AM3351 [TI]

Sitara 处理器:Arm Cortex-A8、1Gb 以太网、支持显示效果;
AM3351
型号: AM3351
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Sitara 处理器:Arm Cortex-A8、1Gb 以太网、支持显示效果

以太网
文件: 总258页 (文件大小:4405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
AM335x Sitara™ 处理器  
1 器件概述  
1.1 特性  
1
高达 1GHz Sitara™ ARM® Cortex®-A8 32 位精简  
指令集计算机 (RISC) 处理器  
具有 64 位累加器的单周期 32 位乘法器  
增强型 GPIO 模块为外部信号提供移入/移出支  
持以及并行锁断  
– NEON™单指令流多数据流 (SIMD) 协处理器  
– 12KB 带有单位检错(奇偶校验)的共享 RAM  
三个 120 字节寄存器组,可被每个 PRU 访问  
用于处理系统输入事件的中断控制器 (INTC)  
用于将内部和外部主机连接到 PRU-ICSS 内部资  
源的本地互连总线  
– 32KB L1 指令和 32KB 带有单位检错(奇偶校  
验)的数据缓存  
带有错误校正码 (ECC) 256KB L2 缓存  
– 176KB 片载启动 ROM  
– 64KB 专用 RAM  
– PRU-ICSS 内的外设:  
仿真和调试 - JTAG  
一个带有流控制引脚的通用异步收发器  
(UART) 端口,支持高达 12Mbps 的数据速率  
一个增强型捕捉 (eCAP) 模块  
– 2 个支持工业用以太网的 MII 以太网端口,例  
EtherCAT  
– 1 MDIO 端口  
中断控制器(最多可控制 128 个中断请求)  
片上存储器(共享 L3 RAM)  
– 64KB 通用片上存储器控制器 (OCMC) 随机存取  
存储器 (RAM)  
可访问所有主机  
支持保持以实现快速唤醒  
外部存储器接口 (EMIF)  
电源、复位和时钟管理 (PRCM) 模块  
控制待机模式和深度休眠模式的进入和退出  
– mDDR(LPDDR)DDR2DDR3DDR3L 控制  
器:  
负责休眠排序、电源域关闭排序、唤醒排序和电  
源域打开排序  
– mDDR200MHz 时钟(400MHz 数据速率)  
– DDR2266MHz 时钟(532MHz 数据速率)  
– DDR3400MHz 时钟(800MHz 数据速率)  
– DDR3L400MHz 时钟(800MHz 数据速率)  
– 16 位数据总线  
时钟  
集成了 15MHz 35MHz 的高频振荡器,用  
于为各种系统和外设时钟生成参考时钟  
支持子系统和外设的单独时钟使能和禁用控  
制,帮助降低功耗  
– 1GB 全部可寻址空间  
五个用于生成系统时钟的 ADPLLMPU 子系  
统、DDR 接口、USB 和外设 [MMC SD、  
UARTSPII2C]L3L4、以太网、GFX  
[SGX530]LCD 像素时钟)  
支持一个 x16 或两个 x8 存储器件配置  
通用存储器控制器 (GPMC)  
灵活的 8 位和 16 位异步存储器接口,具有多  
达七个片选(NANDNOR、复用 NOR 和  
SRAM)  
电源  
两个不可切换的电源域(实时时钟 [RTC] 和唤  
醒逻辑 [WAKEUP])  
三个可切换的电源域(MPU 子系统 [MPU]、  
SGX530 [GFX]、外设和基础设施 [PER])  
执行 SmartReflex™ 2B 类,基于芯片温度、  
过程变化和性能实现内核电压调节(自适应电  
压调节 [AVS])  
使用 BCH 代码,支持 4 位、8 位或 16 位  
ECC  
使用海明码来支持 1 ECC  
错误定位器模块 (ELM)  
GPMC 一起使用时,可通过 BCH 算法确定  
所生成的伴随多项式中数据错误的地址  
根据 BCH 算法,支持 4 位、8 位和 16 位每  
512 字节块错误定位  
可编程实时单元子系统和工业通信子系统 (PRU-  
动态电压频率缩放 (DVFS)  
实时时钟 (RTC)  
实时日期(年、月、日和星期几)和时间(小  
时、分钟和秒)信息  
ICSS)  
支持的协议如 EtherCAT®PROFIBUS、  
PROFINETEtherNet/IP™ 等  
内部 32.768kHz 振荡器,RTC 逻辑和 1.1V 内部  
低压降稳压器 (LDO)  
独立的加电复位 (RTC_PWRONRSTn) 输入  
– 2个可编程实时单元(PRU)  
– 32位可运行在200MHz的负载/存储RISC处理  
用于外部唤醒事件的专用输入引脚(EXT_  
WAKEUP)  
– 8KB 带有单位检错(奇偶校验)的指令 RAM  
– 8KB 带有单位检错(奇偶校验)的数据 RAM  
可编程警报可用于生成 PRCM 内部中断(用于唤  
醒)或 Cortex-A8 内部中断(用于事件通知)  
1
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
可编程警报可与外部输出 (PMIC_POWER_EN)  
一起用来使能电源管理 IC,从而恢复非 RTC 电  
源域  
– 1 位、4 位和 8 MMCSD SDIO 模式  
– MMCSD0 具有专用于 1.8V 3.3V 操作的电  
源轨  
外设  
高达 48MHz 的数据传输速率  
支持卡检测和写保护  
符合 MMC4.3SD SDIO 2.0 规范  
多达三个 I2C 主从接口  
标准模式(高达 100kHz)  
快速模式(高达 400kHz)  
多达四组通用 I/O (GPIO) 引脚  
最多两个带集成 PHY USB 2.0 高速 DRD(双  
角色器件)端口  
多达两个工业千兆位以太网 MAC10100 和  
1000Mbps)  
集成开关  
每个 MAC 都支持 MIIRMIIRGMII 和  
MDIO 接口  
每组包含 32 GPIO 引脚(与其他功能引脚  
复用)  
以太网 MAC 和交换机可独立于其它功能运行  
– IEEE 1588v2 精密时间协议 (PTP)  
多达 2 个控制器局域网 (CAN) 端口  
支持 CAN 版本 2 部分 A B  
多达两个多通道音频串行端口 (McASP)  
高达 50MHz 的发送和接收时钟  
– GPIO 引脚可作为中断输入(每组多达两个中  
断输入)  
多达三个外部直接存储器访问 (DMA) 事件输入也  
可用作中断输入  
– 8 32 位通用计时器  
每个具有独立 TX RX 时钟的 McASP 端口  
对应多达四个串行数据引脚  
– DMTIMER1 是用于操作系统 (OS) 节拍的 1ms  
计时器  
支持时分多路复用 (TDM)、内部 IC 声音 (I2S)  
和类似格式  
– DMTIMER4–DMTIMER7 为引脚输出  
一个安全装置计时器  
– SGX530 3D 图形引擎  
支持数字音频接口传输(SPDIFIEC60958-1  
AES-3 格式)  
用于发送和接收的 FIFO 缓冲器(256 字节)  
最多 6 UART  
拼图架构每秒可提供最多 2000 万个多边形  
通用可扩展着色引擎 (USSE) 是一款包含像素  
和顶点着色功能的多线程引擎  
所有 UART 支持 IrDA CIR 模式  
所有 UART 支持 RTS CTS 流量控制  
– UART1 支持完整的调制解调器控制  
多达两个主从 McSPI 串行接口  
最多 2 个芯片选择  
超过 Microsoft VS3.0PS3.0 OGL2.0 的  
高级着色功能集  
– Direct3D MobileOGL-ES 1.1 2.0 以及  
OpenMax 的行业标准 API 支持  
精细的任务切换、负载均衡和电源管理  
高达48 MHz  
多达三个 MMCSD SDIO 端口  
高级几何 DMA 驱动型操作,最大程度地减少  
CPU 交互  
2
器件概述  
版权 © 2011–2018, Texas Instruments Incorporated  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
可编程高质量图像防锯齿  
用于统一存储器架构中操作系统运行的完全虚  
拟化存储器寻址  
多达 3 32 位增强型正交编码脉冲 (eQEP) 模  
器件标识  
– LCD 控制器  
包含电子熔丝组 (FuseFarm),其中一些位厂家可  
编程  
最多 24 位数据输出;每像素 8 (RGB)  
生产 ID  
分辨率最高可达 2048 x 2048 (具有最高  
126MHz 的像素时钟)  
集成 LCD 接口显示驱动器 (LIDD) 控制器  
集成光栅控制器  
器件部件号(唯一的 JTAG ID)  
设备版本(可由主机 ARM 读取)  
调试接口支持  
集成 DMA 引擎可通过中断或固件计时器从外  
部帧缓冲器获取数据,无需加重处理器的负担  
用于 ARMCortex-A8 PRCM)和 PRU-  
ICSS 调试的 JTAG cJTAG  
– 512 字深内部 FIFO  
支持的显示类型:  
支持器件边界扫描  
支持 IEEE1500  
• DMA  
字符显示器 - 使用 LIDD 控制器对这些显示  
器进行编程  
片上增强型 DMA 控制器 (EDMA) 搭载三个第三  
方传送控制器 (TPTC) 和一个第三方通道控制器  
(TPCC),支持多达 64 个可编程逻辑通道和 8 个  
QDMA 通道。EDMA 用于:  
无源矩阵 LCD 显示-使用 LCD 光栅显示控  
制器来为到无源显示的持续图形刷新提供  
定时和数据  
/从片上存储器传送  
/从外部存储器(EMIFGPMC 和从外设)  
传送  
有源矩阵 LCD 显示-使用外部帧缓冲器空  
间和内部 DMA 引擎来驱动到控制面板的流  
数据  
– 12 位逐次逼近寄存器 (SAR) ADC  
每秒采集 200K 个样本  
处理器间通信 (IPC)  
集成了基于硬件的 IPC 邮箱,以及用于 Cortex-  
A8PRCM PRU-ICSS 之间进程同步的  
Spinlock  
可从 8:1 模拟开关复用的八个模拟输入中任意  
选择输入  
生成中断的邮箱寄存器  
可配置为用作 4 线、5 线或 8 线电阻式触摸屏  
控制器 (TSC) 接口  
多达三个 32 eCAP 模块  
4 个初启程序 (Cortex-A8PRCM、  
PRU0PRU1)  
自旋锁具有128个软件指定的锁寄存器  
安全性  
可配置为三个捕捉输入或者三个备用 PWM 输  
多达三个增强型高分辨率 PWM 模块 (eHRPWM)  
密码硬件加速器(AESSHARNG)  
具有时间和频率控制功能的 16 位专用时基计  
数器  
安全引导  
启动模式  
可配置为 6 个单端,6 个双边对称,或者 3  
个双边不对称输出  
通过锁存在 PWRONRSTn 复位输入引脚上升沿  
的启动配置引脚来选择启动模式  
封装:  
– 298 引脚 S-PBGA-N298 过孔通道封装  
(后缀 ZCE),0.65mm 焊球间距  
– 324 引脚 S-PBGA-N324 封装  
(后缀 ZCZ),0.80mm 焊球间距  
版权 © 2011–2018, Texas Instruments Incorporated  
器件概述  
3
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
1.2 应用范围  
游戏外设  
联网贩售机  
电子秤  
家庭和工业自动化  
消费类医疗器械  
打印机  
教育控制台  
高级玩具  
智能收费系统  
1.3 说明  
AM335x 微处理器基于 ARM Cortex-A8 处理器,在图像、图形处理、外设以及 EtherCAT PROFIBUS 等  
工业接口选项方面得到了增强。该器件支持高级操作系统 (HLOS)。处理器 SDK Linux®TI-RTOS 可从德  
州仪器 (TI) 免费获取。  
AM335x 微处理器包含 功能框图中显示的子系统,并简要介绍了 简要 说明:  
包含 功能框图中显示的子系统,并简要介绍了 简要 说明:  
微处理器单元 (MPU) 子系统基于 ARM Cortex-A8 处理器, PowerVR SGX™图形加速器子系统提供 3D 图  
形加速功能以支持显示和游戏特效。  
可编程实时单元子系统和工业通信子系统 (PRU-ICSS) ARM 内核彼此独立,允许单独操作和计时,以实  
现更高的效率和灵活性。PRU-ICSS 支持附加外设接口以及 EtherCATPROFINETEtherNet/IP、  
PROFIBUS、以太网 POWERLINK、串行实时通信协议 (Sercos) 等实时协议。此外,凭借 PRU-ICSS 的可  
编程特性及其对引脚、事件和所有片上系统 (SoC) 资源的访问权限,该子系统可以灵活地实现快速实时响  
应、专用数据处理操作以及自定义外设接口,并减轻 SoC 其他处理器内核的任务负载。  
器件信息(1)  
封装  
器件型号  
封装尺寸  
AM3359ZCZ  
AM3358ZCZ  
AM3357ZCZ  
NFBGA (324)  
15.0mm x 15.0mm  
NFBGA (324)  
15.0mm x 15.0mm  
NFBGA (324)  
15.0mm x 15.0mm  
AM3356ZCZAM3356ZCE  
AM3354ZCZAM3354ZCE  
AM3352ZCZAM3352ZCE  
AM3351ZCE  
NFBGA (324)NFBGA (298)  
NFBGA (324)NFBGA (298)  
NFBGA (324)NFBGA (298)  
NFBGA (298)  
15.0mm x 15.0mm13.0mm x 13.0mm  
15.0mm x 15.0mm13.0mm x 13.0mm  
15.0mm x 15.0mm13.0mm x 13.0mm  
13.0mm x 13.0mm  
(1) 更多信息,请参阅9机械、封装和可订购产品信息。  
4
器件概述  
版权 © 2011–2018, Texas Instruments Incorporated  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
1.4 功能框图  
1-1 给出了 Am335x 微处理器功能框图。  
Display  
ARM®  
Graphics  
Cortex®-A8  
Up to 1 Ghz  
PowerVR  
SGX  
3D GFX  
24-bit LCD controller  
Touch screen controller  
PRU-ICSS  
Crypto  
32KB and 32KB L1 + SED  
256KB L2 + ECC  
EtherCAT, PROFINET,  
EtherNet/IP,  
and more  
64KB  
shared  
RAM  
176KB ROM 64KB RAM  
L3 and L4 interconnect  
Serial  
System  
Parallel  
eCAP x3  
ADC (8 channel)  
12-bit SAR  
UART x6  
SPI x2  
I2C x3  
eDMA  
Timers x8  
WDT  
MMC, SD and  
SDIO x3  
GPIO  
McASP x2  
(4 channel)  
JTAG  
RTC  
eHRPWM x3  
eQEP x3  
PRCM  
Crystal  
Oscillator x2  
CAN x2  
(Ver. 2 A and B)  
USB 2.0 HS  
DRD + PHY x2  
Memory interface  
mDDR(LPDDR), DDR2,  
DDR3, DDR3L  
(16-bit; 200, 266, 400, 400 MHz)  
EMAC (2-port) 10M, 100M, 1G  
IEEE 1588v2, and switch  
(MII, RMII, RGMII)  
NAND and NOR (16-bit ECC)  
1-1. AM335x 功能方框图  
版权 © 2011–2018, Texas Instruments Incorporated  
器件概述  
5
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
内容  
7.2  
Recommended Clock and Control Signal Transition  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 4  
1.3 说明 ................................................... 4  
1.4 功能框图 ............................................. 5  
修订历史记录............................................... 7  
Device Comparison ..................................... 8  
3.1 Related Products ..................................... 9  
Terminal Configuration and Functions ............ 10  
4.1 Pin Diagram ......................................... 10  
4.2 Pin Attributes ........................................ 18  
4.3 Signal Descriptions.................................. 50  
Specifications ........................................... 79  
5.1 Absolute Maximum Ratings......................... 79  
5.2 ESD Ratings ........................................ 80  
5.3 Power-On Hours (POH)............................. 81  
5.4 Operating Performance Points (OPPs) ............. 81  
5.5 Recommended Operating Conditions............... 84  
5.6 Power Consumption Summary...................... 86  
5.7 DC Electrical Characteristics........................ 88  
Behavior............................................ 115  
7.3 OPP50 Support .................................... 115  
7.4 Controller Area Network (CAN) .................... 116  
7.5 DMTimer ........................................... 117  
7.6  
Ethernet Media Access Controller (EMAC) and  
Switch .............................................. 118  
2
3
7.7 External Memory Interfaces........................ 126  
7.8 I2C.................................................. 189  
7.9 JTAG Electrical Data and Timing.................. 190  
7.10 LCD Controller (LCDC) ............................ 192  
7.11 Multichannel Audio Serial Port (McASP) .......... 208  
7.12 Multichannel Serial Port Interface (McSPI) ........ 213  
7.13 Multimedia Card (MMC) Interface ................. 219  
4
5
7.14 Programmable Real-Time Unit Subsystem and  
Industrial Communication Subsystem (PRU-ICSS) 222  
7.15 Universal Asynchronous Receiver Transmitter  
(UART) ............................................. 231  
8
Device and Documentation Support.............. 234  
8.1 Device Nomenclature.............................. 234  
8.2 Tools and Software ................................ 235  
8.3 Documentation Support............................ 239  
8.4 Related Links ...................................... 242  
8.5 Community Resources............................. 242  
8.6 商标 ................................................ 243  
8.7 静电放电警告....................................... 243  
8.8 Glossary............................................ 243  
Mechanical, Packaging, and Orderable  
Information............................................. 244  
9.1 Via Channel........................................ 244  
9.2 Packaging Information ............................. 244  
5.8  
Thermal Resistance Characteristics for ZCE and  
ZCZ Packages ...................................... 92  
5.9 External Capacitors ................................. 93  
5.10 Touch Screen Controller and Analog-to-Digital  
Subsystem Electrical Parameters................... 96  
6
7
Power and Clocking ................................... 98  
6.1 Power Supplies...................................... 98  
6.2 Clock Specifications................................ 106  
Peripheral Information and Timings .............. 115  
7.1 Parameter Information ............................. 115  
9
6
内容  
版权 © 2011–2018, Texas Instruments Incorporated  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from April 1, 2016 to December 15, 2018 (from J Revision (April 2016) to K Revision)  
Page  
OTG 更新/更改为 DRD(双角色器件) ........................................................................................ 2  
删除了 OpenVG 1.0 .................................................................................................................. 2  
更新了 说明文本 ................................................................................................................... 4  
OTG 更新/更改为 DRD ........................................................................................................... 5  
Removed 600 MHz from Frequency and 1200 from MIPS for AM3359....................................................... 8  
Added DEV_FEATURE register value to Device Comparison ................................................................. 9  
Added 125°C Latch-up performance info ........................................................................................ 79  
Updated DDR3/DDR3L maximum frequency for industrial extended temperature......................................... 82  
Added Industrial Extended operating temperature range...................................................................... 85  
Updated/Changed footnote for Output Capacitor Characteristics from "RTC_KLDO_ENn" to "RTC_KALDO_ENn".. 94  
Added ADC clock frequency to TSC_ADC Electrical Parameters............................................................ 97  
Updated Sampling Dynamics section of TSC_ADC Electrical Parameters table........................................... 97  
Added new footnotes ............................................................................................................... 99  
Added DCAN Timing Conditions................................................................................................. 116  
Added DMTimer Timing Conditions ............................................................................................. 117  
Remove NO. 4, Transition time, MDC .......................................................................................... 118  
Updated Switching Characteristics for MDIO_DATA.......................................................................... 119  
Removed content from Switching Characteristics for RMII[x]_TXD[1:0], and RMII[x]_TXEN - RMII Mode............ 123  
Removed Transition time, RD and Transition time, RX_CTL from Timing Requirements for RGMII[x]_RD[3:0],  
and RGMII[x]_RCTL - RGMII Mode............................................................................................. 124  
Removed Transition time, TXC from Switching Characteristics for RGMII[x]_TCLK - RGMII Mode ................... 125  
Removed Transition time, TD and Transition time, TX_CTL from Switching Characteristics for RGMII[x]_TD[3:0],  
and RGMII[x]_TCTL - RGMII Mode ............................................................................................. 125  
Removed content from GPMC and NOR Flash Switching Characteristics—Synchronous Mode ...................... 127  
Updated No. F11 values .......................................................................................................... 127  
Swapped F22 and F21 in GPMC and NOR Flash—Synchronous Burst Read—4x16-Bit (GpmcFCLKDivider = 0) . 132  
Removed content from GPMC and NOR Flash Switching Characteristics—Asynchronous Mode ..................... 136  
Removed content from GPMC and NAND Flash Switching Characteristics—Asynchronous Mode ................... 145  
Removed Rise time and Fall time info from Switching Characteristics for I2C Output Timings ......................... 190  
Added JTAG Timing Conditions ................................................................................................. 191  
Added content to LCD Controller Timing Conditions.......................................................................... 192  
Removed content from Switching Characteristics for LCD LIDD Mode .................................................... 193  
Removed content from Switching Characteristics for LCD Raster Mode .................................................. 202  
Removed content from Switching Characteristics for McSPI Output Timings – Master Mode .......................... 216  
Removed content from Switching Characteristics for MMC[x]_CLK ........................................................ 220  
Removed content from PRU-ICSS PRU Switching Requirements – Direct Output Mode ............................... 222  
Removed content from PRU-ICSS PRU Switching Requirements - Shift Out Mode ..................................... 224  
Removed content from PRU-ICSS ECAT Switching Requirements - Digital I/Os ........................................ 227  
Removed transition time, MDC from PRU-ICSS MDIO Switching Characteristics - MDIO_CLK ....................... 227  
Updated PRU-ICSS MDIO Switching Characteristics - MDIO_DATA ...................................................... 228  
Updated Note in PRU-ICSS MII_RT Electrical Data and Timing............................................................ 228  
Added UART Timing Conditions................................................................................................. 230  
Added UART Timing Conditions................................................................................................. 231  
已添加 Carrier Type to 8-1, AM335x Device Nomenclature .............................................................. 235  
版权 © 2011–2018, Texas Instruments Incorporated  
修订历史记录  
7
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
3 Device Comparison  
3-1 lists the features supported across different AM335x devices.  
3-1. Device Features Comparison  
FUNCTION  
AM3351  
AM3352  
AM3354  
AM3356  
AM3357  
AM3358  
AM3359  
ARM Cortex-A8  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
300 MHz  
600 MHz  
800 MHz  
1000 MHz  
600 MHz  
800 MHz  
1000 MHz  
300 MHz  
600 MHz  
800 MHz  
300 MHz  
600 MHz  
800 MHz  
600 MHz  
800 MHz  
1000 MHz  
300 MHz  
600 MHz  
Frequency(1)  
MIPS(2)  
800 MHz  
1600  
600  
1200  
1600  
2000  
600  
1200  
1600  
600  
1200  
1600  
1200  
1600  
2000  
600  
1200  
1200  
1600  
2000  
On-chip L1 cache  
On-chip L2 cache  
64KB  
64KB  
64KB  
64KB  
64KB  
64KB  
64KB  
256KB  
256KB  
256KB  
256KB  
256KB  
256KB  
256KB  
Graphics accelerator  
(SGX530)  
3D  
3D  
3D  
Crypto  
accelerator  
Crypto  
accelerator  
Crypto  
accelerator  
Crypto  
accelerator  
Crypto  
accelerator  
Crypto  
accelerator  
Crypto  
accelerator  
Hardware acceleration  
Features  
including basic  
Industrial  
Programmable real-time  
unit subsystem and  
industrial communication  
subsystem (PRU-ICSS)  
Features  
including all  
Industrial  
Features  
including basic  
Industrial  
Features  
including all  
Industrial  
protocols;  
ZCE: Limited  
PRU I/Os pinned  
out  
protocols  
protocols  
protocols  
On-chip memory  
Display options  
128KB  
LCD  
128KB  
LCD  
128KB  
LCD  
128KB  
LCD  
128KB  
LCD  
128KB  
LCD  
128KB  
LCD  
1 16-bit (GPMC, 1 16-bit (GPMC, 1 16-bit (GPMC, 1 16-bit (GPMC, 1 16-bit (GPMC, 1 16-bit (GPMC, 1 16-bit (GPMC,  
NAND flash,  
NOR flash,  
SRAM)  
NAND flash,  
NOR flash,  
SRAM)  
NAND flash,  
NOR flash,  
SRAM)  
NAND flash,  
NOR flash,  
SRAM)  
NAND flash,  
NOR flash,  
SRAM)  
NAND flash,  
NOR flash,  
SRAM)  
NAND flash,  
NOR flash,  
SRAM)  
General-purpose memory  
1 16-bit  
1 16-bit  
1 16-bit  
1 16-bit  
1 16-bit  
1 16-bit  
1 16-bit  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
(LPDDR-400,  
DDR2-532,  
DDR3-800)  
DRAM(3)  
No ZCE  
Available  
ZCZ: 2 ports  
No ZCE  
Available  
ZCZ: 2 ports  
No ZCE  
Available  
ZCZ: 2 ports  
ZCE: 1 port  
ZCZ: 2 ports  
ZCE: 1 port  
ZCZ: 2 ports  
ZCE: 1 port  
ZCZ: 2 ports  
Universal serial bus (USB)  
ZCE: 1 port  
10/100/1000  
No ZCE  
Available  
10/100/1000  
No ZCE  
Available  
10/100/1000  
No ZCE  
Available  
Ethernet media access  
controller (EMAC) with 2-  
port switch  
10/100/1000  
ZCE: 1 port  
ZCZ: 2 ports  
10/100/1000  
ZCE: 1 port  
ZCZ: 2 ports  
10/100/1000  
ZCE: 1 port  
ZCZ: 2 ports  
10/100/1000  
ZCE: 1 port  
ZCZ: 2 ports  
ZCZ: 2 ports  
ZCZ: 2 ports  
Multimedia card (MMC)  
3
3
2
3
2
3
2
3
2
3
2
3
2
Controller-area network  
(CAN)  
Universal asynchronous  
receiver and transmitter  
(UART)  
6
6
6
6
6
6
6
Analog-to-digital converter  
(ADC)  
8-ch 12-bit  
8-ch 12-bit  
8-ch 12-bit  
8-ch 12-bit  
8-ch 12-bit  
8-ch 12-bit  
8-ch 12-bit  
Enhanced high-resolution  
PWM modules  
(eHRPWM)  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Enhanced capture  
modules (eCAP)  
Enhanced quadrature  
encoder pulse (eQEP)  
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
Real-time clock (RTC)  
Inter-integrated circuit  
(I2C)  
8
Device Comparison  
版权 © 2011–2018, Texas Instruments Incorporated  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
FUNCTION  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
3-1. Device Features Comparison (continued)  
AM3351  
AM3352  
AM3354  
AM3356  
AM3357  
AM3358  
AM3359  
Multichannel audio serial  
port (McASP)  
2
2
2
2
2
2
2
Multichannel serial port  
interface (McSPI)  
2
2
2
2
2
2
2
Enhanced direct memory  
access (EDMA)  
64-Ch  
64-Ch  
64-Ch  
64-Ch  
64-Ch  
64-Ch  
64-Ch  
Input/output (I/O) supply  
1.8 V, 3.3 V  
1.8 V, 3.3 V  
1.8 V, 3.3 V  
1.8 V, 3.3 V  
1.8 V, 3.3 V  
1.8 V, 3.3 V  
1.8 V, 3.3 V  
-40 to 125°C(4)  
–40 to 105°C  
–40 to 90°C  
0 to 90°C  
–40 to 105°C  
–40 to 90°C  
0 to 90°C  
–40 to 105°C  
–40 to 90°C  
0 to 90°C  
–40 to 105°C  
–40 to 90°C  
0 to 90°C  
Operating temperature  
range  
0 to 90°C  
–40 to 105°C  
–40 to 105°C  
–40 to 90°C  
–40 to 105°C  
–40 to 90°C  
DEV_FEATURE register  
value(5)  
0x00FC0302  
0x00FC0382  
0x20FC0382  
0x00FD0383  
0x00FF0383  
0x20FD0383  
0x20FF0383  
(1) Frequencies listed correspond to silicon revision 2.x. Earlier silicon revisions support 275 MHz, 500 MHz, 600 MHz, and 720 MHz.  
(2) MIPS listed correspond to silicon revision 2.x. Earlier silicon revisions support 560, 1000, 1200, and 1440.  
(3) DRAM speeds listed are data rates.  
(4) Industrial extended temperature only supported for 300-MHz and 600-MHz frequencies.  
(5) For more details about the DEV_FEATURE register, see the AM335x TRM.  
3.1 Related Products  
For information about other devices in this family of products, see the following links:  
Sitara Processors Scalable processors based on ARM Cortex-A cores with flexible peripherals,  
connectivity and unified software support – perfect for sensors to servers.  
TI's ARM Cortex-A8 Advantage The ARM Cortex-A8 core is highly-optimized by ARM for performance  
and power efficiency. With the ability to scale in speed from 300 MHz to 1.35 GHz, the ARM  
Cortex-A8-based processor can meet the requirements for power optimized devices with a  
power budget of less than the Cortex-A8 core a dual-issue superscalar, achieving twice the  
instructions executed per clock cycle at 2 DMIPS/MHz.  
AM335x Sitara Processors Scalable ARM Cortex-A8-based core from 300 MHz up to 1 GHz, 3D  
graphics option for enhanced user interface, dual-core PRU-ICSS for industrial Ethernet  
protocols and position feedback control, and premium secure boot option.  
Companion Products for AM335x Sitara Processors Review products that are frequently purchased or  
used with this product.  
TI Designs for AM335x Sitara Processors The TI Designs Reference Design Library is a robust  
reference design library spanning analog, embedded processor and connectivity. Created by  
TI experts to help you jump start your system design, all TI Designs include schematic or  
block diagrams, BOMs and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
版权 © 2011–2018, Texas Instruments Incorporated  
Device Comparison  
9
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagram  
The terms 'ball', 'pin', and 'terminal' are used interchangeably throughout the document. An  
attempt is made to use 'ball' only when referring to the physical package.  
4.1.1 ZCE Package Pin Maps (Top View)  
The pin maps that follow show the pin assignments on the ZCE package in three sections (left, middle,  
and right).  
10  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Table 4-1. ZCE Pin Map [Section Left - Top View]  
A
B
C
D
E
F
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
SPI0_SCLK  
SPI0_CS0  
WARMRSTn  
EMU0  
I2C0_SCL  
SPI0_D0  
UART1_TXD  
UART1_RTSn  
UART0_RXD  
ECAP0_IN_PWM0_OUT  
UART1_CTSn  
XXXX  
UART0_CTSn  
UART0_RTSn  
UART0_TXD  
VDDS  
I2C0_SDA  
EXTINTn  
UART1_RXD  
XXXX  
SPI0_D1  
SPI0_CS1  
XDMA_EVENT_INTR1  
TCK  
XXXX  
XXXX  
XDMA_EVENT_INTR0  
TMS  
XXXX  
PWRONRSTn  
XXXX  
XXXX  
TDO  
EMU1  
VDDSHV6  
VSS  
TRSTn  
TDI  
CAP_VBB_MPU  
VDDS_SRAM_MPU_BB  
XXXX  
CAP_VDD_SRAM_MPU  
VDDS  
VDDSHV6  
VDDSHV6  
VDDSHV6  
VSS  
AIN7  
AIN5  
VSS  
AIN1  
AIN3  
XXXX  
VDD_CORE  
XXXX  
AIN6  
CAP_VDD_SRAM_CORE  
VREFN  
VDDS_SRAM_CORE_BG  
XXXX  
VSS  
VREFP  
XXXX  
VSS  
VDD_CORE  
VSS  
8
AIN2  
AIN0  
AIN4  
VSSA_ADC  
VDDA_ADC  
CAP_VDD_RTC  
XXXX  
VSS  
7
RTC_KALDO_ENn  
RTC_XTALIN  
RTC_XTALOUT  
DDR_WEn  
DDR_BA0  
DDR_A5  
VSS  
RTC_PWRONRSTn  
RESERVED  
EXT_WAKEUP  
DDR_BA2  
DDR_A3  
PMIC_POWER_EN  
VDDS_RTC  
VDDS_PLL_DDR  
XXXX  
VSS  
VSS  
6
XXXX  
VSS  
5
DDR_A4  
XXXX  
4
XXXX  
XXXX  
DDR_A12  
DDR_A0  
DDR_RASn  
DDR_CASn  
3
DDR_A8  
XXXX  
DDR_A15  
DDR_A10  
DDR_BA1  
2
DDR_A9  
DDR_CK  
DDR_A7  
DDR_A2  
1
DDR_A6  
DDR_CKn  
Pin map section location  
Left  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
ZCE Pin Map [Section Middle - Top View]  
G
MMC0_CLK  
MMC0_DAT0  
MMC0_CMD  
USB0_DRVVBUS  
VDDSHV4  
XXXX  
H
J
K
L
M
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MMC0_DAT3  
MMC0_DAT2  
MMC0_DAT1  
VDDS_PLL_MPU  
VDDSHV4  
VDDSHV4  
VDD_CORE  
VDD_CORE  
VSS  
MII1_COL  
MII1_RX_ER  
MII1_RX_DV  
MII1_TXD0  
XXXX  
MII1_RX_CLK  
MII1_CRS  
XXXX  
RMII1_REF_CLK  
MII1_TX_EN  
VDD_CORE  
VDD_CORE  
XXXX  
MII1_TXD1  
MII1_TXD3  
VDDS  
XXXX  
XXXX  
VSS  
VSS  
VDDSHV5  
VDDSHV5  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
XXXX  
VDD_CORE  
VDD_CORE  
VSS  
XXXX  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
XXXX  
VSS  
VSS  
XXXX  
XXXX  
XXXX  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8
VDD_CORE  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
DDR_VREF  
DDR_A14  
DDR_CSn0  
DDR_A13  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VDD_CORE  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
DDR_D11  
DDR_D10  
DDR_D12  
DDR_D13  
7
XXXX  
XXXX  
6
XXXX  
XXXX  
5
VDDS_DDR  
DDR_A11  
DDR_CKE  
DDR_RESETn  
DDR_ODT  
VSS  
VDDS_DDR  
VDDS_DDR  
DDR_DQM1  
DDR_D8  
DDR_D9  
VSS  
4
XXXX  
XXXX  
3
XXXX  
XXXX  
2
DDR_A1  
DDR_VTP  
DDR_DQSn1  
DDR_DQS1  
1
Pin map section location  
Middle  
12  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
ZCE Pin Map [Section Right - Top View]  
N
P
R
MDC  
T
USB0_VBUS  
USB0_CE  
XXXX  
U
V
W
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MII1_TX_CLK  
MII1_RXD1  
MII1_RXD0  
MDIO  
USB0_DP  
USB0_ID  
VSS  
MII1_TXD2  
MII1_RXD3  
MII1_RXD2  
VDDSHV5  
XXXX  
VDDA3P3V_USB0  
VDDA1P8V_USB0  
XXXX  
USB0_DM  
GPMC_CSn3  
XXXX  
GPMC_BEn1  
GPMC_AD15  
GPMC_CLK  
GPMC_AD8  
GPMC_CSn1  
GPMC_AD4  
GPMC_AD2  
VSS_OSC  
GPMC_WPn  
GPMC_AD14  
GPMC_AD9  
GPMC_AD7  
GPMC_AD5  
GPMC_AD3  
XTALOUT  
VSSA_USB  
XXXX  
XXXX  
GPMC_WAIT0  
XXXX  
XXXX  
GPMC_CSn2  
GPMC_AD6  
GPMC_AD12  
GPMC_AD11  
XXXX  
VSS  
VDDS  
XXXX  
VSS  
VDDSHV1  
VDDSHV1  
VDDSHV1  
VSS  
GPMC_AD13  
GPMC_AD10  
XXXX  
VSS  
VSS  
VDD_CORE  
XXXX  
VDD_CORE  
XXXX  
XTALIN  
VSS  
VDDS_OSC  
XXXX  
GPMC_ADVn_ALE  
GPMC_AD1  
GPMC_BEn0_CLE  
LCD_DATA15  
LCD_DATA12  
LCD_DATA11  
LCD_DATA8  
LCD_DATA6  
LCD_DATA3  
LCD_DATA2  
GPMC_AD0  
GPMC_OEn_REn  
GPMC_CSn0  
LCD_AC_BIAS_EN  
LCD_DATA14  
LCD_PCLK  
LCD_DATA9  
LCD_DATA5  
LCD_DATA4  
VSS  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VDDSHV1  
VDDSHV1  
VDDSHV6  
XXXX  
XXXX  
8
VDDS_PLL_CORE_LCD  
LCD_HSYNC  
VDDS  
GPMC_WEn  
LCD_VSYNC  
LCD_DATA13  
LCD_DATA10  
XXXX  
7
XXXX  
VSS  
6
XXXX  
VDDSHV6  
XXXX  
5
VDDS_DDR  
DDR_D0  
DDR_DQM0  
DDR_D14  
DDR_D15  
VPP  
XXXX  
4
DDR_D1  
DDR_D4  
DDR_D2  
DDR_D3  
XXXX  
XXXX  
3
DDR_D7  
XXXX  
LCD_DATA7  
LCD_DATA1  
LCD_DATA0  
2
DDR_DQSn0  
DDR_DQS0  
DDR_D6  
DDR_D5  
1
Pin map section location  
Right  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.1.2 ZCZ Package Pin Maps (Top View)  
The pin maps that follow show the pin assignments on the ZCZ package in three sections (left, middle,  
and right).  
14  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
ZCZ Pin Map [Section Left - Top View]  
A
B
EXTINTn  
C
ECAP0_IN_PWM0_OUT  
I2C0_SDA  
I2C0_SCL  
D
UART1_CTSn  
UART1_RTSn  
UART1_RXD  
E
UART0_CTSn  
UART0_RTSn  
UART0_TXD  
UART0_RXD  
VDDS  
F
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
SPI0_SCLK  
SPI0_CS0  
MMC0_DAT2  
MMC0_DAT3  
USB0_DRVVBUS  
USB1_DRVVBUS  
VDDSHV6  
VDD_MPU  
VDD_MPU  
VDD_MPU  
VDD_MPU  
VDDS  
SPI0_D0  
SPI0_D1  
XDMA_EVENT_INTR0  
MCASP0_AHCLKX  
MCASP0_ACLKX  
TCK  
PWRONRSTn  
EMU1  
SPI0_CS1  
EMU0  
UART1_TXD  
XDMA_EVENT_INTR1  
MCASP0_AXR1  
MCASP0_AXR0  
CAP_VDD_SRAM_MPU  
VDDS_SRAM_MPU_BB  
CAP_VDD_SRAM_CORE  
VDDA_ADC  
MCASP0_FSX  
MCASP0_ACLKR  
TDI  
MCASP0_FSR  
MCASP0_AHCLKR  
TMS  
VDDSHV6  
VDDSHV6  
TDO  
VDDSHV6  
WARMRSTn  
VREFN  
TRSTn  
CAP_VBB_MPU  
AIN7  
VDDSHV6  
VREFP  
VDDS_SRAM_CORE_BG  
VSSA_ADC  
VDDS_PLL_DDR  
VDDS  
8
AIN6  
AIN5  
AIN4  
VSS  
7
AIN3  
AIN2  
AIN1  
VDDS_RTC  
VDD_CORE  
VDD_CORE  
VDDS_DDR  
DDR_A10  
6
RTC_XTALIN  
VSS_RTC  
AIN0  
PMIC_POWER_EN  
EXT_WAKEUP  
DDR_BA0  
CAP_VDD_RTC  
DDR_A6  
5
RTC_PWRONRSTn  
RTC_KALDO_ENn  
DDR_BA2  
DDR_WEn  
DDR_A5  
VDDS_DDR  
DDR_A2  
4
RTC_XTALOUT  
RESERVED  
VDD_MPU_MON  
VSS  
DDR_A8  
3
DDR_A3  
DDR_A15  
DDR_A12  
DDR_A0  
2
DDR_A4  
DDR_CK  
DDR_A7  
DDR_A11  
1
DDR_A9  
DDR_CKn  
DDR_BA1  
DDR_CASn  
Pin map section location  
Left  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
ZCZ Pin Map [Section Middle - Top View]  
G
H
J
K
L
M
MDC  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MMC0_CMD  
MMC0_CLK  
MMC0_DAT0  
MMC0_DAT1  
VDDSHV6  
VDD_MPU  
VSS  
RMII1_REF_CLK  
MII1_CRS  
MII1_COL  
VDDS_PLL_MPU  
VDDSHV4  
VDD_MPU  
VSS  
MII1_TXD3  
MII1_TX_CLK  
MII1_RX_CLK  
MII1_RXD3  
MII1_RXD2  
MII1_RXD1  
VDDSHV5  
VSS  
MII1_RX_DV  
MII1_TX_EN  
MII1_RX_ER  
VDDSHV4  
VDD_MPU  
VDD_CORE  
VSS  
MII1_TXD0  
MII1_TXD1  
MII1_TXD2  
VDDSHV5  
VDDS  
MDIO  
MII1_RXD0  
USB0_CE  
VSSA_USB  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VSS  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VDD_CORE  
VDD_CORE  
VDDS_DDR  
DDR_D14  
DDR_D13  
DDR_DQSn1  
DDR_DQS1  
VSS  
8
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VSS  
7
VDD_CORE  
VDD_CORE  
VDDS_DDR  
DDR_RASn  
DDR_CKE  
DDR_RESETn  
DDR_ODT  
VSS  
VSS  
VSS  
6
VSS  
VSS  
VDD_CORE  
VDDS_DDR  
DDR_D12  
DDR_D11  
DDR_D10  
DDR_D9  
VSS  
5
VDDS_DDR  
DDR_A14  
DDR_A13  
DDR_CSn0  
DDR_A1  
VDDS_DDR  
DDR_VREF  
DDR_VTP  
DDR_DQM1  
DDR_D8  
VPP  
4
DDR_D1  
DDR_D0  
DDR_DQM0  
DDR_D15  
3
2
1
Pin map section location  
Middle  
16  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
ZCZ Pin Map [Section Right - Top View]  
N
P
R
USB1_DM  
T
U
V
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
USB0_DM  
USB0_DP  
VDDA1P8V_USB0  
VDDA3P3V_USB0  
VSSA_USB  
VDD_CORE  
VDD_CORE  
VSS  
USB1_CE  
USB1_ID  
USB0_ID  
USB0_VBUS  
VDDS  
USB1_VBUS  
GPMC_WAIT0  
GPMC_A10  
GPMC_BEn1  
GPMC_WPn  
GPMC_A9  
VSS  
USB1_DP  
GPMC_A11  
GPMC_A8  
GPMC_A5  
GPMC_A1  
GPMC_AD14  
GPMC_CLK  
VSS_OSC  
XTALIN  
VDDA1P8V_USB1  
VDDA3P3V_USB1  
GPMC_A4  
GPMC_A7  
GPMC_A6  
GPMC_A3  
GPMC_A2  
VDDSHV3  
VDDSHV3  
VDDSHV2  
VDDSHV2  
VDDS  
GPMC_A0  
GPMC_CSn3  
GPMC_AD12  
GPMC_AD10  
GPMC_AD9  
GPMC_AD7  
GPMC_AD3  
GPMC_OEn_REn  
GPMC_BEn0_CLE  
LCD_DATA15  
LCD_DATA7  
LCD_DATA6  
LCD_DATA5  
LCD_DATA4  
GPMC_AD15  
GPMC_AD11  
XTALOUT  
GPMC_AD13  
VDDS_OSC  
VSS  
VDDS_PLL_CORE_LCD  
GPMC_AD6  
GPMC_AD8  
GPMC_CSn1  
GPMC_AD4  
GPMC_AD0  
GPMC_WEn  
LCD_VSYNC  
LCD_DATA11  
LCD_DATA10  
LCD_DATA9  
LCD_DATA8  
VDD_CORE  
VDD_CORE  
VSS  
GPMC_CSn2  
GPMC_AD5  
GPMC_AD1  
GPMC_CSn0  
LCD_PCLK  
LCD_DATA14  
LCD_DATA13  
LCD_DATA12  
VSS  
8
VDDSHV1  
VDDSHV1  
VDDSHV6  
VDDSHV6  
DDR_D7  
GPMC_AD2  
7
GPMC_ADVn_ALE  
LCD_AC_BIAS_EN  
LCD_HSYNC  
LCD_DATA3  
6
VDDS  
5
VDDSHV6  
DDR_D5  
4
3
DDR_D4  
DDR_D6  
LCD_DATA2  
2
DDR_D3  
DDR_DQSn0  
DDR_DQS0  
LCD_DATA1  
1
DDR_D2  
LCD_DATA0  
Pin map section location  
Right  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.2 Pin Attributes  
The AM335x and AMIC110 Sitara Processors Technical Reference Manual and this document may  
reference internal signal names when discussing peripheral input and output signals because many of the  
AM335x package terminals can be multiplexed to one of several peripheral signals. The following table  
has a Pin Name column that lists all device terminal names and a Signal Name column that lists all  
internal signal names multiplexed to each terminal which provides a cross reference of internal signal  
names to terminal names. This table also identifies other important terminal characteristics.  
(1) BALL NUMBER: Package ball numbers associated with each signals.  
(2) PIN NAME: The name of the package pin or terminal.  
Note: The table does not take into account subsystem terminal multiplexing options.  
(3) SIGNAL NAME: The signal name for that pin in the mode being used.  
(4) MODE: Multiplexing mode number.  
a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the terminal corresponds to the name of  
the terminal. There is always a function mapped on the primary mode. Notice that primary mode is not necessarily the default  
mode.  
Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE column.  
b. Modes 1 to 7 are possible modes for alternate functions. On each terminal, some modes are effectively used for alternate  
functions, while some modes are not used and do not correspond to a functional configuration.  
(5) TYPE: Signal direction  
I = Input  
O = Output  
I/O = Input and Output  
D = Open drain  
DS = Differential  
A = Analog  
PWR = Power  
GND = Ground  
Note: In the safe_mode, the buffer is configured in high-impedance.  
(6) BALL RESET STATE: State of the terminal while the active low PWRONRSTn terminal is low.  
0: The buffer drives VOL (pulldown or pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor  
1: The buffer drives VOH (pulldown or pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor  
Z: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
(7) BALL RESET REL. STATE: State of the terminal after the active low PWRONRSTn terminal transitions from low to high.  
0: The buffer drives VOL (pulldown or pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor  
1: The buffer drives VOH (pulldown or pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor  
Z: High-impedance.  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
(8) RESET REL. MODE: The mode is automatically configured after the active low PWRONRSTn terminal transitions from low to high.  
(9) POWER: The voltage supply that powers the I/O buffers of the terminal.  
(10) HYS: Indicates if the input buffer is with hysteresis.  
(11) BUFFER STRENGTH: Drive strength of the associated output buffer.  
(12) PULLUP OR PULLDOWN TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can  
be enabled or disabled via software.  
(13) I/O CELL: I/O cell information.  
Note: Configuring two terminals to the same input signal is not supported as it can yield unexpected results. This can be easily prevented  
with the proper software configuration.  
