AM2732ADRFGQZCERQ1 [TI]

AM273x Sitara™ Microcontrollers;
AM2732ADRFGQZCERQ1
型号: AM2732ADRFGQZCERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AM273x Sitara™ Microcontrollers

微控制器
文件: 总94页 (文件大小:6082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AM2732  
SWRS245 – DECEMBER 2021  
AM273x Sitara™ Microcontrollers  
Digital Connectivity  
– 4x Serial Peripheral Interface (SPI) controllers  
operating up to 25 MHz  
1 Features  
Processor Cores:  
– 3x Inter-Integrated Circuit (I2C) ports  
– 4x Universal Asynchronous Receiver-  
Transmitters (UART)  
Dual-core Arm® Cortex®-R5F MCU subsystem  
operating up to 400 MHz, highly-integrated for  
real-time processing  
Industrial and control interfaces:  
– Dual-core Arm® Cortex®-R5F cluster supports  
dual-core and single-core operation  
– 32KB ICache and 32KB DCache per R5F core  
with SECDED ECC on all memories  
– Single-core: 128KB TCM per cluster (128KB  
TCM per R5F core)  
– Dual-core: 128KB TCM per cluster (64KB TCM  
per R5F core)  
TMS320C66x DSP core  
3x Enhanced Pulse-Width Modulator (ePWM)  
1x Enhanced Capture Module (eCAP)  
2x Modular Controller Area Network (MCAN)  
modules with CAN-FD support  
Power Management:  
Simplified power sequencing and reduced number  
of power supply rails  
Dual voltage digital I/O supporting 3.3V and 1.8V  
operation  
– Single core, 32-bit, floating point DSP  
– Operating at 450 MHz (14.4 GMAC)  
Security:  
Memory subsystem:  
Device Security  
Up to 5.0 MB On Chip RAM (OCSRAM)  
– Programmable embedded Hardware Security  
Module (HSM)  
– Secure authenticated and encrypted boot  
support  
– Customer programmable root keys, symmetric  
keys (256 bit), Asymmetric keys (up to RSA-4K  
or ECC-512) with Key revocation capability  
– Crypto hardware accelerators - PKA with ECC,  
AES (up to 256 bit), TRNG/DRBG  
– Memory space sharable between DSP, MCU,  
and shared L3  
– 3.5625MB shared L3 memory  
– 960KB dedicated to Main subsystem  
– 384KB dedicated to DSP subsystem  
External Memory Interfaces (EMIF)  
– QSPI interface operating up to 67 MHz  
System on Chip (SoC) Services and Architecture:  
12x EDMA for various subsystems, MCU, DSP  
and Accelerator cores  
5x Real-Time Interrupt (RTI) modules  
Mailbox system for Interprocessor Communication  
(IPC)  
JTAG/Trace interfaces for device debugging  
Clock source  
– 40.0 MHz crystal with internal oscillator  
– Supports external oscillator at 40/50 MHz  
– Supports externally driven clock (Square/Sine)  
at 40/50 MHz  
Functional Safety:  
Functional Safety-Compliant targeted  
– Developed for functional safety applications  
– Documentation will be available to aid ISO  
26262 functional safety system design  
– Hardware integrity up to ASIL B targeted  
– Safety-related certification  
ISO 26262 certification by TÜV SÜD  
planned  
AEC-Q100 qualification targeted  
Operating Conditions  
High-speed Serial Interfaces:  
– Automotive grade temperature range supported  
– Industrial grade temperature range supported  
10/100 Mbps Ethernet (RGMII/RMII/MII)  
Input: 2x 4-lane MIPI D-PHY CSI 2.0 Data  
Output: 4-lane Aurora/LVDS  
Package options:  
ZCE (285-pin) nFBGA package 13mm x 13mm,  
0.65 mm pitch  
General Connectivity Peripherals:  
45-nm technology  
Compact solution size  
General Purpose Analog to Digital Converters  
(GPADC)  
– 1x 9-channel ADC supporting up to 625 Ksps  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
2 Applications  
Robotics  
Factory Automation Safety Guards  
Building Automation  
Automotive Audio  
Traffic Monitoring  
Machine Vision  
Avionics  
Industrial Transport  
3 Description  
The AM273x family of microcontrollers is a highly-integrated, high-performance microcontroller based on the  
Arm Cortex-R5F and a C66x floating-point DSP cores. The device enables Original-Equipment Manufacturers  
(OEM) and Original-Design Manufacturers (ODM) to quickly bring to market devices with robust software  
support, rich user interfaces, and high performance, through the maximum flexibility of a fully integrated, mixed  
processor solution.  
With an integrated Hardware Security Module (HSM) and functional safety support built in, large, integrated RAM  
on die and a wide temperature range, the AM273x offers a safe, secure and cost effective solution for many  
industrial and automotive applications.  
The AM273x device is provided as part of a complete platform solution including hardware reference designs,  
software drivers, DSP library, sample software configurations/applications, API guide, and user documentation.  
Device Information  
PART NUMBER  
AM2732ADRFGAZCER  
AM2732ADRFGQZCERQ1  
PACKAGE(1)  
nFBGA (285)  
nFBGA (285)  
BODY SIZE  
13 mm x 13 mm  
13 mm x 13 mm  
(1) For more information, see Section 11, Mechanical, Packaging, and Orderable Information.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
3.1 Functional Block Diagram  
Figure 3-1. AM273x Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................3  
4 Revision History.............................................................. 4  
5 Device Comparison.........................................................5  
5.1 Related Products........................................................ 6  
6 Terminal Configuration and Functions..........................7  
6.1 Pin Diagram................................................................ 7  
6.2 Pin Attributes.............................................................12  
6.3 Signal Descriptions................................................... 33  
7 Specifications................................................................ 42  
7.1 Absolute Maximum Ratings...................................... 42  
7.2 ESD Ratings............................................................. 42  
7.3 Power-On Hours (POH)............................................42  
7.4 Recommended Operating Conditions.......................43  
7.5 Operating Performance Points .................................44  
7.6 Power Supply Specifications ....................................44  
7.7 I/O Buffer Type and Voltage Rail Dependency......... 44  
7.8 CPU Specifications................................................... 45  
7.9 Thermal Resistance Characteristics for nFBGA  
7.10 Power Consumption Summary............................... 45  
7.11 Timing and Switching Characteristics..................... 46  
8 Detailed Description......................................................72  
8.1 Overview...................................................................72  
8.2 Main Subsystem....................................................... 72  
8.3 DSP Subsystem........................................................72  
8.4 Radar Control Subsystem.........................................72  
8.5 Other Subsystems.................................................... 72  
8.6 Boot Modes...............................................................75  
9 Applications, Implementation, and Layout................. 77  
9.1 Typical Application.................................................... 77  
10 Device and Documentation Support..........................83  
10.1 Device Nomenclature..............................................83  
10.2 Tools and Software................................................. 87  
10.3 Documentation Support.......................................... 88  
10.4 Support Resources................................................. 88  
10.5 Trademarks.............................................................88  
10.6 Electrostatic Discharge Caution..............................88  
10.7 Glossary..................................................................88  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 89  
Package [ZCE285A] ...................................................45  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2021  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
5 Device Comparison  
Table 5-1. Device Comparison  
AM2732  
FUNCTION  
ADRFGAZCER  
3.625 Mbytes  
ADRFGQZCERQ1  
On-chip memory  
3.625 Mbytes  
ASIL  
B-Targeted  
PROCESSORS  
MCU Arm Cortex (R5F)  
Yes  
Yes  
DSP (C66x)  
RADAR FEATURES  
Hardware Accelerator 2.0  
No  
PERIPHERALS  
Ethernet Interface RGMII, RMII, MII (10/100 ONLY)  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) Interface  
Modular Controller Area Network (MCAN) modules with CAN-FD  
Universal Asynchronous Receiver-Transmitters (UART)  
Enhanced Pulse-Width Modulator (ePWM)  
Enhanced Capture Module (eCAP)  
Hardware in Loop (HIL/DMM)  
General Purpose ADC (9 Channels)  
4-lane Aurora/LVDS Debug  
Yes  
4
1
3
2
4
3
Yes  
Yes  
1
Yes  
2
4-lane MIPI D-PHY CSI2.0 (CSI2_RX0 and CSI2_RX1)  
JTAG/Trace  
Yes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
5.1 Related Products  
Sitara™ processors Broad family of scalable processors based on Arm® Cortex® cores with flexible  
accelerators, peripherals, connectivity and unified software support – perfect for sensors to servers. Sitara™  
processors have the reliability needed for use in industrial applications.  
AM273x Sitara™ microcontrollers AM273x microcontrollers enable industrial Ethernet networks, robust  
operation with extensive ECC on memories, and enhanced security features.  
Sitara™ processors - Evaluation Modules TI provides Evaluation Modules (EVM) are also provided to help  
kick-start product development. See the AM273x GP EVM for more information.  
Products to complete your design Review products that are frequently purchased or used in conjunction with  
this product to complete your design. See the following:  
4x 5-A (20-A) multiphase buck converter PMIC with functional safety features for automotive SoCs  
LP8764-Q1  
Extended temperature, robust low-latency gigabit Ethernet PHY transceiver DP83867E  
Automotive high-speed CAN transceiver TCAN1044-Q1  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
6 Terminal Configuration and Functions  
6.1 Pin Diagram  
Figure 6-1 shows the pin locations for the 285-pin NanoFree(nFBGA) package (ZCE). Figure 6-2, Figure 6-3,  
Figure 6-4, and Figure 6-5 show the same pins, but split into four quadrants.  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
MSS  
_MIBSPIB  
_MISO  
MSS  
_MIBSPIB  
_CS0  
MSS  
_MIBSPIA  
_CS0  
MSS  
_MIBSPIA  
_CLK  
RCSS  
_MIBSPIA  
_CS0  
RCSS  
_MIBSPIB  
_MOSI  
RCSS  
_MIBSPIB  
_CLK  
RCSS_GPIO  
_49  
DSS_UARTA DSS_UARTA MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
MSS_MDIO  
_DATA  
MSS_MDIO  
_CLK  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
MSS_GPIO_9  
VSS  
_RX  
_TX  
_TCLK  
_RD3  
_RCLK  
_RD1  
MSS  
_MIBSPIB  
_MOSI  
MSS  
_MIBSPIB  
_CLK  
MSS  
_MIBSPIB  
_CS1  
MSS  
_MIBSPIA  
_HOSTIRQ  
MSS  
_MIBSPIA  
_MOSI  
RCSS  
_MIBSPIA  
_MOSI  
RCSS  
_MIBSPIA  
_CLK  
RCSS  
_MIBSPIA  
_HOSTIRQ  
RCSS  
_MIBSPIB  
_MISO  
RCSS  
_MIBSPIB  
_HOSTIRQ  
MSS_GPIO  
_12  
MSS_GPIO  
_10  
MSS_I2CA  
_SCL  
MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
MSS_RGMII  
_RD0  
VNWA  
_TCTL  
_TD3  
_TD0  
_RD2  
MSS  
_MIBSPIB  
_CS2  
MSS  
_MIBSPIA  
_MISO  
RCSS  
_MIBSPIA  
_MISO  
RCSS  
_MIBSPIB  
_CS0  
RCSS_UARTA MSS_GPIO  
_TX _13  
MSS_GPIO  
_11  
MSS_RGMII  
_RCTL  
MSS_RGMII  
_TD1  
HW_SYNC  
_FE1  
HW_SYNC  
_FE2  
VDD_SRAM1  
NERRORIN RCSS_UARTA  
_FE2 _RX  
MSS_I2CA  
_SDA  
MSS_RGMII  
_TD2  
TRACE_DATA TRACE_DATA  
_0 _2  
VSS  
VIOIN  
VSS  
VSS  
VSS  
TDO  
TMS  
VIOIN  
VIOIN_18  
VIOIN  
VSS  
VIOIN_18  
VIOIN  
NERRORIN  
_FE1  
TRACE_DATA TRACE_DATA TRACE_DATA  
_1 _3 _4  
NRESET_FE2 NRESET_FE1  
VIOIN_18  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
NWARMRESET  
_IN_FE1  
TRACE_DATA TRACE_DATA  
_5 _7  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VDD  
NWARMRESET  
_IN_FE2  
TRACE_DATA TRACE_DATA TRACE_DATA  
_6 _8 _9  
CSI2_RX1M0 CSI2_RX1P0  
CSI2_RX1P1 CSI2_RX1M1  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
TRACE_CTL TRACE_CLK  
CSI2  
_RX1CLKM  
CSI2  
_RX1CLKP  
VIOIN  
_18CSI  
TRACE_DATA TRACE_DATA TRACE_DATA  
_10  
_11  
_12  
TRACE_DATA  
_15  
TRACE_DATA TRACE_DATA  
_13  
CSI2_RX1M2 CSI2_RX1P2  
CSI2_RX1M3 CSI2_RX1P3  
CSI2_RX0M0 CSI2_RX0P0  
CSI2_RX0M1 CSI2_RX0P1  
_14  
VIOIN  
_18CSI  
MSS_UARTB  
_TX  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VPP  
VSS  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
8
VDD_SRAM3  
VIOIN  
_18LVDS  
7
VSS  
LVDS_CLKP LVDS_CLKM  
LVDS_TXM0 LVDS_TXP0  
LVDS_TXM1 LVDS_TXP1  
LVDS_TXM2 LVDS_TXP2  
LVDS_TXM3 LVDS_TXP3  
CSI2  
_RX0CLKP  
CSI2  
_RX0CLKM  
6
VSS  
VIOIN  
_18LVDS  
5
CSI2_RX0P2 CSI2_RX0M2  
CSI2_RX0P3 CSI2_RX0M3  
TDI  
VSS  
VIOIN  
TEMP  
_SENSOR_1  
OSC_CLK  
_OUT_AUDIO  
4
VIOIN  
VIOIN_18  
VIOIN  
VIOIN_18  
MSS_GPIO  
_28  
TEMP  
_SENSOR_2  
VIOIN  
_18ADC  
MSS_UARTA  
_RX  
3
VSS  
MSS_GPIO_8  
TCK  
MSS_EPWMA0  
VDD_SRAM2  
NERROR_IN  
NRESET  
MSS_MCANA MSS_MCANA MSS_QSPI  
MSS_QSPI  
_D1  
MSS_QSPI  
_D3  
MSS_QSPI  
_CS  
MSS_RS232  
_RX  
VIOIN  
_18CLK  
MSS_UARTA  
2
MSS_GPIO_2 FE2_REFCLK XREF_CLK1  
ADC5  
ADC9  
ADC7  
ADC8  
ADC2  
ADC4  
ADC1  
ADC3  
ADC6  
VSS  
_TX  
_TX  
_RX  
_D0  
MSS_MCANB MSS_MCANB MSS_QSPI  
_TX _RX _D2  
MSS_QSPI  
_CLK  
PMIC  
_CLKOUT  
MSS_RS232  
_TX  
1
VSS  
FE1_REFCLK XREF_CLK0 WARM_RESETNERROR_OUT  
VBGAP  
CLKM  
CLKP  
VSS  
Not to scale  
Figure 6-1. Pin Diagram (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AM2732  
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
A
B
C
D
E
F
G
H
J
MSS  
_MIBSPIB  
_MISO  
MSS  
_MIBSPIB  
_CS0  
MSS  
_MIBSPIA  
_CS0  
MSS  
_MIBSPIA  
_CLK  
RCSS_GPIO  
_49  
DSS_UARTA DSS_UARTA  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS  
MSS_GPIO_9  
_RX  
_TX  
MSS  
_MIBSPIB  
_MOSI  
MSS  
_MIBSPIB  
_CLK  
MSS  
_MIBSPIB  
_CS1  
MSS  
_MIBSPIA  
_HOSTIRQ  
MSS  
_MIBSPIA  
_MOSI  
MSS_GPIO  
_12  
MSS_GPIO  
_10  
MSS_I2CA  
_SCL  
MSS_RGMII  
_TCTL  
MSS  
_MIBSPIB  
_CS2  
MSS  
_MIBSPIA  
_MISO  
RCSS_UARTA MSS_GPIO  
_TX _13  
MSS_GPIO  
_11  
MSS_RGMII  
_RCTL  
NERRORIN RCSS_UARTA  
_FE2 _RX  
MSS_I2CA  
_SDA  
VSS  
VIOIN  
VSS  
VIOIN  
NERRORIN  
_FE1  
NRESET_FE2 NRESET_FE1  
VIOIN_18  
VDD  
VDD  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
NWARMRESET  
VSS  
VSS  
VSS  
VSS  
VDD  
_IN_FE1  
NWARMRESET  
_IN_FE2  
CSI2_RX1M0 CSI2_RX1P0  
CSI2_RX1P1 CSI2_RX1M1  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
CSI2  
_RX1CLKM  
CSI2  
_RX1CLKP  
VIOIN  
_18CSI  
VSS  
Not to scale  
1
2
4
3
Figure 6-2. Top Left Quadrant (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
K
L
M
N
P
R
T
U
V
W
RCSS  
_MIBSPIA  
_CS0  
RCSS  
_MIBSPIB  
_MOSI  
RCSS  
_MIBSPIB  
_CLK  
MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
MSS_MDIO  
_DATA  
MSS_MDIO  
_CLK  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS  
_TCLK  
_RD3  
_RCLK  
_RD1  
RCSS  
_MIBSPIA  
_MOSI  
RCSS  
_MIBSPIA  
_CLK  
RCSS  
_MIBSPIA  
_HOSTIRQ  
RCSS  
_MIBSPIB  
_MISO  
RCSS  
_MIBSPIB  
_HOSTIRQ  
MSS_RGMII MSS_RGMII MSS_RGMII  
MSS_RGMII  
_RD0  
VNWA  
_TD3  
_TD0  
_RD2  
RCSS  
_MIBSPIA  
_MISO  
RCSS  
_MIBSPIB  
_CS0  
MSS_RGMII  
_TD1  
HW_SYNC  
_FE1  
HW_SYNC  
_FE2  
VDD_SRAM1  
MSS_RGMII  
_TD2  
TRACE_DATA TRACE_DATA  
_0 _2  
VIOIN_18  
VIOIN  
VSS  
VIOIN_18  
VIOIN  
TRACE_DATA TRACE_DATA TRACE_DATA  
_1 _3 _4  
VDD  
VDD  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
TRACE_DATA TRACE_DATA  
_5 _7  
VSS  
VSS  
VSS  
VDD  
TRACE_DATA TRACE_DATA TRACE_DATA  
_6 _8 _9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
TRACE_CTL TRACE_CLK  
TRACE_DATA TRACE_DATA TRACE_DATA  
_10  
_11  
_12  
Not to scale  
1
2
4
3
Figure 6-3. Top Right Quadrant (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
A
B
C
D
E
F
G
H
J
10  
9
8
7
6
5
4
3
2
1
CSI2_RX1M2 CSI2_RX1P2  
CSI2_RX1M3 CSI2_RX1P3  
CSI2_RX0M0 CSI2_RX0P0  
CSI2_RX0M1 CSI2_RX0P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VIOIN  
_18CSI  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
TDO  
TMS  
VSS  
CSI2  
_RX0CLKP  
CSI2  
_RX0CLKM  
CSI2_RX0P2 CSI2_RX0M2  
CSI2_RX0P3 CSI2_RX0M3  
TDI  
VSS  
VIOIN  
VIOIN_18  
MSS_GPIO  
_28  
VSS  
MSS_GPIO_8  
TCK  
MSS_EPWMA0  
VDD_SRAM2  
MSS_MCANA MSS_MCANA MSS_QSPI  
MSS_QSPI  
_D1  
MSS_QSPI  
_D3  
MSS_QSPI  
_CS  
MSS_RS232  
_RX  
MSS_GPIO_2 FE2_REFCLK  
_TX  
_RX  
_D0  
MSS_MCANB MSS_MCANB MSS_QSPI  
_TX _RX _D2  
MSS_QSPI  
_CLK  
PMIC  
_CLKOUT  
MSS_RS232  
_TX  
VSS  
FE1_REFCLK XREF_CLK0  
Not to scale  
1
3
2
4
Figure 6-4. Bottom Left Quadrant (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
K
L
M
N
P
R
T
U
V
W
TRACE_DATA  
_15  
TRACE_DATA TRACE_DATA  
10  
9
8
7
6
5
4
3
2
1
VSS  
VSS  
VSS  
VSS  
_13  
_14  
MSS_UARTB  
_TX  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VPP  
VSS  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
VDD_SRAM3  
VIOIN  
_18LVDS  
LVDS_CLKP LVDS_CLKM  
LVDS_TXM0 LVDS_TXP0  
LVDS_TXM1 LVDS_TXP1  
LVDS_TXM2 LVDS_TXP2  
LVDS_TXM3 LVDS_TXP3  
VSS  
VIOIN  
_18LVDS  
VIOIN  
TEMP  
_SENSOR_1  
OSC_CLK  
_OUT_AUDIO  
VIOIN  
VIOIN_18  
TEMP  
_SENSOR_2  
VIOIN  
_18ADC  
MSS_UARTA  
_RX  
NERROR_IN  
NRESET  
VIOIN  
_18CLK  
MSS_UARTA  
XREF_CLK1  
ADC5  
ADC9  
ADC7  
ADC8  
ADC2  
ADC4  
ADC1  
ADC3  
ADC6  
VSS  
_TX  
WARM_RESETNERROR_OUT  
VBGAP  
CLKM  
CLKP  
VSS  
Not to scale  
1
3
2
4
Figure 6-5. Bottom Right Quadrant (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
6.2 Pin Attributes  
The following list describes the contents of each column in Table 6-1, Pin Attributes:  
1. BALL NUMBER: BGA coordinate of signal  
2. PAD NAME: Associated pinmux pad coordinate for each BGA. The specific PINCNTL address register will  
be prefixed with this name. See the associated device-specific TRM for more information.  
3. BALL NAME: Default signal name of BGA. Based on the default MUXMODE selection after reset release.  
4. SIGNAL NAME: Each specific MUXMODE signal name.  
5. PINCNTL ADDRESS: MSS_IOMUX register address for each pad control register.  
6. MUX MODE: Supported FUNC_SEL field names in associated MSS_IOMUX configuration register.  
7. TYPE: IO buffer type and direction associated with specific MSS_IOMUX FUNC_SEL field selection.  
8. BALL RESET STATE: State of the terminal at power-on reset, during while NRESET is asserted.  
9. PULL TYPE (UP/DOWN): IO buffer default internal pull direction and type.  
10. Modes and values marked RSVD are reserved and not available for customer configuration.  
Table 6-1. Pin Attributes (ZCE285A Package)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
E18  
PADAA  
MSS_MIBSPIB_CS1  
MSS_GPIO_12  
0x020C 0000  
0
1
IO  
I
Output Disabled  
Pull Down  
MSS_MIBSPIA_HOSTIRQ  
RSVD  
2
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
3
RSVD  
4
RSVD  
5
MSS_MIBSPIB_CS1  
MSS_GPIO_13  
MSS_GPIO_0  
PMIC_CLKOUT  
MSS_EPWM_TZ2  
RSVD  
6
H1  
PADAB  
FE1_REFCLK  
0x020C 0004  
0
IO  
Output Disabled  
Pull Down  
1
IO  
2
O
3
O
4
RSVD  
RSVD  
RSVD  
I
RSVD  
5
RSVD  
6
FE1_REFCLK  
RSVD  
7
8
RSVD  
RSVD  
O
RSVD  
9
MSS_EPWMA1  
MSS_EPWMB0  
MSS_GPIO_16  
MSS_GPIO_1  
RSVD  
10  
11  
0
O
J2  
PADAC  
FE2_REFCLK  
0x020C 0008  
IO  
Output Disabled  
Pull Down  
1
IO  
2
RSVD  
I
MSS_EPWM_TZ1  
RSVD  
3
4
RSVD  
RSVD  
RSVD  
I
RSVD  
5
RSVD  
6
FE2_REFCLK  
RSVD  
7
8
RSVD  
RSVD  
RSVD  
RSVD  
I
RSVD  
9
RSVD  
10  
11  
12  
13  
14  
15  
0
RSVD  
DMM_MUX_IN  
MSS_MIBSPIB_CS1  
MSS_MIBSPIB_CS2  
MSS_EPWMA_SYNCI  
MSS_GPIO_19  
MSS_MIBSPIA_MOSI  
MSS_MCANA_RX  
O
O
I
C1  
PADAD  
MSS_MCANB_RX  
0x020C 000C  
IO  
Output Disabled  
Pull Up  
1
O
2
I
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
 
 
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
RSVD  
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
RSVD  
RSVD  
DSS_UARTA_TX  
MSS_MCANB_RX  
MSS_I2CA_SCL  
MSS_GPIO_20  
MSS_MIBSPIA_MISO  
MSS_MCANA_TX  
RSVD  
IO  
IO  
B1  
PADAE  
MSS_MCANB_TX  
0x020C 0010  
IO  
Output Disabled  
Pull Up  
I
O
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
MSS_MCANB_TX  
MSS_I2CA_SDA  
MSS_GPIO_3  
MSS_MIBSPIA_CLK  
RCOSC_CLK  
RSVD  
IO  
B2  
PADAF  
MSS_MCANA_RX  
0x020C 0014  
IO  
Output Disabled  
Pull Up  
O
O
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
MSS_MCANB_RX  
DSS_UARTA_TX  
RSVD  
O
RSVD  
I
MSS_MCANA_RX  
MSS_GPIO_30  
MSS_MIBSPIA_CS0  
RCOSC_CLK  
RSVD  
A2  
PADAG  
MSS_MCANA_TX  
0x020C 0018  
IO  
Output Disabled  
Pull Up  
O
O
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
MSS_MCANB_TX  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
MSS_MCANA_TX  
MSS_GPIO_21  
MSS_MIBSPIB_MOSI  
MSS_I2CA_SDA  
MSS_EPWMA0  
RSVD  
C18  
PADAH  
MSS_MIBSPIB_MOSI  
0x020C 001C  
IO  
Output Disabled  
Pull Up  
O
IO  
O
RSVD  
RSVD  
RSVD  
I
RSVD  
RSVD  
MSS_MCANB_RX  
MSS_GPIO_22  
MSS_MIBSPIB_MISO  
MSS_I2CA_SCL  
MSS_EPWMB0  
RSVD  
C19  
PADAI  
MSS_MIBSPIB_MISO  
0x020C 0020  
IO  
Output Disabled  
Pull Up  
I
IO  
O
RSVD  
RSVD  
O
RSVD  
DSS_UARTA_TX  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
MSS_MCANB_TX  
7
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
O
IO  
D18  
PADAJ  
MSS_MIBSPIB_CLK  
MSS_GPIO_5  
MSS_MIBSPIB_CLK  
MSS_UARTA_RX  
MSS_EPWMC0  
RSVD  
0x020C 0024  
Output Disabled  
Pull Up  
O
I
O
RSVD  
RSVD  
O
RSVD  
MSS_UARTB_TX  
RSVD  
RSVD  
I
MSS_MCANA_RX  
MSS_GPIO_4  
MSS_MIBSPIB_CS0  
MSS_UARTA_TX  
RSVD  
D19  
PADAK  
MSS_MIBSPIB_CS0  
0x020C 0028  
IO  
Output Disabled  
Pull Up  
O
O
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
MSS_UARTB_TX  
RSVD  
RSVD  
RSVD  
O
RSVD  
MSS_MCANA_TX  
MSS_GPIO_8  
MSS_QSPI_D0  
MSS_MIBSPIB_MISO  
RSVD  
C2  
PADAL  
MSS_QSPI_D0  
0x020C 002C  
IO  
Output Disabled  
Pull Down  
IO  
I
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
RSVD  
RSVD  
D2  
PADAM  
MSS_QSPI_D1  
MSS_GPIO_9  
MSS_QSPI_D1  
MSS_MIBSPIB_MOSI  
RSVD  
0x020C 0030  
Output Disabled  
Pull Down  
IO  
O
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
RSVD  
RSVD  
MSS_MIBSPIB_CS2  
MSS_GPIO_10  
MSS_QSPI_D2  
RSVD  
D1  
PADAN  
MSS_QSPI_D2  
0x020C 0034  
IO  
Output Disabled  
Pull Up  
IO  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
MSS_MCANA_TX  
MSS_GPIO_11  
MSS_QSPI_D3  
RSVD  
E2  
PADAO  
MSS_QSPI_D3  
0x020C 0038  
IO  
Output Disabled  
Pull Up  
IO  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
MSS_MCANA_RX  
8
0
1
2
3
4
5
6
0
1
2
0
I
IO  
E1  
PADAP  
MSS_QSPI_CLK  
MSS_GPIO_7  
MSS_QSPI_CLK  
MSS_MIBSPIB_CLK  
RSVD  
0x020C 003C  
Output Disabled  
Pull Down  
O
O
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
DSS_UARTA_TX  
MSS_GPIO_6  
MSS_QSPI_CS  
MSS_MIBSPIB_CS0  
NERROR_IN  
F2  
PADAQ  
MSS_QSPI_CS  
0x020C 0040  
IO  
Output Disabled  
Pull Up  
O
O
Pull  
Disabled  
L3  
K1  
L1  
C3  
PADAR  
PADAS  
PADAT  
PADAU  
NERROR_IN  
WARM_RESET  
NERROR_OUT  
TCK  
0x020C 0044  
0x020C 0048  
0x020C 004C  
0x020C 0050  
I
Hi-Z (Open-Drain)  
Hi-Z (Open-Drain)  
Hi-Z (Open-Drain)  
Output Disabled  
WARM_RESET  
NERROR_OUT  
0
0
IO  
O
Pull  
Disabled  
Pull  
Disabled  
MSS_GPIO_17  
TCK  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
0
1
2
3
IO  
I
Pull Down  
MSS_UARTB_TX  
RSVD  
O
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
RSVD  
RSVD  
MSS_MCANA_TX  
MSS_GPIO_18  
TMS  
D4  
PADAV  
TMS  
0x020C 0054  
IO  
Output Disabled  
Pull Up  
I
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
I
RSVD  
RSVD  
RSVD  
MSS_MCANA_RX  
MSS_GPIO_23  
TDI  
C5  
PADAW  
TDI  
0x020C 0058  
IO  
Output Disabled  
Pull Up  
I
MSS_UARTA_RX  
RSVD  
I
RSVD  
RSVD  
RSVD  
RSVD  
I
RSVD  
RSVD  
RSVD  
DSS_UARTA_RX  
MSS_GPIO_24  
TDO  
D6  
PADAX  
TDO  
0x020C 005C  
IO  
Output Enabled  
Pull  
Disabled  
O
MSS_UARTA_TX  
RSVD  
O
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
MSS_UARTB_TX  
RSVD  
RSVD  
RSVD  
I
RSVD  
NDMM_EN  
MSS_GPIO_25  
MCU_CLKOUT  
RSVD  
E3  
PADAY  
MSS_EPWMA0  
0x020C 0060  
IO  
Output Disabled  
Pull Down  
O
RSVD  
RSVD  
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
RSVD  
4
5
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
6
RSVD  
7
RSVD  
8
RSVD  
9
RSVD  
10  
11  
12  
13  
14  
15  
0
RSVD  
MSS_EPWMA0  
RSVD  
RSVD  
RSVD  
O
RSVD  
OBS_CLKOUT  
MSS_GPIO_26  
MSS_GPIO_2  
RSVD  
H2  
PADAZ  
MSS_GPIO_2  
0x020C 0064  
IO  
Output Disabled  
Pull Down  
1
IO  
2
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
3
RSVD  
4
RSVD  
5
RSVD  
6
MSS_UARTB_TX  
RCSS_GPIO_34  
RSVD  
7
8
IO  
9
RSVD  
O
PMIC_CLKOUT  
RSVD  
10  
11  
12  
13  
14  
0
RSVD  
RSVD  
RSVD  
I
RSVD  
RSVD  
MSS_EPWM_TZ0  
MSS_GPIO_27  
PMIC_CLKOUT  
OBS_CLKOUT  
RSVD  
F1  
PADBA  
PMIC_CLKOUT  
0x020C 0068  
IO  
Output Disabled  
Pull Down  
1
O
2
O
3
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
O
RSVD  
4
RSVD  
5
RSVD  
6
RSVD  
7
RSVD  
8
RSVD  
9
RSVD  
10  
11  
12  
0
MSS_EPWMA1  
MSS_EPWMB0  
MSS_GPIO_28  
SYNC_IN  
RSVD  
O
G3  
PADBB  
MSS_GPIO_28  
0x020C 006C  
IO  
Output Disabled  
Pull Down  
1
I
2
RSVD  
I
RCSS_MCASPB_AHCLKR  
RSVD  
3
4
RSVD  
RSVD  
I
RSVD  
5
MSS_UARTB_RX  
DMM_MUX_IN  
DSS_UARTA_RX  
MSS_GPIO_29  
RSVD  
6
7
I
8
I
E17  
PADBC  
MSS_MIBSPIB_CS2  
0x020C 0070  
0
IO  
Output Disabled  
Pull Down  
1
RSVD  
I
RCOSC_CLK  
RSVD  
2
3
RSVD  
RSVD  
RSVD  
4
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
RSVD  
5
6
RSVD  
RSVD  
RSVD  
RSVD  
7
RSVD  
RSVD  
8
RSVD  
DMM_MUX_IN  
MSS_MIBSPIB_CS1  
MSS_MIBSPIB_CS2  
MSS_EPWMB0  
MSS_EPWMB1  
MSS_GPIO_15  
MSS_RS232_RX  
MSS_UARTA_RX  
RSVD  
9
I
10  
11  
12  
13  
0
O
O
O
O
G2  
PADBD  
MSS_RS232_RX  
0x020C 0074  
IO  
Output Disabled  
Pull Up  
1
I
2
I
3
RSVD  
RSVD  
4
RSVD  
RSVD  
5
RSVD  
RSVD  
6
RSVD  
MSS_UARTB_RX  
MSS_MCANA_RX  
MSS_I2CA_SCL  
MSS_EPWMB0  
MSS_EPWMB1  
MSS_EPWMC0  
MSS_GPIO_14  
MSS_RS232_TX  
RSVD  
7
I
8
I
9
IO  
10  
11  
12  
0
O
O
O
G1  
PADBE  
MSS_RS232_TX  
0x020C 0078  
IO  
Output Enabled  
Pull  
Disabled  
1
O
2
RSVD  
RSVD  
3
RSVD  
RSVD  
4
RSVD  
MSS_UARTA_TX  
MSS_UARTB_TX  
RSVD  
5
O
6
O
7
RSVD  
RSVD  
8
RSVD  
RSVD  
9
RSVD  
MSS_MCANA_TX  
MSS_I2CA_SDA  
MSS_EPWMA0  
MSS_EPWMA1  
NDMM_EN  
10  
11  
12  
13  
14  
15  
0
O
IO  
O
O
I
MSS_EPWMB0  
TRACE_DATA_0  
MSS_GPIO_31  
DMM0  
O
V16  
PADBF  
TRACE_DATA_0  
0x020C 007C  
IO  
Output Disabled  
Pull Down  
1
IO  
2
I
RSVD  
3
RSVD  
MSS_UARTA_TX  
RSVD  
4
O
5
RSVD  
RSVD  
6
RSVD  
RCSS_MCASPC_DAT1  
RSVD  
7
IO  
8
RSVD  
RSVD  
9
RSVD  
MSS_I2CA_SDA  
TRACE_DATA_1  
RCSS_GPIO_32  
DMM1  
10  
0
IO  
IO  
IO  
I
U15  
PADBG  
TRACE_DATA_1  
0x020C 0080  
Output Disabled  
Pull Down  
1
2
MSS_EPWMC_SYNCI  
MSS_UARTA_RX  
3
I
4
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
RSVD  
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
RSVD  
RSVD  
RSVD  
RCSS_MCASPC_DAT0  
RSVD  
IO  
RSVD  
RSVD  
RSVD  
MSS_I2CA_SCL  
TRACE_DATA_2  
RCSS_GPIO_33  
DMM2  
IO  
W16  
V15  
W15  
V14  
U13  
W14  
PADBH  
TRACE_DATA_2  
0x020C 0084  
0x020C 0088  
0x020C 008C  
0x020C 0090  
0x020C 0094  
0x020C 0098  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
IO  
I
MSS_EPWMB_SYNCI  
RSVD  
I
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RCSS_MCASPC_FSR  
TRACE_DATA_3  
RCSS_GPIO_34  
DMM3  
IO  
PADBI  
PADBJ  
PADBK  
PADBL  
PADBM  
TRACE_DATA_3  
TRACE_DATA_4  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
IO  
IO  
I
RSVD  
RSVD  
MSS_EPWMC_SYNCO  
RSVD  
O
RSVD  
RSVD  
RSVD  
RCSS_MCASPC_ACLKR  
TRACE_DATA_4  
RCSS_GPIO_35  
DMM4  
I
IO  
IO  
I
RSVD  
RSVD  
MSS_EPWMB_SYNCO  
RSVD  
O
RSVD  
RSVD  
RSVD  
RCSS_MCASPC_FSX  
TRACE_DATA_5  
RCSS_GPIO_36  
DMM5  
IO  
IO  
IO  
I
RSVD  
RSVD  
MSS_EPWM_TZ2  
MSS_UARTB_TX  
RSVD  
I
O
RSVD  
RCSS_MCASPC_ACLKX  
TRACE_DATA_6  
RCSS_GPIO_37  
DMM6  
IO  
IO  
IO  
I
RSVD  
RSVD  
MSS_EPWM_TZ1  
RSVD  
I
RSVD  
RSVD  
O
RSVD  
RCSS_MCASPC_AHCLKX  
TRACE_DATA_7  
RCSS_GPIO_38  
DMM7  
IO  
IO  
I
RSVD  
RSVD  
I
MSS_EPWM_TZ0  
DSS_UARTA_TX  
RSVD  
O
RSVD  
IO  
RCSS_MCASPB_ACLKX  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
V13  
W13  
U11  
V11  
W11  
V10  
W10  
PADBN  
TRACE_DATA_8  
TRACE_DATA_8  
0x020C 009C  
0x020C 00A0  
0x020C 00A4  
0x020C 00A8  
0x020C 00AC  
0x020C 00B0  
0x020C 00B4  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
RCSS_GPIO_39  
DMM8  
IO  
I
RSVD  
RSVD  
MSS_MCANA_TX  
MSS_EPWMA_SYNCI  
RSVD  
O
I
RSVD  
RCSS_MCASPB_FSX  
TRACE_DATA_9  
RCSS_GPIO_40  
DMM9  
IO  
PADBO  
PADBP  
PADBQ  
PADBR  
PADBS  
PADBT  
TRACE_DATA_9  
TRACE_DATA_10  
TRACE_DATA_11  
TRACE_DATA_12  
TRACE_DATA_13  
TRACE_DATA_14  
IO  
IO  
I
RSVD  
RSVD  
MSS_MCANA_RX  
MSS_EPWMA_SYNCO  
RSVD  
I
O
RSVD  
RCSS_MCASPB_ACLKR  
TRACE_DATA_10  
RCSS_GPIO_41  
DMM10  
I
IO  
IO  
I
RSVD  
O
RSVD  
MSS_EPWMC0  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RCSS_MCASPB_FSR  
TRACE_DATA_11  
RCSS_GPIO_42  
DMM11  
IO  
IO  
I
RSVD  
RSVD  
O
MSS_EPWMC1  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RCSS_MCASPB_DAT0  
TRACE_DATA_12  
RCSS_GPIO_43  
DMM12  
IO  
IO  
I
RSVD  
RSVD  
O
MSS_EPWMA0  
MSS_MCANB_TX  
RSVD  
O
RSVD  
IO  
RCSS_MCASPB_DAT1  
TRACE_DATA_13  
RCSS_GPIO_44  
DMM13  
IO  
IO  
I
RSVD  
RSVD  
O
MSS_EPWMA1  
MSS_MCANB_RX  
RSVD  
I
RSVD  
IO  
RCSS_MCASPB_DAT2  
TRACE_DATA_14  
RCSS_GPIO_45  
DMM14  
IO  
IO  
I
RSVD  
RSVD  
O
MSS_EPWMB0  
RSVD  
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
RSVD  
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
RSVD  
RCSS_MCASPB_DAT3  
TRACE_DATA_15  
RCSS_GPIO_46  
DMM15  
IO  
T10  
PADBU  
TRACE_DATA_15  
0x020C 00B8  
0x020C 00BC  
0x020C 00C0  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
IO  
I
RSVD  
RSVD  
MSS_EPWMB1  
RSVD  
O
RSVD  
RSVD  
RSVD  
RCSS_MCASPB_DAT4  
RSVD  
IO  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RCSS_I2CA_SDA  
TRACE_CLK  
RCSS_GPIO_47  
DMM_CLK  
IO  
W12  
PADBV  
TRACE_CLK  
O
IO  
I
HW_SYNC_FE1  
HW_SYNC_FE2  
RSVD  
O
O
RSVD  
RSVD  
RSVD  
RCSS_MCASPB_DAT5  
RSVD  
IO  
RSVD  
RSVD  
RSVD  
DSS_UARTA_RX  
RCSS_I2CA_SCL  
TRACE_CTL  
RCSS_GPIO_48  
DMM_SYNC  
HW_SYNC_FE2  
HW_SYNC_FE1  
RSVD  
I
IO  
V12  
PADBW  
TRACE_CTL  
IO  
IO  
I
O
O
RSVD  
RSVD  
RSVD  
RCSS_MCASPB_AHCLKX  
RSVD  
O
RSVD  
RSVD  
RSVD  
DSS_UARTA_TX  
RCSS_GPIO_49  
MSS_MII_COL  
MSS_RMII_REFCLK  
RSVD  
O
E19  
F16  
F18  
PADBX  
PADBY  
PADBZ  
RCSS_GPIO_49  
MSS_I2CA_SDA  
MSS_I2CA_SCL  
0x020C 00C4  
0x020C 00C8  
0x020C 00CC  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
I
I
RSVD  
RCSS_MCASPA_DAT3  
RSVD  
IO  
RSVD  
MSS_EPWMA1  
RCSS_GPIO_50  
MSS_MII_CRS  
MSS_RMII_CRS_DV  
MSS_I2CA_SDA  
RCSS_MCASPA_DAT2  
RSVD  
O
IO  
I
I
IO  
IO  
RSVD  
MSS_EPWMB1  
RCSS_GPIO_51  
MSS_MII_RXER  
MSS_RMII_RXER  
O
IO  
I
I
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
MSS_I2CA_SCL  
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
0
1
IO  
RCSS_MCASPA_DAT1  
RSVD  
IO  
RSVD  
MSS_EPWMC1  
RCSS_GPIO_52  
MSS_MII_TXEN  
MSS_RMII_TXEN  
MSS_RGMII_TCTL  
RCSS_MCASPA_DAT0  
RSVD  
O
J18  
J17  
K18  
PADCA  
MSS_RGMII_TCTL  
MSS_RGMII_RCTL  
MSS_RGMII_TD3  
0x020C 00D0  
0x020C 00D4  
0x020C 00D8  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
O
O
O
IO  
RSVD  
MSS_EPWMA0  
RCSS_GPIO_53  
MSS_MII_RXDV  
RSVD  
O
PADCB  
IO  
I
RSVD  
MSS_RGMII_RCTL  
RCSS_MCASPA_FSR  
MSS_UARTB_RX  
MSS_EPWMB0  
RCSS_GPIO_54  
MSS_MII_TXD3  
RSVD  
O
IO  
I
O
PADCC  
IO  
O
RSVD  
O
MSS_RGMII_TD3  
RCSS_MCASPA_ACLKR  
MSS_UARTB_TX  
MSS_EPWMC0  
RCSS_GPIO_55  
MSS_MII_TXD2  
RSVD  
I
O
O
K16  
L17  
L18  
K19  
PADCD  
PADCE  
PADCF  
PADCG  
MSS_RGMII_TD2  
MSS_RGMII_TD1  
MSS_RGMII_TD0  
MSS_RGMII_TCLK  
0x020C 00DC  
0x020C 00E0  
0x020C 00E4  
0x020C 00E8  
IO  
O
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
RSVD  
O
MSS_RGMII_TD2  
RCSS_MCASPA_FSX  
RCSS_GPIO_56  
MSS_MII_TXD1  
MSS_RMII_TXD1  
MSS_RGMII_TD1  
RCSS_MCASPA_ACLKX  
RCSS_GPIO_57  
MSS_MII_TXD0  
MSS_RMII_TXD0  
MSS_RGMII_TD0  
RCSS_MCASPA_AHCLKX  
RCSS_GPIO_58  
MSS_MII_TXCLK  
RSVD  
IO  
IO  
O
O
O
IO  
IO  
O
O
O
O
IO  
O
RSVD  
O
MSS_RGMII_TCLK  
RCSS_MCASPB_AHCLKX  
RCSS_I2CA_SDA  
RCSS_GPIO_59  
MSS_MII_RXCLK  
RSVD  
O
IO  
IO  
I
M19  
PADCH  
MSS_RGMII_RCLK  
0x020C 00EC  
Output Disabled  
Pull Down  
RSVD  
I
MSS_RGMII_RCLK  
RCSS_MCASPB_AHCLKR  
RCSS_I2CA_SCL  
RCSS_GPIO_60  
MSS_MII_RXD3  
I
IO  
IO  
I
L19  
PADCI  
MSS_RGMII_RD3  
0x020C 00F0  
Output Disabled  
Pull Down  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
RSVD  
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
RSVD  
MSS_RGMII_RD3  
RCSS_MCASPB_ACLKX  
RCSS_I2CB_SDA  
RCSS_GPIO_61  
MSS_MII_RXD2  
RSVD  
I
IO  
IO  
M18  
PADCJ  
MSS_RGMII_RD2  
0x020C 00F4  
IO  
Output Disabled  
Pull Down  
I
RSVD  
MSS_RGMII_RD2  
RCSS_MCASPB_FSX  
RCSS_I2CB_SCL  
RCSS_GPIO_62  
MSS_MII_RXD1  
MSS_RMII_RXD1  
MSS_RGMII_RD1  
RCSS_MCASPB_ACLKR  
RCSS_GPIO_63  
MSS_MII_RXD0  
MSS_RMII_RXD0  
MSS_RGMII_RD0  
RCSS_MCASPB_FSR  
MSS_GPIO_30  
MSS_MDIO_DATA  
RSVD  
I
IO  
IO  
N19  
P18  
P19  
R19  
R18  
PADCK  
PADCL  
PADCM  
PADCN  
PADCO  
MSS_RGMII_RD1  
MSS_RGMII_RD0  
MSS_MDIO_DATA  
MSS_MDIO_CLK  
RCSS_MIBSPIA_MOSI  
0x020C 00F8  
0x020C 00FC  
0x020C 0100  
0x020C 0104  
0x020C 0108  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Up  
I
I
I
I
IO  
I
I
I
IO  
IO  
IO  
RSVD  
RSVD  
IO  
RSVD  
RCSS_MCASPB_DAT0  
MSS_GPIO_31  
MSS_MDIO_CLK  
RSVD  
IO  
Pull Up  
IO  
RSVD  
RSVD  
IO  
RSVD  
RCSS_MCASPB_DAT1  
RCSS_GPIO_32  
RCSS_MIBSPIA_MOSI  
RCSS_I2CA_SDA  
RSVD  
IO  
Pull Up  
O
IO  
RSVD  
RSVD  
O
RSVD  
MSS_MIBSPIA_MOSI  
RCSS_GPIO_33  
RCSS_MIBSPIA_MISO  
RCSS_I2CA_SCL  
RSVD  
R17  
T18  
T19  
PADCP  
PADCQ  
PADCR  
RCSS_MIBSPIA_MISO  
RCSS_MIBSPIA_CLK  
RCSS_MIBSPIA_CS0  
0x020C 010C  
0x020C 0110  
0x020C 0114  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
I
IO  
RSVD  
RSVD  
I
RSVD  
MSS_MIBSPIA_MISO  
RCSS_GPIO_34  
RCSS_MIBSPIA_CLK  
RCSS_I2CB_SDA  
RSVD  
IO  
IO  
IO  
RSVD  
RSVD  
O
RSVD  
MSS_MIBSPIA_CLK  
RCSS_GPIO_35  
RCSS_MIBSPIA_CS0  
RCSS_I2CB_SCL  
RSVD  
IO  
IO  
IO  
RSVD  
RSVD  
O
RSVD  
MSS_MIBSPIA_CS0  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
U18  
PADCS  
RCSS_MIBSPIA_HOSTIRQ  
RCSS_GPIO_36  
0x020C 0118  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
0
1
2
IO  
O
Output Disabled  
Pull Down  
RCSS_MIBSPIA_CS1  
MSS_GPIO_2  
IO  
MSS_GPIO_8  
IO  
RSVD  
RSVD  
I
MSS_MIBSPIA_HOSTIRQ  
MSS_MIBSPIB_CS2  
RCSS_GPIO_34  
RSVD  
O
IO  
RSVD  
RSVD  
IO  
RSVD  
RCSS_GPIO_40  
RCSS_GPIO_37  
RCSS_MIBSPIB_MOSI  
RCSS_I2CA_SDA  
MSS_CPTS0_HW1TSPUSH  
RSVD  
U19  
V18  
V19  
U17  
W18  
PADCT  
PADCU  
PADCV  
PADCW  
PADCX  
RCSS_MIBSPIB_MOSI  
RCSS_MIBSPIB_MISO  
RCSS_MIBSPIB_CLK  
RCSS_MIBSPIB_CS0  
RCSS_MIBSPIB_HOSTIRQ  
0x020C 011C  
0x020C 0120  
0x020C 0124  
0x020C 0128  
0x020C 012C  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Down  
O
IO  
I
RSVD  
O
MSS_MIBSPIB_MOSI  
RCSS_GPIO_38  
RCSS_MIBSPIB_MISO  
RCSS_I2CA_SCL  
MSS_CPTS0_HW2TSPUSH  
RSVD  
IO  
I
IO  
I
RSVD  
I
MSS_MIBSPIB_MISO  
RCSS_GPIO_39  
RCSS_MIBSPIB_CLK  
RCSS_I2CB_SDA  
MSS_CPTS0_TS_SYNC  
RSVD  
IO  
O
IO  
O
RSVD  
O
MSS_MIBSPIB_CLK  
RCSS_GPIO_40  
RCSS_MIBSPIB_CS0  
RCSS_I2CB_SCL  
MSS_CPTS0_TS_COMP  
RCSS_MCASPC_DAT5  
MSS_MIBSPIB_CS0  
RCSS_GPIO_41  
RCSS_MIBSPIB_CS1  
RSVD  
IO  
O
O
O
IO  
O
IO  
O
RSVD  
O
MSS_CPTS0_TS_GENF  
RCSS_MCASPC_DAT4  
MSS_MIBSPIB_CS1  
MSS_GPIO_3  
IO  
O
IO  
MSS_GPIO_9  
IO  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RCSS_GPIO_35  
RCSS_GPIO_43  
MSS_CPTS0_TS_COMP  
HW_SYNC_FE1  
HW_SYNC_FE2  
RCSS_MCASPC_DAT2  
RCSS_GPIO_43  
MSS_CPTS0_TS_COMP  
HW_SYNC_FE1  
V17  
PADCY  
PADCZ  
HW_SYNC_FE1  
HW_SYNC_FE2  
0x020C 0130  
IO  
Output Disabled  
Pull Down  
O
O
O
IO  
W17  
0x020C 0134  
IO  
Output Disabled  
Pull Down  
O
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
HW_SYNC_FE2  
3
4
0
1
2
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
0
1
2
3
4
5
6
7
8
9
10  
O
IO  
RCSS_MCASPC_DAT2  
RCSS_GPIO_44  
MSS_CPTS0_TS_SYNC  
RSVD  
U3  
PADDA  
MSS_UARTA_RX  
MSS_UARTA_TX  
DSS_UARTA_TX  
DSS_UARTA_RX  
MSS_UARTB_TX  
0x020C 0138  
0x020C 013C  
0x020C 0140  
0x020C 0144  
0x020C 0148  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
O
RSVD  
RSVD  
O
RSVD  
MSS_UARTB_TX  
MSS_UARTA_RX  
DSS_UARTA_TX  
RCSS_GPIO_45  
MSS_CPTS0_HW2TSPUSH  
RSVD  
I
O
W2  
J19  
H19  
V9  
PADDB  
PADDC  
PADDD  
PADDE  
IO  
RSVD  
RSVD  
RSVD  
MSS_UARTB_RX  
MSS_UARTA_TX  
DSS_UARTA_RX  
RCSS_GPIO_46  
MSS_CPTS0_HW1TSPUSH  
RSVD  
I
O
I
IO  
I
RSVD  
RSVD  
IO  
RSVD  
DSS_UARTA_TX  
RCSS_UARTA_RX  
MSS_UARTA_RX  
RCSS_GPIO_47  
DSS_UARTA_RX  
RSVD  
I
I
IO  
IO  
RSVD  
RSVD  
RSVD  
O
RSVD  
RSVD  
RCSS_UARTA_TX  
MSS_UARTA_TX  
MSS_GPIO_0  
DSS_UARTA_TX  
RSVD  
O
IO  
O
RSVD  
I
MSS_EPWMB_SYNCI  
FE1_REFCLK  
MSS_UARTA_TX  
MSS_UARTB_TX  
RSVD  
I
O
O
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
RSVD  
RSVD  
RCSS_GPIO_32  
MSS_GPIO_1  
XREF_CLK0  
RSVD  
J1  
PADDF  
XREF_CLK0  
0x020C 014C  
IO  
Output Disabled  
Pull Down  
I
RSVD  
RSVD  
I
RSVD  
FE2_REFCLK  
RSVD  
RSVD  
O
MCU_CLKOUT  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
RSVD  
11  
12  
0
RSVD  
IO  
RCSS_GPIO_33  
MSS_GPIO_2  
XREF_CLK1  
K2  
PADDG  
XREF_CLK1  
0x020C 0150  
0x020C 0154  
0x020C 0158  
0x020C 015C  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Up  
Pull Up  
Pull Up  
1
I
RSVD  
2
RSVD  
O
RCSS_ECAPA_CAPIN_PWMO  
RSVD  
3
RSVD  
RSVD  
RSVD  
O
4
RSVD  
5
RSVD  
6
PMIC_CLKOUT  
RSVD  
7
8
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
9
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_34  
MSS_GPIO_3  
OBS_CLKOUT  
RCSS_ATL_CLK0  
RSVD  
H18  
G17  
G19  
PADDH  
PADDI  
PADDJ  
MSS_MIBSPIA_MOSI  
MSS_MIBSPIA_MISO  
MSS_MIBSPIA_CLK  
IO  
1
O
2
I
3
RSVD  
IO  
RCSS_I2CB_SDA  
MSS_EPWMA1  
RSVD  
4
5
O
6
RSVD  
RSVD  
RSVD  
O
RSVD  
7
RSVD  
8
RCSS_UARTA_RTS  
MSS_MIBSPIA_MOSI  
RSVD  
9
10  
11  
12  
0
O
RSVD  
IO  
RCSS_GPIO_35  
MSS_GPIO_4  
HW_SYNC_FE1  
MSS_CPTS0_TS_GENF  
RCSS_ATL_CLK1  
RCSS_I2CB_SCL  
MSS_EPWMB1  
MSS_EPWMB0  
HW_SYNC_FE2  
OBS_CLKOUT  
RCSS_UARTA_CTS  
MSS_MIBSPIA_MISO  
RSVD  
IO  
1
O
2
O
3
I
4
O
5
O
6
O
7
O
8
O
9
I
10  
11  
12  
0
IO  
RSVD  
IO  
RCSS_GPIO_36  
MSS_GPIO_5  
HW_SYNC_FE2  
MSS_CPTS0_TS_COMP  
MSS_EPWMB1  
RCSS_ECAPA_CAPIN_PWMO  
RCSS_I2CA_SDA  
MSS_UARTB_TX  
HW_SYNC_FE1  
RSVD  
IO  
1
O
2
O
3
O
4
O
IO  
5
6
O
7
O
8
RSVD  
RSVD  
O
RSVD  
9
MSS_MIBSPIA_CLK  
RSVD  
10  
11  
12  
RSVD  
IO  
RCSS_GPIO_37  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
F19  
PADDK  
MSS_MIBSPIA_CS0  
MSS_MIBSPIA_HOSTIRQ  
MSS_GPIO_8  
MSS_GPIO_6  
0x020C 0160  
0x020C 0164  
0x020C 0168  
0x020C 016C  
0x020C 0170  
0
1
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
MSS_EPWMA_SYNCI  
RSVD  
I
2
RSVD  
HW_SYNC_FE1  
MSS_EPWMA0  
RCSS_I2CA_SCL  
MSS_UARTB_RX  
MSS_CPTS0_TS_GENF  
RSVD  
3
O
4
O
5
O
6
I
7
O
8
RSVD  
HW_SYNC_FE2  
MSS_MIBSPIA_CS0  
RSVD  
9
O
10  
11  
12  
0
O
RSVD  
RCSS_GPIO_38  
MSS_GPIO_7  
IO  
G18  
PADDL  
PADDM  
PADDN  
PADDO  
IO  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
MSS_EPWMA_SYNCO  
MSS_EPWMC1  
HW_SYNC_FE2  
MSS_EPWMB0  
RCSS_I2CB_SDA  
MSS_UARTA_RX  
MSS_CPTS0_TS_COMP  
RCSS_ECAPA_SYNCIN  
HW_SYNC_FE1  
MSS_MIBSPIA_HOSTIRQ  
RSVD  
1
O
2
O
3
O
4
O
5
IO  
6
I
7
O
8
I
9
O
10  
11  
12  
0
I
RSVD  
RCSS_GPIO_39  
MSS_GPIO_8  
IO  
B3  
IO  
FE1_REFCLK  
1
I
MSS_EPWMA_SYNCO  
MSS_EPWMB_SYNCI  
MSS_EPWMC0  
RCSS_I2CB_SCL  
MSS_UARTA_TX  
MSS_CPTS0_TS_SYNC  
RCSS_ECAPA_SYNCOUT  
RSVD  
2
O
3
I
4
O
5
O
O
6
7
O
8
O
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_40  
MSS_GPIO_9  
B19  
MSS_GPIO_9  
IO  
FE2_REFCLK  
1
O
RCSS_UARTA_TX  
MSS_EPWMB_SYNCO  
MSS_EPWMA1  
RSVD  
2
O
3
O
4
O
5
RSVD  
O
DSS_UARTA_TX  
MSS_CPTS0_HW2TSPUSH  
RCSS_MCASPA_AHCLKX  
RSVD  
6
7
I
8
O
9
RSVD  
RSVD  
I
RSVD  
10  
11  
12  
0
RCSS_ATL_CLK0  
RCSS_GPIO_41  
MSS_GPIO_10  
RSVD  
IO  
B18  
MSS_GPIO_10  
IO  
1
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
RCSS_UARTA_RX  
2
3
I
MSS_EPWMC_SYNCI  
MSS_EPWMB1  
RSVD  
I
4
O
5
RSVD  
DSS_UARTA_RX  
MSS_CPTS0_HW1TSPUSH  
RCSS_MCASPA_ACLKX  
RSVD  
6
I
7
I
IO  
8
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_42  
MSS_GPIO_11  
RSVD  
C17  
A18  
B17  
A17  
PADDP  
MSS_GPIO_11  
0x020C 0174  
0x020C 0178  
0x020C 017C  
0x020C 0180  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Up  
1
RSVD  
O
RCSS_UARTA_RTS  
MSS_EPWMC_SYNCO  
MSS_EPWMC1  
MSS_I2CA_SDA  
MSS_UARTB_TX  
RSVD  
2
4
O
5
O
6
IO  
7
O
8
RSVD  
IO  
RCSS_MCASPA_FSX  
RSVD  
9
10  
11  
12  
13  
0
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
RCSS_GPIO_43  
MSS_GPIO_12  
MSS_I2CA_SCL  
RCSS_UARTA_CTS  
HW_SYNC_FE1  
RCSS_ECAPA_CAPIN_PWMO  
MSS_CPTS0_TS_GENF  
MSS_UARTB_RX  
RCSS_ECAPA_CAPIN_PWMO  
RCSS_MCASPA_ACLKR  
RSVD  
PADDQ  
PADDR  
PADDS  
MSS_GPIO_12  
MSS_GPIO_13  
RCSS_UARTA_TX  
IO  
1
O
2
I
3
O
4
O
5
O
6
I
7
O
8
I
9
RSVD  
RSVD  
I
RSVD  
10  
11  
12  
0
MSS_RS232_RX  
RCSS_GPIO_44  
MSS_GPIO_13  
MSS_I2CA_SDA  
MSS_CPTS0_TS_COMP  
HW_SYNC_FE2  
RCSS_UARTA_TX  
MSS_UARTA_TX  
MSS_UARTB_TX  
DSS_UARTA_TX  
RCSS_MCASPA_FSR  
RSVD  
IO  
IO  
1
IO  
2
O
3
O
4
O
5
O
6
O
7
O
8
IO  
9
RSVD  
RSVD  
O
RSVD  
10  
11  
12  
0
MSS_RS232_TX  
RCSS_GPIO_45  
MSS_GPIO_14  
RSVD  
IO  
IO  
1
RSVD  
O
RCSS_UARTA_TX  
RCSS_I2CB_SDA  
2
3
IO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
RESET  
STATE[8]  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
PULL  
SIGNAL NAME[4] [10]  
TYPE[7]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
TYPE[9]  
RSVD  
4
5
RSVD  
RSVD  
RSVD  
IO  
RSVD  
RSVD  
6
RCSS_MCASPA_DAT8  
RCSS_MCASPA_DAT0  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_46  
MSS_GPIO_15  
RSVD  
B16  
C15  
A16  
B15  
PADDT  
RCSS_UARTA_RX  
NERRORIN_FE1  
NERRORIN_FE2  
NRESET_FE1  
0x020C 0184  
0x020C 0188  
0x020C 018C  
0x020C 0190  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
1
RSVD  
I
RCSS_UARTA_RX  
RCSS_I2CB_SCL  
RSVD  
2
3
O
4
RSVD  
RSVD  
RSVD  
IO  
RSVD  
5
RSVD  
6
RCSS_MCASPA_DAT9  
RCSS_MCASPA_DAT1  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_47  
MSS_GPIO_16  
RSVD  
PADDU  
PADDV  
PADDW  
IO  
Pull Down  
Pull Down  
Pull Down  
1
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
2
RSVD  
3
RSVD  
4
RSVD  
5
RSVD  
6
RCSS_MCASPA_DAT10  
RCSS_MCASPA_DAT2  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_48  
MSS_GPIO_17  
RSVD  
IO  
1
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
IO  
RSVD  
2
RSVD  
3
RSVD  
4
RSVD  
5
RSVD  
6
RCSS_MCASPA_DAT11  
RCSS_MCASPA_DAT3  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_49  
MSS_GPIO_18  
RSVD  
IO  
1
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
2
RSVD  
3
RSVD  
4
RSVD  
5
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-1. Pin Attributes (ZCE285A Package) (continued)  
BALL  
PULL  
BALL  
PAD  
BALL  
PINCNTL  
MUX  
SIGNAL NAME[4] [10]  
TYPE[7]  
RESET  
TYPE[9]  
STATE[8]  
NUMBER[1]  
NAME[2]  
NAME[3]  
ADDRESS[5]  
MODE[6] [10]  
RSVD  
6
7
RSVD  
IO  
RCSS_MCASPA_DAT12  
RCSS_MCASPA_DAT4  
RSVD  
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_50  
MSS_GPIO_19  
RSVD  
A15  
B14  
C13  
PADDX  
NRESET_FE2  
0x020C 0194  
0x020C 0198  
0x020C 019C  
IO  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
1
RSVD  
RSVD  
IO  
RSVD  
2
RCSS_I2CA_SDA  
RSVD  
3
4
RSVD  
RSVD  
RSVD  
IO  
RSVD  
5
RSVD  
6
RCSS_MCASPA_DAT13  
RCSS_MCASPA_DAT5  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_51  
MSS_GPIO_20  
RSVD  
PADDY  
NWARMRESET_IN_FE1  
IO  
1
RSVD  
RSVD  
IO  
RSVD  
2
RCSS_I2CA_SCL  
RSVD  
3
4
RSVD  
RSVD  
RSVD  
IO  
RSVD  
5
RSVD  
6
RCSS_MCASPA_DAT14  
RCSS_MCASPA_DAT6  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
0
RSVD  
RCSS_GPIO_52  
MSS_GPIO_21  
RSVD  
PADDZ  
NWARMRESET_IN_FE2  
IO  
1
RSVD  
RSVD  
RSVD  
O
RSVD  
2
RSVD  
3
RCSS_ECAPA_CAPIN_PWMO  
RSVD  
4
5
RSVD  
RSVD  
IO  
RSVD  
6
RCSS_MCASPA_DAT15  
RCSS_MCASPA_DAT7  
RSVD  
7
8
IO  
9
RSVD  
RSVD  
RSVD  
IO  
RSVD  
10  
11  
12  
RSVD  
RCSS_GPIO_53  
The MSS_IOMUX registers contol the individual pin states and MUX mapping described in Table 6-1. The  
following Table 6-2 provides a reference for these registers and power on reset values. For more information on  
programming the MSS_IOMUX registers, see the device-specific TRM.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-2. PAD IO Configuration Registers (MSS_IOMUX)  
Register Width  
(Bits)  
Register  
Reset  
Address  
Offset  
Physical  
Address  
Register Name  
Type  
PADAA_CFG_REG  
PADAB_CFG_REG  
PADAC_CFG_REG  
PADAD_CFG_REG  
PADAE_CFG_REG  
PADAF_CFG_REG  
PADAG_CFG_REG  
PADAH_CFG_REG  
PADAI_CFG_REG  
PADAJ_CFG_REG  
PADAK_CFG_REG  
PADAL_CFG_REG  
PADAM_CFG_REG  
PADAN_CFG_REG  
PADAO_CFG_REG  
PADAP_CFG_REG  
PADAQ_CFG_REG  
PADAR_CFG_REG  
PADAS_CFG_REG  
PADAT_CFG_REG  
PADAU_CFG_REG  
PADAV_CFG_REG  
PADAW_CFG_REG  
PADAX_CFG_REG  
PADAY_CFG_REG  
PADAZ_CFG_REG  
PADBA_CFG_REG  
PADBB_CFG_REG  
PADBC_CFG_REG  
PADBD_CFG_REG  
PADBE_CFG_REG  
PADBF_CFG_REG  
PADBG_CFG_REG  
PADBH_CFG_REG  
PADBI_CFG_REG  
PADBJ_CFG_REG  
PADBK_CFG_REG  
PADBL_CFG_REG  
PADBM_CFG_REG  
PADBN_CFG_REG  
PADBO_CFG_REG  
PADBP_CFG_REG  
PADBQ_CFG_REG  
PADBR_CFG_REG  
PADBS_CFG_REG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 02C1  
0x0000 0100  
0x0000 0100  
0x0000 0100  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 0101  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 0301  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 0000  
0x0000 0004  
0x0000 0008  
0x0000 000C  
0x0000 0010  
0x0000 0014  
0x0000 0018  
0x0000 001C  
0x0000 0020  
0x0000 0024  
0x0000 0028  
0x0000 002C  
0x0000 0030  
0x0000 0034  
0x0000 0038  
0x0000 003C  
0x0000 0040  
0x0000 0044  
0x0000 0048  
0x0000 004C  
0x0000 0050  
0x0000 0054  
0x0000 0058  
0x0000 005C  
0x0000 0060  
0x0000 0064  
0x0000 0068  
0x0000 006C  
0x0000 0070  
0x0000 0074  
0x0000 0078  
0x0000 007C  
0x0000 0080  
0x0000 0084  
0x0000 0088  
0x0000 008C  
0x0000 0090  
0x0000 0094  
0x0000 0098  
0x0000 009C  
0x0000 00A0  
0x0000 00A4  
0x0000 00A8  
0x0000 00AC  
0x0000 00B0  
0x020C 0000  
0x020C 0004  
0x020C 0008  
0x020C 000C  
0x020C 0010  
0x020C 0014  
0x020C 0018  
0x020C 001C  
0x020C 0020  
0x020C 0024  
0x020C 0028  
0x020C 002C  
0x020C 0030  
0x020C 0034  
0x020C 0038  
0x020C 003C  
0x020C 0040  
0x020C 0044  
0x020C 0048  
0x020C 004C  
0x020C 0050  
0x020C 0054  
0x020C 0058  
0x020C 005C  
0x020C 0060  
0x020C 0064  
0x020C 0068  
0x020C 006C  
0x020C 0070  
0x020C 0074  
0x020C 0078  
0x020C 007C  
0x020C 0080  
0x020C 0084  
0x020C 0088  
0x020C 008C  
0x020C 0090  
0x020C 0094  
0x020C 0098  
0x020C 009C  
0x020C 00A0  
0x020C 00A4  
0x020C 00A8  
0x020C 00AC  
0x020C 00B0  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-2. PAD IO Configuration Registers (MSS_IOMUX) (continued)  
Register Width  
(Bits)  
Register  
Reset  
Address  
Offset  
Physical  
Address  
Register Name  
Type  
PADBT_CFG_REG  
PADBU_CFG_REG  
PADBV_CFG_REG  
PADBW_CFG_REG  
PADBX_CFG_REG  
PADBY_CFG_REG  
PADBZ_CFG_REG  
PADCA_CFG_REG  
PADCB_CFG_REG  
PADCC_CFG_REG  
PADCD_CFG_REG  
PADCE_CFG_REG  
PADCF_CFG_REG  
PADCG_CFG_REG  
PADCH_CFG_REG  
PADCI_CFG_REG  
PADCJ_CFG_REG  
PADCK_CFG_REG  
PADCL_CFG_REG  
PADCM_CFG_REG  
PADCN_CFG_REG  
PADCO_CFG_REG  
PADCP_CFG_REG  
PADCQ_CFG_REG  
PADCR_CFG_REG  
PADCS_CFG_REG  
PADCT_CFG_REG  
PADCU_CFG_REG  
PADCV_CFG_REG  
PADCW_CFG_REG  
PADCX_CFG_REG  
PADCY_CFG_REG  
PADCZ_CFG_REG  
PADDA_CFG_REG  
PADDB_CFG_REG  
PADDC_CFG_REG  
PADDD_CFG_REG  
PADDE_CFG_REG  
PADDF_CFG_REG  
PADDG_CFG_REG  
PADDH_CFG_REG  
PADDI_CFG_REG  
PADDJ_CFG_REG  
PADDK_CFG_REG  
PADDL_CFG_REG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 00B4  
0x0000 00B8  
0x0000 00BC  
0x0000 00C0  
0x0000 00C4  
0x0000 00C8  
0x0000 00CC  
0x0000 00D0  
0x0000 00D4  
0x0000 00D8  
0x0000 00DC  
0x0000 00E0  
0x0000 00E4  
0x0000 00E8  
0x0000 00EC  
0x0000 00F0  
0x0000 00F4  
0x0000 00F8  
0x0000 00FC  
0x0000 0100  
0x0000 0104  
0x0000 0108  
0x0000 010C  
0x0000 0110  
0x0000 0114  
0x0000 0118  
0x0000 011C  
0x0000 0120  
0x0000 0124  
0x0000 0128  
0x0000 012C  
0x0000 0130  
0x0000 0134  
0x0000 0138  
0x0000 013C  
0x0000 0140  
0x0000 0144  
0x0000 0148  
0x0000 014C  
0x0000 0150  
0x0000 0154  
0x0000 0158  
0x0000 015C  
0x0000 0160  
0x0000 0164  
0x020C 00B4  
0x020C 00B8  
0x020C 00BC  
0x020C 00C0  
0x020C 00C4  
0x020C 00C8  
0x020C 00CC  
0x020C 00D0  
0x020C 00D4  
0x020C 00D8  
0x020C 00DC  
0x020C 00E0  
0x020C 00E4  
0x020C 00E8  
0x020C 00EC  
0x020C 00F0  
0x020C 00F4  
0x020C 00F8  
0x020C 00FC  
0x020C 0100  
0x020C 0104  
0x020C 0108  
0x020C 010C  
0x020C 0110  
0x020C 0114  
0x020C 0118  
0x020C 011C  
0x020C 0120  
0x020C 0124  
0x020C 0128  
0x020C 012C  
0x020C 0130  
0x020C 0134  
0x020C 0138  
0x020C 013C  
0x020C 0140  
0x020C 0144  
0x020C 0148  
0x020C 014C  
0x020C 0150  
0x020C 0154  
0x020C 0158  
0x020C 015C  
0x020C 0160  
0x020C 0164  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-2. PAD IO Configuration Registers (MSS_IOMUX) (continued)  
Register Width  
(Bits)  
Register  
Reset  
Address  
Offset  
Physical  
Address  
Register Name  
Type  
PADDM_CFG_REG  
PADDN_CFG_REG  
PADDO_CFG_REG  
PADDP_CFG_REG  
PADDQ_CFG_REG  
PADDR_CFG_REG  
PADDS_CFG_REG  
PADDT_CFG_REG  
PADDU_CFG_REG  
PADDV_CFG_REG  
PADDW_CFG_REG  
PADDX_CFG_REG  
PADDY_CFG_REG  
PADDZ_CFG_REG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 02C1  
0x0000 02C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 00C1  
0x0000 0168  
0x0000 016C  
0x0000 0170  
0x0000 0174  
0x0000 0178  
0x0000 017C  
0x0000 0180  
0x0000 0184  
0x0000 0188  
0x0000 018C  
0x0000 0190  
0x0000 0194  
0x0000 0198  
0x0000 019C  
0x020C 0168  
0x020C 016C  
0x020C 0170  
0x020C 0174  
0x020C 0178  
0x020C 017C  
0x020C 0180  
0x020C 0184  
0x020C 0188  
0x020C 018C  
0x020C 0190  
0x020C 0194  
0x020C 0198  
0x020C 019C  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
6.3 Signal Descriptions  
Note  
All digital IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are  
non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply  
being present to the device  
Note  
The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the  
application where the state of the GPIO is critical, even when NRESET is low, a tri-state buffer should  
be used to isolate the GPIO output from any attached device. An additional pull resister should be  
used to define the required state in the application. The NRESET signal could be used to control the  
output enable (OE) of the tri-state buffer.  
Table 6-3. Signal Descriptions  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
TYPE  
DESCRIPTION  
ADC Input Channel 1  
ADC Interface  
ADC Interface  
ADC Interface  
ADC Interface  
ADC Interface  
ADC Interface  
ADC Interface  
ADC Interface  
ADC Interface  
Clocking  
R2  
P2  
R1  
P1  
M2  
T2  
N2  
N1  
M1  
U1  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
CLKM  
I
I
I
I
I
I
I
I
I
ADC Input  
ADC Input  
ADC Input  
ADC Input  
ADC Input  
ADC Input  
ADC Input  
ADC Input  
ADC Input  
Clock Input  
ADC Input Channel 2  
ADC Input Channel 3  
ADC Input Channel 4  
ADC Input Channel 5  
ADC Input Channel 6  
ADC Input Channel 7  
ADC Input Channel 8  
ADC Input Channel 9  
Primary crystal or oscillator input  
clock negative polarity.  
I
Clocking  
V1  
CLKP  
Clock Input  
Primary crystal or oscillator input  
clock positive polarity.  
I
Clocking  
Clocking  
T4  
J1  
OSC_CLK_OUT_AUDIO  
XREF_CLK0  
O
Clock Output Oscillator output reference clock  
LVCMOS  
Optional external reference input  
clock 0. Can be used as dedicated  
peripheral clock source for system  
synchronization. See TRM for  
details.  
IO  
IO  
Clocking  
K2  
XREF_CLK1  
LVCMOS  
Optional external reference input  
clock 1. Can be used as dedicated  
peripheral clock source for system  
synchronization. See TRM for  
details.  
Clocking  
F1  
B6  
PMIC_CLKOUT  
CSI2_RX0CLKM  
IO  
I
LVCMOS  
PMIC output reference clock  
CSI2.0 Interface  
MIPI D-PHY  
CSI2.0 Receiver #1, Clock Input  
Negative Polarity  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
A6  
A8  
A7  
B5  
CSI2_RX0CLKP  
CSI2_RX0M0  
CSI2_RX0M1  
CSI2_RX0M2  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
CSI2.0 Receiver #1, Clock Input  
Positive Polarity  
I
I
I
I
CSI2.0 Receiver #1, Negative  
Polarity Lane 0  
CSI2.0 Receiver #1, Negative  
Polarity Lane 1  
CSI2.0 Receiver #1, Negative  
Polarity Lane 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
CSI2.0 Interface  
Debug Trace  
TYPE  
DESCRIPTION  
B4  
CSI2_RX0M3  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
MIPI D-PHY  
CSI2.0 Receiver #1, Negative  
Polarity Lane 3  
I
B8  
B7  
CSI2_RX0P0  
CSI2_RX0P1  
CSI2_RX0P2  
CSI2_RX0P3  
CSI2_RX1CLKM  
CSI2_RX1CLKP  
CSI2_RX1M0  
CSI2_RX1M1  
CSI2_RX1M2  
CSI2_RX1M3  
CSI2_RX1P0  
CSI2_RX1P1  
CSI2_RX1P2  
CSI2_RX1P3  
TRACE_CLK  
TRACE_CTL  
CSI2.0 Receiver #1, Positive Polarity  
Lane 0  
I
CSI2.0 Receiver #1, Positive Polarity  
Lane 1  
I
A5  
CSI2.0 Receiver #1, Positive Polarity  
Lane 2  
I
A4  
CSI2.0 Receiver #1, Positive Polarity  
Lane 3  
I
A11  
B11  
A13  
B12  
A10  
A9  
CSI2.0 Receiver #2, Clock Input  
Negative Polarity  
I
CSI2.0 Receiver #2, Clock Input  
Positive Polarity  
I
CSI2.0 Receiver #2, Negative  
Polarity Lane 0  
I
CSI2.0 Receiver #2, Negative  
Polarity Lane 1  
I
CSI2.0 Receiver #2, Negative  
Polarity Lane 2  
I
I
CSI2.0 Receiver #2, Negative  
Polarity Lane 3  
B13  
A12  
B10  
B9  
CSI2.0 Receiver #2, Positive Polarity  
Lane 0  
I
CSI2.0 Receiver #2, Positive Polarity  
Lane 1  
I
CSI2.0 Receiver #2, Positive Polarity  
Lane 2  
I
CSI2.0 Receiver #2, Positive Polarity  
Lane 3  
I
W12  
V12  
Pull Down LVCMOS  
Pull Down LVCMOS  
ARM/DSP Trace Debug Interface  
Clock  
IO  
IO  
Debug Trace  
ARM/DSP Trace Debug Interface  
Control  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
Debug Trace  
V16  
U15  
U11  
V11  
W11  
V10  
W10  
T10  
W16  
V15  
W15  
V14  
U13  
W14  
V13  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_10  
TRACE_DATA_11  
TRACE_DATA_12  
TRACE_DATA_13  
TRACE_DATA_14  
TRACE_DATA_15  
TRACE_DATA_2  
TRACE_DATA_3  
TRACE_DATA_4  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
TRACE_DATA_8  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
ARM/DSP Trace Debug Interface I/O  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
TYPE  
DESCRIPTION  
Debug Trace  
DSS UART A  
DSS UART A  
Error Interface  
W13  
H19  
J19  
L3  
TRACE_DATA_9  
DSS_UARTA_RX  
DSS_UARTA_TX  
NERROR_IN  
IO  
IO  
IO  
Pull Down LVCMOS  
ARM/DSP Trace Debug Interface I/O  
DSS UART A Receiver  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
DSS UART A Receiver  
Pull  
Disabled  
LVCMOS,  
Open-Drain,  
Failsafe  
Error Interface Input  
I
Error Interface  
L1  
NERROR_OUT  
Pull  
Disabled  
LVCMOS,  
Open-Drain,  
Failsafe  
Error Interface Output  
O
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
W1  
A1  
C7  
V2  
A3  
E5  
T6  
P6  
F6  
R7  
P7  
N7  
M7  
L7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
K7  
J7  
H7  
G7  
F7  
E7  
R8  
P8  
N8  
M8  
L8  
K8  
J8  
H8  
G8  
F8  
E8  
D8  
W9  
N9  
M9  
L9  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
Ground  
TYPE  
DESCRIPTION  
Ground Return  
K9  
J9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Power  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
H9  
G9  
N10  
M10  
L10  
K10  
J10  
H10  
G10  
D10  
N11  
M11  
L11  
K11  
J11  
H11  
G11  
R12  
P12  
N12  
M12  
L12  
K12  
J12  
H12  
G12  
F12  
E12  
D12  
R13  
P13  
N13  
M13  
L13  
K13  
J13  
H13  
G13  
F13  
E13  
P14  
F14  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
TYPE  
DESCRIPTION  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
JTAG  
A14  
R15  
T16  
D16  
W19  
A19  
C3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TCK  
TDI  
Power  
Ground Return  
Power  
Power  
Power  
Power  
Power  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
Ground Return  
IO  
IO  
Pull Down LVCMOS  
JTAG Test Clock  
JTAG Test Data Input  
JTAG Test Data Output  
JTAG  
C5  
Pull Up  
LVCMOS  
LVCMOS  
JTAG  
D6  
TDO  
Pull  
Disabled  
IO  
IO  
O
JTAG  
D4  
TMS  
Pull Up  
LVCMOS  
LVDS  
JTAG Test Data Mode Select  
LVDS Interface  
W7  
LVDS_CLKM  
LVDS_CLKP  
LVDS_FRCLKM  
LVDS_FRCLKP  
LVDS_TXM0  
LVDS_TXM1  
LVDS_TXM2  
LVDS_TXM3  
LVDS_TXP0  
LVDS_TXP1  
LVDS_TXP2  
LVDS_TXP3  
LVDS/Aurora Transmitter, Clock,  
Negative Polarity  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
LVDS Interface  
V7  
W8  
V8  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS/Aurora Transmitter, Clock,  
Positive Polarity  
O
O
O
O
O
O
O
O
O
O
O
LVDS/Aurora Transmitter, Frame  
Clock, Negative Polarity  
LVDS/Aurora Transmitter, Frame  
Clock, Positive Polarity  
V6  
LVDS/Aurora Transmitter, Data  
Output, Negative Polarity, Lane 0  
V5  
LVDS/Aurora Transmitter, Data  
Output, Negative Polarity, Lane 1  
V4  
LVDS/Aurora Transmitter, Data  
Output, Negative Polarity, Lane 2  
V3  
LVDS/Aurora Transmitter, Data  
Output, Negative Polarity, Lane 3  
W6  
W5  
W4  
W3  
LVDS/Aurora Transmitter, Data  
Output, Positive Polarity, Lane 0  
LVDS/Aurora Transmitter, Data  
Output, Positive Polarity, Lane 1  
LVDS/Aurora Transmitter, Data  
Output, Positive Polarity, Lane 2  
LVDS/Aurora Transmitter, Data  
Output, Positive Polarity, Lane 3  
MSS CAN A  
MSS CAN A  
MSS CAN B  
MSS CAN B  
MSS EPWM  
MSS Ethernet  
B2  
A2  
MSS_MCANA_RX  
MSS_MCANA_TX  
MSS_MCANB_RX  
MSS_MCANB_TX  
MSS_EPWMA0  
IO  
IO  
IO  
IO  
IO  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
MSS CAN Channel A, Receiver  
MSS CAN Channel A, Transmitter  
MSS CAN Channel B, Receiver  
MSS CAN Channel B, Transmitter  
MSS Enhanced PWM A, Channel 0  
C1  
B1  
E3  
Pull Down LVCMOS  
R19  
MSS_MDIO_CLK  
Pull Up  
LVCMOS  
MSS Ethernet Manage Data Input/  
Output Clock  
IO  
IO  
IO  
IO  
IO  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
P19  
M19  
P18  
N19  
MSS_MDIO_DATA  
MSS_RGMII_RCLK  
MSS_RGMII_RD0  
MSS_RGMII_RD1  
Pull Up  
LVCMOS  
MSS Ethernet Manage Data Input/  
Output Data  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
MSS Ethernet RGMII/GMII/MII  
Receive Clock  
MSS Ethernet RGMII/GMII/MII  
Receive Data 0  
MSS Ethernet RGMII/GMII/MII  
Receive Data 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
MSS Ethernet  
TYPE  
DESCRIPTION  
M18  
MSS_RGMII_RD2  
MSS_RGMII_RD3  
MSS_RGMII_TCLK  
MSS_RGMII_TD0  
MSS_RGMII_TD1  
MSS_RGMII_TD2  
MSS_RGMII_TD3  
MSS_RGMII_RCTL  
MSS_RGMII_TCTL  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
MSS Ethernet RGMII/GMII/MII  
Receive Data 2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
L19  
K19  
L18  
L17  
K16  
K18  
J17  
J18  
MSS Ethernet RGMII/GMII/MII  
Receive Data 3  
MSS Ethernet RGMII/GMII/MII  
Transmit Clock  
MSS Ethernet RGMII/GMII/MII  
Transmit Data 0  
MSS Ethernet RGMII/GMII/MII  
Transmit Data 1  
MSS Ethernet RGMII/GMII/MII  
Transmit Data 2  
MSS Ethernet RGMII/GMII/MII  
Transmit Data 3  
MSS Ethernet RGMII/GMII/MII  
Transmit Data 3  
MSS Ethernet RGMII/GMII/MII  
Transmit Data 3  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS I2CA  
MSS I2CA  
MSS SPI A  
MSS SPI A  
MSS SPI A  
B18  
C17  
A18  
B17  
H2  
MSS_GPIO_10  
MSS_GPIO_11  
MSS_GPIO_12  
MSS_GPIO_13  
MSS_GPIO_2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
MSS GPIO  
G3  
MSS_GPIO_28  
MSS_GPIO_8  
MSS GPIO  
B3  
MSS GPIO  
B19  
F16  
F18  
G19  
F19  
G18  
MSS_GPIO_9  
MSS GPIO  
MSS_I2CA_SDA  
MSS_I2CA_SCL  
MSS_MIBSPIA_CLK  
MSS_MIBSPIA_CS0  
12C A, Data  
I2C A, Clock  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
MSS SPI A, Clock Output  
MSS SPI A, Chip-Select Output  
MSS SPI A ,Host Interrupt Input  
MSS_MIBSPIA_HOSTIR  
Q
Pull Down LVCMOS  
IO  
IO  
IO  
MSS SPI A  
MSS SPI A  
G17  
H18  
MSS_MIBSPIA_MISO  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
MSS SPI A, Host Master Input, Slave  
Output  
MSS_MIBSPIA_MOSI  
MSS SPI A, Host Master Output,  
Slave Input  
MSS SPI B  
MSS SPI B  
MSS SPI B  
MSS SPI B  
MSS SPI B  
D18  
D19  
E18  
E17  
C19  
MSS_MIBSPIB_CLK  
MSS_MIBSPIB_CS0  
MSS_MIBSPIB_CS1  
MSS_MIBSPIB_CS2  
MSS_MIBSPIB_MISO  
IO  
IO  
IO  
IO  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
MSS SPI B, Clock Output  
MSS SPI B, Chip-Select 0 Output  
MSS SPI B, Chip-Select 1 Output  
MSS SPI B, Chip-Select 2Output  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Up  
LVCMOS  
MSS SPI B, Host Master Input, Slave  
Output  
IO  
IO  
MSS SPI B  
C18  
MSS_MIBSPIB_MOSI  
Pull Up  
LVCMOS  
MSS SPI B, Host Master Output,  
Slave Input  
MSS UART A  
MSS UART A  
MSS UART B  
U3  
W2  
V9  
MSS_UARTA_RX  
MSS_UARTA_TX  
MSS_UARTB_TX  
VDD  
IO  
IO  
IO  
Pull Up  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
MSS UART A, Receive  
MSS UART A, Transmit  
MSS UART B, Transmit  
1.2V Core Digital Power  
Power, 1.2V  
Core Digital  
N5  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
TYPE  
DESCRIPTION  
Power, 1.2V  
Core Digital  
L5  
J5  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
Power  
1.2V Core Digital Power  
Power, 1.2V  
Core Digital  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V Core Digital Power  
1.2V SRAM Digital Power  
1.2V SRAM Digital Power  
1.2V SRAM Digital Power  
Power, 1.2V  
Core Digital  
G5  
Power, 1.2V  
Core Digital  
N6  
Power, 1.2V  
Core Digital  
L6  
Power, 1.2V  
Core Digital  
J6  
Power, 1.2V  
Core Digital  
G6  
Power, 1.2V  
Core Digital  
R9  
Power, 1.2V  
Core Digital  
P9  
Power, 1.2V  
Core Digital  
F9  
Power, 1.2V  
Core Digital  
E9  
Power, 1.2V  
Core Digital  
R11  
P11  
F11  
E11  
N14  
L14  
J14  
G14  
N15  
L15  
J15  
G15  
N17  
J3  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
VDD_SRAM1  
VDD_SRAM2  
VDD_SRAM3  
Power, 1.2V  
Core Digital  
Power, 1.2V  
Core Digital  
T8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
TYPE  
DESCRIPTION  
1.2V N-well bias  
Power, 1.2V  
Core Digital  
N18  
VNWA  
Power  
Power, 1.8V  
ADC  
R3  
U2  
VIOIN_18ADC  
VIOIN_18CLK  
Power  
Power  
1.8V ADC Power  
1.8V Clock Power  
Power, 1.8V  
Clocking  
Power, 1.8V I/O  
Power, 1.8V I/O  
Power, 1.8V I/O  
Power, 1.8V I/O  
Power, 1.8V I/O  
M4  
H4  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIOIN_18  
VIOIN_18LVDS  
Power  
Power  
Power  
Power  
Power  
Power  
1.8V Digital I/O Power  
1.8V Digital I/O Power  
1.8V Digital I/O Power  
1.8V Digital I/O Power  
1.8V Digital I/O Power  
1.8V LVDS I/O Power  
T14  
E15  
M16  
U5  
Power, 1.8V I/O  
LVDS  
Power, 1.8V I/O  
LVDS  
U7  
C9  
VIOIN_18LVDS  
VIOIN_18CSI  
VIOIN_18CSI  
VIOIN  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
1.8V LVDS I/O Power  
1.8V CSI2 I/O Power  
1.8V CSI2 I/O Power  
Power, 1.8V I/O  
MIPI D-PHY  
Power, 1.8V I/O  
MIPI D-PHY  
C11  
K4  
Power, 1.8V/3.3V  
I/O  
1.8V/3.3V Digital I/O Power  
1.8V/3.3V Digital I/O Power  
1.8V/3.3V Digital I/O Power  
1.8V/3.3V Digital I/O Power  
1.8V/3.3V Digital I/O Power  
1.8V/3.3V Digital I/O Power  
1.8V/3.3V Digital I/O Power  
Bandgap Output  
Power, 1.8V/3.3V  
I/O  
F4  
VIOIN  
Power, 1.8V/3.3V  
I/O  
R5  
VIOIN  
Power, 1.8V/3.3V  
I/O  
T12  
D14  
P16  
H16  
T1  
VIOIN  
Power, 1.8V/3.3V  
I/O  
VIOIN  
Power, 1.8V/3.3V  
I/O  
VIOIN  
Power, 1.8V/3.3V  
I/O  
VIOIN  
Power, Bandgap  
Output  
VBGAP  
Power, E-fuse  
MSS QSPI  
MSS QSPI  
MSS QSPI  
MSS QSPI  
MSS QSPI  
MSS QSPI  
MSS UART  
U9  
E1  
F2  
C1  
D2  
D1  
E2  
G1  
VPP  
E-fuse Programming Voltage  
MSS QSPI Clock Output  
MSS_QSPI_CLK  
MSS_QSPI_CS  
MSS_QSPI_D0  
MSS_QSPI_D1  
MSS_QSPI_D2  
MSS_QSPI_D3  
MSS_RS232_TX  
IO  
IO  
IO  
IO  
IO  
IO  
Pull Down LVCMOS  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
MSS QSPI Chip-Select Output  
MSS QSPI Data Input/Output 0  
MSS QSPI Data Input/Output 1  
MSS QSPI Data Input/Output 2  
MSS QSPI Data Input/Output 3  
MSS Debug UART - Transmit Signal  
Pull Down LVCMOS  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
LVCMOS  
Pull  
Disabled  
IO  
IO  
IO  
MSS UART  
G2  
H1  
MSS_RS232_RX  
FE1_REFCLK  
Pull Up  
LVCMOS  
MSS Debug UART - Receive Signal  
Radar Front-End  
Pull Down Clocking  
Radar Front-End 1, Reference Clock  
Input  
Radar Front-End  
J2  
FE2_REFCLK  
Pull Down Clocking  
Radar Front-End 2, Reference Clock  
Input  
IO  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 6-3. Signal Descriptions (continued)  
DEFAULT  
PULL  
STATUS  
BALL  
NUMBER  
SIGNAL  
NAME  
BUFFER  
TYPE  
FUNCTION  
TYPE  
DESCRIPTION  
Radar Front-End  
Radar Front-End  
Radar Front-End  
Radar Front-End  
Radar Front-End  
Radar Front-End  
Radar Front-End  
Radar Front-End  
V17  
W17  
C15  
A16  
B15  
A15  
B14  
C13  
HW_SYNC_FE1  
Pull Down Clocking  
Pull Down Clocking  
Radar Front-End 1, Frame Sync  
Output  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
HW_SYNC_FE2  
Radar Front-End 2, Frame Sync  
Output  
NERRORIN_FE1  
NERRORIN_FE2  
NRESET_FE1  
Pull Down LVCMOS,  
Open-Drain  
Radar Front-End 1, Error Input  
Pull Down LVCMOS,  
Open-Drain  
Radar Front-End 2, Error Input  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Pull Down LVCMOS  
Radar Front-End 1, Power-on-Reset  
Output  
NRESET_FE2  
Radar Front-End 2, Power-on-Reset  
Output  
NWARMRESET_IN_FE1  
NWARMRESET_IN_FE2  
Radar Front-End 1, Warm-Reset  
Output  
Radar Front-End 2, Warm-Reset  
Output  
RCSS GPIO  
RCSS SPI A  
RCSS SPI A  
E19  
T18  
T19  
RCSS_GPIO_49  
IO  
IO  
General-purpose I/O  
RCSS_MIBSPIA_CLK  
RCSS_MIBSPIA_CS0  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
Radar Control SPI A, Clock Output  
Radar Control SPI A, Chip-Select  
Output  
IO  
IO  
IO  
RCSS SPI A  
RCSS SPI A  
RCSS SPI A  
U18  
R17  
R18  
RCSS_MIBSPIA_HOSTI  
RQ  
Pull Down LVCMOS  
Radar Control SPI A, Host Interrupt  
Input  
RCSS_MIBSPIA_MISO  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
Radar Control SPI A, Master Input,  
Slave Output  
RCSS_MIBSPIA_MOSI  
Radar Control SPI A, Master Output,  
Slave Input  
IO  
IO  
IO  
RCSS SPI B  
RCSS SPI B  
V19  
U17  
RCSS_MIBSPIB_CLK  
RCSS_MIBSPIB_CS0  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
Radar Control SPI B, Clock Output  
Radar Control SPI B, Chip-Select  
Output  
RCSS SPI B  
RCSS SPI B  
RCSS SPI B  
W18  
V18  
U19  
RCSS_MIBSPIB_HOSTI  
RQ  
Pull Down LVCMOS  
Radar Control SPI B, Host Interrupt  
Input  
IO  
IO  
IO  
RCSS_MIBSPIB_MISO  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
Radar Control SPI B, Master Input,  
Slave Output  
RCSS_MIBSPIB_MOSI  
Radar Control SPI B, Master Output,  
Slave Input  
RCSS UART A  
RCSS UART A  
Reset  
A17  
B16  
L2  
RCSS_UARTA_TX  
RCSS_UARTA_RX  
NRESET  
IO  
IO  
Pull Up  
Pull Up  
LVCMOS  
LVCMOS  
Radar Control UART A, Transmitter  
Radar Control UART A, Receiver  
AM273x Power-on-Reset Input  
LVCMOS,  
Open-Drain,  
Failsafe  
I
Reset  
K1  
WARM_RESET  
Pull  
Disabled  
LVCMOS,  
Open-Drain  
AM273x Warm-Reset Input  
IO  
Reserved  
Reserved  
P4  
N3  
Reserved1  
Reserved2  
Reserved. Short to VSS on PCB.  
Reserved. Short to VSS on PCB.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
PARAMETER/PIN(1) (2)  
DESCRIPTION  
1.2V digital power supply  
1.2V power rail for internal SRAM  
MIN  
-0.5  
-0.5  
-0.5  
MAX  
1.4  
UNIT  
VDD  
V
V
V
VIN_SRAM  
VNWA  
1.4  
1.2V power rail for SRAM array back bias  
1.4  
I/O Supply (3.3V or 1.8V): All LVCMOS1833 I/O would  
operate on this supply  
VIOIN  
-0.5  
3.8  
V
VIOIN_18  
1.8V supply for CMOS I/O  
-0.5  
-0.5  
-0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
1.8V supply for clock module  
1.8V supply for CSI2 and LVDS ports  
Dual-voltage LVCMOS inputs, operated at 3.3V or 1.8V  
(Steady State)  
-0.3V to VIOIN +0.3V  
V
V
Input Voltage  
Dual-voltage LVCMOS inputs, operated at 3.3V/1.8V  
(Transient Overshoot/Undershoot)  
VIOIN +20% up to 20% of  
Signal Period  
CLKP/CLKN  
-0.5  
-20  
-40  
-40  
-55  
2
20  
V
Clamp Current  
Limit clamp current(3)  
mA  
Automotive  
Operating junction temperature range  
Industrial  
140  
105  
150  
TJ  
°C  
°C  
Tstg  
Storage temperature range after soldered onto PC Board  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
(3) Specifies clamp current that will flow through the internal diode protection cells of the I/O in an overvoltage or undervoltage condition.  
7.2 ESD Ratings  
VALUE  
±1500  
±500  
UNIT  
ESD stress voltage HBM, per AEC Q100-002(1) All pins  
All pins  
Electrostatic  
discharge  
V(ESD)  
V
ESD stress voltage CDM, per AEC Q100-011  
Corner Pins  
±750  
(A1, A19, W1, W19)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Power-On Hours (POH)  
JUNCTION  
OPERATING  
CONDITION  
TEMPERATURE (Tj)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
(1)  
–40°C  
75°C  
1200 (6%)  
4000 (20%)  
13000 (65%)  
1600 (8%)  
200 (1%)  
95°C  
100% duty cycle  
1.2  
130°C  
140°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
SUPPLY NAME  
Power Supply Conditions  
VDD  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
1.2-V digital power supply  
1.14  
1.14  
1.14  
1.2  
1.2  
1.2  
1.32  
1.32  
1.32  
V
V
V
VIN-SRAM  
1.2-V power rail for internal SRAM  
VNWA  
1.2-V power rail for SRAM array back bias  
I/O Supply (3.3-V mode): ALL LVCMOS1833 I/O  
would operate on this supply  
VIOIN  
VIOIN  
3.135  
1.71  
3.3  
1.8  
3.465  
1.89  
V
V
I/O Supply (1.8-V mode): ALL LVCMOS1833 I/O  
would operate on this supply  
VIOIN_18  
1.8V supply for LVCMOS1833 I/O  
1.8V supply for clock module  
1.8V supply for ADC module  
1.8V supply for CSI-2 D-PHY buffers  
1.8V supply for LVDS buffers  
1.7V supply for e-Fuse array  
1.71  
1.71  
1.71  
1.71  
1.71  
1.65  
1.8  
1.8  
1.8  
1.8  
1.8  
1.7  
1.9  
1.9  
V
V
V
V
V
V
VIN_18CLK  
VIN_18ADC  
VIN_18CSI  
VIOIN_18LVDS  
VPP  
1.9  
1.9  
1.9  
1.75  
I/O Conditions  
LVCMOS18/33 (1.8V mode) Voltage Input High  
LVCMOS18/33 (3.3V mode) Voltage Input High  
1.71  
2.25  
V
V
LVCMOS VIH  
LVCMOS VIL  
0.3 ×  
VIOIN  
LVCMOS18/33 (1.8V mode) Voltage Input Low  
LVCMOS18/33 (3.3V mode) Voltage Input Low  
V
V
V
V
0.8 ×  
VIOIN  
LVCMOS18/33 (1.8 and 3.3V mode) Voltage Output  
High (IOH = 6 ma)  
LVCMOS VOH  
LVCMOS VOL  
VIOIN - 0.450  
LVCMOS18/33 (1.8V and 3.3V mode) Voltage Output  
Low(IOL = 6 ma)  
0.45  
NRESET, SOP[4:0], (1.8V mode) Voltage Input High  
NRESET, SOP[4:0], (3.3V mode) Voltage Input High  
NRESET, SOP[4:0], (1.8V mode) Voltage Input Low  
NRESET, SOP[4:0], (3.3V mode) Voltage Input Low  
Voltage Output High  
0.96  
1.57  
V
V
V
V
V
V
V
V
V
V
V
V
NRESET, SOP[4:0] VIH  
NRESET, SOP[4:0] VIL  
0.2  
0.3  
1.5  
LVDS TX VOH  
LVDS TX VOL  
Voltage Output Low  
0.9  
(1)  
CSI2 RX VIH  
Voltage Input High - LP Mode  
0.74  
(1)  
CSI2 RX VIL  
Voltage Input Low - LP Mode  
0.55  
0.46  
(1)  
CSI2 RX VIH  
Voltage Input High - HS Mode  
(1)  
CSI2 RX VIL  
Voltage Input Low - HS Mode  
-0.04  
Voltage Output High  
1.4  
OSC_CLKOUT  
Voltage Output Low  
VSS  
(1) CSI2 receivers compatible with MIPI D-PHY standard version 2.1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.5 Operating Performance Points  
This section describes the operating conditions of the device. This section also contains the description of each  
Operating Performance Point (OPP) for processor clocks and device core clocks.  
Note  
The OPP voltage and frequency values may change following the silicon characterization result.  
Table 7-1 describes the maximum supported frequency per speed grade for the device.  
Table 7-1. Device Speed and Memory Grade  
RAM  
(MB)  
DSP  
(MHz)  
R5FSS  
(MHz)  
DEVICE  
GRADE  
AM2732-Q1, AM2732  
D
3.625  
450  
400  
7.6 Power Supply Specifications  
Table 7-2 describes the four power rails provided from an external power supply and how they map to major  
sub-systems and power nets of the AM273x device.  
Table 7-2. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY RELEVANT INPUT POWER NETS ON THE DEVICE  
Input: VIN18CLK, VIN_18ADC, VIOIN_18DIFF,  
APLL, crystal oscillator, ADC, CSI2, LVDS  
1.8 V  
VIOIN_18LVDS, VIOIN_18CSI  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/O  
Input: VIOIN  
Input: VDD, VIN_SRAM1, VIN_SRAM2, VIN_SRAM3,  
VNWA  
1.2 V  
Core Digital and SRAMs  
7.7 I/O Buffer Type and Voltage Rail Dependency  
Table 7-3. Buffer Type  
BUFFER TYPE  
(STANDARD)  
DESCRIPTION  
VOLTAGE RAIL  
PERIPHERALS  
VIOIN, VIOIN_18  
Resets, QSPI, UART, SPI, I2C,  
CAN-FD, GPIO, RGMII, MDIO,  
ePWM, eCAP, JTAG, Trace,  
SOP, Safety, DMM  
LVCMOS  
Dual voltage 1.8V/3.3V LVCMOS I/O buffer  
General Purpose ADC Input  
GPADC  
VIN_18ADC  
VIN_18CLK  
GPADC  
Clock subsystem crystal or 1.8V single-  
ended input buffer  
CLKP/CLKM  
Clock Subsystem  
Analog, low-jitter output from clock  
subsystem  
VIN_18CLK  
OSC_CLKOUT  
Aurora LVDS  
CSI2  
Clock Subsystem Output  
LVDS TX  
LVDS high-speed data, differential output  
buffer  
VIOIN_18DIFF  
VIOIN_18DIFF  
MIPI D-PHY CSI2.0 high-speed data,  
differential input buffer  
CSI2.0 RX  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.8 CPU Specifications  
Table 7-4. CPU and Hardware Accelerator Specifications  
PARAMETER  
MIN  
NOM  
MAX UNIT  
Dual-Core Cortex-R5F, ARMv7 (2)  
L1 Program Memory Cache  
L1 Data Memory Chache  
L1 Tightly Coupled Memory(3) (TCM) with  
32-bit ECC  
16  
16  
64  
kB  
kB  
kB  
Main Subsystem  
(MSS)  
L2 Memory  
960  
kB  
Single Core C66x DSP  
Clock Speed  
450  
32  
MHz  
kB  
DSP Subsystem  
(DSS)  
L1 Program Memory  
L1 Data Memory  
L2 Memory(1)  
32  
kB  
384  
3625  
kB  
Shared Memory  
Shared L3 Memory (4)  
2000  
kB  
(1) C66x L2 memory includes up to 256kB configuration as RAM or cache  
(2) R5F dual-cores configuration as single, redundant, lock-step device, or two independent cores  
(3) L1 64kB tightly coupled memory shared between lock-step devices, or 32kB L1 for each core when operating in dual-core mode.  
(4) Sharable across R5F, C66x, and HWA subsystems  
7.9 Thermal Resistance Characteristics for nFBGA Package [ZCE285A]  
THERMAL METRICS(1)  
°C/W(2) (3)  
6.2  
JC  
JB  
JA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
5.7  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
17.3  
1.0  
5.6  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
7.10 Power Consumption Summary  
Table Table 7-5 summarizes average power consumption of the AM273x device for a set of typical application  
utilization and thermal parameters. Table Table 7-6 shows hypothetical peak current for the device. Both of these  
tables can be used to scale power regulator and PCB design. However, specific power utilization of the device  
is dependent on the software utilization of device cores, accelerators and peripherals and operating temperature.  
To facilitate accurate power planning, TI provides a power estimation tool (PET) spreadsheet which can be  
used for estimating device power utilization across a wide number of scenarios. Please see sprad10 for more  
information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AM2732  
 
 
 
 
 
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 7-5. Average Power and Current  
SUPPLY  
DESCRIPTION  
AVERAGE  
POWER (mW)  
AVERAGE  
CURRENT (mA)  
PARAMETER  
SUPPLY NAME  
VDD  
1.2V Core  
Digital Power  
692  
3
576  
VDD_SRAM  
VIOIN  
1.2V SRAM  
Power  
3
4
Average Power and Current Consumption for Typical Control and  
Processing Use-Case:  
1.8V or 3.3V  
Digital I/O  
Power  
C66x DSP: 450 MHz, 50% Utilization  
R5F Dual Core: 400 MHz, 70% Utilization  
CSI2-A/B: 4-Lane, 600 Mbps Operation  
SPI: 10% Utilization  
12  
VIOIN_18  
1.8V Digital I/O  
Power  
0
0
Ethernet: 100Mbps Operation, 70% Utilization  
CAN: 8Mbps Operation, 10% Utilization  
SPI: 25 Mbps Operation, 10% Utilization  
TJ= 25 C  
VIOIN_18CLK 1.8V Clocking  
Power  
32  
18  
VIOIN_18ADC 1.8V ADC  
Power  
3
2
VIOIN_18CSI  
1.8V CSI Power  
40  
22  
69  
VIOIN_18LVDS 1.8V LVDS  
Power  
125  
907  
Total Power  
Table 7-6. Peak Current  
SUPPLY NAME  
VDD  
SUPPLY DESCRIPTION  
PEAK CURRENT (mA)  
1.2V Core Digital Power  
1.2V SRAM Power  
2315  
75  
74  
1
VDD_SRAM  
VIOIN  
1.8V or 3.3V Digital I/O Power  
1.8V Digital I/O Power  
1.8V Clocking Power  
1.8V ADC Power  
VIOIN_18  
VIOIN_18CLK  
VIOIN_18ADC  
VIOIN_18CSI  
VIOIN_18LVDS  
18  
2
1.8V CSI Power  
23  
70  
1.8V LVDS Power  
7.11 Timing and Switching Characteristics  
7.11.1 Power Supply Sequencing and Reset Timing  
The AM273x device expects all external voltage rails and SOP boot mode select lines to be stable before reset  
is deasserted. Figure 7-1 describes the device wake-up sequence.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Figure 7-1. Device Wake-up Sequence  
7.11.2 Clock Specifications  
An external crystal is connected to the device pins. Figure 7-2 shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
Figure 7-2. Crystal Implementation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Note  
The load capacitors, Cf1 and Cf2 in Figure 7-2, should be chosen such that Equation 1 is satisfied.  
CL in the equation is the load specified by the crystal manufacturer. All discrete components used  
to implement the oscillator circuit should be placed as close as possible to the associated oscillator  
CLKP and CLKM pins. Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
Table 7-7 lists the electrical characteristics of the clock crystal.  
Table 7-7. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
40  
8
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
CL  
Crystal load capacitance  
Crystal ESR  
5
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
–40  
150  
°C  
Frequency  
Crystal frequency tolerance(1) (2) (3)  
tolerance  
-200  
200  
200  
ppm  
µW  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
(3) Crystal tolerance affects sensor accuracy if AM273x used as clock source for attached sensors.  
A non-crystal oscillator can also be used as the clock reference source. In this case the signal is fed to the CLKP  
pin only and CLKM is grounded. Table 7-8 lists the electrical, AC timing, and phase noise requirements of the  
external oscillator input signal.  
Table 7-8. External Clock Mode Input Requirements  
SPECIFICATION  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
V
AC-Amplitude  
700  
0.00  
1.40  
1200  
0.02  
1.95  
10  
DC-VIL  
DC-VIH  
V
Input Clock:  
DC-trise/fall  
ns  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise referrenced to 40 MHz  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
–132  
–143  
–152  
–153  
65  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
35  
Freq Tolerance  
–50  
50  
ppm  
7.11.3 Peripheral Information  
Initial peripheral descriptions and features are provided in the following sections. Additional peripheral details  
and interface timing information shall be provided in a later product preview or datasheet release.  
7.11.3.1 QSPI Flash Memory Peripheral  
AM273x includes a Quad-Serial Peripheral Interface for external flash memory access. Flash memory can be  
be utilized for many purposes including: Secondary boot-loader memory, application program memory, security  
keys storage, and long-term data logs for security and error conditions.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
ROM bootloader auto identification of supported flash through flash device ID (DEVID) register  
Loopback skew cancellation for clock signal to supported faster flash interface clock rates  
Two chip-select signals to connect two external flash devices  
Memory mapped 'direct' mode and software triggered 'indirect' mode of operation for performing flash data  
transfers  
67 MHz operating clock supported  
7.11.3.1.1 QSPI Timing Conditions  
SPECIFIC  
ATION  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NUMBER  
Input Conditions  
1
2
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
3
2
15  
pF  
7.11.3.1.2 QSPI Timing Requirements  
(2) (3)  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
,
,
SPECIFIC  
ATION  
NUMBER  
Q12  
Q13  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
Setup time, D[3:0] valid before falling SCLK edge  
Hold time, D[3:0] valid after falling SCLK edge  
5
0
ns  
ns  
ns  
Setup time, final D[3:0] bit valid before final falling  
SCLK edge  
Q14  
Q15  
5-P  
th(SCLK-D)  
Hold time, final D[3:0] bit valid after final falling SCLK  
edge  
ns  
0+P  
(1) Clock Mode 0 (clock polarity = 0 ; clockk phase = 0 ) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although  
nonstandard, The falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AM2732  
 
 
 
AM2732  
www.ti.com  
UNIT  
SWRS245 – DECEMBER 2021  
7.11.3.1.3 QSPI Switching Characteristics  
(2)  
PARAMETER(1)  
MIN  
TYP  
MAX  
,
SPECIFIC  
ATION  
NUMBER  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
tc(SCLK)  
Cycle time, sclk  
14.9  
0.5*P – 1.5  
0.5*P – 1.5  
–M*P – 1  
N*P – 1  
–3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(SCLKL)  
Pulse duration, sclk low  
Pulse duration, sclk high  
tw(SCLKH)  
td(CS-SCLK)  
td(SCLK-CS)  
td(SCLK-D0)  
tena(CS-D0LZ)  
tdis(CS-D0Z)  
td(SCLK-D0)  
Delay time, sclk falling edge to cs active edge  
Delay time, sclk falling edge to cs inactive edge  
Delay time, sclk falling edge to d[0] transition  
Enable time, cs active edge to d[0] driven (lo-z)  
Disable time, cs active edge to d[0] tri-stated (hi-z)  
–M*P + 2.5  
N*P + 2.5  
5.2  
–P – 4  
–P +3.5  
–P +3.5  
–P – 4  
Delay time, sclk first falling edge to first d[0] transition  
(for PHA = 0 only)  
Q9  
–3– P  
3.5 – P  
(1) P = SCLK period in ns.  
(2) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
Figure 7-3. QSPI Read (Clock Mode 0)  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
Figure 7-4. QSPI Write (Clock Mode 0)  
7.11.3.2 MIBSPI Peripheral  
AM273x includes four, Multi-Buffered Serial Peripheral Interface (MIBSPI) master interfaces. Two of these  
interfaces are intended for external MCU, PMIC, EEPROM, Watchdog, and other system-level communication.  
The other two interfaces are intended for independently mastering SPI device sensors.  
Maximum clock rate supported over each MIBSPI module is 25 MHz.  
7.11.3.2.1 SPI Timing Conditions  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Input Conditions  
1
2
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
3
Output load capacitance  
2
15  
pF  
7.11.3.2.2 SPI Master Mode Timing and Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)  
The following tables and figures present timing requirements and switching characteristics for SPI – Master  
Mode.  
Table 7-9. SPI Master Mode Switching Characteristics (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(3)  
see Figure 7-5 and Figure 7-6  
NO.  
PARAMETER  
Cycle time, SPICLK(2)  
MIN  
40  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2
3
ns  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 7-9. SPI Master Mode Switching Characteristics (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(3) (continued)  
see Figure 7-5 and Figure 7-6  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M – 13  
SIMO)M  
4
5
ns  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 13  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
CSHOLD = 0  
(C2TDELAY+2)*  
tc(VCLK) – 7.5  
(C2TDELAY+2)  
Setup time CS active until SPICLK  
high  
* tc(VCLK) + 7  
(clock polarity = 0)(5)  
CSHOLD = 1  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
6
tC2TDELAY  
ns  
CSHOLD = 0  
(C2TDELAY+2)*  
tc(VCLK) – 7.5  
(C2TDELAY+2)  
* tc(VCLK) + 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)(5)  
CSHOLD = 1  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity =  
0)(5)  
0.5*tc(SPC)M  
(T2CDELAY +  
1) *tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
7.5  
+
+
7
tT2CDELAY  
ns  
Hold time, SPICLK high until CS inactive (clock polarity =  
1)(5)  
0.5*tc(SPC)M  
(T2CDELAY +  
1) *tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
+
+
7.5  
Table 7-10. SPI Master Mode Timing Requirements (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(3)  
see Figure 7-5  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)(4)  
5
SPCL)M  
8
9
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)(4)  
5
3
3
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)(4)  
SOMI)M  
ns  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)(4)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 7-5. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 7-6. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
7.11.3.2.3 SPI Master Mode Timing and Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)  
Table 7-11. SPI Master Mode Switching Characteristics (CLOCK PHASE = 1, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(3)  
see Figure 7-5 and Figure 7-8  
NO.  
PARAMETER  
Cycle time, SPICLK(2)  
MIN  
40  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2
3
ns  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock polarity  
= 0)  
0.5tc(SPC)M  
13  
SIMO)M  
4
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
13  
SIMO)M  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 7-11. SPI Master Mode Switching Characteristics (CLOCK PHASE = 1, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(3) (continued)  
see Figure 7-5 and Figure 7-8  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
tC2TDELAY  
Setup time CS active until SPICLK  
high  
CSHOLD = 0  
0.5*tc(SPC)M  
(C2TDELAY +  
2)*tc(VCLK)  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK) + 7  
(clock polarity = 0)(5)  
7.5  
CSHOLD = 1  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY +  
(C2TDELAY+2  
) * tc(VCLK) + 7  
2)*tc(VCLK)  
6
ns  
7.5  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
(C2TDELAY+2  
)*tc(VCLK) – 7.5  
0.5*tc(SPC)M +  
(C2TDELAY+2  
) * tc(VCLK) + 7  
Setup time CS active until SPICLK  
low  
(clock polarity = 1)(5)  
0.5*tc(SPC)M  
(C2TDELAY+3  
)*tc(VCLK) – 7.5  
+
0.5*tc(SPC)M +  
(C2TDELAY+3  
) * tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity = 0)(5)  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
7
tT2CDELAY  
ns  
Hold time, SPICLK high until CS inactive (clock polarity = 1)(5) (T2CDELAY +  
1) *tc(VCLK)  
7.5  
(T2CDELAY +  
1) *tc(VCLK) + 7  
Table 7-12. SPI Master Mode Timing Requirements (CLOCK PHASE = , SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(3)  
see Figure 7-5 and Figure 7-8  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)(4)  
5
SPCL)M  
8
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)(4)  
5
3
3
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)(4)  
SOMI)M  
9
ns  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)(4)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 7-7. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 7-8. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
7.11.3.2.4 SPI Slave Mode Timing and Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI =  
output)  
Table 7-13. SPI Slave Mode Timing Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)  
(1)(2)  
see Figure 7-9 and Figure 7-10  
NO.  
PARAMETER  
Cycle time, SPICLK (2)  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
td(SPCH-SOMI)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2
3
ns  
ns  
10  
10  
10  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)(3)  
11  
11  
4
ns  
td(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 7-13. SPI Slave Mode Timing Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)  
(1)(2) (continued)  
see Figure 7-9 and Figure 7-10  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
th(SPCH-SOMI)S  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)(3)  
2
5
ns  
th(SPCL-SOMI)S  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)(3)  
2
Table 7-14. SPI Slave Mode Switching Characteristics (SPICLK = input, SPISIMO = input, and SPISOMI =  
output)(1)(2)  
see Figure 7-9 and Figure 7-10  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity =  
1; clock phase = 1)(4)  
tsu(SIMO-SPCL)S  
4.5  
6
ns  
Setup time, SPISIMO before SPICLK high (clock  
tsu(SIMO-SPCH)S polarity = 1; clock phase = 0) OR (clock polarity =  
4.5  
1
0; clock phase = 1)(4)  
Hold time, SPISIMO data valid after SPICLK low  
th(SPCL-SIMO)S  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)(4)  
7
ns  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)(4)  
th(SPCL-SIMO)S  
1
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(MSS_VCLK), where PS = prescale value set in SPIFMTx.  
[15:8].  
(3) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 7-9. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 7-10. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
7.11.3.3 Ethernet Switch (RGMII/RMII/MII) Peripheral  
AM273x integrates a two port Ethernet switch with one external RGMII/RMII/MII port and another port servicing  
the Master Sub-System (MSS). This interface is intended to operate primarily as a 100Mbps ECU interface. It  
can also be used as an instrumentation interface.  
Full Duplex 10/100Mbps wire rate interface to Ethernet PHY over RGMII, RMII, or MII parallel interface  
MDIO Clause 22 and 45 PHY management interface  
IEEE 1588 Synchronous Ethernet support  
Synchronous trigger output allowing Ethernet to trigger CSI data frames  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AM2732  
 
 
AM2732  
www.ti.com  
UNIT  
SWRS245 – DECEMBER 2021  
7.11.3.3.1 RGMII/GMII/MII Timing Conditions  
SPECIFIC  
ATION  
PARAMETER  
MIN  
TYP  
MAX  
NUMBER  
Input Conditions  
1
2
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
3
2
20  
pF  
7.11.3.3.2 RGMII Transmit Clock Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
MAX  
440  
44  
UNIT  
ns  
1
tc(TXC)  
Cycle time, rgmiin_txc  
360  
36  
ns  
2
3
4
tw(TXCH)  
tw(TXCL)  
tt(TXC)  
Pulse duration, rgmiin_txc high  
Pulse duration, rgmiin_txc low  
Transition time, rgmiin_txc  
160  
16  
240  
24  
ns  
ns  
160  
16  
240  
24  
ns  
ns  
0.75  
0.75  
ns  
ns  
7.11.3.3.3 RGMII Transmit Data and Control Switching Characteristics  
NO.(1) PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
5
tosu(TXD-TXC)  
Output Setup time, transmit selected signals valid to  
MSS_RGMII_TCLK high/low  
RGMII, Internal Delay  
Enabled, 10/100 Mbps  
1.2  
ns  
6
toh(TXC-TXD)  
Output Hold time, transmit selected signals valid  
after MSS_RGMII_TCLK high/low  
RGMII, Internal Delay  
Enabled, 10/100 Mbps  
1.2  
ns  
(1) For RGMII, transmit selected signals include: MSS_RGMII_TXD[3:0] and MSS_RGMII_TCTL.  
1
4
2
4
3
rgmiin_txc(A)  
[internal delay enabled]  
5
rgmiin_txd[3:0](B)  
rgmiin_txctl(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
6
A. TXC is delayed internally before being driven to the rgmiin_txc pin. This internal delay is always enabled.  
B. Data and control information is transmitted using both edges of the clocks. rgmiin_txd[3:0] carries data bits 3-0 on the rising edge of  
rgmiin_txc and data bits 7-4 on the falling edge of rgmiin_txc. Similarly, rgmiin_txctl carries TXEN on rising edge of rgmiin_txc and  
TXERR of falling edge of rgmiin_txc.  
Figure 7-11. RGMII Transmit Interface Switching Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.11.3.3.4 RGMII Recieve Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
360  
36  
MAX  
440  
44  
UNIT  
ns  
1
tc(RXC)  
Cycle time, rgmiin_rxc  
ns  
2
3
4
tw(RXCH)  
tw(RXCL)  
tt(RXC)  
Pulse duration, rgmiin_rxc high  
Pulse duration, rgmiin_rxc low  
Transition time, rgmiin_rxc  
160  
16  
240  
24  
ns  
ns  
160  
16  
240  
24  
ns  
ns  
0.75  
0.75  
ns  
ns  
7.11.3.3.5 RGMII Recieve Data and Control Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
5
tsu(RXD-RXCH)  
Setup time, receive selected signals valid before MSS_RGMII_RCLK  
high/low  
2
ns  
6
th(RXCH-RXD)  
Hold time, receive selected signals valid after MSS_RGMII_RCLK  
high/low  
2
ns  
1
4
2
4
3
rgmiin_rxc(A)  
5
1st Half-byte  
6
2nd Half-byte  
rgmiin_rxd[3:0](B)  
rgmiin_rxctl(B)  
RGRXD[3:0]  
RXDV  
RGRXD[7:4]  
RXERR  
A. rgmiin_rxc must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. MSS_RGMII_RXD[3:0] carries data bits 3-0 on the rising edge  
of rgmiin_rxc and data bits 7-4 on the falling edge ofrgmiin_rxc. Similarly, rgmiin_rxctl carries RXDV on rising edge of rgmiin_rxc and  
RXERR on falling edge of rgmiin_rxc.  
Figure 7-12. GMAC Receive Interface Timing, RGMIIn operation  
7.11.3.3.6 RMII Transmit Clock Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
20  
7
MAX  
UNIT  
ns  
RMII7 tc(REF_CLK)  
RMII8 tw(REF_CLKH)  
RMII9 tw(REF_CLKL)  
RMII10 tt(REF_CLK)  
Cycle time, REF_CLK  
Pulse duration, REF_CLK high  
Pulse duration, REF_CLK low  
Transistion time, REF_CLK  
13  
13  
3
ns  
7
ns  
ns  
7.11.3.3.7 RMII Transmit Data and Control Switching Characteristics  
NO.  
RMII11 td(REF_CLK-TXD)  
tdd(REF_CLK-TXEN)  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
14.2  
UNIT  
Delay time, REF_CLK high to selected transmit signals valid  
2
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
RMII7  
RMII8  
RMII11  
RMII9  
RMII10  
REF_CLK (PRCM)  
rmiin_txd1−rmiin_txd0,  
rmiin_txen (Outputs)  
SPRS8xx_GMAC_RMIITX_06  
Figure 7-13. GMAC Transmit Interface Timing RMIIn Operation  
7.11.3.3.8 RMII Receive Clock Timing Requirements  
NO.  
MIN  
20  
7
MAX  
UNIT  
ns  
RMII1 tc(REF_CLK)  
RMII2 tw(REF_CLKH)  
RMII3 tw(REF_CLKL)  
RMII4 ttt(REF_CLK)  
Cycle time, REF_CLK  
Pulse duration, REF_CLK high  
Pulse duration, REF_CLK low  
Transistion time, REF_CLK  
13  
13  
3
ns  
7
ns  
ns  
7.11.3.3.9 RMII Receive Data and Control Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
tsu(RXD-REF_CLK)  
RMII5  
RMII6  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
Setup time, receive selected signals valid before REF_CLK  
Hold time, receive selected signals valid after REF_CLK  
4
2
ns  
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
ns  
RMII1  
RMII3  
RMII2  
RMII4  
RMII6  
RMII5  
REF_CLK (PRCM)  
rmiin_rxd1−rmiin_rxd0,  
rmiin_crs, rmin_rxer (inputs)  
SPRS8xx_GMAC_RMIIRX_05  
Figure 7-14. GMAC Receive Interface Timing RMIIn operation  
7.11.3.3.10 MII Transmit Switching Characteristics  
NO.  
PARAMETER  
td(TX_CLK-TXD)  
td(TX_CLK-TX_EN)  
td(TX_CLK-TX_ER)  
DESCRIPTION  
MIN  
MAX  
25  
UNIT  
1
Delay time, miin_txclk to transmit selected signals valid  
0
ns  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
1
miin_txclk (input)  
miin_txd3 − miin_txd0,  
miin_txen, miin_txer (outputs)  
Figure 7-15. GMAC Transmit Interface Timing MIIn operation  
7.11.3.3.11 MII Receive Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
400  
40  
MAX  
UNIT  
ns  
1
tc(RX_CLK)  
Cycle time, miin_rxclk  
ns  
2
3
4
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Pulse duration, miin_rxclk high  
Pulse duration, miin_rxclk low  
Transition time, miin_rxclk  
140  
14  
260  
26  
260  
26  
3
ns  
ns  
140  
14  
ns  
ns  
ns  
3
ns  
1
4
2
3
miin_rxclk  
4
Figure 7-16. Clock Timing (GMAC Receive) - MIIn operation  
7.11.3.3.12 MII Receive Timing Requirements  
NO.  
PARAMETER  
tsu(RXD-RX_CLK)  
DESCRIPTION  
MIN  
MAX  
UNIT  
1
Setup time, receive selected signals valid before miin_rxclk  
8
ns  
tsu(RX_DV-RX_CLK)  
tsu(RX_ER-RX_CLK)  
th(RX_CLK-RXD)  
2
Hold time, receive selected signals valid after miin_rxclk  
8
ns  
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
1
2
miin_rxclk (Input)  
miin_rxd3−miin_rxd0,  
miin_rxdv, miin_rxer (Inputs)  
Figure 7-17. GMAC Receive Interface Timing MIIn operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.11.3.3.13 MII Transmit Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
400  
40  
MAX  
UNIT  
ns  
1
tc(TX_CLK)  
Cycle time, miin_txclk  
ns  
2
3
4
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Pulse duration, miin_txclk high  
Pulse duration, miin_txclk low  
Transition time, miin_txclk  
140  
14  
260  
26  
260  
26  
3
ns  
ns  
140  
14  
ns  
ns  
ns  
3
ns  
1
4
2
3
miin_txclk  
4
Figure 7-18. Clock Timing (GMAC Transmit) - MIIn operation  
7.11.3.3.14 MDIO Interface Timings  
CAUTION  
The IO Timings provided in this section are only valid for some GMAC usage modes when the  
corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables  
found in this section.  
Table 7-15, Table 7-16 and Figure 7-19 present switching characteristics and timing requirements for the MDIO  
interface.  
Table 7-15. Timing Requirements for MDIO Input  
No  
PARAMETER  
tc(MDC)  
DESCRIPTION  
MIN  
400  
160  
160  
90  
MAX  
UNIT  
ns  
MDIO1  
MDIO2  
MDIO3  
MDIO4  
MDIO5  
Cycle time, MDC  
tw(MDCH)  
Pulse Duration, MDC High  
ns  
tw(MDCL)  
Pulse Duration, MDC Low  
ns  
tsu(MDIO-MDC)  
th(MDIO_MDC)  
Setup time, MDIO valid before MDC High  
Hold time, MDIO valid from MDC High  
ns  
0
ns  
Table 7-16. Switching Characteristics Over Recommended Operating Conditions for MDIO Output  
NO  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
MDIO6  
MDIO7  
tt(MDC)  
Transition time, MDC  
Delay time, MDC low to MDIO valid  
5
ns  
td(MDC-MDIO)  
10  
(P * 0.5) - 10  
ns  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
1
MDIO2  
MDIO3  
MDCLK  
MDIO6  
MDIO6  
MDIO4  
MDIO5  
MDIO  
(input)  
MDIO7  
MDIO  
(output)  
Figure 7-19. GMAC MDIO diagrams  
7.11.3.4 LVDS/Aurora Instrumentation and Measurement Peripheral  
The AM273x supports a set of LVDS STM-TWP Aurora interface for exporting raw IF ADC sensor data. The  
LVDS transmitters are shared between the two measurement interface options.  
4-data lane LVDS interface (two additional lanes for Data Clock and Frame Clock) at 1 Gbps/lane  
6-lane STM-TWP-Aurora-LVDS interface mode  
Please see the AM273x TRM for information regarding programming options for both LVDS interfaces.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.11.3.4.1 LVDS Interface Configuration  
The supported AM273x LVDS lane configuration is four Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface supports the following  
data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 7-20. LVDS Interface Lane Configuration And Relative Timings  
7.11.3.4.2 LVDS Interface Timings  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 7-21. Timing Parameters  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 7-17. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
Jitter (pk-pk)  
80  
ps  
7.11.3.5 UART Peripheral  
AM273x includes four UART interfaces. One UART is intended as a secondary boot loader source, one is  
intended for use as a register debug interface (with XDS110 class emulator) and two are meant for general  
UART communication support.  
Maximum baud-rate supported shall be at least 1536Kbaud in all the different clock frequency modes  
UART interfaces multiplexed with other I/O to allow for widest peripheral use flexibility  
7.11.3.5.1 UART Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
f(baud)  
Supported baud rate at 20 pF  
921.6  
kHz  
7.11.3.6 I2C Protocol Definition  
AM273x supports three master or slave Inter-integrated Circuit interfaces (I2C). One I2C interface is intended to  
be connected to an external PMIC or EEPROM device (alternatively controlled by SPI). The other two I2C are  
intended as alternative control for sensor devices or other external IC.  
Standard/fast mode I2C interface compliant with Philips I2C specification version 2.1  
Maximum clock rate of 100Kbps in Standard mode and 400Kbps in Fast mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AM2732  
AM2732  
www.ti.com  
UNIT  
SWRS245 – DECEMBER 2021  
7.11.3.6.1 I2C Timing Requirements(1)  
STANDARD MODE  
FAST MODE  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
(1)  
th(SCLL-SDA)  
3.45  
0.9  
tw(SDAH)  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 7-22. I2C Timing Diagram  
Note  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-  
mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
7.11.3.7 Controller Area Network - Flexible Data-Rate (CAN-FD)  
The AM273x integrates two CAN-FD interfaces, MSS_MCANA and MSS_MCANB. This enables support of a  
typical use case where one CAN-FD interface is used as ECU network interface while the other interface is used  
as a local network interface, providing communication with the neighboring sensors.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Support CAN-FD according to ISO 11898-7 protocol with data rate up to 8Mbps  
Multiplexed GPIO can be used for CAN-FD external driver control  
Synchronous trigger output allows CAN-FD to trigger CSI2 data frames  
7.11.3.7.1 Dynamic Characteristics for the CAN-FD TX and RX Pins  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
td(MSS_CANA_TX)  
td(MSS_CANB_TX)  
td(MSS_MCANA_RX)  
td(MSS_MCANB_RX)  
Delay time, transmit shift register to  
MSS_CANA_TX pin  
15  
ns  
Delay time, transmit shift register to  
MSS_CANB_TX pin  
15  
10  
10  
ns  
ns  
ns  
Delay time, MSS_MCANA_RX pin to receive  
shift register  
Delay time, MSS_MCANB_RX pin to receive  
shift register  
(1) These values do not include rise/fall times of the output buffer.  
7.11.3.8 CSI-2 Peripheral  
AM273x integrates two, 4-lane MIPI CSI-2, D-PHY receiver peripherals: CSI2 receiver 0 (CSI2_RX0) and CSI2  
receiver 1 (CSI2_RX1). Each peripheral can be used for capturing sensor data samples. The CSI2 interface is  
also capable of operating as a hardware-in-the-loop (HIL) interface, allowing for the playback of recorded data  
for development or diagnostic purposes.  
Interface is compliant with the MIPI CSI-2 D-PHY standard revision 1.2  
2, 4-lane CSI2 receiver interfaces, working simultaneously at 600 Mbps/lane  
4-lane, 3-lane, 2-lane, or 1-lane CSI2 configurations  
Support for virtual channels (minimum 4) and data types (minimum 4)  
Support for 8/10/12/14/16-bit RAW data mode with capability of sign extension or zero padding to align with  
16-bit memory addressing for RAW 10/12/14 modes  
Support for user defined data types  
Please reference the MIPI CSI-2 D-PHY standard revision 1.2 for full receiver timing requirements. Please  
reference the AM273x TRM for a complete description of all programmable options.  
7.11.3.9 General Purpose ADC (GPADC)  
AM273x device implements a GPADC module for safety monitoring device and system analog signals such as  
temperature sensor and voltage regulators.  
Up to 9 external or internal channels supported  
7.5 ENOB, 625Ksps ADC  
Full-scale range of GPADC input between VSS and 1.8V  
Single or continuous conversion modes  
Data RAM to store the conversion results (1Kbyte results)  
7.11.3.10 Enhanced Pulse-Width Modulator (ePWM)  
AM273x includes three Enhanced Pulse-Width Modulation (ePWM) modules. These modules can be used to  
generate duty-cycled controlled waveforms for a power regulator, or a power management systems, or more  
complex waveforms for motor control applications.  
Dedicated 16-bit time-base counter with period and frequency control for each PWM module  
Each module contains two PWM outputs (EPWMxA and EPWMxB) that shall be usable in the following  
configurations:  
– Two independent PWM outputs with single-edge operation  
– Two independent PWM outputs with dual-edge symmetric operation  
– One independent PWM output with dual-edge asymmetric operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.11.3.11 Enhanced Capture (eCAP)  
AM273x device includes one enhanced capture (eCAP) module. The eCAP module is used to capture external  
timing events. It is a general-purpose module which has a complementary function to ePWM. Uses include  
speed measurements of rotating machinery (e.g., toothed sprockets sensed via Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derviced from duty cycle encoded current/voltage sensor  
eCAP shall be working on operating clock of minimum 100mHz  
4-event time-stamp registers (each 32 bits)  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.11.3.12 General-Purpose Input/Output  
Section 7.11.3.12.1 lists the switching characteristics of output timing relative to load capacitance.  
7.11.3.12.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)(1) (2)  
PARAMETER  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
10.2  
2.8  
6.6  
9.8  
3.3  
7.2  
10.5  
3.1  
6.6  
9.6  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
ns  
ns  
ns  
Slew control = 1  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
7.11.4 Emulation and Debug  
7.11.4.1 Emulation and Debug Description  
7.11.4.2 JTAG Interface  
The JTAG interface implements the IEEE1149.1 standard interface for processor debug and boundary scan  
testing.  
Section 7.11.4.2.1 and Section 7.11.4.2.2 assume the operating conditions stated in Figure 7-23.  
7.11.4.2.1 Timing Requirements for IEEE 1149.1 JTAG  
Table 7-18. JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
Table 7-19. JTAG Timing Requirements  
NO.  
1
MIN  
TYP  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
1a  
tw(TCKH)  
Pulse duration  
TCK high (40% of  
tc)  
ns  
1b  
3
tw(TCKL)  
Pulse duration  
TCK low (40% of  
tc)  
26.67  
2.5  
ns  
ns  
tsu(TDI-TCK)  
Input setup time  
TDI valid to TCK  
high  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AM2732  
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 7-19. JTAG Timing Requirements (continued)  
NO.  
MIN  
TYP  
MAX  
UNIT  
3
4
4
tsu(TMS-TCK)  
Input setup time  
TMS valid to TCK  
high  
2.5  
ns  
th(TCK-TDI)  
Input hold time  
TDI valid from  
TCK high  
18  
18  
ns  
ns  
th(TCK-TMS)  
Input hold time  
TMS valid from  
TCK high  
7.11.4.2.2 Switching Characteristics for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
Figure 7-23. JTAG Timing  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
7.11.4.3 ETM Trace Interface  
The ETM Trace interface provides a means of exporting real time processor debug information to a host PC  
through a compatible emulator toolset.  
Section 7.11.4.3.1 and Section 7.11.4.3.2 describe the operating conditions shown in Figure 7-24 and Figure  
7-25.  
7.11.4.3.1 ETM TRACE Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
Output Conditions  
CLOAD  
Output load capacitance  
2
20  
pF  
7.11.4.3.2 ETM TRACE Switching Characteristics  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tcyc(ETM)  
th(ETM)  
tl(ETM)  
Cycle time, TRACECLK  
period  
16  
ns  
1
Pulse Duration, TRACECLK  
High  
7
7
ns  
ns  
2
3
Pulse Duration, TRACECLK  
Low  
4
5
tr(ETM)  
Clock and data rise time  
Clock and data fall time  
3.3  
3.3  
7
ns  
ns  
ns  
tf(ETM)  
td(ETMTRACECLKH-ETMDATAV)  
Delay time, ETM trace clock  
high to ETM data valid  
1
1
6
7
td(ETMTRACECLKl-ETMDATAV)  
Delay time, ETM trace clock  
low to ETM data valid  
7
ns  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
Figure 7-24. ETMTRACECLKOUT Timing  
Figure 7-25. ETMDATA Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AM2732  
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The AM273x is a high performance microcontroller with an integrated C66x DSP and is ideally suited for  
applications needing requiring conditioning and processing functions. Two R5F cores (with optional lockstep  
capability) running at 400 MHz with 5MB of internal memory coupled along with a broad range of automotive and  
industrial connectivity peripherals and an easy to use SDK enables our customers to address a wide range of  
use cases in automotive and industrial markets. Functional safety and security (HSM) features are integrated to  
address emerging market trends.  
One representative use case is for the AM273x to operate as the MCU host in an automotive radar system.  
In this role AM273x provides data aggregation, FFT, CFAR, range, velocity and angle estimation and tracking  
processing. The AM273x can operate as a host in single or dual (cascaded) front-end radar application.  
As seen in Figure 3-1 the AM273x is divided into a few high level functional subsystems. Each subsystem  
contains specific control, signal processing, and digital communication peripherals.  
Main Subsystem (MSS): MCU Core, Cryptographic Core, Mailbox, EDMA, RTI, QSPI, SPI, CAN-FD, I2C,  
UART, Ethernet and GPIO  
DSP Subsystem (DSS): C66x Core, HWA2.0 Accelerator, Mailbox, EDMA, RTI  
Radar Controller Subsystem (RCSS): EDMA, CSI2A/B, SPIA/B, I2C and GPIO  
Each primary subsystem is then interconnected through an ECC enabled, switch interconnect bus, allowing for  
EDMA transfer of data between peripherals and processing cores.  
8.2 Main Subsystem  
The main subsystem (MSS) is the primary controller of the device and controls all the other device subsystem  
cores and peripherals. The MSS contains the Cortex-R5F (MSS R5F) processor and associated peripherals and  
associated EDMA and Mailbox IPC functions. The MSS also controls wider system connectivity and network  
peripherals such as the I2C, UART, SPI, CAN-FD, EPWM, and Ethernet. The MSS is connected to the primary  
interconnect through the Main Subsystem (MSS) Interconnect which is ECC enabled.  
The MSS contrains its own dedicated functional safety block consisting of DCC, ESM, LBIST/PBIST, CRC  
Watchdog Timer and GPADC for safety monitoring of critical system signals such as power supply and  
temperature monitors.  
8.3 DSP Subsystem  
The DSP subsystem (DSS) contains the TI high performance C66x DSP, HWA 2.0, and a high-bandwidth  
interconnect for high performance (128-bit, 150MHz), and associated data transfer peripherals: 6x EDMA for  
data transfer, 2x RTI and Mailbox IPC. The Aurora/LVDS measurement data output interface is also mastered by  
the C66x DSP. L3 shared memory is available on the DSS interconnect which is also ECC enabled.  
For more information on DSP functionality, see the  
8.4 Radar Control Subsystem  
The radar control subsystem (RCSS) integrates a high-bandwidth interconnect with a pair of 4-lane, CSI 2.0  
receivers (CSI2_RX0 and CSI2_RX1), two SPI controllers (RCSS_SPIA and RCSS_SPIB), I2C controllers and  
a set of GPIO. The SPI, I2C and GPIO peripherals can be utilized for controlling and configuring the attached  
sensor devices. The CSI 2.0 receivers allow for receiveing high-speed sensor data samples such as samples.  
8.5 Other Subsystems  
8.5.1 Radar A2D Data Format Over CSI2 Interface  
The AM273x device uses MIPI D-PHY / CSI2-based format to receive the raw A2D samples from an external  
radar transceiver. This is shown in Figure 8-1.  
Supports four data lanes  
CSI-2 data rate scalable from 150 Mbps to 600 Mbps per lane  
Virtual channel based  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
CRC generation  
Normal Mode  
Frame Period  
Acquisition Period  
Frame  
Ramp/Chirp  
Data Ready  
1
2
3
N
F
L
H
L
L
H
L
L
H
L
L
H
L
F
S
S
S
E
S
S
E
S
S
E
S
S
E
E
Short  
Packet  
Short  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
LPS  
ST SP ET  
.5μs-.8μs  
ST PH  
DATA  
PF ET LPS  
ST SP ET  
LPS  
LPS  
Chirp 1 data  
Data rate/Lane should be such that "Chirp + Interchirp" period  
should be able to accommodate the data transfer  
Copyright © 2017, Texas Instruments Incorporated  
Frame Start – CSI2 VSYNC Start Short PacketLine Start – CSI2 HSYNC Start Short PacketLine End – CSI2 HSYNC End Short  
PacketFrame End – CSi2 VSYNC End Short Packet  
Figure 8-1. CSI-2 Transmission Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
The data payload is constructed with the following three types of information:  
Chirp profile information  
The actual chirp number  
A2D data corresponding to chirps of all four channels  
– Interleaved fashion  
Chirp quality data (configurable)  
The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The data  
packet packing format is shown in Figure 8-2.  
First  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CH Chirp  
Profile  
Channel  
Number  
NU  
NU  
NU  
NU  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
11  
Channel 0 Sample 0 i  
Channel 1 Sample 0 i  
Channel 2 Sample 0 i  
Channel 3 Sample 0 i  
Channel 0 Sample 1 i  
Channel 1 Sample 1 i  
Channel 2 Sample 1 i  
Channel 3 Sample 1 i  
CQ Data [11:0]  
Channel 0 Sample 0 q  
11  
Channel 1 Sample 0 q  
11  
Channel 2 Sample 0 q  
11  
Channel 3 Sample 0 q  
11  
Channel 0 Sample 1 q  
11  
Channel 1 Sample 1 q  
11  
Channel 2 Sample 1 q  
11  
Channel 3 Sample 1 q  
Continues till the  
last sample. Max 1023  
11  
CQ Data [23:12]  
11  
CQ Data [35:24]  
CQ Data [47:36]  
11  
CQ Data [59:48]  
NU  
CQ Data [63:60]  
Last  
Figure 8-2. Data Packet Packing Format for 12-Bit Complex Configuration  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
8.5.2 ADC Channels (Service) for User Application  
The AM273x device includes provision for an ADC service for user application, where the GPADC engine  
present inside the device can be used to measure up to nine external and internal voltages. The ADC1, ADC2,  
ADC3, ADC4, ADC5, ADC6, ADC7, ADC8 and ADC9 pins are used for this purpose.  
Note  
GPADC structures are used for measuring the output of internal temperature sensors.  
GPADC Specifications:  
625Ksps SAR ADC  
0 to 1.8-V input range  
10-bit resolution  
Table 8-1. GPADC Parameters  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
0 – 1.8  
0.4 – 1.3  
10  
V
ADC buffered input voltage range(1)  
V
ADC resolution  
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
ADC INL  
ADC sample rate  
ADC sampling time  
ADC internal cap  
400  
10  
pF  
ADC buffer input capacitance  
ADC input leakage current  
2
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
8.6 Boot Modes  
AM273x bootloader functionality is controlled by a set of start on power (SOP) pins. These pins states are  
latched on de-assertion of the NRESET pin after power on of the device. The SOP pins are multiplexed with  
functional mode signals before and during NRESET de-assertion. After bootloader execution the functional  
mode operation is then restored. See the power on reset timing sequence for more details. The following tables  
describe the SOP pin operation.  
Host hardware should provide a means for driving these SOP pins to their required states during NRESET  
de-assertion, but also allow for their functional mode operation if required by the intended application.  
Table 8-2. SOP Pins  
Pin  
D6  
SOP Mode Signal Name  
Pinlist Signal Name  
SOP[0]  
SOP[1]  
SOP[2]  
SOP[3]  
SOP[4]  
TDO  
E17  
F1  
MSS_MIBSPIB_CS2  
PMIC_CLKOUT  
V9  
MSS_UARTB_TX  
MSS_UARTA_TX  
W2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Table 8-3. SOP Pin Modes  
Boot Options  
SOP Mode  
SOP[2:0] = 0b011 selects SOP_MODE2  
SOP[2:0] = 0b001 selects SOP_MODE4  
SOP[2:0] = 0b101 selects SOP_MODE5  
All other states reserved and should not be selected.  
Bootmode SOP Modes  
Crystal Detect SOP Modes  
Bootmode SOP Modes  
SOP[4:3] = 0b00 selects 40 MHz Crystal Mode  
SOP[4:3] = 0b01 selects 45.1584 MHz Crystal Mode  
SOP[4:3] = 0b10 selects 49.152 MHz Crystal Mode  
SOP[4:3] = 0b11 selects 50 MHz Crystal Mode  
Table 8-4. Bootmode SOP Descriptions  
Function  
Description  
SOP_MODE2  
Development Mode  
Development boot mode. The  
AM273x ROM bootloader will  
setup the device to wait for a  
JTAG debugger connection.  
Functional boot mode of the  
AM273x device. In this mode, the  
ROM bootloader will attempt to  
load a valid secondary bootloader  
image from primarily the QSPI  
interface and secondarily the SPI  
host interface.  
SOP_MODE4  
SOP_MODE5  
Functional Mode  
Device Management Mode  
QSPI flash programming boot  
mode of the AM273x device. In  
this mode the ROM bootloader  
will attempt to receive a  
valid QSPI secondary bootloader  
image over MSS_UARTA_TX/RX  
(pins W2, U3) and attempt to  
flash an attached QSPI memory  
with this image.  
Table 8-5. Crystal Detect SOP Mode Description  
Crystal Detect SOP Modes  
40 MHz Crystal Crystal Mode  
ROM bootloader image expects a 40 MHz nominal crystal clock source.  
45.1584 MHz Crystal Mode  
49.152 MHz Crystal Mode  
50 MHz Crystal Mode  
ROM bootloader image expects a 45.1584 MHz nominal crystal clock source.  
ROM bootloader image expects a 49.152 MHz nominal crystal clock source.  
ROM bootloader image expects a 50 MHz nominal crystal clock source.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Typical Application  
9.1.1 Schematic  
The below AM273x Example Schematic shows an exerpt the AM273x EVM schematic. The exerpt focuses only  
on the AM273x device schematic symbols to show the device pin usage.  
Figure 9-1. AM273x Example Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: AM2732  
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
9.1.2 Layout  
9.1.2.1 Layout Example  
The following figures are exerpts from the AM273x EVM PCB layout, assembly and layer stack-up.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Figure 9-2. AM273x EVM - Layer 1 (Top)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Figure 9-3. AM273x EVM - Layer 10 (Bottom)  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Figure 9-4. AM273x EVM - Top Assembly  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Figure 9-5. AM273x EVM - Layer Stackup  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
10.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microcontrollers (MCU) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AM273x). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP  
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS  
(for example, AM273x). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMX and TMDX) through fully qualified production devices and tools (TMS and TMDS).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
TMS Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ZCE), the temperature range (for example, blank is the default commercial temperature range),  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: AM2732  
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
and the device speed range, in megahertz (for example, 400 MHz). Table 10-1 and Figure 10-1 provides a  
legend for reading the complete device name for any AM273x device.  
For orderable part numbers of AM273x devices in the AM273x package types, see the Package Option  
Addendum of this document, ti.com, or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the Silicon Errata .  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
10.1.1 Standard Package Symbolization  
Note  
Some devices may have a cosmetic circular marking visible on the top of the device package which  
results from the production test process. In addition, some devices may also show a color variation in  
the package substrate which results from the substrate manufacturer. These differences are cosmetic  
only with no reliability impact.  
aBBBBBBr  
ZfYytPPPQ1  
G1  
A1 (PIN ONE INDICATOR)  
XXXXXXX  
ZZZ  
YYY  
O
Figure 10-1. Printed Device Reference  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
10.1.2 Device Naming Convention  
Table 10-1. Nomenclature Description  
FIELD PARAMETER  
FIELD DESCRIPTION  
VALUE  
DESCRIPTION  
X
P
Prototype  
a(1)  
Device evolution stage  
Preproduction (production test flow, no reliability data)  
BLANK  
AM2732  
A
Production  
BBBBBB  
r
Base production part number  
Device revision  
See Table 5-1, Device Comparison  
SR 1.0  
Device Speed and Memory  
Grades  
Z
D
See Table 7-1, Speed and Memory Grade  
R
S
General Purpose Device  
Features  
(see Table 5-1, Device  
Comparison)  
f
Programmable DSP (Single Core)  
DSP Blackbox  
T
G
Non-Functional Safety Device  
Functional Safety Device  
Y
y
Functional Safety  
Security  
F
G
Non-Secure  
1
Dummy Key Device  
M
A
Production Key HS Device  
–40°C to 105°C - Extended Industrial  
–40°C to 125°C - Automotive  
–40°C to 140°C - Extended Automotive  
ZCE NFBGA-N285 (13 mm × 13 mm) Package  
Auto Qualified (AEC-Q100)  
Enhanced Product  
Temperature  
(see Section 7.4, ROC)  
t(2)  
I
Q
PPP  
Q1  
Package Designator  
ZCE  
Q1  
EP  
Automotive Designator  
XXXXXXX  
YYY  
ZZZ  
Lot Trace Code (LTC)  
Production Code; For TI use only  
Production Code; For TI use only  
Pin one designator  
O
G1  
ECAT—Green package designator  
(1) To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent  
evolutionary stages of product development from engineering prototypes through fully qualified production devices.  
Prototype devices are shipped against the following disclaimer:  
“This product is still in development and is intended for internal evaluation purposes.”  
Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of  
merchantability of fitness for a specific purpose, of this device.  
(2) Applies to device max junction temperature.  
Note  
BLANK in the symbol or part number is collapsed so there are no gaps between characters.  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
10.2 Tools and Software  
The following products support development for AM273x platforms:  
Development Tools  
Code Composer StudioIntegrated Development Environment Code Composer Studio (CCS) Integrated  
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded  
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each  
step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever  
before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced  
embedded debug capabilities from TI resulting in a compelling feature-rich development environment for  
embedded developers.  
SYSCONFIG The SYSCONFIG Pin MUX Utility is a software tool which provides a Graphical User Interface  
for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.  
Results are output as C header/code files that can be imported into software development kits (SDKs) or used to  
configure customer's custom software.  
AM273x Power Estimation Tool (PET) AM273x Power Estimation Tool (PET) provides users the ability to gain  
insight in to the power consumption of select TI processors. The tool includes the ability for the user to choose  
multiple application scenarios and understand the power consumption as well as how advanced power saving  
techniques can be applied to further reduce overall power consumption.  
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments  
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized  
distributor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
10.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
The following documents describe the AM273x family of devices.  
Technical Reference Manual  
AM273x Microntrollers Silicon Revision 1.0 Technical Reference Manual Details the integration, the  
environment, the functional description, and the programming models for each peripheral and subsystem in  
the AM273x family of devices.  
Errata  
AM273x Microntrollers Silicon Revision 1.0 Silicon Errata Describes the known exceptions to the functional  
specifications for the device.  
Tip: Search TI.com using literature numbers.  
10.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.5 Trademarks  
Sitara, NanoFree, and TI E2Eare trademarks of Texas Instruments.  
Code Composer Studiois a trademark of TI.  
Arm® and Cortex® are registered trademarks of Arm Limited.  
All trademarks are the property of their respective owners.  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: AM2732  
 
 
 
 
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: AM2732  
 
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: AM2732  
AM2732  
SWRS245 – DECEMBER 2021  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: AM2732  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM2732ADRFGAZCER  
ACTIVE  
NFBGA  
ZCE  
285  
1000 RoHS & Green  
Call TI  
Level-3-260C-168 HR  
-40 to 105  
AM2732A  
DRFGAZCE  
711  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY