AFE5818 [TI]

具有 CW 无源混频器的 16 通道超声波模拟前端,噪声为 0.75nV/rtHz,功耗为 124mW/通道;
AFE5818
型号: AFE5818
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 CW 无源混频器的 16 通道超声波模拟前端,噪声为 0.75nV/rtHz,功耗为 124mW/通道

文件: 总156页 (文件大小:3278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
AFE5818 具有 140mW/通道功耗、  
0.75nV/Hz 噪声、14 65MSPS 12 80MSPS ADC 以及 CW 无源  
混频器的 16 通道超声波模拟前端  
1
1 特性  
16 通道全套模拟前端:  
CWD 无源混频器:  
LNAVCATPGALPFADCCW 混频器  
低近端相位噪声:  
在偏离 2.5MHz 载波信号 1KHz 时为  
–156dBc/Hz  
LNA 具有可编程增益:  
增益:24dB18dB 以及 12dB  
相位分辨率:λ/16  
线性输入范围:  
0.25VPP0.5VPP 以及 1VPP  
支持 16X8X4X 1X CW 时钟  
三阶和五阶谐波 12dB 抑制  
输入引入噪声:  
0.63nV/Hz0.7nV/Hz 以及 0.9nV/Hz  
CWD 高通滤波器会抑制不良低频信号 < 1kHz  
可编程有源终端  
小型封装:15mm × 15mm NFBGA-289  
压控衰减器 (VCAT)40dB  
2 应用  
可编程增益放大器 (PGA):  
24dB 30dB  
医疗超声波成像  
无损检测设备  
总信号链增益:54dB(最大值)  
三阶线性相位 LPF:  
声纳成像设备  
多通道高速数据采集  
10MHz15MHz20MHz30MHz35MHz  
以及 50MHz  
3 说明  
模数转换器 (ADC):  
AFE5818 是一套高度集成的模拟前端 (AFE) 解决方  
案,专用于要求高性能和小尺寸的超声波系统。该器件  
集成了完整的时间增益控制 (TGC) 成像路径和连续波  
多普勒 (CWD) 路径。该器件还允许选择多种功率和噪  
声组合,从而优化系统性能。因此,AFE5818 是一套  
适合高端便携式系统的超声波 AFE 解决方案。  
14 ADC65MSPS 75dBFS SNR  
12 ADC80MSPS 72dBFS SNR  
低压差分信令 (LVDS) 接口最大速度达 1Gbps  
噪声和功率优化(全通道):  
0.75nV/Hz65MSPS 时每通道 140mW  
1.1nV/Hz40MSPS 时每通道 91.5mW  
CW 模式下每通道 80mW  
中)  
器件信息(1)  
出色的器件间增益匹配:  
±0.5dB(典型值)和 ±1.1dB(最大值)  
器件型号  
AFE5818  
封装  
封装尺寸(标称值)  
NFBGA (289)  
15.00mm x 15.00mm  
低谐波失真  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
快速且持续的过载恢复  
简化框图  
Device (1 of 16 Channels)  
SPI OUT  
SPI IN  
SPI Logic  
3rd-Order LPF  
with 10, 15, 20,  
30, 35, and  
50 MHz  
VCAT  
0 dB to -40 dB  
PGA  
24, 30 dB  
12-, 14-Bit  
ADC  
LVDS  
LNA  
LNA IN  
16X CLK  
1X CLK  
Summing  
Amplifier  
16 Phases  
Generator  
CW Mixer  
Reference  
Reference  
16 x 8  
Crosspoint SW  
1X CLK  
CW I/Q  
VOUT  
Differential  
TGC VCNTL  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS687  
 
 
 
 
 