18  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
Analog  
STATE [6](25)  
B8  
B6  
C7  
B7  
A7  
C8  
B8  
A8  
C9  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
0
A (22)  
Z
Z
0
0
0
0
0
0
0
0
VDDA_ADC /  
VDDA_ADC  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
25  
NA  
A11  
A8  
0
0
0
0
0
0
0
A (21)  
A (21)  
A (20)  
A (20)  
A
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
VDDA_ADC /  
VDDA_ADC  
25  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Analog  
VDDA_ADC /  
VDDA_ADC  
25  
Analog  
B11  
C8  
VDDA_ADC /  
VDDA_ADC  
25  
Analog  
VDDA_ADC /  
VDDA_ADC  
25  
Analog  
B12  
A10  
A12  
VDDA_ADC /  
VDDA_ADC  
NA  
NA  
NA  
Analog  
A
VDDA_ADC /  
VDDA_ADC  
Analog  
A
VDDA_ADC /  
VDDA_ADC  
Analog  
C13  
D6  
C10  
D6  
CAP_VBB_MPU  
CAP_VBB_MPU  
CAP_VDD_RTC  
NA  
NA  
NA  
NA  
0
A
A
A
A
O
CAP_VDD_RTC  
B10  
D13  
F3  
D9  
CAP_VDD_SRAM_CORE  
CAP_VDD_SRAM_MPU  
DDR_A0  
CAP_VDD_SRAM_CORE  
CAP_VDD_SRAM_MPU  
ddr_a0  
D11  
F3  
H
H
H
H
H
H
H
H
H
H
H
H
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_DDR /  
VDDS_DDR  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/SSTL/  
HSTL  
J2  
H1  
E4  
C3  
C2  
B1  
D5  
E2  
D4  
C1  
F4  
F2  
DDR_A1  
DDR_A2  
DDR_A3  
DDR_A4  
DDR_A5  
DDR_A6  
DDR_A7  
DDR_A8  
DDR_A9  
DDR_A10  
DDR_A11  
ddr_a1  
ddr_a2  
ddr_a3  
ddr_a4  
ddr_a5  
ddr_a6  
ddr_a7  
ddr_a8  
ddr_a9  
ddr_a10  
ddr_a11  
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
D1  
B3  
E5  
A2  
B1  
D2  
C3  
B2  
E2  
G4  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
I/O CELL [13]  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
DDR_A12  
SIGNAL NAME [3]  
MODE [4]  
STATE [6](25)  
F4  
H1  
H3  
E3  
A3  
E1  
B4  
F1  
C2  
G3  
C1  
H2  
N4  
P4  
P2  
P1  
P3  
T1  
T2  
R3  
K2  
K1  
M3  
E3  
H3  
H4  
D3  
C4  
E1  
B3  
F1  
D2  
G3  
D1  
H2  
M3  
M4  
N1  
N2  
N3  
N4  
P3  
P4  
J1  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
ddr_ck  
0
O
O
O
O
O
O
O
O
O
O
O
O
H
1
1
1
1
1
1
1
1
0
0
1
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_DDR /  
VDDS_DDR  
NA  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/SSTL/  
HSTL  
DDR_A13  
DDR_A14  
DDR_A15  
DDR_BA0  
DDR_BA1  
DDR_BA2  
DDR_CASn  
DDR_CK  
DDR_CKE  
DDR_CKn  
DDR_CSn0  
DDR_D0  
DDR_D1  
DDR_D2  
DDR_D3  
DDR_D4  
DDR_D5  
DDR_D6  
DDR_D7  
DDR_D8  
DDR_D9  
DDR_D10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
H
H
H
H
H
H
H
L
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
ddr_cke  
ddr_nck  
ddr_csn0  
ddr_d0  
L
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
H
H
L
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDS_DDR /  
VDDS_DDR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS/SSTL/  
HSTL  
ddr_d1  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d2  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d3  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d4  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d5  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d6  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d7  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d8  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
K1  
K2  
ddr_d9  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d10  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
20  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
DDR_D11  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
M4  
M2  
M1  
N2  
N1  
N3  
K3  
R1  
L1  
K3  
K4  
L3  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_dqm0  
ddr_dqm1  
ddr_dqs0  
ddr_dqs1  
ddr_dqsn0  
ddr_dqsn1  
ddr_odt  
0
I/O  
L
Z
0
VDDS_DDR /  
VDDS_DDR  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
NA  
LVCMOS/SSTL/  
HSTL  
DDR_D12  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I/O  
I/O  
I/O  
I/O  
O
L
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
DDR_D13  
L
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
L4  
DDR_D14  
L
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
M1  
M2  
J2  
DDR_D15  
L
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
DDR_DQM0  
DDR_DQM1  
DDR_DQS0  
DDR_DQS1  
DDR_DQSn0  
DDR_DQSn1  
DDR_ODT  
H
H
L
1
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
O
1
0
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
P1  
L1  
I/O  
I/O  
I/O  
I/O  
O
Z
0
VDDS_DDR /  
VDDS_DDR  
Yes  
Yes  
Yes  
Yes  
NA  
LVCMOS/SSTL/  
HSTL  
L
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
R2  
L2  
P2  
L2  
H
H
L
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
G1  
F2  
G1  
G4  
G2  
J4  
0
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
DDR_RASn  
DDR_RESETn  
DDR_VREF  
DDR_VTP  
ddr_rasn  
ddr_resetn  
ddr_vref  
ddr_vtp  
O
H
L
1
0
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
G2  
H4  
J1  
O
0
0
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
A (18) NA  
NA  
NA  
1
NA  
NA  
0
VDDS_DDR /  
VDDS_DDR  
NA  
NA  
NA  
8
Analog  
J3  
I (19)  
O
NA  
H
VDDS_DDR /  
VDDS_DDR  
NA  
NA  
Analog  
A4  
E18  
B2  
C18  
DDR_WEn  
ddr_wen  
VDDS_DDR /  
VDDS_DDR  
NA  
PU/PD  
PU/PD  
LVCMOS/SSTL/  
HSTL  
ECAP0_IN_PWM0_OUT  
eCAP0_in_PWM0_out  
uart3_txd  
0
1
2
3
4
5
6
7
0
7
I/O  
O
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
LVCMOS  
spi1_cs1  
I/O  
I/O  
I/O  
I
pr1_ecap0_ecap_capin_apwm_o  
spi1_sclk  
mmc0_sdwp  
xdma_event_intr2  
gpio0_7  
I
I/O  
I/O  
I/O  
A15  
C14  
EMU0  
EMU0  
H
H
0
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpio3_7  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
D14  
B14  
EMU1  
EMU1  
gpio3_8  
nNMI  
0
I/O  
H
H
0
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
7
0
I/O  
I
C17  
B5  
B18  
C5  
EXTINTn  
Z
L
L
H
Z
L
0
0
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
NA  
NA  
6
PU/PD  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
EXT_WAKEUP  
GPMC_A0  
EXT_WAKEUP  
0
I
VDDS_RTC /  
VDDS_RTC  
NA  
R13  
gpmc_a0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
O
O
O
O
I
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
PU/PD  
gmii2_txen  
rgmii2_tctl  
rmii2_txen  
gpmc_a16  
pr1_mii_mt1_clk  
ehrpwm1_tripzone_input  
gpio1_16  
I
I/O  
O
I
NA  
NA  
NA  
V14  
U14  
T14  
GPMC_A1  
GPMC_A2  
GPMC_A3  
gpmc_a1  
L
L
L
L
L
L
7
7
7
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_rxdv  
rgmii2_rctl  
I
mmc2_dat0  
gpmc_a17  
pr1_mii1_txd3  
ehrpwm0_synco  
gpio1_17  
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
gpmc_a2  
gmii2_txd3  
rgmii2_td3  
mmc2_dat1  
gpmc_a18  
pr1_mii1_txd2  
ehrpwm1A  
gpio1_18  
gpmc_a3  
gmii2_txd2  
rgmii2_td2  
mmc2_dat2  
gpmc_a19  
pr1_mii1_txd1  
ehrpwm1B  
gpio1_19  
22  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_A4  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
NA  
NA  
NA  
NA  
R14  
V15  
U15  
T15  
gpmc_a4  
0
O
O
O
O
O
O
I
L
L
7
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
gmii2_txd1  
rgmii2_td1  
rmii2_txd1  
gpmc_a20  
pr1_mii1_txd0  
eQEP1A_in  
gpio1_20  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
O
O
O
O
O
I
GPMC_A5  
GPMC_A6  
GPMC_A7  
gpmc_a5  
L
L
L
L
L
L
7
7
7
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_txd0  
rgmii2_td0  
rmii2_txd0  
gpmc_a21  
pr1_mii1_rxd3  
eQEP1B_in  
gpio1_21  
I
I/O  
O
I
gpmc_a6  
gmii2_txclk  
rgmii2_tclk  
mmc2_dat4  
gpmc_a22  
pr1_mii1_rxd2  
eQEP1_index  
gpio1_22  
O
I/O  
O
I
I/O  
I/O  
O
I
gpmc_a7  
gmii2_rxclk  
rgmii2_rclk  
mmc2_dat5  
gpmc_a23  
pr1_mii1_rxd1  
eQEP1_strobe  
gpio1_23  
I
I/O  
O
I
I/O  
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_A8  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
NA  
NA  
NA  
NA  
V16  
U16  
T16  
V17  
gpmc_a8  
0
O
I
L
L
L
L
L
7
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
gmii2_rxd3  
rgmii2_rd3  
mmc2_dat6  
gpmc_a24  
pr1_mii1_rxd0  
mcasp0_aclkx  
gpio1_24  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
7
0
1
7
I
I/O  
O
I
I/O  
I/O  
O
(10)  
GPMC_A9  
gpmc_a9  
L
L
L
7
7
7
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_rxd2  
rgmii2_rd2  
I
I
mmc2_dat7 / rmii2_crs_dv  
gpmc_a25  
I/O  
O
pr1_mii_mr1_clk  
mcasp0_fsx  
gpio1_25  
I
I/O  
I/O  
O
GPMC_A10  
gpmc_a10  
gmii2_rxd1  
rgmii2_rd1  
rmii2_rxd1  
I
I
I
gpmc_a26  
O
pr1_mii1_rxdv  
mcasp0_axr0  
gpio1_26  
I
I/O  
I/O  
O
GPMC_A11  
gpmc_a11  
gmii2_rxd0  
rgmii2_rd0  
rmii2_rxd0  
I
I
I
gpmc_a27  
O
pr1_mii1_rxer  
mcasp0_axr1  
gpio1_27  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W10  
V9  
U7  
V7  
GPMC_AD0  
GPMC_AD1  
gpmc_ad0  
L
L
L
L
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
mmc1_dat0  
gpio1_0  
gpmc_ad1  
VDDSHV1 /  
VDDSHV1  
mmc1_dat1  
gpio1_1  
24  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_AD2  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
V12  
W13  
V13  
W14  
U14  
W15  
V15  
R8  
gpmc_ad2  
mmc1_dat2  
gpio1_2  
0
I/O  
L
L
7
7
7
7
7
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
7
0
1
7
0
1
7
0
1
7
0
1
7
0
1
7
0
1
2
3
4
5
7
0
1
2
3
4
5
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
T8  
GPMC_AD3  
GPMC_AD4  
GPMC_AD5  
GPMC_AD6  
GPMC_AD7  
GPMC_AD8  
gpmc_ad3  
mmc1_dat3  
gpio1_3  
L
L
L
L
L
L
L
L
L
L
L
L
VDDSHV1 /  
VDDSHV1  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
U8  
V8  
R9  
T9  
gpmc_ad4  
mmc1_dat4  
gpio1_4  
VDDSHV1 /  
VDDSHV1  
gpmc_ad5  
mmc1_dat5  
gpio1_5  
VDDSHV1 /  
VDDSHV1  
gpmc_ad6  
mmc1_dat6  
gpio1_6  
VDDSHV1 /  
VDDSHV1  
gpmc_ad7  
mmc1_dat7  
gpio1_7  
VDDSHV1 /  
VDDSHV1  
U10  
gpmc_ad8  
lcd_data23  
mmc1_dat0  
mmc2_dat4  
ehrpwm2A  
VDDSHV1 /  
VDDSHV2  
I/O  
I/O  
O
pr1_mii_mt0_clk  
gpio0_22  
I
I/O  
I/O  
O
W16  
T10  
GPMC_AD9  
gpmc_ad9  
lcd_data22  
mmc1_dat1  
mmc2_dat5  
ehrpwm2B  
pr1_mii0_col  
gpio0_23  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I/O  
I/O  
O
I
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_AD10  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
T12  
U12  
U13  
T11  
U12  
T12  
gpmc_ad10  
lcd_data21  
mmc1_dat2  
mmc2_dat6  
0
I/O  
L
L
L
L
7
7
7
VDDSHV1 /  
VDDSHV2  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I/O  
I/O  
I
ehrpwm2_tripzone_input  
pr1_mii0_txen  
gpio0_26  
O
I/O  
I/O  
O
GPMC_AD11  
gpmc_ad11  
L
VDDSHV1 /  
VDDSHV2  
LVCMOS  
lcd_data20  
mmc1_dat3  
I/O  
I/O  
O
mmc2_dat7  
ehrpwm0_synco  
pr1_mii0_txd3  
gpio0_27  
O
I/O  
I/O  
O
GPMC_AD12  
gpmc_ad12  
L
VDDSHV1 /  
VDDSHV2  
LVCMOS  
lcd_data19  
mmc1_dat4  
I/O  
I/O  
I
mmc2_dat0  
eQEP2A_in  
pr1_mii0_txd2  
pr1_pru0_pru_r30_14  
gpio1_12  
O
O
I/O  
I/O  
O
T13  
R12  
GPMC_AD13  
gpmc_ad13  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
lcd_data18  
mmc1_dat5  
I/O  
I/O  
I
mmc2_dat1  
eQEP2B_in  
pr1_mii0_txd1  
pr1_pru0_pru_r30_15  
gpio1_13  
O
O
I/O  
I/O  
O
W17  
V13  
GPMC_AD14  
gpmc_ad14  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
lcd_data17  
mmc1_dat6  
I/O  
I/O  
I/O  
O
mmc2_dat2  
eQEP2_index  
pr1_mii0_txd0  
pr1_pru0_pru_r31_14  
gpio1_14  
I
I/O  
26  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_AD15  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
V17  
U13  
gpmc_ad15  
lcd_data16  
0
I/O  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
2
7
0
2
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
7
O
mmc1_dat7  
mmc2_dat3  
eQEP2_strobe  
I/O  
I/O  
I/O  
I/O  
I
pr1_ecap0_ecap_capin_apwm_o  
pr1_pru0_pru_r31_15  
gpio1_15  
I/O  
O
V10  
V8  
R7  
GPMC_ADVn_ALE  
GPMC_BEn0_CLE  
GPMC_BEn1  
gpmc_advn_ale  
timer4  
H
H
H
H
H
H
7
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
I/O  
I/O  
O
gpio2_2  
T6  
gpmc_be0n_cle  
timer5  
VDDSHV1 /  
VDDSHV1  
I/O  
I/O  
O
gpio2_5  
V18  
U18  
gpmc_be1n  
gmii2_col  
VDDSHV1 /  
VDDSHV3  
I
gpmc_csn6  
mmc2_dat3  
gpmc_dir  
O
I/O  
O
pr1_mii1_rxlink  
mcasp0_aclkr  
gpio1_28  
I
I/O  
I/O  
I/O  
O
V16  
V12  
GPMC_CLK  
gpmc_clk  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
lcd_memory_clk  
gpmc_wait1  
mmc2_clk  
I
I/O  
I
pr1_mii1_crs  
pr1_mdio_mdclk  
mcasp0_fsr  
gpio2_1  
O
I/O  
I/O  
O
W8  
V6  
GPMC_CSn0  
gpmc_csn0  
gpio1_29  
H
H
7
VDDSHV1 /  
VDDSHV1  
Yes  
6
PU/PD  
LVCMOS  
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_CSn1  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
V14  
U15  
U17  
U9  
gpmc_csn1  
gpmc_clk  
mmc1_clk  
0
O
H
H
H
H
7
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
2
7
0
1
2
3
4
5
6
7
0
2
7
I/O  
I/O  
I
pr1_edio_data_in6  
pr1_edio_data_out6  
pr1_pru1_pru_r30_12  
pr1_pru1_pru_r31_12  
gpio1_30  
O
O
I
I/O  
O
O
I/O  
I
V9  
GPMC_CSn2  
gpmc_csn2  
H
VDDSHV1 /  
VDDSHV1  
LVCMOS  
gpmc_be1n  
mmc1_cmd  
pr1_edio_data_in7  
pr1_edio_data_out7  
pr1_pru1_pru_r30_13  
pr1_pru1_pru_r31_13  
gpio1_31  
O
O
I
I/O  
O
O
I
T13  
GPMC_CSn3 (6)  
gpmc_csn3  
H
VDDSHV1 /  
VDDSHV2  
LVCMOS  
gpmc_a3  
rmii2_crs_dv  
mmc2_cmd  
I/O  
I
pr1_mii0_crs  
pr1_mdio_data  
EMU4  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I
gpio2_0  
W9  
T7  
GPMC_OEn_REn  
GPMC_WAIT0  
gpmc_oen_ren  
timer7  
H
H
H
H
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
gpio2_3  
R15  
T17  
gpmc_wait0  
gmii2_crs  
VDDSHV1 /  
VDDSHV3  
I
gpmc_csn4  
O
I
rmii2_crs_dv  
mmc1_sdcd  
pr1_mii1_col  
uart4_rxd  
I
I
I
gpio0_30  
I/O  
O
I/O  
I/O  
U8  
U6  
GPMC_WEn  
gpmc_wen  
H
H
7
VDDSHV1 /  
VDDSHV1  
Yes  
6
PU/PD  
LVCMOS  
timer6  
gpio2_4  
28  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_WPn  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
W18  
U17  
gpmc_wpn  
gmii2_rxerr  
gpmc_csn5  
rmii2_rxerr  
mmc2_sdcd  
pr1_mii1_txen  
uart4_txd  
0
O
I
H
H
7
VDDSHV1 /  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
4
5
6
7
0
1
2
3
5
6
7
O
I
I
O
O
gpio0_31  
I/O  
I/OD  
I/O  
I
C18  
B19  
W7  
C17  
C16  
R6  
I2C0_SDA  
I2C0_SDA  
timer4  
Z
Z
Z
H
H
L
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
4
4
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
uart2_ctsn  
eCAP2_in_PWM2_out  
gpio3_5  
I/O  
I/O  
I/OD  
I/O  
O
I2C0_SCL  
I2C0_SCL  
VDDSHV6 /  
VDDSHV6  
timer7  
uart2_rtsn  
eCAP1_in_PWM1_out  
gpio3_6  
I/O  
I/O  
O
LCD_AC_BIAS_EN  
lcd_ac_bias_en  
gpmc_a11  
VDDSHV6 /  
VDDSHV6  
O
pr1_mii1_crs  
I
pr1_edio_data_in5  
pr1_edio_data_out5  
pr1_pru1_pru_r30_11  
pr1_pru1_pru_r31_11  
gpio2_25  
I
O
O
I
I/O  
I/O  
O
(5)  
U1  
R1  
LCD_DATA0  
lcd_data0  
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a0  
pr1_mii_mt0_clk  
ehrpwm2A  
I
O
pr1_pru1_pru_r30_0  
pr1_pru1_pru_r31_0  
gpio2_6  
O
I
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
(5)  
U2  
V1  
V2  
W2  
W3  
R2  
R3  
R4  
T1  
T2  
LCD_DATA1  
lcd_data1  
0
I/O  
Z
Z
Z
Z
Z
Z
7
7
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
gpmc_a1  
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
O
O
O
O
I
pr1_mii0_txen  
ehrpwm2B  
pr1_pru1_pru_r30_1  
pr1_pru1_pru_r31_1  
gpio2_7  
I/O  
I/O  
O
O
I
(5)  
(5)  
(5)  
(5)  
LCD_DATA2  
LCD_DATA3  
LCD_DATA4  
LCD_DATA5  
lcd_data2  
Z
Z
Z
Z
VDDSHV6 /  
VDDSHV6  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a2  
pr1_mii0_txd3  
ehrpwm2_tripzone_input  
pr1_pru1_pru_r30_2  
pr1_pru1_pru_r31_2  
gpio2_8  
O
I
I/O  
I/O  
O
O
O
O
I
lcd_data3  
VDDSHV6 /  
VDDSHV6  
gpmc_a3  
pr1_mii0_txd2  
ehrpwm0_synco  
pr1_pru1_pru_r30_3  
pr1_pru1_pru_r31_3  
gpio2_9  
I/O  
I/O  
O
O
I
lcd_data4  
VDDSHV6 /  
VDDSHV6  
gpmc_a4  
pr1_mii0_txd1  
eQEP2A_in  
pr1_pru1_pru_r30_4  
pr1_pru1_pru_r31_4  
gpio2_10  
O
I
I/O  
I/O  
O
O
I
lcd_data5  
VDDSHV6 /  
VDDSHV6  
gpmc_a5  
pr1_mii0_txd0  
eQEP2B_in  
pr1_pru1_pru_r30_5  
pr1_pru1_pru_r31_5  
gpio2_11  
O
I
I/O  
30  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
(5)  
V3  
U3  
V4  
W4  
T3  
T4  
U1  
U2  
LCD_DATA6  
lcd_data6  
gpmc_a6  
0
I/O  
Z
Z
7
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I
pr1_edio_data_in6  
eQEP2_index  
pr1_edio_data_out6  
pr1_pru1_pru_r30_6  
pr1_pru1_pru_r31_6  
gpio2_12  
I/O  
O
O
I
I/O  
I/O  
O
I
(5)  
(5)  
(5)  
LCD_DATA7  
LCD_DATA8  
LCD_DATA9  
lcd_data7  
Z
Z
Z
Z
Z
Z
VDDSHV6 /  
VDDSHV6  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a7  
pr1_edio_data_in7  
eQEP2_strobe  
pr1_edio_data_out7  
pr1_pru1_pru_r30_7  
pr1_pru1_pru_r31_7  
gpio2_13  
I/O  
O
O
I
I/O  
I/O  
O
I
lcd_data8  
VDDSHV6 /  
VDDSHV6  
gpmc_a12  
ehrpwm1_tripzone_input  
mcasp0_aclkx  
uart5_txd  
I/O  
O
I
pr1_mii0_rxd3  
uart2_ctsn  
I
gpio2_14  
I/O  
I/O  
O
O
I/O  
I
lcd_data9  
VDDSHV6 /  
VDDSHV6  
gpmc_a13  
ehrpwm0_synco  
mcasp0_fsx  
uart5_rxd  
pr1_mii0_rxd2  
uart2_rtsn  
I
O
I/O  
gpio2_15  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
LCD_DATA10 (5)  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
U5  
U3  
lcd_data10  
gpmc_a14  
ehrpwm1A  
mcasp0_axr0  
pr1_mii0_rxd1  
uart3_ctsn  
gpio2_16  
0
I/O  
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
O
I/O  
I
I
I/O  
I/O  
O
V5  
U4  
LCD_DATA11 (5)  
LCD_DATA12 (5)  
LCD_DATA13 (5)  
lcd_data11  
gpmc_a15  
ehrpwm1B  
Z
Z
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
O
mcasp0_ahclkr  
mcasp0_axr2  
pr1_mii0_rxd0  
uart3_rtsn  
I/O  
I/O  
I
O
gpio2_17  
I/O  
I/O  
O
V6  
V2  
lcd_data12  
gpmc_a16  
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
eQEP1A_in  
mcasp0_aclkr  
mcasp0_axr2  
pr1_mii0_rxlink  
uart4_ctsn  
I
I/O  
I/O  
I
I
gpio0_8  
I/O  
I/O  
O
U6  
V3  
lcd_data13  
gpmc_a17  
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
eQEP1B_in  
mcasp0_fsr  
mcasp0_axr3  
pr1_mii0_rxer  
uart4_rtsn  
I
I/O  
I/O  
I
O
gpio0_9  
I/O  
32  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
LCD_DATA14 (5)  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
W6  
V4  
T5  
R5  
V5  
lcd_data14  
gpmc_a18  
0
I/O  
Z
Z
7
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I/O  
I/O  
I
eQEP1_index  
mcasp0_axr1  
uart5_rxd  
pr1_mii_mr0_clk  
uart5_ctsn  
I
I
gpio0_10  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I
V7  
LCD_DATA15 (5)  
LCD_HSYNC (7)  
LCD_PCLK  
lcd_data15  
Z
Z
Z
Z
L
L
VDDSHV6 /  
VDDSHV6  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a19  
eQEP1_strobe  
mcasp0_ahclkx  
mcasp0_axr3  
pr1_mii0_rxdv  
uart5_rtsn  
O
I/O  
O
O
O
I
gpio0_11  
T7  
lcd_hsync  
VDDSHV6 /  
VDDSHV6  
gpmc_a9  
gpmc_a2  
pr1_edio_data_in3  
pr1_edio_data_out3  
pr1_pru1_pru_r30_9  
pr1_pru1_pru_r31_9  
gpio2_23  
O
O
I
I/O  
O
O
I
W5  
lcd_pclk  
VDDSHV6 /  
VDDSHV6  
gpmc_a10  
pr1_mii0_crs  
pr1_edio_data_in4  
pr1_edio_data_out4  
pr1_pru1_pru_r30_10  
pr1_pru1_pru_r31_10  
gpio2_24  
I
O
O
I
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
(7)  
U7  
U5  
LCD_VSYNC  
lcd_vsync  
gpmc_a8  
gpmc_a1  
0
O
O
O
I
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
pr1_edio_data_in2  
pr1_edio_data_out2  
pr1_pru1_pru_r30_8  
pr1_pru1_pru_r31_8  
gpio2_22  
O
O
I
I/O  
I/O  
O
NA  
B13  
MCASP0_FSX  
mcasp0_fsx  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
ehrpwm0B  
spi1_d0  
I/O  
I
mmc1_sdcd  
pr1_pru0_pru_r30_1  
pr1_pru0_pru_r31_1  
gpio3_15  
O
I
I/O  
I/O  
I
NA  
B12  
MCASP0_ACLKR  
mcasp0_aclkr  
eQEP0A_in  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
mcasp0_axr2  
I/O  
I/O  
I
mcasp1_aclkx  
mmc0_sdwp  
pr1_pru0_pru_r30_4  
pr1_pru0_pru_r31_4  
gpio3_18  
O
I
I/O  
I/O  
I
NA  
C12  
MCASP0_AHCLKR  
mcasp0_ahclkr  
ehrpwm0_synci  
mcasp0_axr2  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
I/O  
I/O  
I/O  
O
spi1_cs0  
eCAP2_in_PWM2_out  
pr1_pru0_pru_r30_3  
pr1_pru0_pru_r31_3  
gpio3_17  
I
I/O  
34  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
NA  
A14  
MCASP0_AHCLKX  
mcasp0_ahclkx  
0
I/O  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
eQEP0_strobe  
mcasp0_axr3  
mcasp1_axr1  
EMU4  
1
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
3
4
5
6
7
I/O  
I/O  
I/O  
I/O  
O
pr1_pru0_pru_r30_7  
pr1_pru0_pru_r31_7  
gpio3_21  
I
I/O  
I/O  
O
NA  
A13  
MCASP0_ACLKX  
mcasp0_aclkx  
ehrpwm0A  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
spi1_sclk  
I/O  
I
mmc0_sdcd  
pr1_pru0_pru_r30_0  
pr1_pru0_pru_r31_0  
gpio3_14  
O
I
I/O  
I/O  
I
NA  
C13  
MCASP0_FSR  
mcasp0_fsr  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
eQEP0B_in  
mcasp0_axr3  
mcasp1_fsx  
I/O  
I/O  
I/O  
O
EMU2  
pr1_pru0_pru_r30_5  
pr1_pru0_pru_r31_5  
gpio3_19  
I
I/O  
I/O  
I
NA  
D12  
MCASP0_AXR0  
mcasp0_axr0  
ehrpwm0_tripzone_input  
spi1_d1  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
I/O  
I
mmc2_sdcd  
pr1_pru0_pru_r30_2  
pr1_pru0_pru_r31_2  
gpio3_16  
O
I
I/O  
I/O  
I/O  
I/O  
I/O  
O
NA  
D13  
MCASP0_AXR1  
mcasp0_axr1  
eQEP0_index  
mcasp1_axr0  
EMU3  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
pr1_pru0_pru_r30_6  
pr1_pru0_pru_r31_6  
gpio3_20  
I
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
35  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
R19  
P17  
L19  
K17  
M18  
M17  
J17  
MDC  
mdio_clk  
0
O
H
H
H
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
timer5  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
O
uart5_txd  
uart3_rtsn  
mmc0_sdwp  
mmc1_clk  
mmc2_clk  
gpio0_1  
O
I
I/O  
I/O  
I/O  
I/O  
I/O  
I
MDIO  
mdio_data  
timer6  
H
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
uart5_rxd  
uart3_ctsn  
mmc0_sdcd  
mmc1_cmd  
mmc2_cmd  
gpio0_0  
I
I
I/O  
I/O  
I/O  
I
MII1_RX_DV  
gmii1_rxdv  
VDDSHV5 /  
VDDSHV5  
lcd_memory_clk  
rgmii1_rctl  
uart5_txd  
O
I
O
mcasp1_aclkx  
mmc2_dat0  
mcasp0_aclkr  
gpio3_4  
I/O  
I/O  
I/O  
I/O  
O
J16  
MII1_TX_EN  
gmii1_txen  
rmii1_txen  
rgmii1_tctl  
timer4  
L
VDDSHV5 /  
VDDSHV5  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
mcasp1_axr0  
eQEP0_index  
mmc2_cmd  
gpio3_3  
36  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_RX_ER  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
K19  
M19  
N19  
J19  
J15  
L18  
K18  
H16  
gmii1_rxerr  
rmii1_rxerr  
spi1_d1  
0
I
I
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
I/OD  
I/O  
O
I2C1_SCL  
mcasp1_fsx  
uart5_rtsn  
uart2_txd  
O
gpio3_2  
I/O  
I
MII1_RX_CLK  
MII1_TX_CLK  
MII1_COL  
gmii1_rxclk  
uart2_txd  
L
L
L
L
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
O
rgmii1_rclk  
mmc0_dat6  
mmc1_dat1  
uart1_dsrn  
mcasp0_fsx  
gpio3_10  
I
I/O  
I/O  
I
I/O  
I/O  
I
gmii1_txclk  
uart2_rxd  
VDDSHV5 /  
VDDSHV5  
I
rgmii1_tclk  
mmc0_dat7  
mmc1_dat0  
uart1_dcdn  
mcasp0_aclkx  
gpio3_9  
O
I/O  
I/O  
I
I/O  
I/O  
I
gmii1_col  
VDDSHV5 /  
VDDSHV5  
rmii2_refclk  
spi1_sclk  
I/O  
I/O  
I
uart5_rxd  
mcasp1_axr2  
mmc2_dat3  
mcasp0_axr2  
gpio3_0  
I/O  
I/O  
I/O  
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
37  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_CRS  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
J18  
P18  
P19  
N16  
H17  
M16  
L15  
L16  
gmii1_crs  
rmii1_crs_dv  
spi1_d0  
0
I
I
L
L
L
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
I/OD  
I/O  
I
I2C1_SDA  
mcasp1_aclkx  
uart5_ctsn  
uart2_rxd  
I
gpio3_1  
I/O  
I
MII1_RXD0  
MII1_RXD1  
MII1_RXD2  
gmii1_rxd0  
rmii1_rxd0  
rgmii1_rd0  
L
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
I
I
mcasp1_ahclkx  
mcasp1_ahclkr  
mcasp1_aclkr  
mcasp0_axr3  
gpio2_21  
I/O  
I/O  
I/O  
I/O  
I/O  
I
gmii1_rxd1  
rmii1_rxd1  
VDDSHV5 /  
VDDSHV5  
I
rgmii1_rd1  
mcasp1_axr3  
mcasp1_fsr  
eQEP0_strobe  
mmc2_clk  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I
gpio2_20  
gmii1_rxd2  
uart3_txd  
VDDSHV5 /  
VDDSHV5  
O
rgmii1_rd2  
mmc0_dat4  
mmc1_dat3  
uart1_rin  
I
I/O  
I/O  
I
mcasp0_axr1  
gpio2_19  
I/O  
I/O  
38  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_RXD3  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
N17  
L18  
M18  
N18  
L17  
K17  
K16  
K15  
gmii1_rxd3  
uart3_rxd  
0
I
I
I
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
rgmii1_rd3  
mmc0_dat5  
mmc1_dat2  
uart1_dtrn  
mcasp0_axr0  
gpio2_18  
I/O  
I/O  
O
I/O  
I/O  
O
MII1_TXD0  
MII1_TXD1  
MII1_TXD2  
gmii1_txd0  
rmii1_txd0  
rgmii1_td0  
mcasp1_axr2  
mcasp1_aclkr  
eQEP0B_in  
mmc1_clk  
gpio0_28  
L
L
L
L
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
O
O
I/O  
I/O  
I
I/O  
I/O  
O
gmii1_txd1  
rmii1_txd1  
rgmii1_td1  
mcasp1_fsr  
mcasp1_axr1  
eQEP0A_in  
mmc1_cmd  
gpio0_21  
VDDSHV5 /  
VDDSHV5  
O
O
I/O  
I/O  
I
I/O  
I/O  
O
gmii1_txd2  
dcan0_rx  
VDDSHV5 /  
VDDSHV5  
I
rgmii1_td2  
uart4_txd  
O
O
mcasp1_axr0  
mmc2_dat2  
I/O  
I/O  
I/O  
I/O  
mcasp0_ahclkx  
gpio0_17  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
39  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_TXD3  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
M17  
G17  
G19  
G18  
J18  
gmii1_txd3  
dcan0_tx  
0
O
O
O
I
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
rgmii1_td3  
uart4_rxd  
mcasp1_fsx  
mmc2_dat1  
mcasp0_fsr  
gpio0_16  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
I
G18  
G17  
G16  
MMC0_CMD  
MMC0_CLK  
MMC0_DAT0  
mmc0_cmd  
gpmc_a25  
uart3_rtsn  
uart2_txd  
H
H
H
H
H
H
VDDSHV4 /  
VDDSHV4  
LVCMOS  
LVCMOS  
LVCMOS  
dcan1_rx  
pr1_pru0_pru_r30_13  
pr1_pru0_pru_r31_13  
gpio2_31  
O
I
I/O  
I/O  
O
I
mmc0_clk  
VDDSHV4 /  
VDDSHV4  
gpmc_a24  
uart3_ctsn  
uart2_rxd  
I
dcan1_tx  
O
O
I
pr1_pru0_pru_r30_12  
pr1_pru0_pru_r31_12  
gpio2_30  
I/O  
I/O  
O
O
O
I
mmc0_dat0  
VDDSHV4 /  
VDDSHV4  
gpmc_a23  
uart5_rtsn  
uart3_txd  
uart1_rin  
pr1_pru0_pru_r30_11  
pr1_pru0_pru_r31_11  
gpio2_29  
O
I
I/O  
40  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MMC0_DAT1  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
H17  
H18  
H19  
G15  
F18  
F17  
mmc0_dat1  
gpmc_a22  
uart5_ctsn  
uart3_rxd  
0
I/O  
H
H
7
7
7
VDDSHV4 /  
VDDSHV4  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
O
I
I
uart1_dtrn  
O
O
I
pr1_pru0_pru_r30_10  
pr1_pru0_pru_r31_10  
gpio2_28  
I/O  
I/O  
O
O
I/O  
I
MMC0_DAT2  
mmc0_dat2  
H
H
VDDSHV4 /  
VDDSHV4  
LVCMOS  
gpmc_a21  
uart4_rtsn  
timer6  
uart1_dsrn  
pr1_pru0_pru_r30_9  
pr1_pru0_pru_r31_9  
gpio2_27  
O
I
I/O  
I/O  
O
I
MMC0_DAT3  
mmc0_dat3  
H
H
VDDSHV4 /  
VDDSHV4  
LVCMOS  
gpmc_a20  
uart4_ctsn  
timer5  
I/O  
I
uart1_dcdn  
pr1_pru0_pru_r30_8  
pr1_pru0_pru_r31_8  
gpio2_26  
O
I
I/O  
O
C7  
C6  
PMIC_POWER_EN  
PWRONRSTn  
PMIC_POWER_EN  
H
1
0
VDDS_RTC /  
VDDS_RTC  
NA  
NA  
LVCMOS  
LVCMOS  
Analog  
E15  
B6  
B15  
A3  
porz  
0
0
I
Z
Z
0
VDDSHV6 /  
Yes  
NA  
NA  
NA  
6
NA  
VDDSHV6 (12)  
(3)  
RESERVED  
testout  
O
NA  
L
NA  
L
NA  
7
VDDSHV6 /  
VDDSHV6  
NA  
K18  
H18  
RMII1_REF_CLK  
rmii1_refclk  
0
1
2
3
4
5
6
7
0
I/O  
I
VDDSHV5 /  
VDDSHV5  
Yes  
PU/PD  
LVCMOS  
xdma_event_intr2  
spi1_cs0  
I/O  
O
uart5_txd  
mcasp1_axr3  
mmc0_pow  
I/O  
O
mcasp1_ahclkx  
gpio0_29  
I/O  
I/O  
I
A7  
B4  
RTC_KALDO_ENn  
ENZ_KALDO_1P8V  
Z
Z
0
VDDS_RTC /  
VDDS_RTC  
NA  
NA  
NA  
Analog  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
41  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
RTC_PWRONRSTn  
RTC_XTALIN  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
LVCMOS  
STATE [6](25)  
B7  
B5  
RTC_PORz  
OSC1_IN  
0
I
Z
Z
0
0
0
7
VDDS_RTC /  
VDDS_RTC  
Yes  
Yes  
NA  
NA  
NA  
(1)  
A6  
A6  
0
0
I
H
H
VDDS_RTC /  
VDDS_RTC  
NA  
PU  
NA  
LVCMOS  
A5  
A4  
RTC_XTALOUT  
SPI0_SCLK  
OSC1_OUT  
O
Z (23)  
Z
Z (23)  
H
VDDS_RTC /  
VDDS_RTC  
NA (15)  
6
LVCMOS  
A18  
A17  
spi0_sclk  
uart2_rxd  
I2C2_SDA  
ehrpwm0A  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
I
VDDSHV6 /  
VDDSHV6  
Yes  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
I/OD  
O
pr1_uart0_cts_n  
pr1_edio_sof  
EMU2  
I
O
I/O  
I/O  
I/O  
I
gpio0_2  
A17  
B16  
B18  
A16  
C15  
B17  
SPI0_CS0  
SPI0_CS1  
SPI0_D0  
spi0_cs0  
Z
Z
Z
H
H
H
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
6
6
6
LVCMOS  
LVCMOS  
LVCMOS  
mmc2_sdwp  
I2C1_SCL  
I/OD  
I
ehrpwm0_synci  
pr1_uart0_txd  
pr1_edio_data_in1  
pr1_edio_data_out1  
gpio0_5  
O
I
O
I/O  
I/O  
I
spi0_cs1  
VDDSHV6 /  
VDDSHV6  
uart3_rxd  
eCAP1_in_PWM1_out  
mmc0_pow  
xdma_event_intr2  
mmc0_sdcd  
EMU4  
I/O  
O
I
I
I/O  
I/O  
I/O  
O
gpio0_6  
spi0_d0  
VDDSHV6 /  
VDDSHV6  
uart2_txd  
I2C2_SCL  
I/OD  
O
ehrpwm0B  
pr1_uart0_rts_n  
pr1_edio_latch_in  
EMU3  
O
I
I/O  
I/O  
gpio0_3  
42  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SPI0_D1  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
B17  
B16  
spi0_d1  
0
I/O  
Z
H
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
mmc1_sdwp  
I2C1_SDA  
1
2
3
4
5
6
7
0
I
I/OD  
ehrpwm0_tripzone_input  
pr1_uart0_rxd  
pr1_edio_data_in0  
pr1_edio_data_out0  
gpio0_4  
I
I
I
O
I/O  
I
B14  
B13  
A14  
C14  
A13  
F17  
A12  
B11  
A11  
C11  
B10  
E16  
TCK  
TCK  
H
H
H
H
L
H
H
H
H
L
0
0
0
0
0
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
NA  
NA  
NA  
4
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
TDI  
TDI  
0
0
0
0
I
VDDSHV6 /  
VDDSHV6  
TDO  
TDO  
TMS  
nTRST  
O
I
VDDSHV6 /  
VDDSHV6  
TMS  
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
NA  
NA  
4
TRSTn  
UART0_TXD  
I
VDDSHV6 /  
VDDSHV6  
uart0_txd  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
Z
H
VDDSHV6 /  
VDDSHV6  
spi1_cs1  
I/O  
I
dcan0_rx  
I2C2_SCL  
I/OD  
I/O  
O
eCAP1_in_PWM1_out  
pr1_pru1_pru_r30_15  
pr1_pru1_pru_r31_15  
gpio1_11  
I
I/O  
I
F19  
E18  
UART0_CTSn  
uart0_ctsn  
Z
H
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
uart4_rxd  
I
dcan1_tx  
O
I2C1_SDA  
I/OD  
I/O  
I/O  
O
spi1_d0  
timer7  
pr1_edc_sync0_out  
gpio1_8  
I/O  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
43  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
UART0_RXD  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
E19  
E15  
uart0_rxd  
spi1_cs0  
dcan0_tx  
I2C2_SDA  
0
I
Z
H
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
6
7
I/O  
O
I/OD  
I/O  
O
eCAP2_in_PWM2_out  
pr1_pru1_pru_r30_14  
pr1_pru1_pru_r31_14  
gpio1_10  
I
I/O  
O
F18  
E17  
UART0_RTSn  
uart0_rtsn  
Z
H
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
uart4_txd  
O
dcan1_rx  
I
I2C1_SCL  
I/OD  
I/O  
I/O  
O
spi1_d1  
spi1_cs0  
pr1_edc_sync1_out  
gpio1_9  
I/O  
O
C19  
D18  
D19  
D15  
D16  
D17  
UART1_TXD  
UART1_RXD  
UART1_RTSn  
uart1_txd  
Z
Z
Z
H
H
H
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
4
4
4
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
mmc2_sdwp  
dcan1_rx  
I
I
I2C1_SCL  
I/OD  
O
pr1_uart0_txd  
pr1_pru0_pru_r31_16  
gpio0_15  
I
I/O  
I
uart1_rxd  
VDDSHV6 /  
VDDSHV6  
mmc1_sdwp  
dcan1_tx  
I
O
I2C1_SDA  
I/OD  
I
pr1_uart0_rxd  
pr1_pru1_pru_r31_16  
gpio0_14  
I
I/O  
O
uart1_rtsn  
VDDSHV6 /  
VDDSHV6  
timer5  
I/O  
I
dcan0_rx  
I2C2_SCL  
I/OD  
I/O  
O
spi1_cs1  
pr1_uart0_rts_n  
pr1_edc_latch1_in  
gpio0_13  
I
I/O  
44  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
UART1_CTSn  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
STATE [6](25)  
E17  
D18  
uart1_ctsn  
timer6  
0
I
Z
H
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
I/O  
O
dcan0_tx  
I2C2_SDA  
spi1_cs0  
I/OD  
I/O  
I
pr1_uart0_cts_n  
pr1_edc_latch0_in  
gpio0_12  
I
I/O  
A
T18  
T19  
U18  
M15  
P15  
N18  
USB0_CE  
USB0_CE  
Z
Z
Z
Z
Z
Z
0
0
0
VDDA*_USB0 / NA  
NA  
NA  
NA  
NA  
NA  
Analog  
Analog  
Analog  
VDDA*_USB0  
(26)  
USB0_VBUS  
USB0_DM  
USB0_VBUS  
USB0_DM  
0
0
A
A
VDDA*_USB0 / NA  
VDDA*_USB0  
(26)  
(13)  
(16)  
VDDA*_USB0 / Yes  
8
(16)  
VDDA*_USB0  
(26)  
G16  
V19  
F16  
P16  
USB0_DRVVBUS  
USB0_ID  
USB0_DRVVBUS  
gpio0_18  
0
7
0
O
L
Z
0(PD)  
Z
0
0
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
NA  
LVCMOS  
Analog  
I/O  
A
USB0_ID  
VDDA*_USB0 / NA  
NA  
VDDA*_USB0  
(26)  
(13)  
(16)  
U19  
NA  
NA  
NA  
NA  
N17  
P18  
P17  
T18  
R17  
USB0_DP  
USB1_CE  
USB1_ID  
USB0_DP  
USB1_CE  
USB1_ID  
0
0
0
0
0
A
A
A
A
A
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
VDDA*_USB0 / Yes  
8
NA  
NA  
NA  
NA  
NA  
Analog  
Analog  
Analog  
Analog  
Analog  
(16)  
VDDA*_USB0  
(26)  
NA /  
NA  
NA  
NA  
NA  
NA  
NA  
VDDA*_USB1  
(27)  
NA /  
VDDA*_USB1  
(27)  
USB1_VBUS  
USB1_DP  
USB1_VBUS  
USB1_DP  
NA /  
VDDA*_USB1  
(27)  
(14)  
(17)  
NA /  
Yes  
8
(17)  
VDDA*_USB1  
(27)  
NA  
NA  
F15  
R18  
USB1_DRVVBUS  
USB1_DM  
USB1_DRVVBUS  
gpio3_13  
0
7
0
O
L
Z
0(PD)  
Z
0
0
NA / VDDSHV6 Yes  
4
8
PU/PD  
NA  
LVCMOS  
Analog  
I/O  
A
(14)  
(17)  
USB1_DM  
NA /  
VDDA*_USB1  
Yes  
(17)  
(27)  
R17  
NA  
N16  
R16  
N15  
R15  
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
NA  
NA  
NA  
NA  
PWR  
PWR  
PWR  
PWR  
R18  
NA  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
45  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
I/O CELL [13]  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
NUMBER [1] NUMBER [1]  
STATE [6](25)  
D7  
D8  
VDDA_ADC  
VDDA_ADC  
VDDS  
NA  
PWR  
PWR  
D12, F16,  
M16, T6, T14 K13, N6, P9,  
P14  
E6, E14, F9, VDDS  
NA  
NA  
R8, R9, R11, P7, P8  
R12, R13  
VDDSHV1  
VDDSHV1  
PWR  
NA  
NA  
P10, P11  
P12, P13  
H14, J14  
VDDSHV2  
VDDSHV3  
VDDSHV4  
VDDSHV2  
VDDSHV3  
VDDSHV4  
NA  
NA  
NA  
PWR  
PWR  
PWR  
G15, H14,  
H15  
M14, M15,  
N15  
K14, L14  
E10, E11,  
VDDSHV5  
VDDSHV6  
VDDSHV5  
VDDSHV6  
NA  
NA  
PWR  
PWR  
E11, E12,  
E13, F14, P6, E12, E13,  
R7  
F14, G14, N5,  
P5, P6  
G5, H5, H6,  
K4, K5, M5,  
M6, N5  
E5, F5, G5,  
H5, J5, K5, L5  
VDDS_DDR  
VDDS_DDR  
VDDS_OSC  
NA  
PWR  
U10  
T8  
R11  
R10  
E7  
VDDS_OSC  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
VDDS_PLL_MPU  
VDDS_RTC  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
C5  
H16  
C6  
H15  
D7  
VDDS_PLL_MPU  
VDDS_RTC  
C10  
C12  
E9  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDD_CORE  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDD_CORE  
D10  
F9, F11, G9, F6, F7, G6,  
G11, H7, H8, G7, G10,  
H12, H13, J7, H11, J12, K6,  
J8, J12, J13, K8, K12, L6,  
K15, K16, L7, L7, L8, L9,  
L8, L12, L13, M11, M13,  
M7, M8, M12, N8, N9, N12,  
M13, N9,  
N13  
N11, P9, P11  
NA  
F10, F11,  
F12, F13,  
G13, H13,  
J13  
VDD_MPU  
VDD_MPU (30)  
NA  
PWR  
NA  
R5  
B9  
A2  
M5  
A9  
VDD_MPU_MON  
VPP  
VDD_MPU_MON (31)  
VPP  
NA  
NA  
0
A
PWR  
AP  
VREFN  
VREFN  
Z
Z
Z
0
0
VDDA_ADC /  
VDDA_ADC  
NA  
NA  
NA  
NA  
NA  
NA  
Analog  
Analog  
A9  
B9  
VREFP  
VREFP  
0
AP  
Z
VDDA_ADC /  
VDDA_ADC  
46  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4-2. Pin Attributes (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
[5]  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
NA  
I/O CELL [13]  
STATE [6](25)  
A1, A19, D10, A1, A18, F8, VSS  
VSS  
GND  
E7, E8, E9,  
G8, G9, G11,  
E10, F6, F7, G12, H6, H7,  
F8, F12, F13, H8, H9, H10,  
G8, G12, H9, H12, J6, J7,  
H10, H11, J5, J8, J9, J10,  
J6, J9, J11,  
J11, K7, K9,  
J14, J15, K8, K10, K11,  
K9, K11, K12, L10, L11, L12,  
L5, L6, L9,  
L13, M6, M7,  
L11, L14, L15, M8, M9, M10,  
M9, M10,  
M11, N8,  
M12, N7,  
N10, N11, V1,  
N12, P7, P8, V18  
P12, P13,  
P14, R10,  
T10, W1, W19  
D8  
E8  
VSSA_ADC  
VSSA_ADC  
VSSA_USB  
VSS_OSC (28)  
NA  
NA  
NA  
NA  
0
GND  
GND  
A
P16  
V11  
NA  
M14, N14  
V11  
VSSA_USB  
VSS_OSC  
VSS_RTC  
(29)  
A5  
VSS_RTC  
A
A16  
A10  
WARMRSTn  
nRESETIN_OUT  
I/OD  
0
0(PU) (11)  
0
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
4
4
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
(8)  
(4)  
(9)  
C15  
A15  
XDMA_EVENT_INTR0  
xdma_event_intr0  
timer4  
0
2
3
4
5
6
7
0
2
3
4
5
6
7
0
I
Z
VDDSHV6 /  
VDDSHV6  
I/O  
O
I/O  
I
clkout1  
spi1_cs1  
pr1_pru1_pru_r31_16  
EMU2  
I/O  
I/O  
I
gpio0_19  
B15  
D14  
XDMA_EVENT_INTR1  
xdma_event_intr1  
tclkin  
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
I
clkout2  
O
I/O  
I
timer7  
pr1_pru0_pru_r31_16  
EMU3  
I/O  
I/O  
I
gpio0_20  
(2)  
W11  
W12  
V10  
U11  
XTALIN  
OSC0_IN  
Z
Z
0
0
VDDS_OSC /  
VDDS_OSC  
Yes  
NA  
NA  
PD  
LVCMOS  
LVCMOS  
(24)  
(24)  
XTALOUT  
OSC0_OUT  
0
O
VDDS_OSC /  
VDDS_OSC  
NA (15)  
NA  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
47  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
(1) An internal 10 kohm pullup is turned on when the oscillator is disabled. The oscillator is disabled by default after power is applied.  
(2) An internal 15 kohm pulldown is turned on when the oscillator is disabled. The oscillator is enabled by default after power is applied.  
(3) Do not connect anything to this terminal.  
(4) If sysboot[5] is low on the rising edge of PWRONRSTn, this terminal has an internal pulldown turned on after reset is released. If sysboot[5] is high on the rising edge or PWRONRSTn,  
this terminal will initially be driven low after reset is released then it begins to toggle at the same frequency of the XTALIN terminal.  
(5) LCD_DATA[15:0] terminals are respectively SYSBOOT[15:0] inputs, latched on the rising edge of PWRONRSTn.  
(6) Mode1 and Mode2 signal assignments for this terminal are only available with silicon revision 2.0 or newer devices.  
(7) Mode2 signal assignment for this terminal is only available with silicon revision 2.0 or newer devices.  
(8) Refer to the External Warm Reset section of the AM335x Technical Reference Manual for more information related to the operation of this terminal.  
(9) Reset Release Mode = 7 if sysboot[5] is low. Mode = 3 if sysboot[5] is high.  
(10) Silicon revision 1.0 devices only provide the MMC2_DAT7 signal when Mode3 is selected. Silicon revision 2.0 and newer devices implement another level of pin multiplexing which  
provides the original MMC2_DAT7 signal or RMII2_CRS_DV signal when Mode3 is selected. This new level of of pin multiplexing is selected with bit zero of the SMA2 register. For more  
details refer to Section 1.2 of the AM335x Technical Reference Manual.  
(11) The 0(PU) indicates that this terminal is initially low based on the description in the AM335x Technical Reference Manual. However, it is also has a weak internal pullup applied.  
(12) The input voltage thresholds for this input are not a function of VDDSHV6. Please refer to the DC Electrical Characteristics section for details related to electrical parameters associated  
with this input terminal.  
(13) The internal USB PHY can be configured to multiplex the UART2_TX or UART2_RX signals to this terminal. For more details refer to USB GPIO Details section of the AM335x Technical  
Reference Manual.  
(14) The internal USB PHY can be configured to multiplex the UART3_TX or UART3_RX signals to this terminal. For more details refer to USB GPIO Details section of the AM335x Technical  
Reference Manual.  
(15) This output should only be used to source the recommended crystal circuit.  
(16) This parameter only applies when this USB PHY terminal is operating in UART2 mode.  
(17) This parameter only applies when this USB PHY terminal is operating in UART3 mode.  
(18) This terminal is a analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).  
(19) This terminal is a analog passive signal that connects to an external 49.9 ohm 1%, 20mW reference resistor which is used to calibrate the DDR input/output buffers.  
(20) This terminal is analog input that may also be configured as an open-drain output.  
(21) This terminal is analog input that may also be configured as an open-source or open-drain output.  
(22) This terminal is analog input that may also be configured as an open-source output.  
(23) This terminal is high-Z when the oscillator is disabled. This terminal is driven high if RTC_XTALIN is less than VIL, driven low if RTC_XTALIN is greater than VIH, and driven to a  
unknown value if RTC_XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is disabled by default after power is applied.  
(24) This terminal is high-Z when the oscillator is disabled. This terminal is driven high if XTALIN is less than VIL, driven low if XTALIN is greater than VIH, and driven to a unknown value if  
XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is enabled by default after power is applied.  
(25) For all pins with content in the Ball Reset State column of this table, the terminal is not defined until all the supplies are ramped.  
(26) This terminal requires two power supplies, VDDA3p3v_USB0 and VDDA1p8v_USB0. The "*" character in the power supply name is a wild card that represents "3p3v" and "1p8v".  
(27) This terminal requires two power supplies, VDDA3p3v_USB1 and VDDA1p8v_USB1. The "*" character in the power supply name is a wild card that represents "3p3v" and "1p8v".  
(28) Refer to 6.2.2 for additional details about VSS_OSC.  
(29) Refer to 6.2.2 for additional details about VSS_RTC.  
(30) This power rail is connected to VDD_CORE in the ZCE package.  
(31) This terminal provides a Kelvin connection to VDD_MPU. It can be connected to the power supply feedback input to provide remote sensing which compensates for voltage drop in the  
48  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
PCB power distribution network and package. When the Kelvin connection is not used it should be connected to the same power source as VDD_MPU.  
版权 © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
49  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3 Signal Descriptions  
The AM335x device contains many peripheral interfaces. In order to reduce package size and lower  
overall system cost while maintaining maximum functionality, many of the AM335x terminals can multiplex  
up to eight signal functions. Although there are many combinations of pin multiplexing that are possible,  
only a certain number of sets, called I/O Sets, are valid due to timing limitations. These valid I/O Sets were  
carefully chosen to provide many possible application scenarios for the user.  
Texas Instruments has developed a Windows-based application called Pin Mux Utility that helps a system  
designer select the appropriate pin-multiplexing configuration for their AM335x-based product design. The  
Pin Mux Utility provides a way to select valid I/O Sets of specific peripheral interfaces to ensure the pin-  
multiplexing configuration selected for a design only uses valid I/O Sets supported by the AM335x device.  
