
DGPO1_MODE  
Bits 15:13  
TST_PAT_MODE: Test pattern for CMOS output  
0 = Normal (default)  
1 = SYNC  
2 = Deskew  
3 = Custom register 5[15:0]  
4 = All 1s  
5 = Toggle  
6 = All 0s  
7 = Ramp  
Bits 12:7  
Bits 6:5  
Must write 0  
DGPO0_MODE: DGPO0 mode configuration  
0 = Low (default)  
1 = Parity  
2 = Overload  
3 = D[11]  
Bits 4:3  
Bits 2:0  
DGPO1_MODE: DGPO1 mode configuration  
0 = Low (default)  
1 = Parity  
2 = Overload  
3 = D[11]  
Must write 0  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 82. Register 3 (03h)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
TEMP_DATA  
7
6
5
4
3
2
TEMP_DATA  
Bits 15:10  
Bits 9:0  
Ignore bits  
TEMP_DATA: Read-only temperature readout register  
Data is 9-bit, twos complement format in degrees Celsius.  
Figure 83. Register 4 (04h)  
15  
14  
13  
12  
11  
10  
0
9
0
8
0
OUT_BLANK_  
HIZ  
OUT_MODE_  
EN  
TEMP_CONV_ TEMP_SENS_  
DCLK_INVERT  
EN  
EN  
3
7
0
6
0
5
0
4
0
2
0
1
0
0
0
OFF_BIN_  
DATA_FMT  
Bit 15  
OUT_BLANK_HIZ: Output status during blanking phase  
0 = D[11:0] and D_GPO[1:0] are low (default) if EN_OUT_MODE = 1  
1 = D[11:0] and D_GPO[1:0] are Hi-Z if EN_OUT_MODE = 1  
For more details, refer to Figure 67.  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
OUT_MODE_EN: Enables output mode gating with DSYNC2  
0 = CMOS data is always active (default)  
1 = Output mode enabled. Data is transmitted only during sample phase.  
DCLK_INVERT: Invert DCLK  
0 = DCLK rising edge at the center of data (default)  
1 = DCLK falling edge at the center of data  
TEMP_CONV_EN: Enable Temperature Sensor output to digital conversion  
0 = Hold conversion  
1 = Convert  
TEMP_SENS_EN: Enable temperature sensor block  
0 = Disable temperature sensor  
1 = Enable temperature sensor  
Bits 10:4  
Bit 3  
Must write 0  
OFF_BIN_DATA_FMT: Output data format  
0 = Twos complement (default)  
1 = Offset binary  
Bits 2:0  
Must write 0  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 84. Register 5 (05h)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CUSTOM_PAT  
4
3
CUSTOM_PAT  
Bits 15:0  
CUSTOM_PAT: Custom pattern data  
These bits set the custom data pattern.  
Figure 85. Register 6 (06h)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
0
DIAG_REG[2:0]  
Bits 15:3  
Bits 2:0  
Ignore bits  
DIAG_REG: Read only diagnostic readout register  
DIAG_REG[0] = 0: ADC references are correct  
DIAG_REG[1] = 0: Indicates band gap is correct  
DIAG_REG[2] = 0: Indicates clock generation is correct  
Figure 86. Register 7 (07h)  
15  
14  
13  
12  
11  
3
10  
9
1
8
D_GPO_EN  
PARITY_ODD  
STAT_EN  
DC_INP_EN  
DC_INP_PROG  
DIAG_MODE_  
EN  
7
0
6
0
5
0
4
0
2
0
FILTER_BW  
HEADER_MODE  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
D_GPO_EN: Enable D_GPO functionality  
0 = D_GPO[x] pins are disabled (default)  
1 = D_GPO[x] pins are enabled  
PARITY_ODD: Parity type  
0 = Even (default)  
1 = Odd  
STAT_EN: Enable noise and mean calculation of ADC output  
0 = Default  
1 = Enables noise and mean computation if STAT_CALC_CYCLE is set.  
DC_INP_EN: Enable dc analog voltage at LNA input. In this mode, equalizer is  
disabled automatically.  
0 = Normal  
1 = DC input force is controlled by DC_INP_PROG.  
Bits 11:9  
DC_INP_PROG: DC Input programmability  
0 = 0 mV  
1 = 0 mV  
2 = 50 mV  
3 = –50 mV  
4 = 100 mV  
5 = –100 mV  
6 = 100 mV  
7 = –100 mV  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Bit 8  
DIAG_MODE_EN: Enable diagnostic mode  
0 = Disable diagnostic circuit  
1 = Enable diagnostic circuit  
Bits 7:4  
Bits 3:2  
Must write 0  
FILTER_BW: Filter corner frequency  
0 = 8 MHz (default)  
1 = 7 MHz  
2 = 10.5 MHz  
3 = 12 MHz  
Bits 1:0  
HEADER_MODE: Header output mode  
0 = ADC data at output (default)  
1 = Header data at output  
2 = [Temperature data, diagnostic data, mean, noise, (-1), (-1), (-1), (-1)]. This data  
sequence is repeated.  
3 = Header data, temperature data, diagnostic data, mean, noise, ADC data.  
Refer to Figure 70 for more information.  
Figure 87. Register 8 (08h)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
C2_FIR  
4
3
DIG_GAIN_C1_FIR  
(1)  
Bits 15:8  
C2_FIR: Coefficient C2 for FIR digital filter  
2 = Default value  
Bit 7:0  
DIG_GAIN_C1_FIR: Digital Gain common for all channels, coefficient C1 for  
decimation filter  
where:  
(DIG_GAIN + 32) is Mod(2) 128.  
(5)  
Refer to Figure 60 for more information.  
Mode  
C1 Functionality  
With MULT_EN  