 
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 72  
9.5 Programming........................................................... 76  
10 Application and Implementation........................ 78  
10.1 Application Information.......................................... 78  
10.2 Typical Application ............................................... 78  
10.3 Do's and Don'ts..................................................... 82  
10.4 Initialization Set Up ............................................... 82  
11 Power Supply Recommendations ..................... 83  
11.1 Power Sequencing and Initialization..................... 83  
12 Layout................................................................... 84  
12.1 Layout Guidelines ................................................. 84  
12.2 Layout Example .................................................... 85  
13 Register Maps...................................................... 91  
13.1 Serial Register Map .............................................. 91  
14 器件和文档支持 ................................................... 149  
14.1 文档支持.............................................................. 149  
14.2 ..................................................................... 149  
14.3 静电放电警告....................................................... 149  
14.4 Export Control Notice.......................................... 149  
14.5 Glossary.............................................................. 149  
15 机械、封装和可订购信息..................................... 150  
15.1 托盘信息.............................................................. 151  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Device Comparison Table..................................... 5  
Pin Configuration and Functions......................... 6  
Specifications....................................................... 11  
8.1 Absolute Maximum Ratings .................................... 11  
8.2 ESD Ratings............................................................ 11  
8.3 Recommended Operating Conditions..................... 12  
8.4 Thermal Information................................................ 12  
8.5 Electrical Characteristics......................................... 13  
8.6 Digital Characteristics ............................................. 19  
8.7 Output Interface Timing .......................................... 20  
8.8 Serial Interface Timing Characteristics .................. 21  
8.9 Typical Characteristics............................................ 22  
Detailed Description ............................................ 33  
9.1 Overview ................................................................. 33  
9.2 Functional Block Diagram ....................................... 34  
9.3 Feature Description................................................. 35  
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (July 2015) to Revision B  
Page  
已更改文献编号以将完整版文档发布至 Web .......................................................................................................................... 1  
Added Device Comparison Table........................................................................................................................................... 5  
Changed the common-mode voltage value from 1.5 V to 2.5 V in the descriptions of the CLKM_1X , CLKP_1X,  
CLKM_16X , and CLKP_16X, rows in the Pin Functions table.............................................................................................. 7  
Changed the pulldown resistor value from 100 kΩ to 20-kΩ in the description of the TX_TRIG pin in the Pin  
Functions table ..................................................................................................................................................................... 10  
Changed Absolute Maximum Ratings table: deleted Voltage at digital inputs row and added Voltage at all digital  
inputs except CW clocks and Voltage at CW clock input pins rows .................................................................................... 11  
Changed the typical specifications of last four rows of TGC Full-Signal Channel, Channel-to-channel noise  
correlation factor parameter in the Electrical Characteristics table ..................................................................................... 14  
Changed test conditions of second row in Power Dissipation, CW mode parameter in the Electrical Characteristics  
table ..................................................................................................................................................................................... 18  
Changed SDATA to SDIN in title of CMOS Digital Inputs section in the Digital Characteristics table ................................ 19  
Changed typical specification from 25 to 50 in zo parameter of Digital Characteristics table .............................................. 19  
Changed typical specifications of ADC Timing, Cd parameter in Output Interface Timing table.......................................... 20  
Changed Figure 1................................................................................................................................................................. 21  
Changed Figure 56 and Figure 57 ....................................................................................................................................... 31  
Changed input to Serial Interface block from SDATA to SDIN in Functional Block Diagram .............................................. 34  
Changed Figure 84: changed values of t_setup and t_hold ................................................................................................ 55  
Deleted Setup and Hold Time Constraints for a Hardware RESET figure and associated description because this  
data was determined to be misleading ................................................................................................................................ 55  
Changed input to Serial Interface block from SDATA to SDIN in Figure 98 ........................................................................ 68  
Changed input to Serial Interface block from SDATA to SDIN in Figure 99 ........................................................................ 69  
2
版权 © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
修订历史记录 (接下页)  
Changed Test Patterns section to improve clarity................................................................................................................ 72  
Changed AFE8 to AFE4 in Figure 103................................................................................................................................. 78  
Added footnote to Figure 104............................................................................................................................................... 79  
Changed Figure 108............................................................................................................................................................. 85  
Changed SDATA to SDIN in list of SPI control signals in first paragraph of Serial Register Map section .......................... 91  
Changed bit type from R/W to W in Register 0 ................................................................................................................... 92  
Changed CUSTOM_PATTERN[13:0] to CUSTOM_PATTERN[15:0] in register address 5 of Table 14 ............................. 93  
Changed Register 5 in the ADC Register Map section........................................................................................................ 99  
Changes from Original (February 2015) to Revision A  
Page  
已从文档中删除 AFE58JD18 .................................................................................................................................................. 1  
已添加 AFE58JD18 至文档..................................................................................................................................................... 1  
已更改压控衰减器 (VCAT)LVDS 接口最大速度噪声和功率优化(全通道) 特性 要................................................... 1  
已删除无源混频器的第二个分项至最后一个分项( 特性 部分)............................................................................................. 1  
已添加 AFE58JD18 特定的 特性 要点 .................................................................................................................................... 1  
已更改输出接口数字 I/Q 解调器列的标题(在器件信息................................................................................................... 1  
版权 © 2015, Texas Instruments Incorporated  
3
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
5 说明 (续)  
AFE5818 共有 16 通道,每通道有一个压控放大器 (VCA),一个同步采样 14 位和 12 位模数转换器 (ADC) 以及一  
个连续波 (CW) 混频器。每个 VAC 包含一个低噪声放大器 (LNA)、一个电压控制器衰减器 (VCAT)、一个可编程增  
益放大器 (PGA) 和一个低通滤波器 (LPF)LNA 增益可编程,并且支持 250mVPP 1VPP 输入信号和可编程有源  
终端。超低噪声 VCAT 提供 40dB 衰减控制范围并且可改善整体低增益 SNR,这由于有谐波和近场成像。PGA 提  
24dB 30dB 增益选项。在 ADC 前,可配置 10MHz15MHz20MHz30MHz35 MHz 50MHz 低通滤  
波器 (LPF) 来支持不同频率的 各种 超声波应用。  
AFE5818 还集成了一个低功耗混频器和一个低噪声混合放大器,用以生成一个片载 CWD 波束形成器。可将 16 个  
可选相位延迟应用于每个模拟输入信号。此外,器件采用独特的三阶和五阶谐波抑制滤波器来增强 CW 灵敏度。  
高性能 14 ADC 可实现 75dBFS SNR。该 ADC 可确保在低信号链增益时仍具有出色的 SNR。该器件的最高运  
行速度为 65MSPS 80MSPS,分别提供 14 位和 12 位输出。  
ADC 低压差分信令 (LVDS) 输出可实现灵活的系统集成,非常适用于微型系统。  
AFE5818 还允许选择多种功率和噪声组合,从而优化系统性能。因此,AFE5818 对于高端系统及便携式系统都是  
非常理想的超声波 AFE 解决方案。  
AFE5818 采用 15mm × 15mm NFBGA-289 封装(ZBV 封装,S-PBGA-N289),额定工作温度范围为 –40°C 至  
85°C。这些器件还与 AFE5816 系列器件引脚兼容。  
4
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
6 Device Comparison Table  
DEVICE  
DESCRIPTION  
PACKAGE  
BODY SIZE (NOM)  
16-channel, ultrasound, analog front-end (AFE) with 90-mW/channel, 1-nV/Hz  
noise, 14-bit, 65-MSPS or 12-bit, 80-MSPS ADC and passive CW mixer  
AFE5816  
AFE5812  
AFE5809  
AFE5808A  
AFE5807  
NFBGA (289)  
15.00 mm × 15.00 mm  
Fully integrated, 8-channel ultrasound AFE with passive CW mixer, and digital I/Q  
demodulator, 0.75 nV/Hz, 14 and 12 bits, 65 MSPS, 180 mW/ch  
NFBGA (135)  
NFBGA (135)  
NFBGA (135)  
NFBGA (135)  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
8-channel ultrasound AFE with passive CW mixer, and digital I/Q demodulator,  
0.75 nV/Hz, 14 and 12 bits, 65 MSPS, 158 mW/ch  
8-channel ultrasound AFE with passive CW mixer, 0.75 nV/Hz, 14 and 12 bits,  
65 MSPS, 158 mW/ch  
8-channel ultrasound AFE with passive CW mixer, 1.05 nV/Hz, 12 bits, 80 MSPS,  
117 mW/ch  
AFE5803  
AFE5805  
AFE5804  
8-channel ultrasound AFE, 0.75 nV/Hz, 14 and 12 bits, 65 MSPS, 158 mW/ch  
8-channel ultrasound AFE, 0.85 nV/Hz, 12 bits, 50 MSPS, 122 mW/ch  
8-channel ultrasound AFE, 1.23 nV/Hz, 12 bits, 50 MSPS, 101 mW/ch  
NFBGA (135)  
NFBGA (135)  
NFBGA (135)  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
15.00 mm × 9.00 mm  
8-channel variable-gain amplifier (VGA) with octal high-speed ADC, 5.5 nV/Hz,  
12 bits, 65 MSPS, 65 mW/ch  
AFE5801  
AFE5851  
VCA5807  
VQFN (64)  
VQFN (64)  
HTQFP (80)  
9.00 mm × 9.00 mm  
9.00 mm × 9.00 mm  
14.00 mm × 14.00 mm  
16-channel VGA with high-speed ADC, 5.5 nV/Hz, 12 bits, 32.5 MSPS, 39 mW/ch  
8-channel voltage-controlled amplifier for ultrasound with passive CW mixer,  
0.75 nV/Hz, 99 mW/ch  
VCA8500  
ADS5294  
ADS5292  
ADS5295  
8-channel, ultralow-power VGA with low-noise pre-amp, 0.8 nV/Hz, 65 mW/ch  
Octal-channel, 14-bit, 80-MSPS ADC, 75-dBFS SNR, 77 mW/ch  
Octal-channel, 12-bit, 80-MSPS ADC, 70-dBFS SNR, 66 mW/ch  
Octal-channel, 12-bit, 100-MSPS ADC, 70.6-dBFS SNR, 80 mW/ch  
VQFN (64)  
HTQFP (80)  
HTQFP (80)  
HTQFP (80)  
9.00 mm × 9.00 mm  
14.00 mm × 14.00 mm  
14.00 mm × 14.00 mm  
14.00 mm × 14.00 mm  
10-bit, 200-MSPS, 4-channel, 61-dBFS SNR, 150-mW/ch and 12-bit, 80-MSPS,  
8-channel, 70-dBFS SNR, 65-mW/ch ADC  
ADS5296A  
VQFN (64)  
9.00 mm × 9.00 mm  
Copyright © 2015, Texas Instruments Incorporated  
5
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
7 Pin Configuration and Functions  
ZBV Package  
NFBGA-289  
Top View  
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
17  
1
2
3
9
A
B
C
D
E
F
INP16  
INP15  
INP14  
INP13  
NC  
INP8  
INP7  
INP6  
INP12  
INP11  
INP10  
INP9  
ACT9  
INM9  
INP5  
INP4  
INP3  
INP2  
INP1  
ACT16  
INM16  
ACT15  
INM15  
ACT14  
INM14  
ACT13  
INM13  
NC  
NC  
ACT8  
INM8  
ACT7  
INM7  
ACT6  
INM6  
ACT12  
INM12  
ACT11  
INM11  
ACT10  
INM10  
ACT5  
INM5  
NC  
ACT4  
INM4  
NC  
ACT3  
INM3  
AVSS  
AVSS  
AVSS  
AVSS  
NC  
ACT2  
INM2  
AVSS  
ACT1  
INM1  
AVSS  
CW_DC_ CW_DC_ CW_IP_  
INM_IP  
CW_IP_  
AMPINP  
AVDD_5V AVDD_5V AVDD_5V AVDD_5V  
CM_BYP1 AVDD_5V AVDD_5V AVDD_5V  
INP_IP  
AMPINM  
CW_DC  
_OUTP_ _OUTM_  
IP  
CW_DC  
CW_IP_  
OUTP  
CW_IP_  
OUTM  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
CLKP_  
16X  
CLKM_  
16X  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
DVSS  
DVSS  
DVSS  
NC  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
DVSS  
DVSS  
DVSS  
FCLKP  
CM_BYP2  
VHIGH1  
VHIGH2  
NC  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
DVSS  
DVSS  
DVSS  
IP  
CW_DC  
_OUTP_ _OUTM_  
QP QP  
CW_DC  
CW_QP_ CW_QP_  
OUTP OUTM  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVSS  
AVSS  
CW_DC_ CW_DC_ CW_QP_ CW_QP_  
INM_QP  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
CLKM_1X CLKP_1X  
G
H
J
INP_QP  
AMPINM  
AMPINP  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVSS  
AVSS  
AVSS  
VCNTLP  
SDOUT  
NC  
NC  
SCLK  
SEN  
ADC_  
CLKP  
ADC_  
CLKM  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVSS  
AVSS  
VCNTLM  
NC  
NC  
NC  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVDD  
_3P3  
AVSS  
NC  
AVSS  
NC  
NC  
NC  
NC  
K
DVDD_  
1P2  
AVDD  
_1P8  
AVDD  
_1P8  
AVDD  
_1P8  
AVDD  
_1P8  
AVDD  
_1P8  
AVDD  
_1P8  
NC  
NC  
SDIN  
RESET  
L
M
N
P
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
PDN_  
GBL  
PDN_  
FAST  
NC  
NC  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
TX_TRIG  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P2  
NC  
NC  
NC  
NC  
NC  
NC  
DVDD_  
1P2  
DVDD_  
1P2  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P8  
DVDD_  
1P2  
DVDD_  
1P2  
NC  
DOUTM  
11  
NC  
DOUTP16 DOUTP15 DOUTP14  
DOUTM6 DOUTP6  
NC  
DOUTP11 FCLKM  
NC  
DOUTP3 DOUTP2 DOUTP1  
R
T
DOUTM  
16  
DOUTM  
15  
DOUTM  
14  
NC  
DCLKP  
DCLKM  
DOUTP8 DOUTP7 DOUTP5  
DOUTM8 DOUTM7 DOUTM5  
DOUTP13 DOUTP12 DOUTP10 DOUTP9  
DOUTP4 DOUTM3 DOUTM2 DOUTM1  
DOUTM  
13  
DOUTM  
12  
DOUTM  
10  
NC  
NC  
NC  
NC  
DOUTM9  
DOUTM4  
NC  
NC  
NC  
U
6
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Pin Functions  
PIN  
NAME  
ACT16  
ACT15  
ACT14  
ACT13  
ACT12  
ACT11  
ACT10  
ACT9  
NO.  
B1  
I/O  
DESCRIPTION  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
Active-termination input pins for channels 1 to 16.  
1-μF capacitors are recommended. Bias voltage = 1.5 V.  
I
ACT8  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
ACT7  
ACT6  
ACT5  
ACT4  
ACT3  
ACT2  
ACT1  
Differential clock input pin, negative. A single-ended clock is also supported.  
Connect ADC_CLKM to dc ground when using a single-ended clock.  
(Common-mode voltage = 0.7 V.)  
ADC_CLKM(1)  
J2  
I
Differential clock input pin, positive. A single-ended clock is also supported.  
Connect the ADC clock to the ADC_CLKP pin in a single-ended clock.  
(Common-mode voltage = 0.7 V.)  
ADC_CLKP  
AVDD_1P8  
AVDD_3P3  
AVDD_5V  
AVSS  
J1  
I
I
I
I
I
L5-L7, L11-L13  
1.8-V analog supply pins for the ADC  
E6, E7, E11-E14, F6, F7, F11-F14,  
G6, G7, G11, G12, H6, H7, H11, H12,  
J6, J7, J11, J12, K6, K7, K11, K12  
3.3-V analog supply pins for the low-noise amplifier (LNA), voltage-controlled  
attenuator (VCAT), programmable gain amplifier (PGA), low-pass filter (LPF),  
and continuous wave (CW) blocks  
D6-D12  
5-V analog supply pins for the LNA, VCAT, PGA, LPF, and CW blocks  
D15-D17, E8-E10, E15, F8-F10, F15-  
F17, G8-G10, G15, H1-H3, H8-H10,  
J3, J8-J10, K1-K3, K8-K10, L8-L10  
Analog ground pins  
Differential clock inputs for the 1X CW clock, negative. In differential mode, the  
device forces a 2.5-V common-mode voltage on this pin. A single-ended clock  
is also supported.  
In single-ended clock mode, the CLKM_1X pin is internally pulled to ground.  
In 1X clock mode, this pin is the quadrate-phase 1X CLKM for the CW mixer.  
When CW mode is not used, this pin can be left floated.  
CLKM_1X  
CLKP_1X  
CLKM_16X  
CLKP_16X  
G16  
G17  
E17  
E16  
I
I
I
Differential clock inputs for the 1X CW clock, positive. In differential mode, the  
device forces a 2.5-V common-mode voltage on this pin. A single-ended clock  
is also supported.  
Connect the 1X CW clock to the CLKP_1X pin in a single-ended clock.  
In 1X clock mode, this pin is the quadrate-phase 1X CLKP for the CW mixer.  
When CW mode is not used, this pin can be left floated.  
Differential clock inputs for the 32X, 16X, 8X, and 4X CW clocks, negative.  
In differential mode, the device forces a 2.5-V common-mode voltage on this  
pin. A single-ended clock is also supported.  
In single-ended clock mode, the CLKM_16X pin is internally pulled to ground.  
In 1X CW clock mode, this pin becomes the in-phase 1X CLKM for the CW  
mixer. When CW mode is not used, this pin can be floated.  
Differential clock inputs for the 32X, 16X, 8X, and 4X CW clocks, positive.  
A single-ended clock is also supported.  
Connect the 16X CW clock to the CLKP_16X pin in a single-ended clock.  
In 1X CW clock mode, this pin becomes the in-phase 1X CLKP for the CW  
mixer. In differential mode, the device forces a 2.5-V common-mode voltage  
on this pin. When CW mode is not used, this pin can be floated.  
I
CM_BYP1  
CM_BYP2  
D5  
E5  
Bypass to ground with a 1-μF capacitor.  
To suppress ultra low-frequency noise, a 10-μF capacitor can be used.  
Bias voltage = 1.5 V.  
O
(1) M = negative, P = positive.  
Copyright © 2015, Texas Instruments Incorporated  
7
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
CW_DC_INM_IP  
D1  
In-phase CW high-pass filter differential inputs. An external capacitor must be  
connected between CW_DC_INM_IP, CW_DC_OUTP_IP and  
CW_DC_INP_IP, CW_DC_OUTM_IP. When CW high-pass filter (HPF) mode  
is not used, these pins can be floated. Bias voltage = 1.5 V.  
I
I
CW_DC_INP_IP  
CW_DC_INM_QP  
CW_DC_INP_QP  
CW_DC_OUTM_IP  
CW_DC_OUTP_IP  
CW_DC_OUTM_QP  
CW_DC_OUTP_QP  
CW_IP_AMPINM  
CW_IP_AMPINP  
CW_IP_OUTM  
D2  
G1  
G2  
E2  
E1  
F2  
F1  
D3  
D4  
E4  
E3  
G3  
G4  
F4  
F3  
Quadrature-phase CW high-pass filter differential inputs. An external capacitor  
must be connected between CW_DC_INM_QP, CW_DC_OUTP_QP and  
CW_DC_INP_QP, CW_DC_OUTM_QP. When CW HPF mode is not used,  
these pins can be floated. Bias voltage = 1.5 V.  
In-phase CW high-pass filter differential outputs. An external capacitor must be  
connected between CW_DC_INM_IP, CW_DC_OUTP_IP and  
CW_DC_INP_IP, CW_DC_OUTM_IP. When CW HPF mode is not used, these  
pins can be floated. Bias voltage = 1.5 V.  
O
O
I
Quadrature-phase CW high-pass filter differential outputs. An external  
capacitor must be connected between CW_DC_INM_QP, CW_DC_OUTP_QP  
and CW_DC_INP_QP, CW_DC_OUTM_QP. When CW HPF mode is not  
used, these pins can be floated. Bias voltage = 1.5 V.  
In-phase CW summing amplifier differential inputs. An external capacitor must  
be connected between CW_IP_AMPINM, CW_IP_OUTP and  
CW_IP_AMPINP, CW_IP_OUTM. When CW HPF mode is not used, these  
pins can be floated. Bias voltage = 1.5 V.  
In-phase CW summing amplifier differential outputs. An external capacitor  
must be connected between CW_IP_AMPINM, CW_IP_OUTP and  
CW_IP_AMPINP, CW_IP_OUTM. When CW HPF mode is not used, these  
pins can be floated. Bias voltage = 1.5 V.  
O
I
CW_IP_OUTP  
CW_QP_AMPINM  
CW_QP_AMPINP  
CW_QP_OUTM  
CW_QP_OUTP  
Quadrature-phase CW summing amplifier differential inputs. An external  
capacitor must be connected between CW_QP_AMPINM, CW_QP_OUTP and  
CW_QP_AMPINP, CW_QP_OUTM. When CW mode is not used, these pins  
can be floated. Bias voltage = 1.5 V.  
Quadrature-phase CW summing amplifier differential outputs. An external  
capacitor must be connected between CW_QP_AMPINM, CW_QP_OUTP and  
CW_QP_AMPINP, CW_QP_OUTM. When CW mode is not used, these pins  
can be floated. Bias voltage = 1.5 V.  
O
DCLKM  
U9  
T9  
Low-voltage differential signaling (LVDS) serialized data clock outputs  
(receiver bit alignment)  
O
O
O
O
O
O
O
O
O
O
O
O
O
DCLKP  
DOUTM1  
DOUTP1  
DOUTM2  
DOUTP2  
DOUTM3  
DOUTP3  
DOUTM4  
DOUTP4  
DOUTM5  
DOUTP5  
DOUTM6  
DOUTP6  
DOUTM7  
DOUTP7  
DOUTM8  
DOUTP8  
DOUTM9  
DOUTP9  
DOUTM10  
DOUTP10  
DOUTM11  
DOUTP11  
DOUTM12  
DOUTP12  
T16  
R16  
T15  
R15  
T14  
R14  
U13  
T13  
U12  
T12  
R11  
R12  
U11  
T11  
U10  
T10  
U8  
LVDS serialized differential data outputs for channel 1  
LVDS serialized differential data outputs for channel 2  
LVDS serialized differential data outputs for channel 3  
LVDS serialized differential data outputs for channel 4  
LVDS serialized differential data outputs for channel 5  
LVDS serialized differential data outputs for channel 6  
LVDS serialized differential data outputs for channel 7  
LVDS serialized differential data outputs for channel 8  
LVDS serialized differential data outputs for channel 9  
LVDS serialized differential data outputs for channel 10  
LVDS serialized differential data outputs for channel 11  
LVDS serialized differential data outputs for channel 12  
T8  
U7  
T7  
R6  
R7  
U6  
T6  
8
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Pin Functions (continued)  
PIN  
NAME  
DOUTM13  
DOUTP13  
DOUTM14  
DOUTP14  
DOUTM15  
DOUTP15  
DOUTM16  
DOUTP16  
NO.  
U5  
T5  
I/O  
DESCRIPTION  
O
O
O
LVDS serialized differential data outputs for channel 13  
T4  
LVDS serialized differential data outputs for channel 14  
R4  
T3  
LVDS serialized differential data outputs for channel 15  
R3  
T2  
O
I
LVDS serialized differential data outputs for channel 16  
1.2-V digital supply pins for the ADC digital block  
R2  
L3, M4-M6, M12-M14, N2-N6, N12-  
N16, P2, P3, P15, P16  
DVDD_1P2  
DVDD_1P8  
1.8-V digital supply pins for the ADC digital, digital I/Os, phase-locked loop  
(PLL), and LVDS interface blocks  
P4-P7, P11-P14  
I
I
DVSS  
M3, M7-M11, N7-N11, P8-P10  
ADC digital ground  
FCLKM  
FCLKP  
R8  
O
LVDS serialized frame clock outputs (receiver word alignment)  
R10  
Complimentary analog inputs for channel 1. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
INM1  
INP1  
INM2  
INP2  
INM3  
INP3  
INM4  
INP4  
INM5  
INP5  
INM6  
INP6  
INM7  
INP7  
INM8  
INP8  
INM9  
C17  
A17  
C16  
A16  
C15  
A15  
C14  
A14  
C13  
A13  
C12  
A12  
C11  
A11  
C10  
A10  
C8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog inputs for channel 1. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 2. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 2. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 3. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 3. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 4. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 4. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 5. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 5. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 6. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 6. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 7. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 7. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 8. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 8. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 9. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Copyright © 2015, Texas Instruments Incorporated  
9
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
Analog inputs for channel 9. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
INP9  
A8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Complimentary analog inputs for channel 10. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
INM10  
INP10  
INM11  
INP11  
INM12  
INP12  
INM13  
INP13  
INM14  
INP14  
INM15  
INP15  
INM16  
INP16  
C7  
A7  
C6  
A6  
C5  
A5  
C4  
A4  
C3  
A3  
C2  
A2  
C1  
A1  
Analog inputs for channel 10. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 11. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 11. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 12. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 12. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 13. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 13. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 14. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 14. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 15. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 15. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
Complimentary analog inputs for channel 16. Place a 15-nF capacitor to  
ground. The HPF response of the LNA depends on the capacitors.  
Bias voltage = 2.2 V.  
Analog inputs for channel 16. AC-couple to inputs with 0.1-μF capacitors.  
Bias voltage = 2.2 V.  
A9, B9, C9, D13, D14, G13, G14, H5,  
H13-H15, H17, J5, J13-J16, K4, K5,  
K13-K16, L1, L2, L4, L14, L15, M1,  
M2, N1, N17, P1, P17, R1, R5, R9,  
R13, R17, T1, T17, U1-U4,U14-U17  
NC  
I
Unused pins. Do not connect.  
Partial power-down control pin for the entire device with an internal  
16-kΩ pulldown resistor; active high. Note that a 1.8-V logic level is  
PDN_FAST  
M17  
recommended.  
Global (complete) power-down control pin for the entire device with an internal  
16-kΩ pulldown resistor; active high. Note that a 1.8-V logic level is required.  
PDN_GBL  
RESET  
SCLK  
M16  
L17  
J17  
I
I
Hardware reset pin with an internal 16-kΩ pulldown resistor; active high.  
Note that a 1.8-V logic level is required.  
Serial interface clock pin with an internal 16-kΩ pulldown resistor.  
Note that a 1.8-V logic level is required.  
I
Serial interface data pin with an internal 16-kΩ pulldown resistor.  
Note that a 1.8-V logic level is required.  
SDIN  
L16  
H16  
K17  
M15  
I
Serial interface readout pin for channels 1 to 16. This pin is in tri-state by  
default. Note that a 1.8-V logic level is required.  
SDOUT  
SEN  
O
I
Serial interface enable, active low. This pin has a 16-kΩ pullup resistor.  
Note that a 1.8-V logic level is required.  
This pin synchronizes test patterns across devices. This pin has a 20-kΩ  
pulldown resistor. Note that a 1.8-V logic level is required.  
TX_TRIG  
I
10  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Pin Functions (continued)  
PIN  
NAME  
VCNTLM  
NO.  
J4  
I/O  
DESCRIPTION  
I
Differential attenuation control pins  
VCNTLP  
H4  
F5  
VHIGH1  
O
Bypass to ground with a 1-μF capacitor. Bias voltage = 1 V.  
VHIGH2  
G5  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
AVDD_1P8  
AVDD_3P3  
2.2  
3.9  
Supply voltage  
AVDD_5V  
DVDD_1P2  
DVDD_1P8  
6
V
1.35  
2.2  
Voltage at analog inputs  
minimum [3.6, AVDD_3P3 + 0.3]  
V
V
V
Voltage at all digital inputs except CW clocks  
Voltage at CW clock input pins  
Peak solder temperature(2)  
minimum [2.2, DVDD_1P8 + 0.3]  
minimum [6, AVDD_5V + 0.3]  
260  
105  
85  
Maximum junction temperature (TJ), any condition  
Temperature  
°C  
Operating, TA  
Storage, Tstg  
–40  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Device complies with JSTD-020D.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
AVDD_1P8 voltage  
MIN  
1.7  
3.15  
4.75  
1.15  
1.7  
0
MAX  
1.9  
UNIT  
V
AVDD_3P3 voltage  
3.6  
V
AVDD_5V voltage  
5.25  
1.25  
1.9  
V
DVDD_1P2 voltage  
V
DVDD_1P8 voltage  
V
VCNTLP – VCNTLM  
Sample rate  
1.5  
80(1)  
V
5
MHz  
°C  
Ambient temperature, TA  
–40  
85  
(1) The maximum speed supported is a function of ADC resolution. The number specified is for 12-bit mode.  
8.4 Thermal Information  
AFE5818  
THERMAL METRIC(1)  
ZBV (NFBGA)  
289 PINS  
28.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.3  
13.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
13.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
8.5 Electrical Characteristics  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
TGC FULL-SIGNAL CHANNEL (VGA + LPF + ADC)  
LNA = 24 dB  
LNA = 18 dB  
LNA = 12 dB  
LNA = 24 dB  
LNA = 18 dB  
LNA = 12 dB  
LNA = 24 dB  
LNA = 18 dB  
LNA = 12 dB  
LNA = 24 dB  
LNA = 18 dB  
LNA = 12 dB  
LNA = 24 dB  
LNA = 18 dB  
LNA = 12 dB  
LNA = 24 dB  
LNA = 18 dB  
LNA = 12 dB  
0.76  
0.87  
1.19  
0.75  
0.84  
1.15  
1.1  
Low-noise mode, RS = 0 Ω, f = 2 MHz,  
PGA = 24 dB  
Low-noise mode, RS = 0 Ω, f = 2 MHz,  
PGA = 30 dB  
Low-power mode, RS = 0 Ω, f = 2 MHz,  
PGA = 24 dB  
1.2  
1.7  
Input voltage noise over  
LNA gain  
en (RTI)  
nV/Hz  
1.1  
Low-power mode, RS = 0 Ω, f = 2 MHz,  
PGA = 30 dB  
1.2  
1.6  
1
Medium-power mode, RS = 0 Ω, f = 2 MHz,  
PGA = 24 dB  
1.1  
1.3  
0.95  
1
Medium-power mode, RS = 0 Ω, f = 2 MHz,  
PGA = 30 dB  
1.25  
3.2  
Low-noise mode  
Input-referred current  
noise  
Medium-power mode  
Low-power mode  
2.7  
pA/Hz  
2.3  
Low-noise mode  
2.4  
Medium-power mode  
Low-power mode  
3.2  
LNA = 18 dB, RS = 50 Ω, no active termination  
LNA = 18 dB, RS = 400 Ω, no active termination  
3.7  
Low-noise figure mode  
Low-noise mode  
3.4  
NF  
Noise figure  
dB  
1.2  
Medium-power mode  
Low-power mode  
1.2  
1.2  
Low-noise figure mode  
0.83  
250  
500  
1000  
350  
600  
1150  
24  
LNA gain = 24 dB  
LNA gain = 18 dB  
LNA gain = 12 dB  
LNA gain = 24 dB  
LNA gain = 18 dB  
LNA gain = 12 dB  
Maximum linear input  
voltage  
VMAX  
mVPP  
mVPP  
Input clamp voltage in  
auto clamp mode  
Low-noise mode  
30  
PGA gain  
Total gain  
dB  
dB  
24  
Medium-power and low-power modes  
27.5  
54  
LNA = 24 dB, PGA = 30 dB, low-noise mode  
LNA = 24 dB, PGA = 30 dB, medium-power mode  
LNA = 24 dB, PGA = 30 dB, low-power mode  
51.5  
51.5  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
TGC FULL-SIGNAL CHANNEL (continued)  
Without a signal  
–20  
–10  
VCNTLP = 0 V  
VCNTLP = 0.8 V  
VCNTLP = 0 V  
VCNTLP = 0.8 V  
With a signal, full band  
Channel-to-channel  
–10  
dB  
noise correlation factor(1)  
–10  
With a signal, 1-MHz band over carrier  
–3.75  
68.5  
62.5  
58  
VCNTLP = 0.6 V (22-dB total channel gain)  
VCNTLP = 0 V, LNA = 18 dB, PGA = 24 dB  
VCNTLP = 0 V, LNA = 24 dB, PGA = 24 dB  
65.7  
59.3  
SNR  
Signal-to-noise ratio  
Narrow-band SNR  
dBFS  
dBFS  
SNR over 2-MHz band around carrier at VCNTLP = 0.6 V  
(22-dB total gain)  
73.8  
77  
Input common-mode  
voltage  
At INP and INM pins  
At dc  
2.2  
V
8
50  
kΩ  
Preset active termination enabled(2), across GBL_ACTIVE_TERM (register 196,  
bits 7-6) register settings; see Table 74  
Input resistance  
100  
200  
400  
20  
Ω
Input capacitance  
pF  
V
Input control voltage  
Common-mode voltage  
VCNTLP – VCNTLM  
0
1.5  
VCNTLP and VCNTLM  
0.75  
6
V
For summation of 16 channels; see Figure 69  
For summation of 64 channels; see Figure 69  
Tolerable noise at  
VCNTLP – VCNTLM  
nV/Hz  
3
Gain range  
–40  
35  
200  
1
dB  
dB/V  
kΩ  
Gain slope  
VCNTLP = 0.1 V to 0.9 V  
Input resistance  
Input capacitance  
TGC response time  
Between VCNTLP and VCNTLM  
Between VCNTLP and VCNTLM  
VCNTLP = 0-V to 1.5-V step function  
pF  
1.5  
10  
15  
20  
30  
35  
50  
14  
10  
µs  
–1-dB cutoff frequency across LPF_RPOG (register 195, bits 3-0)  
register settings; see Table 72  
3rd-order, low-pass filter  
MHz  
For change in LNA gain  
Settling time  
µs  
For change in active termination setting  
(1) The noise-correlation factor is defined as 10 × log10[Nc / (Nu + Nc)], where Nc is the correlated noise power in a single channel and Nu  
is the uncorrelated noise power in a single channel. The noise-correlation factor measurement is described by the equation:  
Nc / (Nu + Nc) = N_16CH / N_1CH / 240 – 1 / 15,  
where N_16CH is the noise power of the summed 16 channels and N_1CH is the noise power of one channel.  
(2) Total device input impedance is given by the parallel combination of the mentioned active termination resistance and a passive  
resistance of 15 kΩ.  
14  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Electrical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
AC ACCURACY  
LPF bandwidth tolerance  
±5%  
2
Channel-to-channel  
group delay variation  
2 MHz to 15 MHz  
15-MHz signal  
ns  
Channel-to-channel  
phase variation  
11  
Degrees  
0 V < VCNTLP < 0.1 V (device-to-device)  
0.1 V < VCNTLP < 1.1 V (device-to-device)  
1.1 V < VCNTLP < 1.5 V (device-to-device)  
±0.5  
±0.5  
±0.5  
Gain matching  
Output offset  
–1.1  
1.1  
dB  
–120  
120  
LSB  
AC PERFORMANCE  
Input frequency = 2 MHz, output amplitude = –1 dBFS  
Input frequency = 5 MHz, output amplitude = –1 dBFS  
–60  
–60  
Second-harmonic  
distortion  
Input frequency = 5 MHz, output amplitude = –1 dBFS,  
input amplitude = 500 mVPP, LNA = 18 dB, VCNTLP = 0.88 V  
HD2  
HD3  
dBc  
dBc  
–55  
–55  
Input frequency = 5 MHz, output amplitude = –1 dBFS,  
input amplitude = 250 mVPP, LNA = 24 dB, VCNTLP = 0.88 V  
Input frequency = 2 MHz, output amplitude = –1 dBFS  
Input frequency = 5 MHz, output amplitude = –1 dBFS  
–55  
–55  
Input frequency = 5 MHz, output amplitude = –1 dBFS,  
input amplitude = 500 mVPP, LNA = 18 dB, VCNTLP = 0.88 V  
Third-harmonic distortion  
–55  
–55  
Input frequency = 5 MHz, output amplitude = –1 dBFS,  
input amplitude = 250 mVPP, LNA = 24 dB, VCNTLP = 0.88 V  
Input frequency = 2 MHz, output amplitude = –1 dBFS  
Input frequency = 5 MHz, output amplitude = –1 dBFS  
–55  
–55  
THD  
Total harmonic distortion  
Intermodulation distortion  
dBc  
dBc  
Input frequency 1 = 5 MHz at –1 dBFS,  
input frequency 2 = 5.01 MHz at –27 dBFS  
IMD3  
–60  
Fundamental crosstalk  
Phase noise  
Signal applied to single channel  
-60  
dBFS  
1 kHz off 5-MHz carrier (VCNTLP = 0 V)  
–132  
dBc/Hz  
LOW-NOISE AMPLIFIER (LNA)  
16  
50  
–3-dB cutoff frequency for INMx capacitor = 15 nF, across LNA_HPF_PROG  
(register 203, bits 3-2) and RED_LNA_HPF_3X (register 205, bit 8) register  
settings; see Table 89 and Table 91  
HPF  
High-pass filter  
100  
150  
200  
0.63  
0.70  
0.9  
kHz  
LNA gain = 24 dB  
Input-referred voltage  
noise  
RS = 0 Ω, f = 2 MHz, RIN = high-Z  
LNA gain = 18 dB  
LNA gain = 12 dB  
nV/Hz  
LNA linear output  
4
VPP  
VCAT + PGA  
0-dB attenuation  
2
10.5  
1.75  
VCAT input noise  
nV/Hz  
–40-dB attenuation  
PGA input noise  
24-dB and 30-dB attenuation  
nV/Hz  
–3-dB HPF cutoff  
frequency  
80  
kHz  
Copyright © 2015, Texas Instruments Incorporated  
15  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
CW DOPPLER  
1 channel mixer, LNA = 24 dB, 500-Ω external feedback resistor  
16 channel mixers, LNA = 24 dB, 32-Ω external feedback resistor  
1 channel mixer, LNA = 18 dB, 500-Ω external feedback resistor  
16 channel mixers, LNA = 18 dB, 32-Ω external feedback resistor  
1 channel mixer, LNA = 24 dB, 500-Ω external feedback resistor  
16 channel mixers, LNA = 24 dB, 32-Ω external feedback resistor  
1 channel mixer, LNA = 18 dB, 500-Ω external feedback resistor  
16 channel mixers, LNA = 18 dB, 32-Ω external feedback resistor  
RS = 100 Ω, RIN = high-Z, fIN = 2 MHz, 1 channel, LNA = 18 dB  
RS = 100 Ω, RIN = high-Z, fIN = 2 MHz, 16 channels, LNA = 18 dB  
CW signal carrier frequency  
0.98  
0.31  
1.31  
0.5  
en (RTI) Input voltage noise (CW)  
nV/Hz  
13.3  
3.56  
8.85  
2.86  
3.18  
6.15  
8
en  
(RTO)  
Output voltage noise  
(CW)  
nV/Hz  
NF  
Noise figure  
dB  
CW operating range  
MHz  
CLKP_1X, CLKM_1X (16X mode)  
8
CWCLK CW clock frequency  
CLKP_16X, CLKM_16X (16X mode)  
128  
MHz  
VPP  
CLKP_16X, CLKM_16X (4X mode)  
32  
Clock amplitude  
(ac-coupled)  
CLKM_1X, CLKP_1X and CLKM_16X, CLKP_16X  
0.2  
0.35  
CLK duty cycle  
1X and 16X CLKs  
Internally provided  
35%  
65%  
5
Common-mode voltage  
2.5  
V
V
VCMOS CMOS input clock  
amplitude  
4
CW mixer conversion  
loss  
4
dB  
1 kHz off 2-MHz carrier (16X mode, 1 channel)  
1 kHz off 2-MHz carrier (16X mode, 16 channel)  
LNA = 24 dB  
156  
161  
CW mixer phase noise  
dBc/Hz  
159.1  
162.6  
164.4  
DR  
Input dynamic range  
Input frequency = 2.5 MHz  
LNA = 18 dB  
LNA = 12 dB  
dBFS/Hz  
f1 = 5 MHz, f2 = 5.01 MHz, both tones at –16-dBm amplitude,  
16 channels summed up in-phase, CW feedback resistor = 32 Ω  
–50  
–60  
IMD3  
Intermodulation distortion  
dBc  
dB  
f1 = 5 MHz, f2 = 5.01 MHz, both tones at –16-dBm amplitude,  
single channel summed up in-phase, CW feedback resistor = 500 Ω  
16X mode  
4X mode  
16X mode  
4X mode  
±0.04  
±0.04  
±0.01  
±0.01  
–50  
I/Q channel gain  
matching  
I/Q channel phase  
matching  
Degrees  
dBc  
Image rejection ratio  
16  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Electrical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
CW SUMMING AMPLIFIER  
Output common-mode  
voltage  
Internally provided  
1.5  
4
V
Summing amplifier  
output  
VPP  
At 100 Hz  
1.6  
0.9  
0.8  
Input-referred voltage  
noise  
At 1 kHz  
nV/Hz  
pA/Hz  
At 2 kHz to 100 MHz  
Input-referred current  
noise  
3.75  
Unity-gain bandwidth  
Maximum output current  
150  
50  
MHz  
mAPP  
ADC SPECIFICATIONS (Clock Input)  
14-bit rate  
5
5
65  
80  
Sample rate  
MSPS  
VPP  
12-bit rate  
Sine-wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
High-level input voltage (VIH  
1.5  
1.6  
Input clock amplitude  
differential  
(ADC_CLKP –  
ADC_CLKM)  
0.3  
1.5  
Input clock CMOS  
amplitude single-ended  
(ADC_CLKP)  
)
V
Low-level input voltage (VIL)  
0.3  
Input clock duty cycle  
35%  
50%  
65%  
ADC SPECIFICATIONS (Signal-to-Noise Ratio)  
Without signal  
75  
72.5  
72  
14-bit ratio  
With full-scale signal  
Without signal  
SNR  
Signal-to-noise ratio  
dBFS  
12-bit ratio  
With full-scale signal  
69.5  
ADC SPECIFICATIONS (Analog Input)  
ADC input full-scale  
range  
2
VPP  
LVDS rate  
POWER DISSIPATION  
AVDD_1P8 voltage  
AVDD_3P3 voltage  
AVDD_5V voltage  
1000  
Mbps  
1.7  
3.15  
4.75  
1.15  
1.7  
1.8  
3.3  
5
1.9  
3.6  
V
V
V
V
V
5.25  
1.25  
1.9  
DVDD_1P2 voltage  
DVDD_1P8 voltage  
1.2  
1.8  
Copyright © 2015, Texas Instruments Incorporated  
17  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
POWER DISSIPATION (continued)  
ADC in 12-bit resolution,  
80 MSPS  
143  
140  
136  
134  
170  
ADC in 14-bit resolution,  
65 MSPS  
TGC low-noise mode, no signal  
ADC in 14-bit resolution,  
50 MSPS  
TGC mode  
ADC in 14-bit resolution,  
40 MSPS  
(Total power dissipation  
per channel)  
mW/Ch  
TGC low-noise mode, 500-mVPP input,1% duty cycle  
TGC medium-power mode  
139.5  
104.4  
107.4  
93.5  
96  
TGC medium-power mode, 500-mVPP input, 1% duty cycle  
TGC low-power mode  
TGC low-power, 500-mVPP input, 1% duty cycle  
16X clock = 32 MHz  
16X clock = 80 MHz  
80  
CW mode  
CW mode, no signal, ADC shutdown CW mode  
(Total power dissipation  
per channel with ADC  
and PGA in power-down  
state)  
95  
112  
467  
mW/Ch  
CW mode, 16X clock = 80 MHz, CW summing amplifier external feedback  
resistance = 33 Ω, 500-mVPP input to all 16 channels, ADC shutdown  
203  
TGC low-noise mode, no signal  
TGC medium-power mode, no signal  
TGC low-power mode, no signal  
414  
260  
207  
285  
285  
430  
274  
219  
740  
57  
16X clock = 32 MHz  
CW mode, no signal  
16X clock = 80 MHz  
AVDD_3P3 current  
337  
mA  
TGC low-noise mode, 500-mVPP input, 1% duty cycle  
TGC medium-power mode, 500-mVPP input, 1% duty cycle  
TGC low-power mode, 500-mVPP input, 1% duty cycle  
CW mode, 16X clock = 80 MHz, 500-mVPP input to all 16 channels  
TGC low-noise, medium-power, or low-power mode, no signal  
80  
16X clock = 32 MHz  
64  
CW mode, no signal  
16X clock = 80 MHz  
115  
136  
AVDD_5V current  
mA  
TGC, low-noise, medium-power, or low-power mode, 500-mVPP input,  
1% duty cycle  
57  
CW mode, 16X clock = 80 MHz, 500-mVPP input to all 16 channels  
160  
170  
120  
160  
120  
110  
50  
80 MSPS  
197  
160  
132  
12-bit mode  
20 MSPS  
AVDD_1P8 current  
DVDD_1P2 current  
DVDD_1P8 current  
mA  
mA  
mA  
65 MSPS  
14-bit mode  
20 MSPS  
80 MSPS  
12-bit mode  
20 MSPS  
65 MSPS  
95  
14-bit mode  
20 MSPS  
52  
80 MSPS  
100  
85  
12-bit mode  
20 MSPS  
65 MSPS  
95  
14-bit mode  
20 MSPS  
85  
18  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Electrical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
POWER-DOWN  
Partial power-down when PDN_FAST = high (1.8 V)  
Complete power-down when PDN_GBL = high (1.8 V)  
28  
Power dissipation in  
power-down mode  
mW/Ch  
µs  
2.2  
Power-down response  
time  
1
3
Partial power-down when PDN_FAST= high (1.8 V) and the device in partial  
power-down time for < 500 µs  
µs  
Power-up response time  
Complete power-down when PDN_GBL = high (1.8 V)  
AVDD_3P3  
2.7  
–65  
–63  
–70  
–70  
ms  
Power-supply modulation fIN = 5 MHz, supply tone of 100 mVPP at  
ratio  
PSMR  
PSRR  
dBc  
dBc  
1-kHz frequency  
AVDD_5V  
AVDD_3P3  
AVDD_5V  
Power-supply rejection  
ratio(3)  
Supply tone of 100 mVPP at 1-kHz frequency  
(3) The PSRR value in dBc is measured with respect to the supply tone amplitude applied at the device supply (that is, 100 mVPP).  
8.6 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. Typical values are at TA = 25°C, minimum and maximum values are across the full temperature range of  
TMIN = -40°C to TMAX = 85°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 =  
1.8 V, external differential load resistance between the LVDS output pair, and RLOAD = 100 Ω, unless otherwise noted.  
PARAMETER  
LOAD RESISTANCE  
External differential load resistance  
CMOS DIGITAL INPUTS (PDN_GBL, PDN_FAST, RESET, SCLK, SDIN, SEN)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Between LVDS output pair  
100  
Ω
VIH  
VIL  
IIH  
IIL  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
1.4  
0
2.1  
0.3  
V
V
100  
100  
4
µA  
µA  
pF  
Ci  
LVDS DIGITAL OUTPUTS (DOUTPx, DOUTMx)(1)  
|VOD  
|
Output differential voltage  
420  
mV  
V
Common-mode voltage of DOUTPx and  
DOUTMx  
VOS  
Output offset voltage  
1.03  
CMOS DIGITAL OUTPUT (SDOUT)  
VOH  
VOL  
zo  
High-level output voltage  
Low-level output voltage  
Output impedance  
1.4  
DVDD_1P8  
0.3  
V
V
Ω
DVSS  
50  
(1) All LVDS specifications are characterized but are not tested at production.  
Copyright © 2015, Texas Instruments Incorporated  
19  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
8.7 Output Interface Timing  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8  
= 1.8 V, differential ADC clock, LVDS load CLOAD = 5 pF, RLOAD = 100 Ω, 14-bit ADC resolution, and sample rate = 65 MSPS,  
unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 85°C.  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
tAP  
Aperture delay(1)  
1.6  
±0.5  
0.5  
ns  
ns  
ps  
Aperture delay variation from device to device  
(at same temperature and supply)  
δtAP  
tAPJ  
Aperture jitter with LVPECL clock as input clock  
Time to valid data after exiting  
standby mode  
(units are in number of ADC_CLKP,  
ADC_CLKM cycles)  
15  
Cycles  
Wake-up time  
Time to valid data after exiting  
1
ms  
µs  
PDN_GBL mode  
Time to valid data after stopping and  
restarting the input clock  
100  
ADC TIMING  
Default after reset(1)  
ADC latency  
8.5  
4.5  
Cd  
ADC clocks  
MHz  
Low-latency mode  
LVDS TIMING(2)  
fF  
Frame clock frequency(1)  
fCLKIN  
50%  
DFRAME  
NSER  
Frame clock duty cycle  
Number of bits serialization of each ADC word  
12  
16  
1000  
1000  
500  
Bits  
Mbps  
MHz  
1X output data rate mode  
2X output data rate mode  
NSER × fCLKIN  
2 × NSER × fCLKIN  
fD / 2  
Output rate of  
serialized data  
fD  
fB  
Bit clock frequency  
Bit clock duty cycle  
Data bit duration(1)  
DBIT  
tD  
50%  
1
1000 / fD  
ns  
ns  
tPDI  
Clock propagation delay(1)  
6 × tD+ 5  
Clock propagation delay variation from device to device  
(at same temperature and supply)  
δtPROP  
±2  
ns  
ns  
DOUT, DCLK, FCLK rise and fall time, transition time  
between –100 mV and +100 mV  
tORF  
0.2  
tOSU  
Minimum serial data, serial clock setup time(1)  
Minimum serial data, serial clock hold time(1)  
Minimum data valid window(3)(1)  
tD / 2 – 0.4  
tD / 2 – 0.4  
tD – 0.65  
ns  
ns  
ns  
tOH  
tDV  
TX_TRIG TIMING  
tTX_TRIG_DEL  
(5)  
Delay between TX_TRIG and TX_TRIGD(4)  
0.5  
0.4 × tCLKIN  
ns  
ns  
Setup time related to latching TX_TRIGD relative to the  
rising edge of the system clock  
tSU_TX_TRIGD  
tH_TX_TRIGD  
0.6  
0.4  
Hold time related to latching TX_TRIGD relative to the  
rising edge of the system clock  
ns  
(1) See Figure 1.  
(2) All LVDS specifications are characterized but are not tested at production.  
(3) The specification for the minimum data valid window is larger than the sum of the minimum setup and hold times because there can be  
a skew between the ideal transitions of the serial output data with respect to the transition of the bit clock. This skew can vary across  
channels and across devices. A mechanism to correct this skew can therefore improve the setup and hold timing margins. For example,  
the LVDS_DCLK_DELAY_PROG control can be used to shift the relative timing of the bit clock with respect to the data.  
(4) TX_TRIGD is the internally delayed version of TX_TRIG that gets latched on the rising edge of the ADC clock.  
(5) tCLKIN is the ADC clock period in nanoseconds (ns).  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
8.8 Serial Interface Timing Characteristics  
Typical values are at TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, and  
DVDD_1P8 = 1.8 V, unless otherwise noted. Minimum and maximum values are across the full temperature range of  
TMIN = –40°C to TMAX = 85°C.  
MIN  
50  
20  
20  
5
TYP  
MAX  
UNIT  
ns  
tSCLK  
SCLK period  
tSCLK_H  
tSCLK_L  
tDSU  
SCLK high time  
ns  
SCLK low time  
ns  
Data setup time  
ns  
tDHO  
Data hold time  
5
ns  
tSEN_SU  
tSEN_HO  
tOUT_DV  
SEN falling edge to SCLK rising edge  
Time between last SCLK rising edge to SEN rising edge  
SDOUT delay  
8
ns  
8
ns  
12  
20  
28  
ns  
Sample N  
TAP  
Input Signal  
Cd Clock  
Cycles Latency  
Input Clock (CLKIN)  
Frequency = fCLKIN  
TF  
tPDI  
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 7 x fCLKIN  
Output Data (CHn OUT)  
Data Rate = 14 x fCLKIN  
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
(12) (13)  
(9) (10) (11) (12) (13)  
(9) (10) (11) (12) (13) (0)  
(9) (10) (11) (12) (13)  
Sample N-1  
Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
13  
(0)  
DOUT1  
D0  
D1  
D2  
D3  
D4  
Bit Clock (DCLK)  
tD  
tD  
tOH  
tOSU  
tB  
Bit Clock (DCLK)  
tDV  
tDV  
Figure 1. Output Timing Specification  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
8.9 Typical Characteristics  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
45  
45  
Low Noise  
-40èC  
25èC  
85èC  
40  
35  
30  
25  
20  
15  
10  
5
Low Power  
Medium Power  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2 1.3 1.4 1.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
D002  
D003  
Across power modes  
Across temperature  
Figure 2. Gain vs VCNTL  
Figure 3. Gain vs VCNTL  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
D004  
D005  
Gain Matching (dB)  
Gain Matching (dB)  
VCNTL = 0.3 V  
VCNTL = 0.6 V  
Figure 4. Gain Matching Histogram (17472 Channels)  
Figure 5. Gain Matching Histogram (17472 Channels)  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
0
0
D006  
D007  
Gain Matching (dB)  
ADC Output  
VCNTL = 0.9 V  
VCNTL = 0 V  
Figure 6. Gain Matching Histogram (17472 Channels)  
Figure 7. Output Offset Histogram (17472 Channels)  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
12000  
10000  
8000  
6000  
4000  
2000  
0
10  
Open  
Open  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.5  
4.5  
8.5  
12.5  
16.5  
20.5  
0.5  
4.5  
8.5  
12.5  
16.5  
20.5  
Frequency (MHz)  
Frequency (MHz)  
D008  
D009  
Without active termination  
Without active termination  
Figure 8. Input Impedance Magnitude vs Frequency  
Figure 9. Input Impedance Phase vs Frequency  
550  
10  
0
50 W  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100 W  
200 W  
400 W  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
50 W  
100 W  
200 W  
400 W  
0
0
5
10  
15  
20  
25  
0.5  
4.5  
8.5  
12.5  
16.5  
20.5  
Frequency (MHz)  
Frequency (MHz)  
D010  
D011  
Across active termination  
Across active termination  
Figure 10. Input Impedance Magnitude vs Frequency  
Figure 11. Input Impedance Phase vs Frequency  
5
3
0
0
-5  
-3  
-6  
-10  
-15  
-20  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
10 MHz  
-25  
15 MHz  
20 MHz  
30 MHz  
35 MHz  
50 MHz  
Register 203[3:2], 205[8] = 01, 1  
Register 203[3:2], 205[8] = 01, 0  
Register 203[3:2], 205[8] = 00, 0  
Register 203[3:2], 205[8] = 11, 0  
Register 203[3:2], 205[8] = 10, 0  
-30  
-35  
-40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30 40 50 70 100  
Frequency (kHz)  
200 300  
500  
Frequency (MHz)  
D012  
D013  
Across LPF corner settings  
Across LNA_HPF_PROG (register 203, bits 3-2) and  
RED_LNA_HPF_3X (register 205, bit 8)  
Figure 13. LNA High-Pass Filter Amplitude Response vs  
Frequency  
Figure 12. Full-Channel Amplitude Response vs Frequency  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
5
5
PGA Integrator Enable  
PGA Integrator Disable  
0
-5  
0
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-5  
-10  
-15  
10  
100  
500  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (kHz)  
Frequency (kHz)  
D014  
D015  
With INM capacitor = 1 μF  
Figure 14. Full-Channel High-Pass Filter Amplitude  
Response vs Frequency  
Figure 15. Full-Channel Low Frequency Amplitude  
Response vs Frequency  
-144  
-144  
16X Clock Mode  
8X Clock Mode  
4X Clock Mode  
Phase Noise 1 Channel  
Phase Noise 16 Channels  
-146  
-148  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
-146  
-148  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
100  
1k  
10k  
50k  
100  
1k  
10k  
50k  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D016  
D017  
fIN = 2 MHz, one channel across CW clock modes  
fIN = 2 MHz, across one channel and 16 channels  
Figure 16. CW Phase Noise vs Offset Frequency  
Figure 17. CW Phase Noise vs Offset Frequency  
-144  
45  
40  
35  
30  
25  
20  
15  
10  
5
16X Clock Mode  
8X Clock Mode  
4X Clock Mode  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
-146  
-148  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
0
100  
1k  
10k  
50k  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
Offset Frequency (Hz)  
D018  
D019  
fIN = 2 MHz, 16 channels across CW clock modes  
Figure 18. CW Phase Noise vs Offset Frequency  
Across LNA gain for low-noise mode  
Figure 19. Input-Referred Noise vs VCNTL  
24  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.5  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
3
2.5  
2
1.5  
1
0.5  
0
0
0
0.1  
0.2  
VCNTL (V)  
0.3  
0.4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
D020  
D021  
Across LNA gain for low-noise mode  
Across LNA gain for medium-power mode  
Figure 20. Input-Referred Noise vs VCNTL (Zoomed)  
Figure 21. Input-Referred Noise vs VCNTL  
3
70  
60  
50  
40  
30  
20  
10  
0
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
2.5  
2
1.5  
1
0.5  
0
0.1  
0.2  
VCNTL (V)  
0.3  
0.4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
D022  
D023  
Across LNA gain for medium-power mode  
Across LNA gain for low-power mode  
Figure 22. Input-Referred Noise vs VCNTL (Zoomed)  
Figure 23. Input-Referred Noise vs VCNTL  
230  
210  
190  
170  
150  
130  
110  
90  
3.5  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
3
2.5  
2
1.5  
1
70  
50  
0.5  
30  
0
0.1  
0.2  
VCNTL (V)  
0.3  
0.4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
D024  
D025  
Across LNA gain for low-power mode  
Across LNA gain for low-noise mode  
Figure 25. Output-Referred Noise vs VCNTL  
Figure 24. Input-Referred Noise vs VCNTL (Zoomed)  
Copyright © 2015, Texas Instruments Incorporated  
25  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
LNA 12 dB  
LNA 18 dB  
LNA 24 dB  
60  
60  
40  
40  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
D026  
D027  
Across LNA gain for medium-power mode  
Across LNA gain for low-power mode  
Figure 27. Output-Referred Noise vs VCNTL  
Figure 26. Output-Referred Noise vs VCNTL  
250  
250  
Regsiter 203[3:2], 205[8] = 01, 1  
Regsiter 203[3:2], 205[8] = 01, 0  
Regsiter 203[3:2], 205[8] = 00, 0  
Regsiter 203[3:2], 205[8] = 11, 0  
Regsiter 203[3:2], 205[8] = 10, 0  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
0
200  
400  
600  
800 1000 1200 1400 1600  
50  
250  
450  
650  
850 1050 1250 1450 1650  
Frequency (kHz)  
Frequency (kHz)  
D028  
D029  
Across LNA_HPF_PROG (register 203, bits 3-2) and  
RED_LNA_HPF_3X (register 205, bit 8)  
INMx capacitor = 1 µF, PGA_HPF_DIS (register 195, bit 4) = 1  
Figure 28. Low-Frequency Output-Referred Noise vs  
Frequency  
Figure 29. Low-Frequency Output-Referred Noise vs  
Frequency  
180  
160  
140  
120  
100  
80  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
60  
40  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Frequency (MHz)  
Frequency (MHz)  
D030  
D031  
Figure 30. Input-Referred Noise vs Frequency  
Figure 31. Output-Referred Noise vs Frequency  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
24-dB PGA Gain  
30-dB PGA Gain  
24-dB PGA Gain  
30-dB PGA Gain  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCNTL (V)  
1
1.1 1.2  
D032  
D033  
Low-noise mode across PGA gain  
Low-power mode across PGA gain  
Figure 32. Signal-to-Noise Ratio vs VCNTL  
Figure 33. Signal-to-Noise Ratio vs VCNTL  
73  
71  
69  
67  
65  
63  
61  
59  
57  
12  
11  
10  
9
Low Noise  
Low Power  
100 W  
200 W  
400 W  
Without Termination  
8
7
6
5
4
3
2
1
0
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42  
Gain (dB)  
50  
100  
150  
200  
250  
300  
350  
400  
Source Impedence (W)  
D034  
D035  
Across power modes  
LNA = 12 dB, low-noise mode across active termination  
Figure 34. Signal-to-Noise Ratio vs Gain  
Figure 35. Noise Figure vs Source Impedance  
10  
12  
11  
10  
9
50 W  
50 W  
9
100 W  
100 W  
200 W  
200 W  
400 W  
Without Termination  
8
400 W  
Without Termination  
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
50  
100  
150  
200  
250  
300  
350  
400  
50  
100  
150  
200  
250  
300  
350  
400  
Source Impedence (W)  
Source Impedence (W)  
D036  
D037  
LNA = 18 dB, low-noise mode across active termination  
LNA = 24 dB, low-noise mode across active termination  
Figure 36. Noise Figure vs Source Impedance  
Figure 37. Noise Figure vs Source Impedance  
Copyright © 2015, Texas Instruments Incorporated  
27  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
4.5  
3.5  
2.5  
1.5  
4.5  
3.5  
2.5  
1.5  
0.5  
Low Noise  
Low Power  
Medium Power  
Low Noise Figure  
Low Noise  
Low Power  
Medium Power  
Low Noise Figure  
50  
100  
150  
200  
250  
300  
350  
400  
50  
100  
150  
200  
250  
300  
350  
400  
Source Impedence (W)  
Source Impedence (W)  
D038  
D039  
Active termination = 400-across power modes  
Without active termination across power modes  
Figure 38. Noise Figure vs Source Impedance  
Figure 39. Noise Figure vs Source Impedance  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
Low Noise  
Low Power  
Medium Power  
Low Noise  
Low Power  
Medium Power  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Frequency (MHz)  
Frequency (MHz)  
D040  
D041  
VIN = 500 mVPP, VOUT = –1 dBFS across power modes  
VIN = 500 mVPP, VOUT = –1 dBFS across power modes  
Figure 40. Second-Order Harmonic Distortion vs Frequency  
Figure 41. Third-Order Harmonic Distortion vs Frequency  
-40  
-30  
Low Noise  
Low Power  
Low Noise  
Low Power  
-45  
Medium Power  
-50  
Medium Power  
-40  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-60  
-70  
-80  
6
12  
18  
24  
30  
36  
6
12  
18  
24  
30  
36  
Gain (dB)  
Gain (dB)  
D042  
D043  
LNA = 12 dB, VOUT = –1 dBFS across power modes  
LNA = 12 dB, VOUT = –1 dBFS across power modes  
Figure 42. Second-Order Harmonic Distortion vs Gain  
Figure 43. Third-Order Harmonic Distortion vs Gain  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
Low Noise  
Low Power  
Medium Power  
Low Noise  
Low Power  
Medium Power  
12  
18  
24  
30  
36  
42  
12  
18  
24  
30  
36  
42  
Gain (dB)  
Gain (dB)  
D045  
LNA = 18 dB, VOUT = –1 dBFS across power modes  
LNA = 18 dB, VOUT = –1 dBFS, across power modes  
Figure 44. Second-Order Harmonic Distortion vs Gain  
Figure 45. Third-Order Harmonic Distortion vs Gain  
-40  
-30  
Low Noise  
Low Power  
Low Noise  
Low Power  
-45  
Medium Power  
-50  
Medium Power  
-40  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-60  
-70  
-80  
18  
24  
30  
36  
42  
48  
18  
24  
30  
36  
42  
48  
Gain (dB)  
Gain (dB)  
D046  
D047  
LNA = 24 dB, VOUT = –1 dBFS across power modes  
LNA = 24 dB, VOUT = –1 dBFS across power modes  
Figure 46. Second-Order Harmonic Distortion vs Gain  
Figure 47. Third-Order Harmonic Distortion vs Gain  
-54  
-54  
fIN1 = 2 MHz, fIN2 = 2.01 MHz  
fIN1 = 5 MHz, fIN2 = 5.01 MHz  
fIN1 = 2 MHz, fIN2 = 2.01 MHz  
fIN1 = 5 MHz, fIN2 = 5.01 MHz  
-58  
-62  
-66  
-70  
-74  
-58  
-62  
-66  
-70  
-74  
14  
18  
22  
26  
30  
34  
38  
42  
14  
18  
22  
26  
30  
34  
38  
42  
Gain (dB)  
Gain (dB)  
D048  
D049  
fOUT1 = –1 dBFS, fOUT2 = –21 dBFS  
fOUT1 = –7 dBFS, fOUT2 = –7 dBFS  
Figure 48. IMD3 vs Gain  
Figure 49. IMD3 vs Gain  
Copyright © 2015, Texas Instruments Incorporated  
29  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
-60  
-65  
-70  
-75  
-50  
-55  
-60  
-65  
-70  
-75  
VCNTL = 0 V  
VCNTL = 0 V  
VCNTL = 0.3 V  
VCNTL = 0.6 V  
VCNTL = 0.9 V  
VCNTL = 0.3 V  
VCNTL = 0.6 V  
VCNTL = 0.9 V  
5
10  
100  
1k  
2k  
5
10  
100  
1k  
2k  
Supply Frequency (kHz)  
Supply Frequency (kHz)  
D050  
D051  
Across VCNTL  
Across VCNTL  
Figure 50. AVDD Power-Supply Modulation Ratio vs  
100-mVPP Supply Noise Frequencies  
Figure 51. AVDD_5V Power-Supply Modulation Ratio vs  
100-mVPP Supply Noise Frequencies  
-20  
-10  
VCNTL = 0 V  
VCNTL = 0 V  
VCNTL = 0.3 V  
VCNTL = 0.6 V  
VCNTL = 0.9 V  
VCNTL = 0.3 V  
VCNTL = 0.6 V  
VCNTL = 0.9 V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
5
10  
100  
1k  
2k  
5
10  
100  
1k  
2k  
Supply Frequency (kHz)  
Supply Frequency (kHz)  
D052  
D053  
Across VCNTL  
Across VCNTL  
Figure 52. AVDD Power-Supply Rejection Ratio vs  
100-mVPP Supply Noise Frequencies  
Figure 53. AVDD_5V Power-Supply Rejection Ratio vs  
100-mVPP Supply Noise Frequencies  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
1.35  
20000  
1.35  
1.2  
Output Code  
VCNTL  
1.2  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
1.05  
0.9  
1.05  
0.9  
0.75  
0.6  
0.75  
0.6  
0.45  
0.3  
0.45  
0.3  
0.15  
0
0.15  
0
Output Code  
VCNTL  
-0.15  
-0.15  
0
0.5  
1
1.5  
2
2.5  
3
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
Time (ms)  
Time (ms)  
D054  
D055  
Figure 54. VCNTL Response vs Time  
Figure 55. VCNTL Response vs Time  
30  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
=
1.2  
0.6  
0
1.2  
0.6  
0
-0.6  
-1.2  
-0.6  
-1.2  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Time (ms)  
Time (ms)  
Figure 56. Pulse Inversion Asymmetrical Positive Input  
Figure 57. Pulse Inversion Asymmetrical Negative Input  
600  
10000  
Positive Overload  
Negative Overload  
Average  
Positive Overload  
Negative Overload  
Average  
8000  
400  
200  
0
6000  
4000  
2000  
0
-2000  
-4000  
-6000  
-8000  
-10000  
-200  
-400  
-600  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
D059  
Time (ms)  
D058  
VIN = 2 VPP, PRF = 1 kHz, gain = 21 dB  
VIN = 2 VPP, PRF = 1 kHz, gain = 21 dB, across pulse inversion  
asymmetrical positive and negative input  
Figure 59. Device Pulse Inversion Output vs Time (Zoomed)  
Figure 58. Device Pulse Inversion Output vs Time  
2000  
10000  
47 nF  
15 nF  
47 nF  
15 nF  
1600  
8000  
1200  
800  
6000  
4000  
2000  
0
400  
0
-2000  
-4000  
-6000  
-8000  
-10000  
-400  
-800  
-1200  
-1600  
-2000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (ms)  
Time (ms)  
D060  
D061  
VIN = large amplitude (50 mVPP) followed by small amplitude  
(500 µVPP), across INM capacitor  
VIN = large amplitude (50 mVPP) followed by small amplitude  
(500 µVPP), across INM capacitor  
Figure 60. Overload Recovery Output vs Time  
Figure 61. Overload Recovery Output vs Time (Zoomed)  
Copyright © 2015, Texas Instruments Incorporated  
31  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD_1P8 = 1.8 V, AVDD_3P3 = 3.3 V, AVDD_5V = 5 V, DVDD_1P2 = 1.2 V, DVDD_1P8 = 1.8 V, ac-  
coupled with a 0.1-µF capacitor at INP, 15-nF capacitor to ground at INM, no active termination, VCNTLP = VCNTLM = 0 V,  
LNA = 18 dB, PGA = 24 dB, LPF filter = 15 MHz, low-noise mode, internal 500-Ω CW feedback resistor, 14-bit ADC  
resolution, ADC_CLKP and ADC_CLKM = 50-MHz differential, LVDS mode to capture ADC data, input signal frequency fIN  
=
5 MHz, and output amplitude VOUT = –1 dBFS, unless otherwise noted. Minimum and maximum values are specified across  
the full temperature range.  
10  
0
-10  
Normalized K = 0  
Normalized K = 1  
HPF_CORNER_CHxy = 2  
HPF_CORNER_CHxy = 3  
-20  
-30  
-40  
-50  
-60  
HPF_CORNER_CHxy = 4  
HPF_CORNER_CHxy = 5  
HPF_CORNER_CHxy = 6  
HPF_CORNER_CHxy = 7  
HPF_CORNER_CHxy = 8  
HPF_CORNER_CHxy = 9  
HPF_CORNER_CHxy = 10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Frequency (MHz)  
D062  
Across various HPF corner settings  
Figure 62. Digital High-Pass Filter Gain Response vs Frequency  
32  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9 Detailed Description  
9.1 Overview  
The AFE5818 is a highly-integrated, analog front-end (AFE) solution specifically designed for ultrasound systems  
in which high performance and higher integration are required. The device integrates a complete time-gain-  
control (TGC) imaging path and a continuous wave Doppler (CWD) path. The device also enables users to select  
from a variety of power and noise combinations to optimize system performance. The device contains 16  
dedicated channels, each comprising a low-noise amplifier (LNA), voltage-controlled attenuator (VCAT),  
programmable gain amplifier (PGA), low-pass filter (LPF), and either a 14-bit or 12-bit analog-to-digital converter  
(ADC). At the output of the 16 ADCs is a low-voltage differential signaling (LVDS) serializer to transfer digital  
data. In addition, the device also contains a continuous wave (CW) mixer. Multiple features in the device are  
suitable for ultrasound applications (such as active termination, individual channel control, fast power-up and  
power-down response, programmable clamp voltage control, fast and consistent overload recovery, and digital  
processing). Therefore, this device brings premium image quality to ultra-portable, handheld systems all the way  
up to high-end ultrasound systems. In addition, the signal chain of the device can handle signal frequencies as  
low as 10 kHz and as high as 50 MHz. This broad analog frequency range enables the device to be used in both  
sonar and medical applications. See the Functional Block Diagram section for a simplified function block  
diagram.  
Copyright © 2015, Texas Instruments Incorporated  
33  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.2 Functional Block Diagram  
VCM  
CM_BYP1  
Reference Voltage,  
Current Generator  
CM_BYP2  
VHIGH1  
VHIGH2  
Programmable Active Termination  
ACT1  
LPF  
VCAT  
0 dB to  
-40 dB  
PGA  
24 dB, 30 dB  
10, 15, 20,  
30, 35, and  
50 MHz  
INP1  
LNA  
ADC 1  
INM1  
VNCTL  
CW_CH1  
LVDS  
CW Mixer  
DOUTP1  
16x16 Cross-  
Point SW  
DOUTM1  
CW_CLOCK  
DOUTP2  
DOUTM2  
Programmable Active Termination  
ACT2  
LPF  
VCAT  
0 dB to  
-40 dB  
PGA  
24 dB, 30 dB  
10, 15, 20,  
30, 35, and  
50 MHz  
INP2  
INM2  
LNA  
ADC 2  
VCNTL  
CW Mixer  
CW_CH2  
DOUTP16  
DOUTM16  
16x16 Cross-  
Point SW  
CW_CLOCK  
FCLKP  
FCLKM  
DCLKP  
DCLKM  
Programmable Active Termination  
ACT16  
LPF  
VCAT  
0 dB to  
-40 dB  
PGA  
24 dB, 30 dB  
10, 15, 20,  
30, 35, and  
50 MHz  
INP16  
INM16  
LNA  
ADC 16  
VCNTL  
CW_CH16  
CW Mixer  
16x16 Cross-  
Point SW  
CW_CLOCK  
VCNTL  
CW_CLOCK  
Clock  
Generator  
VCNTRL Block  
CLKP_16x  
CLKM_16x  
SYNC Generator  
Serial Interface  
SDOUT  
16 Phase Generator  
CLKP_1x  
CLKM_1x  
Summing Amplifier  
CW_IP_OUTP, CW_IP_OUTM,  
CW_QP_OUTP, CW_QP_OUTM,  
ADC Clock or  
System Clock  
34  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3 Feature Description  
9.3.1 Low-Noise Amplifier  
In many high-gain systems, a low-noise amplifier is critical to achieve overall performance. The device uses new  
proprietary architecture and a bipolar junction transistor (BJT) input transistor to achieve exceptional low-noise  
performance when operating on a low-quiescent current.  
9.3.1.1 Input Signal Support  
The LNA takes a single-ended input signal and converts it to a differential output signal that is configurable for  
programmable gains of 24 dB, 18 dB, and 12 dB. The differential output signal has an input-referred noise of  
0.63 nV/Hz, 0.70 nV/Hz, and 0.9 nV/Hz, respectively, across the different gain modes. The LNA supports a  
maximum linear differential output swing of 4 VPP across all gain settings. Therefore, depending on the LNA gain,  
the maximum linear input swing support changes from 250 mVPP, 500 mVPP, and 1 VPP, for LNA gains of 24 dB,  
18 dB, and 12 dB, respectively.  
9.3.1.2 Input Circuit  
The LNA input pin (INPx) is internally biased at approximately 2.2 V. AC couple the input signal to the INPx pin  
with an adequately-sized capacitor, CIN. TI recommends using a 0.1-μF capacitor for CIN. Similarly, the active  
termination pin is internally biased at 1.5 V. TI recommends connecting a 1-µF capacitor (CACT) from the active  
termination pin (ACTx) to the INP capacitor, as shown in Figure 63.  
AFE  
CLAMP  
CACT  
ACTx  
CIN  
INPx  
Input  
CBYPASS  
LNAx  
INMx  
Optional  
Diodes  
DC Offset  
Correction  
S0498-01  
Figure 63. Device Input Circuit  
9.3.1.3 LNA High-Pass Filter  
To reject an unwanted low-frequency leakage signal from the transducer and to achieve low dc offset drift from  
the device, the AFE5818 incorporates a dc offset correction circuit for each amplifier stage; see Figure 63. This  
circuit extracts the low-frequency component from the LNA output, which is then fed back to the LNA  
complementary input for low-frequency signal rejection. Afterwards, this feedback circuit functions as a high-pass  
filter (HPF). The effective corner frequency of the HPF is determined by the CBYPASS capacitor connected at the  
INMx pin of the device. The corner frequency is lower with larger CBYPASS capacitors. A large capacitor (such as  
1 μF) can be used for setting the low corner frequency (< 2 kHz) of the LNA dc offset correction circuit. For  
stable operation, the minimum value of the CBYPASS capacitor that is supported by device is 15 nF. To disable  
this HPF, set the LNA_HPF_DIS register bit to 1. Note that disabling this HPF results in a large dc offset at the  
device output. Also, for a given INMx capacitor, the corner frequency of the HPF can be programmed using the  
LNA_HPF_PROG bit. Table 1 lists the HPF corner frequency for any arbitrary CBYPASS capacitor connected at the  
INMx pin across various LNA_HPF_PROG bit settings.  
Copyright © 2015, Texas Instruments Incorporated  
35  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Feature Description (continued)  
Table 1. LNA HPF Corner Frequency  
HPF CORNER WITH 15-nF CAPACITOR  
CONNECTED AT INMx PIN  
HPF CORNER WITH CBYPASS CAPACITOR  
CONNECTED AT INMx PIN  
LNA_HPF_PROG (Register 203, Bits 3-2)  
00  
01  
10  
11  
100 kHz  
50 kHz  
100 kHz × (15 nF / CBYPASS)  
50 kHz × (15 nF / CBYPASS  
200 kHz × (15 nF / CBYPASS  
150 kHz × (15 nF / CBYPASS  
)
200 kHz  
150 kHz  
)
)
The LNA HPF corner frequency can be reduced by 3X by setting the RED_LNA_HPF_3X (register 205, bit 8) bit  
to 1. For instance, if the INMx capacitor is 15 nF, the LNA_HPF_PROG bits are set to 01, and  
RED_LNA_HPF_3X is set to 1, then the LNA HPF corner frequency is given by 50 kHz / 3 = 16.6 kHz. Figure 28  
and Figure 29 illustrate the low-frequency noise for various LNA_HPF_PROG, RED_LNA_HPF_3X, and INM  
capacitor combinations.  
9.3.1.4 LNA Input Impedance  
In ultrasound applications, signal reflection exists as a result of long cables between the transducer and system.  
This reflection results in extra ringing added to echo signals in PW mode. This ringing effect can degrade the  
axial resolution, which depends on the echo signal length. Therefore, either passive termination or active  
termination is preferred if good axial resolution is desired. Figure 64 shows three termination configurations: no  
termination, active termination, and passive termination.  
Rs  
Rs  
Rs  
LNA  
(a) No Termination  
Rf  
LNA  
(b) Active Termination  
LNA  
Rt  
(c) Passive Termination  
S0499-01  
Figure 64. Termination Configurations  
36  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Under the no termination configuration, the input impedance of the device is approximately 6 kΩ (8 KΩ // 20 pF)  
at 1 MHz. Passive termination requires an external termination resistor (Rt), which contributes to additional  
thermal noise. The LNA supports active termination with programmable values, as shown in Figure 65.  
450Ω  
900Ω  
1800Ω  
ACTx  
3600Ω  
4500Ω  
INPx  
Input  
LNAx  
INMx  
AFE  
S0500-01  
Figure 65. Active Termination Implementation  
The device has four pre-settings: 50 Ω, 100 Ω, 200 Ω, and 400 Ω, which are configurable through the registers.  
Other termination values can be realized by setting the termination switches shown in Figure 65. The  
ACT_TERM_IND_RES register (register 196, bits 4-0) is used to enable these switches. The input impedance of  
the LNA under the active termination configuration approximately follows Equation 1:  
Rf  
ZIN =  
/ /CIN / /RIN  
AnLNA  
1+  
2
where:  
RIN (8 kΩ) and CIN (20 pF) are the input resistance and capacitance of the LNA, respectively.  
(1)  
Table 75 lists the LNA RINs under different LNA gains. System designers can achieve fine tuning for different  
probes. Therefore, ZIN is frequency dependent and decreases as frequency increases; see Figure 9. This rolling-  
off effect does not greatly affect system performance because 2 MHz to 10 MHz is the most commonly-used  
frequency range in medical ultrasound applications. Active termination can be applied to both CW and TGC  
modes; however, resulting from NF concerns, CW mode can use no termination mode. The flexibility of the  
impedance configuration is of great benefit because each ultrasound system includes multiple transducers with  
different impedances.  
Figure 36, Figure 37, Figure 38, Figure 39, and Figure 40 illustrate the noise frequency (NF) under different  
termination configurations. All these NF plots indicate that no termination achieves the best noise figure.  
However, active termination adds less noise than passive termination. Thus, termination topology must be  
carefully selected based on each scenario in an ultrasound application.  
Copyright © 2015, Texas Instruments Incorporated  
37  
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.1.5 LNA Gain Switch Response  
The LNA gain is programmable through the LNA_GAIN_GBL (register 196, bits 14-13) SPI registers. The gain  
switching time depends on the SPI speed as well as the LNA gain response time. During switching, glitches can  
occur and sometimes appear as artifacts in images. In addition, the signal chain requires approximately 14 µs to  
settle after the LNA gain change. Thus, the LNA gain switching may not be preferred when switching time or  
settling time for the signal chain is limited. Note that a gain switch also changes the voltage level of clamping  
diodes; therefore, the setting time of the clamp circuit must be considered.  
9.3.1.6 LNA Noise Contribution  
The noise specification is critical for the LNA and determines the dynamic range of the entire system. The device  
LNA achieves low power, an exceptionally low-noise voltage of 0.63 nV/Hz, and a low-current noise of  
2.7 pA/Hz.  
Typical ultrasonic transducer impedance (Rs) varies from tens of ohms to several hundreds of ohms. Voltage  
noise is the dominant noise in most cases; however, the LNA current noise flowing through the source  
impedance (Rs) generates additional voltage noise. Total LNA noise can be computed with Equation 2.  
LNA _Noisetotal = VL2NAnoise + Rs2 ´IL2NAnoise  
(2)  
The device achieves a low noise figure (NF) over a wide range of source resistances; see Figure 36, Figure 37,  
Figure 38, Figure 39, and Figure 40.  
9.3.1.7 LNA Overload Recovery  
To avoid any image artifacts in an ultrasound system, the device must offer consistent and fast overload recovery  
response. In order to achieve this response, a clamping circuit is used on the active termination path; see  
Figure 63 to create a low-impedance path when an overload signal is detected by the device. The clamp circuit  
limits large input signals at the LNA inputs and improves the overload recovery performance. The clamp level  
can be automatically set to 350 mVPP, 600 mVPP, or 1.15 VPP, depending on the LNA gain settings when the  
INPUT_CLAMP_LVL register (register 196, bits 10-9) is set to 00. Other clamp voltages (such as 1.15 VPP, 0.6  
VPP, and 1.5 VPP) are also achievable by setting different combinations of the INPUT_CLAMP_LVL bits. This  
clamping circuit is also designed to obtain good pulse inversion performance and reduce the affect of  
asymmetrical inputs. For very large overload signals (> 6 dB of the linear input signal range), TI recommends  
using back-to-back Schottky clamping diodes at the input to limit the amplitude of the input signal.  
9.3.2 Voltage-Controlled Attenuator  
The voltage-controlled attenuator is designed to have a linear-in-dB attenuation characteristic (that is, the  
average attenuation in dB; see Figure 3) that is constant for each equal increment of the control voltage (VCNTL  
= VCNTLP – VCNTLM). In the device, a differential control structure is used to reduce common-mode noise.  
However, a single-ended control voltage is also supported. A simplified attenuator structure is illustrated in  
Figure 66 and Figure 67 for analog and digital structures, respectively.  
A1 - A7 Attenuator Stages  
RS  
Attenuator  
Input  
Attenuator  
Output  
Q1  
A1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
VB  
A1  
A1  
A1  
A1  
A1  
A1  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
VCNTL  
C1 - C8 Clipping Amplifiers  
Control  
Input  
Figure 66. Simplified Voltage-Controlled Attenuator (Analog Structure)  
38  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
RS  
Attenuator  
Input  
Attenuator  
Output  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
VB  
SW4  
SW1  
SW2  
SW3  
SW5  
SW6  
SW7  
VHIGH  
Figure 67. Simplified Voltage-Controlled Attenuator (Digital Structure)  
The attenuator is essentially a variable voltage divider that consists of the series input resistor (RS) and seven  
shunt field-effect transistors (FETs) placed in parallel and controlled by sequentially activated clipping amplifiers  
(A1 through A7). VCNTL is the effective difference between VCNTLP and VCNTLM. Each clipping amplifier can  
be understood as a specialized voltage comparator with a soft transfer characteristic and well-controlled output  
limit voltage. Reference voltages V1 through V7 are equally spaced over the 0-V to 1.5-V control voltage range.  
As control voltage increases through the input range of each clipping amplifier, the amplifier output rises from a  
voltage where the FET is nearly off to VHIGH where the FET is completely on. As each FET approaches its on-  
state and the control voltage continues to rise, the next clipping amplifier and FET combination takes over for the  
next portion of the piecewise linear attenuation characteristic. Thus, low control voltages have most of the FETs  
turned off, producing minimum signal attenuation. Similarly, high control voltages turn the FETs on, leading to a  
maximum signal attenuation. Therefore, each FET functions to decrease the shunt resistance of the voltage  
divider formed by RS and the parallel FET network. Even though splitting the control voltage into seven segments  
achieves the full attenuation through different setoff transistors, the gain curve across the VCNTL voltage slightly  
deviates from the ideal dB-linear curve. The typical ripple is in the order of ±0.5 dB.  
The typical gain range for this VCAT is approximately 40 dB, and this gain range is independent of the LNA and  
PGA gain settings. The TGC gain curve is inversely proportional to the voltage difference between VCNTLP and  
VCNTLM. The maximum attenuation (minimum channel gain) of the TGC gain curve appears at VCNTLP –  
VCNTLM = 1.5 V, and minimum attenuation (maximum channel gain) of the TGC gain curve occurs at  
VCNTLP – VCNTLM = 0 V.  
The total channel gain for an 18-dB LNA gain and a 24-dB PGA gain setting, for different VCNTL values, is  
illustrated in Figure 2.  
When the device operates in CW mode, the attenuator stage remains connected to the LNA outputs. Therefore,  
powering down the VCA is recommended using the PDWN_VCA_PGA (register 197, bit 12) register bit. In this  
case, the VCNTLP and VCNTLM voltage does not matter.  
9.3.2.1 Digital TGC  
Additionally, a digitally-controlled TGC mode is implemented to achieve better phase-noise performance in the  
device. The attenuator can be controlled digitally instead of by the analog control voltage, VCNTL. This mode  
can be set by the EN_DIG_TGC (register 203, bit 7) register bit. The variable voltage divider is implemented as a  
fixed series resistance and a FET is implemented as the shunt resistance. Each FET can be turned on by  
connecting the SW[7:1] switches. Turning on each of these switches provides approximately 6 dB of attenuation.  
This attenuation can be controlled by the DIG_TGC_ATTENUATION (register 203, bits 6-4) register bits. This  
digital control feature can eliminate the noise from the VCNTL circuit and provide better SNR and phase noise for  
the TGC path. This digital TGC can be used for PW Doppler or color Doppler modes to achieve better  
performance than analog TGC.  
Copyright © 2015, Texas Instruments Incorporated  
39  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.2.2 Control Voltage Input  
As previously mentioned, VCNTLP and VCNTLM can be driven by either a differential or a single-ended signal.  
For single-ended operation, VCNTLM can be grounded and VCNTLP can be swept from 0 V to 1.5 V. The TGC  
gain profile for the single-ended VCNTL is as shown in Figure 68a. For differentially driving VCNTL, VCNTLP  
must always be kept higher than VCNTLM with a typical common-mode of 0.75 V, as shown in Figure 68b.  
1.5 V  
VCNTLP  
VCNTLM = 0 V  
X + 40 dB  
TGC Gain  
X dB  
(a) Single-Ended Input at VCNTLP  
1.5 V  
VCNTLP  
0.75 V  
VCNTLM  
0 V  
X + 40 dB  
TGC Gain  
X dB  
(b) Differential Inputs at VCNTLP and VCNTLM  
Figure 68. VCNTLP and VCNTLM Configurations  
The VCNTL pins are high-impedance pins, and the VCNTL pins of multiple devices can be connected in parallel  
with no significant loading effect. When the voltage level (VCNTLP, VCNTLM) is above 1.5 V or below 0 V, the  
attenuator continues to operate at its maximum attenuation level or minimum attenuation level, respectively.  
Limiting the voltage from –0.3 V to 2 V is recommended.  
The VCNTL inputs have an approximate bandwidth of 800 kHz. This wide bandwidth, although useful in many  
applications (such as fast VCNTL response), can also allow high-frequency noise to modulate the gain control  
input and finally affect the Doppler performance. In practice, this modulation can be avoided by additional  
external filtering (RVCNTL and CVCNTL) at the VCNTLM and VCNTLP, pins as Figure 104 illustrates. However, the  
external filter cutoff frequency cannot be kept too low, which results in a low gain response time. Without an  
external filter on the VCNTLP, VCNTLM pins, the gain control response time typically requires less than 1 μs, as  
indicated in Figure 54.  
40  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Noise at the VCNTL pins must be low enough to obtain good system performance because this noise is  
correlated across channels. Figure 69 shows the allowed noise on the VCNTL pins for different channel systems.  
10  
16 Channels  
32 Channels  
9
64 Channels  
128 Channels  
8
192 Channels  
7
6
5
4
3
2
1
0
1
2
3 45 7 10 20 30 50 100 200 500 1000  
Frequency (kHz)  
5000  
D063  
Figure 69. Allowed Noise on the VCNTL Signal Across Frequency and Different Channels  
Typical VCNTLM and VCNTLP signals are generated by an 8-bit to 12-bit, 10-MSPS, digital-to-analog converter  
(DAC) and a differential operation amplifier. TI’s DACs, such as the TLV5626, DAC7821. Differential amplifiers  
with output common-mode voltage control (that is, the THS4130 and OPA1632) can connect the DAC to the  
VCNTLM and VCNTLP pins. The buffer amplifier can also be configured as an active filter to suppress low  
frequency noise. The VCNTLM and VCNTLP circuit achieve low noise in order to prevent the VCNTLM and  
VCNTLP noise from being modulated to RF signals. VCNTLM and VCNTLP noise is recommended to be below  
25 nV/Hz at 1 kHz and 5 nV/Hz at 50 kHz. For more information, see the THS413x data sheet and application  
report Design for a Wideband Differential Transimpedance DAC Output (SBAA150).  
9.3.2.3 Voltage Attenuator Noise  
The voltage-controlled attenuator noise follows a monotonic relationship to the attenuation coefficient. At higher  
attenuation the input-referred noise is higher, and vice-versa. The attenuator noise is then amplified by the PGA  
and becomes the noise floor at the ADC input. In the high attenuation operating range of the attenuator (that is,  
when VCNTL is high), the attenuator input noise can exceed the LNA output noise. The attenuator then becomes  
the dominant noise source for the following PGA stage and ADC. Therefore, minimize the attenuator noise  
compared to the LNA output noise. The device attenuator is designed for achieving very low noise even at high  
attenuation (low channel gain) and realizing better SNR of near-field imaging in ultrasound systems. The input-  
referred noise for different attenuations are listed in Table 2.  
Table 2. Voltage-Controlled Attenuator Noise vs Attenuation  
ATTENUATOR INPUT-REFERRED NOISE  
ATTENUATION (dB)  
(nV/Hz)  
–40  
–36  
–30  
–24  
–18  
–12  
–6  
10.5  
10  
9
8.5  
6
4
3
0
2
Copyright © 2015, Texas Instruments Incorporated  
41  
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.3 Programmable Gain Amplifier (PGA)  
After the voltage-controlled attenuator, a programmable gain amplifier can be configured as 24 dB or 30 dB with  
a constant input-referred noise of 1.75 nV/Hz. The PGA structure consists of a differential voltage-to-current  
(V2I) converter with programmable gain, clamping circuits, a transimpedance amplifier (I2V) with a  
programmable third-order low-pass filter, and a dc offset correction circuit. The simplified PGA block diagram is  
shown in Figure 70.  
Voltage Clamp  
Current Clamp  
To ADC  
From Attenuator  
I2V  
LPF  
V2I  
Voltage Clamp  
Current Clamp  
DC Offset  
Correction Loop  
Figure 70. Simplified Block Diagram of the PGA  
9.3.3.1 PGA Clamp  
The PGA consists of two clamp circuits, positioned as shown in Figure 70. These clamps limit the amplitude of  
the overloaded signal and therefore provide better overload recovery performance.  
An input-to-voltage (I2V) block in the PGA supports a maximum output swing of 2 VPP, which means that the  
maximum allowed signal amplitude supported at the voltage-to-input (V2I) block input is 125 mVPP (for a PGA  
gain = 24 dB) or 62.5 mVPP (for a PGA gain = 30 dB). If the input signal amplitude of the V2I bock is much higher  
than the allowable range, then the V2I input can be clamped using a voltage clamp as shown in Figure 70. This  
voltage clamp is disabled by default and can be enabled by using the V2I_CLAMP (register 205, bit 13) register  
bit.  
A current clamp is at the output of the V2I block, as shown in Figure 70, to further limit the overload signal  
amplitude. This current clamp can be programmed through the PGA_CLAMP_DIS (register 195, bit 7) and  
PGA_CLAMP_LVL (register 195, bit 6) register bits. Note that in low-power and medium-power modes, the  
current clamp is disabled for power savings if PGA_CLAMP_DIS (register 195, bit 7) = 0. This current clamp  
helps obtain a better overload recovery response. Without enabling this current clamp, at a 0.5-V VCNTL, the  
device shows a standard deviation of 4 LSBs at the output signal immediately after the overload. However, with  
the current clamp enabled, the standard deviation approaches 3.2 LSBs, meaning that the device requires less  
time to reach stable output. Also note that when the PGA output levels are greater than –2 dBFS and the current  
clamp is enabled, there is a degradation of approximately 3 dB to 5 dB in HD3 performance.  
If the V2I block input is massively overloaded, the output of the I2V block can become saturated even if the  
voltage and current clamp described previously is enabled. When the I2V block becomes saturated, higher-order  
harmonics are generated that are aliased back to signal bandwidth after sampling. To avoid this undesirable V2I  
output saturation, a current clamp can be programmed to –6 dBFs, using the PGA_CLAMP_HALF bit (register  
205, bit 15).  
42  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.3.2 Low-Pass Filter (LPF)  
The current from the V2I is fed to a programmable transimpedance amplifier, which also functions as a low-pass  
filter (LPF). The LPF is designed as a differential, active, third-order filter with Butterworth characteristics and a  
typical 18-dB per octave roll-off. Programmable through the serial interface, the –1-dB frequency corner can be  
set to 10 MHz, 15 MHz, 20 MHz, 30 MHz, 35 MHz, or 50 MHz. The filter bandwidth is set for all channels  
simultaneously. When very low bandwidth is desired (usually when suppressing higher order harmonics to a very  
low value), a 5-MHz filtering mode can be enabled using the SUPRESS_HIGHER_HARMONICS (register 205,  
bit 14) bit. However, enabling this mode can cause higher gain variation across devices when compared to other  
filter corner modes.  
9.3.3.3 High-Pass Filter (HPF)  
A selectable dc offset correction circuit is implemented in the PGA as well. This correction circuit is similar to the  
one used in the LNA. This circuit extracts the dc component of the PGA outputs, which are fed back to the PGA  
complimentary inputs for dc offset correction. This dc offset correction circuit also has a high-pass response with  
a cutoff frequency of 80 kHz. This HPF is enabled by default and can be disabled by using the PGA_HPF_DIS  
(register 195, bit 4) bit.  
9.3.3.4 Noise  
Low input noise is always preferred in a PGA and its noise contribution must not degrade the ADC SNR too  
much after the attenuator. The PGA is designed as a 24-dB or 30-dB gain with a constant input-referred noise of  
1.75 nV/Hz. The LNA noise dominates at minimum attenuation (used for small input signals), and the PGA and  
ADC noise dominate at maximum attenuation (large input signals). Thus, a 24-dB PGA gain achieves better SNR  
as long as the amplified signals can exceed the noise floor of the ADC.  
9.3.4 Analog-to-Digital Converter (ADC)  
The device supports a high-performance, 14-bit ADC that achieves 72-dBFS SNR. This ADC ensures excellent  
SNR at low-chain gain. The ADC can operate at maximum speeds of 65 MSPS and 80 MSPS, providing a 14-bit  
and a 12-bit output, respectively. The low-voltage differential signaling (LVDS) outputs of the ADC enable a  
flexible system integration that is desirable for miniaturized systems. In the following sections, full description of  
all inputs and outputs of the ADC with different configurations are provided along with suitable examples.  
9.3.4.1 System Clock Input  
The 16 channels on the device operate from a single clock input. To ensure that the aperture delay and jitter are  
the same for all channels, the device uses a clock tree network to generate individual sampling clocks for each  
channel. The clock lines for all channels are matched from the source point to the sampling circuit for each of the  
16 internal ADCs. The delay variation is described by the aperture delay parameter of the Output Interface  
Timing Characteristics table. Variation over time is described by the aperture jitter parameter of the Output  
Interface Timing Characteristics table.  
This system clock input can be driven differentially (sine wave, LVPECL, or LVDS) or single-ended (LVCMOS).  
The device clock input has an internal buffer and clock amplifier (see Figure 71) which is enabled or disabled  
automatically, depending on the type of clock provided (auto-detect feature).  
Copyright © 2015, Texas Instruments Incorporated  
43  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
AVDD_1P8  
0.7 V  
VCM  
100 pF  
5 kQ  
5 kQ  
CLKP  
6 pF  
6 pF  
CLKM  
Figure 71. Internal Clock Buffer for Differential Clock Mode  
If the preferred clocking scheme for the device is single-ended, connect the CLKM pin to ground (in other words,  
short CLKM directly to AVSS, as shown in Figure 72). In this case, the auto-detect feature shuts down the  
internal clock buffer and the device automatically goes into a single-ended clock input. Connect the single-ended  
clock source directly (without decoupling) to the CLKP pin, which is the only device clock input available because  
CLKM is connected to ground. Therefore, TI recommends using low-jitter, square signals (LVCMOS levels, 1.8-V  
amplitude) to drive the ADC (see technical brief, Clocking High-Speed Data Converters, SLYT075 for further  
details).  
CMOS Clock Input  
CLKP  
CLKM  
Figure 72. Single-Ended Clock Driving Circuit  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
For single-ended sinusoidal clocks, or for differential clocks (such as differential sine wave, LVPECL, LVDS, and  
so forth), enable the clock amplifier with the connection scheme shown in Figure 73. The 10-nF capacitor used to  
couple the clock input is as shown in Figure 73. This same scheme applies when the clock is single-ended but  
the clock amplitude is either small or its edges are not sharp (for instance, with a sinusoidal single-ended clock).  
In this case, the input clock signal can be connected with a capacitor to CLKP (as in Figure 73) and connect  
CLKM to ground through a capacitor (that is, ac-coupled to AVSS).  
If a transformer is used with the secondary coil floating (for instance, to convert from single-ended to differential),  
the transformer can be connected directly to the clock inputs without requiring the 10-nF series capacitors.  
10 nF  
CLKP  
Differential Sine Wave  
or PECL or LVDS Clock Signal  
CLKM  
10 nF  
Figure 73. Differential Clock Driving Circuit  
Copyright © 2015, Texas Instruments Incorporated  
45  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.4.2 System Clock Configuration for Multiple Devices  
To ensure that the aperture delay and jitter are the same for all channels, the device uses a clock tree network to  
generate individual sampling clocks for each channel. For all channels, the clock is matched from the source  
point to the sampling circuit of each of the eight internal devices. The variation on this delay is described in the  
Aperture Delay parameter of the Output Interface Timing Characteristics table. Variation is described by the  
aperture jitter parameter of the Output Interface Timing Characteristics table.  
The system clock input can be driven by differential clocks (sine wave, LVPECL, or LVDS) or single-ended  
clocks (LVCMOS). In the single-ended case, TI recommends the use of low-jitter square signals (LVCMOS  
levels, 1.8-V amplitude). See technical brief, Clocking High-Speed Data Converters, SLYT075 for further details  
on the theory.  
The jitter cleaners CDCM7005, CDCE72010, or LMK048X series are suitable to generate the system clock and  
ensure high performance for the 14-bit device resolution. Figure 74 shows a clock distribution network.  
FPGA Clock,  
Noisy Clock  
n × (5 MHz to 100 MHz)  
TI Jitter Cleaner  
LMK048X  
CDCE72010  
CDCM7005  
5-MHz to 100-MHz  
ADC CLK  
CDCLVP1208  
The CDCE72010 has 10  
LMK0030X  
outputs  
LMK01000  
8 Synchronized  
DUT System CLKs  
Figure 74. System Clock Distribution Network  
46  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.4.3 LVDS Interface  
The device supports an LVDS output interface in order to transfer device digital data serially to an FPGA. The  
device has a total of 18 LVDS output lines. One of these pairs is a serial data clock, another pair is a data  
framing clock, and the remaining 16 pairs are dedicated for data transfer. A graphical representation of the LVDS  
output is shown in Figure 75.  
LVDS Buffer  
DOUTP1  
DOUTM1  
DOUTP2  
DOUTM2  
Digital Output  
DOUTP16  
DOUTM16  
DCLKP  
Serial Clock  
DCLKM  
FCLKP  
Frame Clock  
FCLKM  
Figure 75. LVDS Output  
Copyright © 2015, Texas Instruments Incorporated  
47  
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.4.3.1 LVDS Buffer  
The equivalent circuit of each LVDS output buffer is shown in Figure 76. The buffer is designed for an output  
impedance of 100 (ROUT). The differential outputs can be terminated at the receiver end by a 100-Ω  
termination. The buffer output impedance functions like a source-side series termination. By absorbing reflections  
from the receiver end, the buffer output impedance helps improve signal integrity. Note that this internal  
termination can neither be disabled nor its value changed.  
Device  
OUTP  
+0.4 V  
External  
100-Load  
OUTM  
ROUT  
1.03 V  
-0.4 V  
Switch impedance is  
nominally 50 (ê10%).  
Figure 76. LVDS Output Circuit  
48  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.4.3.2 LVDS Data Rate Modes  
The LVDS interface supports two data rate modes, as described in this section. Figure 77 shows the  
Nomenclatures used in LVDS timing diagrams  
DCLKP  
Bit Clock  
DCLKM  
t
t
h
su  
t
t
h
su  
CH1 out  
5b + 1  
5n  
Output Data Pair  
Figure 77. LVDS Timing Nomenclature  
9.3.4.3.2.1 1X Data Rate Mode  
In 1X data rate mode, each LVDS output carries data from a single ADC. Figure 78 and Figure 79 show the  
output data, serial clock, and frame clock LVDS lines for the 14-bit and 12-bit 1X mode, respectively.  
Input Signal  
Sample N  
Sample  
Sample  
N+Cd+1  
N+Cd  
TA  
TA  
Cd Clock  
Cycles Latency  
Input Clock (CLKIN)  
Frequency = fCLKIN  
T
tPDI  
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 7 x fCLKIN  
Output Data (CHn OUT)  
Data Rate = 14 x fCLKIN  
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
1
(
(12) (13)  
(9) (10) (11) (12) (13)  
(9) (10) (11) (12) (13) (0)  
(9) (10) (11) (12) (13)  
Sample N-Cd  
Sample N-1  
Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
13  
(0)  
(1) K = ADC resolution.  
Figure 78. 14-Bit, 1X Data Rate Output Timing Specification  
Sample N  
Input Signal  
TA  
Sample  
N+Cd+1  
Cd Clock Cycles Latency  
Input Clock (CLKIN)  
Frequency = fCLKIN  
tPDI  
T
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 6 x fCLKIN  
Output Data (CHn OUT)  
Data Rate = 12 x fCLKIN  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
(9)  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
(9)  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
(9)  
1
(10)  
0
(11)  
11  
(0)  
10  
(1)  
Sample N-Cd  
Sample N-1  
Sample N  
Sample N+1  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
1
(10)  
Figure 79. 12-Bit, 1X Data Rate Output Timing Specification  
Copyright © 2015, Texas Instruments Incorporated  
49  
 