50  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
(1) SIGNAL NAME: The signal name  
(2) DESCRIPTION: Description of the signal  
(3) TYPE: Ball type for this specific function:  
I = Input  
O = Output  
I/O = Input/Output  
D = Open drain  
DS = Differential  
A = Analog  
(4) BALL: Package ball location  
Table 4-3. ADC Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
Analog Input/Output  
ZCE BALL [4]  
B8  
ZCZ BALL [4]  
B6  
AIN0  
A
A
A
A
A
A
A
A
AIN1  
Analog Input/Output  
Analog Input/Output  
Analog Input/Output  
Analog Input/Output  
Analog Input  
A11  
A8  
C7  
B7  
A7  
C8  
B8  
A8  
C9  
A9  
B9  
AIN2  
AIN3  
B11  
C8  
AIN4  
AIN5  
B12  
A10  
A12  
B9  
AIN6  
Analog Input  
AIN7  
Analog Input  
VREFN  
VREFP  
Analog Negative Reference Input  
Analog Positive Reference Input  
AP  
AP  
A9  
Table 4-4. Debug Subsystem Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
A15  
ZCZ BALL [4]  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
nTRST  
TCK  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
JTAG TEST RESET (ACTIVE LOW)  
JTAG TEST CLOCK  
I/O  
I/O  
I/O  
I/O  
I/O  
I
C14  
D14  
B14  
A18, C15  
B15, B18  
B16, U17  
A13  
A15, A17, C13  
B17, D13, D14  
A14, C15, T13  
B10  
I
B14  
A12  
TDI  
JTAG TEST DATA INPUT  
JTAG TEST DATA OUTPUT  
JTAG TEST MODE SELECT  
I
B13  
B11  
TDO  
O
I
A14  
A11  
TMS  
C14  
C11  
Table 4-5. LCD Controller Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
lcd_ac_bias_en  
lcd_data0  
LCD AC bias enable chip select  
LCD data bus  
O
W7  
U1  
U2  
U5  
V5  
R6  
R1  
R2  
U3  
U4  
V2  
V3  
V4  
T5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
lcd_data1  
LCD data bus  
lcd_data10  
lcd_data11  
lcd_data12  
lcd_data13  
lcd_data14  
lcd_data15  
lcd_data16  
LCD data bus  
LCD data bus  
LCD data bus  
V6  
LCD data bus  
U6  
W6  
V7  
LCD data bus  
LCD data bus  
LCD data bus  
V17  
U13  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
51  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
ZCZ BALL [4]  
Table 4-5. LCD Controller Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
lcd_data17  
DESCRIPTION [2]  
ZCE BALL [4]  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
O
W17  
V13  
lcd_data18  
lcd_data19  
lcd_data2  
lcd_data20  
lcd_data21  
lcd_data22  
lcd_data23  
lcd_data3  
lcd_data4  
lcd_data5  
lcd_data6  
lcd_data7  
lcd_data8  
lcd_data9  
lcd_hsync  
lcd_memory_clk  
lcd_pclk  
O
T13  
U13  
V1  
R12  
T12  
R3  
O
I/O  
O
U12  
T12  
W16  
V15  
V2  
U12  
T11  
T10  
U10  
R4  
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
W2  
W3  
V3  
T1  
T2  
T3  
U3  
T4  
V4  
U1  
W4  
T7  
U2  
LCD Horizontal Sync  
LCD MCLK  
R5  
O
L19, V16  
W5  
U7  
J17, V12  
V5  
LCD pixel clock  
LCD Vertical Sync  
O
lcd_vsync  
O
U5  
52  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.1 External Memory Interfaces  
Table 4-6. External Memory Interfaces/DDR Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
F3  
ZCZ BALL [4]  
F3  
ddr_a0  
ddr_a1  
ddr_a10  
ddr_a11  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_a2  
ddr_a3  
ddr_a4  
ddr_a5  
ddr_a6  
ddr_a7  
ddr_a8  
ddr_a9  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
O
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
J2  
H1  
F4  
F2  
E3  
H3  
H4  
D3  
E4  
C3  
C2  
B1  
D5  
E2  
D4  
C1  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
E2  
G4  
F4  
H1  
H3  
E3  
D1  
B3  
E5  
A2  
B1  
D2  
C3  
B2  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
DDR SDRAM ROW/COLUMN ADDRESS  
OUTPUT  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
DDR SDRAM BANK ADDRESS OUTPUT  
DDR SDRAM BANK ADDRESS OUTPUT  
DDR SDRAM BANK ADDRESS OUTPUT  
O
O
O
O
A3  
E1  
B4  
F1  
C4  
E1  
B3  
F1  
DDR SDRAM COLUMN ADDRESS STROBE  
OUTPUT (ACTIVE LOW)  
ddr_ck  
DDR SDRAM CLOCK OUTPUT (Differential+)  
DDR SDRAM CLOCK ENABLE OUTPUT  
DDR SDRAM CHIP SELECT OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
O
C2  
G3  
H2  
N4  
P4  
M3  
M4  
M2  
M1  
N2  
N1  
P2  
P1  
D2  
G3  
H2  
M3  
M4  
K2  
K3  
K4  
L3  
ddr_cke  
ddr_csn0  
ddr_d0  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ddr_d1  
ddr_d10  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_d2  
L4  
M1  
N1  
N2  
ddr_d3  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
53  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
ZCZ BALL [4]  
Table 4-6. External Memory Interfaces/DDR Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ddr_d4  
ddr_d5  
ddr_d6  
ddr_d7  
ddr_d8  
ddr_d9  
ddr_dqm0  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
DDR SDRAM DATA INPUT/OUTPUT  
I/O  
P3  
N3  
I/O  
I/O  
I/O  
I/O  
I/O  
O
T1  
T2  
R3  
K2  
K1  
N3  
N4  
P3  
P4  
J1  
K1  
M2  
DDR WRITE ENABLE / DATA MASK FOR  
DATA[7:0]  
ddr_dqm1  
ddr_dqs0  
ddr_dqs1  
DDR WRITE ENABLE / DATA MASK FOR  
DATA[15:8]  
O
K3  
R1  
L1  
R2  
L2  
J2  
P1  
L1  
P2  
L2  
DDR DATA STROBE FOR DATA[7:0]  
(Differential+)  
I/O  
I/O  
I/O  
I/O  
DDR DATA STROBE FOR DATA[15:8]  
(Differential+)  
ddr_dqsn0  
ddr_dqsn1  
DDR DATA STROBE FOR DATA[7:0]  
(Differential-)  
DDR DATA STROBE FOR DATA[15:8]  
(Differential-)  
ddr_nck  
ddr_odt  
ddr_rasn  
DDR SDRAM CLOCK OUTPUT (Differential-)  
ODT OUTPUT  
O
O
O
C1  
G1  
F2  
D1  
G1  
G4  
DDR SDRAM ROW ADDRESS STROBE  
OUTPUT (ACTIVE LOW)  
ddr_resetn  
ddr_vref  
ddr_vtp  
DDR3/DDR3L RESET OUTPUT (ACTIVE LOW)  
Voltage Reference Input  
O
A
I
G2  
H4  
J1  
G2  
J4  
VTP Compensation Resistor  
J3  
ddr_wen  
DDR SDRAM WRITE ENABLE OUTPUT  
(ACTIVE LOW)  
O
A4  
B2  
Table 4-7. External Memory Interfaces/General-Purpose Memory Controller Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
U1  
ZCZ BALL [4]  
gpmc_a0  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
R1, R13  
R2, U5, V14  
T16, V5  
R6, V17  
U1  
gpmc_a1  
U2, U7  
W5  
gpmc_a10  
gpmc_a11  
gpmc_a12  
gpmc_a13  
gpmc_a14  
gpmc_a15  
gpmc_a16  
gpmc_a17  
gpmc_a18  
gpmc_a19  
gpmc_a2  
W7  
V4  
W4  
U2  
U5  
U3  
V5  
U4  
V6  
R13, V2  
V14, V3  
U14, V4  
T14, T5  
R3, R5, U14  
F17, R14  
F18, V15  
G15, U15  
G16, T15  
G17, V16  
U6  
W6  
V7  
T7, V1  
H19  
H18  
H17  
G18  
G19  
gpmc_a20  
gpmc_a21  
gpmc_a22  
gpmc_a23  
gpmc_a24  
54  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Table 4-7. External Memory Interfaces/General-Purpose Memory Controller Signals  
Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpmc_a25  
gpmc_a26  
gpmc_a27  
gpmc_a3  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
O
O
O
O
O
O
O
O
O
O
G17  
G18, U16  
T16  
NA  
NA  
V17  
U17, V2  
W2  
R4, T13, T14  
R14, T1  
T2, V15  
T3, U15  
T15, T4  
U5, V16  
R5, U16  
U7  
gpmc_a4  
gpmc_a5  
W3  
gpmc_a6  
V3  
gpmc_a7  
U3  
gpmc_a8  
U7  
gpmc_a9  
T7  
gpmc_ad0  
gpmc_ad1  
gpmc_ad10  
gpmc_ad11  
gpmc_ad12  
gpmc_ad13  
gpmc_ad14  
gpmc_ad15  
gpmc_ad2  
gpmc_ad3  
gpmc_ad4  
gpmc_ad5  
gpmc_ad6  
gpmc_ad7  
gpmc_ad8  
gpmc_ad9  
gpmc_advn_ale  
gpmc_be0n_cle  
gpmc_be1n  
gpmc_clk  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address Valid / Address Latch Enable  
GPMC Byte Enable 0 / Command Latch Enable  
GPMC Byte Enable 1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
W10  
V9  
V7  
T12  
U12  
U13  
T13  
W17  
V17  
V12  
W13  
V13  
W14  
U14  
W15  
V15  
W16  
V10  
V8  
T11  
U12  
T12  
R12  
V13  
U13  
R8  
T8  
U8  
V8  
R9  
T9  
U10  
T10  
R7  
O
T6  
O
U15, V18  
V14, V16  
W8  
U18, V9  
U9, V12  
V6  
GPMC Clock  
I/O  
O
gpmc_csn0  
gpmc_csn1  
gpmc_csn2  
gpmc_csn3  
gpmc_csn4  
gpmc_csn5  
gpmc_csn6  
gpmc_dir  
GPMC Chip Select  
GPMC Chip Select  
O
V14  
U15  
U17  
R15  
W18  
V18  
V18  
W9  
U9  
GPMC Chip Select  
O
V9  
GPMC Chip Select  
O
T13  
GPMC Chip Select  
O
T17  
GPMC Chip Select  
O
U17  
GPMC Chip Select  
O
U18  
GPMC Data Direction  
GPMC Output / Read Enable  
GPMC Wait 0  
O
U18  
gpmc_oen_ren  
gpmc_wait0  
gpmc_wait1  
gpmc_wen  
gpmc_wpn  
O
T7  
I
R15  
V16  
U8  
T17  
GPMC Wait 1  
I
V12  
GPMC Write Enable  
O
U6  
GPMC Write Protect  
O
W18  
U17  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
55  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.2 General-Purpose IOs  
Table 4-8. General-Purpose IOs/GPIO0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
P17  
ZCZ BALL [4]  
M17  
gpio0_0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
gpio0_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
R19  
W6  
M18  
V4  
gpio0_10  
gpio0_11  
gpio0_12  
gpio0_13  
gpio0_14  
gpio0_15  
gpio0_16  
gpio0_17  
gpio0_18  
gpio0_19  
gpio0_2  
V7  
T5  
E17  
D19  
D18  
C19  
M17  
N18  
G16  
C15  
A18  
B15  
M18  
V15  
W16  
T12  
U12  
L18  
K18  
B18  
R15  
W18  
B17  
A17  
B16  
E18  
V6  
D18  
D17  
D16  
D15  
J18  
K15  
F16  
A15  
A17  
D14  
K16  
U10  
T10  
T11  
U12  
K17  
H18  
B17  
T17  
U17  
B16  
A16  
C15  
C18  
V2  
gpio0_20  
gpio0_21  
gpio0_22  
gpio0_23  
gpio0_26  
gpio0_27  
gpio0_28  
gpio0_29  
gpio0_3  
gpio0_30  
gpio0_31  
gpio0_4  
gpio0_5  
gpio0_6  
gpio0_7  
gpio0_8  
gpio0_9  
U6  
V3  
Table 4-9. General-Purpose IOs/GPIO1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio1_0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
W10  
V9  
U7  
gpio1_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V7  
gpio1_10  
gpio1_11  
gpio1_12  
gpio1_13  
gpio1_14  
gpio1_15  
gpio1_16  
gpio1_17  
gpio1_18  
E19  
F17  
U13  
T13  
W17  
V17  
NA  
E15  
E16  
T12  
R12  
V13  
U13  
R13  
V14  
U14  
NA  
NA  
56  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Table 4-9. General-Purpose IOs/GPIO1 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
T14  
gpio1_19  
gpio1_2  
gpio1_20  
gpio1_21  
gpio1_22  
gpio1_23  
gpio1_24  
gpio1_25  
gpio1_26  
gpio1_27  
gpio1_28  
gpio1_29  
gpio1_3  
gpio1_30  
gpio1_31  
gpio1_4  
gpio1_5  
gpio1_6  
gpio1_7  
gpio1_8  
gpio1_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
NA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V12  
NA  
R8  
R14  
V15  
U15  
T15  
V16  
U16  
T16  
V17  
U18  
V6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
V18  
W8  
W13  
V14  
U15  
V13  
W14  
U14  
W15  
F19  
F18  
T8  
U9  
V9  
U8  
V8  
R9  
T9  
E18  
E17  
Table 4-10. General-Purpose IOs/GPIO2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio2_0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
U17  
V16  
W2  
W3  
V3  
T13  
V12  
T1  
gpio2_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
gpio2_10  
gpio2_11  
gpio2_12  
gpio2_13  
gpio2_14  
gpio2_15  
gpio2_16  
gpio2_17  
gpio2_18  
gpio2_19  
gpio2_2  
T2  
T3  
U3  
T4  
V4  
U1  
W4  
U5  
U2  
U3  
V5  
U4  
N17  
N16  
V10  
P19  
P18  
U7  
L17  
L16  
R7  
gpio2_20  
gpio2_21  
gpio2_22  
gpio2_23  
gpio2_24  
gpio2_25  
gpio2_26  
gpio2_27  
gpio2_28  
L15  
M16  
U5  
T7  
R5  
W5  
W7  
H19  
H18  
H17  
V5  
R6  
F17  
F18  
G15  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
57  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
ZCZ BALL [4]  
Table 4-10. General-Purpose IOs/GPIO2 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
gpio2_29  
gpio2_3  
gpio2_30  
gpio2_31  
gpio2_4  
gpio2_5  
gpio2_6  
gpio2_7  
gpio2_8  
gpio2_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
G18  
G16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W9  
G19  
G17  
U8  
T7  
G17  
G18  
U6  
T6  
V8  
U1  
R1  
R2  
R3  
R4  
U2  
V1  
V2  
Table 4-11. General-Purpose IOs/GPIO3 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio3_0  
gpio3_1  
gpio3_10  
gpio3_13  
gpio3_14  
gpio3_15  
gpio3_16  
gpio3_17  
gpio3_18  
gpio3_19  
gpio3_2  
gpio3_20  
gpio3_21  
gpio3_3  
gpio3_4  
gpio3_5  
gpio3_6  
gpio3_7  
gpio3_8  
gpio3_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
J19  
J18  
M19  
NA  
H16  
H17  
L18  
F15  
A13  
B13  
D12  
C12  
B12  
C13  
J15  
D13  
A14  
J16  
J17  
C17  
C16  
C14  
B14  
K18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NA  
NA  
NA  
NA  
NA  
NA  
K19  
NA  
NA  
K17  
L19  
C18  
B19  
A15  
D14  
N19  
58  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.3 Miscellaneous  
Table 4-12. Miscellaneous/Miscellaneous Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
C15  
ZCZ BALL [4]  
A15  
clkout1  
Clock out1  
Clock out2  
O
clkout2  
O
I
B15  
A7  
D14  
B4  
ENZ_KALDO_1P8V  
Active low enable input for internal  
CAP_VDD_RTC voltage regulator  
EXT_WAKEUP  
nNMI  
EXT_WAKEUP input  
I
B5  
C5  
External Interrupt to ARM Cortex-A8 core  
Active low Warm Reset  
I
C17  
A16  
W11  
W12  
A6  
B18  
A10  
V10  
U11  
A6  
nRESETIN_OUT  
OSC0_IN  
I/OD  
High frequency oscillator input  
High frequency oscillator output  
I
OSC0_OUT  
OSC1_IN  
O
I
Low frequency (32.768 kHz) Real Time Clock  
oscillator input  
OSC1_OUT  
Low frequency (32.768 kHz) Real Time Clock  
oscillator output  
O
A5  
A4  
PMIC_POWER_EN  
porz  
PMIC_POWER_EN output  
Active low Power on Reset  
Active low RTC reset input  
Timer Clock In  
O
I
C7  
C6  
E15  
B15  
RTC_PORz  
I
B7  
B5  
tclkin  
I
B15  
D14  
xdma_event_intr0  
xdma_event_intr1  
xdma_event_intr2  
External DMA Event or Interrupt 0  
External DMA Event or Interrupt 1  
External DMA Event or Interrupt 2  
I
C15  
A15  
I
B15  
D14  
I
B16, E18, K18  
C15, C18, H18  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
59  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.3.1 eCAP  
Table 4-13. eCAP/eCAP0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
eCAP0_in_PWM0_out  
DESCRIPTION [2]  
ZCE BALL [4]  
E18  
ZCZ BALL [4]  
C18  
Enhanced Capture 0 input or Auxiliary PWM0  
output  
I/O  
Table 4-14. eCAP/eCAP1 Signals Description  
TYPE  
SIGNAL NAME [1]  
eCAP1_in_PWM1_out  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
Enhanced Capture 1 input or Auxiliary PWM1  
output  
I/O  
B16, B19, F17  
C15, C16, E16  
Table 4-15. eCAP/eCAP2 Signals Description  
TYPE  
SIGNAL NAME [1]  
eCAP2_in_PWM2_out  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
Enhanced Capture 2 input or Auxiliary PWM2  
output  
I/O  
C18, E19  
C12, C17, E15  
60  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.3.2 eHRPWM  
Table 4-16. eHRPWM/eHRPWM0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eHRPWM0 A output.  
ZCE BALL [4]  
A18  
ZCZ BALL [4]  
ehrpwm0A  
O
A13, A17  
B13, B17  
A16, C12  
ehrpwm0B  
eHRPWM0 B output.  
O
I
B18  
A17  
ehrpwm0_synci  
Sync input to eHRPWM0 module from an  
external pin  
ehrpwm0_synco  
Sync Output from eHRPWM0 module to an  
external pin  
O
I
U12, V2, W4  
B17  
R4, U12, U2, V14  
B16, D12  
ehrpwm0_tripzone_input  
eHRPWM0 trip zone input  
Table 4-17. eHRPWM/eHRPWM1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eHRPWM1 A output.  
ZCE BALL [4]  
ZCZ BALL [4]  
ehrpwm1A  
O
O
I
U5  
V5  
V4  
U14, U3  
T14, U4  
R13, U1  
ehrpwm1B  
eHRPWM1 B output.  
ehrpwm1_tripzone_input  
eHRPWM1 trip zone input  
Table 4-18. eHRPWM/eHRPWM2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eHRPWM2 A output.  
ZCE BALL [4]  
ZCZ BALL [4]  
ehrpwm2A  
O
O
I
U1, V15  
U2, W16  
T12, V1  
R1, U10  
R2, T10  
R3, T11  
ehrpwm2B  
eHRPWM2 B output.  
ehrpwm2_tripzone_input  
eHRPWM2 trip zone input  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
61  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.3.3 eQEP  
Table 4-19. eQEP/eQEP0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
eQEP0A_in  
DESCRIPTION [2]  
eQEP0A quadrature input  
ZCE BALL [4]  
M18  
ZCZ BALL [4]  
I
I
B12, K16  
C13, K17  
D13, J16  
A14, L15  
eQEP0B_in  
eQEP0B quadrature input  
eQEP0 index.  
L18  
K17  
P19  
eQEP0_index  
eQEP0_strobe  
I/O  
I/O  
eQEP0 strobe.  
Table 4-20. eQEP/eQEP1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
eQEP1A_in  
eQEP1A quadrature input  
eQEP1B quadrature input  
eQEP1 index.  
I
V6  
U6  
W6  
V7  
R14, V2  
V15, V3  
U15, V4  
T15, T5  
eQEP1B_in  
I
eQEP1_index  
eQEP1_strobe  
I/O  
I/O  
eQEP1 strobe.  
Table 4-21. eQEP/eQEP2 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
eQEP2A_in  
eQEP2A quadrature input  
eQEP2B quadrature input  
eQEP2 index.  
I
U13, W2  
T13, W3  
V3, W17  
U3, V17  
T1, T12  
R12, T2  
T3, V13  
T4, U13  
eQEP2B_in  
I
eQEP2_index  
eQEP2_strobe  
I/O  
I/O  
eQEP2 strobe.  
62  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.3.4 Timer  
Table 4-22. Timer/Timer4 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
timer4  
timer5  
timer6  
timer7  
Timer trigger event / PWM out  
I/O  
C15, C18, K17,  
V10  
A15, C17, J16,  
R7  
Table 4-23. Timer/Timer5 Signals Description  
TYPE  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
Timer trigger event / PWM out  
I/O  
D19, H19, R19,  
V8  
D17, F17, M18,  
T6  
Table 4-24. Timer/Timer6 Signals Description  
TYPE  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
Timer trigger event / PWM out  
I/O  
E17, H18, P17,  
U8  
D18, F18, M17,  
U6  
Table 4-25. Timer/Timer7 Signals Description  
TYPE  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
Timer trigger event / PWM out  
I/O  
B15, B19, F19,  
W9  
C16, D14, E18,  
T7  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
63  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.4 PRU-ICSS  
Table 4-26. PRU-ICSS/eCAP Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_ecap0_ecap_capin_apwm_o  
Enhanced capture input or Auxiliary PWM out  
I/O  
E18, V17  
C18, U13  
Table 4-27. PRU-ICSS/ECAT Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_edc_latch0_in  
pr1_edc_latch1_in  
pr1_edc_sync0_out  
pr1_edc_sync1_out  
pr1_edio_data_in0  
pr1_edio_data_in1  
pr1_edio_data_in2  
pr1_edio_data_in3  
pr1_edio_data_in4  
pr1_edio_data_in5  
pr1_edio_data_in6  
pr1_edio_data_in7  
pr1_edio_data_out0  
pr1_edio_data_out1  
pr1_edio_data_out2  
pr1_edio_data_out3  
pr1_edio_data_out4  
pr1_edio_data_out5  
pr1_edio_data_out6  
pr1_edio_data_out7  
pr1_edio_latch_in  
pr1_edio_sof  
Data In  
I
E17  
D18  
D17  
E18  
E17  
B16  
A16  
U5  
Data In  
I
D19  
F19  
Data Out  
Data Out  
Data In  
O
O
I
F18  
B17  
Data In  
I
A17  
Data In  
I
U7  
Data In  
I
T7  
R5  
Data In  
I
W5  
V5  
Data In  
I
W7  
R6  
Data In  
I
V14, V3  
U15, U3  
B17  
T3, U9  
T4, V9  
B16  
A16  
U5  
Data In  
I
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Latch In  
Start of Frame  
O
O
O
O
O
O
O
O
I
A17  
U7  
T7  
R5  
W5  
V5  
W7  
R6  
V14, V3  
U15, U3  
B18  
T3, U9  
T4, V9  
B17  
A17  
O
A18  
Table 4-28. PRU-ICSS/MDIO Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_mdio_data  
pr1_mdio_mdclk  
MDIO Data  
MDIO Clk  
I/O  
O
U17  
V16  
T13  
V12  
Table 4-29. PRU-ICSS/MII0 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_mii0_col  
pr1_mii0_crs  
pr1_mii0_rxd0  
pr1_mii0_rxd1  
pr1_mii0_rxd2  
pr1_mii0_rxd3  
pr1_mii0_rxdv  
pr1_mii0_rxer  
MII Collision Detect  
I
I
I
I
I
I
I
I
W16  
U17, W5  
V5  
T10  
T13, V5  
U4  
MII Carrier Sense  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
U5  
U3  
W4  
U2  
V4  
U1  
V7  
T5  
U6  
V3  
64  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Table 4-29. PRU-ICSS/MII0 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
V2  
pr1_mii0_rxlink  
pr1_mii0_txd0  
pr1_mii0_txd1  
pr1_mii0_txd2  
pr1_mii0_txd3  
pr1_mii0_txen  
pr1_mii_mr0_clk  
pr1_mii_mt0_clk  
MII Receive Link  
I
V6  
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
MII Receive Clock  
O
O
O
O
O
I
W17, W3  
T13, W2  
U13, V2  
U12, V1  
T12, U2  
W6  
T2, V13  
R12, T1  
R4, T12  
R3, U12  
R2, T11  
V4  
MII Transmit Clock  
I
U1, V15  
R1, U10  
Table 4-30. PRU-ICSS/MII1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_mii1_col  
MII Collision Detect  
MII Carrier Sense  
I
R15  
V16, W7  
NA  
T17  
pr1_mii1_crs  
I
R6, V12  
V16  
T15  
pr1_mii1_rxd0  
pr1_mii1_rxd1  
pr1_mii1_rxd2  
pr1_mii1_rxd3  
pr1_mii1_rxdv  
pr1_mii1_rxer  
pr1_mii1_rxlink  
pr1_mii1_txd0  
pr1_mii1_txd1  
pr1_mii1_txd2  
pr1_mii1_txd3  
pr1_mii1_txen  
pr1_mii_mr1_clk  
pr1_mii_mt1_clk  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Receive Link  
I
I
NA  
I
NA  
U15  
V15  
T16  
I
NA  
I
NA  
I
NA  
V17  
U18  
R14  
T14  
I
V18  
NA  
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
MII Receive Clock  
O
O
O
O
O
I
NA  
NA  
U14  
V14  
U17  
U16  
R13  
NA  
W18  
NA  
MII Transmit Clock  
I
NA  
Table 4-31. PRU-ICSS/UART0 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_uart0_cts_n  
pr1_uart0_rts_n  
pr1_uart0_rxd  
pr1_uart0_txd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
A18, E17  
B18, D19  
B17, D18  
A17, C19  
A17, D18  
B17, D17  
B16, D16  
A16, D15  
O
I
O
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
65  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.4.1 PRU0  
Table 4-32. PRU0/General-Purpose Inputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
pr1_pru0_pru_r31_0  
DESCRIPTION [2]  
ZCE BALL [4]  
NA  
ZCZ BALL [4]  
A13  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
pr1_pru0_pru_r31_1  
pr1_pru0_pru_r31_10  
pr1_pru0_pru_r31_11  
pr1_pru0_pru_r31_12  
pr1_pru0_pru_r31_13  
pr1_pru0_pru_r31_14  
pr1_pru0_pru_r31_15  
pr1_pru0_pru_r31_16  
pr1_pru0_pru_r31_2  
pr1_pru0_pru_r31_3  
pr1_pru0_pru_r31_4  
pr1_pru0_pru_r31_5  
pr1_pru0_pru_r31_6  
pr1_pru0_pru_r31_7  
pr1_pru0_pru_r31_8  
pr1_pru0_pru_r31_9  
NA  
B13  
H17  
G18  
G19  
G17  
W17  
V17  
B15, C19  
NA  
G15  
G16  
G17  
G18  
V13  
U13  
D14, D15  
D12  
C12  
B12  
PRU0 Data In Capture Enable  
PRU0 Data In  
PRU0 Data In  
NA  
PRU0 Data In  
NA  
PRU0 Data In  
NA  
C13  
D13  
A14  
PRU0 Data In  
NA  
PRU0 Data In  
NA  
PRU0 Data In  
H19  
H18  
F17  
PRU0 Data In  
F18  
Table 4-33. PRU0/General-Purpose Outputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_pru0_pru_r30_0  
pr1_pru0_pru_r30_1  
pr1_pru0_pru_r30_10  
pr1_pru0_pru_r30_11  
pr1_pru0_pru_r30_12  
pr1_pru0_pru_r30_13  
pr1_pru0_pru_r30_14  
pr1_pru0_pru_r30_15  
pr1_pru0_pru_r30_2  
pr1_pru0_pru_r30_3  
pr1_pru0_pru_r30_4  
pr1_pru0_pru_r30_5  
pr1_pru0_pru_r30_6  
pr1_pru0_pru_r30_7  
pr1_pru0_pru_r30_8  
pr1_pru0_pru_r30_9  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
NA  
A13  
B13  
G15  
G16  
G17  
G18  
T12  
R12  
D12  
C12  
B12  
C13  
D13  
A14  
F17  
F18  
NA  
H17  
G18  
G19  
G17  
U13  
T13  
NA  
NA  
NA  
NA  
NA  
NA  
H19  
H18  
66  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.4.2 PRU1  
Table 4-34. PRU1/General-Purpose Inputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
U1  
ZCZ BALL [4]  
R1  
pr1_pru1_pru_r31_0  
pr1_pru1_pru_r31_1  
pr1_pru1_pru_r31_10  
pr1_pru1_pru_r31_11  
pr1_pru1_pru_r31_12  
pr1_pru1_pru_r31_13  
pr1_pru1_pru_r31_14  
pr1_pru1_pru_r31_15  
pr1_pru1_pru_r31_16  
pr1_pru1_pru_r31_2  
pr1_pru1_pru_r31_3  
pr1_pru1_pru_r31_4  
pr1_pru1_pru_r31_5  
pr1_pru1_pru_r31_6  
pr1_pru1_pru_r31_7  
pr1_pru1_pru_r31_8  
pr1_pru1_pru_r31_9  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U2  
R2  
W5  
W7  
V14  
U15  
E19  
F17  
C15, D18  
V1  
V5  
R6  
U9  
V9  
E15  
E16  
A15, D16  
R3  
PRU1 Data In Capture Enable  
PRU1 Data In  
PRU1 Data In  
V2  
R4  
PRU1 Data In  
W2  
W3  
V3  
T1  
PRU1 Data In  
T2  
PRU1 Data In  
T3  
PRU1 Data In  
U3  
T4  
PRU1 Data In  
U7  
U5  
PRU1 Data In  
T7  
R5  
Table 4-35. PRU1/General-Purpose Outputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_pru1_pru_r30_0  
pr1_pru1_pru_r30_1  
pr1_pru1_pru_r30_10  
pr1_pru1_pru_r30_11  
pr1_pru1_pru_r30_12  
pr1_pru1_pru_r30_13  
pr1_pru1_pru_r30_14  
pr1_pru1_pru_r30_15  
pr1_pru1_pru_r30_2  
pr1_pru1_pru_r30_3  
pr1_pru1_pru_r30_4  
pr1_pru1_pru_r30_5  
pr1_pru1_pru_r30_6  
pr1_pru1_pru_r30_7  
pr1_pru1_pru_r30_8  
pr1_pru1_pru_r30_9  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
U1  
R1  
R2  
V5  
R6  
U9  
V9  
E15  
E16  
R3  
R4  
T1  
U2  
W5  
W7  
V14  
U15  
E19  
F17  
V1  
V2  
W2  
W3  
V3  
T2  
T3  
U3  
T4  
U7  
U5  
R5  
T7  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
67  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.5 Removable Media Interfaces  
Table 4-36. Removable Media Interfaces/MMC0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
mmc0_clk  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
ZCE BALL [4]  
G19  
ZCZ BALL [4]  
G17  
I/O  
mmc0_cmd  
mmc0_dat0  
mmc0_dat1  
mmc0_dat2  
mmc0_dat3  
mmc0_dat4  
mmc0_dat5  
mmc0_dat6  
mmc0_dat7  
mmc0_pow  
mmc0_sdcd  
mmc0_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD Power Switch Control  
SD Card Detect  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
G17  
G18  
G18  
G16  
H17  
G15  
H18  
F18  
H19  
F17  
N16  
L16  
N17  
L17  
M19  
L18  
N19  
K18  
B16, K18  
B16, P17  
E18, R19  
C15, H18  
A13, C15, M17  
B12, C18, M18  
I
SD Write Protect  
I
Table 4-37. Removable Media Interfaces/MMC1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
mmc1_clk  
I/O  
L18, R19, V14  
M18, P17, U15  
N19, V15, W10  
M19, V9, W16  
N17, T12, V12  
N16, U12, W13  
U13, V13  
K17, M18, U9  
K16, M17, V9  
K18, U10, U7  
L18, T10, V7  
L17, R8, T11  
L16, T8, U12  
T12, U8  
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
mmc1_sdcd  
mmc1_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
SD Card Detect  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
T13, W14  
R12, V8  
U14, W17  
R9, V13  
V17, W15  
T9, U13  
R15  
B13, T17  
SD Write Protect  
I
B17, D18  
B16, D16  
Table 4-38. Removable Media Interfaces/MMC2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
mmc2_clk  
I/O  
P19, R19, V16  
K17, P17, U17  
L19, U13  
M17, T13  
N18, W17  
J19, V17, V18  
V15  
L15, M18, V12  
J16, M17, T13  
J17, T12, V14  
J18, R12, U14  
K15, T14, V13  
H16, U13, U18  
U10, U15  
mmc2_cmd  
mmc2_dat0  
mmc2_dat1  
mmc2_dat2  
mmc2_dat3  
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dat7  
mmc2_sdcd  
mmc2_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
SD Card Detect  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
W16  
T10, T15  
T12  
T11, V16  
U12  
U12  
W18  
D12, U17  
SD Write Protect  
I
A17, C19  
A16, D15  
68  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.6 Serial Communication Interfaces  
4.3.6.1 CAN  
Table 4-39. CAN/DCAN0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
dcan0_rx  
dcan0_tx  
DCAN0 Receive Data  
DCAN0 Transmit Data  
I
D19, F17, N18  
E17, E19, M17  
D17, E16, K15  
D18, E15, J18  
O
Table 4-40. CAN/DCAN1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
dcan1_rx  
dcan1_tx  
DCAN1 Receive Data  
DCAN1 Transmit Data  
I
C19, F18, G17  
D18, F19, G19  
D15, E17, G18  
D16, E18, G17  
O
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
69  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.6.2 GEMAC_CPSW  
Table 4-41. GEMAC_CPSW/MDIO Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
mdio_clk  
MDIO Clk  
O
R19  
P17  
M18  
M17  
mdio_data  
MDIO Data  
I/O  
Table 4-42. GEMAC_CPSW/MII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gmii1_col  
gmii1_crs  
MII Colision  
I
J19  
H16  
H17  
L18  
M16  
L15  
L16  
L17  
J17  
J15  
K18  
K17  
K16  
K15  
J18  
J16  
MII Carrier Sense  
I
J18  
gmii1_rxclk  
gmii1_rxd0  
gmii1_rxd1  
gmii1_rxd2  
gmii1_rxd3  
gmii1_rxdv  
gmii1_rxer  
gmii1_txclk  
gmii1_txd0  
gmii1_txd1  
gmii1_txd2  
gmii1_txd3  
gmii1_txen  
MII Receive Clock  
I
M19  
P18  
P19  
N16  
N17  
L19  
K19  
N19  
L18  
M18  
N18  
M17  
K17  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Transmit Clock  
I
I
I
I
I
I
I
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
O
O
O
O
O
Table 4-43. GEMAC_CPSW/MII2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gmii2_col  
MII Colision  
I
V18  
R15  
NA  
NA  
NA  
NA  
NA  
NA  
W18  
NA  
NA  
NA  
NA  
NA  
NA  
U18  
T17  
T15  
V17  
T16  
U16  
V16  
V14  
U17  
U15  
V15  
R14  
T14  
U14  
R13  
gmii2_crs  
MII Carrier Sense  
I
gmii2_rxclk  
gmii2_rxd0  
gmii2_rxd1  
gmii2_rxd2  
gmii2_rxd3  
gmii2_rxdv  
gmii2_rxer  
gmii2_txclk  
gmii2_txd0  
gmii2_txd1  
gmii2_txd2  
gmii2_txd3  
gmii2_txen  
MII Receive Clock  
I
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Transmit Clock  
I
I
I
I
I
I
I
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
O
O
O
O
O
Table 4-44. GEMAC_CPSW/RGMII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
rgmii1_rclk  
70 Terminal Configuration and Functions  
DESCRIPTION [2]  
ZCE BALL [4]  
M19  
ZCZ BALL [4]  
L18  
RGMII Receive Clock  
I
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Table 4-44. GEMAC_CPSW/RGMII1 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
J17  
rgmii1_rctl  
rgmii1_rd0  
rgmii1_rd1  
rgmii1_rd2  
rgmii1_rd3  
rgmii1_tclk  
rgmii1_tctl  
rgmii1_td0  
rgmii1_td1  
rgmii1_td2  
rgmii1_td3  
RGMII Receive Control  
I
I
I
I
I
L19  
RGMII Receive Data bit 0  
RGMII Receive Data bit 1  
RGMII Receive Data bit 2  
RGMII Receive Data bit 3  
RGMII Transmit Clock  
P18  
P19  
N16  
N17  
N19  
K17  
L18  
M18  
N18  
M17  
M16  
L15  
L16  
L17  
K18  
J16  
K17  
K16  
K15  
J18  
O
O
O
O
O
O
RGMII Transmit Control  
RGMII Transmit Data bit 0  
RGMII Transmit Data bit 1  
RGMII Transmit Data bit 2  
RGMII Transmit Data bit 3  
Table 4-45. GEMAC_CPSW/RGMII2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RGMII Receive Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
rgmii2_rclk  
rgmii2_rctl  
rgmii2_rd0  
rgmii2_rd1  
rgmii2_rd2  
rgmii2_rd3  
rgmii2_tclk  
rgmii2_tctl  
rgmii2_td0  
rgmii2_td1  
rgmii2_td2  
rgmii2_td3  
I
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
T15  
V14  
V17  
T16  
U16  
V16  
U15  
R13  
V15  
R14  
T14  
U14  
RGMII Receive Control  
RGMII Receive Data bit 0  
RGMII Receive Data bit 1  
RGMII Receive Data bit 2  
RGMII Receive Data bit 3  
RGMII Transmit Clock  
I
I
I
I
I
O
O
O
O
O
O
RGMII Transmit Control  
RGMII Transmit Data bit 0  
RGMII Transmit Data bit 1  
RGMII Transmit Data bit 2  
RGMII Transmit Data bit 3  
Table 4-46. GEMAC_CPSW/RMII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
rmii1_crs_dv  
rmii1_refclk  
rmii1_rxd0  
rmii1_rxd1  
rmii1_rxer  
rmii1_txd0  
rmii1_txd1  
rmii1_txen  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
I
J18  
K18  
P18  
P19  
K19  
L18  
M18  
K17  
H17  
H18  
M16  
L15  
J15  
K17  
K16  
J16  
I/O  
I
RMII Receive Data bit 0  
RMII Receive Data bit 1  
RMII Receive Data Error  
RMII Transmit Data bit 0  
RMII Transmit Data bit 1  
RMII Transmit Enable  
I
I
O
O
O
Table 4-47. GEMAC_CPSW/RMII2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
rmii2_crs_dv  
rmii2_refclk  
rmii2_rxd0  
rmii2_rxd1  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
I
R15, U17  
J19  
T13, T17  
H16  
I/O  
RMII Receive Data bit 0  
RMII Receive Data bit 1  
I
I
NA  
V17  
NA  
T16  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
71  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
ZCZ BALL [4]  
Table 4-47. GEMAC_CPSW/RMII2 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
rmii2_rxer  
rmii2_txd0  
rmii2_txd1  
rmii2_txen  
RMII Receive Data Error  
I
W18  
U17  
RMII Transmit Data bit 0  
RMII Transmit Data bit 1  
RMII Transmit Enable  
O
O
O
NA  
NA  
NA  
V15  
R14  
R13  
72  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.6.3 I2C  
Table 4-48. I2C/I2C0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
I2C0_SCL  
I2C0_SDA  
I2C0 Clock  
I2C0 Data  
I/OD  
I/OD  
B19  
C18  
C16  
C17  
Table 4-49. I2C/I2C1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
I2C1_SCL  
I2C1_SDA  
I2C1 Clock  
I2C1 Data  
I/OD  
A17, C19, F18,  
K19  
A16, D15, E17,  
J15  
I/OD  
B17, D18, F19,  
J18  
B16, D16, E18,  
H17  
Table 4-50. I2C/I2C2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
I2C2_SCL  
I2C2_SDA  
I2C2 Clock  
I2C2 Data  
I/OD  
I/OD  
B18, D19, F17  
A18, E17, E19  
B17, D17, E16  
A17, D18, E15  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
73  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.6.4 McASP  
Table 4-51. McASP/MCASP0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
mcasp0_aclkr  
DESCRIPTION [2]  
McASP0 Receive Bit Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
I/O  
L19, V18, V6  
B12, J17, U18,  
V2  
mcasp0_aclkx  
McASP0 Transmit Bit Clock  
I/O  
N19, V4  
A13, K18, U1,  
V16  
mcasp0_ahclkr  
mcasp0_ahclkx  
mcasp0_axr0  
McASP0 Receive Master Clock  
McASP0 Transmit Master Clock  
McASP0 Serial Data (IN/OUT)  
I/O  
I/O  
I/O  
V5  
C12, U4  
N18, V7  
N17, U5  
A14, K15, T5  
D12, L17, T16,  
U3  
mcasp0_axr1  
mcasp0_axr2  
mcasp0_axr3  
mcasp0_fsr  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Receive Frame Sync  
McASP0 Transmit Frame Sync  
I/O  
I/O  
I/O  
I/O  
I/O  
N16, W6  
D13, L16, V17,  
V4  
J19, V5, V6  
P18, U6, V7  
M17, U6, V16  
M19, W4  
B12, C12, H16,  
U4, V2  
A14, C13, M16,  
T5, V3  
C13, J18, V12,  
V3  
mcasp0_fsx  
B13, L18, U16,  
U2  
Table 4-52. McASP/MCASP1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
mcasp1_aclkr  
mcasp1_aclkx  
mcasp1_ahclkr  
mcasp1_ahclkx  
mcasp1_axr0  
mcasp1_axr1  
mcasp1_axr2  
mcasp1_axr3  
mcasp1_fsr  
McASP1 Receive Bit Clock  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L18, P18  
J18, L19  
P18  
K17, M16  
B12, H17, J17  
M16  
McASP1 Transmit Bit Clock  
McASP1 Receive Master Clock  
McASP1 Transmit Master Clock  
McASP1 Serial Data (IN/OUT)  
McASP1 Serial Data (IN/OUT)  
McASP1 Serial Data (IN/OUT)  
McASP1 Serial Data (IN/OUT)  
McASP1 Receive Frame Sync  
McASP1 Transmit Frame Sync  
K18, P18  
K17, N18  
M18  
H18, M16  
D13, J16, K15  
A14, K16  
J19, L18  
K18, P19  
M18, P19  
K19, M17  
H16, K17  
H18, L15  
K16, L15  
mcasp1_fsx  
C13, J15, J18  
74  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
4.3.6.5 SPI  
Table 4-53. SPI/SPI0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
A17  
ZCZ BALL [4]  
A16  
spi0_cs0  
spi0_cs1  
spi0_d0  
spi0_d1  
spi0_sclk  
SPI Chip Select  
SPI Chip Select  
SPI Data  
I/O  
I/O  
I/O  
I/O  
I/O  
B16  
B18  
B17  
A18  
C15  
B17  
B16  
A17  
SPI Data  
SPI Clock  
Table 4-54. SPI/SPI1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
spi1_cs0  
spi1_cs1  
SPI Chip Select  
SPI Chip Select  
I/O  
E17, E19, F18,  
K18  
C12, D18, E15,  
E17, H18  
I/O  
C15, D19, E18,  
F17  
A15, C18, D17,  
E16  
spi1_d0  
spi1_d1  
spi1_sclk  
SPI Data  
SPI Data  
SPI Clock  
I/O  
I/O  
I/O  
F19, J18  
F18, K19  
E18, J19  
B13, E18, H17  
D12, E17, J15  
A13, C18, H16  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
75  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.6.6 UART  
Table 4-55. UART/UART0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
UART Clear to Send  
ZCE BALL [4]  
F19  
ZCZ BALL [4]  
E18  
uart0_ctsn  
uart0_rtsn  
uart0_rxd  
uart0_txd  
I
UART Request to Send  
UART Receive Data  
UART Transmit Data  
O
I
F18  
E19  
F17  
E17  
E15  
E16  
O
Table 4-56. UART/UART1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart1_ctsn  
UART Clear to Send  
I
E17  
D18  
uart1_dcdn  
uart1_dsrn  
uart1_dtrn  
uart1_rin  
UART Data Carrier Detect  
UART Data Set Ready  
UART Data Terminal Ready  
UART Ring Indicator  
I
H19, N19  
H18, M19  
H17, N17  
G18, N16  
D19  
F17, K18  
F18, L18  
G15, L17  
G16, L16  
D17  
I
O
I
uart1_rtsn  
uart1_rxd  
uart1_txd  
UART Request to Send  
UART Receive Data  
O
I
D18  
D16  
UART Transmit Data  
O
C19  
D15  
Table 4-57. UART/UART2 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart2_ctsn  
uart2_rtsn  
uart2_rxd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
I
C18, V4  
B19, W4  
C17, U1  
C16, U2  
O
I
A18, G19, J18,  
N19  
A17, G17, H17,  
K18  
uart2_txd  
UART Transmit Data  
O
B18, G17, K19,  
M19  
B17, G18, J15,  
L18  
Table 4-58. UART/UART3 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart3_ctsn  
uart3_rtsn  
uart3_rxd  
uart3_txd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
G19, P17, U5  
G17, R19, V5  
B16, H17, N17  
E18, G18, N16  
G17, M17, U3  
G18, M18, U4  
C15, G15, L17  
C18, G16, L16  
O
I
O
Table 4-59. UART/UART4 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart4_ctsn  
uart4_rtsn  
uart4_rxd  
uart4_txd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
H19, V6  
F17, V2  
O
I
H18, U6  
F18, V3  
F19, M17, R15  
F18, N18, W18  
E18, J18, T17  
E17, K15, U17  
O
76  
Terminal Configuration and Functions  
Copyright © 2011–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Table 4-60. UART/UART5 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
UART Clear to Send  
ZCE BALL [4]  
ZCZ BALL [4]  
uart5_ctsn  
uart5_rtsn  
uart5_rxd  
I
H17, J18, W6  
G18, K19, V7  
G15, H17, V4  
G16, J15, T5  
UART Request to Send  
UART Receive Data  
O
I
J19, P17, W4,  
W6  
H16, M17, U2, V4  
uart5_txd  
UART Transmit Data  
O
K18, L19, R19,  
V4  
H18, J17, M18,  
U1  
Copyright © 2011–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
77  
Submit Documentation Feedback  
Product Folder Links: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
4.3.6.7 USB  
Table 4-61. USB/USB0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
T18  
ZCZ BALL [4]  
M15  
USB0_CE  
USB0_DM  
USB0_DP  
USB0 Active high Charger Enable output  
USB0 Data minus  
A
A
A
O
A
A
U18  
U19  
G16  
V19  
T19  
N18  
N17  
F16  
P16  
P15  
USB0 Data plus  
USB0_DRVVBUS  
USB0_ID  
USB0 Active high VBUS control output  
USB0 ID (Micro-A or Micro-B Plug)  
USB0 VBUS  
USB0_VBUS  
Table 4-62. USB/USB1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
USB1_CE  
USB1 Active high Charger Enable output  
USB1 Data minus  
A
A
A
O
A
A
NA  
NA  
NA  
NA  
NA  
NA  
P18  
R18  
R17  
F15  
P17  
T18  
USB1_DM  
USB1_DP  
USB1 Data plus  
USB1_DRVVBUS  
USB1_ID  
USB1 Active high VBUS control output  
USB1 ID (Micro-A or Micro-B Plug)  
USB1 VBUS  
USB1_VBUS  
78  
Terminal Configuration and Functions  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
5 Specifications  
5.1 Absolute Maximum Ratings  
over junction temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.3  
MAX  
1.5  
1.5  
1.5  
2.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
4
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD_MPU(3)  
VDD_CORE  
CAP_VDD_RTC(4)  
VPP(5)  
Supply voltage for the MPU core domain  
Supply voltage for the core domain  
Supply voltage for the RTC core domain  
Supply voltage for the FUSE ROM domain  
Supply voltage for the RTC domain  
VDDS_RTC  
VDDS_OSC  
Supply voltage for the System oscillator  
VDDS_SRAM_CORE_BG Supply voltage for the Core SRAM LDOs  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_DDR  
Supply voltage for the MPU SRAM LDOs  
Supply voltage for the DPLL DDR  
Supply voltage for the DPLL Core and LCD  
Supply voltage for the DPLL MPU  
Supply voltage for the DDR I/O domain  
Supply voltage for all dual-voltage I/O domains  
Supply voltage for USBPHY  
VDDS  
VDDA1P8V_USB0  
VDDA1P8V_USB1(6)  
VDDA_ADC  
Supply voltage for USBPHY  
Supply voltage for ADC  
VDDSHV1  
VDDSHV2(6)  
VDDSHV3(6)  
Supply voltage for the dual-voltage I/O domain  
Supply voltage for the dual-voltage I/O domain  
Supply voltage for the dual-voltage I/O domain  
Supply voltage for the dual-voltage I/O domain  
Supply voltage for the dual-voltage I/O domain  
Supply voltage for the dual-voltage I/O domain  
Supply voltage for USBPHY  
VDDSHV4  
VDDSHV5  
VDDSHV6  
VDDA3P3V_USB0  
VDDA3P3V_USB1(6)  
USB0_VBUS(7)  
USB1_VBUS(6)(7)  
DDR_VREF  
Supply voltage for USBPHY  
4
Supply voltage for USB VBUS comparator input  
Supply voltage for USB VBUS comparator input  
Supply voltage for the DDR SSTL and HSTL reference voltage  
5.25  
5.25  
1.1  
Steady state max voltage  
at all I/O pins(8)  
–0.5 V to I/O supply voltage + 0.3 V  
USB0_ID(9)  
USB1_ID(6)(9)  
Steady state maximum voltage for the USB ID input  
Steady state maximum voltage for the USB ID input  
–0.5  
–0.5  
2.1  
2.1  
V
V
Transient overshoot and  
undershoot specification at  
I/O terminal  
25% of corresponding I/O supply  
voltage for up to 30% of signal  
period  
Class II (105°C)  
1.8-V mode  
45  
mA  
mA  
–100  
–100  
100  
100  
3.3-V mode; applies to all I/O pins except those  
included in latch-up pin groups A(12), B(13), and C(14)  
3.3-V mode; applies to latch-up pin group A(12)  
3.3-V mode; applies to latch-up pin group B(13)  
3.3-V mode; applies to latch-up pin group C(14)  
Latch-up performance(10)  
Class II (125°C)  
–35  
–45  
100  
75  
–100  
70  
Storage temperature,  
Tstg  
–55  
155  
°C  
(11)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated VSS or VSSA_x.  
(3) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE on the ZCE package.  
(4) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
79  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
Absolute Maximum Ratings (continued)  
over junction temperature range (unless otherwise noted)(1)(2)  
(5) During functional operation, this pin is a no connect.  
(6) Not available on the ZCE package.  
(7) This terminal is connected to a fail-safe I/O and does not have a dependence on any I/O supply voltage.  
(8) This parameter applies to all I/O terminals which are not fail-safe and the requirement applies to all values of I/O supply voltage. For  
example, if the voltage applied to a specific I/O supply is 0 volts the valid input voltage range for any I/O powered by that supply will be  
–0.5 to +0.3 V. Apply special attention anytime peripheral devices are not powered from the same power sources used to power the  
respective I/O supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range, including  
power supply ramp-up and ramp-down sequences.  
(9) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the  
voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal  
should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to  
any external voltage source.  
(10) Based on JEDEC JESD78D [IC Latch-Up Test].  
(11) For tape and reel the storage temperature range is [–10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning  
to ambient room temperature before usage.  
(12) Latch-up pin group A: V7, R8, T8, U8, V8, R9, T9, U10, T10, T11, U12, T12, R12, V13, U13, R13, V14, U14, T14, R14, V15, U15, T15,  
V16, U16, T16, V17, U17, U18, U9, V9, T13, V12, V4  
(13) Latch-up pin group B: R1, R2, R3, R4, T1, T2, T3, V2, V3  
(14) Latch-up pin group C: T4, U1, U2, U3, U4, V5, F17, F18, G15, G16, G17, G18, H16, H17, J15, J16, J17, J18, K15, K16, K17, K18,  
L18, L17, L16, L15, M16, H18, M17, M18  
Fail-safe I/O terminals are designed such they do not have dependencies on the respective I/O power supply voltage. This allows  
external voltage sources to be connected to these I/O terminals when the respective I/O power supplies are turned off. The USB0_VBUS  
and USB1_VBUS are the only fail-safe I/O terminals. All other I/O terminals are not fail-safe and the voltage applied to them should be  
limited to the value defined by the steady state max. Voltage at all I/O pins parameter in Section 5.1.  
5.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged Device Model (CDM), per JESD22-C101(2)  
Electrostatic discharge  
(ESD) performance:  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
80  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
5.3 Power-On Hours (POH)  
5-1. Reliability Data(1)(2)(3)(4)  
COMMERCIAL  
OPERATING  
CONDITION  
INDUSTRIAL  
EXTENDED  
INDUSTRIAL EXTENDED  
JUNCTION  
TEMP (TJ)  
LIFETIME  
(POH)(5)  
JUNCTION  
LIFETIME  
(POH)(5)  
JUNCTION  
LIFETIME  
(POH)(5)  
JUNCTION  
TEMP (TJ)  
LIFETIME  
(POH)(5)  
TEMP (TJ)  
TEMP (TJ)  
Nitro  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
100K  
100K  
100K  
100K  
100K  
–40°C to 90°C  
–40°C to 90°C  
–40°C to 90°C  
–40°C to 90°C  
–40°C to 90°C  
100K  
100K  
100K  
100K  
100K  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
37K  
80K  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Turbo  
OPP120  
OPP100  
OPP50  
100K  
100K  
100K  
35K  
95K  
(1) The power-on hours (POH) information in this table is provided solely for your convenience and does not extend or modify the warranty  
provided under TI's standard terms and conditions for TI semiconductor products.  