With DECIMATE_X _EN  
5 = Default value  
DIG_GAIN  
Coefficient C1 for FIR digital filter  
(1) C1 to C6 FIR filter coefficients are in twos complement form.  
(2) Mod = Remainder of the division.  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 88. Register 9 (09h)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
C4_FIR  
4
3
C3_FIR  
Bits 15:8  
C4_FIR: Coefficient C4 for FIR digital filter(1)  
–2 = Default value  
Bit 7:0  
C3_FIR: Coefficient C3 for FIR digital filter(1)  
–13 = Default value  
(1) C1 to C6 FIR filter coefficients are in twos complement form.  
Figure 89. Register 10 (0Ah)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
C6_FIR  
4
3
C5_FIR  
Bits 15:8  
C6_FIR: Coefficient C6 for FIR digital filter(1)  
66 = Default value  
Bit 7:0  
C5_FIR: Coefficient C5 for FIR digital filter(1)  
38 = Default value  
(1) C1 to C6 FIR filter coefficients are in twos complement form.  
Figure 90. Register 15 (0Fh)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
0
8
0
FAST_DGPO  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Bits 15:11,  
Must write 0  
and Bits 9:0  
Bit 10  
FAST_DGPO: Fast DGPO output buffer  
0 = Default strength (default)  
1 = Higher drive strength on D_GPO[x] pins.  
Must write 0  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 91. Register 19 (13h)  
15  
0
14  
13  
12  
11  
10  
9
8
OB_DISABLE  
STR_CTRL_CLK  
STR_CTRL_DATA  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
STR_CTRL_DATA  
Bits 15, Bits 5:0 Must write 0  
Bit 14  
OB_DISABLE: CMOS output buffers D[11:0], DCLK disabled  
0 = Active CMOS output buffers  
1 = Hi-Z CMOS output Buffers  
Bits 13:10  
STR_CTRL_CLK: Controls strength of CMOS output DCLK  
buffer  
STR_CTRL_CLK  
Drive Strength  
DRVDD (V)  
0
6
Default strength (CLOAD = 5 pF)  
Maximum strength (CLOAD = 15 pF)  
Default strength (CLOAD = 5 pF)  
Maximum strength (CLOAD = 15 pF)  
3.3  
3.3  
1.8  
1.8  
5
14  
All other options are reserved.  
Bit 9:6  
STR_CTRL_DATA: Controls strength of CMOS output DATA  
buffers  
STR_CTRL_DAT  
A
Drive Strength  
DRVDD (V)  
0
6
Default strength (CLOAD = 5 pF)  
Maximum strength (CLOAD = 15 pF)  
Default strength (CLOAD = 5 pF)  
Maximum strength (CLOAD = 15 pF)  
3.3  
3.3  
1.8  
1.8  
5
14  
All other options are reserved.  
Figure 92. Register 21 (15h)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DELAY_COUNT[23:16]  
4
3
SAMPLE_COUNT[23:16]  
Bits 15:8  
DELAY_COUNT[23:16]: Delay counter, upper bits  
These bits determine the delay phase in terms of tAFE_CLK  
DELAY_PHASE = (DELAY_COUNT + 1) × tAFE_CLK  
.
.
The valid range for DELAY_COUNT is from 0 to (224 – 2).  
The maximum supported values of DELAY_COUNT + SAMPLE_COUNT is (224 – 2).  
Bits 7:0  
SAMPLE_COUNT[23:16]: Sample counter, upper bits  
These bits determine the sample phase in terms of tAFE_CLK  
.
Sample phase = (SAMPLE_COUNT + 1) × tAFE_CLK  
.
The valid range for SAMPLE_COUNT is from 0 to (224 – 2).  
The maximum supported values of DELAY_COUNT + SAMPLE_COUNT is (224 – 2).  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 93. Register 22 (16h)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DELAY_COUNT[15:0]  
4
3
DELAY_COUNT[15:0]  
Bits 15:0  
DELAY_COUNT[15:0]: Delay counter, lower bits  
These bits determine the delay phase in terms of tAFE_CLK  
DELAY_PHASE = (DELAY_COUNT + 1) × tAFE_CLK  
.
.
The valid range for DELAY_COUNT is from 0 to (224 – 2).  
The maximum supported values of DELAY_COUNT + SAMPLE_COUNT is (224 – 2).  
Figure 94. Register 23 (17h)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
SAMPLE_COUNT[15:0]  
4
3
SAMPLE_COUNT[15:0]  
Bits 15:0  
SAMPLE_COUNT[15:0]: Sample counter, lower bits  
These bits determine the sample phase in terms of tAFE_CLK  
Sample phase = (SAMPLE_COUNT + 1) × tAFE_CLK  
.
.
The valid range for SAMPLE_COUNT is from 0 to (224 – 2).  
The maximum supported values of DELAY_COUNT + SAMPLE_COUNT is (224 – 2).  
Figure 95. Register 24 (18h)  
15  
14  
13  
0
12  
11  
0
10  
2
9
8
DSYNC1_  
START_LOW  
TRIG_FALL  
DSYNC_EN  
COMP_DSYNC1[15:6]  
7
6
5
4
3
1
0
0
COMP_DSYNC1[15:6]  
Bit 15  
TRIG_FALL  
0 = TRIG event on the TRIG rising edge  
1 = TRIG event on the TRIG falling edge  
Bit 14  
DSYNC1_START_LOW: Selects DSYNC1 start level  
0 = DSYNC1 starts with logic high (default)  
1 = DSYNC1 starts with logic low  
Bit 13  
Bit 12  
Must write 0  
DSYNC_EN: Enable DSYNC1/2 generation  
0 = Disable DSYNC1/2 signals (default - logic low)  