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.4.3.2.2 2X Data Rate Mode  
In 2X data rate mode, only half of the LVDS lines are used to transfer data. Thus, this mode is useful for saving  
power when lower sampling frequency ranges permit. This mode is enabled with the LVDS_RATE_2X register bit  
(register 1, bit 14). After enabling this mode, the digital data from two ADCs are transmitted with a single LVDS  
lane. When compared to the 1X data rate mode, the 2X data rate mode serial clock frequency is doubled, but the  
frame clock frequency remains the same (for the same serialization factor and ADC resolution).  
When the frame clock is high, data on DOUT1 corresponds to channel 1, DOUT2 corresponds to channel 3, and  
so forth. When the frame clock is low, DOUT1 transmits channel 2 data, DOUT2 transmits channel 4 data, and  
so forth.  
Figure 80 and Figure 81 show a timing diagram for the 14-bit and 12-bit 2X mode, respectively. Channel and  
LVDS data line mapping for this mode are listed in Table 3. Note that idle LVDS lines are not powered down by  
default. To save power, these lines can be powered down using the corresponding power-down bits  
(PDN_LVDSx).  
Sample  
Input Signal  
N+Cd  
Sample  
N+Cd+1  
TA  
tPDI  
Input Clock (CLKIN)  
Frequency = fCLKIN  
T
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 14 x fCLKIN  
utput Data (CHn OUT)  
Data Rate = 28 x fCLKIN  
4
(8)  
3
(9)  
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
(0)  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
1
0
13  
12  
(1)  
11  
(2)  
10  
(3)  
9
(4)  
8
(5)  
7
(6)  
6
(7)  
5
(8)  
4
3
2
(10) (12) (13)  
(9) (10) (11) (12) (13)  
(9) (10) (11) (12) (13) (0)  
(9) (10) (11)  
(
ADC first channel, Sample N+1  
ADC second channel, Sample N  
ADC first channel, Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
13  
(0)  
Figure 80. 14-Bit, 2X Data Rate Output Timing Specification  
Sample  
N+Cd  
Input Signal  
Sample  
N+Cd+1  
TA  
tPDI  
Input Clock (CLKIN)  
Frequency = fCLKIN  
T
Frame Clock (FCLK)  
Frequency = fCLKIN  
Bit Clock (DCLK)  
Frequency = 12 x fCLKIN  
Output Data (CHn OUT)  
Data Rate = 24 x fCLKIN  
4
(7)  
3
(8)  
8
(3)  
8
(3)  
7
(4)  
1
0
11  
(0)  
10  
(1)  
9
(2)  
8
(3)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
1
0
11  
10  
(1)  
9
(2)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
1
0
11  
10  
(1)  
9
(2)  
7
(4)  
6
(5)  
5
(6)  
4
(7)  
3
(8)  
2
1
0
11  
10  
(1)  
2
(9)  
(10) (11)  
(9) (10) (11) (0)  
(9) (10) (11) (0)  
(9) (10) (11) (0)  
ADC first channel, Sample N  
Data Bit in MSB-First Mode  
Data Bit in LSB-First Mode  
ADC second channel, Sample N  
ADC first channel, Sample N+1  
1
(10)  
Figure 81. 12-Bit, 2X Data Rate Output Timing Specification  
50  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Table 3. Channel and ADC Data Line Mapping (2X Rate)  
CHANNELS  
DOUT1  
MAPPING  
ADC data for channels 1 and 2  
DOUT2  
ADC data for channels 3 and 4  
DOUT3  
ADC data for channels 5 and 6  
DOUT4  
ADC data for channels 7 and 8  
DOUT5  
Idle  
DOUT6  
Idle  
DOUT7  
Idle  
DOUT8  
Idle  
DOUT9  
ADC data for channels 9 and 10  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
ADC data for channels 11 and 12  
ADC data for channels 13 and 14  
ADC data for channels 15 and 16  
Idle  
Idle  
Idle  
Idle  
Copyright © 2015, Texas Instruments Incorporated  
51  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.4.4 ADC Register, Digital Processing Description  
The ADC has extensive digital processing functionalities that can be used to enhance ADC output performance.  
The digital processing blocks are arranged as shown in Figure 82.  
ADC 2  
Output  
Digital Test Patterns  
12b, 14b  
Final  
MUX  
Digital  
Output  
ADC1  
Output  
Digital Average  
Default = No  
Digital Gain  
Default = 0  
Digital HPF  
Default = No  
12b, 14b  
Digital Offset  
Default = No  
Figure 82. ADC Digital Block Diagram  
9.3.4.4.1 Digital Offset  
Digital functionality provides for channel offset correction. Setting the DIG_OFFSET_EN bit to 1 enables the  
subtraction of the offset value from the ADC output. There are two offset correction modes, as shown in  
Figure 83.  
DIG_OFFSET_EN  
0
Data Output,  
Bits 13-0  
Bits 13-0  
MUX  
(0s appended as LSBs when in 12-bit resolutions.)  
Analog  
Inputs  
ADCx  
+
1
-
AUTO_OFFSET_REMOVAL_  
ACC_CYCLES  
OFFSET_REMOVAL_SELF  
(Register 4, Bit 15)  
(Register 4, Bits 12-9)  
OFFSET_REMOVAL_START_SEL  
(Register 4, Bit 14)  
Bits  
29-0  
OFFSET_REMOVAL_  
Truncation and  
Rounding Data  
Bits  
Bits 13-0  
1
START_MANUAL  
(Register 4, Bit 13)  
0
Accumulator  
Start  
MUX  
MUX  
1
TX_TRIG Pin  
Bits 9-0  
0
Extending Sign  
Bit to 14 Bits  
OFFSET_CHx  
Bits 13-0  
Figure 83. Digital Offset Correction Block Diagram  
9.3.4.4.1.1 Manual Offset Correction  
If the channel offset is known, the appropriate value can be written in the OFFSET_CHx register (bits 13-0, offset  
for channel x). The offset value programmed in the OFFSET_CHx register (bits 13-0) subtracts out from the ADC  
output. The offset of each of the 16 ADC output channels can be independently programmed. The same offset  
value must be programmed into two adjacent offset registers. For instance, when programming the channel 1  
offset value 0000011101, write the same offset value of 0000011101 in registers 13 (bits 9-0) and 14 (bits 9-0).  
52  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.4.4.1.2 Auto Offset Correction Mode (Offset Correction using a Built-In Offset Calculation Function)  
The auto offset calculation module can be used to calculate the channel offset that is then subtracted from the  
ADC output. To enable the auto offset correction mode, set the OFFSET_REMOVAL_SELF bit to 1.  
In auto offset correction mode the dc component of the ADC output (assumed to be the channel offset) is  
estimated using a digital accumulator. The ADC output sample set used by the accumulator is determined by a  
start time or first sample and number of samples to be used. Figure 83 illustrates the options available to  
determine the accumulator sample set.  
A
high pulse on the TX_TRIG pin or setting the  
OFFSET_REMOVAL_START_MANUAL register can be used to determine the accumulator first sample. To set  
the number of samples, the AUTO_OFFSET_REMOVAL_ACC_CYCLES register (bits 12-9) must be  
programmed according to Table 4.  
If a pulse on the TX_TRIG pin is used to set the first sample, additional flexibility in setting the first sample is  
provided. A programmable delay between the TX_TRIG pulse and first sample can be set by writing to the  
OFFSET_CORR_DELAY_FROM_TX_TRIG register.  
The determined offset value can be read out channel wise. Set the channel number in the  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL register and read the offset value for the corresponding channel  
in the AUTO_OFFSET_REMOVAL_VAL_RD register.  
Table 4. Auto Offset Removal Accumulator Cycles  
NUMBER OF SAMPLES USED FOR OFFSET VALUE  
AUTO_OFFSET_REMOVAL_ACC_CYCLES (Bits 3-0)  
EVALUATION  
0
2047  
127  
1
2
255  
3
511  
4
1023  
2045  
4095  
8191  
16383  
32767  
65535  
5
6
7
8
9
10 to 15  
Copyright © 2015, Texas Instruments Incorporated  
53  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.4.4.2 Digital Average  
The signal-to-noise ratio (SNR) of the signal chain can be further improved by averaging two channels with the  
AVG_EN register bit (register 2, bit 11). The way data are transmitted on the digital output lines in this mode is  
described in Table 5.  
Table 5. Channel and ADC Data Line Mapping (Averaging Enabled)  
CHANNELS  
DOUT1  
MAPPING  
Average of channels 1 and 2  
DOUT2  
Average of channels 3 and 4  
DOUT3  
Average of channels 5 and 6  
DOUT4  
Average of channels 7 and 8  
DOUT5  
Idle  
DOUT6  
Idle  
DOUT7  
Idle  
DOUT8  
Idle  
DOUT9  
Average of channels 9 and 10  
DOUT10  
DOUT11  
DOUT12  
DOUT13  
DOUT14  
DOUT15  
DOUT16  
Average of channels 11 and 12  
Average of channels 13 and 14  
Average of channels 15 and 16  
Idle  
Idle  
Idle  
Idle  
NOTE  
Idle LVDS lines are not powered down by default. To save power, these lines can be  
powered down using corresponding power-down bits (PDN_LVDSx).  
The serialization factor must be greater than the ADC resolution to obtain SNR  
improvement after averaging in 12b resolution.  
9.3.4.4.3 Digital Gain  
To enable the digital gain block, set DIG_GAIN_EN (register 3, bit 12) to 1. When enabled, the gain value for  
channel x (where x is from 1 to 16) can be set with the register bits for the corresponding channel (GAIN_CHx,  
bits 15-11). Gain is given as [0 dB + 0.2 dB × GAIN CHx (bits 15-11)]. For instance, if GAIN_CH5 (bits 15-11) =  
3, then channel 5 is increased by 0.6-dB gain. GAIN_CHx (bits 15-11) = 31 produces the same effect as  
GAIN_CHx (bits 15-11) = 30, which sets the gain of channel x to 6 dB.  
54  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.4.4.4 Digital HPF  
To enable the digital high-pass filter (HPF) of channel 1 to 8 and 9 to 16, set the DIG_HPF_EN_CH1-8 (register  
21, bit 0) and DIG_HPF_EN_CH9-16 (register 45, bit 0) register bits to 1, respectively.  
The HPF_CORNER_CHxy register bits (where xy are 1-4, 5-8, 9-12, or 13-16) control the characteristics of a  
digital high-pass transfer function applied to the output data, based on Equation 3. These bits correspond to bits  
4-1 in registers 21, 33, 45, and 57, respectively (these register settings describe the value of K). The valid values  
of K are 2 to 10. The digital HPF can be used to suppress low-frequency noise. Table 6 shows the cutoff  
frequency versus K.  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
(3)  
Table 6. Digital HPF, –1-dB Corner Frequency versus K and fS  
CORNER FREQUENCY (kHz)  
CORNER FREQUENCY (k)  
(HPF_CORNER_CHxy Register)  
fS = 40 MSPS  
fS = 50 MSPS  
fS = 65 MSPS  
2
3
2780  
1490  
738  
369  
185  
111  
49  
3480  
1860  
230  
461  
230  
138  
61  
4520  
2420  
1200  
600  
300  
180  
80  
4
5
6
7
8
9
25  
30  
40  
10  
12.  
15  
20  
HPF output is mapped to ADC resolution bits either by truncation or a round-off operation. By default, the HPF  
output is truncated to map to the ADC resolution. To enable the rounding operation to map the HPF output to the  
ADC resolution, set the HPF_ROUND_ENABLE register bit (register 21, bit 5) to 1.  
9.3.5 LVDS Synchronization Operation  
Different test patterns can be synchronized on the LVDS serialized output lines to help set and program the  
FPGA timing that receives the LVDS serial output. Of these test patterns, the ramp, toggle, and pseudo-random  
sequence (PRBS) test patterns can be reset or synchronized by providing a synchronization pulse on the  
TX_TRIG pin or by setting and resetting a specific register bit. The synchronization pulse on the TX_TRIG pin  
must meet the setup and hold time constraints with respect to the system clock, as shown in Figure 84.  
t_hold = 1 ns  
t_setup = 3.6 ns  
System  
Clock  
X_TRIG  
Figure 84. Setup and Hold Time Constraint for the TX_TRIG Signal  
The PRBS_SYNC register bit (register 4, bit 7) can be used to synchronize the PRBS sequence. SCLK must be  
synchronous with the system clock and must meet the setup and hold time constraints with respect to the system  
clock, as shown in Figure 85.  
t_setup = 2.5 ns  
t_hold = 5 ns  
System  
Clock  
SCLK  
Figure 85. Setup and Hold Time Constraints on SCLK for Using Software, SOFTWARE_RESET, and  
RESET Functions  
Copyright © 2015, Texas Instruments Incorporated  
55  
 
 
 
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.6 Continuous-Wave (CW) Beamformer  
The continuous-wave Doppler is a key function in mid-end to high-end ultrasound systems. Compared to the  
TGC mode, the CW path must handle high dynamic range along with strict phase noise performance. CW  
beamforming is often implemented in the analog domain because of the strict requirements. Multiple  
beamforming methods are implemented in ultrasound systems, including a passive delay line, active mixer, and  
passive mixer. Among these approaches, the passive mixer achieves optimized power and noise. This mixer  
satisfies the CW processing requirements (such as wide dynamic range, low phase noise, and accurate gain and  
phase matching).  
A simplified CW path block diagram and an in-phase or quadrature (I/Q) channel block diagram are illustrated in  
Figure 86 and Figure 87, respectively. Each CW channel includes an LNA, a voltage-to-current converter, a  
switch-based mixer, a shared summing amplifier with a low-pass filter, and clocking circuits.  
NOTE  
The local oscillator inputs of the passive mixer are cos (ωt) for the I channel and sin (ωt)  
for the Q channel, respectively. Depending on the application-specific CW Doppler  
complex FFT processing, swapping the I and Q channels in either the field-programmable  
gate array (FPGA) or digital signal processor (DSP) can be required in order to obtain  
correct blood flow direction.  
All blocks include well-matched, in-phase, quadrature channels to achieve good image frequency rejection as  
well as beamforming accuracy. As a result, the image rejection ratio from an I/Q channel is better than –46 dBc,  
which is desired in ultrasound systems.  
56  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
I-CLK  
I-Channel  
Q-Channel  
Voltage-to-Current  
Converter  
LNA1  
Q-CLK  
Sum Amp  
with LPF  
1 × fcw CLK  
I-Channel  
Clock Distribution  
Circuits  
Q-Channel  
N × fcw CLK  
Sum Amp  
with LPF  
I-CLK  
I-Channel  
Q-Channel  
Voltage-to-Current  
Converter  
LNA16  
Q-CLK  
Figure 86. Simplified Block Diagram of the CW Path  
Copyright © 2015, Texas Instruments Incorporated  
57  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
ACT1  
IN1  
Mixer Clock 1  
500  
LNA1  
Input 1  
INM1  
ACT2  
Cext  
500 ꢀ  
500 ꢀ  
Mixer Clock 2  
Rint, Rext  
CW_OUTP  
CW_OUTM  
IN2  
CW_AMPINM  
CW_AMPINP  
10 Ω  
10 Ω  
I2V Sum  
Amp  
LNA2  
Input 2  
INM2  
500 ꢀ  
Rint, Rext  
Cext  
ACT16  
IN16  
Mixer Clock 16  
500 ꢀ  
500 ꢀ  
CW I- or Q- Channel Structure  
LNA16  
Input 16  
INM16  
NOTE: The 10-Ω to 15-Ω resistors at CW_AMPINM and CW_AMPINP result from the internal device routing and can  
create slight attenuation.  
Figure 87. A Complete In-Phase or Quadrature-Phase Channel  
The CW mixer in the device is passive and switch based; the passive mixer adds less noise than active mixers.  
The CW mixer achieves good performance at low power. Figure 88 and the calculations of Equation 4 describe  
the principles of the mixer operation. The LO(t) is square-wave based and includes odd harmonic components.  
Vi(t)  
Vo(t)  
LO(t)  
Figure 88. Mixer Operation Block Diagram  
where:  
Vi(t), Vo(t), and LO(t) are the input, output, and local oscillator (LO) signals for a mixer, respectively.  
(4)  
58  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
From Equation 4, the third- and fifth-order harmonics from the LO can interface with the third- and fifth-order  
harmonic signals in the Vi(t) or the noise around the third- and fifth-order harmonics in the Vi(t). Therefore. the  
mixer performance is degraded. In order to eliminate this side effect resulting from the square-wave  
demodulation, a proprietary harmonic suppression circuit is implemented in the device. The third- and fifth-order  
harmonic components from the LO can be suppressed by over 12 dB. Thus, the LNA output noise around the  
third- and fifth-order harmonic bands are not down-converted to base band. Hence, a better noise figure is  
achieved. The conversion loss of the mixer is approximately –4 dB, which is derived from 20log10 2 / π.  
The mixed current outputs of the 16 channels are summed together internally. An internal low-noise operational  
amplifier is used to convert the summed current to a voltage output. The internal summing amplifier is designed  
to accomplish low power consumption, low noise, and ease of use. CW outputs from multiple devices can be  
further combined on the system board to implement a CW beamformer with more than 16 channels.  
Multiple clock options are supported in the device CW path. Two CW clock inputs are required: an N × ƒcw clock  
and a 1 × ƒcw clock, where ƒcw is the CW transmitting frequency and N can be 16, 8, 4, or 1. The most  
convenient system clock solution can be selected for the device. In the 16 × ƒcw and 8 × ƒcw modes, the third-  
and fifth-order harmonic suppression feature can be supported. Thus, the 16 × ƒcw and 8 × ƒcw modes achieve  
better performance than the 4 × ƒcw and 1 × ƒcw modes.  
9.3.6.1 16 × ƒcw Mode  
The 16 × ƒcw mode achieves the best phase accuracy compared to other modes. This mode is the default mode  
for CW operation. In this mode, 16 × ƒcw and 1 × ƒcw clocks are required. 16 × fcw generates LO signals with 16  
accurate phases. Multiple devices can be synchronized by the 1 × ƒcw (that is, LO signals in multiple AFEs can  
have the same starting phase). The phase noise spec is critical only for 16X clock. 1X clock is for  
synchronization only and doesn’t require low phase noise. Please see the phase noise requirement in the section  
of application information.  
The top-level clock distribution diagram is shown in Figure 89. Each mixer clock is distributed through a 16 × 16  
cross-point switch. The inputs of the cross-point switch are 16 different phases of the 1X clock. TI recommends  
aligning the 1 × ƒcw and 16 × ƒcw clocks; see Figure 90.  
fIN 16X Clock  
INV  
D
Q
fIN 1X Clock  
16-Phase Generator  
1X Clock  
Phase 0º  
1X Clock  
Phase 22.5º  
1X Clock  
Phase 292.5º  
1X Clock  
Phase 315º  
1X Clock  
Phase 337.5º  
SPI  
16:8 Crosspoint Switch  
Mixer 1  
1X Clock  
Mixer 2  
1X Clock  
Mixer 3  
1X Clock  
Mixer 14  
1X Clock  
Mixer 15  
1X Clock  
Mixer 16  
1X Clock  
Figure 89. CW Clock Distribution Scheme  
Copyright © 2015, Texas Instruments Incorporated  
59  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Figure 90. 1X and 16X CW Clock Timing Diagram  
The cross-point switch distributes the clocks with an appropriate phase delay to each mixer. For example, Vi(t) is  
a received signal with a delay of (1 / 16) T. Apply a delayed LO(t) to the mixer in order to compensate for the (1 /  
16) T delay. Thus, a 22.5delayed clock, that is 2π / 16 is selected for this channel. The mathematic calculation  
is expressed in Equation 5.  
é
ù
æ
ö
÷
ø
1
Vi(t) = sin w t +  
+ w t = sin w t + 22.5° + w t  
[
]
ê
ú
0 ç  
è
d
0
d
16f0  
ê
ë
ú
û
é
ù
æ
ö
÷
ø
4
1
4
LO(t) = sin w t +  
=
sin w t + 22.5°  
[
]
ê
ú
0 ç  
0
p
16f0  
p
ê
ë
ú
û
è
2
Vo(t) = cos w t + f w t  
( ) ( )  
d
n
p
(5)  
Vo(t) represents the demodulated Doppler signal of each channel. When the Doppler signals from N channels  
are summed, the signal-to-noise ratio improves. ωd is the Doppler frequency, ωo is the local oscillator frequency,  
and ωn represents the high-frequency components that are filtered out.  
60  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.6.2 8 × ƒcw and 4 × ƒcw Modes  
The 8 × ƒcw and 4 × ƒcw modes are alternative modes when a higher frequency clock solution (that is, a 16 × ƒcw  
clock) is not available in the system. The block diagram of these two modes is shown in Figure 91.  
INV  
4X, 8X Clock  
I/Q CLK  
Generator  
D
Q
1X Clock  
LNA2 to 16  
Summed  
In-Phase  
In-Phase  
CLK  
Quadrature  
CLK  
I/V  
I/V  
Weight  
Weight  
LNA1  
Weight  
Weight  
Summed  
Quadrature  
Figure 91. 8 × ƒcw and 4 × ƒcw Block Diagram  
Good phase accuracy and matching are also maintained. The quadrature clock generator is used to create in-  
phase and quadrature clocks with exactly a 90° phase difference. The only difference between the 8 × ƒcw and 4  
× ƒcw modes is the accessibility of the third- and fifth-order harmonic suppression filter. In the 8 × ƒcw mode, the  
suppression filter can be supported. In both modes, a (1 / 16) T phase delay resolution is achieved by weighting  
the in-phase and quadrature paths correspondingly. For example, if a delay of (1 / 16) T or 22.5° is targeted, the  
weighting coefficients must follow Equation 6, assuming Iin and Qin are sin (ω0t) and cos (ω0t), respectively.  
æ
ö
÷
ø
2p  
2p  
1
æ
ö
æ
ö
Idelayed(t) = I cos  
+ Qin sin  
= I t +  
in ç  
in  
ç
÷
ç
÷
16  
16  
16f0  
è
ø
è
ø
è
æ
ö
ö
÷
ø
2p  
2p  
1
æ
ö
æ
Qdelayed(t) = Qin cos  
-I sin  
= Q t +  
in ç  
ç
÷
in  
ç
÷
16  
16  
16f0  
è
ø
è
ø
è
(6)  
Therefore, after the I/Q mixers, phase delay in the received signals is compensated. The mixer outputs from all  
channels are aligned and added linearly to improve the signal-to-noise ratio. TI recommends meeting the timing  
between the 1 × fcw clock and 4 × fcw or 8 × fcw clock; see Figure 92.  
Copyright © 2015, Texas Instruments Incorporated  
61  
 
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Figure 92. 8 × ƒcw and 4 × ƒcw Timing Diagram  
9.3.6.3 1 × ƒcw Mode  
The 1 × ƒcw mode requires in-phase and quadrature clocks with low phase noise specifications. A block diagram  
for this mode is shown in Figure 93. The (1 / 16) T phase delay resolution is also achieved by weighting the in-  
phase and quadrature signals, as described in the 8 × ƒcw and 4 × ƒcw Modes section.  
Synchronized  
I/Q Clocks  
LNA2 to 16  
Summed  
In-Phase  
In-Phase  
CLK  
Quadrature  
CLK  
I/V  
I/V  
Weight  
Weight  
LNA1  
Weight  
Weight  
Summed  
Quadrature  
Figure 93. 1 × ƒcw Mode Block Diagram  
62  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.6.4 CW High-Pass Filter  
The summing amplifier is implemented in the device to sum and convert 16-channel mixer current outputs to a  
differential voltage output. This summing amplifier has five internal gain adjustment resistors that can provide 32  
different gain settings; see Table 80. System designers can easily adjust the CW path gain, depending on signal  
strength and transducer sensitivity. For any other gain values an external resistor option is supported. The gain  
of the summation amplifier is determined by the ratio between the 2000 Ω resistors after the LNA and internal or  
external resistor network (Rs). Thus, the matching between these resistors plays a more important role than the  
absolute resistor values. Better than 1% matching is achieved on-chip. The absolute resistor tolerance can be  
higher, depending on the process variation. If external resistors are used, the gain error between the I/Q  
channels or among multiple AFEs can increase. TI recommends using internal resistors to set the gain in order  
to achieve better gain matching (across channels and multiple AFEs).  
The device provides an extra feature to suppress undesired low-frequency signal presents at the CW output,  
which is achieved by implementing an HPF at the CW output using the scheme shown in Figure 94.  
ACT1  
Mixer Clock 1  
500  
IN1  
Rh  
LNA1  
Input 1  
INM1  
ACT2  
Ch  
Cs  
CW_DC_INP  
CW_DC_OUTM  
500 ꢀ  
500 ꢀ  
Mixer Clock 2  
Rs  
IN2  
+
HPF  
Amp  
CW_OUTP  
CW_OUTM  
CW_AMPINM  
CW_AMPINP  
10 Ω  
10 Ω  
2000 ꢀ  
2000 ꢀ  
I2V Sum  
Amp  
LNA2  
Input 2  
INM2  
_
500 ꢀ  
Rs  
CW Output  
CW_DC_INM  
CW_DC_OUTP  
Ch  
ACT16  
IN16  
Cs  
Mixer Clock 16  
500 ꢀ  
500 ꢀ  
Rh  
CW I- or Q-Channel Structure  
Input 16  
LNA16  
INM16  
Figure 94. CW Summing Amplifier and High-Pass Filter Implementation  
Copyright © 2015, Texas Instruments Incorporated  
63  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
When this feature is enabled, the overall transfer function of the CW summing amplifier across frequency is as  
shown in Figure 95.  
0
-3  
Fc_HPF  
Fc_LPF  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
D066  
Figure 95. CW Summing Amplifier Transfer Function  
The high-pass corner and low-pass corner shown in Figure 95 is given by Equation 7 and Equation 8,  
respectively:  
Fc_hpf = Rs / (2 × π × Rh × Ch × 2000 Ω)  
Fc_lpf = 1 / (2 × π × Rs × Cs)  
(7)  
(8)  
The following rules can be used to calculate the value of different components:  
1. Rs is the resistor value determined by how much signal gain is needed.  
2. Cs is selected depending upon the value of Fc_lpf.  
3. Rh is determined by the amplitude of the undesired low-frequency signal required to be rejected. For  
instance, suppose that without enabling the CW HPF feature, the peak-to-peak amplitude of the low-  
frequency signal at the CW summing amplifier output is given by Vopp. Then the value of Rh has the  
relationship shown in Equation 9. The previous constraint occurs because the CW HPF amplifier output can  
only swing up to 4 Vpp.  
Rh < 4 × Rs / Vopp  
(9)  
NOTE  
Higher resistance values of Rh provide better noise performance.  
4. Ch is the selected value of this capacitor depending upon the value of Fc_hpf.  
64  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
An alternative current-summing circuit is shown in Figure 96. However, this circuit only achieves good  
performance when a lower noise operational amplifier is available compared to the device internal summing  
differential amplifier. This current output mode requires the internal summing amplifier to be powered down  
(register 198, bit 9) and Rs set to 0 .  
AFE No.X  
Preferably, use an ultra-low noise, fully-differential  
CW_AMPINP  
amplifier with a high output driving current.  
AFE No.2  
AFE No.1  
CW_AMPINM  
ACT1  
IN1  
Mixer 1  
Clock  
500  
LNA1  
Input 1  
INM1  
CM_BYP  
500ꢀ  
500ꢀ  
ACT2  
Mixer 1  
Clock  
IN2  
CW_AMPINP  
CW_AMPINM  
LNA2  
Input 2  
INM2  
500ꢀ  
-
+
CM_BYP  
CW I or Q Channel Structure  
+
-
ACT16  
IN16  
Mixer 1  
Clock  
500ꢀ  
500ꢀ  
Input 16  
LNA16  
INM16  
Ultra-low noise, single-ended amplifiers  
are an option as well.  
Figure 96. CW Circuit With Multiple Devices (Current Output Mode, CM_BYP = 1.5 V)  
The CW I/Q channels are well matched internally to suppress image frequency components in the Doppler  
spectrum. Use low tolerance components and precise operational amplifiers for achieving good matching in the  
external circuits as well.  
NOTE  
The local oscillator inputs of the passive mixer are cos (ωt) for the I channel and sin (ωt)  
for the Q channel, respectively. Depending on the application-specific CW Doppler  
complex FFT processing, swapping I/Q channels in the FPGA or DSP may be needed in  
order to obtain correct blood flow directions.  
Copyright © 2015, Texas Instruments Incorporated  
65  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.6.5 CW Clock Selection  
The device can accept differential LVDS, LVPECL, and other differential clock inputs as well as a single-ended  
CMOS clock. An internally-generated VCM of 2.5 V is applied to CW clock inputs (that is, CLKP_16X, CLKM_16X  
and CLKP_1X, CLKM_1X). Because this 2.5-V VCM is different from the one used in standard LVDS or LVPECL  
clocks, ac coupling is required between clock drivers and the device CW clock inputs. When the CMOS clock is  
used, tie CLKM_1X and CLKM_16X to ground. Common clock configurations are shown in Figure 97.  
Appropriate termination is recommended to achieve good signal integrity.  
NOTE  
The configurations shown in Figure 97 can also be used as a reference for the ADC clock  
input.  
3.3 V  
130 W  
83 W  
0.1 mF  
0.1 mF  
3.3 V  
130 W  
LMK048x,  
CDCM7005,  
CDCE7010  
AFE  
Clocks  
LVPECL  
(a) LVPECL Configuration  
0.1 mF  
100 W  
AFE  
Clocks  
CDCE72010  
0.1 mF  
LVDS  
(b) LVDS Configuration  
C1  
100 nF  
0.1 mF  
0.1 mF  
0.1 mF  
R1  
50 W  
AFE  
Clock  
L1  
1 mW  
Clocks  
Source  
(c) Transformer-Based Configuration  
CMOS CLK  
Driver  
AFE  
CMOS CLK  
CMOS  
(d) CMOS Configuration  
Figure 97. Clock Configurations  
66  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
The combination of the clock noise and the CW path noise can degrade CW performance. The internal clocking  
circuit is designed for achieving excellent phase noise required by CW operation. The phase noise of the device  
CW path is better than 160 dBc/Hz at a 1-kHz offset. Consequently, the phase noise of the mixer clock inputs  
must be better than 160 dBc/Hz.  
In the 16, 8, and 4 × ƒcw operations modes, a low-phase noise clock is required for the 16, 8, and 4 × ƒcw clocks  
(that is, the CLKP_16X and CLKM_16X pins) in order to maintain good CW phase noise performance. The 1 ×  
ƒcw clock (that is, the CLKP_1X and CLKM_1X pins) is only used to synchronize the multiple device chips and is  
not used for demodulation. Thus, the 1 × ƒcw clock phase noise is not a concern. However, in the 1 × ƒcw  
operation mode, low-phase noise clocks are required for both the CLKP_16X, CLKM_16X and CLKP_1X,  
CLKM_1X pins because both are used for mixer demodulation. In general, a higher slew rate clock has lower  
phase noise. Thus, clocks with high amplitude and fast slew rate are preferred in CW operation. In the CMOS  
clock mode, a 5-V CMOS clock can achieve the highest slew rate.  
Clock phase noise can be improved by a divider as long as the divider phase noise is lower than the target  
phase noise. The phase noise of a divided clock can be improved approximately by a factor of 20logN dB, where  
N is the dividing factor of 16, 8, or 4. If the target phase noise of the mixer LO clock 1 × fcw is 160 dBc/Hz at a 1-  
kHz off the carrier, the 16 × fcw clock phase noise must be better than 160 – 20log16 = 136 dBc/Hz. TI’s jitter  
cleaners LMK048x, CDCM7005, and CDCE72010 exceed this requirement and can be selected to work with the  
device. In the 4X and 1X modes, higher quality input clocks are expected to achieve the same performance  
because N is smaller. Thus, the 16X mode is a preferred mode because this mode reduces the phase noise  
requirement for the system clock design. In addition, the phase delay accuracy is specified by the internal clock  
divider and distribution circuit.  
Note that in the 16X operation mode, the CW operation range is limited to 8 MHz as a result of the 16X clock.  
The maximum clock frequency for the 16X clock is 128 MHz. In the 8X, 4X, and 1X modes, higher CW signal  
frequencies up to 15 MHz can be supported with a small degradation in performance. For example, the phase  
noise is degraded by 9 dB at 15 MHz, compared to 2 MHz.  
As the channel number in a system increases, clock distribution becomes more complex. Using one clock driver  
output is not preferred to drive multiple AFEs because the clock buffer load capacitance increases by a factor of  
N. The section can be used as a reference for the system clock configuration. When clock phase noise is not a  
concern (for example, the 1 × ƒcw clock in the 16, 8, and 4 × ƒcw operation modes), one clock driver output can  
excite more than one device. Nevertheless, special considerations must be applied for such a clock distribution  
network design. Preferably, all clocks are generated from the same clock source in typical ultrasound systems  
(such as 16 × ƒcw , 1 × ƒcw clocks, audio ADC clocks, RF ADC clock, pulse repetition frequency signal, frame  
clock, and so on). By using the same clock source, interference resulting from clock asynchronization can be  
minimized.  
9.3.6.6 CW Supporting Circuits  
As a general practice in the CW circuit design, in-phase and quadrature channels must be strictly symmetrical by  
using well-matched layout and high-accuracy components. In systems, additional high-pass wall filters (20 Hz to  
500 Hz) and low-pass audio filters (10 kHz to 100 kHz) with multiple poles are usually needed. Because the CW  
Doppler signal ranges from 20 Hz to 20 kHz, noise under this range is critical. Consequently, low-noise audio  
operational amplifiers are suitable to build these active filters for CW post-processing (that is, the OPA1632,  
OPA2211, or THS4131). More filter design techniques can be found at www.ti.com. The TI active filter design  
tool is the WEBENCH® Filter Designer. The filtered audio CW I/Q signals are sampled by audio ADCs and  
processed by the DSP or PC. Although CW signal frequency is from 20 Hz to 20 KHz, higher sampling rate  
ADCs are still preferred for further decimation and SNR enhancement. Because of the large dynamic range of  
CW signals, high-resolution ADCs (16 bits) are required [such as the ADS8413 (2 MSPS, 16 bits, 92-dBFS  
SNR) and the ADS8472 (1 MSPS, 16 bits, 95-dBFS SNR)]. ADCs for in-phase and quadrature-phase channels  
must be strictly matched, not only for amplitude matching but also for phase matching in order to achieve the  
best I/Q matching. In addition, the in-phase and quadrature ADC channels must be sampled simultaneously.  
9.3.6.7 Power Management  
Power management plays a critical role to extend battery life and to ensure a long operation time. The device  
has a fast and flexible power-up and power-down control that can maximize battery life. The device can be  
powered down or up through external pins or internal registers.  
This section describes the functionality of different power-down pins and register bits available in the device. The  
device can be divided in two major blocks, the VCA and ADC; see Figure 98 and Figure 99.  
Copyright © 2015, Texas Instruments Incorporated  
67  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
CM_BYP1  
CM_BYP2  
VHIGH1  
Reference Voltage,  
Current Generator  
Band-Gap Circuit  
VHIGH2  
One Channel Block  
ACT1  
LPF  
VCAT  
0 to -40 dB  
10, 15, 20,  
30, 35 and  
50 MHz  
PGA  
24, 30 dB  
INP1  
INM1  
LNA  
To ADC Channel 1  
VCNTL  
CW Mixer  
CW_CH1  
16X16 Cross  
Point SW  
CW_CLOCK  
ACT2  
LPF  
VCAT  
0 to -40 dB  
10, 15, 20,  
30, 35 and  
50 MHz  
PGA  
24, 30 dB  
INP2  
INM2  
LNA  
To ADC Channel 2  
VCNTL  
Analog Inputs  
CW Mixer  
CW_CH2  
16X16 Cross  
Point SW  
CW_CLOCK  
ACT16  
LPF  
VCAT  
0 to -40 dB  
PGA  
24, 30 dB  
10, 15, 20,  
30, 35 and  
50 MHz  
INP16  
INM16  
LNA  
To ADC Channel 16  
VCNTL  
CW_CH16  
CW Mixer  
16X16 Cross  
Point SW  
CW_CLOCK  
VCNTL  
CW_CLOCK  
VCNTRL Block  
CLKP_16x  
CLKM_16x  
Serial  
Interface  
SDOUT  
16-Phase  
Generator  
CW Clock  
CLKP_1x  
CLKM_1x  
Summing  
Amplifier  
CW_IP_OUTP, CW_IP_OUTM,  
CW_QP_OUTP, CW_QP_OUTM  
Figure 98. VCA Block Diagram  
68  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Reference Voltage,  
Current Generator  
Band-Gap Circuit  
VCM  
ADC1  
LVDS Data  
Serializer and  
Buffer  
DOUTP1  
ADC Analog  
ADC Digital  
DOUTM1  
LVDS Data  
Serializer and  
Buffer  
DOUTP2  
DOUTM2  
ADC Analog  
ADC Digital  
ADC2  
VCA Output  
ADC16  
LVDS Outputs  
LVDS Data  
Serializer and  
Buffer  
DOUTP16  
DOUTM16  
ADC Analog  
ADC Digital  
FCLKP  
FCLKM  
LVDS Frame,  
Clock  
Serializer, and  
Buffer  
DCLKP  
DCLKM  
PLL  
Serial  
Interface  
SDOUT  
ADC Clock  
Buffer  
Figure 99. ADC Block Diagram  
Copyright © 2015, Texas Instruments Incorporated  
69  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.3.6.7.1 VCA  
The VCA consists of the following blocks:  
Band-gap circuit,  
Serial interface,  
Reference voltage and current generator,  
A total of 16 channel blocks (each channel block includes an LNA, VCAT, PGA, LPF, CW mixer, and a 16X16  
cross-point switch),  
VCNTRL block,  
Phase generator for CW mode, and  
CW summing amplifier.  
Of these VCA blocks, only the band gap and serial interface block cannot be powered down by using power-  
down pins or bits. Table 7 lists all the VCA blocks that are powered down using various pin and bit settings.  
Table 7. VCA Power-Down Mode Descriptions  
CW SUMMING  
16X16 CROSS-POINT REFERE VCNTRL AMPLIFIER +  
VCAT +  
PGA +  
LPF  
TYPE (Pin or  
Register)  
CW  
MIXER  
NAME  
LNA  
CHANNEL  
SWITCH  
NCE  
BLOCK  
PHASE  
GENERATOR  
PDN_GBL  
GBL_PDWN  
PDN_FAST  
FAST_PDWN  
Pin  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
All(2)  
All  
Register 197, bit 15  
Pin  
Yes  
All  
Register 197, bit 14  
Yes  
No  
No  
All  
Register 197, bits 7-0,  
register 213, bits 7-0  
PDNCHxx  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Individual  
PDWN_LNA  
Register 197, bit 13  
Register 197, bit 12  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
All  
All  
PDWN_VCA_PGA  
Yes  
(1) Yes = powered down. No = active.  
(2) All = all channels are powered down. Individual = only a single channel is powered down, depending upon the corresponding bit.  
If more than one bit is simultaneously enabled, then all blocks listed as Yes for each bit setting is powered down.  
70  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.3.6.7.2 ADC  
The ADC consists of the following blocks:  
Band-gap circuit,  
Serial interface,  
Reference voltage and current generator,  
ADC analog block that performs a sampling and conversion,  
ADC digital block that includes all the digital post processing blocks (such as the offset, gain, digital HPF, and so forth),  
LVDS data serializer and buffer that converts the ADC parallel data to a serial stream.  
LVDS frame and clock serializer and buffer,  
PLL (phase-locked loop) that generates a high-frequency clock for both the ADC and serializer.  
Of all these blocks, only the band gap and serial interface block cannot be power down using power-down pins or bits. Table 8 lists which blocks in the  
ADC are powered down using different pins and bits.  
Table 8. Power-Down Modes Description for the ADC  
LVDS FRAME AND  
CLOCK SERIALIZER,  
BUFFER  
ADC  
ANALOG  
ADC  
DIGITAL  
LVDS DATA SERIALIZER,  
BUFFER  
REFERENCE + ADC  
CLOCK BUFFER  
NAME  
TYPE (Pin or Register)  
PLL  
CHANNEL  
PDN_GBL  
GLOBAL_PDN  
PDN_FAST  
DIS_LVDS  
Pin  
Yes(1)  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
All(2)  
All  
Register 1, bit 0  
Pin  
All  
Register 1, bit 5  
Yes  
No  
No  
All  
Registers 24 (bits 7-4), 36 (bits 7-4),  
48 (bits 7-4), and 60 (bits 7-4)  
PDN_ANA_CHx  
PDN_DIG_CHx  
PDN_LVDSx  
Yes  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Individual  
Individual  
Individual  
Registers 4 (bits 15-12), 36 (bits 15-12),  
48 (bits 15-12), and 60 (bits 15-12)  
Register 24 (bits 11-8), 36 (bits 11-8),  
48 (bits 11-8), and 60 (bits 11-8)  
No  
Yes  
(1) Yes = powered down. No = active.  
(2) All = all channels are powered down. Individual = only a single channel is powered down, depending upon the corresponding bit.  
Copyright © 2015, Texas Instruments Incorporated  
71  
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 ADC Test Pattern Mode  
9.4.1.1 Test Patterns  
9.4.1.1.1 LVDS Test Pattern Mode  
The ADC data coming out of the LVDS outputs can be replaced by different kinds of test patterns. The different  
test patterns are described in Table 9.  
Table 9. Description of LVDS Test Patterns  
PROGRAMMING THE MODE  
TEST  
THE PATTERN IS SELECTIVELY  
PATTERN  
MODE  
THE SAME PATTERN MUST BE COMMON  
TO ALL DATA LINES (DOUT)  
REQUIRED ON ONE OR MORE DATA  
LINE (DOUT)  
TEST PATTERNS  
REPLACE(1)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
Zeros in all bits  
(00000000000000)  
All 0s  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set the mode using PAT_MODES[2:0]  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
Ones in all bits  
(11111111111111)  
All 1s  
Deskew  
Sync  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
The ADC data are replaced  
by alternate 0s and 1s  
(01010101010101)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
ADC data are replaced by  
half 1s and half 0s  
(11111110000000)  
The word written in the  
CUSTOM_PATTERN control  
(taken from the MSB side)  
replaces ADC data.  
Set the mode using PAT_MODES[2:0]. Set  
the desired custom pattern using the  
CUSTOM_PATTERN register control.  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
(For instance,  
Custom  
CUSTOM_PATTERN =  
1100101101011100 and  
ADC data =  
11001011010111 when the  
serialization factor is 14.)  
The ADC data are replaced  
by a word that increments by  
1 LSB every conversion clock  
starting at negative full-scale,  
increments until positive full-  
scale, and wraps back to  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
Ramp  
Set the mode using PAT_MODES[2:0]  
negative full-scale. The step  
size of the ramp pattern is  
function of ADC resolution  
(N) and serialization factor  
(S) and is given by 2(S-N)  
.
The ADC data alternate  
between two words that are  
all 1s and all 0s. At each  
setting of the toggle pattern,  
the start word can either be  
all 0s or all 1s. (Alternate  
between 11111111111111  
and 00000000000000.)  
Set PAT_SELECT_IND = 1. To output the  
pattern on the DOUTx line, select  
PAT_LVDSx[2:0].  
Toggle  
PRBS  
Set the mode using PAT_MODES[2:0]  
Set PAT_SELECT_IND = 1. Select either  
custom or ramp pattern with  
PAT_LVDSx[2:0]. Enable PRBS mode on  
Set SEL_PRBS_PAT_GBL = 1. Select either  
custom or ramp pattern with  
PAT_MODES[2:0]. Enable PRBS mode  
using PRBS_EN. Select the desired PRBS  
mode using PRBS_MODE. Reset the PRBS  
generator with PRBS_SYNC.  
A 16-bit pattern is generated  
by a 23-bit (or 9-bit) PRBS  
DOUTx with the PAT_PRBS_LVDSx control. pattern generator (taken from  
Select the desired PRBS mode using  
PRBS_MODE. Reset the PRBS generator  
with PRBS_SYNC.  
the MSB side) and replaces  
the ADC data.  
(1) Shown for a serialization factor of 14.  
72  
Copyright © 2015, Texas Instruments Incorporated  
 
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
All patterns listed in Table 9 (except the PRBS pattern) can also be forced on the frame clock output line by  
using PAT_MODES_FCLK[2:0]. To force a PRBS pattern on the frame clock, use the SEL_PRBS_PAT_FCLK,  
PRBS_EN, and PAT_MODES_FCLK register controls.  
The ramp, toggle, and pseudo-random sequence (PRBS) test patterns can be reset or synchronized by providing  
a synchronization pulse on the TX_TRIG pin or by setting and resetting a specific register bit.  
Figure 100 depicts a block diagram representation of this scheme.  
Copyright © 2015, Texas Instruments Incorporated  
73  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
PAT_MODES[2:0]  
PAT_MODES[2:0]  
Global  
Pattern  
ADC1  
0
1
PAT_SELECT_IND  
0
DOUTP1,  
DOUTM1  
Serializer  
1
0
1
Individual  
Pattern for  
LVDS1  
PAT_LVDS1[2:0]  
ADC16  
0
1
PAT_SELECT_IND  
0
DOUTP16,  
DOUTM16  
Serializer  
1
0
1
Individual  
Pattern for  
LVDS16  
PAT_LVDS16[2:0]  
Figure 100. Test Pattern Block Diagram  
74  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
9.4.2 Partial Power-Up and Power-Down Mode  
The partial power-up and power-down mode is also called fast power-up and power-down mode. The VCA can  
be programmed in partial power-down mode either by setting the PDN_FAST pin high or setting the  
FAST_PDWN (register 197, bit 14) register bit to 1. Similarly, the ADC can be programmed in this mode by  
setting the PDN_FAST pin high. In this mode, most amplifiers in the signal path are powered down and the  
internal reference circuits remain active as well as all the data and frame and clock LVDS serializer and buffer.  
The partial power-down function allows the device to quickly wake-up from a low-power state. This configuration  
ensures that the external capacitors are discharged slowly; thus, a minimum wake-up time is required as long as  
the charges on these capacitors are restored. The VCA wake-up response is typically approximately 2 μs or 1%  
of the power-down duration, whichever is larger. The longest wake-up time depends on the capacitors connected  
at INP and INM, because the wake-up time is the time required to recharge the capacitors to the desired  
operating voltages. For instance, 0.1 μF at INP and 15 nF at INM provides a wake-up time of 2.5 ms. For larger  
capacitors, this time is longer. The ADC wake-up time is approximately 1 μs. Thus, the device wake-up time is  
more dependent on the VCA wake-up time with the assumption that the ADC clock is running for at least 50 μs  
before the normal operating mode resumes. The power-down time is instantaneous, less than 1 μs. This fast  
wake-up response is desired for portable ultrasound applications in which power savings is critical. The pulse  
repetition frequency of an ultrasound system can vary from 50 kHz to 500 Hz, and the imaging depth (that is, the  
active period for a receive path) varies from tens of µs to hundreds of μs. The power savings can be quite  
significant when a system PRF is low. In some cases, only the VCA is powered down when the ADC runs  
normally to ensure minimal interference to the FPGAs; see the Electrical Characteristics table to determine  
device power dissipation in partial power-down mode.  
9.4.3 Global Power-Down Mode  
To achieve the lowest power dissipation, the device can be placed into a complete power-down mode. This  
mode is controlled through the GBL_PDWN (for the VCA) or GLOBAL_PDN (for the ADC) registers or the  
PDN_GBL pin (for both the VCA and ADC). In complete power-down mode, all circuits (including reference  
circuits within the device) are powered down and the capacitors connected to the device are discharged. The  
wake-up time depends on the time that the device spends in shutdown mode. 0.1 μF at INP and 15 nF at INM  
provide a wake-up time of approximately 2.5 ms.  
9.4.4 TGC Configuration  
By default, after reset the VCA is configured in TGC mode. Depending upon the system requirements, the device  
can be programmed in a suitable power mode using the POW_MODES (register 197, bits 11-10) register bits.  
9.4.5 CW Configuration  
To configure the device in CW mode, set the CW_TGC_SEL (register 198, bit 9) register bit to 1. To save power,  
the voltage-controlled attenuator and programmable gain amplifier in the TGC path can be disabled by setting  
the PDWN_VCA_PGA bit (register 197, bit 12) to 1. Also, the ADC can be powered down completely using the  
GLOBAL_PDN bit (register 1, bit 0). Usually only half the number of channels in a system are active in the CW  
mode. Thus, the individual channel control can power-down unused channels and save power; see Table 7 and  
Table 8.  
9.4.6 TGC + CW Mode  
In systems that require fast switching between the TGC and CW modes, both TGC and CW mode can remain  
active simply by setting the CW_TGC_SEL (register 198, bit 9) register bit to 1.  
Copyright © 2015, Texas Instruments Incorporated  
75  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.5 Programming  
9.5.1 Serial Peripheral Interface (SPI) Operation  
Several different device modes can be programmed with the serial peripheral interface (SPI). This interface is  
formed by the SEN (serial interface enable), SCLK (serial interface clock), SDIN (serial interface data), and  
RESET pins. Inside the device, the SCLK and SDIN pins have a 16-kΩ, pulldown resistor to ground and the SEN  
pin has a 16-kΩ, pullup resistor to the DVDD_1P8 supply. Serially shifting bits into the device is enabled when  
SEN is low. SDIN serial data are latched at every SCLK rising edge when SEN is active (low). SDIN serial data  
are loaded into the register at every 24th SCLK rising edge when SEN is low. If the word length exceeds a  
multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of 24-bit words within a single  
active SEN pulse (an internal counter counts the number of 24 clock groups after the SEN falling edge). The  
interface can function with SCLK frequencies from 20 MHz down to low speeds (of a few hertz) and also with a  
non-50% SCLK duty cycle. Data are divided into two main portions: the register address (8 bits) and data (16  
bits). These portions are loaded on the addressed register. When writing to a register with unused bits, set these  
bits to 0. Figure 101 shows this process.  
SEN  
tSEN_SU  
Data Latched On  
SCLK Rising Edge  
tSCLK_H  
tSEN_HO  
tSCLK  
SCLK  
tSCLK_L  
tDH  
tDSU  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
RESET  
Figure 101. Serial Interface Timing Diagram  
76  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Programming (continued)  
9.5.1.1 Register Readout  
The device includes an option where the contents of the internal registers can be read back. This readback  
feature can be useful as a diagnostic test to verify the serial interface communication between the external  
controller and the AFE. First, the REG_READ_EN bit (register 0, bit 1) must be set to 1. Then, initiate a serial  
interface cycle specifying the address of the register (A[7:0]) whose content must be read. The data bits are don’t  
care. The device outputs the contents (bits 15-0) of the selected register on the SDOUT pin. SDOUT has a  
typical 20-ns delay (tOUT_DV) from the SCLK falling edge. For lower-speed SCLKs, SDOUT can be latched on the  
SCLK rising edge. For higher-speed SCLKs (for example, if the SCLK period is less than 60 ns), latching SDOUT  
at the next SCLK falling edge is preferable. The read operation timing diagram is shown in Figure 102 (see the  
Serial Interface Timing Characteristics table). In readout mode, the REG_READ_EN bit can be accessed with  
SDIN, SCLK, and SEN. To enable serial register writes, set the REG_READ_EN bit back to 0.  
The device SDOUT buffer is 3-stated and is only enabled when the REG_READ_EN bit (register 0, bit 1) is  
enabled. SDOUT pins from multiple devices can be tied together without any pullup resistors. The  
SN74AUP1T04 level shifter can be used to convert 1.8-V logic to 2.5-V or 3.3-V logic, if necessary.  
SEN  
SCLK  
tOUT_DV  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT  
SDIN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Figure 102. Serial Interface Register, Read Operation  
Copyright © 2015, Texas Instruments Incorporated  
77  
 
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The device supports a wide-frequency bandwidth signal in the range of several kHz to several MHz. The device  
is a highly-integrated solution that includes a low-noise amplifier (LNA), a voltage-controlled attenuator (VCAT), a  
programmable gain amplifier (PGA), an antialiasing filter, an analog-to-digital converter (ADC), and a continuous  
wave (CW) mixer. As a result of the device functionality, the device can be used in various applications (such as  
in medical ultrasound imaging systems, sonar imaging equipment, radar, and other systems that require a very  
large dynamic range).  
10.2 Typical Application  
Transmitter  
1
1 uF  
ACT1  
INP1  
SPI  
Control  
0.1 uF  
Channel 1  
T/R Switch  
Clamping  
Diode  
LVDS lines  
LVDS  
Receiver  
AFE 1  
Transmitter  
16  
1 uF  
ACT16  
INP16  
0.1 uF  
Channel 16  
T/R Switch  
FPGA  
Data  
Processing  
And  
64  
Clamping  
Diode  
Channels  
Transducer  
Array  
Storage  
LVDS lines  
LVDS  
Receiver  
AFE 4  
Transmitter  
64  
1 uF  
ACT16  
INP16  
0.1 uF  
Channel 64  
Clock  
Generator  
T/R Switch  
Clamping  
Diode  
Figure 103. Simplified Schematic  
78  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Typical Application (continued)  
5 VA  
10 mF  
1.8 VA  
10 mF  
3.3 VA  
10 mF  
1.2 VD  
10 mF  
1.8 VD  
10 mF  
N(1)  
0.1 mF  
x
N(1)  
0.1 mF  
x
N(1)  
0.1 mF  
x
N(1)  
0.1 mF  
x
N(1)  
0.1 mF  
DVSS  
x
AVSS  
AVSS  
AVSS  
DVSS  
1 mF  
ACT1  
INP1  
DOUTP1  
0.1 mF  
IN CH1  
IN CH2  
DOUTM1  
DOUTP2  
1 mF  
ACT2  
INP2  
10 nF  
DOUTM2  
0.1 mF  
ADC_CLKP  
ADC_CLKM  
10 nF  
CLKP_16X  
CLKM_16X  
AFE5818  
Clock Inputs  
DOUTP3, DOUTM3 to DOUTP14, DOUTM14  
ACT3, INP3 to ACT14, INP14  
10 nF  
10 nF  
CLKP_1X  
CLKM_1X  
DOUTP15  
DOUTM15  
DOUTP16  
1 mF  
ACT15  
INP15  
0.1 mF  
IN CH15  
IN CH16  
DOUTM16  
SDOUT  
SDIN  
DCLKP  
DCLKM  
FCLKP  
1 mF  
ACT16  
INP16  
SCLK  
0.1 mF  
TX_TRIG  
AFE5818  
Digital Inputs  
SEN  
FCLKM  
INM1  
INM2  
15 nF  
15 nF  
AFE5818  
RESET  
PDN_FAST  
PDN_GBL  
Other  
AFE5818  
Outputs  
Analog Inputs,  
Analog Outputs,  
REF and BIAS Decoupling,  
LVDS Outputs  
RSUM  
REXT (optional)  
CW_IP_AMPINP  
CW_IP_OUTM  
CW_IP_AMPINM  
CW_IP_OUTP  
CS  
REXT (optional)  
CS  
RSUM  
RSUM  
INM16  
15 nF  
To Summing  
Amplifier  
CW_DC_INM_IP  
CW_DC_OUTP_IP  
CW_DC_INP_IP  
CW_DC_OUTM_IP  
Other  
AFE5818  
Outputs  
RSUM  
CH  
CM_BYP1  
1 mF  
CH  
CM_BYP2  
VHIGH1  
1 mF  
1 mF  
Other  
AFE5818  
Outputs  
RSUM  
CW_QP_AMPINP  
CW_QP_OUTM  
CW_QP_AMPINM  
CW_QP_OUTP  
VHIGH2  
1 mF  
CS  
REXT (optional)  
CS  
RSUM  
RSUM  
To Summing  
Amplifier  
REXT (optional)  
CW_DC_INM_QP  
RVCNTL  
200 Ω  
CVCNTL  
470 pF  
Other  
AFE5818  
Outputs  
RSUM  
CH  
VCNTLP  
CW_DC_OUTP_QP  
CW_DC_INP_QP  
VCNTLP  
VCNTLM  
CVCNTL  
VCNTLM  
CH  
RVCNTL  
200 Ω  
CW_DC_OUTM_QP  
470 pF  
NCs  
AVSS  
DVSS  
(1) N represents the number of capacitors connected to the supply. Placing at least one capacitor for every three supply  
pins is recommended.  
Figure 104. Application Circuit  
Copyright © 2015, Texas Instruments Incorporated  
79  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Application (continued)  
10.2.0.2 Design Requirements  
Typical requirements for a medical ultrasound imaging system are listed in Table 10.  
Table 10. Design Parameters  
DESIGN PARAMETER  
Signal center frequency  
Signal bandwidth  
EXAMPLE VALUES  
5 MHz  
2 MHz  
Maximum overloaded signal  
Maximum input signal amplitude  
Transducer noise level  
Dynamic range  
1 VPP  
100 mVPP  
1 nV/Hz  
151 dBc/Hz  
40 dB  
Time gain compensation range  
Total harmonic distortion  
40 dBc  
10.2.0.3 Detailed Design Procedure  
Medical ultrasound imaging is a widely-used diagnostic technique that enables visualization of internal organs,  
their size, structure, and blood flow estimation. An ultrasound system uses a focal imaging technique that  
involves time shifting, scaling, and intelligently summing the echo energy using an array of transducers to  
achieve high imaging performance. The concept of focal imaging provides the ability to focus on a single point in  
the scan region. By subsequently focusing at different points, an image is assembled.  
See Figure 103 for a simplified schematic of a 64-channel ultrasound imaging system. When initiating an  
imaging, a pulse is generated and transmitted from each of the 64 transducer elements. The pulse, now in the  
form of mechanical energy, propagates through the body as sound waves, typically in the frequency range of 1  
MHz to 15 MHz.  
The sound waves weaken rapidly as they travel through the objects being imaged, falling off as the square of the  
distance traveled. As the signal travels, portions of the wave front energy are reflected. Signals that are reflected  
immediately after transmission are very strong because they are from reflections close to the surface; reflections  
that occur long after the transmit pulse are very weak because they are reflecting from deep in the body. As a  
result of the limitations on the amount of energy that can be put into the imaging object, the industry developed  
extremely sensitive receive electronics. Receive echoes from focal points close to the surface require little, if any,  
amplification. This region is referred to as the near field. However, receive echoes from focal points deep in the  
body are extremely weak and must be amplified by a factor of 100 or more. This region is referred to as the far  
field. In the high-gain (far field) mode, the limit of performance is the sum of all noise sources in the receive  
chain.  
In high-gain (far field) mode, system performance is defined by its overall noise level, which is limited by the  
noise level of the transducer assembly and the receive low-noise amplifier (LNA). However in the low-gain (near  
field) mode, system performance is defined by the maximum amplitude of the input signal that the system can  
handle. The ratio between noise levels in high-gain mode and the signal amplitude level in low-gain mode is  
defined as the dynamic range of the system.  
The high integration and high dynamic range of the device make it ideally suited for ultrasound imaging  
applications. The device includes an integrated LNA and VCAT (which use the gain that can be changed with  
enough time to handle both near- and far-field systems), a low-pass antialiasing filter to limit the noise bandwidth,  
an ADC with high SNR performance, and a CW mixer. Figure 104 illustrates an application circuit of the device.  
80  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Use the following steps to design medical ultrasound imaging systems:  
1. Use the signal center frequency and signal bandwidth to select an appropriate ADC sampling frequency.  
2. Use the time gain compensation range to select the range of the VCNTL signal.  
3. Use the transducer noise level and maximum input signal amplitude to select the appropriate LNA gain. The  
device input-referred noise level reduces with higher LNA gain. However, higher LNA gain leads to lower  
input signal swing support.  
4. See Figure 104 to select different passive components for different device pins.  
5. See the LNA Input Impedance section to select the appropriate input termination configuration.  
6. See the CW Clock Selection section to select the clock configuration for the ADC and CW clocks.  
10.2.0.4 Application Curves  
Figure 105 and Figure 106 show the FFT of a device output for VCNTL = 0 V and VCNTL = 0.9 V, respectively,  
with an input signal at 5 MHz captured at a sample rate of 50 MHz. Figure 105 shows the spectrum for a far field  
imaging scenario with the full Nyquist band, default device settings, and VCNTL = 0 V.Figure 106 shows the  
spectrum for a near field imaging scenario for the full Nyquist band with default device settings and VCNTL =  
0.9 V.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
D064  
D065  
Figure 105. FFT for VCNTL = 0 V  
Figure 106. FFT for VCNTL = 0.9 V  
Copyright © 2015, Texas Instruments Incorporated  
81  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
10.3 Do's and Don'ts  
Driving the inputs (analog or digital) beyond the power-supply rails. For device reliability, an input must not  
go more than 300 mV below the ground pins or 300 mV above the supply pins as suggested in the Absolute  
Maximum Ratings table. Exceeding these limits, even on a transient basis, can cause faulty or erratic operation  
and can impair device reliability.  
Driving the device signal input with an excessively high level signal. The device offers consistent and fast  
overload recovery with a 6-dB overloaded signal. For very large overload signals (> 6 dB of the linear input signal  
range), TI recommends back-to-back Schottky clamping diodes at the input to limit the amplitude of the input  
signal; see the LNA Overload Recovery section for more details.  
Driving the VCNTL signal with an excessive noise source. Noise on the VCNTL signal gets directly  
modulated with the input signal and causes higher output noise and reduction in SNR performance. Maintain a  
noise level for the VCNTL signal as discussed in the Control Voltage Input section.  
Using a clock source with excessive jitter, an excessively long input clock signal trace, or having other  
signals coupled to the ADC or CW clock signal trace. These situations cause the sampling interval to vary,  
causing an excessive output noise and a reduction in SNR performance. For a system with multiple devices, the  
clock tree scheme must be used to apply an ADC or CW clock; see the CW Clock Selection section for clock  
mismatch between devices, which can lead to latency mismatch and reduction in SNR performance.  
LVDS routing length mismatch. The routing length of all LVDS lines routing to the FPGA must be matched to  
avoid any timing related issue. For systems with multiple devices, the LVDS serialized data clock (DCLKP,  
DCLKM) and the frame clock (FCLKP, FCLKM) of each individual device must be used to deserialize the  
corresponding LDVS serialized data (DOUTP, DOUTM).  
Failure to provide adequate heat removal. Use the appropriate thermal parameter listed in the Thermal  
Information table and an ambient, board, or case temperature in order to calculate device junction temperature. A  
suitable heat removal technique must be used to keep the device junction temperature below the maximum limit  
of 105°C.  
Incorrect register programming. After resetting the device, write register 1, bit 2 = 1 and register 1, bit 4 = 1. If  
these bits are not set as specified, the device will not function properly. Furthermore, ADD_OFFSET (register 0,  
bit 2) must be used carefully; see the VCA Register Map section.  
10.4 Initialization Set Up  
After bringing up all the supplies, use the following steps to initialize the device:  
1. Apply a hardware reset pulse on the RESET pin with a minimum pulse duration of 100 ns. Note that after  
powering up the device, a hardware reset is required.  
2. After applying a hardware reset pulse, wait for a minimum time of 100 ns.  
3. Set register 1, bits 2 and 4 to 1 using SPI signals.  
4. Write any other register settings as required.  
82  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
11 Power Supply Recommendations  
The device requires a total of five supplies in order to operate properly. These supplies are: AVDD_5V,  
AVDD_3P3, AVDD_1P8, DVDD_1P8, and DVDD_1P2. For detailed information regarding the operating voltage  
minimum and maximum specifications of different supplies, see the Recommended Operating Conditions table.  
11.1 Power Sequencing and Initialization  
11.1.1 Power Sequencing  
Figure 107 shows the suggested power-up sequencing and reset timing for the device. Note that the DVDD_1P2  
supply must rise before the AVDD_1P8 supply. If the AVDD_1P8 supply rises before the DVDD_1P2 supply, the  
AVDD_1P8 supply current is eight to 12 times larger than the normal current until the DVDD_1P2 supply reaches  
a 1.2-V level.  
t1  
t2  
DVDD_1P2  
t3  
DVDD_1P8,  
t7  
t4  
t5  
AVDD_1P8,  
AVDD_3P3,  
AVDD_5V  
RESET  
t6  
Device ready for register  
write  
Device ready for data  
conversion  
Start of clock  
SEN  
t8  
NOTE: 10 µs < t1 < 50 ms, 10 µs < t2 < 50 ms, t3 > t1, t4 > 10 ms, t5 > 100 ns, t6 > 100 ns, t7 > 4 ADC clock cycles,  
and t8 > 100 µs.  
Figure 107. Recommended Power-Up Sequencing and Reset Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
83  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Power Supply, Grounding, and Bypassing  
In a mixed-signal system design, the power-supply and grounding design plays a significant role. The device  
distinguishes between two different grounds: AVSS (analog ground) and DVSS (digital ground). In most cases  
laying out the printed circuit board (PCB) to use a single ground plane is adequate, but in high-frequency or high-  
performance systems, care must be taken so that this ground plane is properly partitioned between various  
sections within the system to minimize interactions between analog and digital circuitry. Alternatively, the digital  
supply set consisting of the DVDD_1P8, DVDD_1P2, and DVSS pins can be placed on separate power and  
ground planes. For this configuration, tie the AVSS and DVSS grounds together at the power connector in a star  
layout. In addition, optical or digital isolators (such as the ISO7240) can completely separate the analog portion  
from the digital portion. Consequently, such isolators prevent digital noise from contaminating the analog portion.  
Table 11 lists the related circuit blocks for each power supply.  
Table 11. Supply versus Circuit Blocks  
POWER SUPPLY  
GROUND  
CIRCUIT BLOCKS(1)  
Reference voltage and current generator, LNA, VCNTRL block, CW mixer,  
CW clock buffer, 16x16 cross-point switch, 16-phase generator  
AVDD_5V  
AVSS  
Band-gap circuit, reference voltage and current generator, LNA, VCAT,  
PGA, LPF, CW summing amplifier, VCA SPI  
AVDD_3P3  
AVDD_1P8  
AVSS  
AVSS  
ADC analog, reference voltage and current generator, band-gap circuit,  
ADC clock buffer  
DVDD_1P8  
DVDD_1P2  
DVSS  
DVSS  
LVDS serializer and buffer, PLL  
ADC digital, serial interface  
(1) See Figure 98 and Figure 99 for further details.  
Reference all bypassing and power supplies for the device to their corresponding ground planes. Bypass all  
supply pins with 0.1-μF ceramic chip capacitors (size 0603 or smaller). In order to minimize the lead and trace  
inductance, the capacitors must be located as close to the supply pins as possible. Where double-sided  
component mounting is allowed, these capacitors are best placed directly under the package. In addition, larger  
bipolar decoupling capacitors (2.2 µF to 10 μF, effective at lower frequencies) can also be used on the main  
supply pins. These components can be placed on the PCB in close proximity (< 0.5 inch or 12.7 mm) to the  
device itself.  
The device has a number of reference supplies that must be bypassed, such as CM_BYP1, CM_BYP2 and  
VHIGH1, VHIGH2. Bypass these pins with at least a 1-μF capacitor; higher value capacitors can be used for  
better low-frequency noise suppression. For best results, choose low-inductance ceramic chip capacitors (size  
0402, > 1 μF) and placed as close as possible to the device pins.  
12.1.2 Board Layout  
High-speed, mixed-signal devices are sensitive to various types of noise coupling. One primary source of noise is  
the switching noise from the serializer and the output buffer and drivers. For the device, care must be taken to  
ensure that the interaction between the analog and digital supplies within the device is kept to a minimal amount.  
The extent of noise coupled and transmitted from the digital and analog sections depends on the effective  
inductances of each of the supply and ground connections. Smaller effective inductances of the supply and  
ground pins result in better noise suppression. For this reason, multiple pins are used to connect each supply  
and ground sets. Low inductance properties must be maintained throughout the design of the PCB layout by use  
of proper planes and layer thickness.  
To avoid noise coupling through supply pins, TI recommends to keep sensitive input pins (such as INM, INP, and  
ACT pins) away from the AVDD_3P3 and AVDD_5V planes. For example, do not route the traces or vias  
connected to these pins across the AVDD_3P3 and AVDD_5V planes. That is, avoid the power planes under the  
INM, INP, and ACT pins.  
84  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
In order to maintain proper LVDS timing, all LVDS traces must follow a controlled impedance design. In addition,  
all LVDS trace lengths must be equal and symmetrical; TI recommends keeping trace length variations less than  
150 mil (0.150 inch or 3.81 mm).  
In addition, appropriate delay matching must be considered for the CW clock path, especially in systems with a  
high channel count. For example, if the clock delay is half of the 16X clock period, a phase error of 22.5°C can  
exist. Thus, the timing delay difference among channels contributes to the beamformer accuracy.  
Additional details on the NFBGA PCB layout techniques can be found in the Texas Instruments application  
report, MicroStar BGA Packaging Reference Guide (SSYZ015), which can be downloaded from www.ti.com.  
12.2 Layout Example  
Figure 108 and Figure 109 illustrate example layouts for the top and bottom layers, respectively.  
CM_BYP1, CM_BYP2,  
VHIGH1, VHIGH2  
decapacitors placed  
INPx, INMx and  
near the device.  
ACTx Routing  
Differential  
Clock Input  
Differential  
CW Output  
Differential  
ADC Clock  
LVDS  
Differential  
Routing  
Figure 108. Top Layer  
Copyright © 2015, Texas Instruments Incorporated  
85  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Layout Example (continued)  
INMx capacitor  
placed near  
the device.  
CM_BYP1, CM_BYP2,  
VHIGH1, VHIGH2  
decapacitors placed near  
the device.  
Different supply decapacitors  
placed near the device pins.  
Figure 109. Bottom Layer  
86  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Layout Example (continued)  
Figure 110 shows a routing example for the ground planes.  
Analog Ground  
(AVSS) Plane  
The INPx, INMx, and ACTx  
pin area is isolated from the  
ground plane.  
ADC Digital Ground  
(DVSS) Plane  
Figure 110. Ground Plane  
Copyright © 2015, Texas Instruments Incorporated  
87  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 111, Figure 112, and Figure 113 illustrate routing examples for different power planes.  
The AVDD_1P8  
power plane is routed in the  
same area as that of analog  
ground plane.  
The INPx, INMx, and ACTx pin area  
is isolated from the ground plane.  
ADC Digital Ground  
(DVSS) Plane  
Figure 111. AVDD_1P8 Power Plane  
88  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Layout Example (continued)  
Analog Ground  
(AVSS) Plane  
The INPx, INMx, and  
ACTx pin area is isolated  
from the ground plane.  
The AVDD_3P3  
power plane is routed in the  
same area as that of the  
analog ground plane.  
ADC Digital  
Ground  
(DVSS) Plane  
The DVDD_1P8  
power plane is routed in the same area  
as that of the digital ground plane.  
Figure 112. AVDD_3P3, DVDD_1P8 Power Planes  
Copyright © 2015, Texas Instruments Incorporated  
89  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Layout Example (continued)  
The AVDD_5V  
power plane is routed in the same area  
as that of the analog ground plane.  
The INPx, INMx, and ACTx pin area  
is isolated from the ground plane.  
The DVDD_1P2  
power plane is routed in the same area  
as that of the digital ground plane.  
Figure 113. AVDD_5V, DVDD_1P2 Power Planes  
90  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13 Register Maps  
13.1 Serial Register Map  
The device has two voltage-controlled amplifier (VCA) dies and one analog-to-digital converter (ADC) die, as  
shown in Figure 114. Figure 114 also describes the channel mapping of VCA dies to the input pins. All dies  
share the same SPI control signals (SCLK, SDIN, and SEN). The address space of the programmable registers  
for the ADC die is from register 1 to register 60. By default, the address space of the programmable registers for  
the VCA dies are shared (that is, both VCA dies have an address space from register 192 to register 205).  
Therefore, the ADC and VCA dies can be programmed independently. Because the VCA dies share the same  
address space, these dies are programmed together. To program VCA die 1 and VCA die 2 independently, the  
address space for these dies must be separated by enabling the ADD_OFFSET bit (register 0, bit 2). All  
programmable bits and addresses are listed in this section.  
ADC  
VCA Die 1  
DOUT2  
IN2  
VCA_IN1  
ADC_IN2  
VCA_OUT1  
VCA_OUT2  
VCA_OUT3  
VCA_OUT4  
DOUT4  
DOUT6  
DOUT8  
IN4  
IN6  
IN8  
VCA_IN2  
VCA_IN3  
VCA_IN4  
ADC_IN4  
ADC_IN6  
ADC_IN8  
DOUT10  
IN10  
VCA_OUT5  
VCA_OUT6  
VCA_OUT7  
VCA_OUT8  
VCA_IN5  
VCA_IN6  
VCA_IN7  
VCA_IN8  
ADC_IN10  
DOUT12  
DOUT14  
DOUT16  
IN12  
IN14  
IN16  
ADC_IN12  
ADC_IN14  
ADC_IN16  
VCA Die 2  
DOUT1  
VCA_IN1  
IN1  
VCA_OUT1  
VCA_OUT2  
VCA_OUT3  
VCA_OUT4  
ADC_IN1  
DOUT3  
DOUT5  
DOUT7  
VCA_IN2  
VCA_IN3  
VCA_IN4  
IN3  
IN5  
IN7  
ADC_IN3  
ADC_IN5  
ADC_IN7  
VCA_OUT5  
VCA_OUT6  
VCA_OUT7  
VCA_OUT8  
DOUT9  
VCA_IN5  
VCA_IN6  
VCA_IN7  
VCA_IN8  
IN9  
ADC_IN9  
DOUT11  
DOUT13  
DOUT15  
IN11  
IN13  
IN15  
ADC_IN11  
ADC_IN13  
ADC_IN15  
Device  
Figure 114. Channel Mapping: VCA Dies  
A reset process is required at the device initialization stage.  
NOTE  
Initialization can be accomplished with a hardware reset by applying a positive pulse to  
the RESET pin. After reset, all ADC and VCA registers are set to 0 (default). Note that  
during register programming, all unlisted register bits must be set to 0.  
The Global Register is comprised of register 0 and controls both the VCA and ADC die. The ADC Registers  
include registers that control the ADC die. The VCA Registers include registers that control the VCA dies (that is,  
VCA die 1 and VCA die 2).  
Copyright © 2015, Texas Instruments Incorporated  
91  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Serial Register Map (continued)  
13.1.1 Global Register Map  
This section discusses the global register. A register map is available in Table 12.  
Table 12. Global Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
DECIMAL HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ADD_  
OFFSET  
REG_READ_ SOFTWARE_  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN RESET  
(1) The default value of all registers is 0.  
13.1.1.1 Description of Global Register  
13.1.1.1.1 Register 0 (address = 0h)  
Figure 115. Register 0  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
2
W-0h  
1
W-0h  
7
0
6
0
5
0
4
0
3
0
0
REG_READ_  
EN  
SOFTWARE_  
RESET  
ADD_OFFSET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value  
Table 13. Register 0 Field Descriptions  
Bit  
15-3  
2
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
ADD_OFFSET  
W
0h  
0 = Normal operation  
1 = Separates the SPI address space of the VCA die 1 and VCA  
die 2. Set this bit to 1 to write register addresses 213, 215, 216,  
and 217. Otherwise set this bit to 0.  
1
0
REG_READ_EN  
W
W
0h  
0h  
0 = Register readout mode disabled  
1 = Register readout mode enabled; see the Register Readout  
section for further details  
SOFTWARE_RESET  
0 = Disabled  
1 = Enabled (this setting returns the device to a reset state).  
This bit is a self-clearing register bit.  
92  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2 ADC Register Map  
This section discusses the ADC and LVDS registers. A register map is available in Table 14.  
Table 14. ADC Register Map  
REGISTER ADDRESS  
REGISTER DATA(1)  
DECIMAL  
HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LVDS_  
RATE_2X  
GLOBAL_  
PDN  
1
1
0
0
0
0
0
0
0
0
0
DIS_LVDS  
1
0
1
0
LOW_  
LATENCY_  
EN  
SEL_PRBS  
_PAT_  
FCLK  
SEL_PRBS  
_PAT_GBL  
2
3
2
3
PAT_MODES_FCLK[2:0]  
SER_DATA_RATE  
AVG_EN  
0
PAT_MODES[2:0]  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0]  
DIG_  
OFFSET_  
EN  
DIG_GAIN  
_EN  
OFFSET_CORR_DELAY  
_FROM_TX_TRIG[7:6]  
0
0
0
0
0
0
0
0
0
0
OFFSET_  
OFFEST_  
OFFSET_  
REMOVAL  
_SELF  
PAT_  
SELECT_  
IND  
REMOVAL REMOVAL  
PRBS_  
SYNC  
PRBS_  
MODE  
MSB_  
FIRST  
4
4
AUTO_OFFSET_REMOVAL_ACC_CYCLES[3:0]  
PRBS_EN  
ADC_RES  
_START_  
SEL  
_START_  
MANUAL  
5
7
5
7
8
B
CUSTOM_PATTERN[15:0]  
CHOPPER  
_EN  
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL[4:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
EN_DITHE  
R
11  
0
0
0
0
0
0
0
0
13  
14  
15  
16  
17  
18  
19  
20  
D
E
GAIN_CH1  
0
0
0
0
0
0
0
0
OFFSET_CH1  
0
OFFSET_CH1  
OFFSET_CH2  
OFFSET_CH2  
OFFSET_CH3  
OFFSET_CH3  
OFFSET_CH4  
OFFSET_CH4  
F
GAIN_CH2  
10  
11  
12  
13  
14  
0
GAIN_CH3  
0
GAIN_CH4  
0
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
HPF_ROU  
ND_EN  
DIG_HPF_  
EN_CH1-4  
21  
23  
24  
15  
17  
18  
PAT_LVDS1[2:0]  
0
PAT_LVDS2[2:0]  
HPF_CORNER_CH1-4[3:0]  
PAT_LVDS4[2:0]  
_LVDS1  
_LVDS2  
_LVDS3  
_LVDS4  
0
0
0
0
0
0
0
PAT_LVDS3[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS4  
PDN_  
LVDS3  
PDN_  
LVDS2  
PDN_  
LVDS1  
INVERT_  
LVDS4  
INVERT_  
LVDS3  
INVERT_  
LVDS2  
INVERT_  
LVDS1  
CH4  
CH3  
CH2  
CH1  
CH4 CH3 CH2 CH1  
25  
26  
27  
28  
29  
30  
31  
32  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
GAIN_CH5  
0
0
0
0
0
0
0
0
OFFSET_CH5  
0
OFFSET_CH5  
OFFSET_CH6  
OFFSET_CH6  
OFFSET_CH7  
OFFSET_CH7  
OFFSET_CH8  
OFFSET_CH8  
GAIN_CH6  
0
GAIN_CH7  
0
GAIN_CH8  
0
(1) Default value of all registers is 0.  
Copyright © 2015, Texas Instruments Incorporated  
93  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Table 14. ADC Register Map (continued)  
REGISTER ADDRESS  
REGISTER DATA(1)  
DECIMAL  
HEX  
21  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
DIG_HPF_  
EN_CH5-8  
33  
35  
36  
PAT_LVDS5[2:0]  
0
PAT_LVDS6[2:0]  
0
HPF_CORNER_CH5-8[3:0]  
PAT_LVDS8[2:0]  
_LVDS5  
0
_LVDS6  
0
_LVDS7  
0
_LVDS8  
0
23  
0
0
0
PAT_LVDS7[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
CH8  
PDN_  
LVDS8  
PDN_  
LVDS7  
PDN_  
LVDS6  
PDN_  
LVDS5  
INVERT_  
CH8  
INVERT_  
CH7  
INVERT_  
CH6  
INVERT_  
CH5  
24  
CH7  
CH6  
CH5  
CH8  
CH7  
CH6  
CH5  
37  
38  
39  
40  
41  
42  
43  
44  
25  
26  
27  
28  
29  
2A  
2B  
2C  
GAIN_CH9  
0
0
0
0
0
0
0
0
OFFSET_CH9  
0
OFFSET_CH9  
OFFSET_CH10  
OFFSET_CH10  
OFFSET_CH11  
OFFSET_CH11  
OFFSET_CH12  
OFFSET_CH12  
GAIN_CH10  
0
GAIN_CH11  
0
GAIN_CH12  
0
DIG_HPF_  
EN_  
CH9-12  
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
45  
2D  
PAT_LVDS9[2:0]  
0
PAT_LVDS10[2:0]  
0
HPF_CORNER_CH9-12[3:0]  
PAT_LVDS12[2:0]  
_LVDS9  
_LVDS10  
_LVDS11  
_LVDS12  
47  
48  
2F  
30  
0
0
0
0
0
0
0
PAT_LVDS11[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS12  
PDN_  
LVDS11  
PDN_  
LVDS10  
PDN_  
LVDS9  
INVERT_  
CH12  
INVERT_  
CH11  
INVERT_  
CH10  
INVERT_  
CH9  
CH12  
CH11  
CH10  
CH9  
CH12  
CH11  
CH10  
CH9  
49  
50  
51  
52  
53  
54  
55  
56  
31  
32  
33  
34  
35  
36  
37  
38  
GAIN_CH13  
0
0
0
0
0
0
0
0
OFFSET_CH13  
0
OFFSET_CH13  
OFFSET_CH14  
OFFSET_CH14  
OFFSET_CH15  
OFFSET_CH15  
OFFSET_CH16  
OFFSET_CH16  
GAIN_CH14  
0
GAIN_CH15  
0
GAIN_CH16  
0
DIG_HPF_  
EN_  
CH13-16  
PAT_PRBS PAT_PRBS PAT_PRBS PAT_PRBS  
57  
39  
PAT_LVDS13[2:0]  
0
PAT_LVDS14[2:0]  
0
HPF_CORNER_CH13-16[3:0]  
PAT_LVDS16[2:0]  
_LVDS13  
_LVDS14  
_LVDS15  
_LVDS16  
59  
60  
67  
3B  
3C  
43  
0
0
0
0
0
0
0
PIN_PAT_LVDS15[2:0]  
PDN_ANA_ PDN_ANA_ PDN_ANA_ PDN_ANA_  
0
0
PDN_DIG_ PDN_DIG_ PDN_DIG_ PDN_DIG_  
PDN_  
LVDS16  
PDN_  
LVDS15  
PDN_  
LVDS14  
PDN_  
LVDS13  
INVERT_  
CH16  
INVERT_  
CH15  
INVERT_  
CH14  
INVERT_  
CH13  
CH16  
CH15  
CH14  
CH13  
CH16  
CH15  
CH14  
CH13  
0
0
0
0
0
0
0
0
0
0
0
LVDS_DCLK_DELAY_PROG[3:0]  
0
94  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1 Description of ADC Registers  
13.1.2.1.1 Register 1 (address = 1h)  
Figure 116. Register 1  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
8
0
LVDS_RATE_  
2X  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
4
1
3
0
2
1
1
0
0
DIS_LVDS  
R/W-0h  
GLOBAL_PDN  
R/W-0h  
R/W-0h  
R/W-0h  
W-1h  
R/W-0h  
W-1h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 15. Register 1 Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LVDS_RATE_2X  
0h  
0 = 1x rate; normal operation (default)  
1 = 2x rate. This setting combines the data of two LVDS pairs  
into a single LVDS pair. This feature can be used when the ADC  
clock rate is low; see the LVDS Interface section for further  
details.  
13-6  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
DIS_LVDS  
0 = LVDS interface is enabled (default)  
1 = LVDS interface is disabled  
4
3
2
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Must write 1  
Must write 0  
Must write 1  
Must write 0  
0
1
0
GLOBAL_PDN  
0 = Device operates in normal mode (default)  
1 = ADC enters in complete power-down mode  
Copyright © 2015, Texas Instruments Incorporated  
95  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.2 Register 2 (address = 2h)  
Figure 117. Register 2  
15  
14  
13  
5
12  
11  
10  
9
8
LOW_  
LATENCY_EN  
SEL_PRBS_  
PAT_FCLK  
PAT_MODES_FCLK[2:0]  
R/W-0h  
AVG_EN  
PAT_MODES[2:0]  
R/W-0h  
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
7
6
1
0
PAT_  
MODES[2:0]  
SEL_PRBS_  
PAT_GBL  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 16. Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
PAT_MODES_FCLK[2:0]  
R/W  
0h  
These bits enable different test patterns on the frame clock line;  
see Table 17 for bit descriptions and to the Test Patterns section  
for further details.  
12  
11  
LOW_LATENCY_EN  
AVG_EN  
R/W  
R/W  
0h  
0h  
0 = Default latency with digital features supported  
1 = Low-latency with digital features bypassed  
0 = No averaging  
1 = Enables averaging of two channels to improve signal-to-  
noise ratio (SNR); see the LVDS Interface section for further  
details.  
10  
9-7  
6
SEL_PRBS_PAT_FCLK  
PAT_MODES[2:0]  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0 = Normal operation  
1 = Enables the PRBS pattern to be generated on fCLK; see the  
Test Patterns section for further details.  
These bits enable different test patterns on the LVDS data lines;  
see Table 17 for bit descriptions and to the Test Patterns section  
for further details.  
SEL_PRBS_PAT_GBL  
0 = Normal operation  
1 = Enables the PRBS pattern to be generated; see the Test  
Patterns section for further details.  
5-0  
OFFSET_CORR_DELAY_FROM_  
TX_TRIG[5:0]  
8-bit register to initiate offset correction after the TX_TRIG input  
pulse (each step is equivalent to one sample delay); the  
remaining two MSB bits are the  
OFFSET_CORR_DELAY_FROM_TX_TRIG[7:6] bits (bits 10-9)  
in register 3.  
Table 17. Pattern Mode Bit Description  
PAT_MODES[2:0]  
DESCRIPTION  
000  
001  
010  
011  
100  
101  
110  
111  
Normal operation  
Sync (half frame 0, half frame 1)  
Alternate 0s and 1s  
Custom pattern  
All 1s  
Toggle mode  
All 0s  
Ramp pattern  
96  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.3 Register 3 (address = 3h)  
Figure 118. Register 3  
15  
14  
13  
12  
11  
0
10  
9
8
OFFSET_CORR_DELAY_FROM  
_TX_TRIG[7:6]  
DIG_  
OFFSET_EN  
SER_DATA_RATE  
R/W-0h  
DIG_GAIN_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 18. Register 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
SER_DATA_RATE  
R/W  
0h  
These bits control the LVDS serialization rate.  
000 = 12x  
001 = 14x  
100 = 16x  
101, 110, 111, 010, 011 = Unused  
12  
DIG_GAIN_EN  
0
R/W  
0h  
0 = Digital gain disabled  
1 = Digital gain enabled  
11  
R/W  
R/W  
0h  
0h  
Must write 0  
10-9  
OFFSET_CORR_DELAY_FROM_  
TX_TRIG[7:6]  
8-bit register to initiate offset correction after the TX_TRIG input  
pulse (each step is equivalent to one sample delay); the  
remaining six LSB bits are the  
OFFSET_CORR_DELAY_FROM_TX_TRIG[5:0] bits (bits 5-0) in  
register 2.  
8
DIG_OFFSET_EN  
0
R/W  
R/W  
0h  
0h  
0 = Digital offset subtraction disabled  
1 = Digital offset subtraction enabled  
7-0  
Must write 0  
Copyright © 2015, Texas Instruments Incorporated  
97  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.4 Register 4 (address = 4h)  
Figure 119. Register 4  
15  
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
OFFSET_  
REMOVAL_  
SELF  
PAT_  
SELECT_IND  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PRBS_  
SYNC  
PRBS_  
MODE  
PRBS_EN  
R/W-0h  
MSB_FIRST  
R/W-0h  
0
0
ADC_RES  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 19. Register 4 Field Descriptions  
Bit  
15  
14  
Field  
Type  
Reset  
0h  
Description  
OFFSET_REMOVAL_SELF  
R/W  
Auto offset removal mode is enabled when this bit is set to 1  
OFFSET_REMOVAL_START_SEL R/W  
0h  
Enable this bit to initiate offset correction with a pulse at the  
TX_TRIG pin, otherwise offset correction is initiated when the  
OFFSET_REMOVAL_START_MANUAL bit (bit 13) in register 4  
is enabled.  
13  
12-9  
8
OFFSET_REMOVAL_START_  
MANUAL  
R/W  
0h  
0h  
0h  
This bit initiates offset correction manually instead of with a  
TX_TRIG pulse  
AUTO_OFFSET_REMOVAL_ACC_ R/W  
CYCLES  
These bits define the number of samples required to generate  
an offset in auto offset correction mode  
PAT_SELECT_IND  
R/W  
0 = All LVDS output lines have the same pattern, as determined  
by the PAT_MODES[2:0] bits (register 2, bits 9-7)  
1 = Different test patterns can be sent on different LVDS lines,  
depending upon the channel and register; see the Test Patterns  
section for further details.  
7
6
5
PRBS_SYNC  
PRBS_MODE  
PRBS_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation  
1 = PRBS generator is in a reset state  
0 = 23-bit PRBS generator  
1 = 9-bit PRBS generator  
0 = PRBS sequence generation block disabled  
1 = PRBS sequence generation block enabled; see the Test  
Patterns section for further details.  
4
MSB_FIRST  
R/W  
0h  
0 = The LSB is transmitted first on serialized output data  
1 = The MSB is transmitted first on serialized output data  
3
2
0
R/W  
R/W  
R/W  
0h  
0h  
0h  
Must write 0  
Must write 0  
0
1-0  
ADC_RES  
These bits control the ADC resolution.  
00 = 12-bit resolution  
01 = 14-bit resolution  
10, 11 = Unused  
98  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.5 Register 5 (address = 5h)  
Figure 120. Register 5  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CUSTOM_PATTERN[15:0]  
R/W-0h  
4
3
CUSTOM_PATTERN[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 20. Register 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
CUSTOM_PATTERN[15:0]  
R/W  
0h  
If the pattern mode is programmed to a custom pattern mode,  
then the custom pattern value can be provided by programming  
these bits; see the Test Patterns section for further details.  
13.1.2.1.6 Register 7 (address = 7h)  
Figure 121. Register 7  
15  
14  
13  
12  
11  
10  
0
9
0
8
0
AUTO_OFFSET_REMOVAL_VAL_RD_CH_SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CHOPPER_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 21. Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
AUTO_OFFSET_REMOVAL_VAL_ R/W  
RD_CH_SEL  
0h  
Write the channel number to read the offset value in auto offset  
correction mode for a corresponding channel number (read the  
offset value in register 8, bits 13-0)  
10-1  
0
0
R/W  
R/W  
0h  
0h  
Must write 0  
CHOPPER_EN  
The chopper can be used to move low-frequency, 1 / f noise to  
an fS / 2 frequency.  
0 = Chopper disabled  
1 = Chopper enabled  
Copyright © 2015, Texas Instruments Incorporated  
99  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.7 Register 8 (address = 8h)  
Figure 122. Register 8  
15  
0
14  
0
13  
5
12  
11  
10  
9
1
8
0
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
4
3
2
AUTO_OFFSET_REMOVAL_VAL_RD[13:0]  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 22. Register 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
0h  
Description  
15-14  
13-0  
0
R/W  
Must write 0  
AUTO_OFFSET_REMOVAL_VAL_ R/W  
RD  
0h  
Read the offset value applied in auto offset correction mode for  
a specific channel number as defined in register 7, bits 15-11  
13.1.2.1.8 Register 11 (address = Bh)  
Figure 123. Register 11  
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
0
8
0
EN_DITHER  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 23. Register 11 Field Descriptions  
Bit  
15-12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
EN_DITHER  
0h  
Dither can be used to remove higher-order harmonics.  
0 = Dither disabled  
1 = Dither enable  
Note: Enabling the dither converts higher-order harmonics power  
in noise. Thus, enabling this mode removes harmonics but  
degrades SNR.  
10-0  
0
R/W  
0h  
Must write 0  
100  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.9 Register 13 (address = Dh)  
Figure 124. Register 13  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH1  
R/W-0h  
OFFSET_CH1  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 24. Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH1  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 1 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH1  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 1 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 14, bits 9-0.  
13.1.2.1.10 Register 14 (address = Eh)  
Figure 125. Register 14  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 25. Register 14 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH1  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 1 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 13, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
101  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.11 Register 15 (address = Fh)  
Figure 126. Register 15  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH2  
R/W-0h  
OFFSET_CH2  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 15 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH2  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 2 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH2  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 2 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 16, bits 9-0.  
13.1.2.1.12 Register 16 (address = 10h)  
Figure 127. Register 16  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 27. Register 16 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH2  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 2 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 15, bits 9-0.  
102  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.13 Register 17 (address = 11h)  
Figure 128. Register 17  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH3  
R/W-0h  
OFFSET_CH3  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register 17 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH3  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 3 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH3  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 3 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 18, bits 9-0.  
13.1.2.1.14 Register 18 (address = 12h)  
Figure 129. Register 18  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH3  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register 18 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH3  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 3 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 19, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
103  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.15 Register 19 (address = 13h)  
Figure 130. Register 19  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH4  
R/W-0h  
OFFSET_CH4  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH4  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 30. Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH4  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 4 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH4  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 4 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 20, bits 9-0.  
13.1.2.1.16 Register 20 (address = 14h)  
Figure 131. Register 20  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH4  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH4  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 20 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH4  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 4 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 19, bits 9-0.  
104  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.17 Register 21 (address = 15h)  
Figure 132. Register 21  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS1  
PAT_PRBS_  
LVDS2  
PAT_PRBS_  
LVDS3  
PAT_PRBS_  
LVDS4  
PAT_  
LVDS2[2:0]  
PAT_LVDS1[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
HPF_ROUND_  
EN  
DIG_HPF_EN_  
CH1-4  
PAT_LVDS2[2:0]  
R/W-0h  
HPF_CORNER_CH1-4[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 32. Register 21 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS1  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 1 can be enabled with  
this bit; see the Test Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS2  
PAT_PRBS_LVDS3  
PAT_PRBS_LVDS4  
PAT_LVDS1[2:0]  
PAT_LVDS2[2:0]  
HPF_ROUND_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 2 can be enabled with  
this bit; see the Test Patterns section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 3 can be enabled with  
this bit; see the Test Patterns section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 4 can be enabled with  
this bit; see the Test Patterns section for further details.  
11-9  
8-6  
5
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 1 can be programmed  
with these bits; see Table 33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 2 can be programmed  
with these bits; see Table 33 for bit descriptions.  
0 = Rounding in the ADC HPF is disabled. HPF output is  
truncated to be mapped to the ADC resolution bits.  
1 = HPF output is mapped to the ADC resolution bits by the  
round-off operation.  
4-1  
HPF_CORNER_CH1-4[3:0]  
R/W  
0h  
When the DIG_HPF_EN_CH1-4 bit is set to 1, then the digital  
HPF characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH1-4  
R/W  
0h  
0 = Digital HPF disabled for channels 1 to 4 (default)  
1 = Enables digital HPF for channels 1 to 4  
Copyright © 2015, Texas Instruments Incorporated  
105  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Table 33. Pattern Mode Bit Description  
PAT_MODES[2:0]  
DESCRIPTION  
Normal operation  
Sync (half frame 0, half frame 1)  
Alternate 0s and 1s  
Custom pattern  
All 1s  
000  
001  
010  
011  
100  
101  
110  
111  
Toggle mode  
All 0s  
Ramp pattern  
13.1.2.1.18 Register 23 (address = 17h)  
Figure 133. Register 23  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS3[2:0]  
R/W-0h  
PAT_LVDS4[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 23 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS3[2:0]  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 3 can be programmed  
with these bits; see Table 33 for bit descriptions.  
4-2  
1-0  
PAT_LVDS4[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 4 can be programmed  
with these bits; see Table 33 for bit descriptions.  
Must write 0  
106  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.19 Register 24 (address = 18h)  
Figure 134. Register 24  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH4  
PDN_DIG_  
CH3  
PDN_DIG_  
CH2  
PDN_DIG_  
CH1  
PDN_LVDS4  
PDN_LVDS3  
PDN_LVDS2  
PDN_LVDS1  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH4  
PDN_ANA_  
CH3  
PDN_ANA_  
CH2  
PDN_ANA_  
CH1  
INVERT_  
LVDS4  
INVERT_  
LVDS3  
INVERT_  
LVDS2  
INVERT_  
LVDS1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 35. Register 24 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH4  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 4  
14  
13  
12  
11  
10  
9
PDN_DIG_CH3  
PDN_DIG_CH2  
PDN_DIG_CH1  
PDN_LVDS4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 3  
0 = Normal operation (default)  
1 = Powers down the digital block for channel2  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 1  
0 = Normal operation (default)  
1 = Powers down LVDS output line 4  
PDN_LVDS3  
0 = Normal operation (default)  
1 = Powers down LVDS output line 3  
PDN_LVDS2  
0 = Normal operation (default)  
1 = Powers down LVDS output line 2  
8
PDN_LVDS1  
0 = Normal operation (default)  
1 = Powers down LVDS output line 1  
7
PDN_ANA_CH4  
PDN_ANA_CH3  
PDN_ANA_CH2  
PDN_ANA_CH1  
INVERT_LVDS4  
INVERT_LVDS3  
INVERT_LVDS2  
INVERT_LVDS1  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 4  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 3  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 2  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 1  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 4  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 3  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 2  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 1  
Copyright © 2015, Texas Instruments Incorporated  
107  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.20 Register 25 (address = 19h)  
Figure 135. Register 25  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH5  
R/W-0h  
OFFSET_CH5  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH5  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 36. Register 25 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH5  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 5 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH5  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 5 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 26, bits 9-0.  
13.1.2.1.21 Register 26 (address = 1Ah)  
Figure 136. Register 26  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH5  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 26 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH5  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 5 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 25, bits 9-0.  
108  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.22 Register 27 (address = 1Bh)  
Figure 137. Register 27  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH6  
R/W-0h  
OFFSET_CH6  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH6  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 38. Register 27 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH6  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 6 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH6  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 6 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 28, bits 9-0.  
13.1.2.1.23 Register 28 (address = 1Ch)  
Figure 138. Register 28  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH6  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH6  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 28 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH6  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 6 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 27, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
109  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.24 Register 29 (address = 1Dh)  
Figure 139. Register 29  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH7  
R/W-0h  
OFFSET_CH7  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH7  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 29 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH7  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 7 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH7  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 7 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 30, bits 9-0.  
13.1.2.1.25 Register 30 (address = 1Eh)  
Figure 140. Register 30  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH7  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH7  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 41. Register 30 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH7  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 7 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 29, bits 9-0.  
110  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.26 Register 31 (address = 1Fh)  
Figure 141. Register 31  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH8  
R/W-0h  
OFFSET_CH8  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH8  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 31 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH8  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 8 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH8  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 8 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 32, bits 9-0.  
13.1.2.1.27 Register 32 (address = 20h)  
Figure 142. Register 32  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH8  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH8  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 43. Register 32 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH8  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 16 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 31, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
111  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.28 Register 33 (address = 21h)  
Figure 143. Register 33  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS5  
PAT_PRBS_  
LVDS6  
PAT_PRBS_  
LVDS7  
PAT_PRBS_  
LVDS8  
PAT_  
LVDS6[2:0]  
PAT_LVDS5[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
CH5-8  
PAT_LVDS6[2:0]  
R/W-0h  
0
HPF_CORNER_CH5-8[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 44. Register 33 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS5  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 5 can be enabled with  
this bit; see the Test Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS6  
PAT_PRBS_LVDS7  
PAT_PRBS_LVDS8  
PAT_LVDS5[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 6 can be enabled with  
this bit; see the Test Patterns section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 7 can be enabled with  
this bit; see the Test Patterns section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 8 can be enabled with  
this bit; see the Test Patterns section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 5 can be programmed  
with these bits; see Table 33 for bit descriptions.  
PAT_LVDS6[2:0]  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 6 can be programmed  
with these bits; see Table 33 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_CH5-8[3:0]  
When the DIG_HPF_EN_CH5-8 bit is set to 1, then the digital  
HPF characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH5-8  
R/W  
0h  
0 = Digital HPF disabled for channels 5 to 8 (default)  
1 = Enables digital HPF for channels 5 to 8  
112  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.29 Register 35 (address = 23h)  
Figure 144. Register 35  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS7[2:0]  
R/W-0h  
PAT_LVDS8[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 45. Register 35 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS7[2:0]  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 7 can be programmed  
with these bits; see Table 33 for bit descriptions.  
4-2  
1-0  
PAT_LVDS8[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 8 can be programmed  
with these bits; see Table 33 for bit descriptions.  
Must write 0  
Copyright © 2015, Texas Instruments Incorporated  
113  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.30 Register 36 (address = 24h)  
Figure 145. Register 36  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH8  
PDN_DIG_  
CH7  
PDN_DIG_  
CH6  
PDN_DIG_  
CH5  
PDN_LVDS8  
PDN_LVDS7  
PDN_LVDS6  
PDN_LVDS5  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH8  
PDN_ANA_  
CH7  
PDN_ANA_  
CH6  
PDN_ANA_  
CH5  
INVERT_  
CH8  
INVERT_  
CH7  
INVERT_  
CH6  
INVERT_  
CH5  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 46. Register 36 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH8  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 8  
14  
13  
12  
11  
10  
9
PDN_DIG_CH7  
PDN_DIG_CH6  
PDN_DIG_CH5  
PDN_LVDS8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 7  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 6  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 5  
0 = Normal operation (default)  
1 = Powers down LVDS output line 8  
PDN_LVDS7  
0 = Normal operation (default)  
1 = Powers down LVDS output line 7  
PDN_LVDS6  
0 = Normal operation (default)  
1 = Powers down LVDS output line 6  
8
PDN_LVDS5  
0 = Normal operation (default)  
1 = Powers down LVDS output line 5  
7
PDN_ANA_CH8  
PDN_ANA_CH7  
PDN_ANA_CH6  
PDN_ANA_CH5  
INVERT_CH8  
INVERT_CH7  
INVERT_CH6  
INVERT_CH5  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 8  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 7  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 6  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 5  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 8  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 7  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 6  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 5  
114  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.31 Register 37 (address = 25h)  
Figure 146. Register 37  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH9  
R/W-0h  
OFFSET_CH9  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH9  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 47. Register 37 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH9  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 9 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH9  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 9 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 38, bits 9-0.  
13.1.2.1.32 Register 38 (address = 26h)  
Figure 147. Register 38  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH9  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH9  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 48. Register 38 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH9  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 9 can be obtained with this 10-  
bit register. The offset value is in twos complement format. Write  
the same offset value in register 37, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
115  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.33 Register 39 (address = 27h)  
Figure 148. Register 39  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH10  
R/W-0h  
OFFSET_CH10  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH10  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 49. Register 39 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH10  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 10 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH10  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 10 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 40, bits 9-0.  
13.1.2.1.34 Register 40 (address = 28h)  
Figure 149. Register 40  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH10  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH10  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 50. Register 40 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH10  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 10 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 39, bits 9-0.  
116  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.35 Register 41 (address = 29h)  
Figure 150. Register 41  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH11  
R/W-0h  
OFFSET_CH11  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH11  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 51. Register 41 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH11  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 11 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH11  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 11 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 42, bits 9-0.  
13.1.2.1.36 Register 42 (address = 2Ah)  
Figure 151. Register 42  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH11  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH11  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 52. Register 42 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH11  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 11 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 41, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
117  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.37 Register 43 (address = 2Bh)  
Figure 152. Register 43  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH12  
R/W-0h  
OFFSET_CH12  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH12  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 53. Register 43 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH12  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 12 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH12  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 12 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 44, bits 9-0.  
13.1.2.1.38 Register 44 (address = 2Ch)  
Figure 153. Register 44  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH12  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH12  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 54. Register 44 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH12  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 12 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 43, bits 9-0.  
118  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.39 Register 45 (address = 2Dh)  
Figure 154. Register 45  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS9  
PAT_PRBS_  
LVDS10  
PAT_PRBS_  
LVDS11  
PAT_PRBS_  
LVDS12  
PAT_  
LVDS10[2:0]  
PAT_LVDS9[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
CH9-12  
PAT_LVDS10[2:0]  
R/W-0h  
0
HPF_CORNER_CH9-12[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 55. Register 45 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS9  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 9 can be enabled with  
this bit; see the Test Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS10  
PAT_PRBS_LVDS11  
PAT_PRBS_LVDS12  
PAT_LVDS9[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 10 can be enabled with  
this bit; see the Test Patterns section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 11 can be enabled with  
this bit; see the Test Patterns section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 12 can be enabled with  
this bit; see the Test Patterns section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 9 can be programmed  
with these bits; see Table 33 for bit descriptions.  
PAT_LVDS10[2:0]  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 10 can be  
programmed with these bits; see Table 33 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_CH9-12[3:0]  
When the DIG_HPF_EN_CH9-12 bit is set to 1, then the digital  
HPF characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH9-12  
R/W  
0h  
0 = Digital HPF disabled for channels 9 to 12 (default)  
1 = Enables digital HPF for channels 9 to 12  
Copyright © 2015, Texas Instruments Incorporated  
119  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.40 Register 47 (address = 2Fh)  
Figure 155. Register 47  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PAT_LVDS11[2:0]  
R/W-0h  
PAT_LVDS12[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 56. Register 47 Field Descriptions  
Bit  
15-18  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS11[2:0]  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 11 can be  
programmed with these bits; see Table 33 for bit descriptions.  
4-2  
1-0  
PAT_LVDS12[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 12 can be  
programmed with these bits; see Table 33 for bit descriptions.  
Must write 0  
120  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.41 Register 48 (address = 30h)  
Figure 156. Register 48  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH12  
PDN_DIG_  
CH11  
PDN_DIG_  
CH10  
PDN_DIG_  
CH9  
PDN_LVDS12 PDN_LVDS11 PDN_LVDS10  
PDN_LVDS9  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH12  
PDN_ANA_  
CH11  
PDN_ANA_  
CH10  
PDN_ANA_  
CH9  
INVERT_  
CH12  
INVERT_  
CH11  
INVERT_  
CH10  
INVERT_  
CH9  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 57. Register 48 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH12  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 12  
14  
13  
12  
11  
10  
9
PDN_DIG_CH11  
PDN_DIG_CH10  
PDN_DIG_CH9  
PDN_LVDS12  
PDN_LVDS11  
PDN_LVDS10  
PDN_LVDS9  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 11  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 10  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 9  
0 = Normal operation (default)  
1 = Powers down LVDS output line 12  
0 = Normal operation (default)  
1 = Powers down LVDS output line 11  
0 = Normal operation (default)  
1 = Powers down LVDS output line 10  
8
0 = Normal operation (default)  
1 = Powers down LVDS output line 9  
7
PDN_ANA_CH12  
PDN_ANA_CH11  
PDN_ANA_CH10  
PDN_ANA_CH9  
INVERT_CH12  
INVERT_CH11  
INVERT_CH10  
INVERT_CH9  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 12  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 11  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 10  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 9  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 12  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 11  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 10  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 9  
Copyright © 2015, Texas Instruments Incorporated  
121  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.42 Register 49 (address = 31h)  
Figure 157. Register 49  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH13  
R/W-0h  
OFFSET_CH13  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH13  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 58. Register 49 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH13  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 13 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH13  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 13 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 50, bits 9-0.  
13.1.2.1.43 Register 50 (address = 32h)  
Figure 158. Register 50  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH13  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH13  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 59. Register 50 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH13  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 13 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 49, bits 9-0.  
122  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.44 Register 51 (address = 33h)  
Figure 159. Register 51  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH14  
R/W-0h  
OFFSET_CH14  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH14  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 60. Register 51 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH14  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 14 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH14  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 14 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 52, bits 9-0.  
13.1.2.1.45 Register 52 (address = 34h)  
Figure 160. Register 52  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH14  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH14  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 61. Register 52 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH14  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 14 can be obtained with this  
10-bit register. The offset value is in twos complement format.  
Write the same offset value in register 51, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
123  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.46 Register 53 (address = 35h)  
Figure 161. Register 53  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
GAIN_CH15  
R/W-0h  
OFFSET_CH15  
R/W-0h  
R/W-0h  
5
4
3
2
0
OFFSET_CH15  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 62. Register 53 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH15  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 15 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH15  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 15 can be obtained with this  
10-bit register. the offset value is in twos complement format.  
Write the same offset value in register 54, bits 9-0.  
13.1.2.1.47 Register 54 (address = 36h)  
Figure 162. Register 54  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH15  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH15  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 63. Register 54 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH15  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 15 can be obtained with this  
10-bit register. the offset value is in twos complement format.  
Write the same offset value in register 53, bits 9-0.  
124  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.48 Register 55 (address = 37h)  
Figure 163. Register 55  
15  
7
14  
6
13  
12  
11  
10  
0
9
1
8
0
GAIN_CH16  
R/W-0h  
OFFSET_CH16  
R/W-0h  
R/W-0h  
5
4
3
2
OFFSET_CH16  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 64. Register 55 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
GAIN_CH16  
R/W  
0h  
When the DIG_GAIN_EN bit (register 3, bit 12) is set to 1, then  
the digital gain value for channel 16 can be obtained with this  
register. For an N value (decimal equivalent of binary) written to  
these bits, set the digital gain to N × 0.2 dB.  
10  
0
R/W  
R/W  
0h  
0h  
Must write 0  
9-0  
OFFSET_CH16  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 16 can be obtained with this  
10-bit register. the offset value is in twos complement format.  
Write the same offset value in register 56, bits 9-0.  
13.1.2.1.49 Register 56 (address = 38h)  
Figure 164. Register 56  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
0
OFFSET_CH16  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
OFFSET_CH16  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 65. Register 56 Field Descriptions  
Bit  
15-10  
9-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
OFFSET_CH16  
0h  
When the DIG_OFFSET_EN bit (register 3, bit 8) is set to 1,  
then the offset value for channel 16 can be obtained with this  
10-bit register. the offset value is in twos complement format.  
Write the same offset value in register 55, bits 9-0.  
Copyright © 2015, Texas Instruments Incorporated  
125  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.50 Register 57 (address = 39h)  
Figure 165. Register 57  
15  
14  
13  
12  
11  
10  
9
1
8
PAT_PRBS_  
LVDS13  
PAT_PRBS_  
LVDS14  
PAT_PRBS_  
LVDS15  
PAT_PRBS_  
LVDS16  
PAT_  
LVDS14[2:0]  
PAT_LVDS13[2:0]  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
2
R/W-0h  
0
3
DIG_HPF_EN_  
CH25-32  
PAT_LVDS14[2:0]  
R/W-0h  
0
HPF_CORNER_CH25-32[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 66. Register 57 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PAT_PRBS_LVDS13  
R/W  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 13 can be enabled with  
this bit; see the Test Patterns section for further details.  
14  
13  
PAT_PRBS_LVDS14  
PAT_PRBS_LVDS15  
PAT_PRBS_LVDS16  
PAT_LVDS13[2:0]  
PAT_LVDS14[2:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 14 can be enabled with  
this bit; see the Test Patterns section for further details.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 15 can be enabled with  
this bit; see the Test Patterns section for further details.  
12  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the PRBS pattern on LVDS output 16 can be enabled with  
this bit; see the Test Patterns section for further details.  
11-9  
8-6  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 13 can be  
programmed with these bits; see Table 33 for bit descriptions.  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 14 can be  
programmed with these bits; see Table 33 for bit descriptions.  
5
0
R/W  
R/W  
0h  
0h  
Must write 0  
4-1  
HPF_CORNER_CH13-16[3:0]  
When the DIG_HPF_EN_CH13-16 bit is set to 1, then the digital  
HPF characteristic for the corresponding channels can be  
programmed by setting the value of k with these bits.  
Characteristics of a digital high-pass transfer function applied to  
the output data for a given value of k is defined by:  
2k  
Y(n) =  
[x(n) - x(n - 1) + y(n - 1)]  
2k + 1  
Note that the value of k can be from 2 to 10 (0010b to 1010b);  
see the Digital HPF section for further details.  
0
DIG_HPF_EN_CH13-16  
R/W  
0h  
0 = Digital HPF disabled for channels 13 to 16 (default)  
1 = Enables digital HPF for channels 13 to 16  
126  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.51 Register 59 (address = 3Bh)  
Figure 166. Register 59  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
PIN_PAT_LVDS15[2:0]  
R/W-0h  
PAT_LVDS16[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 67. Register 59 Field Descriptions  
Bit  
15-8  
7-5  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PAT_LVDS15[2:0]  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the differentpattern on LVDS output 15 can be programmed  
with these bits; see Table 33 for bit descriptions.  
4-2  
1-0  
PAT_LVDS16[2:0]  
0
R/W  
R/W  
0h  
0h  
When the PAT_SELECT_IND bit (register 4, bit 8) is set to 1,  
then the different pattern on LVDS output 16 can be  
programmed with these bits; see Table 33 for bit descriptions.  
Must write 0  
Copyright © 2015, Texas Instruments Incorporated  
127  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.2.1.52 Register 60 (address = 3Ch)  
Figure 167. Register 60  
15  
14  
13  
12  
11  
10  
9
8
PDN_DIG_  
CH16  
PDN_DIG_  
CH15  
PDN_DIG_  
CH14  
PDN_DIG_  
CH13  
PDN_LVDS16 PDN_LVDS15 PDN_LVDS14 PDN_LVDS13  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
R/W-0h  
1
R/W-0h  
0
PDN_ANA_  
CH16  
PDN_ANA_  
CH15  
PDN_ANA_  
CH14  
PDN_ANA_  
CH13  
INVERT_  
CH16  
INVERT_  
CH15  
INVERT_  
CH14  
INVERT_  
CH13  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 68. Register 60 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PDN_DIG_CH16  
R/W  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 16  
14  
13  
12  
11  
10  
9
PDN_DIG_CH15  
PDN_DIG_CH14  
PDN_DIG_CH13  
PDN_LVDS16  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 15  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 14  
0 = Normal operation (default)  
1 = Powers down the digital block for channel 13  
0 = Normal operation (default)  
1 = Powers down LVDS output line 16  
PDN_LVDS15  
0 = Normal operation (default)  
1 = Powers down LVDS output line 15  
PDN_LVDS14  
0 = Normal operation (default)  
1 = Powers down LVDS output line 14  
8
PDN_LVDS13  
0 = Normal operation (default)  
1 = Powers down LVDS output line 13  
7
PDN_ANA_CH16  
PDN_ANA_CH15  
PDN_ANA_CH14  
PDN_ANA_CH13  
INVERT_CH15  
INVERT_CH16  
INVERT_CH14  
INVERT_CH13  
0 = Normal operation (default)  
1 = Powers down the analog block for channel 16  
6
0 = Normal operation (default)  
1 = Powers down the analog block for channel 15  
5
0 = Normal operation (default)  
1 = Powers down the analog block for channel 14  
4
0 = Normal operation (default)  
1 = Powers down the analog block for channel 13  
3
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 16  
2
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 15  
1
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 14  
0
0 = Normal operation (default)  
1 = Inverts digital output data sent on LVDS output line 13  
128  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.2.1.53 Register 67 (address = 43h)  
Figure 168. Register 67  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
3
2
1
0
0
LVDS_DCLK_DELAY_PROG[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 69. Register 67 Field Descriptions  
Bit  
15-5  
4-1  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
LVDS_DCLK_DELAY_PROG[3:0]  
0h  
The LVDS DCLK output delay is programmable with 110-ps  
steps. Delay values are in twos complement format. Increasing  
the positive delay increases setup time and reduces hold time,  
and vice-versa for the negative delay.  
0000 = No delay  
0001 = 110 ps  
0010 = 220 ps  
1110 = –220 ps  
1111 = –110ps  
0
0
R/W  
0h  
Must write 0  
Copyright © 2015, Texas Instruments Incorporated  
129  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3 VCA Register Map  
This section discusses the VCA registers. A register map is available in Table 70.  
Table 70. VCA Register Map  
REGISTER ADDRESS  
REGISTER DATA(1)  
DECIMAL  
HEX  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PGA_  
CLAMP_  
DIS  
PGA_  
CLAMP_  
LVL  
PGA_HPF_  
DIS  
195  
C3  
0
0
PGA_GAIN  
0
0
0
0
0
0
LPF_PROG  
ACT_  
TERM_  
IND_RES_  
EN  
ACT_  
TERM_  
EN  
LNA_GAIN  
_IND_EN  
LNA_HPF_  
DIS  
196  
C4  
LNA_GAIN_GBL  
0
INPUT_CLAMP_LVL  
GBL_ACTIVE_TERM  
ACT_TERM_IND_RES  
PDWN_  
VCA_  
PGA  
GBL_  
PDWN  
FAST_  
PDWN  
PDWN_  
LNA  
PDCH  
15/16  
PDCH  
13/14  
PDCH  
11/12  
197  
198  
C5  
C6  
POW_MODES  
LOW_NF  
0
PDCH9/10  
PDCH7/8  
PDCH5/6  
PDCH3/4  
PDCH1/2  
1X_CLK_  
BUF_  
MODE  
16X_CLK_  
BUF_  
MODE  
CW_HPF_  
EN  
DIS_CW_  
AMP  
CW_TGC_  
SEL  
0
CW_HPF_FB_RES  
CW_CLK_MODE  
0
CW_SUM_AMP_GAIN  
199  
200  
201  
C7  
C8  
C9  
CW_MIX_PH_CH7/8  
CW_MIX_PH_CH5/6  
CW_MIX_PH_CH3/4  
CW_MIX_PH_CH1/2  
CW_MIX_PH_CH9/10  
LNA_GAIN_CH3/4 LNA_GAIN_CH1/2  
CW_MIX_PH_CH15/16  
CW_MIX_PH_CH13/14  
CW_MIX_PH_CH11/12  
LNA_GAIN_CH15/16  
LNA_GAIN_CH13/14  
LNA_GAIN_CH11/12  
LNA_GAIN_CH9/10  
LNA_GAIN_CH7/8  
LNA_GAIN_CH5/6  
EN_DIG_  
TGC  
203  
CB  
0
0
0
0
0
0
0
0
DIG_TGC_ATTENUATION  
LNA_HPF_PROG  
0
0
SUPRESS  
_HIGHER_  
HAR  
PGA_  
CLAMP_  
HALF  
V2I_  
CLAMP  
RED_LNA_  
HPF_3X  
205  
CD  
0
0
0
0
0
0
0
0
0
0
0
0
MONICS  
GBL_  
PDWN_  
DIE2  
FAST_  
PDWN_  
DIE2  
PDWN_  
LNA_  
DIE2  
PDWN_  
VCA_  
PGA_DIE2  
LOW_NF_  
DIE2  
213  
D5  
POW_MODES_DIE2  
0
PDCH15  
PDCH13  
PDCH11  
PDCH9  
PDCH7  
PDCH5  
PDCH3  
PDCH1  
215  
216  
217  
D7  
D8  
D9  
CW_MIX_PH_CH7  
CW_MIX_PH_CH15  
CW_MIX_PH_CH5  
CW_MIX_PH_CH13  
LNA_GAIN_CH11 LNA_GAIN_CH9  
CW_MIX_PH_CH3  
CW_MIX_PH_CH11  
CW_MIX_PH_CH1  
CW_MIX_PH_CH9  
LNA_GAIN_CH15  
LNA_GAIN_CH13  
LNA_GAIN_CH7  
LNA_GAIN_CH5  
LNA_GAIN_CH3  
LNA_GAIN_CH1  
(1) The default value of all registers is 0.  
130  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.3.1 Description of VCA Registers  
13.1.3.1.1 Register 195 (address = C3h)  
Table 71. Register 195  
15  
0
14  
0
13  
12  
0
11  
0
10  
0
9
0
8
0
PGA_GAIN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
0
4
3
2
1
0
PGA_CLAMP_ PGA_CLAMP_  
PGA_HPF_DIS  
R/W-0h  
LPF_PROG  
R/W-0h  
DIS  
LVL  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 72. Register 195 Field Descriptions  
Bit  
15-14  
13  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
PGA_GAIN  
0h  
0 = PGA gain set to 24 dB  
1 = PGA gain set to 30 dB  
12-8  
7
0
R/W  
R/W  
0h  
0h  
Must write 0  
PGA_CLAMP_DIS  
When POW_MODES (register 197, bits 11-10) is 01 or 10:  
0 = Disables the PGA current clamp circuit  
1 = Enables the PGA current clamp circuit before the PGA  
outputs  
When POW_MODES (register 197, bits 11-10) is 00:  
0 = Enables the PGA current clamp circuit  
1 = Disables the PGA current clamp circuit before the PGA  
outputs  
PGA_CLAMP_LVL (register 195, bit 6) determines the current  
clamp level.  
6
PGA_CLAMP_LVL  
R/W  
0h  
0 = –2 dBFS  
1 = 0 dBFS  
Note that the current clamp circuit ensures that the PGA output  
is in the linear range. For example, at a 0-dBFS setting, the PGA  
output HD3 worsens by 3 dB at a –2-dBFS ADC input. In normal  
operation, the current clamp function can be set as 0 dBFS.  
5
4
0
R/W  
R/W  
0h  
0h  
Must write 0  
PGA_HPF_DIS  
0 = PGA high-pass filter enabled  
1 = PGA high-pass filter disabled  
3-0  
LPF_PROG  
R/W  
0h  
These bits program the cutoff frequency of the antialiasing low-  
pass filter.  
0000 = 15 MHz  
0100 = 20 MHz  
0101 = 35 MHz  
0110 = 30 MHz  
0111 = 50 MHz  
1000 = 10 MHz  
All other bit combinations are not applicable  
Copyright © 2015, Texas Instruments Incorporated  
131  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.2 Register 196 (address = C4h)  
Table 73. Register 196  
15  
14  
LNA_GAIN_GBL  
R/W-0h  
13  
12  
11  
10  
9
8
LNA_GAIN_  
IND_EN  
ACT_TERM_  
EN  
LNA_HPF_DIS  
0
INPUT_CLAMP_LVL  
R/W-0h  
R/W-0h  
7
R/W-0h  
4
R/W-0h  
3
R/W-0h  
0
6
5
2
1
ACT_TERM_  
IND_RES_EN  
GBL_ACTIVE_TERM  
R/W-0h  
ACT_TERM_IND_RES  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 74. Register 196 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LNA_GAIN_IND_EN  
R/W  
0h  
0 = Disabled  
1 = LNA individual channel control enabled  
See register 201 and register 217 for details.  
14-13  
12  
LNA_GAIN_GBL  
LNA_HPF_DIS  
R/W  
0h  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Reserved  
R/W  
0h  
0 = LNA high-pass filter enabled  
1 = LNA high-pass filter disabled  
11  
0
R/W  
R/W  
0h  
0h  
Must write 0  
10-9  
INPUT_CLAMP_LVL  
00 = Auto setting  
01 = 1.5 VPP  
10 = 1.15 VPP  
11 = 0.6 VPP  
8
ACT_TERM_EN  
R/W  
R/W  
0h  
0h  
0 = Active termination disabled  
1 = Active termination enabled  
7-6  
GBL_ACTIVE_TERM  
00 = 50 Ω  
01 = 100 Ω  
10 = 200 Ω  
11 = 400 Ω  
Note that the device adjusts resistor mapping (register 196, bits  
4-0) automatically. 50-active termination is not supported in  
the 12-dB LNA setting. Instead, 00 represents high-impedance  
mode when LNA gain is 12 dB.  
5
ACT_TERM_IND_RES_EN  
ACT_TERM_IND_RES  
R/W  
R/W  
0h  
0h  
0 = Disabled  
1 = Internal active termination individual resistor control enabled  
4-0  
To enable this bit, ensure that ACT_TERM_IND_RES_EN  
(register 196, bit 5) is 1. For further details, see Table 75.  
132  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Table 75. ACT_TERM_IND_RES(1) (Register 196, Bits 4-0) versus LNA Input Impedances  
ACT_TERM_IND_RES (Register 196, Bits 4-0)  
BIT SETTINGS  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
LNA = 12 dB  
High-Z  
150 Ω  
300 Ω  
100 Ω  
600 Ω  
120 Ω  
200 Ω  
86 Ω  
LNA = 18 dB  
High-Z  
90 Ω  
LNA = 24 dB  
High-Z  
50 Ω  
180 Ω  
60 Ω  
100 Ω  
33 Ω  
360 Ω  
72 Ω  
200 Ω  
40 Ω  
120 Ω  
51 Ω  
66.67 Ω  
29 Ω  
1200 Ω  
133 Ω  
240 Ω  
92 Ω  
720 Ω  
80 Ω  
400 Ω  
44 Ω  
144 Ω  
55 Ω  
80 Ω  
31 Ω  
400 Ω  
109 Ω  
171 Ω  
80 Ω  
240 Ω  
65 Ω  
133 Ω  
36 Ω  
103 Ω  
48 Ω  
57 Ω  
27 Ω  
1500 Ω  
136 Ω  
250 Ω  
94 Ω  
900 Ω  
82 Ω  
500 Ω  
45 Ω  
150 Ω  
56 Ω  
83 Ω  
31 Ω  
429 Ω  
111 Ω  
176 Ω  
81 Ω  
257 Ω  
67 Ω  
143 Ω  
37 Ω  
106 Ω  
49 Ω  
59 Ω  
27 Ω  
667 Ω  
122 Ω  
207 Ω  
87 Ω  
400 Ω  
73 Ω  
222 Ω  
41 Ω  
124 Ω  
52 Ω  
69 Ω  
29 Ω  
316 Ω  
102 Ω  
154 Ω  
76 Ω  
189 Ω  
61 Ω  
105 Ω  
34 Ω  
92 Ω  
51 Ω  
46 Ω  
25 Ω  
(1) Total device input impedance is given by the parallel combination of the mentioned active termination resistance and a passive  
resistance of 15 kΩ.  
Copyright © 2015, Texas Instruments Incorporated  
133  
 
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.3 Register 197 (address = C5h)  
Table 76. Register 197  
15  
14  
13  
12  
11  
10  
9
8
0
PDWN_VCA_  
PGA  
GBL_PDWN  
R/W-0h  
FAST_PDWN  
R/W-0h  
PDWN_LNA  
R/W-0h  
POW_MODES  
R/W-0h  
LOW_NF  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
PDCH15/16  
R/W-0h  
PDCH13/14  
R/W-0h  
PDCH11/12  
R/W-0h  
PDCH9/10  
R/W-0h  
PDCH7/8  
R/W-0h  
PDCH5/6  
R/W-0h  
PDCH3/4  
R/W-0h  
PDCH1/2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 77. Register 197 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15  
GBL_PDWN  
R/W  
R/W  
0h  
0h  
0 = Normal operation  
1 = When ADD_OFFSET is set to 0, the LNA, VCAT, and PGA are completely  
powered down (slow wake response) for both VCA dies 1 and 2  
When ADD_OFFSET is set to 1, the LNA, VCAT, and PGA are completely  
powered down (slow wake response) for only VCA die 1.  
This bit can overwrite FAST PDWN (register 197, bit 14). Note that enabling this  
bit does not power-down the ADC. This bit only powers down the VCA dies.  
14  
FAST_PDWN  
0 = Normal operation  
1 = When ADD_OFFSET set to 0, the LNA, VCAT, and PGA are partially  
powered down (fast wake response) for both VCA dies 1 and 2  
When ADD_OFFSET set to 1, the LNA, VCAT, and PGA are partially powered  
down (fast wake response) for only VCA die 1.  
Note that enabling this bit does not power-down the ADC. This bit only powers  
down the VCA dies.  
13  
12  
PDWN_LNA  
R/W  
R/W  
0h  
0h  
0 = Normal operation  
1 = When ADD_OFFSET is set to 0, only the LNA is powered down for both  
VCA dies 1 and 2  
When ADD_OFFSET is set to 1, only the LNA is powered down for VCA die 1.  
PDWN_VCA_PGA  
0 = Normal operation  
1 = When ADD_OFFSET is set to 0, the VCAT and PGA are powered down for  
both VCA dies 1 and 2  
When ADD_OFFSET set to 1, the VCAT and PGA are powered down for only  
VCA die 1.  
11-10 POW_MODES  
R/W  
0h  
00 = Low-noise mode  
01 = Set to low-power mode; at 30-dB PGA the total chain gain can slightly  
change  
10 = Set to medium-power mode; at 30-dB PGA the total chain gain can slightly  
change  
11 = Reserved  
When ADD_OFFSET is set to 0, the device performs an operation as this  
POW_MODES section describes on both VCA dies 1 and 2.  
When ADD_OFFSET is set to 1, the device performs an operation as this  
POW_MODES section describes only on VCA die 1.  
9
LOW_NF  
R/W  
0h  
This mode can be used to improve the noise figure for high-impedance probes.  
To write to this register, ensure that POW MODES (register 197, bits 11-10) =  
00.  
0 = Disable low-noise figure mode  
1 = When ADD_OFFSET is set to 0, the low-noise figure mode is enabled on  
both VCA dies 1 and 2  
When ADD_OFFSET set to 1, the low-noise figure mode is enabled only on  
VCA die 1.  
8
7
0
R/W  
R/W  
0h  
0h  
Must write 0  
PDCH15/16  
0 = Default  
1 = When ADD_OFFSET is 0, channels 15 and 16 are powered down; when  
ADD_OFFSET is 1, only channel 16 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
134  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Table 77. Register 197 Field Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
6
PDCH13/14  
R/W  
0h  
0 = Default  
1 = When ADD_OFFSET is 0, channels 13 and 14 are powered down; when  
ADD_OFFSET is 1, only channel 14 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
5
4
3
2
1
0
PDCH11/12  
PDCH9/10  
PDCH7/8  
PDCH5/6  
PDCH3/4  
PDCH1/2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0 = Default  
1 = When ADD_OFFSET is 0, channels 11 and 12 are powered down; when  
ADD_OFFSET is 1, only channel 12 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 0, channels 9 and 10 are powered down; when  
ADD_OFFSET is 1, only channel 10 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 0, channels 7 and 8 are powered down; when  
ADD_OFFSET is 1, only channel 8 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit doesn’t have any impact on ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 0, channels 5 and 6 are powered down; when  
ADD_OFFSET is 1, only channel 6 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 0, channels 3 and 4 are powered down; when  
ADD_OFFSET is 1, only channel 4 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 0, channels 1 and 2 are powered down; when  
ADD_OFFSET is 1, only channel 2 is powered down  
This bit only powers down the channel of the VCA die (that is, LNA + VCA +  
PGA). This bit does not affect the ADC channel.  
Copyright © 2015, Texas Instruments Incorporated  
135  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.4 Register 198 (address = C6h)  
Table 78. Register 198  
15  
0
14  
13  
12  
11  
CW_CLK_MODE  
R/W-0h  
10  
9
8
CW_HPF_EN  
R/W-0h  
CW_HPF_FB_RES  
R/W-0h  
DIS_CW_AMP CW_TGC_SEL  
R/W-0h  
R/W-0h  
1
R/W-0h  
0
7
0
6
5
4
3
2
1X_CLK_BUF_ 16X_CLK_BUF  
CW_SUM_AMP_GAIN  
R/W-0h  
MODE  
_MODE  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 79. Register 198 Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
CW_HPF_EN  
0h  
0 = Normal operation  
1 = Enables CW output high-pass filter  
13-12  
CW_HPF_FB_RES  
R/W  
0h  
If CW_HPF_EN = 1 then the value of the CW high-pass filter feedback  
resistor is given by:  
00 = 400 Ω  
01 = 133 Ω  
10 = 80 Ω  
11 = 57 Ω  
If CW_HPF_EN = 0 then these bits are ignored and the feedback path  
remains open.  
11-10  
CW_CLK_MODE  
R/W  
0h  
00 = 16X mode  
01 = 8X mode  
10 = 4X mode  
11 = 1X mode  
9
8
DIS_CW_AMP  
CW_TGC_SEL  
R/W  
R/W  
0h  
0h  
0 = CW summing amplifier enabled  
1 = CW summing amplifier disabled  
Note that this bit is only effective in CW mode.  
0 = TGC mode  
1 = CW mode  
Note that the VCAT and PGA still function in CW mode. Power-down the  
VCAT and PGA separately with PDWN_VCA_PGA (register 197, bit 12).  
7
6
0
R/W  
R/W  
0h  
0h  
Must write 0  
1X_CLK_BUF_MODE  
0 = Accepts CMOS clock  
1 = Accepts differential clock  
5
16X_CLK_BUF_MODE  
CW_SUM_AMP_GAIN  
R/W  
R/W  
0h  
0h  
0 = Accepts differential clock  
1 = Accepts CMOS clock  
4-0  
These bits select the feedback resistor for the CW amplifier, as per Table 75.  
Table 80. CW Summing Amplifier Feedback Resistor  
REGISTER 198  
(Bits 4-0)  
REGISTER 198  
(Bits 4-0)  
REGISTER 198  
FEEDBACK RESISTOR  
FEEDBACK RESISTOR  
FEEDBACK RESISTOR  
(Bits 4-0)  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
Open  
250 Ω  
250 Ω  
125 Ω  
500 Ω  
166 Ω  
166 Ω  
100 Ω  
1000 Ω  
200 Ω  
200 Ω  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
111 Ω  
333 Ω  
142 Ω  
142 Ω  
90 Ω  
153 Ω  
95 Ω  
666 Ω  
181 Ω  
181 Ω  
105 Ω  
285 Ω  
133 Ω  
133 Ω  
87 Ω  
2000 Ω  
222 Ω  
222 Ω  
117 Ω  
400 Ω  
153 Ω  
136  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.3.1.5 Register 199 (address = C7h)  
Table 81. Register 199  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH[7/8]  
R/W-0h  
CW_MIX_PH_CH[5/6]  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH[3/4]  
R/W-0h  
CW_MIX_PH_CH[1/2]  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 82. Register 199 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH[7/8]  
R/W  
0h  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°. Where, N =  
0 to 15; see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0,  
setting bits 15-12 programs the CW phase of channels 7 and 8.  
When the ADD_OFFSET bit is set to 1, setting bits 15-12  
programs the CW phase of only channel 8.  
11-8  
CW_MIX_PH_CH[5/6]  
CW_MIX_PH_CH[3/4]  
CW_MIX_PH_CH[1/2]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°. Where, N =  
0 to 15; see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0,  
setting bits 11-8 programs the CW phase of channels 5 and 6.  
When the ADD_OFFSET bit is set to 1, setting bits 11-8  
programs the CW phase of only channel 6.  
7-4  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°. Where, N =  
0 to 15; see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0,  
setting bits 7-4 programs the CW phase of channels 3 and 4.  
When the ADD_OFFSET bit is set to 1, setting bits 7-4  
programs the CW phase of only channel 4.  
3-0  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°. Where, N =  
0 to 15; see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0,  
setting bits 3-0 programs the CW phase of channels 1 and 2.  
When the ADD_OFFSET bit is set to 1, setting bits 3-0  
programs the CW phase of only channel 2.  
Copyright © 2015, Texas Instruments Incorporated  
137  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Table 83. CW Mixer Phase Delay versus Register Settings  
BIT SETTINGS  
0000  
CW_MIX_PH_CHX, CW_MIX_PH_CHY PHASE SHIFT  
0
0001  
22.5°  
45°  
0010  
0011  
67.5°  
90°  
0100  
0101  
112.5°  
135°  
0110  
0111  
157.5°  
180°  
1000  
1001  
202.5°  
225°  
1010  
1011  
247.5°  
270°  
1100  
1101  
292.5°  
315°  
1110  
1111  
337.5°  
138  
Copyright © 2015, Texas Instruments Incorporated  
 
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.3.1.6 Register 200 (address = C8h)  
Table 84. Register 200  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH[15/16]  
R/W-0h  
CW_MIX_PH_CH[13/14]  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH[11/12]  
R/W-0h  
CW_MIX_PH_CH[9/10]  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 85. Register 200 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH[15/16]  
R/W  
0h  
These bits control the CW mixer phase. Writing N to these bits sets  
the corresponding channel phase to N × 22.5°. Where, N = 0 to 15;  
see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0, setting  
bits 15-12 programs the CW phase of channels 15 and 16.  
When the ADD_OFFSET bit is set to 1, setting bits 15-12 programs  
the CW phase of only channel 16.  
11-8  
CW_MIX_PH_CH[13/14]  
CW_MIX_PH_CH[11/12]  
CW_MIX_PH_CH[9/10]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase. Writing N to these bits sets  
the corresponding channel phase to N × 22.5°. Where, N = 0 to 15;  
see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0, setting  
bits 11-8 programs the CW phase of channels 13 and 14.  
When the ADD_OFFSET bit is set to 1, setting bits 11-8 programs  
the CW phase of only channel 14.  
7-4  
These bits control the CW mixer phase. Writing N to these bits sets  
the corresponding channel phase to N × 22.5°. Where, N = 0 to 15;  
see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0, setting  
bits 7-4 programs the CW phase of channels 11 and 12.  
When the ADD_OFFSET bit is set to 1, setting bits 7-4 programs  
the CW phase of only channel 12.  
3-0  
These bits control the CW mixer phase. Writing N to these bits sets  
the corresponding channel phase to N × 22.5°. Where, N = 0 to 15;  
see Table 83 for further details.  
The functionality of these bits depends upon the value of the  
ADD_OFFSET bit. When the ADD_OFFSET bit is set to 0, setting  
bits 3-0 programs the CW phase of channels 9 and 10.  
When the ADD_OFFSET bit is set to 1, setting bits 3-0 programs  
the CW phase of only channel 10.  
Copyright © 2015, Texas Instruments Incorporated  
139  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.7 Register 201 (address = C9h)  
Table 86. Register 201  
15  
14  
13  
12  
11  
10  
9
8
LNA_GAIN_CH[15/16]  
R/W-0h  
LNA_GAIN_CH[13/14]  
R/W-0h  
LNA_GAIN_CH[11/12]  
R/W-0h  
LNA_GAIN_CH[9/10]  
R/W-0h  
7
6
5
4
3
2
1
0
LNA_GAIN_CH[7/8]  
R/W-0h  
LNA_GAIN_CH[5/6]  
R/W-0h  
LNA_GAIN_CH[3/4]  
R/W-0h  
LNA_GAIN_CH[1/2]  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 87. Register 201 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
LNA_GAIN_CH[15/16]  
R/W  
0h  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 15 and 16 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
16 is programmed.  
13-12  
11-10  
9-8  
LNA_GAIN_CH[13/14]  
LNA_GAIN_CH[11/12]  
LNA_GAIN_CH[9/10]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 13 and 14 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
14 is programmed.  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 11 and 12 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
12 is programmed.  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 9 and 10 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
10 is programmed.  
140  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Table 87. Register 201 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LNA_GAIN_CH[7/8]  
LNA_GAIN_CH[5/6]  
LNA_GAIN_CH[3/4]  
LNA_GAIN_CH[1/2]  
R/W  
0h  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 7 and 8 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
8 is programmed.  
5-4  
3-2  
1-0  
R/W  
R/W  
R/W  
0h  
0h  
0h  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 5 and 6 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
6 is programmed.  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 3 and 4 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
4 is programmed.  
To enable this bit, ensure that LNA_GAIN_IND_EN (register  
196, bit 15) is 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
The functionality of this bit depends on the ADD_OFFSET bit.  
When ADD_OFFSET is 0, the gain of channels 1 and 2 are  
programmed; when ADD_OFFSET is 1, only the gain of channel  
2 is programmed.  
Copyright © 2015, Texas Instruments Incorporated  
141  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.8 Register 203 (address = CBh)  
Table 88. Register 203  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
0
0
EN_DIG_TGC  
R/W-0h  
DIG_TGC_ATTENUATION  
R/W-0h  
LNA_HPF_PROG  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 89. Register 203 Field Descriptions  
Bit  
15-8  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
EN_DIG_TGC  
0h  
0 = Disable digital TGC attenuator  
1 = Enable digital TGC attenuator  
6-4  
DIG_TGC_ATTENUATION  
R/W  
0h  
When EN_DIG_TGC (register 203, bit 7) is set to 1, then the  
digital attenuation in the TGC path is programmed as follows:  
000 = 0-dB attenuation  
001 = 6-dB attenuation  
010 = 12-dB attenuation  
011 = 18-dB attenuation  
100 = 24-dB attenuation.  
101 = 30-dB attenuation  
110 = 36-dB attenuation  
111 = 42-dB attenuation  
3-2  
1-0  
LNA_HPF_PROG  
R/W  
R/W  
0h  
0h  
00 = 100 kHz  
01 = 50 kHz  
10 = 200 kHz  
11 = 150 kHz with 0.015 µF on INMx  
0
Must write 0  
142  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.3.1.9 Register 205 (address = CDh)  
Table 90. Register 205  
15  
14  
13  
12  
11  
10  
0
9
0
8
SUPRESS_  
HIGHER_  
HARMONICS  
PGA_CLAMP_  
HALF  
RED_LNA_  
HPF_3X  
V2I_CLAMP  
R/W-0h  
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 91. Register 205 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PGA_CLAMP_HALF  
R/W  
0h  
0 = Disables –6-dB PGA clamp  
1 = Enables a –6-dB PGA clamp setting (that is, the PGA output  
HD3 worsens by 3 dB at a –6-dBFS ADC input). The actual  
PGA output is reduced to approximately 1.5 VPP. As a result, the  
device low-pass filter (LPF) is not saturated and can suppress  
harmonic signals better at the PGA output. Resulting from the  
reduction of the PGA output, the ADC output dynamic range is  
affected.  
14  
13  
SUPRESS_HIGHER_HARMONICS R/W  
0h  
0h  
0 = Disables a 1st-order, 5-MHz LPF filter  
1 = Enables a 1st-order, 5-MHz LPF filter to suppress signals >  
5 MHz or high-order harmonics  
V2I_CLAMP  
R/W  
0 = Disables V2I clamp in the PGA  
1 = Enables V2I clamp in the PGA  
12-9  
8
0
R/W  
R/W  
0h  
0h  
Must write 0  
RED_LNA_HPF_3X  
0 = The LNA HPF corner frequency is given as per the  
LNA_HPF_PROG bit description  
1 = The LNA HPF corner frequency reduces by 3x as per the  
LNA_HPF_PROG bit description.  
For example, if LNA_HPF_PROG = 01 and RED_LNA_HPF_3X  
= 1, then the LNA HPF corner is given by the equation 50 kHz /  
3 = 16.6 kHz.  
7-0  
0
R/W  
0h  
Must write 0  
Copyright © 2015, Texas Instruments Incorporated  
143  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.10 Register 213 (address = D5h)  
Table 92. Register 213  
15  
14  
13  
12  
11  
10  
9
8
0
GBL_PDWN_ FAST_PDWN_ PDWN_LNA_  
PDWN_VCA_  
PGA_DIE2  
LOW_NF_  
DIE2  
POW_MODES_DIE2  
R/W-0h  
DIE2  
DIE2  
DIE2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
PDCH15  
R/W-0h  
PDCH13  
R/W-0h  
PDCH11  
R/W-0h  
PDCH9  
R/W-0h  
PDCH7  
R/W-0h  
PDCH5  
R/W-0h  
PDCH3  
R/W-0h  
PDCH1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 93. Register 213 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
GBL_PDWN_DIE2  
R/W  
0h  
0 = Normal operation  
1 = When ADD_OFFSET is set to 1, the LNA, VCAT, and PGA  
are completely powered down (slow wake response) for only  
VCA die 2.  
Note that enabling this bit does not power-down the ADC. This  
bit only powers down VCA dies.  
14  
FAST_PDWN_DIE2  
R/W  
0h  
0 = Normal operation  
1 = When ADD_OFFSET set to 1, the LNA, VCAT, and PGA  
partially powered down (fast wake response) for only VCA die 2.  
Note that enabling this bit does not power-down the ADC. This  
bit only powers down VCA dies.  
13  
12  
PDWN_LNA_DIE2  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Normal operation  
1 = When ADD_OFFSET is set to 1, only the LNA is powered  
down for VCA die 2.  
PDWN_VCA_PGA_DIE2  
POW_MODES_DIE2  
0 = Normal operation  
1 = When ADD_OFFSET set to 1, the VCAT and PGA are  
powered down for only VCA die 2.  
11-10  
00 = Low-noise mode  
01 = Set to low-power mode. At 30-dB PGA, the total chain gain  
may slightly change.  
10 = Set to medium-power mode. At 30-dB PGA, the total chain  
gain may slightly change.  
11 = Reserved  
When ADD_OFFSET set to 1, the device performs an operation  
as described in this POW_MODES_DIE2 section only on die 2.  
9
LOW_NF_DIE2  
R/W  
0h  
This mode can be used to improve the noise figure for high-  
impedance probes. To write to this register, set POW  
MODES_DIE2 (register 213, bits 11-10) = 00.  
0 = Disable the low-noise figure mode  
1 = When ADD_OFFSET set to 1, the low-noise figure mode is  
enabled on only on VCA die 2.  
8
7
0
R/W  
R/W  
0h  
0h  
Must write 0  
PDNCH15  
0 = Default  
1 = When ADD_OFFSET is 1, channel 15 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
6
5
4
PDNCH13  
PDNCH11  
PDNCH9  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Default  
1 = When ADD_OFFSET is 1, channel 13 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 1, channel 11 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 1, channel 9 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
144  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
Table 93. Register 213 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PDNCH7  
PDNCH5  
PDNCH3  
PDNCH1  
R/W  
0h  
0 = Default  
1 = When ADD_OFFSET is 1, channel 7 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
2
1
0
R/W  
R/W  
R/W  
0h  
0h  
0h  
0 = Default  
1 = When ADD_OFFSET is 1, channel 5 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 1, channel 3 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
0 = Default  
1 = When ADD_OFFSET is 1, channel 1 is powered down  
This bit powers down the channel of the VCA die only (that is,  
LNA + VCA + PGA). This bit does not affect the ADC channel.  
Copyright © 2015, Texas Instruments Incorporated  
145  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
13.1.3.1.11 Register 215 (address = D7h)  
Table 94. Register 215  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH7  
R/W-0h  
CW_MIX_PH_CH5  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH3  
R/W-0h  
CW_MIX_PH_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 95. Register 215 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH[7]  
R/W  
0h  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 15-12  
programs the CW phase of channel 7.  
11-8  
7-4  
CW_MIX_PH_CH[5]  
CW_MIX_PH_CH[3]  
CW_MIX_PH_CH[1]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 11-8  
programs the CW phase of channel 5.  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 7-4  
programs the CW phase of channel 3.  
3-0  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 3-0  
programs the CW phase of channel 1.  
146  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
13.1.3.1.12 Register 216 (address = D8h)  
Table 96. Register 216  
15  
7
14  
13  
12  
11  
10  
9
8
0
CW_MIX_PH_CH15  
R/W-0h  
CW_MIX_PH_CH13  
R/W-0h  
6
5
4
3
2
1
CW_MIX_PH_CH11  
R/W-0h  
CW_MIX_PH_CH9  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Table 97. Register 216 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
CW_MIX_PH_CH[15]  
R/W  
0h  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 15-12  
programs the CW phase of channel 15.  
11-8  
7-4  
CW_MIX_PH_CH[13]  
CW_MIX_PH_CH[11]  
CW_MIX_PH_CH[9]  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 11-8  
programs the CW phase of channel 13.  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 7-4  
programs the CW phase of channel 11.  
3-0  
These bits control the CW mixer phase. Writing N to these bits  
sets the corresponding channel phase to N × 22.5°.  
Where, N = 0 to 15; see Table 83 for further details.  
When the ADD_OFFSET bit is set to 1, setting bits 3-0  
programs the CW phase of channel 9.  
13.1.3.1.13 Register 217 (address = D9h)  
Table 98. Register 217  
15  
LNA_GAIN_CH15  
R/W-0h  
14  
13  
LNA_GAIN_CH13  
R/W-0h  
12  
11  
LNA_GAIN_CH11  
R/W-0h  
10  
9
8
LNA_GAIN_CH9  
R/W-0h  
7
6
5
4
3
2
1
0
LNA_GAIN_CH7  
R/W-0h  
LNA_GAIN_CH5  
R/W-0h  
LNA_GAIN_CH3  
R/W-0h  
LNA_GAIN_CH1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value  
Copyright © 2015, Texas Instruments Incorporated  
147  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Table 99. Register 217 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
LNA_GAIN_CH[15]  
R/W  
0h  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 15 is  
programmed.  
13-12  
LNA_GAIN_CH[13]  
R/W  
0h  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 13 is  
programmed.  
11-10  
LNA_GAIN_CH[11]  
R/W  
0h  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 11 is  
programmed.  
9-8  
7-6  
5-4  
3-2  
1-0  
LNA_GAIN_CH[9]  
LNA_GAIN_CH[7]  
LNA_GAIN_CH[5]  
LNA_GAIN_CH[3]  
LNA_GAIN_CH[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 9 is programmed.  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 7 is programmed.  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 5 is programmed.  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 3 is programmed.  
To enable this bit, set LNA_GAIN_IND_EN (register 196, bit  
D15) to 1.  
00 = 18 dB  
01 = 24 dB  
10 = 12 dB  
11 = Do not use  
When ADD_OFFSET is 1, the gain of channel 1 is programmed.  
148  
Copyright © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
AFE5816 数据表》,SBAS688  
MicroStar BGA 封装参考指南》SSYZ015  
《高速时钟数据转换器》SLYT075  
《宽带差分互阻抗 DAC 输出设计》SBAA150  
TI 有源滤波器设计工具,WEBENCH® Filter Designer  
CDCM7005 数据表》,SCAS793  
CDCE72010 数据表》,SCAS858  
TLV5626 数据表》,SLAS236  
DAC7821 数据表》,SBAS365  
THS413x 数据表》,SLOS318  
OPA1632 数据表》,SBOS286  
LMK048x 数据表》,SNAS489  
OPA2211 数据表》,SBOS377  
ADS8413 数据表》,SLAS490  
ADS8472 数据表》,SLAS514  
ADS8881 数据表》,SBAS547  
SN74AUP1T04 数据表》,SCES800  
UCC28250 数据表》,SLUSA29  
ISO7240 数据表》,SLLS868  
14.2 商标  
All trademarks are the property of their respective owners.  
14.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.4 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
14.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015, Texas Instruments Incorporated  
149  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
15 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
150  
版权 © 2015, Texas Instruments Incorporated  
AFE5818  
www.ti.com.cn  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
15.1 托盘信息  
169. 托盘图,第 1 节  
版权 © 2015, Texas Instruments Incorporated  
151  
AFE5818  
ZHCSDE6B FEBRUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
托盘信息 (接下页)  
170. 托盘图,第 2 节  
152  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AFE5818ZBV  
ACTIVE  
NFBGA  
ZBV  
289  
126  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
AFE5818  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AFE5818ZBV  
ZBV  
NFBGA  
289  
126  
7 X 18  
150  
315 135.9 7620 17.2  
11.3 16.35  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AFE5818ZBV

具有 CW 无源混频器的 16 通道超声波模拟前端,噪声为 0.75nV/rtHz,功耗为 124mW/通道 | ZBV | 289 | -40 to 85
TI

AFE5828

具有 102mW/通道功率、LVDS 接口和 CW 无源混频器的 16 通道超声波 AFE
TI

AFE5828ZAV

具有 102mW/通道功率、LVDS 接口和 CW 无源混频器的 16 通道超声波 AFE | ZAV | 289 | 0 to 85
TI

AFE5832

具有 42mW/通道功率、LVDS 接口和 CW 无源混频器的 32 通道超声波 AFE
TI

AFE5832LP

具有 18.5mW/通道功率、LVDS 接口和 CW 无源混频器的低功耗 32 通道超声波 AFE
TI

AFE5832LPZAV

具有 18.5mW/通道功率、LVDS 接口和 CW 无源混频器的低功耗 32 通道超声波 AFE | ZAV | 289 | 0 to 85
TI

AFE5832ZBV

具有 42mW/通道功率、LVDS 接口和 CW 无源混频器的 32 通道超声波 AFE | ZBV | 289 | 0 to 85
TI

AFE5851

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI

AFE5851IRGCR

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI

AFE5851IRGCT

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI

AFE5851_14

16 CHANNEL VARIABLE GAIN AMPLIFIER (VGA) WITH OCTAL HIGH SPEED ADC
TI

AFE58JD16

功耗为 90mW/通道、噪声为 0.95nV/√Hz 的 16 通道超声波模拟前端
TI