(2) To avoid significant degradation, the device power-on hours (POH) must be limited as described in this table.  
(3) Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.  
(4) The previous notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and  
conditions for TI semiconductor products.  
(5) POH = Power-on hours when the device is fully functional.  
5.4 Operating Performance Points (OPPs)  
Device OPPs are defined in 5-2 through 5-9.  
5-2. VDD_CORE OPPs for ZCZ Package  
Device Rev. "A or Newer"(1)  
VDD_CORE  
NOM  
VDD_CORE OPP  
Device Rev. "A or Newer"  
DDR3,  
DDR2(2)  
mDDR(2)  
L3 and L4  
DDR3L(2)  
MIN  
MAX  
200 and 100  
MHz  
OPP100  
OPP50  
1.056 V  
1.100 V  
0.950 V  
1.144 V  
400 MHz  
266 MHz  
125 MHz  
200 MHz  
90 MHz  
100 and 50  
MHz  
0.912 V  
0.988 V  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data  
rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.  
5-3. VDD_MPU OPPs for ZCZ Package  
With Device Revision Code "Blank"(1)  
VDD_MPU  
NOM  
VDD_MPU OPP  
Device Rev. "Blank"  
ARM (A8)  
MIN  
MAX  
Turbo  
1.210 V  
1.152 V  
1.056 V  
1.056 V  
1.260 V  
1.200 V  
1.100 V  
1.100 V  
1.326 V  
1.248 V  
1.144 V  
1.144 V  
720 MHz  
600 MHz  
500 MHz  
275 MHz  
OPP120  
OPP100(2)  
OPP100(3)  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) Applies to all orderable AM335__ZCZ_50 (500-MHz speed grade) or higher devices.  
(3) Applies to all orderable AM335__ZCZ_27 (275-MHz speed grade) devices.  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
81  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
5-4. Valid Combinations of VDD_CORE and  
VDD_MPU OPPs for ZCZ Package  
With Device Revision Code "Blank"  
VDD_CORE  
OPP50  
VDD_MPU  
OPP100  
OPP100  
OPP120  
Turbo  
OPP100  
OPP100  
OPP100  
5-5. VDD_CORE OPPs for ZCE Package  
With Device Revision Code "Blank"(1)  
VDD_CORE  
OPP  
Device Rev.  
"Blank"  
VDD_MPU(2)  
DDR3,  
ARM (A8)  
DDR2(3)  
mDDR(3)  
L3 and L4  
DDR3L(3)  
MIN  
NOM  
MAX  
200 and 100  
MHz  
OPP100  
OPP100  
1.056 V  
1.056 V  
1.100 V  
1.100 V  
1.144 V  
1.144 V  
500 MHz  
275 MHz  
400 MHz  
400 MHz  
266 MHz  
266 MHz  
200 MHz  
200 MHz  
200 and 100  
MHz  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) VDD_MPU is merged with VDD_CORE on the ZCE package.  
(3) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data  
rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.  
5-6. VDD_CORE OPPs for ZCZ Package  
With Device Revision Code "A" or Newer(1)  
VDD_CORE  
NOM  
VDD_CORE OPP  
Rev "A" or Newer  
DDR3,  
DDR2(2)  
mDDR(2)  
L3 and L4  
DDR3L(2)  
MIN  
MAX  
Industrial extended  
temperature (–40°C  
to 125°C)  
333 MHz  
400 MHz  
200 and 100  
MHz  
OPP100  
OPP50  
1.056 V  
1.100 V  
0.950 V  
1.144 V  
266 MHz  
200 MHz  
All other  
temperature ranges  
Industrial extended  
temperature (–40°C  
to 125°C)  
100 and 50  
MHz  
0.912 V  
0.988 V  
125 MHz  
90 MHz  
All other  
temperature ranges  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data  
rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.  
5-7. VDD_MPU OPPs for ZCZ Package  
With Device Revision Code "A" or Newer(1)  
VDD_MPU  
NOM  
VDD_MPU OPP  
Rev "A" or Newer  
ARM (A8)  
MIN  
MAX  
Nitro  
1.272 V  
1.210 V  
1.152 V  
1.056 V  
1.056 V  
0.912 V  
1.325 V  
1.260 V  
1.200 V  
1.100 V  
1.100 V  
0.950 V  
1.378 V  
1.326 V  
1.248 V  
1.144 V  
1.144 V  
0.988 V  
1 GHz  
Turbo  
800 MHz  
720 MHz  
600 MHz  
300 MHz  
300 MHz  
OPP120  
OPP100(2)  
OPP100(3)  
OPP50  
82  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) Applies to all orderable AM335__ZCZ_60 (600-MHz speed grade) or higher devices.  
(3) Applies to all orderable AM335__ZCZ_30 (300-MHz speed grade) devices.  
5-8. Valid Combinations of VDD_CORE and  
VDD_MPU OPPs for ZCZ Package With Device  
Revision Code "A" or Newer  
VDD_CORE  
OPP50  
VDD_MPU  
OPP50  
OPP100  
OPP50  
OPP100  
OPP120  
Turbo  
OPP50  
OPP100  
OPP100  
OPP100  
OPP100  
OPP100  
Nitro  
5-9. VDD_CORE OPPs for ZCE Package  
With Device Revision Code "A" or Newer(1)  
VDD_CORE  
OPP  
Rev "A" or  
newer  
VDD_MPU(2)  
DDR3,  
ARM (A8)  
DDR2(3)  
mDDR(3)  
L3 and L4  
DDR3L(3)  
MIN  
NOM  
MAX  
200 and 100  
MHz  
OPP100  
OPP100  
OPP50  
1.056 V  
1.056 V  
0.912 V  
1.100 V  
1.100 V  
0.950 V  
1.144 V  
1.144 V  
0.988 V  
600 MHz  
300 MHz  
300 MHz  
400 MHz  
400 MHz  
266 MHz  
266 MHz  
125 MHz  
200 MHz  
200 MHz  
90 MHz  
200 and 100  
MHz  
100 and 50  
MHz  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) VDD_MPU is merged with VDD_CORE on the ZCE package.  
(3) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data  
rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
83  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
5.5 Recommended Operating Conditions  
over junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
Supply voltage range for core  
domain; OPP100  
1.056  
1.100  
1.144  
0.988  
1.378  
1.326  
1.248  
1.144  
0.988  
1.250  
1.890  
1.890  
1.575  
1.418  
1.890  
1.890  
1.890  
1.890  
1.890  
1.890  
1.890  
VDD_CORE(1)  
V
Supply voltage range for core  
domain; OPP50  
0.912  
1.272  
1.210  
1.152  
1.056  
0.912  
0.900  
1.710  
1.710  
1.425  
1.283  
1.710  
1.710  
1.710  
1.710  
1.710  
1.710  
1.710  
0.950  
1.325  
1.260  
1.200  
1.100  
0.950  
1.100  
1.800  
1.800  
1.500  
1.350  
1.800  
1.800  
1.800  
1.800  
1.800  
1.800  
1.800  
Supply voltage range for MPU  
domain, Nitro  
Supply voltage range for MPU  
domain; Turbo  
Supply voltage range for MPU  
domain; OPP120  
VDD_MPU(1)(2)  
V
Supply voltage range for MPU  
domain; OPP100  
Supply voltage range for MPU  
domain; OPP50  
Supply voltage range for RTC  
domain input  
CAP_VDD_RTC(3)  
VDDS_RTC  
V
V
Supply voltage range for RTC  
domain  
Supply voltage range for DDR  
I/O domain (DDR2)  
Supply voltage range for DDR  
I/O domain (DDR3)  
VDDS_DDR  
V
Supply voltage range for DDR  
I/O domain (DDR3L)  
Supply voltage range for all dual-  
voltage I/O domains  
VDDS(4)  
V
V
V
V
V
V
V
Supply voltage range for Core  
SRAM LDOs, analog  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR(5)  
VDDS_PLL_CORE_LCD(5)  
VDDS_PLL_MPU(5)  
VDDS_OSC  
Supply voltage range for MPU  
SRAM LDOs, analog  
Supply voltage range for DPLL  
DDR, analog  
Supply voltage range for DPLL  
CORE and LCD, analog  
Supply voltage range for DPLL  
MPU, analog  
Supply voltage range for system  
oscillator I/Os, analog  
Supply voltage range for  
USBPHY and PER DPLL,  
analog, 1.8 V  
VDDA1P8V_USB0(5)  
1.710  
1.800  
1.890  
V
Supply voltage range for USB  
PHY, analog, 1.8 V  
VDDA1P8V_USB1(6)  
VDDA3P3V_USB0  
VDDA3P3V_USB1(6)  
VDDA_ADC  
1.710  
3.135  
3.135  
1.710  
1.800  
3.300  
3.300  
1.800  
1.890  
3.465  
3.465  
1.890  
V
V
V
V
Supply voltage range for USB  
PHY, analog, 3.3 V  
Supply voltage range for USB  
PHY, analog, 3.3 V  
Supply voltage range for ADC,  
analog  
Supply voltage range for dual-  
voltage I/O domain (1.8-V  
operation)  
VDDSHV1  
1.710  
1.710  
1.800  
1.800  
1.890  
1.890  
V
V
Supply voltage range for dual-  
voltage I/O domain (1.8-V  
operation)  
VDDSHV2(6)  
84  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Recommended Operating Conditions (continued)  
over junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
Supply voltage range for dual-  
voltage I/O domain (1.8-V  
operation)  
VDDSHV3(6)  
1.710  
1.800  
1.890  
V
Supply voltage range for dual-  
voltage I/O domain (1.8-V  
operation)  
VDDSHV4  
VDDSHV5  
VDDSHV6  
VDDSHV1  
VDDSHV2(6)  
VDDSHV3(6)  
VDDSHV4  
VDDSHV5  
VDDSHV6  
DDR_VREF  
1.710  
1.710  
1.710  
3.135  
3.135  
3.135  
3.135  
3.135  
3.135  
1.800  
1.800  
1.800  
3.300  
3.300  
3.300  
3.300  
3.300  
3.300  
1.890  
1.890  
1.890  
3.465  
3.465  
3.465  
3.465  
3.465  
3.465  
V
V
V
V
V
V
V
V
V
V
Supply voltage range for dual-  
voltage I/O domain (1.8-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (1.8-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (3.3-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (3.3-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (3.3-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (3.3-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (3.3-V  
operation)  
Supply voltage range for dual-  
voltage I/O domain (3.3-V  
operation)  
Voltage range for DDR SSTL and  
HSTL reference input (DDR2,  
DDR3, DDR3L)  
0.49 × VDDS_DDR 0.50 × VDDS_DDR 0.51 × VDDS_DDR  
Voltage range for USB VBUS  
comparator input  
USB0_VBUS  
USB1_VBUS(6)  
USB0_ID  
0.000  
0.000  
5.000  
5.000  
5.250  
5.250  
V
V
V
V
Voltage range for USB VBUS  
comparator input  
Voltage range for the USB ID  
input  
(7)  
(7)  
Voltage range for the USB ID  
input  
USB1_ID(6)  
Commercial temperature  
Industrial temperature  
0
–40  
–40  
–40  
90  
90  
Operating temperature  
range, TJ  
°C  
Extended temperature  
105  
125  
Industrial Extended temperature  
(1) The supply voltage defined by OPP100 should be applied to this power domain before the device is released from reset.  
(2) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE on the ZCE package.  
(3) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
(4) VDDS should be supplied irrespective of 1.8- or 3.3-V mode of operation of the dual-voltage I/Os.  
(5) For more details on power supply requirements, see 6.1.4.  
(6) Not available on the ZCE package.  
(7) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the  
voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal  
should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to  
any external voltage source.  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
85  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
5.6 Power Consumption Summary  
5-10 summarizes the power consumption at the AM335x power terminals.  
5-10. Maximum Current Ratings at AM335x Power Terminals(1)  
SUPPLY NAME  
VDD_CORE(2)  
DESCRIPTION  
Maximum current rating for the core domain; OPP100  
Maximum current rating for the core domain; OPP50  
Maximum current rating for the MPU domain; Nitro  
MAX UNIT  
400  
mA  
250  
at 1 GHz  
1000  
800  
720  
720  
600  
at 800 MHz  
at 720 MHz  
at 720 MHz  
at 600 MHz  
at 600 MHz  
at 500 MHz  
at 300 MHz  
at 275 MHz  
at 300 MHz  
at 275 MHz  
Maximum current rating for the MPU domain; Turbo  
Maximum current rating for the MPU domain; OPP120  
VDD_MPU(2)  
600  
500  
380  
350  
330  
300  
2
mA  
Maximum current rating for the MPU domain; OPP100  
Maximum current rating for the MPU domain; OPP50  
CAP_VDD_RTC(3)  
VDDS_RTC  
Maximum current rating for RTC domain input and LDO output  
Maximum current rating for the RTC domain  
Maximum current rating for DDR I/O domain  
Maximum current rating for all dual-voltage I/O domains  
Maximum current rating for core SRAM LDOs  
Maximum current rating for MPU SRAM LDOs  
Maximum current rating for the DPLL DDR  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5
VDDS_DDR  
250  
50  
10  
10  
10  
20  
10  
5
VDDS  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_OSC  
Maximum current rating for the DPLL Core and LCD  
Maximum current rating for the DPLL MPU  
Maximum current rating for the system oscillator I/Os  
Maximum current rating for USBPHY 1.8 V  
VDDA1P8V_USB0  
VDDA1P8V_USB1(4)  
VDDA3P3V_USB0  
VDDA3P3V_USB1(4)  
VDDA_ADC  
VDDSHV1(5)  
VDDSHV2(4)  
25  
25  
40  
40  
10  
50  
50  
50  
50  
50  
100  
Maximum current rating for USBPHY 1.8 V  
Maximum current rating for USBPHY 3.3 V  
Maximum current rating for USBPHY 3.3 V  
Maximum current rating for ADC  
Maximum current rating for dual-voltage I/O domain  
Maximum current rating for dual-voltage I/O domain  
Maximum current rating for dual-voltage I/O domain  
Maximum current rating for dual-voltage I/O domain  
Maximum current rating for dual-voltage I/O domain  
Maximum current rating for dual-voltage I/O domain  
VDDSHV3(4)  
VDDSHV4  
VDDSHV5  
VDDSHV6  
(1) Current ratings specified in this table are worst-case estimates. Actual application power supply estimates could be lower. For more  
information, see AM335x Power Consumption Summary.  
(2) VDD_MPU is merged with VDD_CORE and is not available separately on the ZCE package. The maximum current rating for  
VDD_CORE on the ZCE package is the sum of VDD_CORE and VDD_MPU shown in this table.  
(3) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
(4) Not available on the ZCE package.  
(5) VDDSHV1 and VDDSHV2 are merged in the ZCE package. The maximum current rating for VDDSHV1 on the ZCE package is the sum  
of VDDSHV1 and VDDSHV2 shown in this table.  
86  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
5-11 summarizes the power consumption of the AM335x low-power modes.  
5-11. AM335x Low-Power Modes Power Consumption Summary  
POWER  
MODES  
POWER DOMAINS, CLOCKS, AND  
VOLTAGE SUPPLY STATES  
APPLICATION STATE  
NOM  
MAX UNIT  
Power supplies:  
All power supplies are ON.  
VDD_MPU = 0.95 V (nom)  
VDD_CORE = 0.95 V (nom)  
DDR memory is in self-refresh and  
contents are preserved. Wake up  
from any GPIO. Cortex-A8  
context/register contents are lost  
and must be saved before entering  
standby. On exit, context must be  
restored from DDR. For wakeup,  
boot ROM executes and branches  
to system resume.  
Clocks:  
Main Oscillator (OSC0) = ON  
Standby  
16.5  
22.0  
10.0  
4.3  
mW  
mW  
mW  
All DPLLs are in bypass.  
Power domains:  
PD_PER = ON  
PD_MPU = OFF  
PD_GFX = OFF  
PD_WKUP = ON  
DDR is in self-refresh.  
Power supplies:  
All power supplies are ON.  
VDD_MPU = 0.95 V (nom)  
VDD_CORE = 0.95 V (nom)  
On-chip peripheral registers are  
preserved. Cortex-A8  
Clocks:  
context/registers are lost, so the  
application must save them to the  
L3 OCMC RAM or DDR before  
entering DeepSleep. DDR is in self-  
refresh. For wakeup, boot ROM  
executes and branches to system  
resume.  
Main Oscillator (OSC0) = OFF  
All DPLLs are in bypass.  
Deepsleep1  
6.0  
Power domains:  
PD_PER = ON  
PD_MPU = OFF  
PD_GFX = OFF  
PD_WKUP = ON  
DDR is in self-refresh.  
Power supplies:  
All power supplies are ON.  
VDD_MPU = 0.95 V (nom)  
VDD_CORE = 0.95 V (nom)  
PD_PER peripheral and Cortex-  
A8/MPU register information will be  
lost. On-chip peripheral register  
(context) information of PD-PER  
domain must be saved by  
application to SDRAM before  
entering this mode. DDR is in self-  
refresh. For wakeup, boot ROM  
executes and branches to  
Clocks:  
Main Oscillator (OSC0) = OFF  
All DPLLs are in bypass.  
Deepsleep0  
3.0  
Power domains:  
PD_PER = OFF  
PD_MPU = OFF  
PD_GFX = OFF  
PD_WKUP = ON  
peripheral context restore followed  
by system resume.  
DDR is in self-refresh.  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
87  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
5.7 DC Electrical Characteristics  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A  
2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DD  
R_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM  
0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (mDDR - LVCMOS Mode)  
0.65 ×  
VDDS_DDR  
VIH  
High-level input voltage  
V
0.35 ×  
VDDS_DDR  
VIL  
Low-level input voltage  
V
V
V
VHYS  
VOH  
Hysteresis voltage at an input  
0.07  
0.25  
High level output voltage, driver enabled, pullup or  
pulldown disabled  
VDDS_DDR –  
0.4  
IOH = 8 mA  
IOL = 8 mA  
Low level output voltage, driver enabled, pullup or  
pulldown disabled  
VOL  
0.4  
V
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
10  
–80  
240  
II  
–240  
80  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
10  
µA  
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A  
2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DD  
R_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM  
0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (DDR2 - SSTL Mode)  
DDR_VREF +  
VIH  
High-level input voltage  
V
V
V
0.125  
VHYS  
VOH  
Hysteresis voltage at an input  
N/A  
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VDDS_DDR –  
0.4  
IOH = 8 mA  
IOL = 8 mA  
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
VOL  
0.4  
V
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
10  
–80  
240  
II  
–240  
80  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
10  
µA  
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A  
2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DD  
R_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM  
0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (DDR3, DDR3L - HSTL Mode)  
VDDS_DDR =  
1.5 V  
DDR_VREF +  
0.1  
VIH  
High-level input voltage  
V
V
VDDS_DDR =  
1.35 V  
DDR_VREF +  
0.09  
VDDS_DDR =  
1.5 V  
DDR_VREF –  
0.1  
VIL  
Low-level input voltage  
VDDS_DDR =  
1.35 V  
DDR_VREF –  
0.09  
VHYS  
VOH  
Hysteresis voltage at an input  
N/A  
V
V
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VDDS_DDR –  
0.4  
IOH = 8 mA  
IOL = 8 mA  
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
VOL  
0.4  
V
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
10  
–80  
240  
II  
–240  
80  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
10  
µA  
88  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
DC Electrical Characteristics (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD,UART1_TXD,I2C0_SDA,I2C0_  
SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTINTn,TMS,TDO,USB0_DRVVBUS,USB1_DRVVBUS (VDDSHV6 = 1.8 V)  
VIH  
High-level input voltage  
Low-level input voltage  
0.65 × VDDSHV6  
V
V
V
VIL  
0.35 × VDDSHV6  
0.305  
VHYS  
Hysteresis voltage at an input  
0.18  
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VOH  
VOL  
IOH = 4 mA  
IOL = 4 mA  
VDDSHV6 – 0.45  
V
V
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
0.45  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
8
–52  
170  
II  
–161  
52  
–100  
100  
µA  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
8
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD,UART1_TXD,I2C0_SDA,I2C0_  
SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTINTn,TMS,TDO,USB0_DRVVBUS,USB1_DRVVBUS (VDDSHV6 = 3.3 V)  
VIH  
High-level input voltage  
Low-level input voltage  
2
V
V
V
VIL  
0.8  
VHYS  
Hysteresis voltage at an input  
0.265  
0.44  
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VOH  
VOL  
IOH = 4 mA  
IOL = 4 mA  
VDDSHV6 – 0.45  
V
V
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
0.45  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
18  
–19  
210  
II  
–243  
51  
–100  
110  
µA  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
18  
TCK (VDDSHV6 = 1.8 V)  
VIH  
High-level input voltage  
1.45  
0.4  
V
V
V
VIL  
Low-level input voltage  
0.46  
VHYS  
Hysteresis voltage at an input  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
8
–52  
170  
II  
–161  
52  
–100  
100  
µA  
TCK (VDDSHV6 = 3.3 V)  
VIH  
High-level input voltage  
2.15  
0.4  
V
V
V
VIL  
Low-level input voltage  
0.46  
VHYS  
Hysteresis voltage at an input  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
18  
–19  
210  
II  
–243  
51  
–100  
110  
µA  
PWRONRSTn (VDDSHV6 = 1.8 or 3.3 V)(2)  
VIH  
High-level input voltage  
Low-level input voltage  
1.35  
0.07  
V
V
V
VIL  
0.5  
VHYS  
Hysteresis voltage at an input  
VI = 1.8 V  
VI = 3.3 V  
0.1  
2
II  
Input leakage current  
µA  
RTC_PWRONRSTn  
0.65 ×  
VDDS_RTC  
VIH  
High-level input voltage  
V
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
89  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
0.35 ×  
V
VIL  
Low-level input voltage  
VDDS_RTC  
VHYS  
II  
Hysteresis voltage at an input  
Input leakage current  
0.065  
–1  
V
1
µA  
PMIC_POWER_EN  
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VDDS_RTC –  
0.45  
VOH  
VOL  
IOH = 6 mA  
IOL = 6 mA  
V
V
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
0.45  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–1  
–200  
40  
1
–40  
200  
II  
µA  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
–1  
1
EXT_WAKEUP  
0.65 ×  
VDDS_RTC  
VIH  
High-level input voltage  
V
0.35 ×  
VDDS_RTC  
VIL  
Low-level input voltage  
V
V
VHYS  
Hysteresis voltage at an input  
0.15  
–1  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
1
–40  
200  
II  
–200  
40  
µA  
XTALIN (OSC0)  
0.65 ×  
VDDS_OSC  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.35 ×  
VDDS_OSC  
RTC_XTALIN (OSC1)  
0.65 ×  
VDDS_RTC  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.35 ×  
VDDS_RTC  
All other LVCMOS pins (VDDSHVx = 1.8 V; x = 1 to 6)  
VIH  
High-level input voltage  
Low-level input voltage  
0.65 × VDDSHVx  
V
V
V
VIL  
0.35 × VDDSHVx  
0.305  
VHYS  
Hysteresis voltage at an input  
0.18  
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VOH  
VOL  
IOH = 6 mA  
IOL = 6 mA  
VDDSHVx – 0.45  
V
V
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
0.45  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
8
–52  
170  
II  
–161  
52  
–100  
100  
µA  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
8
All other LVCMOS pins (VDDSHVx = 3.3 V; x = 1 to 6)  
VIH  
High-level input voltage  
Low-level input voltage  
2
V
V
V
VIL  
0.8  
VHYS  
Hysteresis voltage at an input  
0.265  
0.44  
High-level output voltage, driver enabled, pullup or  
pulldown disabled  
VOH  
VOL  
IOH = 6 mA  
IOL = 6 mA  
VDDSHVx – 0.45  
V
V
Low-level output voltage, driver enabled, pullup or  
pulldown disabled  
0.45  
90  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
DC Electrical Characteristics (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
Input leakage current, Receiver disabled, pullup or pulldown inhibited  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
18  
II  
–243  
51  
–100  
110  
–19  
210  
µA  
µA  
Total leakage current through the terminal connection of a driver-receiver  
combination that may include a pullup or pulldown. The driver output is  
disabled and the pullup or pulldown is inhibited.  
IOZ  
18  
(1) The interfaces or signals described in this table correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or  
signals multiplexed on the terminals described in this table have the same DC electrical characteristics.  
(2) The input voltage thresholds for this input are not a function of VDDSHV6.  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
91  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
5.8 Thermal Resistance Characteristics for ZCE and ZCZ Packages  
Failure to maintain a junction temperature within the range specified in Section 5.5 reduces operating  
lifetime, reliability, and performance—and may cause irreversible damage to the system. Therefore, the  
product design cycle should include thermal analysis to verify the maximum operating junction  
temperature of the device. It is important this thermal analysis is performed using specific system use  
cases and conditions. TI provides an application report to aid users in overcoming some of the existing  
challenges of producing a good thermal design. For more information, see AM335x Thermal  
Considerations.  
5-12 provides thermal characteristics for the packages used on this device.  
5-12 provides simulation data and may not represent actual use-case values.  
5-12. Thermal Resistance Characteristics (PBGA Package) [ZCE and ZCZ]  
ZCE (°C/W)(1)  
ZCZ (°C/W)(1)  
AIR FLOW  
(m/s)(3)  
(2)  
(2)  
RΘJC  
RΘJB  
Junction-to-case  
Junction-to-board  
10.3  
11.6  
24.7  
20.5  
19.7  
19.2  
0.4  
10.2  
12.1  
24.2  
20.1  
19.3  
18.8  
0.3  
N/A  
N/A  
0
1.0  
2.0  
3.0  
0.0  
1.0  
2.0  
3.0  
0.0  
1.0  
2.0  
3.0  
RΘJA  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
0.6  
0.6  
φJT  
0.7  
0.7  
0.9  
0.8  
11.9  
11.7  
11.7  
11.6  
12.7  
12.3  
12.3  
12.2  
φJB  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
(2) °C/W = degrees Celsius per watt.  
(3) m/s = meters per second.  
92  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
5.9 External Capacitors  
To improve module performance, decoupling capacitors are required to suppress the switching noise  
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective  
when it is close to the device, because this minimizes the inductance of the circuit board wiring and  
interconnects.  
5.9.1 Voltage Decoupling Capacitors  
5-13 summarizes the Core voltage decoupling characteristics.  
5.9.1.1 Core Voltage Decoupling Capacitors  
To improve module performance, decoupling capacitors are required to suppress high-frequency switching  
noise and to stabilize the supply voltage. A decoupling capacitor is most effective when located close to  
the AM335x device, because this minimizes the inductance of the circuit board wiring and interconnects.  
5-13. Core Voltage Decoupling Characteristics  
PARAMETER  
TYP  
10.08  
10.05  
UNIT  
μF  
(1)  
CVDD_CORE  
(2)(3)  
CVDD_MPU  
μF  
(1) The typical value corresponds to one capacitor of 10 μF and eight capacitors of 10 nF.  
(2) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE on the ZCE package.  
(3) The typical value corresponds to one capacitor of 10 μF and five capacitors of 10 nF.  
5.9.1.2 I/O and Analog Voltage Decoupling Capacitors  
5-14 summarizes the power-supply decoupling capacitor recommendations.  
5-14. Power-Supply Decoupling Capacitor Characteristics  
PARAMETER  
TYP  
10  
UNIT  
nF  
CVDDA_ADC  
CVDDA1P8V_USB0  
CCVDDA3P3V_USB0  
10  
nF  
10  
nF  
(1)  
CVDDA1P8V_USB1  
10  
nF  
(1)  
CVDDA3P3V_USB1  
10  
nF  
(2)  
CVDDS  
10.04  
μF  
(3)  
CVDDS_DDR  
CVDDS_OSC  
10  
10  
nF  
nF  
nF  
μF  
μF  
nF  
nF  
μF  
μF  
μF  
μF  
μF  
μF  
CVDDS_PLL_DDR  
CVDDS_PLL_CORE_LCD  
10  
(4)  
CVDDS_SRAM_CORE_BG  
10.01  
10.01  
10  
(5)  
CVDDS_SRAM_MPU_BB  
CVDDS_PLL_MPU  
CVDDS_RTC  
10  
(6)  
CVDDSHV1  
10.02  
10.02  
10.02  
10.02  
10.02  
10.06  
(1)(6)  
CVDDSHV2  
(1)(6)  
CVDDSHV3  
(6)  
CVDDSHV4  
(6)  
CVDDSHV5  
(7)  
CVDDSHV6  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
Specifications  
93  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
(1) Not available on the ZCE package.  
(2) Typical values consist of one capacitor of 10 μF and four capacitors of 10 nF.  
(3) For more details on decoupling capacitor requirements for the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface, see 节  
7.7.2.1.2.6 and 7.7.2.1.2.7 when using mDDR(LPDDR) memory devices, 7.7.2.2.2.6 and 7.7.2.2.2.7 when using DDR2  
memory devices, or 7.7.2.3.3.6 and 7.7.2.3.3.7 when using DDR3 or DDR3L memory devices.  
(4) VDDS_SRAM_CORE_BG supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the  
VDDS_SRAM_CORE_BG supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_CORE_BG terminals. A 10 µF is  
recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on  
VDDS_SRAM_CORE_BG terminals.  
(5) VDDS_SRAM_MPU_BB supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the  
VDDS_SRAM_MPU_BB supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_MPU_BB terminals. A 10 µF is  
recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on  
VDDS_SRAM_MPU_BB terminals.  
(6) Typical values consist of one capacitor of 10 μF and two capacitors of 10 nF.  
(7) Typical values consist of one capacitor of 10 μF and six capacitors of 10 nF.  
5.9.2 Output Capacitors  
Internal low dropout output (LDO) regulators require external capacitors to stabilize their outputs. These  
capacitors should be placed as close as possible to the respective terminals of the AM335x device  
. 5-15 summarizes the LDO output capacitor recommendations.  
5-15. Output Capacitor Characteristics  
PARAMETER  
TYP  
UNIT  
μF  
(1)  
CCAP_VDD_SRAM_CORE  
1
1
1
1
(1)(2)  
CCAP_VDD_RTC  
μF  
(1)  
CCAP_VDD_SRAM_MPU  
μF  
(1)  
CCAP_VBB_MPU  
μF  
(1) LDO regulator outputs should not be used as a power source for any external components.  
(2) The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the RTC_KALDO_ENn terminal is high.  
94  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
5-1 shows an example of the external capacitors.  
AM335x Device  
VDDS_PLL_MPU  
CVDDS_PLL_MPU  
MPU  
PLL  
VDD_MPU  
CVDD_MPU  
MPU  
VDDS_PLL_CORE_LCD  
CVDDS_PLL_CORE_LCD  
CORE  
PLL  
LCD  
PLL  
VDD_CORE  
CORE  
CAP_VBB_MPU  
CCAP_VBB_MPU  
CVDD_CORE  
VDDS  
I/O  
CVDDS  
VDDS_SRAM_MPU_BB  
CVDDS_SRAM_MPU_BB  
VDDSHV1  
I/Os  
MPU SRAM  
LDO  
CVDDSHV1  
Back Bias  
LDO  
CAP_VDD_SRAM_MPU  
CCAP_VDD_SRAM_MPU  
VDDSHV2  
I/Os  
CVDDSHV2  
CVDDSHV3  
CVDDSHV4  
CVDDSHV5  
CVDDSHV6  
CVDDS_DDR  
CVDDS_RTC  
VDDS_SRAM_CORE_BG  
CVDDS_SRAM_CORE_BG  
VDDSHV3  
I/Os  
CORE SRAM  
LDO  
Band Gap  
Reference  
CAP_VDD_SRAM_CORE  
CCAP_VDD_SRAM_CORE  
VDDSHV4  
I/Os  
VDDA_3P3V_USBx  
CVDDA_3P3V_USBx  
VDDSHV5  
I/Os  
VSSA_USB  
USB PHYx  
VDDA_1P8V_USBx  
VDDSHV6  
I/Os  
CVDDA_1P8V_USBx  
VSSA_USB  
VDDA_ADC  
VDDS_DDR  
I/Os  
CVDDA_ADC  
ADC  
VDDS_RTC  
I/Os  
VSSA_ADC  
VDDS_OSC  
CVDDS_OSC  
VDDS_PLL_DDR  
CVDDS_PLL_DDR  
DDR  
PLL  
CAP_VDD_RTC  
CCAP_VDD_RTC  
RTC  
A. Decoupling capacitors must be placed as closed as possible to the power terminal. Choose the ground closest to the  
power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor and  
then interconnect the powers.  
B. The decoupling capacitor value depends on the characteristics of the board.  
5-1. External Capacitors  
版权 © 2011–2018, Texas Instruments Incorporated  
Specifications  
95  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
5.10 Touch Screen Controller and Analog-to-Digital Subsystem Electrical Parameters  
The touch screen controller (TSC) and analog-to-digital converter (ADC) subsystem (TSC_ADC) is an 8-  
channel general-purpose ADC with optional support for interleaving TSC conversions for 4-wire, 5-wire, or  
8-wire resistive panels. The TSC_ADC subsystem can be configured for use in one of the following  
applications:  
8 general-purpose ADC channels  
4-wire TSC with 4 general-purpose ADC channels  
5-wire TSC with 3 general-purpose ADC channels  
8-wire TSC.  
5-16 summarizes the TSC_ADC subsystem electrical parameters.  
5-16. TSC_ADC Electrical Parameters  
PARAMETER  
Analog Input  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
(0.5 × VDDA_ADC) +  
0.25  
VREFP(1)  
VDDA_ADC  
V
(0.5 × VDDA_ADC) –  
0.25  
VREFN(1)  
0
V
V
VREFP + VREFN(1)  
VDDA_ADC  
Internal voltage reference  
External voltage reference  
0
VDDA_ADC  
VREFP  
Full-scale input range  
V
VREFN  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Differential nonlinearity  
(DNL)  
–1  
–2  
0.5  
±1  
1
LSB  
Source impedance = 50 Ω  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
2
External voltage reference:  
VREFP – VREFN = 1.8 V  
Integral nonlinearity (INL)  
LSB  
LSB  
Source impedance = 1 kΩ  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
External voltage reference:  
VREFP – VREFN = 1.8 V  
±1  
±2  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Gain error  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Offset error  
±2  
LSB  
pF  
Input sampling capacitance  
5.5  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Input signal: 30-kHz sine wave at  
–0.5-dB full scale  
Signal-to-noise ratio (SNR)  
70  
75  
dB  
dB  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Input signal: 30-kHz sine wave at  
–0.5-dB full scale  
Total harmonic distortion  
(THD)  
96  
Specifications  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
5-16. TSC_ADC Electrical Parameters (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
Spurious free dynamic  
range  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Input signal: 30-kHz sine wave at  
–0.5-dB full scale  
80  
dB  
Internal voltage reference:  
VDDA_ADC = 1.8 V  
Signal-to-noise plus  
distortion  
External voltage reference:  
VREFP – VREFN = 1.8 V  
Input signal: 30-kHz sine wave at  
–0.5-dB full scale  
69  
20  
dB  
VREFP and VREFN input impedance  
Input impedance of  
kΩ  
ƒ = Input frequency  
[1 / ((65.97 × 10–12) × ƒ)]  
Ω
AIN[7:0](2)  
Sampling Dynamics  
ADC clock frequency  
3
MHz  
ADC  
clock  
cycles  
Conversion time  
Acquisition time  
13  
ADC  
257 clock  
cycles  
2
Sampling rate  
ADC clock = 3 MHz  
200 kSPS  
dB  
Channel-to-channel isolation  
100  
2
Touch Screen Switch Drivers  
Pullup and pulldown switch ON resistance (Ron)  
Ω
Pullup and pulldown switch  
current leakage Ileak  
Drive current  
Source impedance = 500 Ω  
0.5  
uA  
25  
6
mA  
kΩ  
kΩ  
Touch screen resistance  
Pen touch detect  
2
(1) VREFP and VREFN must be tied to ground if the internal voltage reference is used.  
(2) This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
Specifications  
97  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
6 Power and Clocking  
6.1 Power Supplies  
6.1.1 Power Supply Slew Rate Requirement  
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the  
maximum slew rate for powering on the supplies to be less than 1.0E +5 V/s. For instance, as shown in 图  
6-1, TI recommends a value greater than 18 µs for the supply ramp slew for a 1.8-V supply.  
Supply value  
t
slew rate < 1E + 5 V/s  
slew > (supply value) / (1E + 5V/s)  
supply value ´ 10 µs  
0
6-1. Power Supply Slew and Slew Rate  
98  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
1.8 V  
1.8 V  
VDDS_RTC  
RTC_PWRONRSTn  
1.8 V  
1.8 V  
PMIC_POWER_EN  
All 1.8-V Supplies  
1.8 V/1.5 V/1.35 V  
3.3 V  
VDDS_DDR  
I/O 3.3-V Supplies  
1.1 V  
VDD_CORE, VDD_MPU  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to  
reach a valid level before RTC reset is released.  
B. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V  
I/O power supplies.  
E. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE. The power sequence shown provides the lowest leakage option.  
F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended  
sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the  
recommended sequence.  
G. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other  
1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V  
from the same power supply.  
6-2. Preferred Power-Supply Sequencing With Dual-Voltage I/Os Configured as 3.3 V  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
99  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
1.8 V  
VDDS_RTC  
1.8 V  
1.8 V  
RTC_PWRONRSTn  
PMIC_POWER_EN  
3.3 V  
1.8 V  
See Notes Below  
All 1.8-V Supplies  
All 3.3-V Supplies  
1.8 V/1.5 V/1.35 V  
VDDS_DDR  
1.1 V  
VDD_CORE, VDD_MPU  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to  
reach a valid level before RTC reset is released.  
B. The 3.3-V I/O power supplies may be ramped simultaneously with the 1.8-V I/O power supplies if the voltage sourced  
by any 3.3-V power supplies does not exceed the voltage sourced by any 1.8-V power supply by more than 2 V.  
Serious reliability issues may occur if the system power supply design allows any 3.3-V I/O power supplies to exceed  
any 1.8-V I/O power supplies by more than 2 V.  
C. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
E. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V  
I/O power supplies.  
F. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE. The power sequence shown provides the lowest leakage option.  
G. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended  
sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the  
recommended sequence.  
H. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other  
1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V  
from the same power supply.  
6-3. Alternate Power-Supply Sequencing With Dual-Voltage I/Os Configured as 3.3 V  
100  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
1.8 V  
1.8V  
VDDS_RTC  
RTC_PWRONRSTn  
1.8 V  
1.8 V  
PMIC_POWER_EN  
All 1.8-V Supplies  
1.8 V/1.5 V/1.35 V  
VDDS_DDR  
3.3 V  
1.1 V  
All 3.3-V Supplies  
VDD_CORE, VDD_MPU  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to  
reach a valid level before RTC reset is released.  
B. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V  
I/O power supplies.  
E. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE. The power sequence shown provides the lowest leakage option.  
F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended  
sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the  
recommended sequence.  
G. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other  
1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V  
from the same power supply.  
6-4. Power-Supply Sequencing With Dual-Voltage I/Os Configured as 1.8 V  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
101  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
1.8 V  
1.1 V  
VDDS_RTC,  
CAP_VDD_RTC  
1.8 V  
RTC_PWRONRSTn  
PMIC_POWER_EN  
1.8 V  
1.8 V  
VDDSHV 1-6  
All other 1.8-V Supplies  
1.8 V/1.5 V/1.35 V  
VDDS_DDR  
3.3 V  
1.1 V  
All 3.3-V Supplies  
VDD_CORE, VDD_MPU  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to  
reach a valid level before RTC reset is released.  
B. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled,  
CAP_VDD_RTC should be sourced from an external 1.1-V power supply.  
C. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
E. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V  
I/O power supplies.  
F. VDDS_RTC should be ramped at the same time or before CAP_VDD_RTC, but these power inputs can be ramped  
independent of other power supplies if PMIC_POWER_EN functionality is not required. If CAP_VDD_RTC is ramped  
after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence  
shown provides the lowest leakage option.  
G. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended  
sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the  
recommended sequence.  
H. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other  
1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V  
from the same power supply.  
6-5. Power-Supply Sequencing With Internal RTC LDO Disabled  
102  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
1.8 V  
VDDS_RTC,  
All other 1.8-V Supplies  
1.8 V/1.5 V/1.35 V  
3.3 V  
VDDS_DDR  
All 3.3-V Supplies  
1.1 V  
VDD_CORE, VDD_MPU  
CAP_VDD_RTC  
PWRONRSTn  
CLK_M_OSC  
A. CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled,  
CAP_VDD_RTC should be sourced from an external 1.1-V power supply. The PMIC_POWER_EN output cannot be  
used when the RTC is disabled.  
B. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V  
I/O power supplies.  
E. VDDS_RTC should be ramped at the same time or before CAP_VDD_RTC, but these power inputs can be ramped  
independent of other power supplies if PMIC_POWER_EN functionality is not required. If CAP_VDD_RTC is ramped  
after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence  
shown provides the lowest leakage option.  
F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended  
sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the  
recommended sequence.  
G. If all the 1.8-V supplies are not sourced from the same power supply, it is required to power up VDDS before other  
1.8-V supplies. Further, it is also recommended to source VDDS and VDDSHvx [x = 1-6] when configured as 1.8V  
from the same power supply.  
6-6. Power-Supply Sequencing With RTC Feature Disabled  
6.1.2 Power-Down Sequencing  
PWRONRSTn input terminal should be taken low, which stops all internal clocks before power supplies  
are turned off. All other external clocks to the device should be shut off.  
The preferred way to sequence power down is to have all the power supplies ramped down sequentially in  
the exact reverse order of the power-up sequencing. In other words, the power supply that has been  
ramped up first should be the last one that should be ramped down. This ensures there would be no  
spurious current paths during the power-down sequence. The VDDS power supply must ramp down after  
all 3.3-V VDDSHVx [1-6] power supplies.  
If it is desired to ramp down VDDS and VDDSHVx [1-6] simultaneously, it should always be ensured that  
the difference between VDDS and VDDSHVx [1-6] during the entire power-down sequence is <2 V. Any  
violation of this could cause reliability risks for the device. TI recommends maintaining VDDS 1.5V as all  
the other supplies fully ramp down to minimize in-rush currents.  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
103  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
If none of the VDDSHVx [1-6] power supplies are configured as 3.3 V, the VDDS power supply may ramp  
down along with the VDDSHVx [1-6] supplies or after all the VDDSHVx [1-6] supplies have ramped down.  
TI recommends maintaining VDDS 1.5V as all the other supplies fully ramp down to minimize in-rush  
currents.  
6.1.3 VDD_MPU_MON Connections  
6-7 shows the VDD_MPU_MON connectivity. VDD_MPU_MON connectivity is available only on the  
ZCZ package.  
VDD_MPU  
Power  
Management  
IC  
AM335x Device  
VDD_MPU_MON  
Vfeedback  
Connection for VDD_MPU_MON if voltage monitoring is used  
VDD_MPU  
Power  
Source  
VDD_MPU_MON  
AM335x Device  
Preferred connection for VDD_MPU_MON if voltage monitoring is NOT used  
VDD_MPU  
Power  
Source  
AM335x Device  
VDD_MPU_MON  
N/C  
Optional connection for VDD_MPU_MON if voltage monitoring is NOT used  
6-7. VDD_MPU_MON Connectivity  
104  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
6.1.4 Digital Phase-Locked Loop Power Supply Requirements  
The digital phase-locked loop (DPLL) provides all interface clocks and functional clocks to the processor  
of the AM335x device. The AM335x device integrates five different DPLLs—Core DPLL, Per DPLL, LCD  
DPLL, DDR DPLL, MPU DPLL.  
6-8 shows the power supply connectivity implemented in the AM335x device. 6-1 provides the power  
supply requirements for the DPLL.  
MPU  
PLL  
PER  
PLL  
VDDS_PLL_MPU  
VDDA1P8V_USB0  
CORE  
PLL  
DDR  
PLL  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
LCD  
PLL  
6-8. DPLL Power Supply Connectivity  
6-1. DPLL Power Supply Requirements  
SUPPLY NAME  
DESCRIPTION  
MIN NOM MAX  
UNIT  
Supply voltage range for USBPHY and PER DPLL, Analog, 1.8 V  
Max peak-to-peak supply noise  
1.71 1.8  
1.71 1.8  
1.71 1.8  
1.71 1.8  
1.89  
V
VDDA1P8V_USB0  
50 mV (p-p)  
Supply voltage range for DPLL MPU, analog  
Max peak-to-peak supply noise  
1.89  
V
VDDS_PLL_MPU  
50 mV (p-p)  
Supply voltage range for DPLL CORE and LCD, analog  
Max peak-to-peak supply noise  
1.89  
V
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
50 mV (p-p)  
Supply voltage range for DPLL DDR, analog  
Max peak-to-peak supply noise  
1.89  
V
50 mV (p-p)  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
105  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
6.2 Clock Specifications  
6.2.1 Input Clock Specifications  
The AM335x device has two clock inputs. Each clock input passes through an internal oscillator which can  
be connected to an external crystal circuit (oscillator mode) or external LVCMOS square-wave digital clock  
source (bypass mode). The oscillators automatically operate in bypass mode when their input is  
connected to an external LVCMOS square-wave digital clock source. The oscillator associated with a  
specific clock input must be enabled when the clock input is being used in either oscillator mode or bypass  
mode.  
The OSC1 oscillator provides a 32.768-kHz reference clock to the real-time clock (RTC) and is connected  
to the RTC_XTALIN and RTC_XTALOUT terminals. This clock source is referred to as the 32K oscillator  
(CLK_32K_RTC) in the AM335x and AMIC110 Sitara Processors Technical Reference Manual. OSC1 is  
disabled by default after power is applied. This clock input is optional and may not be required if the RTC  
is configured to receive a clock from the internal 32k RC oscillator (CLK_RC32K) or peripheral PLL  
(CLK_32KHZ) which receives a reference clock from the OSC0 input.  
The OSC0 oscillator provides a 19.2-MHz, 24-MHz, 25-MHz, or 26-MHz reference clock which is used to  
clock all non-RTC functions and is connected to the XTALIN and XTALOUT terminals. This clock source is  
referred to as the master oscillator (CLK_M_OSC) in the AM335x and AMIC110 Sitara Processors  
Technical Reference Manual. OSC0 is enabled by default after power is applied.  
For more information related to recommended circuit topologies and crystal oscillator circuit requirements  
for these clock inputs, see 6.2.2.  
6.2.2 Input Clock Requirements  
6.2.2.1 OSC0 Internal Oscillator Clock Source  
6-9 shows the recommended crystal circuit. TI recommends that preproduction printed-circuit board  
(PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper oscillator  
operation when combined with production crystal circuit components. In most cases, Rbias is not required  
and Rd is a 0-Ω resistor. These resistors may be removed from production PCB designs after evaluating  
oscillator performance with production crystal circuit components installed on preproduction PCBs.  
The XTALIN terminal has a 15- to 40-kΩ internal pulldown resistor which is enabled when OSC0 is  
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which  
may increase leakage current through the oscillator input buffer.  
106  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
AM335x  
XTALIN  
VSS_OSC  
XTALOUT  
C1  
C2  
Crystal  
Optional Rd  
Optional Rbias  
Copyright © 2016, Texas Instruments Incorporated  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the AM335x package.  
Parasitic capacitance to the VSS_OSC and respective crystal circuit component grounds should be connected directly  
to the nearest PCB digital ground (VSS).  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL = [(C1  
×
C2) / (C1 + C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer plus  
any mutual capacitance (Cpkg + CPCB) seen across the AM335x XTALIN and XTALOUT signals. For recommended  
values of crystal circuit components, see 6-2.  
6-9. OSC0 Crystal Circuit Schematic  
6-2. OSC0 Crystal Circuit Requirements  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Crystal parallel resonance  
frequency  
Fundamental mode oscillation only  
19.2, 24,  
25, or 26  
MHz  
ƒxtal  
Crystal frequency stability  
and tolerance(1)  
–50  
50  
ppm  
pF  
C
shunt 5 pF  
Cshunt > 5 pF  
shunt 5 pF  
12  
18  
12  
18  
24  
24  
24  
24  
7
CC1  
C1 capacitance  
C
CC2  
C2 capacitance  
pF  
pF  
Cshunt > 5 pF  
Cshunt  
Shunt capacitance  
ƒxtal = 19.2 MHz, oscillator has nominal  
negative resistance of 272 Ω and worst-  
case negative resistance of 163 Ω  
54.4  
48.0  
46.6  
45.3  
ƒxtal = 24 MHz, oscillator has nominal  
negative resistance of 240 Ω and worst-  
case negative resistance of 144 Ω  
Crystal effective series  
resistance  
ESR  
Ω
ƒxtal = 25 MHz, oscillator has nominal  
negative resistance of 233 Ω and worst-  
case negative resistance of 140 Ω  
ƒxtal = 26 MHz, oscillator has nominal  
negative resistance of 227 Ω and worst-  
case negative resistance of 137 Ω  
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
107  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
6-3. OSC0 Crystal Circuit Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
0.01  
0.01  
MAX  
UNIT  
ZCE package  
ZCZ package  
Shunt capacitance of  
package  
Cpkg  
pF  
The actual values of the ESR, ƒxtal, and CL should be used to yield a  
typical crystal power dissipation value. Using the maximum values  
specified for ESR, ƒxtal, and CL parameters yields a maximum power  
dissipation value.  
Pxtal = 0.5 ESR (2 π ƒxtal  
Pxtal  
CL VDDS_OSC)2  
tsX  
Start-up time  
1.5  
ms  
VDD_CORE (min.)  
VDD_CORE  
VSS  
VDDS_OSC (min.)  
VDDS_OSC  
XTALOUT  
VSS  
tsX  
Time  
6-10. OSC0 Start-Up Time  
108  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
6.2.2.2 OSC0 LVCMOS Digital Clock Source  
6-11 shows the recommended oscillator connections when OSC0 is connected to an LVCMOS square-  
wave digital clock source. The LVCMOS clock source is connected to the XTALIN terminal. The ground  
for the LVCMOS clock source and VSS_OSC should be connected directly to the nearest PCB digital  
ground (VSS). In this mode of operation, the XTALOUT terminal should not be used to source any  
external components. The PCB design should provide a mechanism to disconnect the XTALOUT terminal  
from any external components or signal traces that may couple noise into OSC0 via the XTALOUT  
terminal.  
The XTALIN terminal has a 15- to 40-kΩ internal pulldown resistor which is enabled when OSC0 is  
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which  
may increase leakage current through the oscillator input buffer.  
AM335x  
XTALIN  
VSS_OSC  
XTALOUT  
VDDS_OSC  
LVCMOS  
Digital  
Clock  
Source  
Copyright © 2016, Texas Instruments Incorporated  
6-11. OSC0 LVCMOS Circuit Schematic  
6-4. OSC0 LVCMOS Reference Clock Requirements  
NAME  
ƒ(XTALIN)  
DESCRIPTION  
Frequency, LVCMOS reference clock  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
19.2, 24, 25,  
or 26  
Frequency, LVCMOS reference clock stability and tolerance(1)  
Duty cycle, LVCMOS reference clock period  
Jitter peak-to-peak, LVCMOS reference clock period  
Time, LVCMOS reference clock rise  
–50  
45%  
–1%  
50  
55%  
1%  
5
tdc(XTALIN)  
tjpp(XTALIN)  
tR(XTALIN)  
tF(XTALIN)  
ns  
ns  
Time, LVCMOS reference clock fall  
5
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.  