1 = Enable DSYNC1/2 signals  
Bit 11  
Must write 0  
Bits 10:1  
COMP_DSYNC1[15:6]: DSYNC1, upper bits  
These bits determine the DSYNC1 period in the number of tAFE_CLK cycles. For  
COMP_DSYNC1 = 0 or 1, DSYNC1 is static.  
Bit 0  
Must write 0  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 96. Register 25 (19h)  
15  
7
14  
6
13  
12  
11  
10  
2
9
0
8
0
COMP_DSYNC1[5:0]  
5
4
3
1
0
DSYNC2_LOW[23:16]  
Bits 15:10  
COMP_DSYNC1[5:0]: DSYNC1, lower bits  
These bits determine the DSYNC1 period in the number of tAFE_CLK cycles. For  
COMP_DSYNC1 = 0 or 1, DSYNC1 is static.  
Bits 9:8  
Bits 7:0  
Must write 0  
DSYNC2_LOW[23:16]: DSYNC2, upper bits  
Low pulse duration of DSYNC2 in number of tAFE_CLK clocks.  
Figure 97. Register 26 (1Ah)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DSYNC2_LOW[15:0]  
4
3
DSYNC2_LOW[15:0]  
Bits 15:0  
DSYNC2_LOW[15:0]: DSYNC2, lower bits  
Low pulse duration of DSYNC2 in number of tAFE_CLK clocks.  
Figure 98. Register 27 (1Bh)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DSYNC1_HIGH  
4
3
DSYNC1_HIGH  
Bits 15:0  
DSYNC1_HIGH: DSYNC1  
High pulse duration of DSYNC1, in number of tAFE_CLK clocks.  
DSYNC1 high = high for [(DSYNC1_HI + COMP_DSYNC1 ÷ 2) Mod (1) COMP_DSYNC1]  
(1) Mod = Remainder of the division  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 99. Register 29 (1Dh)  
15  
14  
0
13  
12  
11  
0
10  
0
9
8
OFFSET_DIS  
STAT_CH_SEL  
STAT_CALC_CYCLE  
7
6
5
4
0
3
0
2
0
1
0
0
STAT_CALC_CYCLE  
STAT_CH_AUT  
O_SEL  
Bit 15  
OFFSET_DIS: Bypass OFFSET addition at channel output  
0 = Default. The OFFSET_CHx register value is added to the channel output.  
1 = Disable OFFSET. The OFFSET_CHx register value is not added to the channel output.  
Bit 14  
Always write 0  
Bits 13:12  
STAT_CH_SEL: Manual channel selection for computation by STAT module  
0 = Channel 1  
1 = Channel 2  
2 = Channel 3  
3 = Channel 4  
Bits 11:10  
Bits 9:5  
Always write 0  
STAT_CALC_CYCLE  
Number of ADC samples used for STAT computation = 2STAT_CALC_CYCLE+1  
STAT_CALC_CYCLE range = 0 to 30  
,
and Bits 4:1  
Bit 0  
Always write 0  
STAT_CH_AUTO_SEL: Automatic channel selection for SNR Computation  
0 = Static, computation is done based on the STAT_CH_SEL selection  
1 = Auto, computation is sequentially done for all four channels  
Figure 100. Register 30 (1Eh)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
MULT_EN  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
FILT_EN  
Bits 15:9  
Bit 8  
Must write 0  
MULT_EN: Channel multiplier enable  
0 = Disable multiplier  
1 = Enable multiplier. For digital gain, DIG_GAIN_C1_FIR must be written.  
Bit 7  
FILT_EN: Digital decimation filter enable  
0 = Disable filter  
1 = Enable standard 11-tap, symmetric FIR digital filter.  
Bits 6:0  
Must write 0  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 101. Register 32 (20h)  
15  
0
14  
0
13  
0
12  
0
11  
10  
2
9
1
8
0
HEADER_CH1  
7
6
5
4
3
HEADER_CH1  
Bits 15:12  
Bits 11:0  
Must write 0  
HEADER_CH1: Header information for channel 1  
These bits provide the header information for channel 1.  
Figure 102. Register 33 (21h)  
15  
14  
13  
12  
11  
0
10  
0
9
1
8
0
CH_OUT_DIS1 AUX_CH1_EN  
PDN_CH1  
INVERT_ CH1  
OFFSET_CH1  
7
6
5
4
3
2
OFFSET_CH1  
Bit 15  
CH_OUT_DIS1: Channel 1 disable  
Channel 1 is not muxed out.  
0 = Channel 1 is output (default)  
1 = Channel 1 is not output  
Bit 14  
Bit 13  
Bit 12  
AUX_CH1_EN: Enable auxiliary channel for channel 1  
0 = Filter (default)  
1 = Auxiliary  
PDN_CH1: Power-down channel 1  
0 = Active (default)  
1 = Power-down  
INVERT_CH1: Invert channel 1 output  
0 = Normal ouput (default)  
1 = Inverted output  
Bits 11:10  
Bits 9:0  
Must write 0  
OFFSET_CH1: Output offset of channel 1 range  
Output offset value = OFFSET_CH1 ÷ 4, output offset value is added to channel output.  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 103. Register 34 (22h)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
MEAN_CH1  
7
6
4
3
MEAN_CH1  
Bits 15:14  
Bits 13:0  
Must write 0  
MEAN_CH1: Mean for channel 1 (read-only register)  
These bits provide the mean information computed by STAT module for channel 1.  
Figure 104. Register 35 (23h)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
NOISE_CH1  
7
6
4
3
NOISE_CH1  
Bits 15:14  
Bits 13:0  
Must write 0  
NOISE_CH1: Noise for channel 1 (read-only register)  
These bits provide the noise information computed by STAT module for channel 1.  
Figure 105. Register 36 (24h)  
15  
0
14  
0
13  
0
12  
0
11  
10  
2
9
1
8
0
HEADER_CH2  
7
6
5
4
3
HEADER_CH2  
Bits 15:12  
Bits 11:0  
Must write 0  
HEADER_CH2: Header information for channel 2  
These bits provide the header information for channel 2.  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 106. Register 37 (25h)  
15  
14  
13  
12  
11  
0
10  
0
9
1
8
0
CH_OUT_DIS2 AUX_CH2_EN  
PDN_CH2  
INVERT_CH2  
OFFSET_CH2  
7
6
5
4
3
2
OFFSET_CH2  
Bit 15  
CH_OUT_DIS2: Channel 2 disable  
Channel 2 is not muxed out.  
0 = Channel 2 is output (default)  
1 = Channel 2 is not output  
Bit 14  
Bit 13  
Bit 12  
AUX_CH2_EN: Enable auxiliary channel for channel 2  
0 = Filter (default)  
1 = Auxiliary  
PDN_CH2: Power-down channel 2  
0 = Active (default)  
1 = Power-down  
INVERT_CH2: Invert channel 2 output  
0 = Normal (default)  
1 = Inverted output  
Bits 11:10  
Bits 9:0  
Must write 0  
OFFSET_CH2: Output offset of Channel 2  
Output offset value = OFFSET_CH2 ÷ 4, output offset value is added to the channel output  
Figure 107. Register 38 (26h)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
MEAN_CH2  
7
6
4
3
MEAN_CH2  
Bits 15:14  
Bits 13:0  
Must write 0  
MEAN_CH2: Mean for channel 2 (read-only register)  
These bits provide the mean information computed by the STAT module for channel 2.  
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 108. Register 39 (27h)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
NOISE_CH2  
7
6
4
3
NOISE_CH2  
Bits 15:14  
Bits 13:0  
Must write 0  
NOISE_CH2: Noise for channel 2 (read-only register)  
These bits provide the noise information computed by the STAT module for channel 2.  
Figure 109. Register 40 (28h)  
15  
0
14  
0
13  
0
12  
0
11  
10  
2
9
1
8
0
HEADER_CH3  
7
6
5
4
3
HEADER_CH3  
Bits 15:12  
Bits 11:0  
Must write 0  
HEADER_CH3: Header information for channel 3  
These bits provide the header information for channel 3.  
Figure 110. Register 41 (29h)  
15  
14  
13  
12  
11  
0
10  
0
9
1
8
0
CH_OUT_DIS3 AUX_CH3_EN  
PDN_CH3  
INVERT_CH3  
OFFSET_CH3  
7
6
5
4
3
2
OFFSET_CH3  
Bit 15  
CH_OUT_DIS3: Channel 3 disable  
Channel 3 is not muxed out.  
0 = Channel 3 is output (default)  
1 = Channel 3 is not output  
Bit 14  
Bit 13  
Bit 12  
AUX_CH3_EN: Enable auxiliary channel for channel 3  
0 = Filter (default)  
1 = Auxiliary  
PDN_CH3: Power-down channel 3  
0 = Active (default)  
1 = Power-down  
INVERT_CH3: Invert channel 3 output  
0 = Normal (default)  
1 = Inverted output  
Bits 11:10  
Bits 9:0  
Must write 0  
OFFSET_CH3: Output offset of Channel 3  
Output offset value = OFFSET_CH3 ÷ 4, output offset value is added to the channel output  
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 111. Register 42 (2Ah)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
MEAN_CH3  
7
6
4
3
MEAN_CH3  
Bits 15:14  
Bits 13:0  
Must write 0  
MEAN_CH3: Mean for channel 3 (read-only register)  
These bits provide the mean information computed by the STAT module for channel 3.  
Figure 112. Register 43 (2Bh)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
NOISE_CH3  
7
6
4
3
NOISE_CH3  
Bits 15:14  
Bits 13:0  
Must write 0  
NOISE_CH3: Noise for channel 3 (read-only register)  
These bits provide the noise information computed by the STAT module for channel 3.  
Figure 113. Register 44 (2Ch)  
15  
0
14  
0
13  
0
12  
0
11  
10  
2
9
1
8
0
HEADER_CH4  
7
6
5
4
3
HEADER_CH4  
Bits 15:12  
Bits 11:0  
Must write 0  
HEADER_CH4: Header information for channel 4  
These bits provide the header information for channel 4.  
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 114. Register 45 (2Dh)  
15  
14  
13  
12  
11  
0
10  
0
9
1
8
CH_OUT_DIS4 AUX_CH4_EN  
PDN_CH4  
INVERT_CH4  
OFFSET_CH4  
7
6
5
4
3
2
0
OFFSET_CH4  
Bit 15  
CH_OUT_DIS1: Channel 4 disable  
Channel 4 is not muxed out.  
0 = Channel 4 is output (default)  
1 = Channel 4 is not output  
Bit 14  
Bit 13  
Bit 12  
AUX_CH4_EN: Enable auxiliary channel for channel 4  
0 = Filter (default)  
1 = Auxiliary  
PDN_CH4: Power-down channel 4  
0 = Active (default)  
1 = Power-down  
INVERT_CH4: Invert channel 4 output  
0 = Normal (default)  
1 = Inverted output  
Bits 11:10  
Bits 9:0  
Must write 0  
OFFSET_CH4: Output offset of channel 4  
Output offset value = OFFSET_CH4 ÷ 4, output offset value is added to the channel output  
Figure 115. Register 46 (2Eh)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
MEAN_CH4  
7
6
4
3
MEAN_CH4  
Bits 15:14  
Bits 13:0  
Must write 0  
MEAN_CH4: Mean for channel 4 (read-only register)  
These bits provide the mean information computed by the STAT module for channel 4.  
Figure 116. Register 47 (2Fh)  
15  
0
14  
0
13  
5
12  
11  
10  
2
9
1
8
0
NOISE_CH4  
7
6
4
3
NOISE_CH4  
Bits 15:14  
Bits 13:0  
Must write 0  
NOISE_CH4: Noise for channel 4 (read-only register)  
These bits provide the noise information computed by the STAT module for channel 4.  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Figure 117. Register 65 (41h)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
0
8
0
TERM_INT_  
20K_AUX  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Bits 15:11  
Bit 10  
Must write 0  
TERM_INT_20K_AUX: Auxiliary input termination  
This bit is common for all channels. This bit provides an auxiliary input internal differential  
termination of 20 kΩ.  
0 = 2-kΩ differential resistance (default)  
1 = 20-kΩ differential resistance  
Bits 9:0  
Must write 0  
Figure 118. Register 69 (45h)  
15  
14  
13  
12  
11  
10  
9
8
TERM_INT_  
20K_LNA  
LNA_GAIN  
PGA_GAIN  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
PGA_GAIN  
EQ_EN  
Bit 15  
TERM_INT_20K_LNA: LNA input termination  
This bit is common for all channels. This bit provides LNA input internal differential  
termination of 20 kΩ.  
0 = 2-kΩ differential resistance (default)  
1 = 20-kΩ differential resistance  
Bits 14:13  
LNA_GAIN: LNA gain  
These bits are common for all channels.  
0 = 15 dB (default)  
1 = 18 dB  
2 = 12 dB  
3 = 16.5 dB  
Bits 12:7  
PGA_GAIN: PGA gain  
These bits are common for all channels. PGA gain = 0 dB, 3 dB, 6 dB, 9 dB, 12 dB, 15 dB,  
18 dB, 21 dB, 24 dB, 27 dB, and 30 dB.  
0 = 0 dB  
1 = 3 dB  
2 = 6 dB  
3 = 9 dB  
4 = 12 dB  
5 = 15 dB  
6 = 18 dB  
7 = 21 dB  
8 = 24 dB  
9 = 27 dB  
10 = 30 dB  
Bit 6  
EQ_EN: Equalizer enable  
These bits are common for all channels.  
0 = Disabled (default)  
1 = Enabled  
Bits 5:0  
Must write 0  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Figure 119. Register 70 (46h)  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
8
0
HPL_EN  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
VOUT_ON_ADC  
Bit 15  
Must write 0  
Bit 14  
HPL_EN: High-performance linearity mode  
0 = Default  
1 = Improves linearity (HD3) with increased power dissipation  
Bits 13:2  
Bits 1:0  
Must write 0  
VOUT_ON_ADC: Check analog block output on ADC input  
0 = LNA + antialiasing filter + ADC (default)  
1 = LNA + ADC  
2 = AMP1 + ADC  
3 = AMP2 + ADC  
Figure 120. Register 71 (47h)  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
0
HIGH_POW_ EQ_EN_LOW_  
LNA FC  
Bits 15:4  
Bit 3  
Must write 0  
HIGH_POW_LNA  
0 = Default mode  
1 = High-power LNA improves channel input-referred noise at high LNA and PGA gains  
compared to default mode. This mode increases power dissipation.  
Bit 2  
EQ_EN_LOW_FC: Enable Equalizer Low Frequency Corner Frequency  
0 = Disable  
1 = Enable; EQ_EN must also be enabled for this mode  
Bits 1:0  
Must write 0  
Figure 121. Register 100 (64h)  
15  
0
14  
13  
12  
0
11  
0
10  
0
9
0
8
0
HF_AFE_CLK_EN  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Bits 15  
Must write 0  
Bits 14:13  
HF_AFE_CLK_EN  
0 = Default  
3 = For fAFE_CLK > 25 MHz ( in decimation modes)  
Bits 12:0  
Must write 0  
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The AFE5401-Q1 is a quad-channel, analog front-end (AFE), targeting applications where the level of integration  
is critical. Each channel comprises a complete base-band signal chain with:  
A low-noise amplifier (LNA),  
A programmable equalizer (EQ),  
A programmable gain amplifier (PGA), and  
An antialias filter (AAF)  
A high-speed, 12-bit, analog-to-digital converter (ADC) that samples at 25 MSPS per channel.  
Having four integrated signal chain channels enables the device to be used in different end-use systems such as:  
Automotive radar (where a down-converted base-band signal from an RF front-end can be applied to the  
inputs of the AFE)  
Applications where up to 12-MHz voltage signal is available from a transducer  
9.2 Typical Application  
As Figure 122 illustrates, the device also consists of four auxiliary channels, where the analog signal chain (LNA,  
PGA) is bypassed and the analog inputs can be directly digitized. This configuration is very useful in the system  
to digitize monitoring signals (such as battery voltages and temperature sensor outputs).  
As the Design Requirements section describes, the device can accept a variety of input clock signals (such as  
differential sine-wave, LVPECL, or LVDS). The can also functions seamlessly with a single-ended LVCMOS  
(1.8 V) clock input.  
The device is designed to have a simple CMOS output data interface. Used with the TRIG and DSYNCx signals,  
the device can be interfaced to standard video ports of DSPs and other field-programmable gate array (FPGA)  
and micro-controller based receivers.  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Typical Application (continued)  
FPGA/DSP  
STBY  
SCLK  
SDATA  
SEN  
RESET  
SDOUT  
VCM  
AVDD3  
AVSS  
DRVDD DRVSS  
AVDD18 AVSS DVDD18 DVSS  
Reference  
SERIAL  
INTERFACE  
PGA  
AAF  
Channel 1 of 4  
LNA  
EQ  
EQ  
Baseband signal from  
Front-End  
INx  
D [11:0]  
ADC 1  
System monitoring  
signals (Battery,  
Temperature, etc)  
BUF  
INx_AUX  
4:1 MUX  
D_GPO [1:0]  
1x  
ADC_CLK  
Input  
Clock  
CMOS/DIFF  
SUPPORT  
4x  
DCLK  
Divider  
Clock Input:  
CMOS Signal / LVPECL /  
LVDS / Sine wave  
fCLKIN  
AFE_CLK  
CLKINP  
CLKINM  
DSYNC1  
DSYNC2  
Clock + Timing  
Generator  
Serialization Factor  
TRIG  
Figure 122. Typical Application Diagram  
9.2.1 Design Requirements  
The device can operate with either single-ended (CMOS) or differential input clocks (such as sine wave,  
LVPECL, and LVDS). Operating with a low-jitter differential clock is recommended for good SNR performance. In  
differential mode, the clock inputs are internally biased to the optimum common-mode voltage (approximately  
0.95 V). While driving with an external LVPECL or LVDS driver, TI recommends ac-coupling the clock signals  
because the clock pins are internally biased to the common-mode voltage.  
9.2.2 Detailed Design Procedure  
For the LVDS input clock, RTERM = 100 Ω is recommended. For the LVPECL clock input, RTERM must be  
determined based on the LVPECL driver recommendations. To operate using a single-ended clock, connect a  
CMOS clock source to CLKINP and tie CLKINM to GND. The device automatically detects the presence of a  
single-ended clock without requiring any configuration and disables internal biasing. Typical clock termination  
schemes are illustrated in Figure 125, Figure 126, Figure 127, and Figure 128. Typical characteristic plots across  
input clock amplitude and duty cycle are shown in Application Curves.  
Figure 123 and Figure 124 illustrate the equivalent circuits of the clock input pins for Differential and Single-  
Ended input clock respectively.  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Typical Application (continued)  
Lpkg  
20  
~ 1 nH  
CLKINP  
Cbond  
~ 1 pF  
Resr  
Ceq  
5 kꢀ  
5 kꢀ  
6 pF  
6 pF  
~ 100  
0.95 V  
To Input Divider  
Internal  
Differential  
Clock Buffer  
Lpkg  
~ 1 nH  
20 ꢀ  
CLKINM  
Ceq  
Cbond  
~ 1 pF  
Resr  
~ 100 ꢀ  
Ceq ~ 1 to 3 pF, equivalent input capacitance of clock buffer  
Figure 123. Clock Input Equivalent Circuit (Differential Mode)  
Lpkg  
20  
~ 1 nH  
CLKINP  
Cbond  
~ 1 pF  
Resr  
Ceq  
~ 100  
To Input Divider  
Internal  
Single-Ended  
Clock Buffer  
Lpkg  
~ 1 nH  
CLKINM  
Cbond  
~ 1 pF  
Resr  
~ 100 ꢀ  
Ceq ~ 1 to 3 pF, equivalent input capacitance of clock buffer  
Figure 124. Clock Input Equivalent Circuit (Single-Ended Mode)  
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
Typical Application (continued)  
0.1µF  
0.1µF  
CLKINP  
CLKINM  
CLKINP  
Differential Sine-wave  
clock input  
RTERM  
Differential  
LVPECL  
clock input  
CLKINM  
0.1µF  
0.1µF  
RTERM  
Figure 125. Differential Sine-Wave Clock  
Driving Circuit  
Figure 126. Differential LVPECL Clock  
Driving Circuit  
0.1µF  
CLKINP  
CMOS clock input  
CLKINP  
Differential  
LVDS  
clock input  
RTERM  
CLKINM  
CLKINM  
0.1µF  
Figure 127. Differential LVDS Clock Driving Circuit  
9.2.3 Application Curves  
Figure 128. Single-Ended Clock Driving Circuit  
68  
67.6  
67.2  
66.8  
66.4  
66  
69  
68.6  
68.2  
67.8  
67.4  
67  
35  
40  
45  
50  
55  
60  
65  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
Input Clock Duty Cycle (%)  
C013  
Input Clock Amplitude, Differential (VPP  
)
C011  
Figure 130. Signal-to-Noise Ratio vs Input Clock Duty  
Cycle (PGA Gain = 0 dB)  
Figure 129. Signal-to-Noise Ratio vs Input Clock Amplitude  
(PGA Gain = 0 dB)  
68  
Copyright © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
10 Power Supply Recommendations  
10.1 Power Supply Sequencing  
During power-up, the AVDD18, DVDD18, and DRVDD supplies can appear in any sequence. All supplies are  
separated in the device. Externally, they can be driven from separate supplies with suitable filtering. No power  
supply sequencing is required.  
10.2 Power Supply Decoupling  
Minimal external decoupling can be used without loss in performance because the device already includes  
internal decoupling. Note that decoupling capacitors can help filter external power-supply noise, so the optimum  
number of capacitors depends on the actual application. The decoupling capacitors should be placed as close as  
possible to the device supply pins.  
11 Layout  
11.1 Layout Guidelines  
All analog inputs must be differentially and symmetrically routed to the differential input pins of the device for best  
performance. CMOS outputs traces should be kept as short as possible to reduce the trace capacitance that  
loads the CMOS output buffers. Multiple ground vias can be added around the CMOS output data traces,  
especially when the traces are routed on more than one layer. TI recommends matching the lengths of the output  
data traces (D[11:0]) to reduce the skew across data bits.  
Switching noise (caused by CMOS output data transitions) can couple into the analog inputs and degrade SNR.  
This condition is particularly of concern because of the high gain present in the analog input channel. Digital  
outputs coupling back to analog inputs can be minimized by proper separation of analog and digital areas in the  
board layout. Figure 131 illustrates an example layout where the analog and digital portions are routed  
separately. This example also uses splits in the ground plane to minimize digital currents from looping into  
analog areas. At the same time, note that the analog and digital grounds are shorted below the device. A single  
ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of the board  
are cleanly partitioned.  
The device package consists of an exposed pad. In addition to providing a path for heat dissipation, the pad is  
also internally connected to the analog ground. Therefore, the exposed pad must be soldered to the ground  
plane for best thermal and electrical performance. For detailed information, see application notes QFN Layout  
Guidelines and QFN/SON PCB Attachment. Figure 131 and Figure 132 illustrate the layout diagrams taken from  
the AFE5401-Q1 EVM User's Guide.  
Copyright © 2014–2017, Texas Instruments Incorporated  
69  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
11.2 Layout Example  
Figure 131. Layout Diagram: Signal Routing  
70  
版权 © 2014–2017, Texas Instruments Incorporated  
AFE5401-Q1  
www.ti.com.cn  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
Layout Example (continued)  
Figure 132. Layout Diagram: Ground Split  
版权 © 2014–2017, Texas Instruments Incorporated  
71  
AFE5401-Q1  
ZHCSGC8A MARCH 2014REVISED JUNE 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
QFN 布局指南》  
QFN/SON PCB 连接》  
AFE5401-Q1 EVM 用户指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我进行注册,即可收到任意产品  
信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
SONAR is a trademark of Cakewalk, Inc.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时,  
我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
72  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AFE5401TRGCRQ1  
AFE5401TRGCTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
AFE5401  
AFE5401  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AFE5401TRGCRQ1  
VQFN  
RGC  
64  
2000  
330.0  
16.4  
9.3  
9.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGC 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AFE5401TRGCRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064H  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
7.4 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219011/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
7.4)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(3.45) TYP  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(1.16) TYP  
(3.45) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219011/A 05/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(0.58)  
36X ( 0.96)  
33  
16  
17  
32  
(0.58)  
(1.16)  
TYP  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
61% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219011/A 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

AFE5801

8-Channel Variable-Gain Amplifier (VGA) With Octal High-Speed ADC
TI

AFE5801IRGCR

8-Channel Variable-Gain Amplifier (VGA) With Octal High-Speed ADC
TI

AFE5801IRGCT

8-Channel Variable-Gain Amplifier (VGA) With Octal High-Speed ADC
TI

AFE5801_14

8-Channel Variable-Gain Amplifier (VGA) With Octal High-Speed ADC
TI

AFE5803

Fully Integrated, 8-Channel Ultrasound Analog Front End
TI

AFE5803ZCF

Fully Integrated, 8-Channel Ultrasound Analog Front End
TI

AFE5803_14

Fully Integrated, 8-Channel Ultrasound Analog Front End, 0.75 nV/rtHz, 14/12-Bit, 65 MSPS, 158 mW/CH
TI

AFE5804

FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR ULTRASOUND 0.89nV/√Hz, 12-Bit, 40MSPS, 101mW/Channel
TI

AFE5804ZCF

FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR ULTRASOUND 0.89nV/√Hz, 12-Bit, 40MSPS, 101mW/Channel
TI

AFE5804ZCFR

FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR ULTRASOUND 0.89nV/√Hz, 12-Bit, 40MSPS, 101mW/Channel
TI

AFE5804ZCFT

FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR ULTRASOUND 0.89nV/√Hz, 12-Bit, 40MSPS, 101mW/Channel
TI

AFE5804_1

FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR ULTRASOUND 0.89nV/√Hz, 12-Bit, 40MSPS, 101mW/Channel
TI