6.2.2.3 OSC1 Internal Oscillator Clock Source  
6-12 shows the recommended crystal circuit for OSC1 of the ZCE package and 6-13 shows the  
recommended crystal circuit for OSC1 of the ZCZ package. TI recommends that preproduction PCB  
designs include the two optional resistors Rbias and Rd in case they are required for proper oscillator  
operation when combined with production crystal circuit components. In most cases, Rbias is not required  
and Rd is a 0-Ω resistor. These resistors may be removed from production PCB designs after evaluating  
oscillator performance with production crystal circuit components installed on preproduction PCBs.  
The RTC_XTALIN terminal has a 10- to 40-kΩ internal pullup resistor which is enabled when OSC1 is  
disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level  
which may increase leakage current through the oscillator input buffer.  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
109  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
AM335x  
(ZCE Package)  
RTC_XTALIN  
RTC_XTALOUT  
Optional Rbias  
Optional Rd  
Crystal  
C1  
C2  
Copyright © 2016, Texas Instruments Incorporated  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the AM335x package.  
Parasitic capacitance to the PCB ground and other signals should be minimized to reduce noise coupled into the  
oscillator. VSS_RTC and respective crystal circuit component grounds should be connected directly to the nearest  
PCB digital ground (VSS).  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL = [(C1  
×
C2) / (C1 + C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer plus  
any mutual capacitance (Cpkg + CPCB) seen across the AM335x RTC_XTALIN and RTC_XTALOUT signals. For  
recommended values of crystal circuit components, see 6-5.  
6-12. OSC1 (ZCE Package) Crystal Circuit Schematic  
AM335x  
(ZCZ Package)  
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
C1  
C2  
Crystal  
Optional Rd  
Optional Rbias  
Copyright © 2016, Texas Instruments Incorporated  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the AM335x package.  
Parasitic capacitance to the PCB ground and other signals should be minimized to reduce noise coupled into the  
oscillator. VSS_RTC and respective crystal circuit component grounds should be connected directly to the nearest  
PCB digital ground (VSS).  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL = [(C1  
×
C2) / (C1 + C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer plus  
any mutual capacitance (Cpkg + CPCB) seen across the AM335x RTC_XTALIN and RTC_XTALOUT signals. For  
recommended values of crystal circuit components, see 6-5.  
6-13. OSC1 (ZCZ Package) Crystal Circuit Schematic  
110  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
6-5. OSC1 Crystal Circuit Requirements  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Crystal parallel resonance  
frequency  
Fundamental mode oscillation only  
32.768  
kHz  
Maximum RTC error = 10.512 minutes  
per year  
ƒxtal  
–20.0  
–50.0  
20.0  
50.0  
ppm  
ppm  
Crystal frequency stability  
and tolerance(1)  
Maximum RTC error = 26.28 minutes per  
year  
CC1  
C1 capacitance  
C2 capacitance  
Shunt capacitance  
12.0  
12.0  
24.0  
24.0  
1.5  
pF  
pF  
pF  
CC2  
Cshunt  
ƒxtal = 32.768 kHz, oscillator has nominal  
negative resistance of 725 kΩ and worst-  
case negative resistance of 250 kΩ  
Crystal effective series  
resistance  
ESR  
80  
kΩ  
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.  
6-6. OSC1 Crystal Circuit Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
0.17  
0.01  
MAX  
UNIT  
pF  
ZCE package  
ZCZ package  
Shunt capacitance of  
package  
Cpkg  
pF  
The actual values of the ESR, ƒxtal, and CL should be used to yield a  
typical crystal power dissipation value. Using the maximum values  
specified for ESR, ƒxtal, and CL parameters yields a maximum power  
dissipation value.  
Pxtal = 0.5 ESR (2 π ƒxtal CL  
Pxtal  
VDDS_RTC)2  
tsX  
Start-up time  
2
s
CAP_VDD_RTC (min.)  
CAP_VDD_RTC  
VSS_RTC  
VDDS_RTC (min.)  
VDDS_RTC  
RTC_XTALOUT  
VSS_RTC  
tsX  
Time  
6-14. OSC1 Start-up Time  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
111  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
6.2.2.4 OSC1 LVCMOS Digital Clock Source  
6-15 shows the recommended oscillator connections when OSC1 of the ZCE package is connected to  
an LVCMOS square-wave digital clock source and 6-16 shows the recommended oscillator  
connections when OSC1 of the ZCZ package is connected to an LVCMOS square-wave digital clock  
source. The LVCMOS clock source is connected to the RTC_XTALIN terminal. The ground for the  
LVCMOS clock source and VSS_RTC of the ZCZ package should be connected directly to the nearest  
PCB digital ground (VSS). In this mode of operation, the RTC_XTALOUT terminal should not be used to  
source any external components. The PCB design should provide a mechanism to disconnect the  
RTC_XTALOUT terminal from any external components or signal traces that may couple noise into OSC1  
through the RTC_XTALOUT terminal.  
The RTC_XTALIN terminal has a 10- to 40-kΩ internal pullup resistor which is enabled when OSC1 is  
disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level  
which may increase leakage current through the oscillator input buffer.  
AM335x  
(ZCE Package)  
RTC_XTALIN  
RTC_XTALOUT  
VDDS_RTC  
LVCMOS  
Digital  
Clock  
N/C  
Source  
Copyright © 2016, Texas Instruments Incorporated  
6-15. OSC1 (ZCE Package) LVCMOS Circuit Schematic  
AM335x  
(ZCZ Package)  
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
VDDS_RTC  
LVCMOS  
Digital  
Clock  
N/C  
Source  
Copyright © 2016, Texas Instruments Incorporated  
6-16. OSC1 (ZCZ Package) LVCMOS Circuit Schematic  
6-7. OSC1 LVCMOS Reference Clock Requirements  
NAME  
DESCRIPTION  
MIN  
TYP MAX  
32.768  
UNIT  
Frequency, LVCMOS reference clock  
kHz  
Maximum RTC error =  
10.512 minutes/year  
–20  
–50  
20  
50  
ppm  
ppm  
ƒ(RTC_XTALIN)  
Frequency, LVCMOS reference clock  
stability and tolerance(1)  
Maximum RTC error = 26.28  
minutes/year  
tdc(RTC_XTALIN)  
tjpp(RTC_XTALIN)  
tR(RTC_XTALIN)  
tF(RTC_XTALIN)  
Duty cycle, LVCMOS reference clock period  
45%  
–1%  
55%  
1%  
5
Jitter peak-to-peak, LVCMOS reference clock period  
Time, LVCMOS reference clock rise  
ns  
ns  
Time, LVCMOS reference clock fall  
5
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.  
112 Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
6.2.2.5 OSC1 Not Used  
6-17 shows the recommended oscillator connections when OSC1 of the ZCE package is not used and  
6-18 shows the recommended oscillator connections when OSC1 of the ZCZ package is not used. An  
internal 10-kΩ pullup on the RTC_XTALIN terminal is turned on when OSC1 is disabled to prevent this  
input from floating to an invalid logic level which may increase leakage current through the oscillator input  
buffer. OSC1 is disabled by default after power is applied. Therefore, both RTC_XTALIN and  
RTC_XTALOUT terminals should be a no connect (NC) when OSC1 is not used.  
AM335x  
(ZCE Package)  
RTC_XTALIN  
RTC_XTALOUT  
N/C  
N/C  
Copyright © 2016, Texas Instruments Incorporated  
6-17. OSC1 (ZCE Package) Not Used Schematic  
AM335x  
(ZCZ Package)  
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
N/C  
N/C  
Copyright © 2016, Texas Instruments Incorporated  
6-18. OSC1 (ZCZ Package) Not Used Schematic  
版权 © 2011–2018, Texas Instruments Incorporated  
Power and Clocking  
113  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
6.2.3 Output Clock Specifications  
The AM335x device has two clock output signals. The CLKOUT1 signal is always a replica of the OSC0  
input clock which is referred to as the master oscillator (CLK_M_OSC) in the AM335x and AMIC110 Sitara  
Processors Technical Reference Manual. The CLKOUT2 signal can be configured to output the OSC1  
input clock, which is referred to as the 32K oscillator (CLK_32K_RTC) in the AM335x and AMIC110 Sitara  
Processors Technical Reference Manual, or four other internal clocks. For more information related to  
configuring these clock output signals, see the CLKOUT Signals section of the AM335x and AMIC110  
Sitara Processors Technical Reference Manual.  
6.2.4 Output Clock Characteristics  
The AM335x CLKOUT1 and CLKOUT2 clock outputs should not be used as a synchronous  
clock for any of the peripheral interfaces because they were not timing closed to any other  
signals. These clock outputs also were not designed to source any time critical external  
circuits that require a low jitter reference clock. The jitter performance of these outputs is  
unpredictable due to complex combinations of many system variables. For example,  
CLKOUT2 may be sourced from several PLLs with each PLL supporting many configurations  
that yield different jitter performance. There are also other unpredictable contributors to jitter  
performance such as application specific noise or crosstalk into the clock circuits. Therefore,  
there are no plans to specify jitter performance for these outputs.  
6.2.4.1 CLKOUT1  
The CLKOUT1 signal can be output on the XDMA_EVENT_INTR0 terminal. This terminal connects to one  
of seven internal signals via configurable multiplexers. The XDMA_EVENT_INTR0 multiplexer must be  
configured for Mode 3 to connect the CLKOUT1 signal to the XDMA_EVENT_INTR0 terminal.  
The default reset configuration of the XDMA_EVENT_INTR0 multiplexer is selected by the logic level  
applied to the LCD_DATA5 terminal on the rising edge of PWRONRSTn. The XDMA_EVENT_INTR0  
multiplexer is configured to Mode 7 if the LCD_DATA5 terminal is low on the rising edge of PWRONRSTn  
or Mode 3 if the LCD_DATA5 terminal is high on the rising edge of PWRONRSTn. This allows the  
CLKOUT1 signal to be output on the XDMA_EVENT_INTR0 terminal without software intervention. In this  
mode, the output is held low while PWRONRSTn is active and begins to toggle after PWRONRSTn is  
released.  
6.2.4.2 CLKOUT2  
The CLKOUT2 signal can be output on the XDMA_EVENT_INTR1 terminal. This terminal connects to one  
of seven internal signals via configurable multiplexers. The XDMA_EVENT_INTR1 multiplexer must be  
configured for Mode 3 to connect the CLKOUT2 signal to the XDMA_EVENT_INTR1 terminal.  
The default reset configuration of the XDMA_EVENT_INTR1 multiplexer is always Mode 7. Software must  
configure the XDMA_EVENT_INTR1 multiplexer to Mode 3 for the CLKOUT2 signal to be output on the  
XDMA_EVENT_INTR1 terminal.  
114  
Power and Clocking  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7 Peripheral Information and Timings  
The AM335x device contains many peripheral interfaces. In order to reduce package size and lower  
overall system cost while maintaining maximum functionality, many of the AM335x terminals can multiplex  
up to eight signal functions. Although there are many combinations of pin multiplexing that are possible,  
only a certain number of sets, called I/O Sets, are valid due to timing limitations. These valid I/O Sets were  
carefully chosen to provide many possible application scenarios for the user.  
Texas Instruments has developed a Windows-based application called Pin Mux Utility that helps a system  
designer select the appropriate pin-multiplexing configuration for their AM335x-based product design. The  
Pin Mux Utility provides a way to select valid I/O Sets of specific peripheral interfaces to ensure the pin-  
multiplexing configuration selected for a design only uses valid I/O Sets supported by the AM335x device.  
7.1 Parameter Information  
The data provided in the following Timing Requirements and Switching Characteristics tables assumes the  
device is operating within the Recommended Operating Conditions defined in 5, unless otherwise  
noted.  
7.1.1 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data manual do not include delays by board routings. As a  
good board design practice, such delays must always be taken into account. Timing values may be  
adjusted by increasing or decreasing such delays. TI recommends using the available I/O buffer  
information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external  
logic hardware such as buffers may be used to compensate any timing differences.  
The timing parameter values specified in this data manual assume the SLEWCTRL bit in each pad control  
register is configured for fast mode (0b).  
For the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface, it is not necessary to use the IBIS  
models to analyze timing characteristics. TI provides a PCB routing rules solution that describes the  
routing rules to ensure the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface timings are met.  
7.2 Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
7.3 OPP50 Support  
Some peripherals and features have limited support when the device is operating in OPP50. A complete  
list of these limitations follows.  
Not supported when operating in OPP50:  
Reduced performance when operating in  
OPP50:  
CPSW  
DDR2  
DDR3  
DEBUGSS-JTAG  
GPMC Synchronous Mode  
LCDC Raster Mode  
LPDDR  
DEBUGSS-Trace  
GPMC Asynchronous Mode  
LCDC LIDD Mode  
MDIO  
McASP  
PRU-ICSS MII  
McSPI  
MMCSD  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
115  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.4 Controller Area Network (CAN)  
For more information, see the Controller Area Network (CAN) section of the AM335x and AMIC110 Sitara  
Processors Technical Reference Manual.  
7.4.1 DCAN Electrical Data and Timing  
7-1. DCAN Timing Conditions  
(see 7-1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
10  
pF  
7-2. Timing Requirements for DCANx Receive  
(see 7-1)  
NO.  
MIN  
MAX  
1
H + 2(1)  
UNIT  
Mbps  
ns  
ƒbaud(baud)  
tw(RX)  
(1) H = Period of baud rate, 1 / programmed baud rate  
Maximum programmable baud rate  
1
Pulse duration, receive data bit  
H – 2(1)  
7-3. Switching Characteristics for DCANx Transmit  
(see 7-1)  
NO.  
PARAMETER  
Maximum programmable baud rate  
Pulse duration, transmit data bit  
MIN  
MAX  
1
H + 2(1)  
UNIT  
Mbps  
ns  
ƒbaud(baud)  
tw(TX)  
2
H – 2(1)  
(1) H = Period of baud rate, 1 / programmed baud rate  
1
DCANx_RX  
2
DCANx_TX  
7-1. DCANx Timings  
116  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.5 DMTimer  
7.5.1 DMTimer Electrical Data and Timing  
7-4. DMTimer Timing Conditions  
(see 7-1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
10  
pF  
7-5. Timing Requirements for DMTimer [1-7]  
(see 7-2)  
NO.  
MIN  
MAX  
UNIT  
1
tc(TCLKIN)  
Cycle time, TCLKIN  
4P + 1(1)  
ns  
(1) P = Period of PICLKOCP (interface clock).  
7-6. Switching Characteristics for DMTimer [4-7]  
(see 7-2)  
NO.  
PARAMETER  
MIN  
4P – 3(1)  
4P – 3(1)  
MAX  
UNIT  
ns  
2
3
tw(TIMERxH)  
tw(TIMERxL)  
Pulse duration, high  
Pulse duration, low  
ns  
(1) P = Period of PICLKTIMER (functional clock).  
1
TCLKIN  
2
3
TIMER[x]  
7-2. Timer Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
117  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.6 Ethernet Media Access Controller (EMAC) and Switch  
7.6.1 EMAC and Switch Electrical Data and Timing  
The EMAC and Switch implemented in the AM335x device supports GMII mode, but the AM335x design  
does not pin out 9 of the 24 GMII signals. This was done to reduce the total number of package terminals.  
Therefore, the AM335x device does not support GMII mode. MII mode is supported with the remaining  
GMII signals.  
The AM335x and AMIC110 Sitara Processors Technical Reference Manual and this document may  
reference internal signal names when discussing peripheral input and output signals because many of the  
AM335x package terminals can be multiplexed to one of several peripheral signals. For example, the  
AM335x terminal names for port 1 of the EMAC and switch have been changed from GMII to MII to  
indicate their Mode 0 function, but the internal signal is named GMII. However, documents that describe  
the Ethernet switch reference these signals by their internal signal name. For a cross-reference of internal  
signal names to terminal names, see 4-2.  
Operation of the EMAC and switch is not supported for OPP50.  
7-7. EMAC and Switch Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
5(1)  
5(1)  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
(1) Except when specified otherwise.  
7.6.1.1 EMAC/Switch MDIO Electrical Data and Timing  
7-8. Timing Requirements for MDIO_DATA  
(see 7-3)  
NO.  
1
MIN  
TYP  
MAX  
UNIT  
ns  
tsu(MDIO-MDC) Setup time, MDIO valid before MDC high  
90  
0
2
th(MDIO-MDC)  
Hold time, MDIO valid from MDC high  
ns  
1
2
MDIO_CLK (Output)  
MDIO_DATA (Input)  
7-3. MDIO_DATA Timing - Input Mode  
7-9. Switching Characteristics for MDIO_CLK  
(see 7-4)  
NO.  
1
PARAMETER  
Cycle time, MDC  
MIN  
400  
160  
160  
TYP  
MAX  
UNIT  
ns  
tc(MDC)  
2
tw(MDCH)  
tw(MDCL)  
Pulse duration, MDC high  
Pulse duration, MDC low  
ns  
3
ns  
118  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
1
2
3
MDIO_CLK  
7-4. MDIO_CLK Timing  
7-10. Switching Characteristics for MDIO_DATA  
(see 7-5)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
(P*0.5)  
-10(1)  
1
td(MDC-MDIO)  
Delay time, MDC high to MDIO valid  
10  
ns  
(1) P = MDIO_CLK Period  
1
MDIO_CLK (Output)  
MDIO_DATA (Output)  
7-5. MDIO_DATA Timing - Output Mode  
7.6.1.2 EMAC and Switch MII Electrical Data and Timing  
7-11. Timing Requirements for GMII[x]_RXCLK - MII Mode  
(see 7-6)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(RX_CLK)  
Cycle time, RX_CLK  
ns  
ns  
ns  
ns  
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Pulse duration, RX_CLK high  
Pulse duration, RX_CLK low  
Transition time, RX_CLK  
140  
260  
14  
26  
5
5
1
4
2
3
GMII[x]_RXCLK  
4
7-6. GMII[x]_RXCLK Timing - MII Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
119  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-12. Timing Requirements for GMII[x]_TXCLK - MII Mode  
(see 7-7)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
1
2
3
4
tc(TX_CLK)  
Cycle time, TX_CLK  
40.004  
ns  
ns  
ns  
ns  
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Pulse duration, TX_CLK high  
Pulse duration, TX_CLK low  
Transition time, TX_CLK  
26  
26  
5
140  
260  
14  
5
1
4
2
3
GMII[x]_TXCLK  
4
7-7. GMII[x]_TXCLK Timing - MII Mode  
7-13. Timing Requirements for GMII[x]_RXD[3:0], GMII[x]_RXDV, and GMII[x]_RXER - MII Mode  
(see 7-8)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO  
.
UNIT  
MIN  
MAX  
MIN  
MAX  
tsu(RXD-RX_CLK)  
Setup time, RXD[3:0] valid before RX_CLK  
Setup time, RX_DV valid before RX_CLK  
Setup time, RX_ER valid before RX_CLK  
Hold time RXD[3:0] valid after RX_CLK  
Hold time RX_DV valid after RX_CLK  
Hold time RX_ER valid after RX_CLK  
1
2
tsu(RX_DV-RX_CLK)  
tsu(RX_ER-RX_CLK)  
th(RX_CLK-RXD)  
8
8
ns  
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
8
8
ns  
1
2
GMII[x]_MRCLK (Input)  
GMII[x]_RXD[3:0], GMII[x]_RXDV,  
GMII[x]_RXER (Inputs)  
7-8. GMII[x]_RXD[3:0], GMII[x]_RXDV, GMII[x]_RXER Timing - MII Mode  
120  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-14. Switching Characteristics for GMII[x]_TXD[3:0], and GMII[x]_TXEN - MII Mode  
(see 7-9)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(TX_CLK-TXD)  
td(TX_CLK-TX_EN)  
Delay time, TX_CLK high to TXD[3:0] valid  
Delay time, TX_CLK to TX_EN valid  
1
5
25  
5
25 ns  
1
GMII[x]_TXCLK (input)  
GMII[x]_TXD[3:0],  
GMII[x]_TXEN (outputs)  
7-9. GMII[x]_TXD[3:0], GMII[x]_TXEN Timing - MII Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
121  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.3 EMAC and Switch RMII Electrical Data and Timing  
7-15. Timing Requirements for RMII[x]_REFCLK - RMII Mode  
(see 7-10)  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
2
3
tc(REF_CLK)  
tw(REF_CLKH)  
tw(REF_CLKL)  
Cycle time, REF_CLK  
19.999  
20.001  
13  
Pulse duration, REF_CLK high  
Pulse duration, REF_CLK low  
7
7
ns  
13  
ns  
1
2
RMII[x]_REFCLK  
(Input)  
3
7-10. RMII[x]_REFCLK Timing - RMII Mode  
7-16. Timing Requirements for RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER - RMII Mode  
(see 7-11)  
NO.  
MIN  
TYP  
MAX  
UNIT  
tsu(RXD-REF_CLK)  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
Setup time, RXD[1:0] valid before REF_CLK  
Setup time, CRS_DV valid before REF_CLK  
Setup time, RX_ER valid before REF_CLK  
Hold time RXD[1:0] valid after REF_CLK  
Hold time, CRS_DV valid after REF_CLK  
Hold time, RX_ER valid after REF_CLK  
1
4
ns  
2
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
2
ns  
1
2
RMII[x]_REFCLK (input)  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RXER (inputs)  
7-11. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing - RMII Mode  
122  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-17. Switching Characteristics for RMII[x]_TXD[1:0], and RMII[x]_TXEN - RMII Mode  
(see 7-12)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(REF_CLK-TXD)  
td(REF_CLK-TXEN)  
Delay time, REF_CLK high to TXD[1:0] valid Delay time,  
REF_CLK to TXEN valid  
1
2
13  
ns  
1
RMII[x]_REFCLK (Input)  
RMII[x]_TXD[1:0],  
RMII[x]_TXEN (Outputs)  
7-12. RMII[x]_TXD[1:0], RMII[x]_TXEN Timing - RMII Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
123  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.4 EMAC and Switch RGMII Electrical Data and Timing  
7-18. Timing Requirements for RGMII[x]_RCLK - RGMII Mode  
(see 7-13)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
TYP  
NO.  
UNIT  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
1
2
tc(RXC)  
Cycle time, RXC  
360  
440  
36  
44  
7.2  
8.8 ns  
Pulse duration, RXC  
high  
tw(RXCH)  
160  
160  
240  
16  
16  
24  
3.6  
3.6  
4.4 ns  
3
4
tw(RXCL)  
tt(RXC)  
Pulse duration, RXC low  
Transition time, RXC  
240  
24  
4.4 ns  
0.75  
0.75  
0.75 ns  
1
2
3
RGMII[x]_RCLK  
7-13. RGMII[x]_RCLK Timing - RGMII Mode  
7-19. Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL - RGMII Mode  
(see 7-14)  
10 Mbps  
TYP MAX  
100 Mbps  
1000 Mbps  
MIN TYP MAX  
NO.  
UNIT  
MIN  
MIN  
TYP MAX  
Setup time, RD[3:0] valid  
before RXC high or low  
tsu(RD-RXC)  
tsu(RX_CTL-RXC)  
th(RXC-RD)  
1
1
1
1
1
1
1
1
1
1
2
ns  
Setup time, RX_CTL valid  
before RXC high or low  
1
1
1
Hold time, RD[3:0] valid after  
RXC high or low  
ns  
Hold time, RX_CTL valid after  
RXC high or low  
th(RXC-RX_CTL)  
RGMII[x]_RCLK(A)  
1
1st Half-byte  
2nd Half-byte  
2
RGMII[x]_RD[3:0](B)  
RGMII[x]_RCTL(B)  
RGRXD[3:0]  
RXDV  
RGRXD[7:4]  
A. RGMII[x]_RCLK must be externally delayed relative to the RGMII[x]_RD[3:0] and RGMII[x]_RCTL signals to meet the  
respective timing requirements.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the  
rising edge of RGMII[x]_RCLK and data bits 7-4 on the falling edge of RGMII[x]_RCLK. Similarly, RGMII[x]_RCTL  
carries RXDV on rising edge of RGMII[x]_RCLK and RXERR on falling edge of RGMII[x]_RCLK.  
7-14. RGMII[x]_RD[3:0], RGMII[x]_RCTL Timing - RGMII Mode  
7-20. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode  
(see 7-15)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
tc(TXC)  
Cycle time, TXC  
360  
440  
36  
44  
7.2  
8.8 ns  
124  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-20. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode (continued)  
(see 7-15)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
160  
160  
MAX  
240  
MIN  
16  
MAX  
24  
MIN  
3.6  
MAX  
Pulse duration, TXC  
high  
2
3
tw(TXCH)  
tw(TXCL)  
4.4 ns  
Pulse duration, TXC low  
240  
16  
24  
3.6  
4.4 ns  
1
2
3
RGMII[x]_TCLK  
7-15. RGMII[x]_TCLK Timing - RGMII Mode  
7-21. Switching Characteristics for RGMII[x]_TD[3:0], and RGMII[x]_TCTL - RGMII Mode  
(see 7-16)  
10 Mbps  
TYP MAX  
100 Mbps  
1000 Mbps  
MIN TYP MAX  
NO.  
PARAMETER  
UNIT  
MIN  
–0.5  
–0.5  
MIN  
TYP MAX  
tsk(TD-TXC)  
TD to TXC output skew  
0.5  
0.5  
–0.5  
–0.5  
0.5  
0.5  
–0.5  
–0.5  
0.5  
0.5  
1
ns  
tsk(TX_CTL-TXC)  
TX_CTL to TXC output skew  
RGMII[x]_TCLK(A)  
1
1
RGMII[x]_TD[3:0](B)  
RGMII[x]_TCTL(B)  
1st Half-byte  
2nd Half-byte  
TXEN  
TXERR  
A. The EMAC and switch implemented in the AM335x device supports internal delay mode, but timing closure was not  
performed for this mode of operation. Therefore, the AM335x device does not support internal delay mode.  
B. Data and control information is transmitted using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on  
the rising edge of RGMII[x]_TCLK and data bits 7-4 on the falling edge of RGMII[x]_TCLK. Similarly, RGMII[x]_TCTL  
carries TXEN on rising edge of RGMII[x]_TCLK and TXERR of falling edge of RGMII[x]_TCLK.  
7-16. RGMII[x]_TD[3:0], RGMII[x]_TCTL Timing - RGMII Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
125  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7 External Memory Interfaces  
The device includes the following external memory interfaces:  
General-purpose memory controller (GPMC)  
mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface (EMIF)  
7.7.1 General-Purpose Memory Controller (GPMC)  
For more information, see the Memory Subsystem and General-Purpose Memory Controller  
section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.  
The GPMC is the unified memory controller used to interface external memory devices such as:  
Asynchronous SRAM-like memories and ASIC devices  
Asynchronous page mode and synchronous burst NOR flash  
NAND flash  
7.7.1.1 GPMC and NOR Flash—Synchronous Mode  
7-23 and 7-24 assume testing over the recommended operating conditions and electrical  
characteristic conditions shown in 7-22 (see 7-17 through 7-21).  
7-22. GPMC and NOR Flash Timing Conditions—Synchronous Mode  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
7-23. GPMC and NOR Flash Timing Requirements—Synchronous Mode  
OPP100  
MIN  
OPP50  
NO.  
UNIT  
MAX  
MIN  
MAX  
Setup time, input data gpmc_ad[15:0] valid before output clock  
gpmc_clk high  
F12 tsu(dV-clkH)  
3.2  
13.2  
ns  
Industrial extended  
Hold time, input data gpmc_ad[15:0]  
temperature  
4.74  
4.74  
F13 th(clkH-dV)  
valid after output clock gpmc_clk  
(-40°C to 125°C)  
ns  
ns  
ns  
high  
All other temperature ranges  
4.74  
3.2  
2.75  
13.2  
Setup time, input wait gpmc_wait[x](1) valid before output clock  
gpmc_clk high  
F21 tsu(waitV-clkH)  
Industrial extended  
Hold time, input wait gpmc_wait[x](1)  
temperature  
4.74  
4.74  
4.74  
2.75  
F22 th(clkH-waitV)  
valid after output clock gpmc_clk  
(-40°C to 125°C)  
high  
All other temperature ranges  
(1) In gpmc_wait[x], x is equal to 0 or 1.  
126  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-24. GPMC and NOR Flash Switching Characteristics—Synchronous Mode(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
100  
MAX  
F0  
F1  
F1  
1 / tc(clk)  
Frequency(18), output clock gpmc_clk  
50 MHz  
tw(clkH)  
tw(clkL)  
tdc(clk)  
tJ(clk)  
Typical pulse duration, output clock gpmc_clk high  
Typical pulse duration, output clock gpmc_clk low  
Duty cycle error, output clock gpmc_clk  
0.5P(15)  
0.5P(15)  
0.5P(15)  
500  
0.5P(15)  
0.5P(15)  
–500  
0.5P(15)  
0.5P(15)  
ns  
ns  
ps  
ps  
0.5P(15)  
–500  
500  
Jitter standard deviation(19), output clock gpmc_clk  
33.33  
33.33  
Delay time, output clock gpmc_clk rising edge to  
output chip select gpmc_csn[x](14) transition  
F2  
F3  
F4  
F5  
td(clkH-csnV)  
td(clkH-csnIV)  
td(aV-clk)  
F(6) - 2.2 F(6) + 4.5  
F(6) - 3.2  
F(6) + 9.5  
E(5) + 9.5  
ns  
ns  
ns  
ns  
Delay time, output clock gpmc_clk rising edge to  
output chip select gpmc_csn[x](14) invalid  
E(5) – 2.2 E(5) + 4.5 E(5) – 3.2  
Delay time, output address gpmc_a[27:1] valid to  
output clock gpmc_clk first edge  
B(2) – 4.5 B(2) + 2.3 B(2) – 5.5 B(2) + 12.3  
–2.3 4.5 –3.3 14.5  
Delay time, output clock gpmc_clk rising edge to  
output address gpmc_a[27:1] invalid  
td(clkH-aIV)  
Delay time, output lower byte enable and command  
latch enable gpmc_be0n_cle, output upper byte  
enable gpmc_be1n valid to output clock gpmc_clk  
first edge  
F6  
F7  
td(be[x]nV-clk)  
B(2) – 1.9 B(2) + 2.3 B(2) – 2.9 B(2) + 12.3  
ns  
ns  
Delay time, output clock gpmc_clk rising edge to  
output lower byte enable and command latch enable  
gpmc_be0n_cle, output upper byte enable  
gpmc_be1n invalid(11)  
td(clkH-be[x]nIV)  
D(4) – 2.3 D(4) + 1.9 D(4) – 3.3  
D(4) – 2.3 D(4) + 1.9 D(4) – 3.3  
D(4) + 6.9  
D(4) + 6.9  
Delay time, gpmc_clk falling edge to  
gpmc_nbe0_cle, gpmc_nbe1 invalid(12)  
F7  
F7  
td(clkL-be[x]nIV)  
td(clkL-be[x]nIV)  
ns  
ns  
Delay time, gpmc_clk falling edge to  
gpmc_nbe0_cle, gpmc_nbe1 invalid(13)  
D(4) – 2.3 D(4) + 1.9 D(4) – 3.3 D(4) + 11.9  
Delay time, output clock gpmc_clk rising edge to  
output address valid and address latch enable  
gpmc_advn_ale transition  
F8  
F9  
td(clkH-advn)  
G(7) – 2.3 G(7) + 4.5 G(7) – 3.3  
D(4) – 2.3 D(4) + 3.5 D(4) – 3.3  
G(7) + 9.5  
D(4) + 9.5  
ns  
ns  
Delay time, output clock gpmc_clk rising edge to  
output address valid and address latch enable  
gpmc_advn_ale invalid  
td(clkH-advnIV)  
Delay time, output clock gpmc_clk rising edge to  
output enable gpmc_oen transition  
F10  
F11  
F14  
F15  
F15  
F15  
td(clkH-oen)  
td(clkH-oenIV)  
td(clkH-wen)  
td(clkH-do)  
td(clkL-do)  
H(8) – 2.3 H(8) + 3.5 H(8) – 3.3  
H(8) – 2.3 H(8) + 3.5 H(8) – 3.3  
H(8) + 8.5  
H(8) + 8.5  
I(9) + 9.5  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, output clock gpmc_clk rising edge to  
output enable gpmc_oen invalid  
Delay time, output clock gpmc_clk rising edge to  
output write enable gpmc_wen transition  
I(9) – 2.3  
I(9) + 4.5  
I(9) – 3.3  
Delay time, output clock gpmc_clk rising edge to  
output data gpmc_ad[15:0] transition(11)  
J(10) – 2.3 J(10) + 1.9 J(10) – 3.3  
J(10) – 2.3 J(10) + 1.9 J(10) – 3.3  
J(10) + 6.9  
J(10) + 6.9  
Delay time, gpmc_clk falling edge to gpmc_ad[15:0]  
data bus transition(12)  
Delay time, gpmc_clk falling edge to gpmc_ad[15:0]  
data bus transition(13)  
td(clkL-do)  
J(10) – 2.3 J(10) + 1.9 J(10) – 3.3 J(10) + 11.9  
Delay time, output clock gpmc_clk rising edge to  
F17  
td(clkH-be[x]n)  
output lower byte enable and command latch enable J(10) – 2.3 J(10) + 1.9 J(10) – 3.3  
gpmc_be0n_cle transition(11)  
J(10) + 6.9  
J(10) + 6.9  
ns  
Delay time, gpmc_clk falling edge to  
J(10) – 2.3 J(10) + 1.9 J(10) – 3.3  
gpmc_nbe0_cle, gpmc_nbe1 transition(12)  
F17  
F17  
td(clkL-be[x]n)  
td(clkL-be[x]n)  
ns  
ns  
Delay time, gpmc_clk falling edge to  
J(10) – 2.3 J(10) + 1.9 J(10) – 3.3 J(10) + 11.9  
gpmc_nbe0_cle, gpmc_nbe1 transition(13)  
Read  
Write  
Read  
Write  
A(1)  
A(1)  
C(3)  
A(1)  
A(1)  
C(3)  
ns  
ns  
ns  
Pulse duration, output chip select  
gpmc_csn[x](14) low  
F18  
F19  
tw(csnV)  
Pulse duration, output lower byte enable  
and command latch enable  
gpmc_be0n_cle, output upper byte enable  
gpmc_be1n low  
tw(be[x]nV)  
C(3)  
C(3)  
ns  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
127  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-24. GPMC and NOR Flash Switching Characteristics—Synchronous Mode(2) (continued)  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Read  
Write  
K(16)  
K(16)  
K(16)  
K(16)  
ns  
ns  
Pulse duration, output address valid and  
address latch enable gpmc_advn_ale low  
F20  
tw(advnV)  
(1) For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
With n being the page burst access number.  
(2) B = ClkActivationTime × GPMC_FCLK(17)  
(3) For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK (17)  
For burst read: C = (RdCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: C = (WrCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
With n being the page burst access number.  
(4) For single read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: D = (WrCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
(5) For single read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: E = (CSWrOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
(6) For csn falling edge (CS activated):  
Case GpmcFCLKDivider = 0:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and  
CSOnTime are even)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(17) if ((CSOnTime – ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)  
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)  
(7) For ADV falling edge (ADV activated):  
Case GpmcFCLKDivider = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVOnTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)  
128  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
(8) For OE falling edge (OE activated) and I/O DIR rising edge (Data Bus input direction):  
Case GpmcFCLKDivider = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and  
OEOnTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if ((OEOnTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GpmcFCLKDivider = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and  
OEOffTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if ((OEOffTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(9) For WE falling edge (WE activated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17)  
Case GpmcFCLKDivider = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and  
WEOnTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if ((WEOnTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK (17)  
Case GpmcFCLKDivider = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and  
WEOffTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if ((WEOffTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(10) J = GPMC_FCLK(17)  
(11) First transfer only for CLK DIV 1 mode.  
(12) Half cycle; for all data after initial transfer for CLK DIV 1 mode.  
(13) Half cycle of GPMC_CLK_OUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLK_OUT divide down from GPMC_FCLK.  
(14) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
(15) P = gpmc_clk period in ns  
(16) For read: K = (ADVRdOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For write: K = (ADVWrOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
(17) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(18) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.  
(19) The jitter probability density can be approximated by a Gaussian function.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
129  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
F18  
gpmc_csn[x]  
gpmc_a[10:1]  
F4  
F6  
Valid Address  
F7  
F19  
F19  
gpmc_be0n_cle  
gpmc_be1n  
F6  
F8  
F8  
F20  
F9  
gpmc_advn_ale  
gpmc_oen  
F10  
F11  
F13  
F12  
D 0  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
7-17. GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0)  
130  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
F1  
F1  
F0  
gpmc_clk  
gpmc_csn[x]  
gpmc_a[10:1]  
gpmc_be0n_cle  
gpmc_be1n  
F2  
F3  
F4  
F6  
Valid Address  
F7  
F7  
F6  
F8  
F8  
F9  
gpmc_advn_ale  
gpmc_oen  
F10  
F11  
F13  
F13  
F12  
D 0  
F21  
F12  
D 3  
gpmc_ad[15:0]  
gpmc_wait[x]  
D 1  
D 2  
F22  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
7-18. GPMC and NOR Flash—Synchronous Burst Read—4x16-Bit (GpmcFCLKDivider = 0)  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
131  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
F1  
F1  
F0  
gpmc_clk  
gpmc_csn[x]  
gpmc_a[10:1]  
F2  
F3  
F4  
F6  
Valid Address  
F17  
F17  
F17  
F17  
F17  
F17  
gpmc_be0n_cle  
gpmc_be1n  
gpmc_advn_ale  
gpmc_wen  
F6  
F8  
F8  
F9  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_ad[15:0]  
gpmc_wait[x]  
D 0  
D 3  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
7-19. GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)  
132  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
gpmc_csn[x]  
gpmc_be0n_cle  
gpmc_be1n  
F6  
F6  
F4  
F7  
Valid  
F7  
Valid  
gpmc_a[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
gpmc_ad[15:0]  
gpmc_advn_ale  
gpmc_oen  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
F10  
F11  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
7-20. GPMC and Multiplexed NOR Flash—Synchronous Burst Read  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
133  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
F18  
gpmc_csn[x]  
F4  
F6  
F6  
gpmc_a[27:17]  
Address (MSB)  
F17  
F17  
F17  
F17  
F17  
F17  
gpmc_be1n  
gpmc_be0n_cle  
gpmc_advn_ale  
F8  
F8  
F20  
F9  
F14  
F14  
gpmc_wen  
F15  
D 1  
F15  
D 2  
F15  
gpmc_ad[15:0]  
Address (LSB)  
D 0  
D 3  
F22  
F21  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
7-21. GPMC and Multiplexed NOR Flash—Synchronous Burst Write  
134  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.1.2 GPMC and NOR Flash—Asynchronous Mode  
7-26 and 7-27 assume testing over the recommended operating conditions and electrical  
characteristic conditions shown in 7-25 (see 7-22 through 7-27).  
7-25. GPMC and NOR Flash Timing Conditions—Asynchronous Mode  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
7-26. GPMC and NOR Flash Internal Timing Requirements—Asynchronous Mode(1)(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
MAX  
Delay time, output data gpmc_ad[15:0] generation from internal functional clock  
GPMC_FCLK(3)  
FI1  
FI2  
FI3  
FI4  
FI5  
6.5  
6.5  
ns  
ns  
ns  
ns  
ns  
Delay time, input data gpmc_ad[15:0] capture from internal functional clock  
GPMC_FCLK(3)  
4
6.5  
6.5  
6.5  
4
6.5  
6.5  
6.5  
Delay time, output chip select gpmc_csn[x] generation from internal functional  
clock GPMC_FCLK(3)  
Delay time, output address gpmc_a[27:1] generation from internal functional clock  
GPMC_FCLK(3)  
Delay time, output address gpmc_a[27:1] valid from internal functional clock  
GPMC_FCLK(3)  
Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle,  
FI6 output upper-byte enable gpmc_be1n generation from internal functional clock  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
GPMC_FCLK(3)  
Delay time, output enable gpmc_oen generation from internal functional clock  
FI7  
GPMC_FCLK(3)  
Delay time, output write enable gpmc_wen generation from internal functional  
FI8  
6.5  
6.5  
ns  
ps  
clock GPMC_FCLK(3)  
FI9 Skew, internal functional clock GPMC_FCLK(3)  
100  
100  
(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
135  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-27. GPMC and NOR Flash Timing Requirements—Asynchronous Mode  
NO.  
OPP100  
MIN  
OPP50  
MIN  
UNIT  
MAX  
H(5)  
P(4)  
MAX  
H(5)  
P(4)  
H(5)  
FA5(1)  
FA20(2) tacc1-pgmode(d)  
FA21(3) tacc2-pgmode(d)  
tacc(d)  
Data access time  
ns  
ns  
ns  
Page mode successive data access time  
Page mode first data access time  
H(5)  
(1) The FA5 parameter shows the amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock  
edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 parameter shows amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock  
edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(3) The FA21 parameter shows amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by  
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.  
(4) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)  
(5) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)  
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
7-28. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
FA0  
FA1  
FA3  
PARAMETER  
UNIT  
ns  
MAX  
N(12)  
MAX  
N(12)  
Pulse duration, output lower-byte  
enable and command latch enable  
gpmc_be0n_cle, output upper-byte  
enable gpmc_be1n valid time  
Read  
Write  
tw(be[x]nV)  
N(12)  
N(12)  
Read  
Write  
Read  
A(1)  
A(1)  
A(1)  
A(1)  
B(2) + 5  
Pulse duration, output chip select  
gpmc_csn[x](13) low  
tw(csnV)  
ns  
Delay time, output chip select  
gpmc_csn[x](13) valid to output  
address valid and address latch  
enable gpmc_advn_ale invalid  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 2.0  
B(2) – 5  
B(2) – 5  
td(csnV-advnIV)  
ns  
Write  
B(2) + 2.0  
B(2) + 5  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen invalid (Single  
read)  
FA4  
FA9  
td(csnV-oenIV)  
C(3) – 0.2  
J(9) – 0.2  
C(3) + 2.0  
J(9) + 2.0  
C(3) – 5  
J(9) – 5  
C(3) + 5  
J(9) + 5  
ns  
ns  
Delay time, output address gpmc_a[27:1] valid  
to output chip select gpmc_csn[x](13) valid  
td(aV-csnV)  
Delay time, output lower-byte enable and  
command latch enable gpmc_be0n_cle, output  
upper-byte enable gpmc_be1n valid to output  
chip select gpmc_csn[x](13) valid  
FA10 td(be[x]nV-csnV)  
J(9) – 0.2  
J(9) + 2.0  
J(9) – 5  
J(9) + 5  
ns  
Delay time, output chip select gpmc_csn[x](13)  
valid to output address valid and address latch  
enable gpmc_advn_ale valid  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen valid  
FA12 td(csnV-advnV)  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
K(10) – 0.2 K(10) + 2.0  
L(11) – 0.2 L(11) + 2.0  
G(7)  
K(10) – 5  
K(10) + 5  
L(11) + 5  
ns  
ns  
ns  
L
(11) – 5  
G(7)  
Pulse durationm output address gpmc_a[26:1]  
invalid between 2 successive read and write  
accesses  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen invalid (Burst  
read)  
FA18 td(csnV-oenIV)  
I(8) – 0.2  
I(8) + 2.0  
I(8) – 5  
I(8) + 5  
ns  
Pulse duration, output address gpmc_a[27:1]  
valid - 2nd, 3rd, and 4th accesses  
Delay time, output chip select gpmc_csn[x](13)  
valid to output write enable gpmc_wen valid  
Delay time, output chip select gpmc_csn[x](13)  
valid to output write enable gpmc_wen invalid  
FA20 tw(aV)  
D(4)  
E(5) – 0.2  
F(6) – 0.2  
D(4)  
E(5) – 5  
F(6) – 5  
ns  
ns  
ns  
FA25 td(csnV-wenV)  
FA27 td(csnV-wenIV)  
E(5) + 2.0  
F(6) + 2.0  
E(5) + 5  
F(6) + 5  
136  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-28. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode (continued)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Delay time, output write enable gpmc_ wen  
valid to output data gpmc_ad[15:0] valid  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
FA37 td(oenV-aIV)  
2.0  
5
ns  
ns  
ns  
Delay time, output data gpmc_ad[15:0] valid to  
output chip select gpmc_csn[x](13) valid  
J(9) – 0.2  
J(9) + 2.0  
J(9) – 5  
J(9) + 5  
5
Delay time, output enable gpmc_oen valid to  
output address gpmc_ad[15:0] phase end  
2.0  
(1) For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: A = (CSWrOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
with n being the page burst access number  
(2) For reading: B = ((ADVRdOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) ×  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) ×  
GPMC_FCLK(14)  
(3) C = ((OEOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(4) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) E = ((WEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(6) F = ((WEOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(7) G = Cycle2CycleDelay × GPMC_FCLK(14)  
(8) I = ((OEOffTime + (n – 1) × PageBurstAccessTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay))  
× GPMC_FCLK(14)  
(9) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)  
(10) K = ((ADVOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(11) L = ((OEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(12) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(13) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
137  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
GPMC_FCLK  
gpmc_clk  
FA5  
FA1  
gpmc_csn[x]  
FA9  
gpmc_a[10:1]  
Valid Address  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
Valid  
FA0  
Valid  
FA3  
FA12  
gpmc_advn_ale  
FA4  
FA13  
gpmc_oen  
Data IN 0  
Data IN 0  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-22. GPMC and NOR Flash—Asynchronous Read—Single Word  
138  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
GPMC_FCLK  
gpmc_clk  
FA5  
FA5  
FA1  
FA1  
gpmc_csn[x]  
gpmc_a[10:1]  
FA16  
FA9  
FA9  
Address 0  
FA0  
Address 1  
FA0  
FA10  
FA10  
Valid  
FA0  
gpmc_be0n_cle  
gpmc_be1n  
Valid  
FA0  
Valid  
Valid  
FA10  
FA10  
FA3  
FA3  
FA12  
FA12  
gpmc_advn_ale  
FA4  
FA4  
FA13  
FA13  
gpmc_oen  
Data Upper  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-23. GPMC and NOR Flash—Asynchronous Read—32-Bit  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
139  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
GPMC_FCLK  
gpmc_clk  
FA20  
Add3  
FA20  
Add1  
FA21  
FA20  
Add2  
FA1  
gpmc_csn[x]  
FA9  
Add0  
Add4  
gpmc_a[10:1]  
FA0  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
FA12  
gpmc_advn_ale  
FA18  
FA13  
gpmc_oen  
D3  
D0  
D1  
D2  
D3  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in  
number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input  
page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside  
AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in  
number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally  
sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address  
phases for successive input page data (excluding first input page data). FA20 value must be stored in  
PageBurstAccessTime register bits field.  
D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-24. GPMC and NOR Flash—Asynchronous Read—Page Mode 4x16-Bit  
140  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_csn[x]  
gpmc_a[10:1]  
FA9  
Valid Address  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
FA0  
FA3  
FA12  
gpmc_advn_ale  
FA27  
FA25  
gpmc_wen  
gpmc_ad[15:0]  
gpmc_wait[x]  
FA29  
Data OUT  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
7-25. GPMC and NOR Flash—Asynchronous Write—Single Word  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
141  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
GPMC_FCLK  
gpmc_clk  
FA1  
FA5  
gpmc_csn[x]  
FA9  
Address (MSB)  
FA0  
gpmc_a[27:17]  
gpmc_be0n_cle  
gpmc_be1n  
FA10  
FA10  
Valid  
FA0  
Valid  
FA3  
FA12  
gpmc_advn_ale  
gpmc_oen  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-26. GPMC and Multiplexed NOR Flash—Asynchronous Read—Single Word  
142  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_csn[x]  
gpmc_a[27:17]  
FA9  
Address (MSB)  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
FA0  
FA3  
FA12  
gpmc_advn_ale  
FA27  
FA25  
gpmc_wen  
gpmc_ad[15:0]  
gpmc_wait[x]  
FA29  
FA28  
Valid Address (LSB)  
Data OUT  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
7-27. GPMC and Multiplexed NOR Flash—Asynchronous Write—Single Word  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
143  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.1.3 GPMC and NAND Flash—Asynchronous Mode  
7-30 and 7-31 assume testing over the recommended operating conditions and electrical  
characteristic conditions shown in 7-29 (see 7-28 through 7-31).  
7-29. GPMC and NAND Flash Timing Conditions—Asynchronous Mode  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
7-30. GPMC and NAND Flash Internal Timing Requirements—Asynchronous Mode(1)(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
MAX  
Delay time, output data gpmc_ad[15:0] generation from internal  
functional clock GPMC_FCLK(3)  
GNFI1  
GNFI2  
GNFI3  
6.5  
6.5  
ns  
ns  
ns  
Delay time, input data gpmc_ad[15:0] capture from internal functional  
clock GPMC_FCLK(3)  
4.0  
6.5  
4.0  
6.5  
Delay time, output chip select gpmc_csn[x] generation from internal  
functional clock GPMC_FCLK(3)  
Delay time, output address valid and address latch enable  
GNFI4 gpmc_advn_ale generation from internal functional clock  
6.5  
6.5  
ns  
GPMC_FCLK(3)  
Delay time, output lower-byte enable and command latch enable  
GNFI5 gpmc_be0n_cle generation from internal functional clock  
GPMC_FCLK(3)  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
Delay time, output enable gpmc_oen generation from internal functional  
GNFI6  
clock GPMC_FCLK(3)  
Delay time, output write enable gpmc_wen generation from internal  
GNFI7  
6.5  
6.5  
ns  
ps  
functional clock GPMC_FCLK(3)  
GNFI8 Skew, functional clock GPMC_FCLK(3)  
100  
100  
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.  
7-31. GPMC and NAND Flash Timing Requirements—Asynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
J(2)  
MAX  
J(2)  
GNF12(1) tacc(d)  
Access time, input data gpmc_ad[15:0]  
ns  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
144  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-32. GPMC and NAND Flash Switching Characteristics—Asynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Pulse duration, output write enable gpmc_wen  
valid  
Delay time, output chip select gpmc_csn[x](13)  
valid to output write enable gpmc_wen valid  
GNF0 tw(wenV)  
A(1)  
A(1)  
ns  
ns  
GNF1 td(csnV-wenV)  
B(2) – 0.2  
B(2) + 2.0  
B(2) – 5  
B(2) + 5  
C(3) + 5  
Delay time, output lower-byte enable and  
command latch enable gpmc_be0n_cle high to  
output write enable gpmc_wen valid  
GNF2 tw(cleH-wenV)  
C(3) – 0.2 C(3) + 2.0  
D(4) – 0.2 D(4) + 2.0  
C(3) – 5  
ns  
Delay time, output data gpmc_ad[15:0] valid to  
output write enable gpmc_wen valid  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
D(4) – 5  
E(5) – 5  
D(4) + 5  
E(5) + 5  
ns  
ns  
Delay time, output write enable gpmc_wen  
invalid to output data gpmc_ad[15:0] invalid  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 5  
Delay time, output write enable gpmc_wen  
invalid to output lower-byte enable and command  
latch enable gpmc_be0n_cle invalid  
GNF5 tw(wenIV-cleIV)  
GNF6 tw(wenIV-csnIV)  
GNF7 tw(aleH-wenV)  
GNF8 tw(wenIV-aleIV)  
F(6) + 2.0  
F(6) – 5  
G(7) – 5  
C(3) – 5  
F(6) – 5  
F(6) + 5  
G(7) + 5  
C(3) + 5  
F(6) + 5  
ns  
ns  
ns  
ns  
Delay time, output write enable gpmc_wen  
invalid to output chip select gpmc_csn[x](13)  
invalid  
G(7) – 0.2 G(7) + 2.0  
C(3) – 0.2 C(3) + 2.0  
Delay time, output address valid and address  
latch enable gpmc_advn_ale high to output write  
enable gpmc_wen valid  
Delay time, output write enable gpmc_wen  
invalid to output address valid and address latch  
enable gpmc_advn_ale invalid  
F(6) – 0.2  
F(6) + 2.0  
GNF9 tc(wen)  
Cycle time, write  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen valid  
H(8)  
I(9) + 2.0  
K(10)  
H(8)  
I(9) + 5  
K(10)  
ns  
ns  
GNF10 td(csnV-oenV)  
I(9) – 0.2  
I(9) – 5  
GNF13 tw(oenV)  
GNF14 tc(oen)  
Pulse duration, output enable gpmc_oen valid  
Cycle time, read  
ns  
ns  
L(11)  
L(11)  
Delay time, output enable gpmc_oen invalid to  
output chip select gpmc_csn[x](13) invalid  
GNF15 tw(oenIV-csnIV)  
M(12) – 0.2 M(12) + 2.0  
M(12) – 5  
M(12) + 5  
ns  
(1) A = (WEOffTime – WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(2) B = ((WEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(3) C = ((WEOnTime – ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – ADVExtraDelay)) × GPMC_FCLK(14)  
(4) D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK(14)  
(5) E = ((WrCycleTime – WEOffTime) × (TimeParaGranularity + 1) – 0.5 × WEExtraDelay) × GPMC_FCLK(14)  
(6) F = ((ADVWrOffTime – WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – WEExtraDelay)) × GPMC_FCLK(14)  
(7) G = ((CSWrOffTime – WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay – WEExtraDelay)) × GPMC_FCLK(14)  
(8) H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(9) I = ((OEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(10) K = (OEOffTime – OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(11) L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(12) M = ((CSRdOffTime – OEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay – OEExtraDelay)) × GPMC_FCLK(14)  
(13) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
145  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
GPMC_FCLK  
GNF1  
GNF6  
GNF5  
gpmc_csn[x]  
GNF2  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF0  
gpmc_wen  
GNF3  
GNF4  
gpmc_ad[15:0]  
Command  
(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
7-28. GPMC and NAND Flash—Command Latch Cycle  
GPMC_FCLK  
gpmc_csn[x]  
GNF1  
GNF7  
GNF6  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF8  
GNF9  
GNF0  
gpmc_wen  
GNF3  
GNF4  
Address  
gpmc_ad[15:0]  
(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
7-29. GPMC and NAND Flash—Address Latch Cycle  
146  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
GPMC_FCLK  
GNF12  
GNF10  
GNF15  
gpmc_csn[x]  
gpmc_be0n_cle  
gpmc_advn_ale  
GNF14  
GNF13  
gpmc_oen  
gpmc_ad[15:0]  
DATA  
gpmc_wait[x]  
(1) GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active  
functional clock edge. GNF12 value must be stored inside AccessTime register bits field.  
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
(3) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.  
7-30. GPMC and NAND Flash—Data Read Cycle  
GPMC_FCLK  
GNF1  
GNF6  
gpmc_csn[x]  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF9  
GNF0  
gpmc_wen  
GNF3  
GNF4  
gpmc_ad[15:0]  
DATA  
(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.  
7-31. GPMC and NAND Flash—Data Write Cycle  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
147  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2 mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface  
The device has a dedicated interface to mDDR(LPDDR), DDR2, DDR3, and DDR3L SDRAM. It supports  
JEDEC standard compliant mDDR(LPDDR), DDR2, DDR3, and DDR3L SDRAM devices with a 16-bit  
data path to external SDRAM memory.  
For more details on the mDDR(LPDDR), DDR2, DDR3, and DDR3L memory interface, see the EMIF  
section of the AM335x and AMIC110 Sitara Processors Technical Reference Manual.  
7.7.2.1 mDDR (LPDDR) Routing Guidelines  
It is common to find industry references to mobile double data rate (mDDR) when discussing JEDEC  
defined low-power double-data rate (LPDDR) memory devices. The following guidelines use LPDDR when  
referencing JEDEC defined low-power double-data rate memory devices.  
7.7.2.1.1 Board Designs  
TI only supports board designs that follow the guidelines outlined in this document. The switching  
characteristics and the timing diagram for the LPDDR memory interface are shown in 7-33 and 7-32.  
7-33. Switching Characteristics for LPDDR Memory Interface  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
tc(DDR_CK)  
tc(DDR_CKn)  
(1)  
1
Cycle time, DDR_CK and DDR_CKn  
5
ns  
(1) The JEDEC JESD209B specification only defines the maximum clock period for LPDDR333 and faster speed bin LPDDR memory  
devices. To determine the maximum clock period, see the respective LPDDR memory data sheet.  
1
DDR_CK  
DDR_CKn  
7-32. LPDDR Memory Interface Clock Timing  
7.7.2.1.2 LPDDR Interface  
This section provides the timing specification for the LPDDR interface as a PCB design and manufacturing  
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,  
and signal timing. These rules, when followed, result in a reliable LPDDR memory system without the  
need for a complex timing closure process. For more information regarding the guidelines for using this  
LPDDR specification, see Understanding TI’s PCB Routing Rule-Based DDR Timing Specification. This  
application report provides generic guidelines and approach. All the specifications provided in the data  
manual take precedence over the generic guidelines and must be adhered to for a reliable LPDDR  
interface operation.  
7.7.2.1.2.1 LPDDR Interface Schematic  
7-33 shows the schematic connections for 16-bit interface on the AM335x device using one x16  
LPDDR device. The AM335x LPDDR memory interface only supports 16-bit-wide mode of operation. The  
AM335x device can only source one load connected to the DQS[x] and DQ[x] net class signals and one  
load connected to the CK and ADDR_CTRL net class signals. For more information related to net classes,  
see 7.7.2.1.2.8.  
148  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
16-Bit LPDDR  
Device  
AM335x  
DDR_D0  
DQ0  
DDR_D7  
DQ7  
LDM  
LDQS  
DDR_DQM0  
DDR_DQS0  
NC(A)  
DDR_DQSn0  
DDR_D8  
DQ8  
DDR_D15  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DQ15  
UDM  
UDQS  
NC(A)  
NC  
DDR_ODT  
DDR_BA0  
DDR_BA1  
DDR_BA2  
T
BA0  
BA1  
T
NC  
DDR_A0  
T
A0  
DDR_A15  
T
T
A15  
CS  
DDR_CSn0  
DDR_CASn  
DDR_RASn  
DDR_WEn  
DDR_CKE  
DDR_CK  
CAS  
RAS  
T
T
T
T
T
T
WE  
CKE  
CK  
CK  
DDR_CKn  
DDR_VREF  
NC  
DDR_RESETn  
DDR_VTP  
NC  
49.9 Ω  
( 1%, 20 mW)  
A. Enable internal weak pulldown on these pins. For details, see the EMIF section of the AM335x and AMIC110 Sitara  
Processors Technical Reference Manual.  
B. For all the termination requirements, see 7.7.2.1.2.9.  
7-33. 16-Bit LPDDR Interface Using One 16-Bit LPDDR Device  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
149  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.1.2.2 Compatible JEDEC LPDDR Devices  
7-34 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.  
Generally, the LPDDR interface is compatible with x16 LPDDR400 speed grade LPDDR devices.  
7-34. Compatible JEDEC LPDDR Devices (Per Interface)(1)  
NO.  
1
PARAMETER  
JEDEC LPDDR device speed grade  
MIN  
LPDDR400  
x16  
MAX  
UNIT  
2
JEDEC LPDDR device bit width  
JEDEC LPDDR device count  
x16  
1
Bits  
3
Devices  
4
JEDEC LPDDR device terminal count  
60 Terminals  
(1) If the LPDDR interface is operated with a clock frequency less than 200 MHz, lower-speed grade LPDDR devices may be used if the  
minimum clock period specified for the LPDDR device is less than or equal to the minimum clock period selected for the AM335x  
LPDDR interface.  
7.7.2.1.2.3 PCB Stackup  
The minimum stackup required for routing the AM335x device is a 4-layer stackup as shown in 7-35.  
Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal  
integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.  
7-35. Minimum PCB Stackup(1)  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
DESCRIPTION  
Top signal routing  
Ground  
1
2
3
4
Split Power Plane  
Bottom signal routing  
(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these  
signals on layer 1, therefore requiring routing of some signals on layer 4. When this is done, the signal routes on layer 4 must not cross  
splits in the power plane.  
150  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Complete stackup specifications are provided in 7-36.  
7-36. PCB Stackup Specifications(1)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
1
2
3
4
5
PCB routing and plane layers  
Signal routing layers  
4
2
1
Full ground layers under LPDDR routing region  
Number of ground plane cuts allowed within LPDDR routing region  
Full VDDS_DDR power reference layers under LPDDR routing region  
0
0
1
Number of layers between LPDDR routing layer and reference ground  
plane  
6
7
8
9
PCB routing feature size  
PCB trace width, w  
PCB BGA escape via pad size(2)  
4
4
mils  
mils  
mils  
mils  
Ω
18  
10  
50  
Zo  
20  
10 PCB BGA escape via hole size(2)  
11 Single-ended impedance, Zo(3)  
12 Impedance control(4)(5)  
75  
Zo-5  
Zo+5  
Ω
(1) For the LPDDR device BGA pad size, see the LPDDR device manufacturer documentation.  
(2) A 20-10 via may be used if enough power routing resources are available. An 18-10 via allows for more flexible power routing to the  
AM335x device.  
(3) Zo is the nominal singled-ended impedance selected for the PCB.  
(4) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo  
defined by the single-ended impedance parameter.  
(5) Tighter impedance control is required to ensure flight time skew is minimal.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
151  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.1.2.4 Placement  
7-34 shows the required placement for the LPDDR devices. The dimensions for this figure are defined  
in 7-37. The placement does not restrict the side of the PCB on which the devices are mounted. The  
ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing  
space. For single-memory LPDDR systems, the second LPDDR device is omitted from the placement.  
X
A1  
Y
OFFSET  
LPDDR  
Y
Device  
Y
OFFSET  
AM335x  
A1  
Recommended LPDDR  
Device Orientation  
7-34. AM335x Device and LPDDR Device Placement  
7-37. Placement Specifications(1)  
NO.  
1
PARAMETER  
MIN  
MAX  
1750  
1280  
650  
UNIT  
mils  
mils  
mils  
w
X(2)(3)  
Y(2)(3)  
Y Offset(2)(3)(4)  
2
3
4
Clearance from non-LPDDR signal to LPDDR keepout region(5)(6)  
4
(1) LPDDR keepout region to encompass entire LPDDR routing area.  
(2) For dimension definitions, see 7-34.  
(3) Measurements from center of the AM335x device to center of LPDDR device.  
(4) For single-memory systems, TI recommends that Y offset be as small as possible.  
(5) w is defined as the signal trace width.  
(6) Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.  
152  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.1.2.5 LPDDR Keepout Region  
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR  
keepout region is defined for this purpose and is shown in 7-35. This region should encompass all  
LPDDR circuitry and the region size varies with component placement and LPDDR routing. Additional  
clearances required for the keepout region are shown in 7-37. Non-LPDDR signals must not be routed  
on the same signal layer as LPDDR signals within the LPDDR keepout region. Non-LPDDR signals may  
be routed in the region provided they are routed on layers separated from LPDDR signal layers by a  
ground layer. No breaks should be allowed in the reference ground or VDDS_DDR power plane in this  
region. In addition, the VDDS_DDR power plane should cover the entire keepout region.  
A1  
LPDDR  
Device  
A1  
7-35. LPDDR Keepout Region  
7.7.2.1.2.6 Bulk Bypass Capacitors  
Bulk bypass capacitors are required for moderate speed bypassing of the LPDDR and other circuitry. 7-  
38 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this  
table only covers the bypass needs of the AM335x LPDDR interface and LPDDR devices. Additional bulk  
bypass capacitance may be needed for other circuitry.  
7-38. Bulk Bypass Capacitors(1)  
NO.  
1
PARAMETER  
AM335x VDDS_DDR bulk bypass capacitor count  
MIN  
1
MAX  
UNIT  
Devices  
μF  
2
AM335x VDDS_DDR bulk bypass total capacitance  
LPDDR#1 bulk bypass capacitor count  
10  
1
3
Devices  
μF  
4
LPDDR#1 bulk bypass total capacitance  
LPDDR#2 bulk bypass capacitor count(2)  
LPDDR#2 bulk bypass total capacitance(2)  
10  
1
5
Devices  
μF  
6
10  
(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed  
(HS) bypass capacitors.  
(2) Only used when two LPDDR devices are used.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
153  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.1.2.7 High-Speed Bypass Capacitors  
High-speed (HS) bypass capacitors are critical for proper LPDDR interface operation. It is particularly  
important to minimize the parasitic series inductance of the HS bypass capacitors, the AM335x device  
LPDDR power, and the AM335x device LPDDR ground connections. 7-39 contains the specification for  
the HS bypass capacitors as well as for the power connections on the PCB.  
7-39. High-Speed Bypass Capacitors  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
HS bypass capacitor package size(1)  
0402 10 mils  
2
Distance from HS bypass capacitor to device being bypassed  
Number of connection vias for each HS bypass capacitor(2)  
250  
30  
mils  
Vias  
mils  
3
2
1
1
4
Trace length from bypass capacitor contact to connection via  
5
Number of connection vias for each AM335x VDDS_DDR and VSS terminal  
Trace length from AM335x VDDS_DDR and VSS terminal to connection via  
Number of connection vias for each LPDDR device power and ground terminal  
Trace length from LPDDR device power and ground terminal to connection via  
AM335x VDDS_DDR HS bypass capacitor count(3)  
Vias  
mils  
6
35  
7
Vias  
mils  
8
35  
9
10  
0.6  
8
Devices  
μF  
10 AM335x VDDS_DDR HS bypass capacitor total capacitance  
11 LPDDR device HS bypass capacitor count(3)(4)  
12 LPDDR device HS bypass capacitor total capacitance(4)  
Devices  
μF  
0.4  
(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.  
(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.  
(3) These devices should be placed as close as possible to the device being bypassed.  
(4) Per LPDDR device.  
7.7.2.1.2.8 Net Classes  
7-40 lists the clock net classes for the LPDDR interface. 7-41 lists the signal net classes, and  
associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the  
termination and routing rules that follow.  
7-40. Clock Net Class Definitions  
CLOCK NET CLASS AM335x PIN NAMES  
CK  
DDR_CK and DDR_CKn  
DDR_DQS0  
DQS0  
DQS1  
DDR_DQS1  
7-41. Signal Net Class Definitions  
ASSOCIATED CLOCK  
SIGNAL NET CLASS  
AM335x PIN NAMES  
NET CLASS  
DDR_BA[1:0], DDR_A[15:0], DDR_CSn0, DDR_CASn, DDR_RASn,  
DDR_WEn, DDR_CKE  
ADDR_CTRL  
CK  
DQ0  
DQ1  
DQS0  
DQS1  
DDR_D[7:0], DDR_DQM0  
DDR_D[15:8], DDR_DQM1  
154  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.1.2.9 LPDDR Signal Termination  
There is no specific need for adding terminations on the LPDDR interface. However, system designers  
may evaluate the need for serial terminators for EMI and overshoot reduction. Placement of serial  
terminations for DQS[x] and DQ[x] net class signals should be determined based on PCB analysis.  
Placement of serial terminations for ADDR_CTRL net class signals should be close to the AM335x device.  
7-42 shows the specifications for the serial terminators in such cases.  
7-42. LPDDR Signal Terminations  
NO.  
1
PARAMETER  
MIN  
0
TYP  
22  
MAX UNIT  
CK net class(1)  
ADDR_CTRL net class(1)(3)(4)  
Zo(2)  
Zo(2)  
Zo(2)  
Ω
Ω
Ω
2
0
22  
3
DQS0, DQS1, DQ0, and DQ1 net classes  
0
22  
(1) Only series termination is permitted.  
(2) Zo is the LPDDR PCB trace characteristic impedance.  
(3) Series termination values larger than typical only recommended to address EMI issues.  
(4) Series termination values should be uniform across net class.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
155  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.1.3 LPDDR CK and ADDR_CTRL Routing  
7-36 shows the topology of the routing for the CK and ADDR_CTRL net classes. The length of signal  
path AB and AC should be minimized with emphasis to minimize lengths C and D such that length A is the  
majority of the total length of signal path AB and AC.  
A1  
A
AM335x  
A1  
7-36. CK and ADDR_CTRL Routing and Topology  
7-43. CK and ADDR_CTRL Routing Specification(1)(2)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
2w  
UNIT  
Center-to-center CK spacing  
2
CK differential pair skew length mismatch(2)(3)  
25  
mils  
mils  
3
CK B-to-CK C skew length mismatch  
25  
4
Center-to-center CK to other LPDDR trace spacing(4)  
CK and ADDR_CTRL nominal trace length(5)  
4w  
5
CACLM-50  
CACLM  
CACLM+50  
100  
mils  
mils  
mils  
6
ADDR_CTRL-to-CK skew length mismatch  
7
ADDR_CTRL-to-ADDR_CTRL skew length mismatch  
Center-to-center ADDR_CTRL to other LPDDR trace spacing(4)  
Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(4)  
ADDR_CTRL A-to-B and ADDR_CTRL A-to-C skew length mismatch(2)  
ADDR_CTRL B-to-C skew length mismatch  
100  
8
4w  
3w  
9
10  
11  
100  
100  
mils  
mils  
(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.  
(2) Series terminator, if used, should be located closest to the AM335x device.  
(3) Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in 7-36.  
(4) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(5) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.  
156  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-37 shows the topology and routing for the DQS[x] and DQ[x] net classes; the routes are point to  
point. Skew matching across bytes is not needed nor recommended.  
DQ[0]  
A1  
DQ[1]  
AM335x  
7-37. DQS[x] and DQ[x] Routing and Topology  
7-44. DQS[x] and DQ[x] Routing Specification(1)  
NO.  
1
PARAMETER  
Center-to-center DQS[x] spacing  
MIN  
TYP  
MAX  
UNIT  
2w  
2
Center-to-center DDR_DQS[x] to other LPDDR trace spacing(2)  
DQS[x] and DQ[x] nominal trace length(3)  
4w  
3
DQLM-50  
DQLM  
DQLM+50  
100  
mils  
mils  
mils  
4
DQ[x]-to-DQS[x] skew length mismatch(3)  
5
DQ[x]-to-DQ[x] skew length mismatch(3)  
100  
6
Center-to-center DQ[x] to other LPDDR trace spacing(2)(4)  
Center-to-center DQ[x] to other DQ[x] trace spacing(2)(5)  
4w  
3w  
7
(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.  
(2) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(3) There is no requirement for skew matching between data bytes; that is, from net classes DQS0 and DQ0 to net classes DQS1 and DQ1.  
(4) Signals from one DQ net class should be considered other LPDDR traces to another DQ net class.  
(5) DQLM is the longest Manhattan distance of each of the DQS[x] and DQ[x] net classes.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
157  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.2 DDR2 Routing Guidelines  
7.7.2.2.1 Board Designs  
TI only supports board designs that follow the guidelines outlined in this document. 7-45 and 7-38  
show the switching characteristics and timing diagram for the DDR2 memory interface.  
7-45. Switching Characteristics for DDR2 Memory Interface  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
tc(DDR_CK)  
tc(DDR_CKn)  
1
Cycle time, DDR_CK and DDR_CKn  
3.75  
8(1)  
ns  
(1) The JEDEC JESD79-2F specification defines the maximum clock period of 8 ns for all standard-speed bin DDR2 memory devices.  
Therefore, all standard-speed bin DDR2 memory devices are required to operate at 125 MHz.  
1
DDR_CK  
DDR_CKn  
7-38. DDR2 Memory Interface Clock Timing  
7.7.2.2.2 DDR2 Interface  
This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing  
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,  
and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need  
for a complex timing closure process. For more information regarding the guidelines for using this DDR2  
specification, see Understanding TI’s PCB Routing Rule-Based DDR Timing Specification. This application  
report provides generic guidelines and approach. All the specifications provided in the data manual take  
precedence over the generic guidelines and must be adhered to for a reliable DDR2 interface operation.  
7.7.2.2.2.1 DDR2 Interface Schematic  
7-39 shows the schematic connections for 16-bit interface on the AM335x device using one x16 DDR2  
device and 7-40 shows the schematic connections for 16-bit interface on the AM335x device using two  
x8 DDR2 devices. The AM335x DDR2 memory interface only supports 16-bit-wide mode of operation. The  
AM335x device can only source one load connected to the DQS[x] and DQ[x] net class signals and two  
loads connected to the CK and ADDR_CTRL net class signals. For more information related to net  
classes, see 7.7.2.2.2.8.  
158  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
16-Bit DDR2  
Device  
AM335x  
DDR_D0  
DQ0  
DDR_D7  
DQ7  
LDM  
LDQS  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DDR_D8  
LDQS  
DQ8  
DDR_D15  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DQ15  
UDM  
UDQS  
UDQS  
DDR_ODT  
T
ODT  
DDR_BA0  
DDR_BA1  
DDR_BA2  
T
T
T
BA0  
BA1  
BA2  
DDR_A0  
T
A0  
DDR_A15  
T
T
A15  
CS  
DDR_CSn0  
DDR_CASn  
DDR_RASn  
DDR_WEn  
DDR_CKE  
DDR_CK  
CAS  
T
T
T
T
T
T
VDDS_DDR(A)  
RAS  
WE  
CKE  
CK  
1 kΩ 1%  
0.1 µF  
0.1 µF  
CK  
DDR_CKn  
DDR_VREF  
DDR_VREF  
VREF  
0.1 µF(B)  
0.1 µF(B)  
1 kΩ 1%  
DDR_RESETn  
DDR_VTP  
NC  
49.9 Ω  
( 1%, 20 mW)  
Copyright © 2016, Texas Instruments Incorporated  
A. VDDS_DDR is the power supply for the DDR2 memories and the AM335x DDR2 interface.  
B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a DDR_VREF pin.  
C. For all the termination requirements, see 7.7.2.2.2.9.  
7-39. 16-Bit DDR2 Interface Using One 16-Bit DDR2 Device  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
159  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
8-Bit DDR2  
Devices  
AM335x  
DDR_D0  
DQ0  
DDR_D7  
DQ7  
DM  
DDR_DQM0  
DDR_DQS0  
DQS  
DDR_DQSn0  
DQS  
DDR_D8  
DQ0  
DDR_D15  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DQ7  
DM  
DQS  
DQS  
DDR_ODT  
T
ODT  
ODT  
DDR_BA0  
DDR_BA1  
DDR_BA2  
T
T
T
BA0  
BA1  
BA2  
BA0  
BA1  
BA2  
DDR_A0  
T
A0  
A0  
DDR_A15  
T
T
A15  
CS  
A15  
CS  
DDR_CSn0  
DDR_CASn  
DDR_RASn  
DDR_WEn  
DDR_CKE  
DDR_CK  
CAS  
RAS  
CAS  
RAS  
T
T
T
T
T
T
VDDS_DDR(A)  
WE  
WE  
CKE  
CKE  
CK  
CK  
CK  
CK  
1 kΩ 1%  
0.1 µF  
0.1 µF  
DDR_CKn  
DDR_VREF  
DDR_VREF  
1 kΩ 1%  
VREF  
VREF  
0.1 µF(B) 0.1 µF(B)  
0.1 µF(B)  
DDR_RESETn  
DDR_VTP  
NC  
49.9 Ω  
( 1%, 20 mW)  
Copyright © 2016, Texas Instruments Incorporated  
A. VDDS_DDR is the power supply for the DDR2 memories and the AM335x DDR2 interface.  
B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a DDR_VREF pin.  
C. For all the termination requirements, see 7.7.2.2.2.9.  
7-40. 16-Bit DDR2 Interface Using Two 8-Bit DDR2 Devices  
160  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.2.2.2 Compatible JEDEC DDR2 Devices  
7-46 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface.  
Generally, the DDR2 interface is compatible with x16 or x8 DDR2-533 speed grade DDR2 devices.  
7-46. Compatible JEDEC DDR2 Devices (Per Interface)(1)  
NO.  
1
PARAMETER  
JEDEC DDR2 device speed grade(2)  
MIN  
MAX  
UNIT  
DDR2-533  
2
JEDEC DDR2 device bit width  
JEDEC DDR2 device count  
x8  
1
x16  
2
bits  
3
devices  
4
JEDEC DDR2 device terminal count(3)  
60  
84 terminals  
(1) If the DDR2 interface is operated with a clock frequency less than 266 MHz, lower-speed grade DDR2 devices may be used if the  
minimum clock period specified for the DDR2 device is less than or equal to the minimum clock period selected for the AM335x DDR2  
interface.  
(2) Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backward compatibility.  
(3) 92-terminal devices are also supported for legacy reasons. New designs will migrate to 84-terminal DDR2 devices. Electrically, the 92-  
and 84-terminal DDR2 devices are the same.  
7.7.2.2.2.3 PCB Stackup  
The minimum stackup required for routing the AM335x device is a 4-layer stackup as shown in 7-47.  
Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal  
integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.  
7-47. Minimum PCB Stackup(1)  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
DESCRIPTION  
Top signal routing  
Ground  
1
2
3
4
Split power plane  
Bottom signal routing  
(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these  
signals on layer 1, therefore requiring routing of some signals on layer 4. When this is done, the signal routes on layer 4 must not cross  
splits in the power plane.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
161  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
Complete stackup specifications are provided in 7-48.  
7-48. PCB Stackup Specifications(1)  
NO.  
1
PARAMETER  
MIN  
4
TYP  
MAX  
UNIT  
PCB routing and plane layers  
Signal routing layers  
2
2
3
Full ground layers under DDR2 routing region  
Number of ground plane cuts allowed within DDR2 routing region  
Full VDDS_DDR power reference layers under DDR2 routing region  
Number of layers between DDR2 routing layer and reference ground plane  
PCB routing feature size  
1
4
0
0
5
1
6
7
4
4
mils  
mils  
mils  
mils  
Ω
8
PCB trace width, w  
PCB BGA escape via pad size(2)  
9
18  
10  
50  
Zo  
20  
10 PCB BGA escape via hole size(2)  
11 Single-ended impedance, Zo(3)  
12 Impedance control(4)(5)  
75  
Zo-5  
Zo+5  
Ω
(1) For the DDR2 device BGA pad size, see the DDR2 device manufacturer documentation.  
(2) A 20-10 via may be used if enough power routing resources are available. An 18-10 via allows for more flexible power routing to the  
AM335x device.  
(3) Zo is the nominal singled-ended impedance selected for the PCB.  
(4) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo  
defined by the single-ended impedance parameter.  
(5) Tighter impedance control is required to ensure flight time skew is minimal.  
162  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.2.2.4 Placement  
7-41 shows the required placement for the DDR2 devices. The dimensions for this figure are defined in  
7-49. The placement does not restrict the side of the PCB on which the devices are mounted. The  
ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing  
space. For single-memory DDR2 systems, the second DDR2 device is omitted from the placement.  
X
A1  
Y
OFFSET  
DDR2  
Y
Device  
Y
OFFSET  
AM335x  
A1  
Recommended DDR2  
Device Orientation  
7-41. AM335x Device and DDR2 Device Placement  
7-49. Placement Specifications(1)  
NO.  
1
PARAMETER  
MIN  
MAX  
1750  
1280  
650  
UNIT  
mils  
mils  
mils  
w
X(2)(3)  
Y(2)(3)  
Y Offset(2)(3)(4)  
2
3
4
Clearance from non-DDR2 signal to DDR2 keepout region(5)(6)  
4
(1) DDR2 keepout region to encompass entire DDR2 routing area.  
(2) For dimension definitions, see 7-41.  
(3) Measurements from center of the AM335x device to center of the DDR2 device.  
(4) For single-memory systems, it is recommended that Y offset be as small as possible.  
(5) w is defined as the signal trace width.  
(6) Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
163  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.2.2.5 DDR2 Keepout Region  
The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2  
keepout region is defined for this purpose and is shown in 7-42. This region should encompass all  
DDR2 circuitry and the region size varies with component placement and DDR2 routing. Additional  
clearances required for the keepout region are shown in 7-49. Non-DDR2 signals must not be routed  
on the same signal layer as DDR2 signals within the DDR2 keepout region. Non-DDR2 signals may be  
routed in the region provided they are routed on layers separated from DDR2 signal layers by a ground  
layer. No breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In  
addition, the VDDS_DDR power plane should cover the entire keepout region.  
A1  
DDR2  
Device  
A1  
7-42. DDR2 Keepout Region  
7.7.2.2.2.6 Bulk Bypass Capacitors  
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry. 7-  
50 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this  
table only covers the bypass needs of the AM335x DDR2 interface and DDR2 devices. Additional bulk  
bypass capacitance may be needed for other circuitry.  
7-50. Bulk Bypass Capacitors(1)  
NO.  
1
PARAMETER  
AM335x VDDS_DDR bulk bypass capacitor count  
AM335x VDDS_DDR bulk bypass total capacitance  
DDR2 number 1 bulk bypass capacitor count  
DDR2 number 1 bulk bypass total capacitance  
DDR2 number 2 bulk bypass capacitor count(2)  
DDR2 number 2 bulk bypass total capacitance(2)  
MIN  
1
MAX  
UNIT  
devices  
μF  
2
10  
1
3
devices  
μF  
4
10  
1
5
devices  
μF  
6
10  
(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed  
(HS) bypass capacitors.  
(2) Only used when two DDR2 devices are used.  
164  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.2.2.7 High-Speed (HS) Bypass Capacitors  
HS bypass capacitors are critical for proper DDR2 interface operation. It is particularly important to  
minimize the parasitic series inductance of the HS bypass capacitors, the AM335x device DDR2 power,  
and the AM335x device DDR2 ground connections. 7-51 contains the specification for the HS bypass  
capacitors as well as for the power connections on the PCB.  
7-51. HS Bypass Capacitors  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
HS bypass capacitor package size(1)  
0402 10 mils  
2
Distance from HS bypass capacitor to device being bypassed  
Number of connection vias for each HS bypass capacitor(2)  
250  
30  
mils  
vias  
3
2
1
1
4
Trace length from bypass capacitor contact to connection via  
mils  
5
Number of connection vias for each AM335x VDDS_DDR and VSS terminal  
Trace length from AM335x VDDS_DDR and VSS terminal to connection via  
Number of connection vias for each DDR2 device power and ground terminal  
Trace length from DDR2 device power and ground terminal to connection via  
AM335x VDDS_DDR HS bypass capacitor count(3)  
vias  
6
35  
mils  
7
vias  
8
35  
mils  
9
10  
0.6  
8
devices  
μF  
10 AM335x VDDS_DDR HS bypass capacitor total capacitance  
11 DDR2 device HS bypass capacitor count(3)(4)  
12 DDR2 device HS bypass capacitor total capacitance(4)  
devices  
μF  
0.4  
(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.  
(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.  
(3) These devices should be placed as close as possible to the device being bypassed.  
(4) Per DDR2 device.  
7.7.2.2.2.8 Net Classes  
7-52 lists the clock net classes for the DDR2 interface. 7-53 lists the signal net classes, and  
associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the  
termination and routing rules that follow.  
7-52. Clock Net Class Definitions  
CLOCK NET CLASS AM335x PIN NAMES  
CK  
DDR_CK and DDR_CKn  
DQS0  
DQS1  
DDR_DQS0 and DDR_DQSn0  
DDR_DQS1 and DDR_DQSn1  
7-53. Signal Net Class Definitions  
ASSOCIATED CLOCK  
SIGNAL NET CLASS  
AM335x PIN NAMES  
NET CLASS  
DDR_BA[2:0], DDR_A[15:0], DDR_CSn0, DDR_CASn, DDR_RASn,  
DDR_WEn, DDR_CKE, DDR_ODT  
ADDR_CTRL  
CK  
DQ0  
DQ1  
DQS0  
DQS1  
DDR_D[7:0], DDR_DQM0  
DDR_D[15:8], DDR_DQM1  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
165  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.2.2.9 DDR2 Signal Termination  
Signal terminations are required on the CK and ADDR_CTRL net class signals. Serial terminations should  
be used on the CK and ADDR_CTRL lines and is the preferred termination scheme. On-device  
terminations (ODTs) are required on the DQS[x] and DQ[x] net class signals. They should be enabled to  
ensure signal integrity. 7-54 shows the specifications for the series terminators. Placement of serial  
terminations for ADDR_CTRL net class signals should be close to the AM335x device.  
7-54. DDR2 Signal Terminations  
NO.  
1
PARAMETER  
MIN  
0
TYP  
MAX  
10  
UNIT  
Ω
CK net class(1)  
2
ADDR_CTRL net class(1)(2)(3)  
0
22  
Zo(4)  
Ω
3
DQS0, DQS1, DQ0, and DQ1 net classes(5)  
N/A  
N/A  
Ω
(1) Only series termination is permitted.  
(2) Series termination values larger than typical only recommended to address EMI issues.  
(3) Series termination values should be uniform across net class.  
(4) Zo is the DDR2 PCB trace characteristic impedance.  
(5) No external termination resistors are allowed and ODT must be used for these net classes.  
If the DDR2 interface is operated at a lower frequency (<200-MHz clock rate), on-device terminations are  
not specifically required for the DQS[x] and DQ[x] net class signals and serial terminations for the CK and  
ADDR_CTRL net class signals are not mandatory. System designers may evaluate the need for serial  
terminators for EMI and overshoot reduction. Placement of serial terminations for DQS[x] and DQ[x] net  
class signals should be determined based on PCB analysis. Placement of serial terminations for  
ADDR_CTRL net class signals should be close to the AM335x device. 7-55 shows the specifications  
for the serial terminators in such cases.  
7-55. Lower-Frequency DDR2 Signal Terminations  
NO. PARAMETER  
MIN  
0
TYP  
22  
MAX  
Zo(2)  
Zo(2)  
Zo(2)  
UNIT  
Ω
1
2
3
CK net class(1)  
ADDR_CTRL net class(1)(3)(4)  
0
22  
Ω
DQS0, DQS1, DQ0, and DQ1 net classes  
0
22  
Ω
(1) Only series termination is permitted.  
(2) Zo is the DDR2 PCB trace characteristic impedance.  
(3) Series termination values larger than typical only recommended to address EMI issues.  
(4) Series termination values should be uniform across net class.  
166  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.2.2.10 DDR_VREF Routing  
DDR_VREF is used as a reference by the input buffers of the DDR2 memories as well as the AM335x  
device. DDR_VREF is intended to be half the DDR2 power supply voltage and should be created using a  
resistive divider as shown in 7-39 and 7-40. TI does not recommend other methods of creating  
DDR_VREF. 7-43 shows the layout guidelines for DDR_VREF.  
DDR_VREF Bypass Capacitor  
DDR2 Device  
A1  
DDR_VREF Nominal Minimum  
Trace Width is 20 Mils  
AM335x  
A1  
Neck down to minimum in BGA escape  
regions is acceptable. Narrowing to  
accommodate via congestion for short  
distances is also acceptable. Best  
performance is obtained if the width  
of DDR_VREF is maximized.  
7-43. DDR_VREF Routing and Topology  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
167  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.2.3 DDR2 CK and ADDR_CTRL Routing  
7-44 shows the topology of the routing for the CK and ADDR_CTRL net classes. The length of signal  
path AB and AC should be minimized with emphasis to minimize lengths C and D such that length A is the  
majority of the total length of signal path AB and AC.  
A1  
T
A
AM335x  
A1  
7-44. CK and ADDR_CTRL Routing and Topology  
7-56. CK and ADDR_CTRL Routing Specification(1)(2)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
2w  
UNIT  
Center-to-center CK spacing  
2
CK differential pair skew length mismatch(2)(3)  
25  
mils  
mils  
3
CK B-to-CK C skew length mismatch  
25  
4
Center-to-center CK to other DDR2 trace spacing(4)  
CK and ADDR_CTRL nominal trace length(5)  
4w  
5
CACLM-50  
CACLM  
CACLM+50  
100  
mils  
mils  
mils  
6
ADDR_CTRL-to-CK skew length mismatch  
7
ADDR_CTRL-to-ADDR_CTRL skew length mismatch  
Center-to-center ADDR_CTRL to other DDR2 trace spacing(4)  
Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(4)  
ADDR_CTRL A-to-B and ADDR_CTRL A-to-C skew length mismatch(2)  
ADDR_CTRL B-to-C skew length mismatch  
100  
8
4w  
3w  
9
10  
11  
100  
100  
mils  
mils  
(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.  
(2) Series terminator, if used, should be located closest to the AM335x device.  
(3) Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in 7-48.  
(4) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(5) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.  
7-45 shows the topology and routing for the DQS[x] and DQ[x] net classes; the routes are point to  
point. Skew matching across bytes is not needed nor recommended.  
DQ[0]  
A1  
DQ[1]  
AM335x  
7-45. DQS[x] and DQ[x] Routing and Topology  
168  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-57. DQS[x] and DQ[x] Routing Specification(1)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
2w  
UNIT  
1
2
3
4
5
6
7
8
Center-to-center DQS[x] spacing  
DQS[x] differential pair skew length mismatch(2)  
Center-to-center DDR_DQS[x] to other DDR2 trace spacing(3)  
DQS[x] and DQ[x] nominal trace length(4)  
DQ[x]-to-DQS[x] skew length mismatch(4)  
DQ[x]-to-DQ[x] skew length mismatch(4)  
25  
mils  
4w  
DQLM-50  
DQLM  
DQLM+50  
100  
mils  
mils  
mils  
100  
Center-to-center DQ[x] to other DDR2 trace spacing(3)(5)  
Center-to-center DQ[x] to other DQ[x] trace spacing(3)(6)  
4w  
3w  
(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.  
(2) Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in 7-48.  
(3) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(4) There is no requirement for skew matching between data bytes; that is, from net classes DQS0 and DQ0 to net classes DQS1 and DQ1.  
(5) Signals from one DQ net class should be considered other DDR2 traces to another DQ net class.  
(6) DQLM is the longest Manhattan distance of each of the DQS[x] and DQ[x] net classes.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
169  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3 DDR3 and DDR3L Routing Guidelines  
All references to DDR3 in this section apply to DDR3 and DDR3L devices, unless otherwise  
noted.  
7.7.2.3.1 Board Designs  
TI only supports board designs using DDR3 memory that follow the guidelines in this document. The  
switching characteristics and timing diagram for the DDR3 memory interface are shown in 7-58 and 图  
7-46.  
7-58. Switching Characteristics for DDR3 Memory Interface  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
tc(DDR_CK)  
tc(DDR_CKn)  
1
Cycle time, DDR_CK and DDR_CKn  
2.5  
3.3(1)  
ns  
(1) The JEDEC JESD79-3F Standard defines the maximum clock period of 3.3 ns for all standard-speed bin DDR3 and DDR3L memory  
devices. Therefore, all standard-speed bin DDR3 and DDR3L memory devices are required to operate at 303 MHz.  
1
DDR_CK  
DDR_CKn  
7-46. DDR3 Memory Interface Clock Timing  
7.7.2.3.1.1 DDR3 versus DDR2  
This specification only covers AM335x PCB designs that use DDR3 memory. Designs using DDR2  
memory should use the DDR2 routing guidleines described in 7.7.2.2. While similar, the two memory  
systems have different requirements. It is currently not possible to design one PCB that meets the  
requirements of both DDR2 and DDR3.  
7.7.2.3.2 DDR3 Device Combinations  
Because there are several possible combinations of device counts and single-side or dual-side mounting,  
7-59 summarizes the supported device configurations.  
7-59. Supported DDR3 Device Combinations  
NUMBER OF DDR3 DEVICES  
DDR3 DEVICE WIDTH (BITS)  
MIRRORED?  
DDR3 EMIF WIDTH (BITS)  
1
2
16  
8
N
Y(1)  
16  
16  
(1) Two DDR3 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of  
the board.  
7.7.2.3.3 DDR3 Interface  
This section provides the timing specification for the DDR3 interface as a PCB design and manufacturing  
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,  
and signal timing. These rules, when followed, result in a reliable DDR3 memory system without the need  
for a complex timing closure process. For more information regarding the guidelines for using this DDR3  
specification, see Understanding TI's PCB Routing Rule-Based DDR Timing Specification. This application  
report provides generic guidelines and approach. All the specifications provided in the data manual take  
precedence over the generic guidelines and must be adhered to for a reliable DDR3 interface operation.  
170  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.3.3.1 DDR3 Interface Schematic  
The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used. 7-47  
shows the schematic connections for 16-bit interface on the AM335x device using one x16 DDR3 device  
and 7-49 shows the schematic connections for 16-bit interface on the AM335x device using two x8  
DDR3 devices. The AM335x DDR3 memory interface only supports 16-bit wide mode of operation. The  
AM335x device can only source one load connected to the DQS[x] and DQ[x] net class signals and two  
loads connected to the CK and ADDR_CTRL net class signals. For more information related to net  
classes, see 7.7.2.3.3.8.  
16-Bit DDR3  
Interface  
16-Bit DDR3  
Device  
DDR_D15  
DQU7  
8
DDR_D8  
DQU0  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DMU  
DQSU  
DQSU#  
DDR_D7  
DQL7  
8
DDR_D0  
DQL0  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DML  
DQSL  
DQSL#  
0.1 µF  
Zo  
Zo  
DDR_CK  
CK  
VDDS_DDR  
DDR_CKn  
CK#  
DDR_ODT  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
CS#  
BA0  
BA1  
BA2  
DDR_VTT  
Zo  
Zo  
DDR_A0  
A0  
15  
DDR_A15  
A15  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CAS#  
RAS#  
WE#  
DDR_CKE  
CKE  
DDR_RESETn  
DDR_VREF  
RESET#  
ZQ  
ZQ  
VREFDQ  
VREFCA  
DDR_VREF  
0.1 µF  
0.1 µF  
0.1 µF  
DDR_VTP  
49.9 Ω  
( 1%, 20 mW)  
Zo  
ZQ  
Termination is required. See terminator comments.  
Value determined according to the DDR3 memory device data sheet.  
Copyright © 2016, Texas Instruments Incorporated  
7-47. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device with VTT Termination  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
171  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
16-Bit DDR3  
Interface  
16-Bit DDR3  
Device  
DDR_D15  
DQU7  
8
DDR_D8  
DQU0  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DMU  
DQSU  
DQSU#  
DDR_D7  
DQL7  
8
DDR_D0  
DQL0  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DML  
DQSL  
DQSL#  
DDR_CK  
CK  
DDR_CKn  
CK#  
DDR_ODT  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
CS#  
BA0  
BA1  
BA2  
DDR_A0  
A0  
15  
DDR_A15  
A15  
VDDS_DDR(A)  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CAS#  
RAS#  
WE#  
DDR_CKE  
CKE  
DDR_RESETn  
RESET#  
ZQ  
1 kΩ 1%  
0.1 µF  
0.1 µF  
ZQ  
VREFDQ  
VREFCA  
DDR_VREF  
DDR_VREF  
1 kΩ 1%  
0.1 µF  
0.1 µF  
DDR_VTP  
49.9 Ω  
( 1%, 20 mW)  
ZQ  
Value determined according to the DDR3 memory device data sheet.  
Copyright © 2016, Texas Instruments Incorporated  
A. VDDS_DDR is the power supply for the DDR3 memories and the AM335x DDR3 interface.  
7-48. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device without VTT Termination  
172  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
16-Bit DDR3  
Interface  
8-Bit DDR3  
Devices  
DDR_D15  
DQ7  
8
DDR_D8  
DQ0  
DDR_DQM1  
DM/TDQS  
TDQS#  
DQS  
NC  
DDR_DQS1  
DDR_DQSn1  
DQS#  
DDR_D7  
DQ7  
DQ0  
8
DDR_D0  
DDR_DQM0  
DM/TDQS  
TDQS#  
DQS  
NC  
DDR_DQS0  
DDR_DQSn0  
DQS#  
0.1 µF  
Zo  
Zo  
DDR_CK  
CK  
CK  
VDDS_DDR  
DDR_CKn  
CK#  
CK#  
DDR_ODT  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
ODT  
CS#  
BA0  
BA1  
BA2  
CS#  
BA0  
BA1  
BA2  
DDR_VTT  
Zo  
Zo  
DDR_A0  
A0  
A0  
15  
DDR_A15  
A15  
A15  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CAS#  
RAS#  
WE#  
CAS#  
RAS#  
WE#  
DDR_CKE  
CKE  
CKE  
DDR_RESETn  
DDR_VREF  
RESET#  
ZQ  
RESET#  
ZQ  
ZQ  
ZQ  
VREFDQ  
VREFCA  
VREFDQ  
VREFCA  
DDR_VREF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
DDR_VTP  
49.9 Ω  
( 1%, 20 mW)  
Zo  
ZQ  
Termination is required. See terminator comments.  
Value determined according to the DDR3 memory device data sheet.  
Copyright © 2016, Texas Instruments Incorporated  
7-49. 16-Bit DDR3 Interface Using Two 8-Bit DDR3 Devices  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
173  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3.3.2 Compatible JEDEC DDR3 Devices  
7-60 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface.  
7-60. Compatible JEDEC DDR3 Devices (Per Interface)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tC(DDR_CK) and tC(DDR_CKn)  
= 3.3 ns  
DDR3-800  
1
JEDEC DDR3 device speed grade  
tC(DDR_CK) and tC(DDR_CKn)  
= 2.5 ns  
DDR3-1600  
2
3
JEDEC DDR3 device bit width  
JEDEC DDR3 device count(1)  
x8  
1
x16  
2
bits  
devices  
(1) For valid DDR3 device configurations and device counts, see 7.7.2.3.3.1, 7-47, and 7-49.  
7.7.2.3.3.3 PCB Stackup  
The minimum stackup for routing the DDR3 interface is a four-layer stack up as shown in 7-61.  
Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal  
integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.  
7-61. Minimum PCB Stackup(1)  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
DESCRIPTION  
Top signal routing  
Ground  
1
2
3
4
Split Power Plane  
Bottom signal routing  
(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these  
signals on layer 1, therefore requiring routing of some signals on layer 4. When this is done, the signal routes on layer 4 must not cross  
splits in the power plane.  
174  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-62. PCB Stackup Specifications(1)  
NO.  
PARAMETER  
MIN  
4
TYP  
MAX  
UNIT  
1
2
3
4
5
6
7
8
9
PCB routing and plane layers  
Signal routing layers  
2
Full ground reference layers under DDR3 routing region(2)  
Full VDDS_DDR power reference layers under the DDR3 routing region(2)  
Number of reference plane cuts allowed within DDR3 routing region(3)  
Number of layers between DDR3 routing layer and reference plane(4)  
PCB routing feature size  
1
1
0
0
4
4
mils  
mils  
mils  
mils  
Ω
PCB trace width, w  
PCB BGA escape via pad size(5)  
18  
10  
50  
Zo  
20  
10 PCB BGA escape via hole size  
11 Single-ended impedance, Zo(6)  
12 Impedance control(7)(8)  
75  
Zo-5  
Zo+5  
Ω
(1) For the DDR3 device BGA pad size, see the DDR3 device manufacturer documentation.  
(2) Ground reference layers are preferred over power reference layers. Be sure to include bypass capacitors to accommodate reference  
layer return current as the trace routes switch routing layers.  
(3) No traces should cross reference plane cuts within the DDR3 routing region. High-speed signal traces crossing reference plane cuts  
create large return current paths which can lead to excessive crosstalk and EMI radiation.  
(4) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.  
(5) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available  
for power routing. An 18-mil pad is required for minimum layer count escape.  
(6) Zo is the nominal singled-ended impedance selected for the PCB.  
(7) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo  
defined by the single-ended impedance parameter.  
(8) Tighter impedance control is required to ensure flight time skew is minimal.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
175  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3.3.4 Placement  
7-50 shows the required placement for the AM335x device as well as the DDR3 devices. The  
dimensions for this figure are defined in 7-63. The placement does not restrict the side of the PCB on  
which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace  
lengths and allow for proper routing space.  
X1  
X2  
DDR3  
Interface  
Y
7-50. Placement Specifications  
7-63. Placement Specifications(1)  
NO.  
1
PARAMETER  
MIN  
MAX  
1000  
600  
UNIT  
mils  
mils  
mils  
w
X1(2)(3)(4)  
X2(2)(3)  
Y Offset(2)(3)(4)  
2
3
1500  
4
Clearance from non-DDR3 signal to DDR3 keepout region(5)(6)  
4
(1) DDR3 keepout region to encompass entire DDR3 routing area.  
(2) For dimension definitions, see 7-50.  
(3) Measurements from center of the AM335x device to center of the DDR3 device.  
(4) Minimizing X1 and Y improves timing margins.  
(5) w is defined as the signal trace width.  
(6) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane.  
176  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.3.3.5 DDR3 Keepout Region  
The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout  
region is defined for this purpose and is shown in 7-51. This region should encompass all DDR3  
circuitry and the region size varies with component placement and DDR3 routing. Additional clearances  
required for the keepout region are shown in 7-63. Non-DDR3 signals must not be routed on the same  
signal layer as DDR3 signals within the DDR3 keepout region. Non-DDR3 signals may be routed in the  
region provided they are routed on layers separated from DDR3 signal layers by a ground layer. No  
breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In addition,  
the VDDS_DDR power plane should cover the entire keepout region.  
DDR3 Interface  
DDR3 Keepout Region  
Encompasses Entire  
DDR3 Routing Area  
7-51. DDR3 Keepout Region  
7.7.2.3.3.6 Bulk Bypass Capacitors  
Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry. 7-  
64 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this  
table only covers the bypass needs of the AM335x DDR3 interface and DDR3 devices. Additional bulk  
bypass capacitance may be needed for other circuitry.  
7-64. Bulk Bypass Capacitors(1)  
NO.  
1
PARAMETER  
AM335x VDDS_DDR bulk bypass capacitor count  
AM335x VDDS_DDR bulk bypass total capacitance  
DDR3 number 1 bulk bypass capacitor count  
DDR3 number 1 bulk bypass total capacitance  
DDR3 number 2 bulk bypass capacitor count(2)  
DDR3 number 2 bulk bypass total capacitance(2)  
MIN  
2
MAX  
UNIT  
devices  
μF  
2
20  
2
3
devices  
μF  
4
20  
2
5
devices  
μF  
6
20  
(1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the high-  
speed (HS) bypass capacitors and DDR3 signal routing.  
(2) Only used when two DDR3 devices are used.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
177  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3.3.7 High-Speed Bypass Capacitors  
High-speed (HS) bypass capacitors are critical for proper DDR3 interface operation. It is particularly  
important to minimize the parasitic series inductance of the HS bypass capacitors, the AM335x device  
DDR3 power, and the AM335x device DDR3 ground connections. 7-65 contains the specification for  
the HS bypass capacitors as well as for the power connections on the PCB. Generally speaking, it is good  
to:  
Fit as many HS bypass capacitors as possible.  
Minimize the distance from the bypass capacitor to the power terminals being bypassed.  
Use the smallest physical sized capacitors possible with the highest capacitance readily available.  
Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest  
hole size via possible.  
Minimize via sharing. Note the limits on via sharing shown in 7-65.  
7-65. High-Speed Bypass Capacitors  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
1
HS bypass capacitor package size(1)  
0201  
0402 10 mils  
Distance, HS bypass capacitor to AM335x VDDS_DDR and VSS terminal  
being bypassed(2)(3)(4)  
2
400  
mils  
3
4
AM335x VDDS_DDR HS bypass capacitor count  
20  
1
devices  
AM335x VDDS_DDR HS bypass capacitor total capacitance  
μF  
Trace length from AM335x VDDS_DDR and VSS terminal to connection  
via(2)  
5
35  
70  
mils  
6
7
8
9
Distance, HS bypass capacitor to DDR3 device being bypassed(5)  
DDR3 device HS bypass capacitor count(6)  
DDR3 device HS bypass capacitor total capacitance(6)  
Number of connection vias for each HS bypass capacitor(7)(8)  
150  
mils  
devices  
μF  
12  
0.85  
2
vias  
10 Trace length from bypass capacitor connect to connection via(2)(8)  
35  
35  
100  
60  
mils  
Number of connection vias for each DDR3 device power and ground  
11  
1
vias  
mils  
terminal(9)  
Trace length from DDR3 device power and ground terminal to connection  
12  
via(2)(7)  
(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.  
(2) Closer and shorter is better.  
(3) Measured from the nearest AM335x VDDS_DDR and ground terminal to the center of the capacitor package.  
(4) Three of these capacitors should be located underneath the AM335x device, between the cluster of VDDS_DDR and ground terminals,  
between the DDR3 interfaces on the package.  
(5) Measured from the DDR3 device power and ground terminal to the center of the capacitor package.  
(6) Per DDR3 device.  
(7) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of  
vias is permitted on the same side of the board.  
(8) An HS bypass capacitor may share a via with a DDR3 device mounted on the same side of the PCB. A wide trace should be used for  
the connection and the length from the capacitor pad to the DDR3 device pad should be less than 150 mils.  
(9) Up to two pairs of DDR3 power and ground terminals may share a via.  
7.7.2.3.3.7.1 Return Current Bypass Capacitors  
Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals  
hopping from one signal layer to another. The bypass capacitor here provides a path for the return current  
to hop planes along with the signal. As many of these return current bypass capacitors should be used as  
possible. Because these are returns for signal current, the signal via size may be used for these  
capacitors.  
178  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.3.3.8 Net Classes  
7-66 lists the clock net classes for the DDR3 interface. 7-67 lists the signal net classes, and  
associated clock net classes, for signals in the DDR3 interface. These net classes are used for the  
termination and routing rules that follow.  
7-66. Clock Net Class Definitions  
CLOCK NET CLASS AM335x PIN NAMES  
CK  
DDR_CK and DDR_CKn  
DQS0  
DQS1  
DDR_DQS0 and DDR_DQSn0  
DDR_DQS1 and DDR_DQSn1  
7-67. Signal Net Class Definitions  
ASSOCIATED CLOCK NET  
SIGNAL NET CLASS  
AM335x PIN NAMES  
CLASS  
DDR_BA[2:0], DDR_A[15:0], DDR_CSn0, DDR_CASn, DDR_RASn,  
DDR_WEn, DDR_CKE, DDR_ODT  
ADDR_CTRL  
CK  
DQ0  
DQ1  
DQS0  
DQS1  
DDR_D[7:0], DDR_DQM0  
DDR_D[15:8], DDR_DQM1  
7.7.2.3.3.9 DDR3 Signal Termination  
Signal terminations are required for the CK and ADDR_CTRL net class signals. On-device terminations  
(ODTs) are required on the DQS[x] and DQ[x] net class signals. Detailed termination specifications are  
covered in the routing rules in the following sections.  
7-48 provides an example DDR3 schematic with a single 16-bit DDR3 memory device that does not  
have VTT termination on the address and control signals. A typical DDR3 point-to-point topology may  
provide acceptable signal integrity without VTT termination. System performance should be verified by  
performing signal integrity analysis using specific PCB design details before implementing this topology.  
7.7.2.3.3.10 DDR_VREF Routing  
DDR_VREF is used as a reference by the input buffers of the DDR3 memories as well as the AM335x  
device. DDR_VREF is intended to be half the DDR3 power supply voltage and is typically generated with  
a voltage divider connected to the VDDS_DDR power supply. It should be routed as a nominal 20-mil wide  
trace with 0.1 µF bypass capacitors near each device connection. Narrowing of DDR_VREF is allowed to  
accommodate routing congestion.  
7.7.2.3.3.11 VTT  
Like DDR_VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike  
DDR_VREF, VTT is expected to source and sink current, specifically the termination current for the  
ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should  
be routed as a power sub-plane. VTT should be bypassed near the terminator resistors.  
7.7.2.3.4 DDR3 CK and ADDR_CTRL Topologies and Routing Definition  
The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew  
between them. CK is a bit more complicated because it runs at a higher transition rate and is differential.  
The following subsections show the topology and routing for various DDR3 configurations for CK and  
ADDR_CTRL. The figures in the following subsections define the terms for the routing specification  
detailed in 7-68.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
179  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3.4.1 Two DDR3 Devices  
Two DDR3 devices are supported on the DDR3 interface consisting of two x8 DDR3 devices arranged as  
one 16-bit bank. These two devices may be mounted on a single side of the PCB, or may be mirrored in a  
pair to save board space at a cost of increased routing complexity and parts on the backside of the PCB.  
7.7.2.3.4.1.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices  
7-52 shows the topology of the CK net classes and 7-53 shows the topology for the corresponding  
ADDR_CTRL net classes.  
DDR3 Differential CK Input Buffers  
+
+
Clock Parallel  
Terminator  
VDDS_DDR  
Rcp  
A1  
A1  
A2  
A2  
A3  
A3  
AT  
AT  
Cac  
AM335x  
Differential Clock  
Output Buffer  
+
0.1 µF  
Rcp  
Routed as Differential Pair  
7-52. CK Topology for Two DDR3 Devices  
DDR3 Address and Control Input Buffers  
Address and Control  
Terminator  
Rtt  
AM335x  
Address and Control  
Output Buffer  
A1  
A2  
A3  
AT  
Vtt  
7-53. ADDR_CTRL Topology for Two DDR3 Devices  
7.7.2.3.4.1.2 CK and ADDR_CTRL Routing, Two DDR3 Devices  
7-54 shows the CK routing for two DDR3 devices placed on the same side of the PCB. 7-55 shows  
the corresponding ADDR_CTRL routing.  
180  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
A3  
A3  
AT  
AT  
0.1 µF  
=
7-54. CK Routing for Two Single-Sided DDR3 Devices  
Rtt  
A2  
A3  
AT  
Vtt  
=
7-55. ADDR_CTRL Routing for Two Single-Sided DDR3 Devices  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
181  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased  
routing and assembly complexity. 7-56 and 7-57 show the routing for CK and ADDR_CTRL,  
respectively, for two DDR3 devices mirrored in a single-pair configuration.  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
A3  
A3  
AT  
AT  
0.1 µF  
=
7-56. CK Routing for Two Mirrored DDR3 Devices  
Rtt  
A2  
A3  
AT  
Vtt  
=
7-57. ADDR_CTRL Routing for Two Mirrored DDR3 Devices  
182  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.7.2.3.4.2 One DDR3 Device  
One DDR3 device is supported on the DDR3 interface consisting of one x16 DDR3 device arranged as  
one 16-bit bank.  
7.7.2.3.4.2.1 CK and ADDR_CTRL Topologies, One DDR3 Device  
7-58 shows the topology of the CK net classes and 7-59 shows the topology for the corresponding  
ADDR_CTRL net classes.  
DDR3 Differential CK Input Buffer  
+
Clock Parallel  
Terminator  
VDDS_DDR  
Rcp  
A1  
A1  
A2  
A2  
AT  
AT  
Cac  
AM335x  
Differential Clock  
Output Buffer  
+
0.1 µF  
Rcp  
Routed as Differential Pair  
7-58. CK Topology for One DDR3 Device  
DDR3 Address and Control Input Buffers  
Address and Control  
Terminator  
Rtt  
AM335x  
Address and Control  
Output Buffer  
A1  
A2  
AT  
Vtt  
7-59. ADDR_CTRL Topology for One DDR3 Device  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
183  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3.4.2.2 CK and ADDR_CTRL Routing, One DDR3 Device  
7-60 shows the CK routing for one DDR3 device. 7-61 shows the corresponding ADDR_CTRL  
routing.  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
AT  
AT  
0.1 µF  
=
7-60. CK Routing for One DDR3 Device  
Rtt  
A2  
AT  
Vtt  
=
7-61. ADDR_CTRL Routing for One DDR3 Device  
7.7.2.3.5 Data Topologies and Routing Definition  
No matter the number of DDR3 devices used, the data line topology is always point to point, so its  
definition is simple.  
7.7.2.3.5.1 DQS[x] and DQ[x] Topologies, Any Number of Allowed DDR3 Devices  
DQS[x] lines are point-to-point differential, and DQ[x] lines are point-to-point single-ended. 7-62 and 图  
7-63 show these topologies.  
184  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Am335x  
DQS[x]  
DDR3  
DQS[x]+  
DQS[x]  
DQS[x]-  
I/O Buffer  
I/O Buffer  
Routed Differentially  
x = 0, 1  
7-62. DQS[x] Topology  
AM335x  
DQ[x]  
DDR3  
DQ[x]  
DQ[x]  
I/O Buffer  
I/O Buffer  
x = 0, 1  
7-63. DQ[x] Topology  
7.7.2.3.5.2 DQS[x] and DQ[x] Routing, Any Number of Allowed DDR3 Devices  
7-64 and 7-65 show the DQS[x] and DQ[x] routing.  
DQS[x]  
DQS[x]+  
DQS[x]-  
Routed Differentially  
x = 0, 1  
7-64. DQS[x] Routing With Any Number of Allowed DDR3 Devices  
DQ[x]  
x = 0, 1  
7-65. DQ[x] Routing With Any Number of Allowed DDR3 Devices  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
185  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.7.2.3.6 Routing Specification  
7.7.2.3.6.1 CK and ADDR_CTRL Routing Specification  
Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this  
skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter  
traces up to the length of the longest net in the net class and its associated clock. A metric to establish  
this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the  
length between the points when connecting them only with horizontal or vertical segments. A reasonable  
trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address  
Control Longest Manhattan distance.  
Given the clock and address pin locations on the AM335x device and the DDR3 memories, the maximum  
possible Manhattan distance can be determined given the placement. 7-66 shows this distance for two  
loads. The specifications on the lengths of the transmission lines for the address bus are determined from  
this distance. CACLM is determined similarly for other address bus configurations; that is, it is based on  
the longest net of the CK and ADDR_CTRL net class. For CK and ADDR_CTRL routing, these  
specifications are contained in 7-68.  
A8(A)  
CACLMY  
CACLMX  
A8(A)  
A8(A)  
Rtt  
A2  
A3  
AT  
Vtt  
=
A. It is very likely that the longest CK and ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the  
DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net  
class that satisfies this criteria and use as the baseline for CK and ADDR_CTRL skew matching and length control.  
The length of shorter CK and ADDR_CTRL stubs as well as the length of the terminator stub are not included in this  
length calculation. Nonincluded lengths are grayed out in the figure.  
Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils.  
The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8.  
7-66. CACLM for Two Address Loads on One Side of PCB  
7-68. CK and ADDR_CTRL Routing Specification(1)(2)(3)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
2500  
25  
UNIT  
mils  
mils  
mils  
mils  
mils  
mils  
A1 + A2 length  
A1 + A2 skew  
A3 length  
A3 skew(4)  
A3 skew(5)  
AS length  
2
3
660  
25  
4
5
125  
100  
6
186  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-68. CK and ADDR_CTRL Routing Specification(1)(2)(3) (continued)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
25  
UNIT  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
7
8
9
AS skew  
AS+ and AS– length  
AS+ and AS– skew  
70  
5
10 AT length(6)  
11 AT skew(7)  
12 AT skew(8)  
500  
100  
5
13 CK and ADDR_CTRL nominal trace length(9)  
14 Center-to-center CK to other DDR3 trace spacing(10)  
15 Center-to-center ADDR_CTRL to other DDR3 trace spacing(10)(11)  
16 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(10)  
17 CK center-to-center spacing(12)  
CACLM-50  
CACLM  
CACLM+50  
4w  
4w  
3w  
18 CK spacing to other net(10)  
19 Rcp(13)  
20 Rtt(13)(14)  
4w  
Zo-1  
Zo-5  
Zo  
Zo  
Zo+1  
Zo+5  
Ω
Ω
(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.  
(2) The use of vias should be minimized.  
(3) Additional bypass capacitors are required when using the VDDS_DDR plane as the reference plane to allow the return current to jump  
between the VDDS_DDR plane and the ground plane when the net class switches layers at a via.  
(4) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom).  
(5) Nonmirrored configuration (all DDR3 memories on same side of PCB).  
(6) While this length can be increased for convenience, its length should be minimized.  
(7) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required.  
(8) CK net class only.  
(9) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes + 300 mils. For definition, see 7.7.2.3.6.1 and 图  
7-66.  
(10) Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.  
(11) Signals from one DQ net class should be considered other DDR3 traces to another DQ net class.  
(12) CK spacing set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-ended  
impedance defined in 7-62.  
(13) Source termination (series resistor at driver) is specifically not allowed.  
(14) Termination values should be uniform across the net class.  
7.7.2.3.6.2 DQS[x] and DQ[x] Routing Specification  
Skew within the DQS[x] and DQ[x] net classes directly reduces setup and hold margin and, thus, this skew  
must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces  
up to the length of the longest net in the net class and its associated clock. DQLMn is defined as DQ  
Longest Manhattan distance n, where n is the byte number. For a 16-bit interface, there are two DQLMs,  
DQLM0-DQLM1.  
Matching the lengths across all bytes is not required, nor is it recommended. Length  
matching is only required within each byte.  
Given the DQS[x] and DQ[x] pin locations on the AM335x device and the DDR3 memories, the maximum  
possible Manhattan distance can be determined given the placement. 7-67 shows this distance for a  
two-load case. It is from this distance that the specifications on the lengths of the transmission lines for the  
data bus are determined. For DQS[x] and DQ[x] routing, these specifications are contained in 7-69.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
187  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
DQLMX0  
DQ[0:7], DM0, DQS0  
DQ0  
DQ1  
DQ[8:15], DM1, DQS1  
DQLMX1  
DQLMY0  
DQLMY1  
1
0
DQ0 - DQ1 represent data bytes 0 - 1.  
There are two DQLMs, one for each byte (16-bit interface). Each DQLM is the longest Manhattan distance of the byte;  
therefore:  
DQLM0 = DQLMX0 + DQLMY0  
DQLM1 = DQLMX1 + DQLMY1  
7-67. DQLM for Any Number of Allowed DDR3 Devices  
7-69. DQS[x] and DQ[x] Routing Specification(1)(2)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
DQLM0  
DQLM1  
25  
UNIT  
mils  
mils  
mils  
mils  
mils  
DQ0 nominal length(3)(4)  
DQ1 nominal length(3)(5)  
DQ[x] skew(6)  
2
3
4
DQS[x] skew  
DQS[x]-to-DQ[x] skew(6)(7)  
5
5
25  
6
Center-to-center DQ[x] to other DDR3 trace spacing(8)(9)  
Center-to-center DQ[x] to other DQ[x] trace spacing(8)(10)  
DQS[x] center-to-center spacing(11)  
4w  
3w  
7
8
9
DQS[x] center-to-center spacing to other net(8)  
4w  
(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.  
(2) External termination disallowed. Data termination should use built-in ODT functionality.  
(3) DQLMn is the longest Manhattan distance of a byte. For definition, see 7.7.2.3.6.2 and 7-67.  
(4) DQLM0 is the longest Manhattan length for the DQ0 net class.  
(5) DQLM1 is the longest Manhattan length for the DQ1 net class.  
(6) Length matching is only done within a byte. Length matching across bytes is not required.  
(7) Each DQS clock net class is length matched to its associated DQ signal net class.  
(8) Center-to-center spacing is allowed to fall to minimum for up to 1250 mils of routed length.  
(9) Other DDR3 trace spacing means signals that are not part of the same DQ[x] signal net class.  
(10) This applies to spacing within same DQ[x] signal net class.  
(11) DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-  
ended impedance defined in 7-62.  
188  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.8 I2C  
For more information, see the Inter-Integrated Circuit (I2C) section of the AM335x and AMIC110 Sitara  
Processors Technical Reference Manual.  
7.8.1 I2C Electrical Data and Timing  
7-70. I2C Timing Conditions – Slave Mode  
STANDARD MODE  
MIN MAX  
FAST MODE  
MIN  
PARAMETER  
UNIT  
MAX  
Output Condition  
Cb  
Capacitive load for each bus line  
400  
400  
pF  
7-71. Timing Requirements for I2C Input Timings  
(see 7-68)  
STANDARD MODE  
FAST MODE  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
tc(SCL)  
Cycle time, SCL  
10  
2.5  
µs  
µs  
Setup time, SCL high before SDA low (for a repeated  
START condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
3
th(SDAL-SCLL)  
µs  
4
5
6
7
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100(1)  
0(2)  
µs  
µs  
ns  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDAV-SCLH)  
th(SCLL-SDAV)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0(2)  
3.45(3)  
0.9(3) µs  
Pulse duration, SDA high between STOP and START  
conditions  
8
tw(SDAH)  
4.7  
1.3  
µs  
9
tr(SDA)  
Rise time, SDA  
1000  
1000  
300  
300 ns  
300 ns  
300 ns  
300 ns  
µs  
10 tr(SCL)  
Rise time, SCL  
11 tf(SDA)  
Fall time, SDA  
12 tf(SCL)  
Fall time, SCL  
300  
13 tsu(SCLH-SDAH)  
Setup time, high before SDA high (for STOP condition)  
4
0
0.6  
0
14 tw(SP)  
Pulse duration, spike (must be suppressed)  
50  
50 ns  
(1) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)250 ns must then be  
met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device stretches the LOW  
period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the  
standard-mode I2C-Bus Specification) before the SCL line is released.  
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(3) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
189  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
9
11  
I2C[x]_SDA  
6
8
14  
4
13  
5
10  
I2C[x]_SCL  
1
12  
3
7
2
3
Stop  
Start  
Repeated  
Start  
Stop  
7-68. I2C Receive Timing  
7-72. Switching Characteristics for I2C Output Timings  
(see 7-69)  
NO.  
STANDARD MODE  
PARAMETER  
FAST MODE  
UNIT  
MIN  
MAX  
MIN  
MAX  
15 tc(SCL)  
Cycle time, SCL  
10  
2.5  
µs  
µs  
Setup time, SCL high before SDA low (for a repeated  
START condition)  
16 tsu(SCLH-SDAL)  
17 th(SDAL-SCLL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
µs  
18 tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
µs  
µs  
ns  
19 tw(SCLH)  
Pulse duration, SCL high  
20 tsu(SDAV-SCLH)  
21 th(SCLL-SDAV)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45  
0.9 µs  
Pulse duration, SDA high between STOP and START  
conditions  
22 tw(SDAH)  
4.7  
4
1.3  
0.6  
µs  
µs  
27 tsu(SCLH-SDAH)  
Setup time, high before SDA high (for STOP condition)  
I2C[x]_SDA  
I2C[x]_SCL  
20  
22  
18  
27  
19  
15  
17  
21  
16  
17  
Stop  
Start  
Repeated  
Start  
Stop  
7-69. I2C Transmit Timing  
7.9 JTAG Electrical Data and Timing  
7-73. JTAG Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
190  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-73. JTAG Timing Conditions (continued)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
Output Conditions  
CLOAD  
Output load capacitance  
5
15  
pF  
7-74. Timing Requirements for JTAG  
(see 7-70)  
OPP100  
OPP50  
NO.  
UNIT  
MIN  
81.5  
32.6  
32.6  
3
MAX  
MIN  
104.5  
41.8  
41.8  
3
MAX  
1
tc(TCK)  
1a tw(TCKH)  
1b tw(TCKL)  
Cycle time, TCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
tsu(TDI-TCKH)  
3
4
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
3
8.05  
8.05  
8.05  
8.05  
7-75. Switching Characteristics for JTAG  
(see 7-70)  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
3
27.6  
4
36.8  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
7-70. JTAG Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
191  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.10 LCD Controller (LCDC)  
The LCDC consists of two independent controllers, the raster controller and the LCD interface display  
driver (LIDD) controller. Each controller operates independently from the other and only one of them is  
active at any given time.  
The raster controller handles the synchronous LCD interface. It provides timing and data for constant  
graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display  
types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale and  
serializer. Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous  
memory block in the system. A built-in DMA engine supplies the graphics data to the raster engine  
which, in turn, outputs to the external LCD device.  
The LIDD controller supports the asynchronous LCD interface. It provides full-timing programmability of  
control signals (CS, WE, OE, ALE) and output data.  
The maximum resolution for the LCD controller is 2048 × 2048 pixels. The maximum frame rate is  
determined by the image size in combination with the pixel clock rate.  
7-76. LCD Controller Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
TR  
TF  
Input signal fall time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
LIDD mode  
5
3
60  
30  
CLOAD Output load capacitance  
pF  
Raster mode  
7.10.1 LCD Interface Display Driver (LIDD Mode)  
7-77. Timing Requirements for LCD LIDD Mode  
(see 7-72 through 7-80)  
OPP100  
MIN  
NO.  
UNIT  
MAX  
Setup time, LCD_DATA[15:0] valid before  
LCD_MEMORY_CLK high  
16  
tsu(LCD_DATA-LCD_MEMORY_CLK)  
th(LCD_MEMORY_CLK-LCD_DATA)  
tt(LCD_DATA)  
18  
ns  
Hold time, LCD_DATA[15:0] valid after  
LCD_MEMORY_CLK high  
17  
18  
0
1
ns  
ns  
Transition time, LCD_DATA[15:0]  
3
7-78. Switching Characteristics for LCD LIDD Mode  
(see 7-72 through 7-80)  
OPP100  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
1
2
3
tc(LCD_MEMORY_CLK)  
tw(LCD_MEMORY_CLKH)  
tw(LCD_MEMORY_CLKL)  
Cycle time, LCD_MEMORY_CLK  
23.7  
ns  
ns  
ns  
Pulse duration, LCD_MEMORY_CLK high  
Pulse duration, LCD_MEMORY_CLK low  
Delay time, LCD_MEMORY_CLK high to  
0.45tc  
0.55tc  
0.55tc  
0.45tc  
4
5
6
8
td(LCD_MEMORY_CLK-LCD_DATAV)  
td(LCD_MEMORY_CLK-LCD_DATAI)  
td(LCD_MEMORY_CLK-LCD_AC_BIAS_EN)  
td(LCD_MEMORY_CLK-LCD_VSYNC)  
7
ns  
ns  
ns  
ns  
LCD_DATA[15:0] valid (write)  
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] invalid (write)  
0
0
0
Delay time, LCD_MEMORY_CLK high to  
LCD_AC_BIAS_EN  
6.8  
7
Delay time, LCD_MEMORY_CLK high to  
LCD_VSYNC  
192  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-78. Switching Characteristics for LCD LIDD Mode (continued)  
(see 7-72 through 7-80)  
OPP100  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
Delay time, LCD_MEMORY_CLK high to  
LCD_HSYNC  
10  
12  
14  
td(LCD_MEMORY_CLK-LCD_HYSNC)  
td(LCD_MEMORY_CLK-LCD_PCLK)  
td(LCD_MEMORY_CLK-LCD_DATAZ)  
0
7
7
7
ns  
ns  
ns  
Delay time, LCD_MEMORY_CLK high to LCD_PCLK  
0
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] high-Z  
0
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] driven  
15  
td(LCD_MEMORY_CLK-LCD_DATA)  
0
7
ns  
CS_DELAY  
(0 to 3)  
W_SU  
(0 to 31)  
W_STROBE  
(1 to 63)  
W_HOLD  
(1 to 15)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
4
8
5
8
LCD_DATA[7:0]  
Write Instruction  
LCD_VSYNC  
(RS)  
10  
10  
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
7-71. Command Write in Hitachi Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
193  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
CS_DELAY  
(0 to 3)  
W_SU  
(0 to 31)  
W_STROBE  
(1 to 63)  
W_HOLD  
(1 to 15)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
4
5
LCD_DATA[15:0]  
Write Data  
LCD_VSYNC  
(RS)  
10  
10  
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
7-72. Data Write in Hitachi Mode  
R_SU  
(0 to 31)  
R_HOLD  
(1 to 15)  
CS_DELAY  
(0 to 3)  
R_STROBE  
(1 to 63)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
17  
16  
15  
8
14  
8
LCD_DATA[15:0]  
Read Command  
18  
LCD_VSYNC  
(RS)  
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
7-73. Command Read in Hitachi Mode  
194  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
R_SU  
(0 to 31)  
R_HOLD  
(1 to 15)  
CS_DELAY  
(0 to 3)  
R_STROBE  
(1 to 63)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
17  
16  
15  
14  
LCD_DATA[15:0]  
Read Data  
18  
LCD_VSYNC  
(RS)  
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 because the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
7-74. Data Read in Hitachi Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
195  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
W_HOLD  
(1−15)  
W_HOLD  
(1−15)  
W_SU  
(0−31)  
W_SU  
(0−31)  
1
W_STROBE  
(1−63)  
W_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
4
5
4
5
LCD_DATA[15:0]  
Write Address  
Write Data  
6
8
6
8
6
6
LCD_AC_BIAS_EN  
(CS0)  
LCD_VSYNC  
(ALE)  
9
10  
10  
10  
10  
LCD_HSYNC  
(DIR)  
12  
12  
12  
12  
LCD_PCLK  
(EN)  
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured  
in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
7-75. Micro-Interface Graphic Display Motorola Write  
196  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
W_HOLD  
(1−15)  
R_SU  
(0−31)  
W_SU  
(0−31)  
R_HOLD  
(1−15)  
1
W_STROBE  
(1−63)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
16  
18  
4
5
14  
15  
17  
LCD_DATA[15:0]  
Write Address  
Read  
Data  
6
8
6
8
6
6
LCD_AC_BIAS_EN  
(CS0)  
LCD_VSYNC  
(ALE)  
9
10  
10  
LCD_HSYNC  
(DIR)  
12  
12  
12  
12  
LCD_PCLK  
(EN)  
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured  
in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
7-76. Micro-Interface Graphic Display Motorola Read  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
197  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
R_SU  
(0−31)  
1
R_HOLD  
(1−15)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
16  
14  
15  
17  
LCD_DATA[15:0]  
Read  
Status  
18  
6
8
6
8
LCD_AC_BIAS_EN  
(CS0)  
LCD_VSYNC  
(ALE)  
LCD_HSYNC  
(DIR)  
12  
12  
LCD_PCLK  
(EN)  
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured  
in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
7-77. Micro-Interface Graphic Display Motorola Status  
198  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
W_HOLD  
(1−15)  
W_HOLD  
(1−15)  
W_SU  
(0−31)  
W_SU  
(0−31)  
1
W_STROBE  
W_STROBE  
2
(1−63)  
Write Address  
10  
(1−63)  
Write Data  
10  
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
4
5
4
5
LCD_DATA[15:0]  
6
8
6
8
6
6
LCD_AC_BIAS_EN  
(CS0)  
LCD_VSYNC  
(ALE)  
10  
10  
LCD_HSYNC  
(WS)  
LCD_PCLK  
(RS)  
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in  
asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
7-78. Micro-Interface Graphic Display Intel Write  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
199  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
W_HOLD  
(1−15)  
R_SU  
(0−31)  
W_SU  
(0−31)  
R_HOLD  
(1−15)  
1
W_STROBE  
(1−63)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
16  
18  
4
5
14  
15  
17  
LCD_DATA[15:0]  
Write Address  
Read  
Data  
6
8
6
8
6
6
LCD_AC_BIAS_EN  
(CS0)  
LCD_VSYNC  
(ALE)  
10  
10  
LCD_HSYNC  
(WS)  
12  
12  
LCD_PCLK  
(RS)  
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in  
asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
7-79. Micro-Interface Graphic Display Intel Read  
200  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
R_SU  
(0−31)  
1
R_HOLD  
(1−15)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
16  
14  
15  
17  
LCD_DATA[15:0]  
Read  
Status  
18  
6
8
6
8
LCD_AC_BIAS_EN  
(CS0)  
LCD_VSYNC  
(ALE)  
LCD_HSYNC  
(WS)  
12  
12  
LCD_PCLK  
(RS)  
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in  
asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
7-80. Micro-Interface Graphic Display Intel Status  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
201  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.10.2 LCD Raster Mode  
7-79. Switching Characteristics for LCD Raster Mode  
(see 7-82 through 7-85)  
OPP50  
MIN  
OPP100  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
3
tc(LCD_PCLK)  
tw(LCD_PCLKH)  
tw(LCD_PCLKL)  
Cycle time, pixel clock  
15.8  
0.45tc  
0.45tc  
7.9  
ns  
Pulse duration, pixel clock high  
Pulse duration, pixel clock low  
0.55tc  
0.55tc  
0.45tc  
0.55tc  
0.55tc  
ns  
ns  
0.45tc  
Delay time, LCD_PCLK to LCD_DATA[23:0] valid  
(write)  
4
5
td(LCD_PCLK-LCD_DATAV)  
td(LCD_PCLK-LCD_DATAI)  
3.0  
1.9  
ns  
ns  
Delay time, LCD_PCLK to LCD_DATA[23:0] invalid  
(write)  
–3.0  
–1.7  
6
8
td(LCD_PCLK-LCD_AC_BIAS_EN) Delay time, LCD_PCLK to LCD_AC_BIAS_EN  
–3.0  
–3.0  
–3.0  
3.0  
3.0  
3.0  
–1.7  
–1.7  
–1.7  
1.9  
1.9  
1.9  
ns  
ns  
ns  
td(LCD_PCLK-LCD_VSYNC)  
Delay time, LCD_PCLK to LCD_VSYNC  
Delay time, LCD_PCLK to LCD_HSYNC  
10 td(LCD_PCLK-LCD_HSYNC)  
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)  
register:  
Vertical front porch (VFP)  
Vertical sync pulse width (VSW)  
Vertical back porch (VBP)  
Lines per panel (LPP_B10 + LPP)  
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:  
Horizontal front porch (HFP)  
Horizontal sync pulse width (HSW)  
Horizontal back porch (HBP)  
Pixels per panel (PPLMSB + PPLLSB)  
LCD_AC_BIAS_EN timing is derived through the following parameter in the LCD (RASTER_TIMING_2)  
register:  
AC bias frequency (ACB)  
The display format produced in raster mode is shown in 7-81. An entire frame is delivered one line at a  
time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered  
starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the  
activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O  
signal LCD_HSYNC.  
202  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Data Pixels (From 1 to P)  
P−2,  
1
P−1,  
1
1, 1  
1, 2  
1, 3  
2, 1  
2, 2  
3, 1  
P, 1  
P, 2  
P, 3  
P−1,  
2
LCD  
1,  
L−2  
P,  
L−2  
1,  
L−1  
2,  
L−1  
P−1,  
L−1  
P,  
L−1  
P−2,  
L
P−1,  
L
1, L  
2, L  
3, L  
P, L  
7-81. LCD Raster-Mode Display Format  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
203  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
Frame Time  
LPP_B10 + LPP  
(1 to 2048)  
VSW  
VBP  
VFP  
VSW  
(1 to 64)  
(0 to 255)  
(1 to 64)  
(0 to 255)  
Line  
Time  
LCD_HSYNC  
LCD_VSYNC  
LCD_DATA[23:0]  
1, 1 1, 2  
P, 1 P, 2  
1, L-1 1, L  
P, L-1 P, L  
LCD_AC_BIAS_EN  
(ACTVID)  
10  
10  
LCD_HSYNC  
LCD_PCLK  
LCD_DATA[23:0]  
2, 1  
1, 2  
P, 2  
P, 1  
1, 1  
2, 2  
LCD_AC_BIAS_EN  
(ACTVID)  
PPLMSB + PPLLSB  
16 × (1 to 2048)  
Line 2  
PPLMSB + PPLLSB  
16 × (1 to 2048)  
Line 1  
HFP  
(1 to 256)  
HSW  
HBP  
(1 to 256)  
(1 to 64)  
7-82. LCD Raster-Mode Active  
204  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Frame Time  
VBP = 0  
VFP = 0  
VSW = 1  
LPP_B10 + LPP  
(1 to 2048)  
Line  
Time  
LCD_HSYNC  
LCD_VSYNC  
1, L  
Data  
1, L:  
P, L  
1, 1:  
P, 1  
1, 2:  
P, 2  
1, 3:  
P, 3  
1, 4:  
P, 4  
1, 5:  
P, 5  
1, 6:  
P, 6  
1, L  
P, L  
1, 1  
P, 1  
1, 2  
P, 2  
LCD_DATA[7:0]  
1, L−1  
P, L−1  
1, L−4  
P, L−4  
1, L−3 1, L−2 1, L−1  
P, L−1  
P, L−3 P, L−2  
LCD_AC_BIAS_EN  
ACB  
ACB  
(0 to 255)  
(0 to 255)  
10  
10  
LCD_HSYNC  
LCD_PCLK  
1, 5 2, 5  
P, 5  
1, 6 2, 6  
P, 6  
LCD_DATA[7:0]  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
Line 5  
HFP  
HSW  
HBP  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
Line 6  
(1 to 256)  
(1 to 64)  
(1 to 256)  
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.  
7-83. LCD Raster-Mode Passive  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
205  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
6
LCD_AC_BIAS_EN  
LCD_VSYNC  
8
10  
10  
LCD_HSYNC  
1
3
2
LCD_PCLK  
(passive mode)  
4
5
LCD_DATA[7:0]  
(passive mode)  
1, L 2, L  
P, L  
1, 1 2, 1  
P, 1  
1
3
2
LCD_PCLK  
(active mode)  
4
5
LCD_DATA[23:0]  
(active mode)  
1, L 2, L  
P, L  
VBP = 0  
VFP = 0  
VWS = 1  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
HSW  
HBP  
HFP  
(1 to 256)  
(1 to 64)  
(1 to 256)  
Line L  
Line 1 (Passive Only)  
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.  
7-84. LCD Raster-Mode Control Signal Activation  
206  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
LCD_AC_BIAS_EN  
LCD_VSYNC  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
6
8
10  
10  
LCD_HSYNC  
1
3
2
LCD_PCLK  
(passive mode)  
4
5
LCD_D[7:0]  
(passive mode)  
1, 1 2, 1  
P, 1  
1, 2 2, 2  
P, 2  
1
3
2
LCD_PCLK  
(active mode)  
4
5
LCD_DATA[23:0]  
(active mode)  
1, 1 2, 1  
P, 1  
VBP = 0  
VFP = 0  
VWS = 1  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
HSW  
HBP  
HFP  
(1 to 256)  
(1 to 64)  
(1 to 256)  
Line 1  
Line 1 for active  
Line 2 for passive  
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.  
7-85. LCD Raster-Mode Control Signal Deactivation  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
207  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.11 Multichannel Audio Serial Port (McASP)  
The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for  
the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM)  
stream, Inter-Integrated Sound (I2S) protocols, and inter-component digital audio interface transmission  
(DIT).  
7.11.1 McASP Device-Specific Information  
The device includes two multichannel audio serial port (McASP) interface peripherals (McASP0 and  
McASP1). The McASP module consists of a transmit and receive section. These sections can operate  
completely independently with different data formats, separate master clocks, bit clocks, and frame syncs  
or, alternatively, the transmit and receive sections may be synchronized. The McASP module also  
includes shift registers that may be configured to operate as either transmit data or receive data.  
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM)  
synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for  
SPDIF, AES-3, IEC-60958, CP-430 transmission. The receive section of the McASP peripheral supports  
the TDM synchronous serial format.  
The McASP module can support one transmit data format (either a TDM format or DIT format) and one  
receive format at a time. All transmit shift registers use the same format and all receive shift registers use  
the same format; however, the transmit and receive formats need not be the same. Both the transmit and  
receive sections of the McASP also support burst mode, which is useful for nonaudio data (for example,  
passing control information between two devices).  
The McASP peripheral has additional capability for flexible clock generation and error detection/handling,  
as well as error management.  
The device McASP0 and McASP1 modules have up to four serial data pins each. The McASP FIFO size  
is 256 bytes and two DMA and two interrupt requests are supported. Buffers are used transparently to  
better manage DMA, which can be leveraged to manage data flow more efficiently.  
For more detailed information on and the functionality of the McASP peripheral, see the Multichannel  
Audio Serial Port (McASP) section of the AM335x and AMIC110 Sitara Processors Technical Reference  
Manual.  
208  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.11.2 McASP Electrical Data and Timing  
7-80. McASP Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
4(1)  
4(1)  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
15  
30  
pF  
(1) Except when specified otherwise.  
7-81. Timing Requirements for McASP(1)  
(see 7-86)  
OPP100  
MIN  
OPP50  
NO.  
UNIT  
MAX  
MIN  
MAX  
Cycle time, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX  
1
2
3
4
tc(AHCLKRX)  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
20  
40  
ns  
ns  
ns  
ns  
Pulse duration, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX high or low  
0.5P - 2.5(2)  
0.5P - 2.5(2)  
Cycle time, McASP[x]_ACLKR and  
McASP[x]_ACLKX  
20  
40  
Pulse duration, McASP[x]_ACLKR and  
McASP[x]_ACLKX high or low  
0.5R - 2.5(3)  
0.5R - 2.5(3)  
ACLKR and  
ACLKX int  
11.5  
4
15.5  
6
Setup time, McASP[x]_AFSR and  
McASP[x]_AFSX input valid before  
McASP[x]_ACLKR and  
tsu(AFSRX-  
ACLKRX)  
ACLKR and  
ACLKX ext in  
5
6
7
8
ns  
ns  
ns  
ns  
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext out  
4
6
ACLKR and  
ACLKX int  
-1  
-1  
Hold time, McASP[x]_AFSR and  
McASP[x]_AFSX input valid after  
McASP[x]_ACLKR and  
th(ACLKRX-  
AFSRX)  
ACLKR and  
ACLKX ext in  
0.4  
0.4  
11.5  
4
0.4  
0.4  
15.5  
6
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext out  
ACLKR and  
ACLKX int  
Setup time, McASP[x]_AXR input  
tsu(AXR-ACLKRX) valid before McASP[x]_ACLKR and  
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext in  
ACLKR and  
ACLKX ext out  
4
6
ACLKR and  
ACLKX int  
-1  
-1  
Hold time, McASP[x]_AXR input  
th(ACLKRX-AXR) valid after McASP[x]_ACLKR and  
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext in  
0.4  
0.4  
0.4  
0.4  
ACLKR and  
ACLKX ext out  
(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
(2) P = McASP[x]_AHCLKR and McASP[x]_AHCLKX period in nanoseconds (ns).  
(3) R = McASP[x]_ACLKR and McASP[x]_ACLKX period in ns.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
209  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
2
1
2
McASP[x]_ACLKR/X (Falling Edge Polarity)  
McASP[x]_AHCLKR/X (Rising Edge Polarity)  
4
4
3
McASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(A)  
McASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(B)  
6
5
McASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
8
7
McASP[x]_AXR[x] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP  
receiver is configured for falling edge (to shift data in).  
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP  
receiver is configured for rising edge (to shift data in).  
7-86. McASP Input Timing  
210  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-82. Switching Characteristics for McASP(1)  
(see 7-87)  
OPP100  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
Cycle time, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX  
9
tc(AHCLKRX)  
20(2)  
40  
ns  
ns  
ns  
ns  
Pulse duration, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX high or low  
10 tw(AHCLKRX)  
11 tc(ACLKRX)  
12 tw(ACLKRX)  
0.5P – 2.5(3)  
0.5P – 2.5(3)  
Cycle time, McASP[x]_ACLKR and  
McASP[x]_ACLKX  
20  
40  
Pulse duration, McASP[x]_ACLKR and  
McASP[x]_ACLKX high or low  
0.5P – 2.5(3)  
0.5P – 2.5(3)  
ACLKR and  
ACLKX int  
Delay time, McASP[x]_ACLKR and  
McASP[x]_ACLKX transmit edge to  
McASP[x]_AFSR and  
0
2
6
0
2
6
ACLKR and  
ACLKX ext in  
13.5  
18  
McASP[x]_AFSX output valid  
13 td(ACLKRX-AFSRX)  
ns  
Delay time, McASP[x]_ACLKR and  
McASP[x]_ACLKX transmit edge to ACLKR and  
McASP[x]_AFSR and  
McASP[x]_AFSX output valid with  
Pad Loopback  
ACLKX ext  
out  
2
13.5  
2
18  
Delay time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output valid  
ACLKX int  
0
2
6
0
2
6
ACLKX ext in  
13.5  
18  
14 td(ACLKX-AXR)  
ns  
ns  
Delay time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output valid with Pad Loopback  
ACLKX ext  
out  
2
13.5  
2
18  
Disable time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output high impedance  
ACLKX int  
0
2
6
0
2
6
ACLKX ext in  
13.5  
18  
15 tdis(ACLKX-AXR)  
Disable time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output high impedance with pad  
loopback  
ACLKX ext  
out  
2
13.5  
2
18  
(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
(2) 50 MHz  
(3) P = AHCLKR and AHCLKX period.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
211  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
10  
10  
9
McASP[x]_ACLKR/X (Falling Edge Polarity)  
McASP[x]_AHCLKR/X (Rising Edge Polarity)  
12  
11  
12  
McASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(A)  
McASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(B)  
13  
13  
13  
13  
McASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
13  
13  
13  
McASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
McASP[x]_AXR[x] (Data Out/Transmit)  
14  
15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP  
receiver is configured for rising edge (to shift data in).  
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP  
receiver is configured for falling edge (to shift data in).  
7-87. McASP Output Timing  
212  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.12 Multichannel Serial Port Interface (McSPI)  
For more information, see the Multichannel Serial Port Interface (McSPI) section of the AM335x and  
AMIC110 Sitara Processors Technical Reference Manual.  
7.12.1 McSPI Electrical Data and Timing  
The following timings are applicable to the different configurations of McSPI in master or slave mode for  
any McSPI and any channel (n).  
7.12.1.1 McSPI—Slave Mode  
7-83. McSPI Timing Conditions – Slave Mode  
PARAMETER  
MIN  
MAX UNIT  
Input Conditions  
tr  
Input signal rise time  
Input signal fall time  
5
5
ns  
ns  
tf  
Output Condition  
Cload  
Output load capacitance  
20  
pF  
7-84. Timing Requirements for McSPI Input Timings—Slave Mode  
(see 7-88)  
OPP100  
OPP50  
MIN  
NO.  
UNIT  
MIN  
MAX  
MAX  
1
2
tc(SPICLK)  
Cycle time, SPI_CLK  
62.5  
124.8  
ns  
ns  
0.5P –  
3.12(1)  
0.5P +  
3.12(1)  
0.5P –  
3.12(1)  
0.5P +  
3.12(1)  
tw(SPICLKL)  
Typical pulse duration, SPI_CLK low  
0.5P –  
3.12(1)  
0.5P +  
3.12(1)  
0.5P –  
3.12(1)  
0.5P +  
3.12(1)  
3
4
5
tw(SPICLKH)  
Typical pulse duration, SPI_CLK high  
ns  
ns  
ns  
Setup time, SPI_D[x] (SIMO) valid before SPI_CLK  
active edge(2)(3)  
tsu(SIMO-SPICLK)  
th(SPICLK-SIMO)  
tsu(CS-SPICLK)  
th(SPICLK-CS)  
12.92  
12.92  
12.92  
12.92  
Hold time, SPI_D[x] (SIMO) valid after SPI_CLK  
active edge(2)(3)  
Setup time, SPI_CS valid before SPI_CLK first  
edge(2)  
Hold time, SPI_CS valid after SPI_CLK last edge(2)  
8
9
12.92  
12.92  
12.92  
12.92  
ns  
ns  
(1) P = SPI_CLK period.  
(2) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(3) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
7-85. Switching Characteristics for McSPI Output Timings—Slave Mode  
(see 7-89)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Delay time, SPI_CLK active edge to  
SPI_D[x] (SOMI) transition(1)(2)  
6
7
td(SPICLK-SOMI)  
td(CS-SOMI)  
–4.00  
17.12  
–4.00  
17.12  
ns  
ns  
Delay time, SPI_CS active edge to  
SPI_D[x] (SOMI) transition(1)(2)  
17.12  
17.12  
(1) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
213  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[x] (In)  
1
3
3
8
2
2
9
POL=0  
POL=1  
SPI_SCLK (In)  
1
SPI_SCLK (In)  
4
4
5
5
SPI_D[x] (SIMO, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (In)  
SPI_SCLK (In)  
1
3
2
8
2
3
9
POL=0  
POL=1  
1
SPI_SCLK (In)  
4
4
5
5
SPI_D[x] (SIMO, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
7-88. SPI Slave Mode Receive Timing  
214  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
PHA=0  
EPOL=1  
SPI_CS[x] (In)  
1
3
8
2
2
9
POL=0  
POL=1  
SPI_SCLK (In)  
1
3
SPI_SCLK (In)  
6
7
6
SPI_D[x] (SOMI, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (In)  
SPI_SCLK (In)  
1
1
3
2
8
2
3
9
POL=0  
POL=1  
SPI_SCLK (In)  
6
6
6
6
SPI_D[x] (SOMI, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
7-89. SPI Slave Mode Transmit Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
215  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.12.1.2 McSPI—Master Mode  
7-86. McSPI Timing Conditions – Master Mode  
LOW LOAD  
MIN  
HIGH LOAD  
MIN  
PARAMETER  
UNIT  
MAX  
MAX  
Input Conditions  
tr  
Input signal rise time  
8
8
8
8
ns  
ns  
tf  
Input signal fall time  
Output Condition  
Cload  
Output load capacitance  
5
25  
pF  
7-87. Timing Requirements for McSPI Input Timings – Master Mode  
(see 7-90)  
OPP100  
LOW LOAD HIGH LOAD  
OPP50  
LOW LOAD  
NO.  
HIGH LOAD  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tsu(SOMI-  
Setup time, SPI_D[x] (SOMI) valid before  
SPI_CLK active edge(1)  
4
2.29  
3.02  
2.29  
3.02  
ns  
SPICLKH)  
Industrial extended  
temperature  
(-40°C to 125°C)  
7.1  
4.7  
7.1  
4.7  
7.1  
4.7  
7.1  
4.7  
Hold time, SPI_D[x]  
(SOMI) valid after  
th(SPICLKH-  
5
ns  
SPI_CLK active edge(1)  
SOMI)  
All other  
temperature ranges  
(1) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
7-88. Switching Characteristics for McSPI Output Timings – Master Mode  
(see 7-91)  
OPP100  
OPP50  
NO.  
PARAMETER  
LOW LOAD  
MIN  
HIGH LOAD  
MIN  
LOW LOAD  
MIN  
HIGH LOAD  
MIN MAX  
UNIT  
MAX  
MAX  
MAX  
1
2
tc(SPICLK)  
Cycle time, SPI_CLK  
20.8  
20.8  
41.6  
41.6  
ns  
ns  
Typical pulse duration,  
SPI_CLK low  
0.5P –  
1.04(1)  
0.5P +  
1.04(1)  
0.5P –  
2.08(1)  
0.5P +  
2.08(1)  
0.5P –  
1.04(1)  
0.5P +  
1.04(1)  
0.5P –  
2.08(1)  
0.5P +  
2.08(1)  
tw(SPICLKL)  
Typical pulse duration,  
SPI_CLK high  
0.5P –  
1.04(1)  
0.5P +  
1.04(1)  
0.5P –  
2.08(1)  
0.5P +  
2.08(1)  
0.5P –  
1.04(1)  
0.5P +  
1.04(1)  
0.5P –  
2.08(1)  
0.5P +  
2.08(1)  
3
6
tw(SPICLKH)  
ns  
ns  
Delay time, SPI_CLK  
td(SPICLK-SIMO) active edge to SPI_D[x]  
–3.57  
3.57  
3.57  
–4.62  
4.62  
4.62  
–3.57  
3.57  
3.57  
–4.62  
4.62  
4.62  
(SIMO) transition(2)  
Delay time, SPI_CS active  
7
8
td(CS-SIMO)  
edge to SPI_D[x] (SIMO)  
ns  
transition(2)  
Mode 1  
A – 4.2(4)  
B – 4.2(5)  
B – 4.2(5)  
A – 2.54(4)  
B – 2.54(5)  
B – 2.54(5)  
A – 4.2(4)  
B – 4.2(5)  
B – 4.2(5)  
A – 2.54(4)  
B – 2.54(5)  
B – 2.54(5)  
ns  
ns  
ns  
Delay time,  
SPI_CS active  
and 3(3)  
td(CS-SPICLK)  
to SPI_CLK  
first edge  
Mode 0  
and 2(3)  
Delay time,  
SPI_CLK last  
edge to  
SPI_CS  
inactive  
Mode 1  
and 3(3)  
9
td(SPICLK-CS)  
Mode 0  
and 2(3)  
A – 4.2(4)  
A – 2.54(4)  
A – 4.2(4)  
A – 2.54(4)  
ns  
(1) P = SPI_CLK period.  
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
(3) The polarity of SPIx_CLK and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all  
software configurable:  
SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).  
SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).  
(4) Case P = 20.8 ns, A = (TCS + 1) × TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register).  
Case P > 20.8 ns, A = (TCS + 0.5) × Fratio × TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register).  
Note: P = SPI_CLK clock period.  
216  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
(5) B = (TCS + 0.5) × TSPICLKREF × Fratio (TCS is a bit field of MCSPI_CH(i)CONF register, Fratio: Even 2).  
PHA=0  
EPOL=1  
SPI_CS[x] (Out)  
1
3
8
2
3
9
POL=0  
POL=1  
SPI_SCLK (Out)  
1
2
SPI_SCLK (Out)  
4
4
5
5
SPI_D[x] (SOMI, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (Out)  
SPI_SCLK (Out)  
1
2
1
3
3
2
8
9
POL=0  
POL=1  
SPI_SCLK (Out)  
4
4
5
5
SPI_D[x] (SOMI, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
7-90. SPI Master Mode Receive Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
217  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[x] (Out)  
1
3
2
8
2
3
9
POL=0  
POL=1  
SPI_SCLK (Out)  
1
SPI_SCLK (Out)  
6
7
6
SPI_D[x] (SIMO, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (Out)  
SPI_SCLK (Out)  
1
3
2
8
2
3
9
POL=0  
POL=1  
1
SPI_SCLK (Out)  
6
6
6
6
SPI_D[x] (SIMO, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
7-91. SPI Master Mode Transmit Timing  
218  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.13 Multimedia Card (MMC) Interface  
For more information, see the Multimedia Card (MMC) section of the AM335x and AMIC110 Sitara  
Processors Technical Reference Manual.  
7.13.1 MMC Electrical Data and Timing  
7-89. MMC Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Input Conditions  
tr  
tf  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
Cload  
Output load capacitance  
3
30  
pF  
7-90. Timing Requirements for MMC[x]_CMD and MMC[x]_DAT[7:0]  
(see 7-92)  
1.8-V MODE  
MIN TYP MAX  
3.3-V MODE  
NO.  
UNIT  
MIN  
TYP MAX  
1
2
3
4
tsu(CMDV-CLKH) Setup time, MMC_CMD valid before MMC_CLK rising clock edge  
4.1  
4.1  
ns  
Industrial extended  
temperature  
MMC0-2  
3.76  
3.76  
(–40°C to 125°C)  
Hold time, MMC_CMD valid after  
MMC_CLK rising clock edge  
th(CLKH-CMDV)  
tsu(DATV-CLKH)  
th(CLKH-DATV)  
ns  
ns  
ns  
MMC0  
MMC1  
MMC2  
3.76  
3.76  
3.76  
4.1  
2.52  
3.03  
3.0  
All other  
temperature ranges  
Setup time, MMC_DATx valid before MMC_CLK rising clock edge  
4.1  
Industrial extended  
temperature  
(–40°C to 125°C)  
MMC0-2  
3.76  
3.76  
Hold time, MMC_DATx valid after  
MMC_CLK rising clock edge  
MMC0  
MMC1  
MMC2  
3.76  
3.76  
3.76  
2.52  
3.03  
3.0  
All other  
temperature ranges  
1
2
MMC[x]_CLK (Output)  
MMC[x]_CMD (Input)  
MMC[x]_DAT[7:0] (Inputs)  
3
4
7-92. MMC[x]_CMD and MMC[x]_DAT[7:0] Input Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
219  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-91. Switching Characteristics for MMC[x]_CLK  
(see 7-93)  
NO.  
STANDARD MODE  
MIN TYP MAX  
HIGH-SPEED MODE  
MIN TYP MAX  
PARAMETER  
UNIT  
ƒop(CLK)  
Operating frequency, MMC_CLK  
Operating period: MMC_CLK  
24  
48 MHz  
ns  
tcop(CLK)  
41.7  
20.8  
5
fid(CLK)  
Identification mode frequency, MMC_CLK  
Identification mode period: MMC_CLK  
400  
400 kHz  
ns  
tcid(CLK)  
2500  
2500  
(0.5 × P) –  
(0.5 × P) –  
6
7
tw(CLKL)  
tw(CLKH)  
Pulse duration, MMC_CLK low  
Pulse duration, MMC_CLK high  
ns  
ns  
(1)  
(1)  
tf(CLK)  
tf(CLK)  
(0.5 × P) –  
(0.5 × P) –  
(1)  
(1)  
tr(CLK)  
tr(CLK)  
(1) P = MMC_CLK period  
5
6
7
RMII[x]_REFCLK  
(Input)  
7-93. MMC[x]_CLK Timing  
7-92. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—Standard Mode  
(see 7-94)  
OPP100  
TYP  
OPP50  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, MMC_CLK falling clock  
edge to MMC_CMD transition  
10 td(CLKL-CMD)  
11 td(CLKL-DAT)  
–4  
14  
–4  
17.5  
ns  
ns  
Delay time, MMC_CLK falling clock  
edge to MMC_DATx transition  
–4  
14  
–4  
17.5  
10  
MMC[x]_CLK (Output)  
MMC[x]_CMD (Output)  
MMC[x]_DAT[7:0] (Outputs)  
11  
7-94. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—Standard Mode  
220  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-93. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—High-Speed Mode  
(see 7-95)  
OPP100  
TYP  
OPP50  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(CLKL-  
CMD)  
Delay time, MMC_CLK rising clock edge to  
MMC_CMD transition  
12  
3
14  
3
17.5  
ns  
ns  
Delay time, MMC_CLK rising clock edge to  
MMC_DATx transition  
13 td(CLKL-DAT)  
3
14  
3
17.5  
12  
MMC[x]_CLK (Output)  
MMC[x]_CMD (Output)  
MMC[x]_DAT[7:0] (Outputs)  
13  
7-95. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—High-Speed Mode  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
221  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.14 Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem  
(PRU-ICSS)  
For more information, see the Programmable Real-Time Unit Subsystem and Industrial Communication  
Subsystem Interface (PRU-ICSS) section of the AM335x and AMIC110 Sitara Processors Technical  
Reference Manual.  
7.14.1 Programmable Real-Time Unit (PRU-ICSS PRU)  
7-94. PRU-ICSS PRU Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
Output Condition  
Cload  
Capacitive load for each bus line  
30  
pF  
7.14.1.1 PRU-ICSS PRU Direct Input/Output Mode Electrical Data and Timing  
7-95. PRU-ICSS PRU Timing Requirements - Direct Input Mode  
(see 7-96)  
NO.  
MIN  
2 × P(1)  
MAX  
UNIT  
ns  
1
tw(GPI)  
tr(GPI)  
tf(GPI)  
Pulse width, GPI  
Rise time, GPI  
Fall time, GPI  
1.00  
3.00  
3.00  
1.00  
3.00  
ns  
2
1.00  
ns  
PRU0  
PRU1  
3
tsk(GPI)  
Internal skew between GPI[n:0] signals(2)  
ns  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
(2) n = 16  
2
1
GPI[m:0]  
3
7-96. PRU-ICSS PRU Direct Input Timing  
7-96. PRU-ICSS PRU Switching Requirements – Direct Output Mode  
(see 7-69)  
NO.  
PARAMETER  
Pulse width, GPO  
MIN  
2 × P(1)  
MAX  
UNIT  
1
tw(GPO)  
tsk(GPO)  
ns  
PRU0  
PRU1  
1.00  
5.00  
3
Internal skew between GPO[n:0] signals(2)  
ns  
(1) P = L3_CLK (PRU-ICSS ocp clock) period  
(2) n = 15  
1
GPO[n:0]  
3
7-97. PRU-ICSS PRU Direct Output Timing  
222  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.14.1.2 PRU-ICSS PRU Parallel Capture Mode Electrical Data and Timing  
7-97. PRU-ICSS PRU Timing Requirements - Parallel Capture Mode  
(see 7-98 and 7-99)  
NO.  
1
MIN  
20.00  
10.00  
10.00  
1.00  
MAX  
UNIT  
ns  
tc(CLOCKIN)  
Cycle time, CLOCKIN  
2
tw(CLOCKIN_L)  
tw(CLOCKIN_H)  
tr(CLOCKIN)  
Pulse duration, CLOCKIN low  
Pulse duration, CLOCKIN high  
Rising time, CLOCKIN  
ns  
3
ns  
4
3.00  
3.00  
ns  
5
tf(CLOCKIN)  
Falling time, CLOCKIN  
1.00  
ns  
6
tsu(DATAIN-CLOCKIN)  
th(CLOCKIN-DATAIN)  
tr(DATAIN)  
Setup time, DATAIN valid before CLOCKIN  
Hold time, DATAIN valid after CLOCKIN  
Rising time, DATAIN  
5.00  
ns  
7
0.00  
ns  
1.00  
3.00  
3.00  
ns  
8
tf(DATAIN)  
Falling time, DATAIN  
1.00  
ns  
1
3
5
4
2
CLOCKIN  
DATAIN  
7
6
8
7-98. PRU-ICSS PRU Parallel Capture Timing - Rising Edge Mode  
1
3
4
5
2
CLOCKIN  
DATAIN  
7
6
8
7-99. PRU-ICSS PRU Parallel Capture Timing - Falling Edge Mode  
7.14.1.3 PRU-ICSS PRU Shift Mode Electrical Data and Timing  
7-98. PRU-ICSS PRU Timing Requirements – Shift In Mode  
(see 7-100)  
NO.  
MIN  
10.00  
0.45 × P(1)  
MAX  
UNIT  
ns  
1
2
3
4
tc(DATAIN)  
tw(DATAIN)  
tr(DATAIN)  
tf(DATAIN)  
Cycle time, DATAIN  
Pulse width, DATAIN  
Rising time, DATAIN  
Falling time, DATAIN  
0.55 × P(1)  
3.00  
ns  
1.00  
ns  
1.00  
3.00  
ns  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
223  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
1
2
3
4
DATAIN  
7-100. PRU-ICSS PRU Shift In Timing  
7-99. PRU-ICSS PRU Switching Requirements - Shift Out Mode  
(see 7-101)  
NO.  
MIN  
MAX  
UNIT  
ns  
1
2
5
tc(CLOCKOUT)  
Cycle time, CLOCKOUT  
10.00  
0.45 × P(1)  
0.00  
tw(CLOCKOUT)  
Pulse width, CLOCKOUT  
0.55 × P(1)  
3.00  
ns  
td(CLOCKOUT-DATAOUT)  
Delay time, CLOCKOUT to DATAOUT valid  
ns  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
1
2
CLOCKOUT  
DATAOUT  
5
6
7-101. PRU-ICSS PRU Shift Out Timing  
7.14.2 PRU-ICSS EtherCAT (PRU-ICSS ECAT)  
7-100. PRU-ICSS ECAT Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
Output Condition  
Cload  
Capacitive load for each bus line  
30  
pF  
7.14.2.1 PRU-ICSS ECAT Electrical Data and Timing  
7-101. PRU-ICSS ECAT Timing Requirements – Input Validated With LATCH_IN  
(see 7-102)  
NO.  
MIN  
100.00  
1.00  
MAX  
UNIT  
ns  
1
2
3
tw(EDIO_LATCH_IN)  
tr(EDIO_LATCH_IN)  
tf(EDIO_LATCH_IN)  
Pulse width, EDIO_LATCH_IN  
Rising time, EDIO_LATCH_IN  
Falling time, EDIO_LATCH_IN  
3.00  
3.00  
ns  
1.00  
ns  
tsu(EDIO_DATA_IN-  
EDIO_LATCH_IN)  
th(EDIO_LATCH_IN-  
EDIO_DATA_IN)  
Setup time, EDIO_DATA_IN valid before EDIO_LATCH_IN  
active edge  
4
5
20.00  
20.00  
ns  
ns  
Hold time, EDIO_DATA_IN valid after EDIO_LATCH_IN active  
edge  
tr(EDIO_DATA_IN)  
Rising time, EDIO_DATA_IN  
Falling time, EDIO_DATA_IN  
1.00  
1.00  
3.00  
3.00  
ns  
ns  
6
tf(EDIO_DATA_IN)  
224  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
2
3
EDIO_LATCH_IN  
1
4
5
EDIO_DATA_IN[7:0]  
6
7-102. PRU-ICSS ECAT Input Validated With LATCH_IN Timing  
7-102. PRU-ICSS ECAT Timing Requirements – Input Validated With SYNCx  
(see 7-103)  
NO.  
MIN  
MAX  
UNIT  
ns  
1
2
3
tw(EDC_SYNCx_OUT)  
tr(EDC_SYNCx_OUT)  
tf(EDC_SYNCx_OUT)  
Pulse width, EDC_SYNCx_OUT  
Rising time, EDC_SYNCx_OUT  
Falling time, EDC_SYNCx_OUT  
100.00  
1.00  
3.00  
3.00  
ns  
1.00  
ns  
tsu(EDIO_DATA_IN-  
EDC_SYNCx_OUT)  
th(EDC_SYNCx_OUT-  
EDIO_DATA_IN)  
Setup time, EDIO_DATA_IN valid before  
EDC_SYNCx_OUT active edge  
4
5
20.00  
20.00  
ns  
ns  
Hold time, EDIO_DATA_IN valid after EDC_SYNCx_OUT  
active edge  
tr(EDIO_DATA_IN)  
Rising time, EDIO_DATA_IN  
Falling time, EDIO_DATA_IN  
1.00  
1.00  
3.00  
3.00  
ns  
ns  
6
tf(EDIO_DATA_IN)  
2
3
EDC_SYNCx_OUT  
1
4
5
EDIO_DATA_IN[7:0]  
6
7-103. PRU-ICSS ECAT Input Validated With SYNCx Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
225  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-103. PRU-ICSS ECAT Timing Requirements – Input Validated With Start of Frame (SOF)  
(see 7-104)  
NO.  
1
MIN  
4 × P(1)  
1.00  
MAX  
5 × P(1)  
3.00  
UNIT  
ns  
tw(EDIO_SOF)  
tr(EDIO_SOF)  
tf(EDIO_SOF)  
Pulse duration, EDIO_SOF  
Rising time, EDIO_SOF  
Falling time, EDIO_SOF  
2
ns  
3
1.00  
3.00  
ns  
tsu(EDIO_DATA_IN-  
EDIO_SOF)  
Setup time, EDIO_DATA_IN valid before EDIO_SOF  
active edge  
4
5
20.00  
20.00  
ns  
ns  
Hold time, EDIO_DATA_IN valid after EDIO_SOF active  
edge  
th(EDIO_SOF-EDIO_DATA_IN)  
tr(EDIO_DATA_IN)  
tf(EDIO_DATA_IN)  
Rising time, EDIO_DATA_IN  
Falling time, EDIO_DATA_IN  
1.00  
1.00  
3.00  
3.00  
ns  
ns  
6
(1) P = PRU-ICSS IEP clock source period.  
2
3
EDIO_SOF  
1
4
5
EDIO_DATA_IN[7:0]  
6
7-104. PRU-ICSS ECAT Input Validated With SOF  
7-104. PRU-ICSS ECAT Timing Requirements - LATCHx_IN  
(see 7-105)  
NO.  
MIN  
3 × P(1)  
MAX  
UNIT  
ns  
1
2
3
tw(EDC_LATCHx_IN)  
tr(EDC_LATCHx_IN)  
tf(EDC_LATCHx_IN)  
Pulse duration, EDC_LATCHx_IN  
Rising time, EDC_LATCHx_IN  
Falling time, EDC_LATCHx_IN  
1.00  
3.00  
3.00  
ns  
1.00  
ns  
(1) P = PRU-ICSS IEP clock source period.  
2
3
EDC_LATCHx_IN  
1
7-105. PRU-ICSS ECAT LATCHx_IN Timing  
226  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-105. PRU-ICSS ECAT Switching Requirements - Digital I/Os  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1
4
7
tw(EDIO_OUTVALID)  
Pulse duration, EDIO_OUTVALID  
14 × P(1)  
32 × P(1)  
ns  
td(EDIO_OUTVALID-  
EDIO_DATA_OUT)  
Delay time, EDIO_OUTVALID to EDIO_DATA_OUT  
EDIO_DATA_OUT skew  
0.00  
18 × P(1)  
8.00  
ns  
ns  
tsk(EDIO_DATA_OUT)  
(1) P = PRU-ICSS IEP clock source period.  
7.14.3 PRU-ICSS MII_RT and Switch  
7-106. PRU-ICSS MII_RT Switch Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
3(1)  
3(1)  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
20  
pF  
(1) Except when specified otherwise.  
7.14.3.1 PRU-ICSS MDIO Electrical Data and Timing  
7-107. PRU-ICSS MDIO Timing Requirements – MDIO_DATA  
(see 7-106)  
NO.  
MIN  
90  
0
TYP  
MAX  
UNIT  
ns  
1
2
tsu(MDIO-MDC)  
Setup time, MDIO valid before MDC high  
Hold time, MDIO valid from MDC high  
th(MDIO-MDC)  
ns  
1
2
MDIO_CLK (Output)  
MDIO_DATA (Input)  
7-106. PRU-ICSS MDIO_DATA Timing - Input Mode  
7-108. PRU-ICSS MDIO Switching Characteristics - MDIO_CLK  
(see 7-107)  
NO.  
PARAMETER  
Cycle time, MDC  
MIN  
400  
160  
160  
TYP  
MAX  
UNIT  
ns  
1
2
3
tc(MDC)  
tw(MDCH)  
tw(MDCL)  
Pulse duration, MDC high  
Pulse duration, MDC low  
ns  
ns  
1
2
3
MDIO_CLK  
7-107. PRU-ICSS MDIO_CLK Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
227  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-109. PRU-ICSS MDIO Switching Characteristics – MDIO_DATA  
(see 7-108)  
NO.  
MIN  
TYP  
MAX  
UNIT  
(P*0.5)  
-10(1)  
1
td(MDC-MDIO)  
Delay time, MDC high to MDIO valid  
10  
ns  
(1) P = MDIO_CLK Period  
1
MDIO_CLK (Output)  
MDIO_DATA (Output)  
7-108. PRU-ICSS MDIO_DATA Timing – Output Mode  
7.14.3.2 PRU-ICSS MII_RT Electrical Data and Timing  
In order to guarantee the MII_RT I/O timing values published in the device data manual, the  
PRU ocp_clk clock must be configured for 200 MHz (default value) and the TX_CLK_DELAY  
bit field in the PRUSS_MII_RT_TXCFG0/1 register must be configured as follows:  
100 Mbps mode: 6h (non-default value)  
10 Mbps mode: 0h (value)  
7-110. PRU-ICSS MII_RT Timing Requirements – MII_RXCLK  
(see 7-109)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(RX_CLK)  
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Cycle time, RX_CLK  
ns  
ns  
ns  
ns  
Pulse duration, RX_CLK high  
Pulse duration, RX_CLK low  
Transition time, RX_CLK  
140  
260  
14  
26  
3
3
1
4
2
3
MII_RXCLK  
4
7-109. PRU-ICSS MII_RXCLK Timing  
228  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-111. PRU-ICSS MII_RT Timing Requirements - MII[x]_TXCLK  
(see 7-110)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(TX_CLK)  
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Cycle time, TX_CLK  
ns  
ns  
ns  
ns  
Pulse duration, TX_CLK high  
Pulse duration, TX_CLK low  
Transition time, TX_CLK  
140  
260  
14  
26  
3
3
1
4
2
3
MII_TXCLK  
4
7-110. PRU-ICSS MII_TXCLK Timing  
7-112. PRU-ICSS MII_RT Timing Requirements - MII_RXD[3:0], MII_RXDV, and MII_RXER  
(see 7-111)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
tsu(RXD-RX_CLK)  
tsu(RX_DV-RX_CLK) Setup time, RX_DV valid before RX_CLK  
tsu(RX_ER-RX_CLK) Setup time, RX_ER valid before RX_CLK  
Setup time, RXD[3:0] valid before RX_CLK  
1
2
8
8
ns  
ns  
th(RX_CLK-RXD)  
Hold time RXD[3:0] valid after RX_CLK  
Hold time RX_DV valid after RX_CLK  
Hold time RX_ER valid after RX_CLK  
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
8
8
1
2
MII_MRCLK (Input)  
MII_RXD[3:0],  
MII_RXDV,  
MII_RXER (Inputs)  
7-111. PRU-ICSS MII_RXD[3:0], MII_RXDV, and MII_RXER Timing  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
229  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7-113. PRU-ICSS MII_RT Switching Characteristics - MII_TXD[3:0] and MII_TXEN  
(see 7-112)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO  
.
UNIT  
MAX  
MIN  
MAX  
MIN  
td(TX_CLK-TXD)  
Delay time, TX_CLK high to TXD[3:0] valid  
Delay time, TX_CLK to TX_EN valid  
1
5
25  
5
25 ns  
td(TX_CLK-TX_EN)  
1
MII_TXCLK (input)  
MII_TXD[3:0],  
MII_TXEN (outputs)  
7-112. PRU-ICSS MII_TXD[3:0], MII_TXEN Timing  
7.14.4 PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)  
7-114. UART Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
25  
pF  
7-115. Timing Requirements for PRU-ICSS UART Receive  
(see 7-113)  
NO.  
MIN  
0.96U(1)  
MAX  
1.05U(1)  
UNIT  
3
tw(RX)  
Pulse duration, receive start, stop, data bit  
ns  
(1) U = UART baud time = 1/programmed baud rate.  
7-116. Switching Characteristics Over Recommended Operating Conditions for PRU-ICSS UART  
Transmit  
(see 7-113)  
NO.  
1
PARAMETER  
MIN  
0
U – 2(1)  
MAX  
12  
U + 2(1)  
UNIT  
MHz  
ns  
ƒbaud(baud)  
tw(TX)  
Maximum programmable baud rate  
Pulse duration, transmit start, stop, data bit  
2
(1) U = UART baud time = 1/programmed baud rate.  
3
2
Start  
Bit  
UART_TXD  
Data Bits  
5
4
Start  
Bit  
UART_RXD  
Data Bits  
7-113. PRU-ICSS UART Timing  
230  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7.15 Universal Asynchronous Receiver Transmitter (UART)  
For more information, see the Universal Asynchronous Receiver Transmitter (UART) section of the  
AM335x and AMIC110 Sitara Processors Technical Reference Manual.  
7.15.1 UART Electrical Data and Timing  
7-117. UART Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
25  
pF  
7-118. Timing Requirements for UARTx Receive  
(see 7-114)  
NO.  
MIN  
MAX  
UNIT  
3
tw(RX)  
Pulse duration, receive start, stop, data bit  
0.96U(1)  
1.05U(1)  
ns  
(1) U = UART baud time = 1/programmed baud rate.  
7-119. Switching Characteristics for UARTx Transmit  
(see 7-114)  
NO.  
PARAMETER  
Maximum programmable baud rate  
MIN  
MAX  
3.6864  
U + 2(1)  
UNIT  
MHz  
ns  
1
2
ƒbaud(baud)  
tw(TX)  
Pulse duration, transmit start, stop, data bit  
U – 2(1)  
(1) U = UART baud time = 1 / programmed baud rate  
2
2
2
Start  
Bit  
UARTx_TXD  
Stop Bit  
Data Bits  
3
3
3
Start  
Bit  
UARTx_RXD  
Stop Bit  
Data Bits  
7-114. UART Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
231  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
7.15.2 UART IrDA Interface  
The IrDA module operates in three different modes:  
Slow infrared (SIR) (115.2 kbps)  
Medium infrared (MIR) (0.576 Mbps and 1.152 Mbps)  
Fast infrared (FIR) (4 Mbps).  
7-115 shows the UART IrDA pulse parameters. 7-120 and 7-121 list the signaling rates and pulse  
durations for UART IrDA receive and transmit modes.  
Pulse Duration  
Pulse Duration  
50%  
50%  
50%  
7-115. UART IrDA Pulse Parameters  
7-120. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode  
ELECTRICAL PULSE DURATION  
SIGNALING RATE  
UNIT  
MIN  
MAX  
SIR  
2.4 kbps  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
88.55  
22.13  
11.07  
5.96  
µs  
µs  
µs  
µs  
µs  
µs  
9.6 kbps  
19.2 kbps  
38.4 kbps  
57.6 kbps  
115.2 kbps  
MIR  
4.34  
2.23  
0.576 Mbps  
1.152 Mbps  
FIR  
297.2  
149.6  
518.8  
258.4  
ns  
ns  
4 Mbps (single pulse)  
4 Mbps (double pulse)  
67  
164  
289  
ns  
ns  
190  
232  
Peripheral Information and Timings  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
 
 
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
7-121. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode  
ELECTRICAL PULSE DURATION  
MIN  
SIGNALING RATE  
UNIT  
MAX  
SIR  
2.4 kbps  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
µs  
µs  
µs  
µs  
µs  
µs  
9.6 kbps  
19.2 kbps  
38.4 kbps  
57.6 kbps  
115.2 kbps  
MIR  
0.576 Mbps  
1.152 Mbps  
FIR  
414  
206  
419  
211  
ns  
ns  
4 Mbps (single pulse)  
4 Mbps (double pulse)  
123  
248  
128  
253  
ns  
ns  
版权 © 2011–2018, Texas Instruments Incorporated  
Peripheral Information and Timings  
233  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
8 Device and Documentation Support  
8.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(for example, XAM3358AZCE). Texas Instruments recommends two of three possible prefix designators  
for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product  
development from engineering prototypes (TMDX) through fully qualified production devices and tools  
(TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications.  
null  
Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ZCE), the temperature range (for example, blank is the default commercial  
temperature range), and the device speed range, in megahertz (for example, 27 is 275 MHz). 8-1  
provides a legend for reading the complete device name for any AM335x device.  
For orderable part numbers of AM335x devices in the ZCE and ZCZ package types, see the Package  
Option Addendum of this document, ti.com, or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AM335x Sitara  
Processors Silicon Errata.  
234  
Device and Documentation Support  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
(
)
X
(
)
(
)
AM3358  
B
ZCZ  
PREFIX  
CARRIER TYPE  
Blank = Tray  
R = Tape and Reel  
X = Experimental device  
Blank = Qualified device  
DEVICE(A)  
ARM Cortex-A8 MPU:  
AM3351  
AM3352  
AM3354  
AM3356  
AM3357  
AM3358  
AM3359  
DEVICE SPEED RANGE  
27 = 275-MHz Cortex-A8  
30 = 300-MHz Cortex-A8  
50 = 500-MHz Cortex-A8  
60 = 600-MHz Cortex-A8  
72 = 720-MHz Cortex-A8  
80 = 800-MHz Cortex-A8  
100 = 1-GHz Cortex-A8  
TEMPERATURE RANGE  
DEVICE REVISION CODE  
Blank = silicon revision 1.0  
A = silicon revision 2.0  
Blank = 0°C to 90°C (commercial junction temperature)  
A = -40°C to 105°C (extended junction temperature)  
D = -40°C to 90°C (industrial junction temperature)  
T = -40°C to 125°C (industrial extended junction temperature)  
B = silicon revision 2.1  
PACKAGE TYPE(B)  
ZCE = 298-pin plastic BGA, with Pb-Free solder balls  
ZCZ = 324-pin plastic BGA, with Pb-Free solder balls  
A. The AM3358 device shown in this device nomenclature example is one of several valid part numbers for the AM335x  
family of devices. For orderable device part numbers, see the Package Option Addendum of this document.  
B. BGA = Ball grid array  
8-1. AM335x Device Nomenclature  
8.2 Tools and Software  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the  
device, generate code, and develop solutions are listed below.  
Design Kits and Evaluation Modules  
AM335x Evaluation Module Enables developers to immediately start evaluating the AM335x processor  
family (AM3351, AM3352, AM3354, AM3356, AM3358) and begin building applications such  
as portable navigation, portable gaming, home/building automation and others.  
AM335x Starter Kit Provides a stable and affordable platform to quickly start evaluation of Sitara ARM  
Cortex-A8 AM335x Processors (AM3351, AM3352, AM3354, AM3356, AM3358) and  
accelerate development for smart appliance, industrial and networking applications. It is a  
low-cost development platform based on the ARM Cortex-A8 processor that is integrated  
with options such as Dual Gigabit Ethernet, DDR3 and LCD touch screen.  
BeagleBone Black Development Board Low-cost, open source, community-supported development  
platform for ARM Cortex-A8 processor developers and hobbyists. Boot Linux in under 10-  
seconds and get started on Sitara AM335x ARM Cortex-A8 processor development in less  
than 5 minutes with just a single USB cable.  
BeagleBone Development Board Low-cost, community-supported development platform for ARM  
Cortex-A8 processor developers. Boot Linux in under 10-seconds and get started on Sitara  
AM335x ARM Cortex-A8 processor development in less than 5 minutes with just a single  
USB cable. For TI-supported hardware platforms, consider the Sitara ARM AM335x Starter  
Kit or AM335x Evaluation Module.  
Data Concentrator Evaluation Module Based on AM3359 as the main processor and has Power Line  
Communication (PLC) Module to support various OFDM PLC communication standards.  
TMDSDC3359 also has capability to support multiple interfaces, sub-1GHz and 2.4GHz RF,  
Ethernet, RS-232, and RS-485. This evaluation module is ideal development platform for  
smart grid infrastructure applications including data concentrator, convergent node of grid  
sensor network, and control equipment of power automation.  
WiLink™ 8 Dual Band 2.4 & 5 GHz Wi-Fi® + Bluetooth® COM8 Evaluation Module Enables customers  
to add both Wi-Fi and Bluetooth to home and building automation, smart energy, gateways,  
wireless audio, enterprise, wearables and many more industrial and Internet of Things (IoT)  
applications. TI’s WiLink 8 modules are certified and offer high throughput and extended  
range along with Wi-Fi and Bluetooth coexistence in a power-optimized design. Drivers for  
the Linux and Android high-level operating systems (HLOSs) are available free of charge  
版权 © 2011–2018, Texas Instruments Incorporated  
Device and Documentation Support  
235  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
from TI for the Sitara AM335x microprocessor (Linux and Android version restrictions apply).  
WiLink 8 Module 2.4 GHz WiFi + Bluetooth COM8 Evaluation Module Enables customers to add Wi-Fi  
and Bluetooth (WL183x module only) to embedded applications based on TI's Sitara  
microprocessors. TI’s WiLink 8 Wi-Fi + Bluetooth modules are pre-certified and offer high  
throughput and extended range along with Wi-Fi and Bluetooth coexistence (WL183x  
modules only) in a power-optimized design. Drivers for the Linux and Android high-level  
operating systems (HLOSs) are available free of charge from TI for the Sitara AM335x  
microprocessor (Linux and Android version restrictions apply).  
TI Designs  
EtherCAT Communications Development Platform Allows designers to implement real-time EtherCAT  
communications standards in a broad range of industrial automation equipment. It enables  
low foot print designs in applications such as industrial automation, factory automation or  
industrial communication with minimal external components and with best in class low power  
performance.  
PROFIBUS Communications Development Platform Allows designers to implement PROFIBUS  
communications standards in a broad range of industrial automation equipment. It enables  
low foot print designs in applications such as industrial automation, factory automation or  
industrial communication with minimal external components and with best in class low power  
performance.  
Ethernet/IP Communications Development Platform Allows designers to mplement Ethernet/IP  
communications standards in a broad range of industrial automation equipment. It enables  
low foot print designs in applications such as industrial automation, factory automation or  
industrial communication with minimal external components and with best in class low power  
performance.  
Acontis EtherCAT Master Stack Reference Design Highly portable software stack that can be used on  
various embedded platforms. The EC-Master supports the high performane TI Sitara MPUs,  
it provides a sophisticated EtherCAT Master solution which customers can use to implement  
EtherCAT communication interface boards, EtherCAT based PLC or motion control  
applications. The EC-Master architectural design does not require additional tasks to be  
scheduled, thus the full stack functionality is available even on an OS less platform such as  
TI Starterware suported on AM335x. Due to this architecture combined with the high speed  
Ethernet driver it is possible to implement EtherCAT master based applications on the Sitara  
platform with short cycle times of 100 microseconds or even below.  
Solar Inverter Gateway Development Platform Reference Design Adds communication functions to  
solar energy generation systems to enable system monitoring, real-time feedback, system  
updates, and more. The TIDEP0044 reference design describes the implementation of a  
solar inverter gateway using display, Ethernet, USB, and CAN on the TMDXEVM3358  
featuring TI's AM335x processor.  
G3 Power Line Communications Data Concentrator on BeagleBone Black Platform  
Offers  
a
simplified approach for evaluating G3-PLC utilizing Beagle Bone Black powered by the Sitara  
AM335x processor. Users can establish a G3-PLC network with one service node. Single  
phase coupling is supported.  
IEC 61850 Demonstration of Substation Bay Controller on Beaglebone Cape and Starter Kit  
Low-  
cost, simplified implementation of an IEC 61850 Substation Bay Controller is demonstrated  
by running the Triangle MicroWorks IEC 61850 stack efficiently on the TI AM335X platform  
with a Linux target layer definition. Many different substation automation applications can be  
built on top of the AM335X platform and 61850 stack demonstration.  
236  
Device and Documentation Support  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
PRU Real-Time I/O Evaluation Reference Design BeagleBone Black add-on board that allows users get  
to know TI’s powerful Programmable Real-Time Unit (PRU) core and basic functionality. The  
PRU is a low-latency microcontroller subsystem integrated in the Sitara AM335x and  
AM437x family of devices. The PRU core is optimized for deterministic, real-time processing,  
direct access to I/Os and ultra-low-latency requirements. With LEDs and push buttons for  
GPIO, audio, a temp sensor, optional character display and more, this add-on board includes  
schematics, bill of materials (BOM), design files, and design guide to teach the basics of the  
PRU.  
Smart Home and Energy Gateway Reference Design  
Provides  
example  
implementation  
for  
measurement, management and communication of energy systems for smart homes and  
buildings. This example design is a bridge between different communication interfaces, such  
as WiFi, Ethernet, ZigBee or Bluetooth, that are commonly found in residential and  
commercial buildings. Since objects in the house and buildings are becoming more and  
more connected, the gateway design needs to be flexible to accommodate different RF  
standard, since no single RF standard is dominating the market. This example gateway  
addresses this problem by supporting existing legacy RF standards (WiFi, Bluetooth) and  
newer RF standards (ZigBee, BLE).  
Streaming Audio Reference Design Minimizes design time for customers by offering small form factor  
hardware and major software components, including streaming protocols and internet radio  
services. With this reference design, TI offers a quick and easy transition path to the  
AM335x and WiLink8 platform solution. This proven combo solution provides key  
advantages in this market category that helps bring your products to the next level.  
Software  
Processor SDK for AM335X Sitara Processors - Linux and TI-RTOS Support  
Unified  
software  
platform for TI embedded processors providing easy setup and fast out-of-the-box access to  
benchmarks and demos. All releases of Processor SDK are consistent across TI’s broad  
portfolio, allowing developers to seamlessly reuse and migrate software across devices.  
Developing scalable platform solutions has never been easier than with the Processor SDK  
and TI’s embedded processor solutions.  
G3 Data Concentrator Power-Line Communication Modem G3-PLC standard for narrowband OFDM  
Power Line Communications. The data concentrator solution is designed for the head-end  
systems which communicate with the end meters (“service node”) in the neighborhood area  
network.  
PRIME Data Concentrator Power-Line Communication Modem PRIME standard for narrowband  
OFDM Power Line Communications. The data concentrator solution is designed for the  
head-end systems which communicate with the end meters (“service node”) in the  
neighborhood area network.  
TI Dual-Mode Bluetooth Stack Comprised of Single-Mode and Dual-Mode offerings implementing the  
Bluetooth 4.0 specification. The Bluetooth stack is fully Bluetooth Special Interest Group  
(SIG) qualified, certified and royalty-free, provides simple command line sample applications  
to speed development, and upon request has MFI capability.  
Cryptography for TI Devices Enables encryption, crypto for TI devices. These files contain only  
cryptographic modules that were part of a TI software release. For the complete software  
release please search ti.com for your device part number, and download the Software  
Development Kit (SDK).  
版权 © 2011–2018, Texas Instruments Incorporated  
Device and Documentation Support  
237  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
Development Tools  
Clock Tree Tool for Sitara ARM Processors Interactive clock tree configuration software that provides  
information about the clocks and modules in Sitara devices.  
Code Composer Studio (CCS) Integrated Development Environment (IDE) for Sitara ARM  
Processors  
Integrated development environment (IDE) that supports TI's Microcontroller and Embedded  
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and  
debug embedded applications. It includes an optimizing C/C++ compiler, source code editor,  
project build environment, debugger, profiler, and many other features. The intuitive IDE  
provides a single user interface taking you through each step of the application development  
flow. Familiar tools and interfaces allow users to get started faster than ever before. Code  
Composer Studio combines the advantages of the Eclipse software framework with  
advanced embedded debug capabilities from TI resulting in a compelling feature-rich  
development environment for embedded developers.  
Pin Mux Tool Provides a Graphical User Interface for configuring pin multiplexing settings, resolving  
conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C  
header/code files that can be imported into software development kits (SDK) or used to  
configure customer's custom software. Version 3 of the Pin Mux utility adds the capability of  
automatically selecting a mux configuration that satisfies the entered requirements.  
Power Estimation Tool (PET) Provides users the ability to gain insight in to the power consumption of  
select TI processors. The tool includes the ability for the user to choose multiple application  
scenarios and understand the power consumption as well as how advanced power saving  
techniques can be applied to further reduce overall power consumption.  
Uniflash Standalone Flash Tool for TI Microcontrollers (MCU), Sitara Processors and SimpleLink  
devices  
Programs on-chip flash memory on TI MCUs and onboard flash memory for Sitara  
processors. Uniflash has a GUI, command line, and scripting interface. CCS Uniflash is  
available free of charge.  
XDS200 USB Debug Probe Connects to the target board via a TI 20-pin connector (with multiple  
adapters for TI 14-pin, ARM 10-pin and ARM 20-pin) and to the host PC via USB2.0 High  
Speed (480Mbps). It also requires a license of Code Composer Studio IDE running on the  
host PC.  
XDS560v2 System Trace USB and Ethernet Debug Probe Adds system pin trace in its large external  
memory buffer. Available for selected TI devices, this external memory buffer captures  
device-level information that allows obtaining accurate bus performance activity and  
throughput, as well as power management of core and peripherals. Also, all XDS debug  
probes support Core and System Trace in all ARM and DSP processors that feature an  
Embedded Trace Buffer (ETB).  
XDS560v2 System Trace USB Debug Probe Adds system pin trace in its large external memory buffer.  
Available for selected TI devices, this external memory buffer captures device-level  
information that allows obtaining accurate bus performance activity and throughput, as well  
as power management of core and peripherals. Also, all XDS debug probes support Core  
and System Trace in all ARM and DSP processors that feature an Embedded Trace Buffer  
(ETB).  
238  
Device and Documentation Support  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Models  
AM335x ZCE IBIS Model ZCE package IBIS model  
AM335x ZCZ IBIS Model ZCZ package IBIS model  
AM335x ZCE Rev. 2.1 BSDL Model ZCE package BSDL model for the revision 2.1 TI F781962A Fixed-  
and Floating-Point DSP with Boundary Scan  
AM335x ZCZ Rev. 2.1 BSDL Model ZCZ package BSDL model for the revision 2.1 TI F781962A Fixed-  
and Floating-Point DSP with Boundary Scan  
8.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the  
upper right corner, click on Alert me to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
is listed below.  
Errata  
AM335x Sitara Processors Silicon Errata  
Describes the known exceptions to the functional specifications for the AM335x Sitara  
Processors.  
Application Reports  
Processor SDK RTOS Customization: Modifying Board Library to Change UART Instance on  
AM335x  
Describes the procedure to modify the default UART0 example in the AM335x Processor  
SDK RTOS package to enable UART1. On the BeagleBone Black (BBB) P9 header, pins  
24(TX) and 26(RX) are connected to UART1. This procedure shows a test to verify that  
UART1 is enabled on the BBB.  
High-Speed Layout GuidelinesAs modern bus interface frequencies scale higher, care must be taken in  
the printed circuit board (PCB) layout phase of a design to ensure a robust solution.  
AM335x Reliability Considerations in PLC ApplicationsProgrammable Logic Controllers (PLC) are  
used as the main control in an automation system with high- reliability expectations and long  
life in harsh environments. Processors used in these applications require an assessment of  
performance verses expected power on hours to achieve the optimal performance for the  
application.  
AM335x Thermal ConsiderationsDiscusses the thermal considerations of the AM335x devices. It offers  
guidance on analysis of the processor's thermal performance, suggests improvements for an  
end system to aid in overcoming some of the existing challenges of producing a good  
thermal design, and provides real power/thermal data measured with AM335x EVMs for user  
evaluation.  
User's Guides  
TPS65910Ax User's Guide for AM335x Processors User's Guide A reference for connectivity between  
the TPS65910Ax power-management integrated circuit (PMIC) and the AM335x processor.  
AM335x and AMIC110 Sitara Processors Technical Reference Manual  
Details the integration, the environment, the functional description, and the programming  
models for each peripheral and subsystem in the device.  
G3 Power Line Communications Data Concentrator on BeagleBone Black Platform Design Guide  
Provide the foundation that you need including methodology, testing, and design files to  
quickly evaluate and customize the system. TI Designs help you accelerate your time to  
market.  
Powering the AM335x with the TPS65217x A reference for connectivity between the TPS65217 power  
management IC and the AM335x processor.  
Powering the AM335x With the TPS650250 Details a power solution for the AM335x application  
processor with a TPS650250 Power Management Unit (PMU) or Power Management IC  
(PMIC).  
版权 © 2011–2018, Texas Instruments Incorporated  
Device and Documentation Support  
239  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
Selection and Solution Guides  
Connected Sensors Building Automation Systems Guide The use of connected sensors has a wide  
range of uses in building automation applications, from monitoring human safety and  
security, controlling the environment and ambience specified by the comfort preferences of  
the end user, or either periodic or continuous data logging of environmental and system data  
to detect irregular system conditions.  
White Papers  
Building Automation for Enhanced Energy And Operational Efficiency Discusses building automation  
solutions, focusing on aspects of the Building Control System. TI’s Sitara processors  
facilitate intelligent automation of the control systems. The scalable Sitara processor portfolio  
offers an opportunity to build a platform solution that also spans beyond Building Control  
Systems.  
POWERLINK on TI Sitara Processors Supports Ethernet standard features such as cross-traffic, hot-  
plugging and different types of network configurations such as star, ring and mixed  
topologies.  
EtherNet/IP on TI's Sitara AM335x Processors EtherNet/IP™ (EtherNet/Industrial Protocol) is an  
industrial automation networking protocol based on the IEEE 802.3 Ethernet standard that  
has dominated the world of IT networking for the past three decades.  
PROFINET on TI’s Sitara AM335x Processors To integrate PROFINET into the Sitara AM335x  
processor, TI has built upon its programmable realtime unit (PRU) technology to create an  
industrial communication sub-system (ICSS).  
Profibus on AM335x and AM1810 Sitara ARM Microprocessor PROFIBUS, one of the most used  
communication technologies, is installed in more than 35 million industrial nodes worldwide  
and is growing at a rate of approximately 10 percent each year.  
EtherCAT on Sitara AM335x ARM Cortex-A8 Microprocessors Emerging real-time industrial Ethernet  
standard for industrial automation applications, such as input/output (I/O) devices, sensors  
and programmable logic controllers (PLCs).  
Mainline Linux Ensures Stability and Innovation Enabling and empowering the rapid development of  
new functionality starts at the foundational level of the system’s software environment – that  
is, at the level of the Linux kernel – and builds upward from there.  
Complete Solutions for Next-Generation Wireless Connected Audio Robust, feature-rich and high-  
performance connectivity technology for Wi-Fi and Bluetooth.  
Data Concentrators: The Core of Energy and Data Management With a large install base, it is  
essential to establish an automated metering infrastructure (AMI). With automated meter  
reading (AMR) measurement, the communication of meter data to the central billing station  
will be seamless.  
Linaro Speeds Development in TI Linux SDKs Linaro’s software is not a Linux distribution; in fact, it is  
distribution neutral. The focus of the organization’s 120 engineers is on optimizing base-level  
open-source software in areas that interact directly with the silicon such as multimedia,  
graphics, power management, the Linux kernel and booting processes.  
Getting Started on TI ARM Embedded Processor Development Beginning with an overview of ARM  
technology and available processor platforms, this paper will then explore the fundamentals  
of embedded design that influence a system’s architecture and, consequently, impact  
processor selection.  
Power Optimization Techniques for Energy-Efficient Systems The TI Sitara processor solutions offer  
the flexibility to design application-specific systems. The latest Sitara AM335x processors  
provide a scalable architecture with speed ranging from 300 MHz to 1 GHz.  
The Yocto Project: Changing the Way Embedded Linux Software Solutions are Developed Enabling  
complex silicon devices such as SoC with operating firmware and application software can  
be a challenge for equipment manufacturers who often are more comfortable with hardware  
than software issues.  
Smart Thermostats are a Cool Addition to the Connected Home Because of the pervasiveness of  
residential broadband connectivity and the explosion in options, the key to the connected  
home is – connectivity.  
BeagleBone Low-Cost Development Board Provides a Clear Path to Open-source Resources  
240  
Device and Documentation Support  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
Ready-to-use open-source hardware platform for rapid prototyping and firmware and  
software development.  
Enable Security and Amp Up Chip Performance With Hardware-Accelerated Cryptography  
Cryptography is one of several techniques or methodologies that are typically implemented  
in contemporary electronic systems to construct a secure perimeter around a device where  
information or digital content is being protected.  
Gesture Recognition: Enabling Natural Interactions With Electronics Enabling humans and machines  
to interface more easily in the home, the automobile, and at work.  
Developing Android Applications for ARM Cortex-A8 Cores The flexibility, power, versatility and  
ubiquity of the Android operating system (OS) and associated ecosystem have been a boon  
to developers of applications for ARM processor cores.  
Other Documents  
Industrial Communication with Sitara AM335x ARM Cortex-A8 Microprocessors The industry’s first  
low- power ARM Cortex-A8 devices to incorporate multiple industrial communication  
protocols on a single chip. The six pin-to-pin and software-compatible devices in this  
generation of processors, along with industrial hardware development tools, software and  
analog complements, provide a total industrial system solution.  
Sitara Processors Using the ARM Cortex-A series of cores, are optimized system solutions that go  
beyond the core, delivering products that support rich graphics capabilities, LCD displays  
and multiple industrial protocols.  
Industrial Communication with Sitara AM335x ARM Cortex-A8 Microprocessors Describes the key  
features and benefits of multiple, on-chip, production-ready industrial Ethernet and field bus  
communication protocols with master and slave functionality.  
版权 © 2011–2018, Texas Instruments Incorporated  
Device and Documentation Support  
241  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
8.4 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
8-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
AM3359  
AM3358  
AM3357  
AM3356  
AM3354  
AM3352  
AM3351  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
8.5 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors  
from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
242  
Device and Documentation Support  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
www.ti.com.cn  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
8.6 商标  
Sitara, SmartReflex, WiLink, E2E are trademarks of Texas Instruments.  
NEON is a trademark of ARM Ltd or its subsidiaries.  
ARM, Cortex are registered trademarks of ARM Ltd or its subsidiaries.  
Bluetooth is a registered trademark of Bluetooth SIG.  
EtherCAT is a registered trademark of EtherCAT Technology Group.  
PowerVR SGX is a trademark of Imagination Technologies Limited.  
Linux is a registered trademark of Linus Torvalds.  
Wi-Fi is a registered trademark of Wi-Fi Alliance.  
All other trademarks are the property of their respective owners.  
8.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.8 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2011–2018, Texas Instruments Incorporated  
Device and Documentation Support  
243  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
AM3359, AM3358, AM3357, AM3356, AM3354, AM3352, AM3351  
ZHCS488K OCTOBER 2011REVISED DECEMBER 2018  
www.ti.com.cn  
9 Mechanical, Packaging, and Orderable Information  
9.1 Via Channel  
The ZCE package has been specially engineered with Via Channel technology. This allows larger than  
normal PCB via and trace sizes and reduced PCB signal layers to be used in a PCB design with the 0.65-  
mm pitch package, and substantially reduces PCB costs. It allows PCB routing in only two signal layers  
(four layers total) due to the increased layer efficiency of the Via Channel BGA technology.  
Via Channel technology implemented on the ZCE package makes it possible to build an AM335x-based  
product with a 4-layer PCB, but a 4-layer PCB may not meet system performance goals. Therefore,  
system performance using a 4-layer PCB design must be evaluated during product design.  
9.2 Packaging Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
244  
Mechanical, Packaging, and Orderable Information  
版权 © 2011–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM3351BZCE30  
AM3351BZCE30R  
AM3351BZCE60  
AM3351BZCE60R  
AM3351BZCEA30  
AM3351BZCEA30R  
AM3351BZCEA60  
AM3352BZCE30  
AM3352BZCE30R  
AM3352BZCE60  
AM3352BZCEA30  
AM3352BZCEA30R  
AM3352BZCEA60  
AM3352BZCEA60R  
AM3352BZCED30  
AM3352BZCED60  
AM3352BZCZ100  
AM3352BZCZ30  
AM3352BZCZ60  
AM3352BZCZ80  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCE  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
298  
324  
324  
324  
324  
160  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
0 to 90  
0 to 90  
AM3351BZCE30  
1000 RoHS & Green  
160 RoHS & Green  
1000 RoHS & Green  
160 RoHS & Green  
1000 RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
AM3351BZCE30  
AM3351BZCE60  
AM3351BZCE60  
AM3351BZCEA30  
AM3351BZCEA30  
AM3351BZCEA60  
AM3352BZCE30  
AM3352BZCE30  
AM3352BZCE60  
AM3352BZCEA30  
AM3352BZCEA30  
AM3352BZCEA60  
AM3352BZCEA60  
AM3352BZCED30  
AM3352BZCED60  
AM3352BZCZ100  
AM3352BZCZ30  
AM3352BZCZ60  
AM3352BZCZ80  
0 to 90  
0 to 90  
-40 to 105  
-40 to 105  
-40 to 105  
0 to 90  
160  
160  
RoHS & Green  
RoHS & Green  
1000 RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
160  
160  
RoHS & Green  
RoHS & Green  
0 to 90  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 90  
-40 to 90  
0 to 90  
1000 RoHS & Green  
160 RoHS & Green  
1000 RoHS & Green  
SNAGCU  
Call TI  
160  
160  
126  
126  
126  
126  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
0 to 90  
0 to 90  
0 to 90  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM3352BZCZA100  
AM3352BZCZA30  
AM3352BZCZA60  
AM3352BZCZA80  
AM3352BZCZD30  
AM3352BZCZD60  
AM3352BZCZD80  
AM3352BZCZT60  
AM3352BZCZT60R  
AM3354BZCE60  
AM3354BZCEA60  
AM3354BZCED60  
AM3354BZCZ100  
AM3354BZCZ30  
AM3354BZCZ60  
AM3354BZCZ80  
AM3354BZCZA100  
AM3354BZCZA60  
AM3354BZCZA80  
AM3354BZCZA80R  
AM3354BZCZD60  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCE  
ZCE  
ZCE  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
324  
324  
324  
324  
324  
324  
324  
324  
324  
298  
298  
298  
324  
324  
324  
324  
324  
324  
324  
324  
324  
126  
126  
126  
126  
126  
126  
126  
126  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 90  
-40 to 90  
-40 to 90  
-40 to 125  
-40 to 125  
0 to 90  
AM3352BZCZA100  
AM3352BZCZA30  
AM3352BZCZA60  
AM3352BZCZA80  
AM3352BZCZD30  
AM3352BZCZD60  
AM3352BZCZD80  
AM3352BZCZT60  
AM3352BZCZT60  
AM3354BZCE60  
AM3354BZCEA60  
AM3354BZCED60  
AM3354BZCZ100  
AM3354BZCZ30  
AM3354BZCZ60  
AM3354BZCZ80  
AM3354BZCZA100  
AM3354BZCZA60  
AM3354BZCZA80  
AM3354BZCZA80  
AM3354BZCZD60  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
1000 RoHS & Green  
160  
160  
160  
126  
126  
126  
126  
126  
126  
126  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
-40 to 105  
-40 to 90  
0 to 90  
0 to 90  
0 to 90  
0 to 90  
-40 to 105  
-40 to 105  
-40 to 105  
1000 RoHS & Green  
126  
RoHS & Green  
-40 to 90  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM3354BZCZD80  
AM3356BZCEA60  
AM3356BZCZ30  
AM3356BZCZ60  
AM3356BZCZ80  
AM3356BZCZA30  
AM3356BZCZA60  
AM3356BZCZA80  
AM3356BZCZD30  
AM3356BZCZD60  
AM3357BZCZA30  
AM3357BZCZA60  
AM3357BZCZA80  
AM3357BZCZD30  
AM3357BZCZD60  
AM3358BZCE60  
AM3358BZCZ100  
AM3358BZCZ60  
AM3358BZCZ80  
AM3358BZCZA100  
AM3358BZCZA80  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZCZ  
ZCE  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCE  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
324  
298  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
298  
324  
324  
324  
324  
324  
126  
160  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
160  
126  
126  
126  
126  
126  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 90  
AM3354BZCZD80  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
AM3356BZCEA60  
AM3356BZCZ30  
AM3356BZCZ60  
AM3356BZCZ80  
AM3356BZCZA30  
AM3356BZCZA60  
AM3356BZCZA80  
AM3356BZCZD30  
AM3356BZCZD60  
AM3357BZCZA30  
AM3357BZCZA60  
AM3357BZCZA80  
AM3357BZCZD30  
AM3357BZCZD60  
AM3358BZCE60  
AM3358BZCZ100  
AM3358BZCZ60  
AM3358BZCZ80  
AM3358BZCZA100  
AM3358BZCZA80  
0 to 90  
0 to 90  
0 to 90  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 90  
-40 to 90  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 90  
-40 to 90  
0 to 90  
0 to 90  
0 to 90  
0 to 90  
-40 to 105  
-40 to 105  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM3359BZCZA80  
ACTIVE  
NFBGA  
ZCZ  
324  
126  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 105  
AM3359BZCZA80  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF AM3358 :  
Enhanced Product : AM3358-EP  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AM3352BZCE30R  
NFBGA  
ZCE  
298  
1000  
330.0  
24.4  
13.3  
13.3  
2.35  
16.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
NFBGA ZCE 298  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 41.3  
AM3352BZCE30R  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AM3352BZCZ100  
AM3352BZCZ30  
AM3352BZCZ60  
AM3352BZCZ80  
AM3352BZCZA100  
AM3352BZCZA30  
AM3352BZCZA60  
AM3352BZCZA80  
AM3352BZCZD30  
AM3352BZCZD60  
AM3352BZCZD80  
AM3352BZCZT60  
AM3354BZCZ100  
AM3354BZCZ30  
AM3354BZCZ60  
AM3354BZCZ80  
AM3354BZCZA100  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
Device  
Package Package Pins SPQ Unit array  
Max  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
matrix temperature  
(°C)  
(mm) (µm) (mm) (mm) (mm)  
AM3354BZCZA60  
AM3354BZCZA80  
AM3354BZCZD60  
AM3354BZCZD80  
AM3356BZCZ30  
AM3356BZCZ60  
AM3356BZCZ80  
AM3356BZCZA30  
AM3356BZCZA60  
AM3356BZCZA80  
AM3356BZCZD30  
AM3356BZCZD60  
AM3357BZCZA30  
AM3357BZCZA60  
AM3357BZCZA80  
AM3357BZCZD30  
AM3357BZCZD60  
AM3358BZCZ100  
AM3358BZCZ60  
AM3358BZCZ80  
AM3358BZCZA100  
AM3358BZCZA80  
AM3359BZCZA80  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
ZCZ  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
324  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
126  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
7 X 18  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
315 135.9 7620 17.2  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
11.3 16.35  
Pack Materials-Page 4  
PACKAGE OUTLINE  
NFBGA - 1.4 mm max height  
ZCZ0324A  
PLASTIC BALL GRID ARRAY  
A
15.1  
14.9  
B
BALL A1 CORNER  
15.1  
14.9  
1.4 MAX  
C
SEATING PLANE  
BALL TYP  
0.45  
0.35  
0.12 C  
13.6 TYP  
V
U
T
R
P
N
M
L
SYMM  
K
J
13.6  
TYP  
H
G
F
0.55  
0.45  
324X Ø  
0.15  
0.05  
C
C
A B  
E
D
C
B
(0.7) TYP  
A
0.8 TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13  
18  
14 15 16 17  
(0.7) TYP  
SYMM  
0.8 TYP  
4226659/A 03/2021  
NOTES:  
NanoFree is a trademark of Texas Instruments.  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZCZ0324A  
SYMM  
(0.8) TYP  
324X (Ø 0.4)  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
18  
LAND PATTERN EXAMPLE  
SCALE: 8X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
EXPOSED  
METAL UNDER  
SOLDER MASK  
METAL  
(Ø 0.40)  
SOLDER MASK  
OPENING  
(Ø 0.40)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226659/A 03/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZCZ0324A  
SYMM  
(0.8) TYP  
324X (Ø 0.4)  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 8X  
4226659/A 03/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY