AM4378 [TI]

Sitara 处理器:Arm Cortex-A9、PRU-ICSS、3D 图形;
AM4378
型号: AM4378
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Sitara 处理器:Arm Cortex-A9、PRU-ICSS、3D 图形

文件: 总266页 (文件大小:3373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
AM437x Sitara™ 处理器  
1 器件概述  
1.1 特性  
1
可用)  
仿真和调试  
亮点  
– Sitara™ ARM® Cortex®-A9 32 RISC 处理  
器,处理速度高达 1000MHz  
– JTAG  
– NEON™单指令多数据流 (SIMD) 协处理器和  
矢量浮点 (VFPv3) 协处理器  
嵌入式跟踪缓冲器  
中断控制器  
– 32KB L1 指令缓存和数据缓存  
– 256KB L2 缓存或 L3 RAM  
– 32 LPDDR2DDR3 DDR3L 支持  
片上存储器(共享 L3 RAM)  
– 256KB 通用片上存储器控制器 (OCMC) 随机存  
取存储器 (RAM)  
通用存储器支持(NANDNORSRAM),支  
持高达 16 位的 ECC  
可访问所有主机  
支持保持以实现快速唤醒  
– SGX530 图形引擎  
显示子系统  
可编程实时单元子系统和工业通信子系统 (PRU-  
多达 512KB 内部 RAM 总量  
256KB ARM 存储器配置为 L3 RAM + 256KB  
OCMC RAM)  
ICSS)  
实时时钟 (RTC)  
外部存储器接口 (EMIF)  
– DDR 控制器:  
多达两个带集成 PHY USB 2.0 高速双角色  
(主机或设备)端口  
– LPDDR2266MHz·时钟(LPDDR2-533 数据  
速率)  
支持多达 2 个端口的 10100 1000 以太网交  
换机  
– DDR3 DDR3L400MHz 时钟(DDR-800  
数据速率)  
串行接口:  
– 32 位数据总线  
两个控制器局域网 (CAN) 端口  
– 2GB 全部可寻址空间  
六个 UART、两个 McASP、五个 McSPI、三  
I2C 端口、一个 QSPI 和一个 HDQ 1-  
Wire  
支持一个 x32、两个 x16 或四个 x8 存储器器  
件配置  
通用存储器控制器 (GPMC)  
安全性  
灵活的 8 位和 16 位异步存储器接口,具有多达  
七个片选(NANDNORMuxed-NOR 和  
SRAM)  
加密硬件加速器(AESSHARNGDES  
3DES)  
安全引导(仅在 AM437x 高安全性  
[AM437xHS] 器件上可用)  
使用 BCH 代码,支持 4 位、8 位或 16 ECC  
使用海明码来支持 1 ECC  
两个 12 位逐次逼近寄存器 (SAR) ADC  
多达三个 32 位增强型捕捉 (eCAP) 模块  
多达三个增强型正交编码器脉冲 (eQEP) 模块  
多达六个增强型高分辨率 PWM (eHRPWM) 模块  
• MPU 子系统  
错误定位器模块 (ELM)  
GPMC 配合使用,以找到来自伴随多项式的数  
据错误(在使用 BCH 算法时生成)的地址  
根据 BCH 算法,支持 4 位、8 位和 16 位每 512  
字节块错误定位  
可编程实时单元子系统和工业通信子系统 (PRU-  
具有高达 1000MHz 处理速度的 ARM Cortex-A9  
32 RISC 微处理器  
– 32KB L1 指令缓存和数据缓存  
– 256KB L2 缓存(也可配置为 L3 RAM)  
– 256KB 片上引导 ROM  
ICSS)  
支持的协议如 EtherCAT®PROFIBUS®,  
PROFINET®EtherNet/IP™EnDat 2.2 等  
两个可编程实时单元 (PRU) 子系统,每个子系统  
有两个 PRU 内核  
– 64KB 片上 RAM  
安全控制模块 (SCM)(仅在 AM437xHS 器件上  
每个内核都是一个能以 200MHz 运行的 32 位  
加载和存储 RISC 处理器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SPRS851  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
具有单错检测(奇偶校验)功能的 12KB  
(PRU-ICSS1)4KB (PRU-ICSS0) 指令 RAM  
三个可切换电源域(MPU 子系统、SGX530  
[GFX]、外设和基础设施 [PER])  
具有单错检测(奇偶校验)功能的 8KB (PRU-  
ICSS1)4KB (PRU-ICSS0) 数据 RAM  
动态电压频率缩放 (DVFS)  
实时时钟 (RTC)  
具有 64 位累加器的单周期 32 位乘法器  
增强型 GPIO 模块对外部信号提供移入和移出  
支持以及并行锁断  
实时日期(年、月、日和星期几)和时间(小  
时、分钟和秒)信息  
内部 32.768kHz 振荡器、RTC 逻辑和 1.1V 内部  
具有单错检测(奇偶校验)功能的 12KB(仅限  
PRU-ICSS1)共享 RAM  
三个 120 字节寄存器组,可被每个 PRU 访问  
用于处理系统输入事件的中断控制器模块 (INTC)  
用于将内部和外部主机连接到 PRU-ICSS 内部资  
源的本地互连总线  
LDO  
独立上电复位 (RTC_PWRONRSTn) 输入  
外部唤醒事件专用输入引脚 (RTC_WAKEUP)  
可编程警报可生成用于唤醒的 PRCM 内部中断或  
用于事件通知的 Cortex-A9 内部中断  
可编程警报可与外部输出 (RTC_PMIC_EN) 配合  
使用,以启用电源管理 IC,从而恢复非 RTC 电  
源域  
– PRU-ICSS 内的外设  
一个带有流控制引脚的通用异步收发器  
(UART) 端口,支持高达 12Mbps 的数据速率  
外设  
一个 eCAP 模块  
– 2 个支持工业用以太网的 MII 以太网端口,例  
EtherCAT  
多达两个带集成 PHY USB 2.0 高速双角色  
(主机或设备)端口  
多达两个工业千兆位以太网 MAC  
10100 1000Mbps)  
– 1 MDIO 端口  
集成开关  
每个 MAC 都支持 MIIRMII RGMII 以及  
MDIO 接口  
两种 PRU-ICSS 子系统支持工业通信  
电源、复位和时钟管理 (PRCM) 模块  
控制深度休眠模式的进入和退出  
以太网 MAC 和交换机可独立于其它功能运行  
– IEEE 1588v2 精密时间协议 (PTP)  
多达两个 CAN 端口  
负责休眠排序、电源域关闭排序、唤醒排序和电  
源域打开排序  
时钟  
支持 CAN 版本 2 部分 A B  
多达两个多通道音频串行端口 (McASP)  
高达 50MHz 的发送和接收时钟  
集成高频率振荡器,用于为各种系统和外设时  
钟生成参考时钟(19.22425 26MHz)  
支持子系统和外设的单独时钟使能和禁用控  
制,帮助降低功耗  
每个 McASP 端口具有多达四个串行数据引脚  
并具有独立的 TX RX 时钟  
支持时分多路复用 (TDM)、内部 IC 声音 (I2S)  
和类似格式  
五个用于生成系统时钟(MPU 子系统、DDR  
接口、USB 和外设 [MMC SDUART、  
SPII2C]L3L4、以太网、GFX [SGX530]  
以及 LCD 像素时钟)的 ADPLL  
支持数字音频接口传输(SPDIFIEC60958-1  
AES-3 格式)  
电源  
两个不可切换电源域(RTC 和唤醒逻辑  
[WAKE-UP])  
用于发送和接收的 FIFO 缓冲器(256 字节)  
最多 6 UART  
所有 UART 支持 IrDA CIR 模式  
所有 UART 支持 RTS CTS 流量控制  
– UART1 支持完整的调制解调器控制  
多达五个主 McSPI 和从 McSPI  
– McSPI0–McSPI2 支持多达四个片选  
2
器件概述  
版权 © 2014–2016, Texas Instruments Incorporated  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
– McSPI3 McSPI4 支持多达两个片选  
高达 48MHz  
一个四通道 SPI  
被动和主动单色  
4 位和 8 位单色被动面板接口支持(通过  
抖动块支持 15 个灰度级)  
RGB 8 位彩色被动面板接口支持(使用抖  
动块的彩色面板支持 3375 种颜色)  
支持串行 NOR FLASH 就地执行 (XIP)  
一个 Dallas 单线®HDQ 串行接口  
多达三个 MMCSD SDIO 端口  
– 1 位、4 位和 8 MMCSD SDIO 模式  
所有端口均为 1.8V 3.3V 操作  
高达 48MHz 的时钟  
支持卡检测和写保护  
符合 MMC4.3 以及 SD SDIO 2.0 规范  
多达三个 I2C 主从接口  
RGB 12 位、16 位、18 位和 24 位主动面  
板接口支持(重复或抖动的编码像素值)  
通过 RFBI 模块支持远程帧缓冲器(嵌入在  
LCD 面板中)  
通过 RFBI 模块局部刷新远程帧缓冲器  
局部显示  
8 位、9 位、12 位和 16 位接口 (TDM) 上  
的多周期输出格式  
标准模式(高达 100kHz)  
快速模式(高达 400kHz)  
多达六组通用 I/O (GPIO)  
信号处理  
对一个图形层(RGB CLUT)和两个视  
频层(YUV 4:2:2RGB16 RGB24)的  
覆盖和窗口化支持  
每组 32 GPIO(与其他功能引脚进行多路  
复用)  
在显示接口上支持 RGB 24 位,可选择抖  
动至 RGB 18 位像素输出加上 6 位帧速率  
控制(空间和时间)  
– GPIO 可用作中断输入(每组多达两个中断输  
入)  
多达 3 个外部 DMA 事件输入,此输入也可被用  
作中断输入  
透明颜色键(源和目标)  
同步缓冲器更新  
伽玛曲线支持  
十二个 32 位通用定时器  
– DMTIMER1 是用于操作系统 (OS) 节拍的 1ms  
定时器  
多缓冲器支持  
裁切支持  
颜色相位旋转  
– DMTIMER4–DMTIMER7 为引脚输出  
一个公共看门狗定时器  
一个自由运行的 32kHz 高分辨率计数器  
(synctimer32K)  
一个安全看门狗计时器(仅在 AM437xHS 器件  
上可用)  
两个 12 SAR ADCADC0ADC1)  
每秒 867K 次采样  
可从 8:1 模拟开关复用的八个模拟输入中任意  
选择输入  
可以对 ADC0 进行配置,使其作为 45 8  
线电阻式触摸屏控制器 (TSC) 运行  
多达三个 32 eCAP 模块  
– SGX530 3D 图形引擎  
拼图架构,每秒可提供多达 20M 个多边形  
通用可扩展着色引擎是一款包含像素和顶点着  
色功能的多线程引擎  
可配置为三个捕捉输入或者三个备用 PWM 输  
超过 Microsoft VS3.0PS3.0 OGL2.0 的  
高级着色功能集  
多达六个增强型 eHRPWM 模块  
具有时间和频率控制功能的 16 位专用时基计  
数器  
– Direct3D MobileOGL-ES 1.1 2.0 以及  
OpenVG 1.0 的行业标准 API 支持  
精细的任务切换、负载均衡和电源管理  
高级几何 DMA 驱动型操作,最大程度地减少  
CPU 交互  
可编程高质量图像防锯齿  
可配置为 6 个单端,6 个双边对称,或者 3  
个双边不对称输出  
多达三个 32 eQEP 模块  
器件标识  
厂家可编程电子熔丝组 (FuseFarm)  
生产 ID  
用于统一存储器架构中操作系统运行的完全虚  
拟化存储器寻址  
器件部件号(唯一的 JTAG ID)  
设备版本(可由主机 ARM 读取)  
安全密钥(仅在 AM437xHS 器件上可用)  
功能标识  
显示子系统  
显示模式  
可编程像素存储器格式(调色板化:每个  
像素 1 位、2 位、4 位和 8 位;每个像素  
RGB 16 位和 24 位;以及 YUV 4:2:2)  
调试接口支持  
用于 ARMCortex-A9 PRCM)和 PRU-  
ICSS 调试的 JTAG cJTAG  
256 × 24 位项调色板(采用 RGB 格式)  
高达 2048 × 2048 的分辨率  
支持实时跟踪引脚(对于 Cortex-A9)  
– 64KB 嵌入式跟踪缓冲器 (ETB)  
显示支持  
支持四种类型的显示:被动和主动彩色;  
版权 © 2014–2016, Texas Instruments Incorporated  
器件概述  
3
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
支持器件边界扫描  
支持 IEEE1500  
• DMA  
启动模式  
通过锁存在 PWRONRSTn 复位输入引脚上升沿  
的启动配置引脚来选择启动模式  
摄像机  
片上增强型 DMA 控制器 (EDMA) 搭载三个第三  
方传送控制器 (TPTC) 和一个第三方通道控制器  
(TPCC),支持多达 64 个可编程逻辑通道和 8 个  
QDMA 通道  
双端口 8 位和 10 BT656 接口  
双端口 8 位和 10 位(包括外部同步)  
单端口 12 位  
– YUV422/RGB422 BT656 输入格式  
– RAW 格式  
– EDMA 用于:  
/从片上存储器传送  
/从外部存储器(EMIFGPMC 和从外设)  
传送  
高达 75MHz 的像素时钟频率  
封装  
处理器间通信 (IPC)  
– 491 引脚 BGA 封装 (17 × 17mm)(后缀为  
ZDN),0.65mm 焊球间距,采用过孔通道阵列  
技术实现低成本布线  
集成了基于硬件的 IPC 邮箱,以及用于 Cortex-  
A9PRCM PRU-ICSS 之间进程同步的  
Spinlock  
1.2 应用  
病患监控  
条形码扫描仪  
服务点  
导航设备  
工业自动化  
便携式数据终端  
便携式移动无线电  
测试和测量  
4
器件概述  
版权 © 2014–2016, Texas Instruments Incorporated  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1.3 说明  
TI AM437x 高性能处理器基于 ARM Cortex-A9 内核。  
这些处理器通过 3D 图形加速得到增强,可实现丰富的图形用户界面,还配备了协处理器,用于进行确定性  
实时处理(包括 EtherCATPROFIBUSEnDat 等工业通信协议)。该器件支持高级操作系统 (HLOS)。  
基于 Linux ®可从 TI 免费获取。其它 HLOS 可从 TI 的设计网络和生态系统合作伙伴处获取。  
这些器件支持对采用较低性能 ARM 内核的系统升级,并提供更新外设,包括 QSPI-NOR LPDDR2 等存  
储器选项。  
这些处理器包含 功能方框图中显示的子系统,并且后跟相应的 说明中添加了更多信息 说明。  
处理器子系统基于 ARM Cortex-A9 内核, PowerVR SGX™图形加速器子系统提供 3D 图形加速功能以支  
持显示和高级用户界面。  
可编程实时单元子系统和工业通信子系统 (PRU-ICSS) ARM 内核分离,允许单独操作和计时,以实现更  
高的效率和灵活性。PRU-ICSS 支持更多外设接口和 EtherCATPROFINETEtherNet/IPPROFIBUS、  
Ethernet PowerlinkSercosEnDat 等实时协议。PRU-ICSS 可并行支持 EnDat 和另一个工业通信协议。  
此外,凭借 PRU-ICSS 的可编程特性及其对引脚、事件和所有片上系统 (SoC) 资源的访问权限,该子系统  
可以灵活地实现快速实时响应、专用数据处理操作以及定制外设接口,并灵活地减轻 SoC 其他处理器内核  
的任务负载。  
高性能互连为多个初启程序提供到内部和外部存储器控制器以及到片上外设的高带宽数据传送。该器件还提  
供全面的时钟管理机制。  
一个片上模数转换器 (ADC0) 可以与显示子系统相结合,提供集成触摸屏解决方案。另一个 ADC (ADC1) 可  
与脉宽模块结合,创建闭环电机控制解决方案。  
RTC 提供独立电源域的时钟基准。该时钟基准实现了电池供电的时钟基准。  
摄像头接口提供了适用于单摄像头或双摄像头并行端口的配置。  
每个 AM437x 器件都具有加密加速功能。仅 AM437xHS 器件具有安全引导功能,用于实现防克隆和非法软  
件更新保护。有关安全引导和 HS 器件的更多信息,请与您的 TI 销售代表联系。  
器件信息(1)  
封装  
器件型号  
封装尺寸  
AM4372ZDN  
AM4376ZDN  
AM4377ZDN  
AM4378ZDN  
AM4379ZDN  
NFBGA (491)  
NFBGA (491)  
NFBGA (491)  
NFBGA (491)  
NFBGA (491)  
17.0mm × 17.0mm  
17.0mm × 17.0mm  
17.0mm × 17.0mm  
17.0mm × 17.0mm  
17.0mm × 17.0mm  
(1) 更多信息,请参阅7机械、封装和可订购产品信息。  
版权 © 2014–2016, Texas Instruments Incorporated  
器件概述  
5
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
1.4 功能方框图  
Graphics  
ARM  
Cortex-A9  
Up to 1000 MHz  
Display  
PowerVR  
SGX  
3D GFX  
20 MTri/s  
24-bit LCDCtrl (WXGA)  
Touch Screen Controller (TSC)(A)  
Processing: Overlay,  
Resizing,Color Space  
Conversion, and more  
Quad Core  
PRU-ICSS  
EtherCAT,  
PROFINET,  
EtherNet/IP,  
EnDat  
32KB, 32KB L1  
256KB L2, L3 RAM  
64KB RAM  
Crypto  
256KB  
L3 RAM  
Secure Boot  
(HS device only)  
and more  
L3 and L4 Interconnect  
System Interface  
UART x6  
SPI x5  
QSPI  
EDMA  
Timers x12  
WDT  
Camera Interface  
(2x Parallel)  
EMAC  
2-port switch  
10, 100, 1G  
with 1588  
(MII, RMII,  
RGMII  
MMC, SD,  
SDIO x3  
I2C x3  
RTC  
CAN x2  
eHRPWM x6  
eQEP, eCAP x3  
USB 2.0 Dual-Role  
+ PHY x2  
and MDIO)  
HDQ, 1-Wire  
JTAG, ETB  
ADC0 (8 inputs)  
12-bit SAR(A)  
McASP x2  
(4ch)  
Memory Interface  
32b LPDDR2, DDR3, DDR3L(B)  
GPIO  
NAND, NOR, Async  
(16-bit ECC)  
ADC1 (8 inputs)  
12-bit SAR  
Simplified Power  
Sequencing  
Copyright © 2016, Texas Instruments Incorporated  
A. 使用 TSC 将限制可用的 ADC0 输入。  
B. 最大时钟:LPDDR2 = 266MHzDDR3/DDR3L = 400MHz。  
1-1. 功能方框图  
6
器件概述  
版权 © 2014–2016, Texas Instruments Incorporated  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
内容  
1
器件概.................................................... 1  
Digital Subsystem Electrical Parameters .......... 113  
5.9  
ADC1: Analog-to-Digital Subsystem Electrical  
Parameters......................................... 115  
5.10 VPP Specifications for One-Time Programmable  
(OTP) eFuses ...................................... 118  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 4  
1.3 说明 ................................................... 5  
1.4 功能方框图............................................ 6  
修订历史记录............................................... 8  
Device Comparison ..................................... 9  
3.1 Related Products.................................... 10  
Terminal Configuration and Functions ............ 11  
4.1 Pin Diagrams........................................ 11  
4.2 Pin Attributes ........................................ 21  
4.3 Signal Descriptions.................................. 65  
Specifications ......................................... 103  
5.1 Absolute Maximum Ratings........................ 103  
5.2 ESD Ratings ....................................... 105  
5.3 Power-On Hours (POH) ........................... 105  
5.4 Operating Performance Points .................... 106  
5.5 Recommended Operating Conditions ............. 107  
5.6 Power Consumption Summary .................... 109  
5.7 DC Electrical Characteristics ...................... 110  
5.11 Thermal Resistance Characteristics ............... 119  
5.12 External Capacitors ................................ 120  
5.13 Timing and Switching Characteristics.............. 123  
5.14 Emulation and Debug.............................. 253  
Device and Documentation Support.............. 254  
6.1 Device Nomenclature.............................. 254  
6.2 Tools and Software ................................ 255  
6.3 Documentation Support............................ 257  
6.4 Related Links ...................................... 259  
6.5 Community Resources............................. 259  
6.6 商标 ................................................ 259  
6.7 静电放电警告....................................... 259  
6.8 术语.............................................. 259  
2
3
4
6
5
7
Mechanical, Packaging, and Orderable  
Information............................................. 260  
7.1 Via Channel........................................ 260  
7.2 Packaging Information ............................. 260  
5.8  
ADC0: Touch Screen Controller and Analog-to-  
版权 © 2014–2016, Texas Instruments Incorporated  
内容  
7
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (April 2015) to Revision D  
Page  
已添加 在文档中添加了 AM4372 器件信息 ........................................................................................ 1  
已添加 在、器件信息中添加了 AM4372ZDN 部件号 ........................................................................... 5  
已添加 3-1, Device Features Comparison ..................................................................................... 9  
已添加 AM4372 Device and 600-MHz Device Speed Range to 6-1, Device Nomenclature ......................... 255  
Updated Design Kits and Evaluation Modules list in 6.2, Tools and Software......................................... 255  
Updated notification alert paragraph in 6.3, Documentation Support ................................................... 257  
已添加 AM4372 part number information to 6-1, Related Links.......................................................... 259  
8
修订历史记录  
版权 © 2014–2016, Texas Instruments Incorporated  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
3 Device Comparison  
3-1 shows the features supported across different AM437x devices.  
3-1. Device Features Comparison  
FUNCTION  
AM4372  
AM4376  
AM4377  
AM4378  
AM4379  
ARM Cortex-A9  
Yes  
Yes  
Yes  
Yes  
Yes  
300 MHz  
800 MHz  
1000 MHz  
600 MHz  
800 MHz  
800 MHz  
1000 MHz  
800 MHz  
1000 MHz  
800 MHz  
1000 MHz  
Frequency  
MIPS  
750  
2000  
2500  
1500  
2000  
2000  
2500  
2000  
2500  
2000  
2500  
On-chip L1 cache  
64KB  
256KB  
64KB  
256KB  
64KB  
256KB  
64KB  
256KB  
64KB  
256KB  
On-chip L2 cache  
Graphics accelerator (SGX530)  
Hardware acceleration  
3D  
3D  
Crypto accelerator  
Crypto accelerator  
Crypto accelerator  
Crypto accelerator  
Crypto accelerator  
Programmable real-time unit  
subsystem and industrial  
communication subsystem (PRU-  
ICSS)  
Features including  
basic Industrial  
protocols  
Features including  
basic Industrial  
protocols  
Features including all  
Industrial protocols  
Features including all  
Industrial protocols  
On-chip memory  
Display options  
256KB  
DSS  
256KB  
DSS  
256KB  
DSS  
256KB  
DSS  
256KB  
DSS  
1 16-bit (GPMC,  
NAND flash, NOR  
flash, SRAM)  
1 16-bit (GPMC,  
NAND flash, NOR  
flash, SRAM)  
1 16-bit (GPMC,  
NAND flash, NOR  
flash, SRAM)  
1 16-bit (GPMC,  
NAND flash, NOR  
flash, SRAM)  
1 16-bit (GPMC,  
NAND flash, NOR  
flash, SRAM)  
General-purpose memory  
1 32-bit (DDR3-800,  
DDR3L-800,  
1 32-bit (DDR3-800,  
DDR3L-800,  
1 32-bit (DDR3-800,  
DDR3L-800,  
1 32-bit (DDR3-800,  
DDR3L-800,  
1 32-bit (DDR3-800,  
DDR3L-800,  
DRAM(1)  
LPDDR2-532)  
LPDDR2-532)  
LPDDR2-532)  
LPDDR2-532)  
LPDDR2-532)  
Universal serial bus (USB)  
2 ports  
2 ports  
2 ports  
2 ports  
2 ports  
Ethernet media access controller  
(EMAC) with 2-port switch  
10/100/1000  
2 ports  
10/100/1000  
2 ports  
10/100/1000  
2 ports  
10/100/1000  
2 ports  
10/100/1000  
2 ports  
Multimedia card (MMC)  
3
2
3
2
3
2
3
2
3
2
Controller-area network (CAN)  
Universal asynchronous receiver  
and transmitter (UART)  
6
6
6
6
6
Analog-to-digital converter (ADC)  
2 8-ch 12-bit  
2 8-ch 12-bit  
2 8-ch 12-bit  
2 8-ch 12-bit  
2 8-ch 12-bit  
Enhanced high-resolution PWM  
modules (eHRPWM)  
6
3
3
6
3
3
6
3
3
6
3
3
6
3
3
Enhanced capture modules (eCAP)  
Enhanced quadrature encoder  
pulse (eQEP)  
Real-time clock (RTC)  
1
3
1
3
1
3
1
3
1
3
Inter-integrated circuit (I2C)  
Multichannel audio serial port  
(McASP)  
2
5
2
5
2
5
2
5
2
5
Multichannel serial port interface  
(McSPI)  
Enhanced direct memory access  
(EDMA)  
64-Ch  
64-Ch  
64-Ch  
64-Ch  
64-Ch  
Camera (VPFE)  
Sync timer (32K)  
HDQ/1-Wire  
QSPI  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
版权 © 2014–2016, Texas Instruments Incorporated  
Device Comparison  
9
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
3-1. Device Features Comparison (continued)  
FUNCTION  
AM4372  
12  
AM4376  
12  
AM4377  
12  
AM4378  
12  
AM4379  
12  
Timers  
DEV_FEATURE register value(2)  
0x02FC20FE  
1.8 V, 3.3 V  
0x02FD20FF  
1.8 V, 3.3 V  
0x02FF20FF  
1.8 V, 3.3 V  
0x22FD20FF  
1.8 V, 3.3 V  
0x22FF20FF  
1.8 V, 3.3 V  
Input/output (I/O) supply  
0 to 90°C  
–40 to 105°C  
–40 to 90°C  
0 to 90°C  
–40 to 105°C  
–40 to 90°C  
0 to 90°C  
–40 to 105°C  
–40 to 105°C  
–40 to 90°C  
Operating temperature range  
–40 to 105°C  
(1) DRAM speeds listed are data rates.  
(2) For more details about the DEV_FEATURE register, see the AM437x Sitara Processors Technical Reference Manual.  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links:  
Sitara Processors Scalable processors based on ARM Cortex-A cores with flexible peripherals,  
connectivity and unified software support – perfect for sensors to servers.  
Sitara AM437x Processors Scalable ARM Cortex-A9 from 300 MHz up to 1 GHz. 3D graphics option for  
enhanced user interface. Quad core PRU-ICSS for industrial Ethernet protocols and position  
feedback control. Dual camera support for barcode scanning, preview and still pictures.  
Customer programmable secure boot option.  
Companion Products for AM437x Devices Review products that are frequently used in conjunction with  
this product.  
Reference Designs for AM437x Devices TI Designs Reference Design Library is a robust reference  
design library spanning analog, embedded processor and connectivity. Created by TI experts  
to help you jump start your system design, all TI Designs include schematic or block  
diagrams, BOMs and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
10  
Device Comparison  
版权 © 2014–2016, Texas Instruments Incorporated  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An  
attempt is made to use "ball" only when referring to the physical package.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
ZDN Ball Map [Section Top Left - Top View]  
A
B
C
D
E
F
G
H
25  
24  
VSS  
XTALOUT  
VSS_OSC  
XTALIN  
gpio5_8  
gpio5_12  
gpio5_13  
USB1_DRVVBUS  
gpio5_9  
EXTINTn  
uart3_rxd  
uart3_txd  
dss_ac_bias_en  
xdma_event_intr1  
xdma_event_intr0  
eCAP0_in_PWM0_o  
ut  
23  
22  
21  
20  
19  
18  
dss_hsync  
dss_pclk  
dss_vsync  
dss_data0  
dss_data2  
dss_data5  
dss_data9  
dss_data11  
VDDS_OSC  
VDDS_CLKOUT  
gpio5_11  
mcasp0_axr0  
uart3_ctsn  
Reserved  
clkreq  
VDDSHV5  
WARMRSTn  
USB0_DRVVBUS  
gpio5_10  
dss_data1  
dss_data4  
dss_data8  
dss_data10  
dss_data3  
dss_data6  
dss_data12  
vdd_mpu_mon  
dss_data13  
VDDS  
dss_data7  
CAP_VBB_MPU  
Reserved  
VSS  
Ball Map Position  
1
4
7
2
5
8
3
6
9
12  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-1. ZDN Ball Map [Section Top Middle - Top View]  
J
K
L
M
N
P
R
T
25  
24  
23  
22  
21  
uart0_rtsn  
uart0_txd  
uart0_rxd  
uart3_rtsn  
mcasp0_fsr  
uart1_ctsn  
uart1_rxd  
uart0_ctsn  
mcasp0_ahclkx  
mcasp0_aclkr  
uart1_rtsn  
mcasp0_axr1  
mcasp0_ahclkr  
spi4_cs0  
spi4_sclk  
spi4_d1  
spi0_sclk  
spi2_d0  
VPP  
spi0_cs1  
spi4_d0  
USB1_VBUS  
EMU1  
mcasp0_aclkx  
EMU0  
spi2_cs0  
spi0_d0  
spi0_d1  
mcasp0_fsx  
uart1_txd  
VDDS_PLL_CORE_  
LCD  
20  
19  
18  
VDD_MPU  
VDD_MPU  
VDDSHV3  
VDD_MPU  
VDD_MPU  
VSS  
spi2_sclk  
VDDSHV3  
VDDSHV3  
spi2_d1  
VDDS  
spi0_cs0  
VDD_CORE  
VDD_CORE  
VDDSHV3  
VDD_MPU  
VDDSHV3  
VSS  
Ball Map Position  
1
4
7
2
5
8
3
6
9
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-2. ZDN Ball Map [Section Top Right - Top View]  
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
25  
24  
23  
22  
USB1_ID  
USB0_ID  
USB0_VBUS  
USB1_CE  
USB1_DM  
USB1_DP  
USB0_DP  
nTRST  
TCK  
TDO  
VSS  
cam1_wen  
I2C0_SDA  
cam1_field  
cam1_data9  
cam1_vd  
cam1_hd  
VSS  
USB0_DM  
TMS  
cam1_data8  
cam1_data6  
cam1_data4  
cam1_data2  
cam0_data7  
cam0_data5  
cam0_vd  
cam1_data7  
cam1_data5  
cam1_data3  
cam1_pclk  
cam0_data6  
cam0_data4  
cam0_data0  
VSSA_USB  
USB0_CE  
PWRONRSTn  
I2C0_SCL  
21 VDDA1P8V_USB1  
20 VDDA3P3V_USB1  
VDDA1P8V_USB0  
VDDA3P3V_USB0  
cam1_data1  
cam0_pclk  
TDI  
cam1_data0  
cam0_data8  
cam0_data1  
19  
18  
VSS  
VSS  
VDDS  
cam0_data9  
cam0_data3  
VSS  
VDDSHV3  
cam0_data2  
cam0_field  
Ball Map Position  
1
4
7
2
5
8
3
6
9
14  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-3. ZDN Ball Map [Section Middle Left - Top View]  
A
B
C
D
E
F
G
H
17  
16  
15  
14  
mdio_data  
rmii1_ref_clk  
mii1_rx_dv  
mii1_txd1  
mdio_clk  
mii1_rxd1  
mii1_txd0  
mii1_crs  
dss_data14  
mii1_txd3  
dss_data15  
mii1_col  
VDDS_PLL_MPU  
mii1_rxd2  
mii1_rxd0  
VDDSHV7  
VDDSHV6  
VDDSHV6  
VDDSHV6  
VDD_MPU  
VSS  
mii1_rxd3  
mii1_txd2  
mii1_tx_clk  
mii1_rx_clk  
CAP_VDD_SRAM_ VDDS_SRAM_MPU  
MPU _BB  
VDDSHV8  
VDDSHV8  
VDD_MPU  
13  
mii1_tx_en  
mii1_rx_er  
CAP_VDD_SRAM_C VDDS_SRAM_COR  
VDD_MPU  
ORE  
E_BG  
12  
11  
10  
gpmc_clk  
gpmc_ad15  
gpmc_ad9  
gpmc_csn3  
gpmc_ad14  
gpmc_ad8  
VDDS  
gpmc_ad13  
gpmc_ad11  
gpmc_wen  
gpmc_ad12  
gpmc_ad10  
gpmc_csn2  
VDDSHV9  
VDDSHV9  
VDDSHV10  
gpmc_be0n_cle  
gpmc_oen_ren  
VDDSHV10  
Ball Map Position  
1
4
7
2
5
8
3
6
9
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
ZDN Ball Map [Section Middle Middle - Top View]  
J
K
L
M
VDD_MPU  
VSS  
N
VDD_CORE  
VDD_CORE  
VSS  
P
VDD_CORE  
VDD_CORE  
VSS  
R
T
17  
16  
15  
14  
13  
12  
11  
10  
VSS  
VDDSHV3  
VSS  
VSS  
VSS  
VDD_MPU  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD_MPU  
VDD_MPU  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
Ball Map Position  
1
4
7
2
5
8
3
6
9
16  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
ZDN Ball Map [Section Middle Right - Top View]  
U
V
VDDSHV2  
VDDSHV2  
VDD_CORE  
VSS  
W
Y
AA  
AB  
AC  
AD  
AE  
17  
16  
15  
14  
13  
12  
11  
10  
VSS  
VSS  
cam0_wen  
ADC1_AIN7  
ADC1_VREFN  
ADC0_VREFP  
ADC0_AIN6  
VDDS  
cam0_hd  
VDDSHV2  
VDDS  
VDDA_ADC1  
ADC1_AIN5  
ADC1_AIN2  
ADC1_AIN4  
ADC1_AIN1  
ADC1_AIN3  
ADC1_AIN0  
VSSA_ADC  
ADC1_AIN6  
ADC1_VREFP  
ADC0_VREFN  
ADC0_AIN7  
Reserved  
VDD_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
ADC0_AIN2  
ADC0_AIN1  
ADC0_AIN3  
ADC0_AIN0  
ADC0_AIN4  
ADC0_AIN5  
Reserved  
VSS  
VSS  
VDDA_ADC0  
VSS  
VSS  
Reserved  
Reserved  
VSS  
VSS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VSS  
Ball Map Position  
1
4
7
2
5
8
3
6
9
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-4. ZDN Ball Map [Section Bottom Left - Top View]  
A
B
C
D
E
F
G
H
9
8
7
6
gpmc_advn_ale  
gpmc_csn0  
gpmc_ad5  
gpmc_ad3  
gpmc_csn1  
gpmc_ad7  
gpmc_ad4  
gpmc_ad2  
VDDSHV11  
VDDSHV11  
gpmc_ad6  
gpmc_a11  
gpmc_a4  
gpmc_a6  
gpmc_a5  
VDDS3P3V_IOLDO  
gpmc_a8  
gpmc_a10  
gpmc_a2  
gpmc_a1  
CAP_VDDS1P8V_IO  
LDO  
gpmc_a7  
VDDS  
5
4
3
2
1
gpmc_ad1  
gpmc_a3  
gpmc_be1n  
gpmc_wait0  
VSS  
gpmc_ad0  
gpmc_a9  
VDDS_PLL_DDR  
ddr_d4  
ddr_dqm0  
ddr_d3  
gpmc_wpn  
mmc0_dat2  
mmc0_dat3  
gpmc_a0  
mmc0_dat1  
mmc0_dat0  
ddr_d0  
ddr_d1  
ddr_d2  
ddr_d5  
mmc0_cmd  
mmc0_clk  
ddr_dqs0  
ddr_dqsn0  
ddr_d6  
ddr_dqm1  
ddr_d8  
ddr_d7  
Ball Map Position  
1
4
7
2
5
8
3
6
9
18  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-5. ZDN Ball Map [Section Bottom Middle - Top View]  
J
K
L
M
N
P
R
T
9
8
7
6
5
4
3
2
1
VSS  
VSS  
VSS  
VSS  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
ddr_a10  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
ddr_cke1  
ddr_a13  
VSS  
VSS  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
ddr_a5  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
ddr_vref  
VDDSHV1  
VDDSHV1  
ddr_d9  
VDDS_DDR  
VDDS_DDR  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_ba2  
ddr_ba1  
ddr_ba0  
ddr_d10  
ddr_d11  
ddr_d12  
ddr_dqs1  
ddr_dqsn1  
ddr_csn0  
ddr_csn1  
ddr_cke0  
ddr_ck  
ddr_a11  
ddr_wen  
ddr_a6  
ddr_a12  
ddr_casn  
ddr_rasn  
ddr_a0  
ddr_a7  
ddr_a14  
ddr_a2  
ddr_a1  
ddr_a3  
ddr_a4  
ddr_a8  
ddr_a15  
ddr_nck  
ddr_a9  
ddr_resetn  
Ball Map Position  
1
4
7
2
5
8
3
6
9
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-6. ZDN Ball Map [Section Bottom Right - Top View]  
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
Reserved  
VSS  
9
8
7
6
VSS  
VSS  
VSS  
Reserved  
Reserved  
Reserved  
VDD_CORE  
VDDS  
VDDS_DDR  
VDDS_DDR  
ddr_dqm2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VSS  
ddr_d23  
RTC_PMIC_EN RTC_PWRONRST  
n
5
4
3
2
ddr_d16  
ddr_d17  
ddr_d18  
ddr_d19  
ddr_d22  
ddr_d21  
Reserved  
VDDS_RTC  
VSS_RTC  
RTC_XTALIN  
RTC_XTALOUT  
RTC_WAKEUP  
ddr_d26  
ddr_d25  
ddr_d24  
ddr_d27  
ddr_vtp  
CAP_VDD_RTC  
Reserved  
ddr_odt1  
ddr_odt0  
ddr_dqsn2  
ddr_dqs2  
ddr_dqsn3  
ddr_d28  
ddr_d29  
ddr_d31  
RTC_KALDO_EN  
n
1
ddr_d20  
ddr_dqm3  
ddr_dqs3  
ddr_d30  
Reserved  
VSS  
Ball Map Position  
1
4
7
2
5
8
3
6
9
20  
Terminal Configuration and Functions  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.2 Pin Attributes  
1. BALL NUMBER: Package ball numbers associated with each signals.  
2. PIN NAME: The name of the package pin.  
Note: The table does not take into account subsystem terminal multiplexing options.  
3. SIGNAL NAME: The signal name for that pin in the mode being used.  
4. MODE: Multiplexing mode number.  
a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the  
terminal corresponds to the name of the terminal. There is always a function mapped on the  
primary mode. Notice that primary mode is not necessarily the default mode.  
Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE  
column.  
b. Modes 1 to 7 are possible modes for alternate functions. On each terminal, some modes are  
effectively used for alternate functions, while some modes are not used and do not correspond to a  
functional configuration.  
5. TYPE: Signal direction  
I = Input  
O = Output  
IO = Input and Output  
D = Open drain  
DS = Differential  
A = Analog  
PWR = Power  
GND = Ground  
Note: In the safe_mode, the buffer is configured in high-impedance.  
6. BALL RESET STATE: State of the terminal while the active low PWRONRSTn terminal is low.  
0: The buffer drives VOL (pulldown or pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor  
1: The buffer drives VOH (pulldown or pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor  
Z or OFF: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
7. BALL RESET REL. STATE: State of the terminal after the active low PWRONRSTn terminal  
transitions from low to high.  
0: The buffer drives VOL (pulldown or pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor  
1: The buffer drives VOH (pulldown or pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor  
Z or OFF: High-impedance.  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
8. RESET REL. MODE: The mode is automatically configured after the active low PWRONRSTn terminal  
transitions from low to high.  
9. POWER: The voltage supply that powers the terminal’s IO buffers.  
10. HYS: Indicates if the input buffer is with hysteresis.  
11. BUFFER STRENGTH: Drive strength of the associated output buffer.  
12. PULLUP OR PULLDOWN TYPE: Denotes the presence of an internal pullup or pulldown resistor.  
Pullup and pulldown resistors can be enabled or disabled via software.  
13. IO CELL: IO cell information.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Note: Configuring two terminals to the same input signal is not supported as it can yield unexpected  
results. This can be easily prevented with the proper software configuration.  
22  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AA12  
Y12  
ADC0_AIN0  
ADC0_AIN0  
ADC0_AIN1  
ADC0_AIN2  
ADC0_AIN3  
ADC0_AIN4  
ADC0_AIN5  
ADC0_AIN6  
ADC0_AIN7  
0x0  
A
A
A
A
A
A
A
A
Z
Z
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode7  
VDDA_ADC0  
NA  
25  
NA  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
LVCMOS  
ADC0_AIN1  
ADC0_AIN2  
ADC0_AIN3  
ADC0_AIN4  
ADC0_AIN5  
ADC0_AIN6  
ADC0_AIN7  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
PD  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
PD  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDSHV2  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Yes  
25  
25  
25  
25  
25  
25  
25  
NA  
NA  
25  
25  
25  
25  
25  
25  
25  
25  
NA  
NA  
6
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
PU/PD  
Y13  
AA13  
AB13  
AC13  
AD13  
AE13  
AE14  
AD14  
AC16  
AB16  
AA16  
AB15  
AA15  
Y15  
ADC0_VREFN  
ADC0_VREFP  
ADC1_AIN0  
ADC1_AIN1  
ADC1_AIN2  
ADC1_AIN3  
ADC1_AIN4  
ADC1_AIN5  
ADC1_AIN6  
ADC1_AIN7  
ADC1_VREFN  
ADC1_VREFP  
cam0_data0  
ADC0_VREFN  
ADC0_VREFP  
ADC1_AIN0  
ADC1_AIN1  
ADC1_AIN2  
ADC1_AIN3  
ADC1_AIN4  
ADC1_AIN5  
ADC1_AIN6  
ADC1_AIN7  
ADC1_VREFN  
ADC1_VREFP  
cam0_data0  
cam1_data9  
I2C1_SDA  
AP  
AP  
A
A
A
A
A
A
AE16  
AD16  
AD15  
AE15  
AE18  
A
A
AP  
AP  
I
I
IOD  
O
I
pr0_pru1_gpo16  
pr0_pru1_gpi16  
ehrpwm0_synco  
gpio5_19  
O
IO  
I
AB18  
cam0_data1  
cam0_data1  
cam1_data8  
I2C1_SCL  
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I
IOD  
O
I
pr0_pru1_gpo17  
pr0_pru1_gpi17  
ehrpwm3_synco  
gpio5_20  
O
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
Y18  
cam0_data2  
cam0_data2  
mmc1_clk  
cam1_data10  
qspi_clk  
0x0  
I
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x6  
0x7  
0x0  
0x1  
0x3  
0x6  
0x7  
0x0  
0x1  
0x3  
0x6  
0x7  
0x0  
0x1  
0x3  
0x6  
0x7  
IO  
I
IO  
IO  
I
gpio4_24  
AA18  
AE19  
cam0_data3  
cam0_data4  
cam0_data3  
mmc1_cmd  
cam1_data11  
qspi_csn  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
IO  
I
O
IO  
I
gpio4_25  
cam0_data4  
mmc1_dat0  
cam1_wen  
qspi_d0  
IO  
I
IO  
O
IO  
I
ehrpwm3A  
gpio4_26  
AD19  
AE20  
AD20  
cam0_data5  
cam0_data6  
cam0_data7  
cam0_data5  
mmc1_dat1  
qspi_d1  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
I
ehrpwm3B  
gpio4_27  
O
IO  
I
cam0_data6  
mmc1_dat2  
qspi_d2  
IO  
I
ehrpwm1A  
gpio4_28  
O
IO  
I
cam0_data7  
mmc1_dat3  
qspi_d3  
IO  
I
ehrpwm1B  
gpio4_29  
O
IO  
24  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AB19  
cam0_data8  
cam0_data8  
dss_data18  
0x0  
I
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
O
O
IO  
I
pr0_pru0_gpo15  
spi2_cs2  
pr0_pru0_gpi15  
EMU7  
IO  
IO  
gpio4_5  
I2C2_SCL  
cam0_data9  
dss_data17  
pr0_pru0_gpo16  
spi2_cs3  
IOD  
I
AA19  
AC18  
AE17  
AC20  
cam0_data9  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
O
O
IO  
I
pr0_pru0_gpi16  
EMU8  
IO  
IO  
IO  
O
gpio4_6  
cam0_field  
cam0_field  
dss_data21  
cam0_data10  
spi2_sclk  
I
IO  
I
cam1_data10  
EMU4  
IO  
IO  
IO  
O
gpio4_2  
cam0_hd  
cam0_hd  
dss_data23  
pr1_edio_sof  
spi2_cs1  
O
IO  
IO  
IO  
IO  
I
EMU10  
EMU2  
gpio4_0  
cam0_pclk  
cam0_pclk  
dss_data19  
pr0_pru0_gpo14  
spi2_cs0  
O
O
IO  
I
pr0_pru0_gpi14  
EMU6  
IO  
IO  
IOD  
gpio4_4  
I2C2_SDA  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AD18  
cam0_vd  
cam0_vd  
0x0  
IO  
O
O
IO  
IO  
IO  
IO  
I
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
dss_data22  
pr1_edio_outvalid  
spi2_d1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
EMU11  
EMU3  
gpio4_1  
AD17  
cam0_wen  
cam0_wen  
dss_data20  
cam0_data11  
spi2_d0  
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
O
I
IO  
I
cam1_data11  
EMU5  
IO  
IO  
I
gpio4_3  
AB20  
AC21  
AD21  
cam1_data0  
cam1_data1  
cam1_data2  
cam1_data0  
uart1_rxd  
PD  
PU  
PD  
PD  
PU  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
IO  
spi3_d0  
I2C2_SDA  
ehrpwm0_tripzone_input  
gpio4_14  
IOD  
I
IO  
I
cam1_data1  
uart1_txd  
IO  
IO  
IOD  
I
spi3_d1  
I2C2_SCL  
ehrpwm0_synci  
gpio4_15  
IO  
I
cam1_data2  
uart1_ctsn  
spi3_cs0  
IO  
IO  
IO  
O
I
mmc2_clk  
pr0_pru1_gpo10  
pr0_pru1_gpi10  
ehrpwm1_tripzone_input  
gpio4_16  
I
IO  
26  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AE22  
cam1_data3  
cam1_data3  
uart1_rtsn  
spi3_sclk  
0x0  
I
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
O
IO  
IO  
O
I
mmc2_cmd  
pr0_pru1_gpo11  
pr0_pru1_gpi11  
pr1_edc_latch0_in  
gpio4_17  
I
IO  
I
AD22  
cam1_data4  
cam1_data4  
uart1_rin  
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I
uart2_rxd  
IO  
IO  
O
I
mmc2_dat0  
pr0_pru1_gpo12  
pr0_pru1_gpi12  
pr1_edc_latch1_in  
gpio4_18  
I
IO  
I
uart0_dcdn  
AE23  
cam1_data5  
cam1_data5  
uart1_dsrn  
I
PU  
PU  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I
uart2_txd  
IO  
IO  
O
I
mmc2_dat1  
pr0_pru1_gpo13  
pr0_pru1_gpi13  
pr1_edio_latch_in  
gpio4_19  
I
IO  
I
AD23  
cam1_data6  
cam1_data6  
uart1_dcdn  
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I
uart2_ctsn  
IO  
IO  
O
I
mmc2_dat2  
pr0_pru1_gpo14  
pr0_pru1_gpi14  
pr1_edio_data_in0  
gpio4_20  
I
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AE24  
cam1_data7  
cam1_data7  
uart1_dtrn  
0x0  
I
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
O
O
IO  
O
I
uart2_rtsn  
mmc2_dat3  
pr0_pru1_gpo15  
pr0_pru1_gpi15  
pr1_edio_data_in1  
gpio4_21  
I
IO  
I
AD24  
cam1_data8  
cam1_data8  
xdma_event_intr3  
spi0_cs2  
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I
IO  
O
IO  
I
pr0_pru1_gpo0  
spi2_d0  
pr0_pru1_gpi0  
EMU10  
IO  
IO  
O
I
gpio4_8  
uart0_rtsn  
AC24  
cam1_data9  
cam1_data9  
dss_data16  
pr0_pru0_gpo17  
spi2_cs3  
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
O
O
IO  
I
pr0_pru0_gpi17  
EMU9  
IO  
IO  
I
gpio4_7  
uart0_ctsn  
AC25  
cam1_field  
cam1_field  
IO  
I
PD  
PD  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
xdma_event_intr7  
ext_hw_trigger  
cam0_data10  
spi2_cs1  
I
I
IO  
I
cam1_data10  
ehrpwm1B  
O
IO  
O
gpio4_12  
ehrpwm3A  
28  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AD25  
AE21  
AC23  
AB25  
cam1_hd  
cam1_hd  
0x0  
IO  
I
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
xdma_event_intr4  
spi0_cs3  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
NA  
IO  
O
IO  
I
pr0_pru1_gpo1  
spi2_cs0  
pr0_pru1_gpi1  
ehrpwm0A  
O
IO  
I
gpio4_9  
cam1_pclk  
cam1_pclk  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
xdma_event_intr6  
spi1_cs3  
I
IO  
O
IO  
I
pr0_pru1_gpo3  
spi2_sclk  
pr0_pru1_gpi3  
ehrpwm1A  
O
IO  
IO  
I
gpio4_11  
cam1_vd  
cam1_vd  
xdma_event_intr5  
spi1_cs2  
IO  
O
IO  
I
pr0_pru1_gpo2  
spi2_cs2  
pr0_pru1_gpi2  
ehrpwm0B  
O
IO  
I
gpio4_10  
cam1_wen  
cam1_wen  
xdma_event_intr8  
pr1_edio_sof  
cam0_data11  
spi2_d1  
I
O
I
IO  
I
cam1_data11  
EMU11  
IO  
IO  
O
A
gpio4_13  
ehrpwm3B  
F19  
D6  
CAP_VBB_MPU  
CAP_VBB_MPU  
CAP_VDDS1P8V_IOLDO  
CAP_VDD_RTC  
CAP_VDD_SRAM_CORE  
CAP_VDD_SRAM_MPU  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
CAP_VDDS1P8V_IOLDO  
CAP_VDD_RTC  
NA  
POWER  
AD3  
E13  
E14  
NA  
A
A
A
CAP_VDD_SRAM_CORE  
CAP_VDD_SRAM_MPU  
NA  
NA  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
H20  
clkreq  
clkreq  
0x0  
O
OFF  
PU  
Mode0  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
gpio0_24  
ddr_a0  
0x7  
0x0  
IO  
O
N1  
L1  
ddr_a0  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PD  
PD  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/HST  
L/HSUL_12  
ddr_a1  
ddr_a1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LVCMOS/HST  
L/HSUL_12  
L2  
ddr_a2  
ddr_a2  
LVCMOS/HST  
L/HSUL_12  
P2  
P1  
R5  
R4  
R3  
R2  
R1  
M6  
T5  
T4  
N5  
T3  
T2  
K1  
K2  
K3  
N3  
M2  
M3  
ddr_a3  
ddr_a3  
LVCMOS/HST  
L/HSUL_12  
ddr_a4  
ddr_a4  
LVCMOS/HST  
L/HSUL_12  
ddr_a5  
ddr_a5  
LVCMOS/HST  
L/HSUL_12  
ddr_a6  
ddr_a6  
LVCMOS/HST  
L/HSUL_12  
ddr_a7  
ddr_a7  
LVCMOS/HST  
L/HSUL_12  
ddr_a8  
ddr_a8  
LVCMOS/HST  
L/HSUL_12  
ddr_a9  
ddr_a9  
LVCMOS/HST  
L/HSUL_12  
ddr_a10  
ddr_a11  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
ddr_ck  
ddr_a10  
ddr_a11  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
ddr_ck  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
ddr_cke0  
ddr_cke0  
LVCMOS/HST  
L/HSUL_12  
30  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
N6  
M5  
M4  
E3  
E2  
E1  
F3  
G4  
G3  
G2  
G1  
H1  
J6  
ddr_cke1  
ddr_cke1  
ddr_csn0  
ddr_csn1  
ddr_d0  
0x0  
O
PD  
PU  
PU  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
VDDS_DDR  
YES  
8
PU/PD  
LVCMOS/HST  
L/HSUL_12  
ddr_csn0  
ddr_csn1  
ddr_d0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
O
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/HST  
L/HSUL_12  
O
LVCMOS/HST  
L/HSUL_12  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
LVCMOS/HST  
L/HSUL_12  
ddr_d1  
ddr_d1  
LVCMOS/HST  
L/HSUL_12  
ddr_d2  
ddr_d2  
LVCMOS/HST  
L/HSUL_12  
ddr_d3  
ddr_d3  
LVCMOS/HST  
L/HSUL_12  
ddr_d4  
ddr_d4  
LVCMOS/HST  
L/HSUL_12  
ddr_d5  
ddr_d5  
LVCMOS/HST  
L/HSUL_12  
ddr_d6  
ddr_d6  
LVCMOS/HST  
L/HSUL_12  
ddr_d7  
ddr_d7  
LVCMOS/HST  
L/HSUL_12  
ddr_d8  
ddr_d8  
LVCMOS/HST  
L/HSUL_12  
ddr_d9  
ddr_d9  
LVCMOS/HST  
L/HSUL_12  
J5  
ddr_d10  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_d16  
ddr_d17  
ddr_d18  
ddr_d19  
ddr_d10  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_d16  
ddr_d17  
ddr_d18  
ddr_d19  
LVCMOS/HST  
L/HSUL_12  
J4  
LVCMOS/HST  
L/HSUL_12  
J3  
LVCMOS/HST  
L/HSUL_12  
K6  
K5  
K4  
V5  
V4  
V3  
V2  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
V1  
ddr_d20  
ddr_d20  
0x0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PU  
PU  
PU  
PU  
PD  
PD  
PD  
PD  
PU  
PU  
PU  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
VDDS_DDR  
YES  
8
PU/PD  
LVCMOS/HST  
L/HSUL_12  
W4  
W5  
W6  
Y2  
ddr_d21  
ddr_d21  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
Yes  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/HST  
L/HSUL_12  
ddr_d22  
ddr_d22  
LVCMOS/HST  
L/HSUL_12  
ddr_d23  
ddr_d23  
LVCMOS/HST  
L/HSUL_12  
ddr_d24  
ddr_d24  
LVCMOS/HST  
L/HSUL_12  
Y3  
ddr_d25  
ddr_d25  
LVCMOS/HST  
L/HSUL_12  
Y4  
ddr_d26  
ddr_d26  
LVCMOS/HST  
L/HSUL_12  
AA3  
AB2  
AB1  
AC1  
AC2  
F4  
ddr_d27  
ddr_d27  
LVCMOS/HST  
L/HSUL_12  
ddr_d28  
ddr_d28  
LVCMOS/HST  
L/HSUL_12  
ddr_d29  
ddr_d29  
LVCMOS/HST  
L/HSUL_12  
ddr_d30  
ddr_d30  
LVCMOS/HST  
L/HSUL_12  
ddr_d31  
ddr_d31  
LVCMOS/HST  
L/HSUL_12  
ddr_dqm0  
ddr_dqm1  
ddr_dqm2  
ddr_dqm3  
ddr_dqs0  
ddr_dqs1  
ddr_dqs2  
ddr_dqs3  
ddr_dqsn0  
ddr_dqsn1  
ddr_dqsn2  
ddr_dqm0  
ddr_dqm1  
ddr_dqm2  
ddr_dqm3  
ddr_dqs0  
ddr_dqs1  
ddr_dqs2  
ddr_dqs3  
ddr_dqsn0  
ddr_dqsn1  
ddr_dqsn2  
LVCMOS/HST  
L/HSUL_12  
H2  
O
LVCMOS/HST  
L/HSUL_12  
V6  
O
LVCMOS/HST  
L/HSUL_12  
Y1  
O
LVCMOS/HST  
L/HSUL_12  
F2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
LVCMOS/HST  
L/HSUL_12  
J2  
LVCMOS/HST  
L/HSUL_12  
W1  
AA1  
F1  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
LVCMOS/HST  
L/HSUL_12  
J1  
Yes  
LVCMOS/HST  
L/HSUL_12  
W2  
Yes  
LVCMOS/HST  
L/HSUL_12  
32  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AA2  
M1  
U1  
ddr_dqsn3  
ddr_dqsn3  
ddr_nck  
0x0  
IO  
O
O
O
O
O
PU  
PU  
PD  
PD  
PU  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
VDDS_DDR  
Yes  
8
PU/PD  
LVCMOS/HST  
L/HSUL_12  
ddr_nck  
ddr_odt0  
ddr_odt1  
ddr_rasn  
0x0  
0x0  
0x0  
0x0  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
YES  
YES  
YES  
YES  
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/HST  
L/HSUL_12  
ddr_odt0  
ddr_odt1  
ddr_rasn  
LVCMOS/HST  
L/HSUL_12  
U2  
LVCMOS/HST  
L/HSUL_12  
N2  
LVCMOS/HST  
L/HSUL_12  
T1  
ddr_resetn  
ddr_vref  
ddr_vtp  
ddr_resetn  
ddr_vref  
ddr_vtp  
0x0  
0x0  
0x0  
0x0  
PD  
NA  
NA  
PU  
Mode0  
Mode0  
Mode0  
Mode0  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
YES  
NA  
8
PU/PD  
NA  
LVCMOS  
Analog  
T6  
AP (19)  
I (20)  
O
NA  
NA  
NA  
NA  
8
AC3  
N4  
NA  
NA  
Analog  
ddr_wen  
ddr_wen  
YES  
PU/PD  
LVCMOS/HST  
L/HSUL_12  
A24  
dss_ac_bias_en  
dss_ac_bias_en  
gpmc_a11  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
O
O
O
I
OFF  
OFF  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a4  
pr1_edio_data_in5  
pr1_edio_data_out5  
pr0_pru1_gpo9  
pr0_pru1_gpi9  
gpio2_25  
O
O
I
IO  
IO  
O
I
B22  
dss_data0 (4)  
dss_data0  
OFF  
OFF  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a0  
pr1_mii_mt0_clk  
ehrpwm2A  
O
O
I
pr1_pru0_gpo0  
pr1_pru0_gpi0  
gpio2_6  
IO  
IO  
O
O
O
O
I
A21  
dss_data1 (4)  
dss_data1  
OFF  
OFF  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a1  
pr1_mii0_txen  
ehrpwm2B  
pr1_pru0_gpo1  
pr1_pru0_gpi1  
gpio2_7  
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B21  
dss_data2 (4)  
dss_data2  
0x0  
IO  
O
O
I
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Mode7  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a2  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
pr1_mii0_txd3  
ehrpwm2_tripzone_input  
pr1_pru0_gpo2  
pr1_pru0_gpi2  
gpio2_8  
O
I
IO  
IO  
O
O
O
O
I
C21  
A20  
B20  
C20  
dss_data3 (4)  
dss_data4 (4)  
dss_data5 (4)  
dss_data6 (4)  
dss_data3  
VDDSHV6  
VDDSHV6  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
gpmc_a3  
pr1_mii0_txd2  
ehrpwm0_synco  
pr1_pru0_gpo3  
pr1_pru0_gpi3  
gpio2_9  
IO  
IO  
O
O
I
dss_data4  
gpmc_a4  
pr1_mii0_txd1  
eQEP2A_in  
pr1_pru0_gpo4  
pr1_pru0_gpi4  
gpio2_10  
O
I
IO  
IO  
O
O
I
dss_data5  
gpmc_a5  
pr1_mii0_txd0  
eQEP2B_in  
pr1_pru0_gpo5  
pr1_pru0_gpi5  
gpio2_11  
O
I
IO  
IO  
O
I
dss_data6  
gpmc_a6  
pr1_edio_data_in6  
eQEP2_index  
pr1_edio_data_out6  
pr1_pru0_gpo6  
pr1_pru0_gpi6  
gpio2_12  
IO  
O
O
I
IO  
34  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
E19  
A19  
B19  
A18  
dss_data7 (4)  
dss_data7  
gpmc_a7  
0x0  
IO  
O
I
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
pr1_edio_data_in7  
eQEP2_strobe  
pr1_edio_data_out7  
pr1_pru0_gpo7  
pr1_pru0_gpi7  
gpio2_13  
IO  
O
O
I
IO  
IO  
O
I
dss_data8 (4)  
dss_data8  
VDDSHV6  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
gpmc_a12  
ehrpwm1_tripzone_input  
mcasp0_aclkx  
uart5_txd  
IO  
O
I
pr1_mii0_rxd3  
uart2_ctsn  
IO  
IO  
IO  
O
O
IO  
I
gpio2_14  
dss_data9 (4)  
dss_data9  
gpmc_a13  
ehrpwm0_synco  
mcasp0_fsx  
uart5_rxd  
pr1_mii0_rxd2  
uart2_rtsn  
I
O
IO  
IO  
O
O
IO  
I
gpio2_15  
dss_data10 (4)  
dss_data10  
gpmc_a14  
ehrpwm1A  
mcasp0_axr0  
pr1_mii0_rxd1  
uart3_ctsn  
IO  
IO  
gpio2_16  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
35  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B18  
dss_data11 (4)  
dss_data11  
gpmc_a15  
ehrpwm1B  
mcasp0_ahclkr  
mcasp0_axr2  
pr1_mii0_rxd0  
uart3_rtsn  
0x0  
IO  
O
O
IO  
IO  
I
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
O
IO  
IO  
IO  
O
I
gpio2_17  
spi3_cs1  
C19  
D19  
C17  
dss_data12 (4)  
dss_data13 (4)  
dss_data14 (4)  
dss_data12  
gpmc_a16  
eQEP1A_in  
mcasp0_aclkr  
mcasp0_axr2  
pr1_mii0_rxlink  
uart4_ctsn  
gpio0_8  
VDDSHV6  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
IO  
IO  
I
I
IO  
IO  
IO  
O
I
spi3_sclk  
dss_data13  
gpmc_a17  
eQEP1B_in  
mcasp0_fsr  
mcasp0_axr3  
pr1_mii0_rxer  
uart4_rtsn  
IO  
IO  
I
O
IO  
IO  
IO  
O
IO  
IO  
I
gpio0_9  
spi3_d0  
dss_data14  
gpmc_a18  
eQEP1_index  
mcasp0_axr1  
uart5_rxd  
pr1_mii_mr0_clk  
uart5_ctsn  
gpio0_10  
I
I
IO  
IO  
spi3_d1  
36  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
D17  
dss_data15 (4)  
dss_data15  
gpmc_a19  
0x0  
IO  
O
IO  
IO  
IO  
I
OFF  
OFF  
Mode7  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
eQEP1_strobe  
mcasp0_ahclkx  
mcasp0_axr3  
pr1_mii0_rxdv  
uart5_rtsn  
O
IO  
IO  
O
O
O
I
gpio0_11  
spi3_cs0  
A23  
A22  
B23  
dss_hsync (5)  
dss_hsync  
OFF  
OFF  
OFF  
OFF  
Mode7  
Mode7  
Mode7  
VDDSHV6  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a9  
gpmc_a2  
pr1_edio_data_in3  
pr1_edio_data_out3  
pr0_pru1_gpo7  
pr0_pru1_gpi7  
gpio2_23  
O
O
I
IO  
O
O
O
I
dss_pclk  
dss_pclk  
PD  
gpmc_a10  
gpmc_a3  
pr1_edio_data_in4  
pr1_edio_data_out4  
pr0_pru1_gpo8  
pr0_pru1_gpi8  
gpio2_24  
O
O
I
IO  
O
O
O
I
dss_vsync (6)  
dss_vsync  
OFF  
gpmc_a8  
gpmc_a1  
pr1_edio_data_in2  
pr1_edio_data_out2  
pr0_pru1_gpo6  
pr0_pru1_gpi6  
gpio2_22  
O
O
I
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
37  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
G24  
eCAP0_in_PWM0_out  
eCAP0_in_PWM0_out  
uart3_txd  
0x0  
IO  
IO  
IO  
IO  
IO  
I
OFF  
PD  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0  
0x7  
0x0  
0x7  
0x0  
0x5  
0x7  
0x5  
0x7  
0x1  
0x5  
0x7  
0x5  
0x7  
0x1  
0x5  
0x7  
0x5  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
spi1_cs1  
pr1_ecap0_ecap_capin_apwm_o  
spi1_sclk  
mmc0_sdwp  
xdma_event_intr2  
gpio0_7  
I
IO  
O
IO  
IO  
IO  
IO  
IO  
I
ehrpwm2B  
timer1  
N23  
T24  
EMU0  
EMU1  
EMU0  
PU  
PU  
PU  
PU  
Mode0  
Mode0  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
gpio3_7  
EMU1  
gpio3_8  
G25  
D25  
EXTINTn  
gpio5_8  
nNMI  
OFF  
OFF  
PU  
PD  
Mode0  
Mode7  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
NA  
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
pr1_mii0_col  
gpio5_8  
I
IO  
I
F24  
G20  
gpio5_9  
pr1_mii1_col  
gpio5_9  
OFF  
OFF  
PD  
PD  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
IO  
gpio5_10  
I2C1_SCL  
IOD  
I
pr1_mii0_crs  
gpio5_10  
IO  
I
F23  
E25  
gpio5_11  
gpio5_12  
pr1_mii1_crs  
gpio5_11  
OFF  
OFF  
PD  
PD  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
IO  
IOD  
I
I2C1_SDA  
pr1_mii0_rxlink  
gpio5_12  
IO  
I
E24  
C3  
gpio5_13  
gpmc_a0  
pr1_mii1_rxlink  
gpio5_13  
OFF  
PD  
PD  
PD  
Mode7  
Mode7  
VDDSHV3  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
IO  
O
O
O
O
O
O
I
gpmc_a0  
VDDSHV11  
gmii2_txen  
rgmii2_tctl  
rmii2_txen  
gpmc_a16  
pr1_mii1_txen  
ehrpwm1_tripzone_input  
gpio1_16  
IO  
38  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
C5  
C6  
A4  
D7  
gpmc_a1  
gpmc_a1  
0x0  
O
I
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV11  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_rxdv  
rgmii2_rctl  
mmc2_dat0  
gpmc_a17  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
I
IO  
O
I
pr1_mii1_rxdv  
ehrpwm0_synco  
gpio1_17  
O
IO  
O
O
O
IO  
O
O
O
IO  
O
O
O
IO  
O
O
O
IO  
O
O
O
O
O
O
I
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a2  
VDDSHV11  
VDDSHV11  
VDDSHV11  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
gmii2_txd3  
rgmii2_td3  
mmc2_dat1  
gpmc_a18  
pr1_mii1_txd3  
ehrpwm1A  
gpio1_18  
gpmc_a3  
gmii2_txd2  
rgmii2_td2  
mmc2_dat2  
gpmc_a19  
pr1_mii1_txd2  
ehrpwm1B  
gpio1_19  
gpmc_a4  
gmii2_txd1  
rgmii2_td1  
rmii2_txd1  
gpmc_a20  
pr1_mii1_txd1  
eQEP1A_in  
gpio1_20  
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
39  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
E7  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a5  
0x0  
O
O
O
O
O
O
I
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV11  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_txd0  
rgmii2_td0  
rmii2_txd0  
gpmc_a21  
pr1_mii1_txd0  
eQEP1B_in  
gpio1_21  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
IO  
O
I
E8  
F6  
F7  
gpmc_a6  
VDDSHV11  
VDDSHV11  
VDDSHV11  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
gmii2_txclk  
rgmii2_tclk  
mmc2_dat4  
gpmc_a22  
pr1_mii_mt1_clk  
eQEP1_index  
gpio1_22  
O
IO  
O
I
IO  
IO  
O
I
gpmc_a7  
gmii2_rxclk  
rgmii2_rclk  
mmc2_dat5  
gpmc_a23  
pr1_mii_mr1_clk  
eQEP1_strobe  
gpio1_23  
I
IO  
O
I
IO  
IO  
O
I
gpmc_a8  
gmii2_rxd3  
rgmii2_rd3  
mmc2_dat6  
gpmc_a24  
pr1_mii1_rxd3  
mcasp0_aclkx  
gpio1_24  
I
IO  
O
I
IO  
IO  
40  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B4  
gpmc_a9  
gpmc_a9  
0x0  
O
I
PD  
PD  
Mode7  
VDDSHV11  
Yes  
6
PU/PD  
LVCMOS  
gmii2_rxd2  
rgmii2_rd2  
mmc2_dat7  
gpmc_a25  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x7  
0x0  
0x1  
0x7  
0x0  
0x1  
0x7  
0x0  
0x1  
0x7  
I
IO  
O
I
pr1_mii1_rxd2  
mcasp0_fsx  
gpio1_25  
IO  
IO  
I
rmii2_crs_dv  
gpmc_a10  
gmii2_rxd1  
rgmii2_rd1  
rmii2_rxd1  
gpmc_a26  
pr1_mii1_rxd1  
mcasp0_axr0  
gpio1_26  
G8  
gpmc_a10  
O
I
PD  
PD  
Mode7  
VDDSHV11  
Yes  
6
PU/PD  
LVCMOS  
I
I
O
I
IO  
IO  
O
I
D8  
gpmc_a11  
gpmc_a11  
gmii2_rxd0  
rgmii2_rd0  
rmii2_rxd0  
gpmc_a27  
pr1_mii1_rxd0  
mcasp0_axr1  
gpio1_27  
PD  
PD  
Mode7  
VDDSHV11  
Yes  
6
PU/PD  
LVCMOS  
I
I
O
I
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
B5  
A5  
B6  
A6  
gpmc_ad0  
gpmc_ad1  
gpmc_ad2  
gpmc_ad3  
gpmc_ad0  
mmc1_dat0  
gpio1_0  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV10  
VDDSHV10  
VDDSHV10  
VDDSHV10  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_ad1  
mmc1_dat1  
gpio1_1  
gpmc_ad2  
mmc1_dat2  
gpio1_2  
gpmc_ad3  
mmc1_dat3  
gpio1_3  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
41  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B7  
gpmc_ad4  
gpmc_ad5  
gpmc_ad6  
gpmc_ad7  
gpmc_ad8  
gpmc_ad4  
mmc1_dat4  
gpio1_4  
0x0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV10  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x7  
0x0  
0x1  
0x7  
0x0  
0x1  
0x7  
0x0  
0x1  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
A7  
gpmc_ad5  
mmc1_dat5  
gpio1_5  
VDDSHV10  
VDDSHV10  
VDDSHV10  
VDDSHV9  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
C8  
B8  
gpmc_ad6  
mmc1_dat6  
gpio1_6  
gpmc_ad7  
mmc1_dat7  
gpio1_7  
B10  
gpmc_ad8  
dss_data23  
mmc1_dat0  
mmc2_dat4  
ehrpwm2A  
pr1_mii_mt0_clk  
spi3_sclk  
IO  
IO  
O
I
IO  
IO  
IO  
IO  
IO  
O
gpio0_22  
spi3_cs1  
gpio5_26  
A10  
gpmc_ad9  
gpmc_ad9  
dss_data22  
mmc1_dat1  
mmc2_dat5  
ehrpwm2B  
pr1_mii0_col  
spi3_d0  
PD  
PD  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
IO  
IO  
O
I
IO  
IO  
IO  
gpio0_23  
gpio5_25  
42  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
F11  
D11  
E11  
gpmc_ad10  
gpmc_ad10  
dss_data21  
mmc1_dat2  
mmc2_dat6  
0x0  
IO  
O
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
IO  
IO  
I
ehrpwm2_tripzone_input  
pr1_mii0_txen  
spi3_d1  
O
IO  
IO  
IO  
IO  
O
gpio0_26  
gpio5_24  
gpmc_ad11  
gpmc_ad11  
dss_data20  
mmc1_dat3  
mmc2_dat7  
ehrpwm0_synco  
pr1_mii0_txd3  
spi3_cs0  
VDDSHV9  
Yes  
6
PU/PD  
IO  
IO  
O
O
IO  
IO  
IO  
IO  
O
gpio0_27  
gpio5_23  
gpmc_ad12  
gpmc_ad12  
dss_data19  
mmc1_dat4  
mmc2_dat0  
eQEP2A_in  
pr1_mii0_txd2  
pr1_pru0_gpi10  
gpio1_12  
VDDSHV9  
Yes  
6
PU/PD  
IO  
IO  
I
O
I
IO  
IO  
O
mcasp0_aclkx  
pr1_pru0_gpo10  
gpmc_ad13  
dss_data18  
mmc1_dat5  
mmc2_dat1  
eQEP2B_in  
pr1_mii0_txd1  
pr1_pru0_gpi11  
gpio1_13  
C11  
gpmc_ad13  
IO  
O
PD  
PD  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
IO  
IO  
I
O
I
IO  
IO  
O
mcasp0_fsx  
pr1_pru0_gpo11  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
43  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B11  
gpmc_ad14  
gpmc_ad14  
dss_data17  
mmc1_dat6  
mmc2_dat2  
eQEP2_index  
pr1_mii0_txd0  
pr1_pru0_gpi16  
gpio1_14  
0x0  
IO  
O
PD  
PD  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x7  
0x8  
0x9  
0x0  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
IO  
IO  
IO  
O
I
IO  
IO  
IO  
O
mcasp0_axr0  
gpmc_ad15  
dss_data16  
mmc1_dat7  
mmc2_dat3  
eQEP2_strobe  
pr1_ecap0_ecap_capin_apwm_o  
gpio1_15  
A11  
gpmc_ad15  
PD  
PD  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
mcasp0_axr1  
spi3_cs1  
A9  
gpmc_advn_ale  
gpmc_be0n_cle  
gpmc_advn_ale  
spi0_cs3  
PU  
PU  
PU  
PU  
Mode7  
Mode7  
VDDSHV10  
VDDSHV10  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
IO  
IO  
IO  
IO  
O
timer4  
qspi_d0  
gpio2_2  
C10  
gpmc_be0n_cle  
spi1_cs3  
IO  
IO  
I
timer5  
qspi_d3  
pr1_mii1_rxlink  
gpmc_a5  
I
O
spi3_cs1  
IO  
IO  
gpio2_5  
44  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
A3  
gpmc_be1n  
gpmc_be1n  
gmii2_col  
0x0  
O
I
PU  
PU  
Mode7  
VDDSHV11  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
gpmc_csn6  
mmc2_dat3  
gpmc_dir  
O
IO  
O
I
pr1_mii1_col  
mcasp0_aclkr  
gpio1_28  
IO  
IO  
IO  
I
A12  
gpmc_clk  
gpmc_clk  
PD  
PD  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
gpmc_wait1  
mmc2_clk  
IO  
I
pr1_mii1_crs  
pr1_mdio_mdclk  
mcasp0_fsr  
gpio2_1  
O
IO  
IO  
IO  
O
O
IO  
O
IO  
IO  
I
gpio0_4  
A8  
B9  
gpmc_csn0  
gpmc_csn1  
gpmc_csn0  
PU  
PU  
PU  
PU  
Mode7  
Mode7  
VDDSHV10  
VDDSHV10  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
qspi_csn  
gpio1_29  
gpmc_csn1  
gpmc_clk  
mmc1_clk  
pr1_edio_data_in6  
pr1_edio_data_out6  
pr1_pru0_gpo8  
pr1_pru0_gpi8  
gpio1_30  
O
O
I
IO  
O
O
IO  
I
F10  
gpmc_csn2  
gpmc_csn2  
PU  
PU  
Mode7  
VDDSHV10  
Yes  
6
PU/PD  
LVCMOS  
gpmc_be1n  
mmc1_cmd  
pr1_edio_data_in7  
pr1_edio_data_out7  
pr1_pru0_gpo9  
pr1_pru0_gpi9  
gpio1_31  
O
O
I
IO  
I
gmii2_crs  
rmii2_crs_dv  
I
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
45  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B12  
gpmc_csn3  
gpmc_csn3  
gpmc_wait0  
qspi_clk  
0x0  
O
I
PU  
PU  
Mode7  
VDDSHV9  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
IO  
IO  
I
mmc2_cmd  
pr1_mii0_crs  
pr1_mdio_data  
EMU4  
IO  
IO  
IO  
I
gpio2_0  
gmii2_crs  
rmii2_crs_dv  
gpmc_oen_ren  
spi0_cs2  
I
E10  
gpmc_oen_ren  
O
IO  
IO  
I
PU  
PU  
PU  
PU  
Mode7  
Mode7  
VDDSHV10  
VDDSHV11  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
timer7  
qspi_d1  
gpio2_3  
IO  
I
A2  
gpmc_wait0  
gpmc_wait0  
gmii2_crs  
gpmc_csn4  
rmii2_crs_dv  
mmc1_sdcd  
pr1_mii1_crs  
uart4_rxd  
gpio0_30  
I
O
I
I
I
I
IO  
IO  
O
IO  
IO  
I
gpio5_30  
D10  
gpmc_wen  
gpmc_wpn  
gpmc_wen  
spi1_cs2  
PU  
PU  
PU  
PU  
Mode7  
Mode7  
VDDSHV10  
VDDSHV11  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
timer6  
qspi_d2  
gpio2_4  
IO  
O
I
B3  
gpmc_wpn  
gmii2_rxer  
gpmc_csn5  
rmii2_rxer  
mmc2_sdcd  
pr1_mii1_rxer  
uart4_txd  
gpio0_31  
O
I
I
I
O
IO  
IO  
gpio5_31  
46  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
Y22  
I2C0_SCL  
I2C0_SCL  
timer7  
0x0  
IOD  
OFF  
OFF  
OFF  
PU  
PU  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
IO  
O
uart2_rtsn  
eCAP1_in_PWM1_out  
gpio3_6  
IO  
IO  
IOD  
IO  
IO  
IO  
IO  
IO  
I
AB24  
I2C0_SDA  
I2C0_SDA  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
timer4  
uart2_ctsn  
eCAP2_in_PWM2_out  
gpio3_5  
L23  
mcasp0_aclkr  
mcasp0_aclkr  
eQEP0A_in  
mcasp0_axr2  
mcasp1_aclkx  
mmc0_sdwp  
pr0_pru0_gpo4  
pr0_pru0_gpi4  
gpio3_18  
IO  
IO  
I
O
I
IO  
IO  
IO  
O
gpio0_18  
N24  
mcasp0_aclkx  
mcasp0_aclkx  
ehrpwm0A  
OFF  
PD  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
spi0_cs3  
IO  
IO  
I
spi1_sclk  
mmc0_sdcd  
pr0_pru0_gpo0  
pr0_pru0_gpi0  
gpio3_14  
O
I
IO  
IO  
I
M24  
mcasp0_ahclkr  
mcasp0_ahclkr  
ehrpwm0_synci  
mcasp0_axr2  
spi1_cs0  
OFF  
PD  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
IO  
IO  
IO  
O
eCAP2_in_PWM2_out  
pr0_pru0_gpo3  
pr0_pru0_gpi3  
gpio3_17  
I
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
47  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
L24  
mcasp0_ahclkx  
mcasp0_ahclkx  
eQEP0_strobe  
mcasp0_axr3  
mcasp1_axr1  
EMU4  
0x0  
IO  
IO  
IO  
IO  
IO  
O
OFF  
PD  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
pr0_pru0_gpo7  
pr0_pru0_gpi7  
gpio3_21  
I
IO  
IO  
IO  
I
gpio0_3  
H23  
M25  
K23  
mcasp0_axr0  
mcasp0_axr1  
mcasp0_fsr  
mcasp0_axr0  
ehrpwm0_tripzone_input  
spi1_cs3  
OFF  
OFF  
OFF  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
IO  
I
spi1_d1  
mmc2_sdcd  
pr0_pru0_gpo2  
pr0_pru0_gpi2  
gpio3_16  
O
I
IO  
IO  
IO  
IO  
IO  
O
mcasp0_axr1  
eQEP0_index  
mcasp1_axr0  
EMU3  
pr0_pru0_gpo6  
pr0_pru0_gpi6  
gpio3_20  
I
IO  
IO  
IO  
I
gpio0_2  
mcasp0_fsr  
eQEP0B_in  
mcasp0_axr3  
mcasp1_fsx  
EMU2  
IO  
IO  
IO  
O
pr0_pru0_gpo5  
pr0_pru0_gpi5  
gpio3_19  
I
IO  
IO  
gpio0_19  
48  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
N22  
mcasp0_fsx  
mcasp0_fsx  
ehrpwm0B  
spi1_cs2  
0x0  
IO  
O
IO  
IO  
I
OFF  
PD  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
spi1_d0  
mmc1_sdcd  
pr0_pru0_gpo1  
pr0_pru0_gpi1  
gpio3_15  
O
I
IO  
O
IO  
O
O
I
B17  
mdio_clk  
mdio_data  
mii1_col  
mdio_clk  
PU  
PU  
Mode7  
VDDSHV7  
VDDSHV7  
VDDSHV8  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
timer5  
uart5_txd  
uart3_rtsn  
mmc0_sdwp  
mmc1_clk  
mmc2_clk  
gpio0_1  
IO  
IO  
IO  
O
IO  
IO  
I
pr1_mdio_mdclk  
mdio_data  
timer6  
A17  
PU  
PU  
Mode7  
LVCMOS  
uart5_rxd  
uart3_ctsn  
mmc0_sdcd  
mmc1_cmd  
mmc2_cmd  
gpio0_0  
IO  
I
IO  
IO  
IO  
IO  
I
pr1_mdio_data  
gmii1_col  
D16  
PD  
PD  
Mode7  
LVCMOS  
rmii2_refclk  
spi1_sclk  
IO  
IO  
I
uart5_rxd  
mcasp1_axr2  
mmc2_dat3  
mcasp0_axr2  
gpio3_0  
IO  
IO  
IO  
IO  
IO  
gpio0_0  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
49  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B14  
mii1_crs  
gmii1_crs  
0x0  
I
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
rmii1_crs_dv  
spi1_d0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
I
IO  
I2C1_SDA  
mcasp1_aclkx  
uart5_ctsn  
uart2_rxd  
IOD  
IO  
I
IO  
IO  
I
gpio3_1  
F17  
B16  
E16  
mii1_rxd0  
mii1_rxd1  
mii1_rxd2  
gmii1_rxd0  
rmii1_rxd0  
rgmii1_rd0  
mcasp1_ahclkx  
mcasp1_ahclkr  
mcasp1_aclkr  
mcasp0_axr3  
gpio2_21  
VDDSHV8  
VDDSHV8  
VDDSHV8  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
I
I
IO  
IO  
IO  
IO  
IO  
I
gmii1_rxd1  
rmii1_rxd1  
rgmii1_rd1  
mcasp1_axr3  
mcasp1_fsr  
eQEP0_strobe  
mmc2_clk  
I
I
IO  
IO  
IO  
IO  
IO  
I
gpio2_20  
gmii1_rxd2  
uart3_txd  
IO  
I
rgmii1_rd2  
mmc0_dat4  
mmc1_dat3  
uart1_rin  
IO  
IO  
I
mcasp0_axr1  
gpio2_19  
IO  
IO  
IO  
gpio0_11  
50  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
C14  
mii1_rxd3  
gmii1_rxd3  
uart3_rxd  
0x0  
I
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
IO  
I
rgmii1_rd3  
mmc0_dat5  
mmc1_dat2  
uart1_dtrn  
mcasp0_axr0  
gpio2_18  
IO  
IO  
O
IO  
IO  
IO  
I
gpio0_10  
D13  
mii1_rx_clk  
gmii1_rxclk  
uart2_txd  
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
IO  
I
rgmii1_rclk  
mmc0_dat6  
mmc1_dat1  
uart1_dsrn  
mcasp0_fsx  
gpio3_10  
IO  
IO  
I
IO  
IO  
IO  
I
gpio0_9  
A15  
mii1_rx_dv  
gmii1_rxdv  
rgmii1_rctl  
uart5_txd  
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
I
O
IO  
IO  
IO  
IO  
IO  
I
mcasp1_aclkx  
mmc2_dat0  
mcasp0_aclkr  
gpio3_4  
gpio0_1  
B13  
mii1_rx_er  
gmii1_rxer  
rmii1_rxer  
spi1_d1  
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
I
IO  
I2C1_SCL  
mcasp1_fsx  
uart5_rtsn  
uart2_txd  
IOD  
IO  
O
IO  
IO  
gpio3_2  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
51  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
B15  
mii1_txd0  
mii1_txd1  
mii1_txd2  
gmii1_txd0  
rmii1_txd0  
rgmii1_td0  
mcasp1_axr2  
mcasp1_aclkr  
eQEP0B_in  
mmc1_clk  
gpio0_28  
0x0  
O
PD  
PD  
PD  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
O
O
IO  
IO  
I
IO  
IO  
O
A14  
gmii1_txd1  
rmii1_txd1  
rgmii1_td1  
mcasp1_fsr  
mcasp1_axr1  
eQEP0A_in  
mmc1_cmd  
gpio0_21  
VDDSHV8  
Yes  
6
PU/PD  
O
O
IO  
IO  
I
IO  
IO  
O
C13  
gmii1_txd2  
dcan0_rx  
VDDSHV8  
Yes  
6
PU/PD  
I
rgmii1_td2  
uart4_txd  
O
O
mcasp1_axr0  
mmc2_dat2  
mcasp0_ahclkx  
gpio0_17  
IO  
IO  
IO  
IO  
IO  
O
gpio3_12  
C16  
mii1_txd3  
gmii1_txd3  
dcan0_tx  
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
O
rgmii1_td3  
uart4_rxd  
O
I
mcasp1_fsx  
mmc2_dat1  
mcasp0_fsr  
gpio0_16  
IO  
IO  
IO  
IO  
IO  
gpio3_11  
52  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
D14  
mii1_tx_clk  
gmii1_txclk  
uart2_rxd  
0x0  
I
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
IO  
O
IO  
IO  
I
rgmii1_tclk  
mmc0_dat7  
mmc1_dat0  
uart1_dcdn  
mcasp0_aclkx  
gpio3_9  
IO  
IO  
IO  
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
O
IO  
IO  
O
O
I
gpio0_8  
A13  
mii1_tx_en  
mmc0_clk  
mmc0_cmd  
gmii1_txen  
rmii1_txen  
rgmii1_tctl  
timer4  
PD  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV8  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
mcasp1_axr0  
eQEP0_index  
mmc2_cmd  
gpio3_3  
D1  
mmc0_clk  
gpmc_a24  
uart3_ctsn  
uart2_rxd  
OFF  
OFF  
dcan1_tx  
pr0_pru0_gpo12  
pr0_pru0_gpi12  
gpio2_30  
IO  
IO  
O
O
IO  
I
D2  
mmc0_cmd  
gpmc_a25  
uart3_rtsn  
uart2_txd  
OFF  
OFF  
dcan1_rx  
pr0_pru0_gpo13  
pr0_pru0_gpi13  
gpio2_31  
O
I
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
53  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
C1  
mmc0_dat0  
mmc0_dat1  
mmc0_dat2  
mmc0_dat3  
nTRST  
mmc0_dat0  
gpmc_a23  
uart5_rtsn  
uart3_txd  
0x0  
IO  
O
O
IO  
I
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV1  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x0  
uart1_rin  
pr0_pru0_gpo11  
pr0_pru0_gpi11  
gpio2_29  
O
I
IO  
IO  
O
I
C2  
B2  
B1  
mmc0_dat1  
gpmc_a22  
uart5_ctsn  
uart3_rxd  
VDDSHV1  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
IO  
O
O
I
uart1_dtrn  
pr0_pru0_gpo10  
pr0_pru0_gpi10  
gpio2_28  
IO  
IO  
O
O
IO  
I
mmc0_dat2  
gpmc_a21  
uart4_rtsn  
timer6  
uart1_dsrn  
pr0_pru0_gpo9  
pr0_pru0_gpi9  
gpio2_27  
O
I
IO  
IO  
O
I
mmc0_dat3  
gpmc_a20  
uart4_ctsn  
timer5  
IO  
I
uart1_dcdn  
pr0_pru0_gpo8  
pr0_pru0_gpi8  
gpio2_26  
O
I
IO  
I
Y25  
Y23  
nTRST  
PD  
Z
PD  
Z
Mode0  
Mode0  
VDDSHV3  
Yes  
Yes  
NA  
NA  
PU/PD  
NA  
LVCMOS  
LVCMOS  
PWRONRSTn  
porz  
I
VDDSHV3 (13)  
54  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AA10, AA7,  
AA9, AB10,  
AB6, AB7,  
AB9, AC10,  
AC12, AC5,  
AC6, AC7,  
AC9, AD1,  
AD10, AD11,  
AD2, AD7,  
AE11, AE12,  
AE9, H19,  
Reserved  
Reserved (7)  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
H21, W10,  
Y10, Y6, Y7  
A16  
rmii1_ref_clk  
rmii1_refclk  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
IO  
I
PD  
PD  
Mode7  
VDDSHV8  
Yes  
6
PU/PD  
LVCMOS  
xdma_event_intr2  
spi1_cs0  
IO  
O
IO  
O
IO  
IO  
I
uart5_txd  
mcasp1_axr3  
mmc0_pow  
mcasp1_ahclkx  
gpio0_29  
AE2  
AD6  
AE6  
AE3  
AE5  
AE4  
T20  
RTC_KALDO_ENn  
RTC_PMIC_EN  
RTC_PWRONRSTn  
RTC_WAKEUP  
RTC_XTALIN  
RTC_KALDO_ENn  
RTC_PMIC_EN  
RTC_PORz  
RTC_WAKEUP  
OSC1_IN  
Z
Z
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode7  
VDDS_RTC  
VDDS_RTC  
VDDS_RTC  
VDDS_RTC  
VDDS_RTC  
VDDS_RTC  
VDDSHV3  
NA  
NA  
6
NA  
Analog  
O
I
PU  
Z
1
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Z
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
NA (14)  
6
NA  
I
PD  
H
Z
NA  
I
H
PU (2)  
NA  
RTC_XTALOUT  
spi0_cs0  
OSC1_OUT  
spi0_cs0  
O
IO  
I
Z
Z (24)  
PU  
OFF  
Yes  
PU/PD  
mmc2_sdwp  
I2C1_SCL  
IOD  
I
ehrpwm0_synci  
pr1_uart0_txd  
pr0_uart0_txd  
pr1_edio_data_out1  
gpio0_5  
O
O
O
IO  
O
ehrpwm1B  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
55  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
R25  
spi0_cs1  
spi0_cs1  
0x0  
IO  
IO  
IO  
O
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
uart3_rxd  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
eCAP1_in_PWM1_out  
mmc0_pow  
xdma_event_intr2  
mmc0_sdcd  
EMU4  
I
I
IO  
IO  
O
gpio0_6  
ehrpwm2A  
timer0  
IO  
IO  
IO  
T22  
spi0_d0  
spi0_d0  
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
uart2_txd  
I2C2_SCL  
IOD  
O
ehrpwm0B  
pr1_uart0_rts_n  
pr0_uart0_rts_n  
EMU3  
O
O
IO  
IO  
IO  
I
gpio0_3  
T21  
spi0_d1  
spi0_d1  
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
mmc1_sdwp  
I2C1_SDA  
ehrpwm0_tripzone_input  
pr1_uart0_rxd  
pr0_uart0_rxd  
pr1_edio_data_out0  
gpio0_4  
IOD  
I
I
I
O
IO  
O
ehrpwm1A  
spi0_sclk  
P23  
spi0_sclk  
IO  
IO  
IOD  
O
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
uart2_rxd  
I2C2_SDA  
ehrpwm0A  
pr1_uart0_cts_n  
pr0_uart0_cts_n  
EMU2  
I
I
IO  
IO  
gpio0_2  
56  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
T23  
spi2_cs0  
spi2_cs0  
0x0  
IO  
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
I2C1_SDA  
0x1  
0x6  
0x7  
0x9  
0x0  
0x6  
0x7  
0x9  
0x0  
0x6  
0x7  
0x9  
0x0  
0x1  
0x6  
0x7  
0x9  
0x0  
0x6  
0x7  
0x0  
0x6  
0x7  
0x0  
0x6  
0x7  
0x0  
0x6  
0x7  
0x0  
0x0  
0x0  
0x0  
IOD  
I
ehrpwm2_tripzone_input  
gpio3_25  
IO  
IO  
IO  
I
gpio0_23  
P22  
P20  
N20  
spi2_d0  
spi2_d1  
spi2_sclk  
spi2_d0  
OFF  
OFF  
OFF  
PD  
PU  
PD  
Mode7  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
ehrpwm5_tripzone_input  
gpio3_22  
IO  
IO  
IO  
I
gpio0_20  
spi2_d1  
ehrpwm1_tripzone_input  
gpio3_23  
IO  
IO  
IO  
IOD  
I
gpio0_21  
spi2_sclk  
I2C1_SCL  
ehrpwm4_tripzone_input  
gpio3_24  
IO  
IO  
IO  
I
gpio0_22  
N25  
R24  
P24  
P25  
spi4_cs0  
spi4_d0  
spi4_d1  
spi4_sclk  
spi4_cs0  
OFF  
OFF  
OFF  
OFF  
PU  
PD  
PD  
PD  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
ehrpwm3_tripzone_input  
gpio5_7  
IO  
IO  
I
spi4_d0  
ehrpwm3_synci  
gpio5_5  
IO  
IO  
I
spi4_d1  
ehrpwm0_tripzone_input  
gpio5_6  
IO  
IO  
I
spi4_sclk  
ehrpwm0_synci  
gpio5_4  
IO  
I
AA25  
Y20  
TCK  
TDI  
TCK  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
Mode0  
Mode0  
Mode0  
Mode0  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
TDI  
I
AA24  
Y24  
TDO  
TMS  
TDO  
O
I
TMS  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
57  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
L25  
uart0_ctsn  
uart0_rtsn  
uart0_rxd  
uart0_txd  
uart0_ctsn  
uart4_rxd  
0x0  
I
OFF  
OFF  
OFF  
OFF  
PU  
PU  
PU  
PU  
Mode7  
Mode7  
Mode7  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
I
dcan1_tx  
O
I2C1_SDA  
spi1_d0  
IOD  
IO  
IO  
O
timer7  
pr1_edc_sync0_out  
gpio1_8  
IO  
O
J25  
K25  
J24  
uart0_rtsn  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
uart4_txd  
O
dcan1_rx  
I
I2C1_SCL  
spi1_d1  
IOD  
IO  
IO  
O
spi1_cs0  
pr1_edc_sync1_out  
gpio1_9  
IO  
I
uart0_rxd  
spi1_cs0  
IO  
O
dcan0_tx  
I2C2_SDA  
eCAP2_in_PWM2_out  
pr0_pru1_gpo4  
pr0_pru1_gpi4  
gpio1_10  
IOD  
IO  
O
I
IO  
O
uart0_txd  
spi1_cs1  
IO  
I
dcan0_rx  
I2C2_SCL  
eCAP1_in_PWM1_out  
pr0_pru1_gpo5  
pr0_pru1_gpi5  
gpio1_11  
IOD  
IO  
O
I
IO  
58  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
K22  
uart1_ctsn  
uart1_ctsn  
timer6  
0x0  
IO  
IO  
O
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
0x7  
0x0  
0x2  
0x4  
0x5  
0x6  
0x7  
dcan0_tx  
I2C2_SDA  
spi1_cs0  
IOD  
IO  
I
pr1_uart0_cts_n  
pr1_edc_latch0_in  
gpio0_12  
I
IO  
O
IO  
I
L22  
uart1_rtsn  
uart1_rtsn  
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
timer5  
dcan0_rx  
I2C2_SCL  
IOD  
IO  
O
I
spi1_cs1  
pr1_uart0_rts_n  
pr1_edc_latch1_in  
gpio0_13  
IO  
IO  
I
K21  
L21  
H22  
uart1_rxd  
uart1_txd  
uart3_ctsn  
uart1_rxd  
OFF  
OFF  
OFF  
PU  
PU  
PU  
Mode7  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
mmc1_sdwp  
dcan1_tx  
O
IOD  
I
I2C1_SDA  
pr1_uart0_rxd  
pr1_pru0_gpi16  
gpio0_14  
I
IO  
IO  
I
uart1_txd  
mmc2_sdwp  
dcan1_rx  
I
I2C1_SCL  
IOD  
O
I
pr1_uart0_txd  
pr1_pru0_gpi16  
gpio0_15  
IO  
IO  
IO  
O
I
uart3_ctsn  
spi4_cs1  
pr0_pru1_gpo18  
pr0_pru1_gpi18  
ehrpwm5A  
gpio5_0  
O
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
59  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
K24  
uart3_rtsn  
uart3_rtsn  
0x0  
O
OFF  
PU  
Mode7  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
hdq_sio  
0x1  
0x4  
0x5  
0x6  
0x7  
0x0  
0x4  
0x5  
0x6  
0x7  
0x0  
0x4  
0x5  
0x6  
0x7  
0x0  
IOD  
O
I
pr0_pru1_gpo19  
pr0_pru1_gpi19  
ehrpwm5B  
gpio5_1  
O
IO  
IO  
O
I
H25  
H24  
uart3_rxd  
uart3_txd  
uart3_rxd  
OFF  
OFF  
PU  
PU  
Mode7  
Mode7  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
pr0_pru0_gpo18  
pr0_pru0_gpi18  
ehrpwm4A  
gpio5_2  
O
IO  
IO  
O
I
uart3_txd  
pr0_pru0_gpo19  
pr0_pru0_gpi19  
ehrpwm4B  
gpio5_3  
O
IO  
A
W22  
W24  
W25  
G21  
USB0_CE  
USB0_DM  
USB0_DP  
USB0_CE  
Z
Z
Mode0  
Mode0  
Mode0  
Mode0  
VDDA3P3V_USB0/V NA  
DDA1P8V_USB0  
NA  
NA  
Analog  
Analog  
Analog  
LVCMOS  
USB0_DM  
USB0_DP  
0x0  
0x0  
A
A
Z
Z
VDDA3P3V_USB0/V NA (15)  
DDA1P8V_USB0  
8 (15)  
8 (15)  
6
NA  
Z
Z
VDDA3P3V_USB0/V NA (15)  
DDA1P8V_USB0  
NA  
USB0_DRVVBUS  
USB0_DRVVBUS  
gpio0_18  
0x0  
0x7  
0x9  
0x0  
O
PD  
PD  
VDDSHV3  
Yes  
PU/PD  
IO  
IO  
A
gpio5_27  
U24  
U23  
U22  
V25  
V24  
F25  
USB0_ID  
USB0_ID  
Z
Z
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
Mode0  
VDDA3P3V_USB0/V NA  
DDA1P8V_USB0  
NA  
NA  
Analog  
Analog  
Analog  
Analog  
Analog  
LVCMOS  
USB0_VBUS  
USB1_CE  
USB0_VBUS  
USB1_CE  
USB1_DM  
USB1_DP  
0x0  
0x0  
0x0  
0x0  
A
A
A
A
Z
Z
VDDA3P3V_USB0/V NA  
DDA1P8V_USB0  
NA  
NA  
Z
Z
VDDA3P3V_USB1/V NA  
DDA1P8V_USB1  
NA  
NA  
USB1_DM  
Z
Z
VDDA3P3V_USB1/V NA (16)  
DDA1P8V_USB1  
8 (16)  
8 (16)  
6
NA  
USB1_DP  
Z
Z
VDDA3P3V_USB1/V NA (16)  
DDA1P8V_USB1  
NA  
USB1_DRVVBUS  
USB1_DRVVBUS  
gpio3_13  
0x0  
0x7  
0x9  
0x0  
O
PD  
PD  
VDDSHV3  
Yes  
PU/PD  
IO  
IO  
A
gpio0_25  
U25  
USB1_ID  
USB1_ID  
Z
Z
Mode0  
VDDA3P3V_USB1/V NA  
DDA1P8V_USB1  
NA  
NA  
Analog  
60  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
T25  
USB1_VBUS  
VDDA1P8V_USB0  
USB1_VBUS  
0x0  
A
Z
Z
Mode0  
VDDA3P3V_USB1/V NA  
DDA1P8V_USB1  
NA  
NA  
Analog  
W21  
U21  
W20  
U20  
AB12  
Y16  
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDA_ADC0  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDA_ADC0  
VDDA_ADC1  
VDDA_ADC1  
AD12, AD8,  
F20, G6, H12,  
P19, W15,  
Y19  
VDDS  
VDDS (1)  
F8  
VDDS3P3V_IOLDO  
VDDSHV1  
VDDS3P3V_IOLDO  
VDDSHV1  
NA  
NA  
NA  
POWER  
POWER  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
J7, J8  
V16, V17,  
W16  
VDDSHV2  
VDDSHV2  
J18, K17,  
K18, N18,  
N19, P18,  
W18  
VDDSHV3  
VDDSHV3  
NA  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
F22  
VDDSHV5  
VDDSHV6  
VDDSHV5  
VDDSHV6  
NA  
NA  
POWER  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
G16, G17,  
H17  
F16  
VDDSHV7  
VDDSHV7  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
G13, G14  
G11, H11  
G10, H10  
H8, H9  
E23  
VDDSHV8  
VDDSHV8  
VDDSHV9  
VDDSHV9  
VDDSHV10  
VDDSHV11  
VDDS_CLKOUT  
VDDS_DDR  
VDDSHV10  
VDDSHV11  
VDDS_CLKOUT  
VDDS_DDR  
K7, K8, M7,  
M8, N7, N8,  
R6, R7, R8,  
T7, T8, V7,  
V8  
C23  
N21  
G5  
VDDS_OSC  
VDDS_OSC  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
VDDS_PLL_MPU  
VDDS_RTC  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
VDDS_PLL_MPU  
VDDS_RTC  
E17  
AD5  
F13  
F14  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
61  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
AD9, J10,  
VDD_CORE  
VDD_CORE (11)  
NA  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
J11, L12, L14,  
M12, M14,  
M9, N16, N17,  
N9, P16, P17,  
R11, R14, R9,  
T11, T14,  
T18, T19, T9,  
U15, V15,  
W12, W13  
H13, H14,  
H16, J13, J14,  
J16, K19,  
K20, L19,  
L20, M17,  
M18  
VDD_MPU  
VDD_MPU  
NA  
POWER  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
D20  
P21  
vdd_mpu_mon  
VPP  
vdd_mpu_mon (25)  
VPP (18)  
NA  
NA  
NA  
POWER  
POWER  
GROUND  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
A1, A25,  
VSS  
VSS (12)  
AA23, AE1,  
AE10, AE25,  
AE7, AE8,  
H15, H18,  
J12, J15, J17,  
J9, K11, K12,  
K14, K15, K9,  
L11, L15, L17,  
L18, L8, L9,  
M10, M11,  
M13, M15,  
M16, N10,  
N11, N12,  
N13, N14,  
N15, P10,  
P11, P12,  
P13, P14,  
P15, P8, P9,  
R12, R15,  
R17, R18,  
T12, T15,  
T17, U10,  
U11, U12,  
U13, U14,  
U16, U17,  
U18, U19, U8,  
U9, V10, V11,  
V12, V13,  
V14, V18, V9  
AC15  
W23  
B24  
VSSA_ADC  
VSSA_USB  
VSS_OSC  
VSS_RTC  
VSSA_ADC  
NA  
NA  
NA  
NA  
0x0  
GROUND  
GROUND  
GROUND  
GROUND  
IOD (9)  
NA  
NA  
NA  
NA  
OFF  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Yes  
NA  
NA  
NA  
NA  
6
NA  
NA  
VSSA_USB  
NA  
NA  
NA  
NA  
VSS_OSC (26)  
VSS_RTC (27)  
nRESETIN_OUT  
NA  
NA  
NA  
NA  
AD4  
G22  
NA  
NA  
NA  
NA  
WARMRSTn  
PU (17)  
Mode0  
VDDSHV3  
PU/PD  
LVCMOS  
62  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-7. Pin Attributes (ZDN Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
STATE [6]  
BALL RESET  
REL. MODE  
[8]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
BALL  
NUMBER [1]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
TYPE [5]  
POWER [9]  
HYS [10]  
UP/DOWN IO CELL [13]  
TYPE [12]  
STATE [7]  
D24  
xdma_event_intr0  
xdma_event_intr0  
0x0  
I
OFF  
PD (8)  
Mode7  
VDDSHV5  
Yes  
6
PU/PD  
LVCMOS  
ext_hw_trigger  
timer4  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0x0 (3)  
0x0  
I
IO  
O
IO  
I
clkout1  
spi1_cs1  
pr1_pru0_gpi16  
EMU2  
IO  
IO  
IO  
IO  
I
gpio0_19  
pr1_mdio_data  
gpio5_28  
C24  
xdma_event_intr1  
xdma_event_intr1  
spi0_cs2  
OFF  
PD  
Mode7  
VDDSHV5  
Yes  
6
PU/PD  
LVCMOS  
IO  
I
tclkin  
clkout2  
O
IO  
I
timer7  
pr1_pru0_gpi16  
EMU3  
IO  
IO  
O
IO  
I
gpio0_20  
pr1_mdio_mdclk  
gpio5_29  
C25  
B25  
XTALIN  
OSC0_IN  
OSC0_OUT  
Z
Z
Z
Z
Mode0  
Mode0  
VDDS_OSC  
VDDS_OSC  
Yes  
NA  
NA  
PD  
NA  
LVCMOS  
LVCMOS  
XTALOUT  
O
NA (14)  
(1) AD12 and AD8 are not connected to VDDS in the device, but they are required to be connected to 1.8-V VDDS on the board.  
(2) An internal 10-kΩ pullup is turned on when the oscillator is disabled. The oscillator is disabled by default after power is applied.  
(3) An internal 15-kΩ pulldown is turned on when the oscillator is disabled. The oscillator is enabled by default after power is applied.  
(4) DSS_DATA[15:0] terminals are respectively SYSBOOT[15:0] inputs, latched on the rising edge of PWRONRSTn.  
(5) DSS_HSYNC terminal is SYSBOOT[17] input, latched on the rising edge of PWRONRSTn.  
(6) DSS_VSYNC terminal is SYSBOOT[16] input, latched on the rising edge of PWRONRSTn.  
(7) Do not connect any signal, test point, or board trace to reserved signals.  
(8) If sysboot[17] is low on the rising edge of PWRONRSTn, this terminal has an internal pulldown turned on after reset is released. If sysboot[17] is high on the rising edge or PWRONRSTn,  
this terminal will initially be driven low after reset is released then it begins to toggle at the same frequency of the OSC0_IN terminal.  
(9) See the External Warm Reset section of the Technical Reference Manual for more information related to the operation of this terminal.  
(10) Reset Release Mode = 7 if sysboot[17] is low. Mode = 3 if sysboot[17] is high.  
(11) Terminal AD9 is not connected to VDD_CORE in the device, but it is required to be connected to VDD_CORE on the board.  
(12) Terminals AA23, AE10, AE7, AE8 are not connected to VSS in the device, but they are required to be connected to board ground.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
63  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
(13) The input voltage thresholds for this input are not a function of VDDSHV3. See the DC Electrical Characteristics section for details related to electrical parameters associated with this  
input terminal.  
(14) This output should only be used to source the recommended crystal circuit.  
(15) This parameter only applies when this USB PHY terminal is operating in UART2 mode.  
(16) This parameter only applies when this USB PHY terminal is operating in UART3 mode.  
(17) This pin is configured as open-drain and, hence, is expected to have an external pullup resistor. However, there is also an internal PU resistor by default enabled after reset is  
deasserted.  
(18) This signal is valid only for High-Security (AM437xHS) devices. For more details, see the VPP Specification for One-Time Programmable (OTP) eFUSEs section. This signal is reserved  
for AM437x devices and, thus, do not connect any signal, test point, or board trace to this signal for AM437x devices.  
(19) This terminal is an analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).  
(20) This terminal is an analog passive signal that connects to an external 49.9 Ω 1%, 20mW reference resistor which is used to calibrate the DDR input/output buffers.  
(21) This terminal is analog input that may also be configured as an open-drain output.  
(22) This terminal is analog input that may also be configured as an open-source or open-drain output.  
(23) This terminal is analog input that may also be configured as an open-source output.  
(24) This terminal is high-Z when the oscillator is disabled. This terminal is driven high if RTC_XTALIN is less than VIL, driven low if RTC_XTALIN is greater than VIH, and driven to a  
unknown value if RTC_XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is disabled by default after power is applied.  
(25) This terminal provides a Kelvin connection to VDD_MPU. It can be connected to the power supply feedback input to provide remote sensing which compensates for voltage drop in the  
PCB power distribution network and package. When the Kelvin connection is not used it should be connected to the same power source as VDD_MPU.  
(26) This terminal provides a Kelvin ground reference for the external crystal components. If a crystal circuit is connected to the OSC0_IN/OSC0_OUT terminals, the crystal circuit component  
grounds should be connected to this terminal and also be connected to the PCB ground plane close to this terminal. If an external LVCMOS clock source is connected to the OSC0_IN  
terminal, this terminal should be connected to VSS.  
(27) This terminal provides a Kelvin ground reference for the external crystal components. If a crystal circuit is connected to the OSC1_IN/OSC1_OUT terminals, the crystal circuit component  
grounds should be connected to this terminal and also should be connected to the PCB ground plane close to this terminal. If an external LVCMOS clock source is connected to the  
OSC1_IN terminal, this terminal should be connected to VSS.  
64  
Terminal Configuration and Functions  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3 Signal Descriptions  
The device contains many peripheral interfaces. In order to reduce package size and lower overall system  
cost while maintaining maximum functionality, many of the terminals can multiplex up to eight signal  
functions. Although there are many combinations of pin multiplexing that are possible, only a certain  
number of sets, called IO Sets, are valid due to timing limitations. These valid IO Sets were carefully  
chosen to provide many possible application scenarios for the user.  
TI has developed a Windows-based application called Pin Mux Utility that helps a system designer select  
the appropriate pin-multiplexing configuration for their device-based product design. The Pin Mux Utility  
provides a way to select valid IO Sets of specific peripheral interfaces to ensure the pin-multiplexing  
configuration selected for a design only uses valid IO Sets supported by the device.  
(1) SIGNAL NAME: The signal name  
(2) DESCRIPTION: Description of the signal.  
(3) TYPE: Ball type for this specific function:  
I = Input  
O = Output  
I/O = Input/Output  
D = Open drain  
DS = Differential  
A = Analog  
(4) BALL: Package ball location.  
4.3.1 ADC Interfaces  
Table 4-8. ADC0 Signal Descriptions  
SIGNAL NAME [1]  
ADC0_AIN0  
DESCRIPTION [2]  
Analog Input/Output  
TYPE [3]  
ZDN [4]  
AA12  
Y12  
A
A
ADC0_AIN1  
Analog Input/Output  
ADC0_AIN2  
Analog Input/Output  
A
Y13  
ADC0_AIN3  
Analog Input/Output  
A
AA13  
AB13  
AC13  
AD13  
AE13  
AE14  
AD14  
ADC0_AIN4  
Analog Input/Output  
A
ADC0_AIN5  
Analog Input/Output  
A
ADC0_AIN6  
Analog Input/Output  
A
ADC0_AIN7  
Analog Input/Output  
A
ADC0_VREFN  
ADC0_VREFP  
Analog Negative Reference Input  
Analog Positive Reference Input  
AP  
AP  
Table 4-9. ADC0/1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
ext_hw_trigger  
External Hardware Trigger for ADC conversion  
I
AC25, D24  
Table 4-10. ADC1 Signal Descriptions  
SIGNAL NAME [1]  
ADC1_AIN0  
DESCRIPTION [2]  
Analog Input/Output  
TYPE [3]  
ZDN [4]  
AC16  
AB16  
AA16  
AB15  
AA15  
Y15  
A
A
ADC1_AIN1  
Analog Input/Output  
ADC1_AIN2  
Analog Input/Output  
A
ADC1_AIN3  
Analog Input/Output  
A
ADC1_AIN4  
Analog Input/Output  
A
ADC1_AIN5  
Analog Input/Output  
A
ADC1_AIN6  
Analog Input/Output  
A
AE16  
AD16  
AD15  
ADC1_AIN7  
Analog Input/Output  
A
ADC1_VREFN  
Analog Negative Reference Input  
AP  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
65  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-10. ADC1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
ADC1_VREFP  
DESCRIPTION [2]  
Analog Positive Reference Input  
TYPE [3]  
ZDN [4]  
AP  
AE15  
66  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.2 CAN Interfaces  
Table 4-11. DCAN0 Signal Descriptions  
SIGNAL NAME [1]  
dcan0_rx  
DESCRIPTION [2]  
DCAN0 Receive Data  
TYPE [3]  
ZDN [4]  
I
C13, J24, L22  
C16, K22, K25  
dcan0_tx  
DCAN0 Transmit Data  
O
Table 4-12. DCAN1 Signal Descriptions  
SIGNAL NAME [1]  
dcan1_rx  
DESCRIPTION [2]  
DCAN1 Receive Data  
TYPE [3]  
ZDN [4]  
I
D2, J25, L21  
D1, K21, L25  
dcan1_tx  
DCAN1 Transmit Data  
O
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
67  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.3 Camera (VPFE) Interfaces  
Table 4-13. Camera0 Input Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
AE18  
cam0_data0  
cam0_data1  
cam0_data2  
cam0_data3  
cam0_data4  
cam0_data5  
cam0_data6  
cam0_data7  
cam0_data8  
cam0_data9  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
Camera data  
I
I
AB18  
I
Y18  
I
AA18  
I
AE19  
I
AD19  
I
AE20  
I
I
AD20  
AB19  
I
AA19  
cam0_data10  
cam0_data11  
cam0_field  
cam0_hd  
I
AC18, AC25  
AB25, AD17  
AC18  
I
CCD Data Field Indicator  
CCD Data Horizontal Detect  
CCD Data Pixel Clock  
IO  
IO  
I
AE17  
cam0_pclk  
cam0_vd  
AC20  
CCD Data Vertical Detect  
CCD Data Write Enable  
IO  
I
AD18  
cam0_wen  
AD17  
Table 4-14. Camera1 Input Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
Camera data  
TYPE [3]  
ZDN [4]  
AB20  
cam1_data0  
cam1_data1  
cam1_data2  
cam1_data3  
cam1_data4  
cam1_data5  
cam1_data6  
cam1_data7  
cam1_data8  
cam1_data9  
cam1_data10  
cam1_data11  
cam1_field  
cam1_hd  
I
Camera data  
I
AC21  
Camera data  
I
AD21  
Camera data  
I
AE22  
Camera data  
I
AD22  
Camera data  
I
AE23  
Camera data  
I
AD23  
Camera data  
I
I
AE24  
Camera data  
AB18, AD24  
AC24, AE18  
AC18, AC25, Y18  
AA18, AB25, AD17  
AC25  
Camera data  
I
Camera data  
I
Camera data  
I
CCD Data Field Indicator  
CCD Data Horizontal Detect  
CCD Data Pixel Clock  
CCD Data Vertical Detect  
CCD Data Write Enable  
IO  
IO  
I
AD25  
cam1_pclk  
AE21  
cam1_vd  
IO  
I
AC23  
cam1_wen  
AB25, AE19  
68  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.4 Debug Subsystem Interface  
Table 4-15. Debug Subsystem Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MISC EMULATION PIN  
TYPE [3]  
ZDN [4]  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
EMU5  
EMU6  
EMU7  
EMU8  
EMU9  
EMU10  
EMU11  
nTRST  
TCK  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
N23  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
JTAG TEST RESET (ACTIVE LOW)  
JTAG TEST CLOCK  
T24  
AE17, D24, K23, P23  
AD18, C24, M25, T22  
AC18, B12, L24, R25  
AD17  
AC20  
AB19  
AA19  
AC24  
AD24, AE17  
AB25, AD18  
Y25  
I
AA25  
TDI  
JTAG TEST DATA INPUT  
JTAG TEST DATA OUTPUT  
JTAG TEST MODE SELECT  
I
Y20  
TDO  
O
AA24  
TMS  
I
Y24  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
69  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.5 Display Subsystem (DSS) Interface  
Table 4-16. Display Subsystem (DSS) Signal Descriptions  
SIGNAL NAME [1]  
dss_ac_bias_en  
DESCRIPTION [2]  
TYPE [3]  
O
ZDN [4]  
A24  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
DSS data  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
dss_data20  
dss_data21  
dss_data22  
dss_data23  
dss_hsync  
dss_pclk  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
B22  
A21  
B21  
C21  
A20  
B20  
C20  
E19  
A19  
B19  
A18  
B18  
C19  
D19  
C17  
D17  
A11, AC24  
AA19, B11  
AB19, C11  
AC20, E11  
AD17, D11  
AC18, F11  
A10, AD18  
AE17, B10  
A23  
O
O
O
O
O
O
O
DSS Horizontal Sync  
DSS Pixel Clock  
O
O
A22  
dss_vsync  
DSS Vertical Sync  
O
B23  
70  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.6 Ethernet (GEMAC_CPSW) Interfaces  
Table 4-17. MDIO Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
B17  
mdio_clk  
MDIO Clk  
O
mdio_data  
MDIO Data  
IO  
A17  
Table 4-18. MII1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Colision  
TYPE [3]  
ZDN [4]  
D16  
B14  
D13  
F17  
gmii1_col  
I
I
gmii1_crs  
MII Carrier Sense  
gmii1_rxclk  
gmii1_rxd0  
gmii1_rxd1  
gmii1_rxd2  
gmii1_rxd3  
gmii1_rxdv  
gmii1_rxer  
gmii1_txclk  
gmii1_txd0  
gmii1_txd1  
gmii1_txd2  
gmii1_txd3  
gmii1_txen  
MII Receive Clock  
I
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Transmit Clock  
I
I
B16  
E16  
C14  
A15  
B13  
D14  
B15  
A14  
C13  
C16  
A13  
I
I
I
I
I
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
O
O
O
O
O
Table 4-19. MII2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Colision  
TYPE [3]  
ZDN [4]  
gmii2_col  
I
I
A3  
gmii2_crs  
MII Carrier Sense  
A2, B12, F10  
gmii2_rxclk  
gmii2_rxd0  
gmii2_rxd1  
gmii2_rxd2  
gmii2_rxd3  
gmii2_rxdv  
gmii2_rxer  
gmii2_txclk  
gmii2_txd0  
gmii2_txd1  
gmii2_txd2  
gmii2_txd3  
gmii2_txen  
MII Receive Clock  
I
F6  
D8  
G8  
B4  
F7  
C5  
B3  
E8  
E7  
D7  
A4  
C6  
C3  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Transmit Clock  
I
I
I
I
I
I
I
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
O
O
O
O
O
Table 4-20. RGMII1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RGMII Receive Clock  
TYPE [3]  
ZDN [4]  
D13  
rgmii1_rclk  
rgmii1_rctl  
rgmii1_rd0  
I
I
I
RGMII Receive Control  
A15  
RGMII Receive Data bit 0  
F17  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
71  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-20. RGMII1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RGMII Receive Data bit 1  
TYPE [3]  
ZDN [4]  
B16  
rgmii1_rd1  
rgmii1_rd2  
rgmii1_rd3  
rgmii1_tclk  
rgmii1_tctl  
rgmii1_td0  
rgmii1_td1  
rgmii1_td2  
rgmii1_td3  
I
RGMII Receive Data bit 2  
RGMII Receive Data bit 3  
RGMII Transmit Clock  
I
E16  
I
C14  
D14  
A13  
O
O
O
O
O
O
RGMII Transmit Control  
RGMII Transmit Data bit 0  
RGMII Transmit Data bit 1  
RGMII Transmit Data bit 2  
RGMII Transmit Data bit 3  
B15  
A14  
C13  
C16  
Table 4-21. RGMII2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RGMII Receive Clock  
TYPE [3]  
ZDN [4]  
F6  
rgmii2_rclk  
rgmii2_rctl  
rgmii2_rd0  
rgmii2_rd1  
rgmii2_rd2  
rgmii2_rd3  
rgmii2_tclk  
rgmii2_tctl  
rgmii2_td0  
rgmii2_td1  
rgmii2_td2  
rgmii2_td3  
I
I
RGMII Receive Control  
C5  
RGMII Receive Data bit 0  
RGMII Receive Data bit 1  
RGMII Receive Data bit 2  
RGMII Receive Data bit 3  
RGMII Transmit Clock  
I
D8  
I
G8  
B4  
I
I
F7  
O
O
O
O
O
O
E8  
RGMII Transmit Control  
RGMII Transmit Data bit 0  
RGMII Transmit Data bit 1  
RGMII Transmit Data bit 2  
RGMII Transmit Data bit 3  
C3  
E7  
D7  
A4  
C6  
Table 4-22. RMII1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
TYPE [3]  
ZDN [4]  
B14  
rmii1_crs_dv  
rmii1_refclk  
rmii1_rxd0  
rmii1_rxd1  
rmii1_rxer  
rmii1_txd0  
rmii1_txd1  
rmii1_txen  
I
IO  
I
A16  
RMII Receive Data bit 0  
RMII Receive Data bit 1  
RMII Receive Data Error  
RMII Transmit Data bit 0  
RMII Transmit Data bit 1  
RMII Transmit Enable  
F17  
I
B16  
I
B13  
O
O
O
B15  
A14  
A13  
Table 4-23. RMII2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
TYPE [3]  
ZDN [4]  
rmii2_crs_dv  
rmii2_refclk  
rmii2_rxd0  
rmii2_rxd1  
rmii2_rxer  
rmii2_txd0  
rmii2_txd1  
rmii2_txen  
I
IO  
I
A2, B12, B4, F10  
D16  
D8  
G8  
B3  
RMII Receive Data bit 0  
RMII Receive Data bit 1  
RMII Receive Data Error  
RMII Transmit Data bit 0  
RMII Transmit Data bit 1  
RMII Transmit Enable  
I
I
O
O
O
E7  
D7  
C3  
72  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.7 External Memory Interfaces  
Table 4-24. DDR Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM BANK ADDRESS  
TYPE [3]  
ZDN [4]  
N1  
L1  
ddr_a0  
ddr_a1  
ddr_a2  
ddr_a3  
ddr_a4  
ddr_a5  
ddr_a6  
ddr_a7  
ddr_a8  
ddr_a9  
ddr_a10  
ddr_a11  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
L2  
P2  
P1  
R5  
R4  
R3  
R2  
R1  
M6  
T5  
T4  
N5  
T3  
T2  
K1  
K2  
K3  
N3  
DDR SDRAM BANK ADDRESS  
DDR SDRAM BANK ADDRESS  
DDR SDRAM COLUMN ADDRESS STROBE. (ACTIVE  
LOW)  
ddr_ck  
DDR SDRAM CLOCK (Differential+)  
DDR SDRAM CLOCK ENABLE  
DDR SDRAM CLOCK ENABLE1  
DDR SDRAM CHIP SELECT0  
DDR SDRAM CHIP SELECT1  
DDR SDRAM DATA  
O
O
M2  
M3  
N6  
M5  
M4  
E3  
E2  
E1  
F3  
G4  
G3  
G2  
G1  
H1  
J6  
ddr_cke0  
ddr_cke1  
ddr_csn0  
ddr_csn1  
ddr_d0  
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
ddr_d1  
DDR SDRAM DATA  
ddr_d2  
DDR SDRAM DATA  
ddr_d3  
DDR SDRAM DATA  
ddr_d4  
DDR SDRAM DATA  
ddr_d5  
DDR SDRAM DATA  
ddr_d6  
DDR SDRAM DATA  
ddr_d7  
DDR SDRAM DATA  
ddr_d8  
DDR SDRAM DATA  
ddr_d9  
DDR SDRAM DATA  
ddr_d10  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_d16  
ddr_d17  
ddr_d18  
ddr_d19  
DDR SDRAM DATA  
J5  
DDR SDRAM DATA  
J4  
DDR SDRAM DATA  
J3  
DDR SDRAM DATA  
K6  
K5  
K4  
V5  
V4  
V3  
V2  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
73  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-24. DDR Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
ZDN [4]  
V1  
ddr_d20  
ddr_d21  
ddr_d22  
ddr_d23  
ddr_d24  
ddr_d25  
ddr_d26  
ddr_d27  
ddr_d28  
ddr_d29  
ddr_d30  
ddr_d31  
ddr_dqm0  
ddr_dqm1  
ddr_dqm2  
ddr_dqm3  
ddr_dqs0  
ddr_dqs1  
ddr_dqs2  
ddr_dqs3  
ddr_dqsn0  
ddr_dqsn1  
ddr_dqsn2  
ddr_dqsn3  
ddr_nck  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
W4  
W5  
W6  
Y2  
Y3  
Y4  
AA3  
AB2  
AB1  
AC1  
AC2  
F4  
DDR WRITE ENABLE / DATA MASK FOR DATA[7:0]  
DDR WRITE ENABLE / DATA MASK FOR DATA[15:8]  
DDR WRITE ENABLE / DATA MASK FOR DATA[23:16]  
DDR WRITE ENABLE / DATA MASK FOR DATA[31:24]  
DDR DATA STROBE FOR DATA[7:0] (Differential+)  
DDR DATA STROBE FOR DATA[15:8] (Differential+)  
DDR DATA STROBE FOR DATA[23:16] (Differential+)  
DDR DATA STROBE FOR DATA[31:24] (Differential+)  
DDR DATA STROBE FOR DATA[7:0] (Differential-)  
DDR DATA STROBE FOR DATA[15:8] (Differential-)  
DDR DATA STROBE FOR DATA[23:16] (Differential-)  
DDR DATA STROBE FOR DATA[31:24] (Differential-)  
DDR SDRAM CLOCK (Differential-)  
O
H2  
O
V6  
O
Y1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
F2  
J2  
W1  
AA1  
F1  
J1  
W2  
AA2  
M1  
U1  
ddr_odt0  
ddr_odt1  
ddr_rasn  
ddr_resetn  
ddr_vref  
ddr_vtp  
DDR SDRAM ODT0  
O
DDR SDRAM ODT1  
O
U2  
DDR SDRAM ROW ADDRESS STROBE (ACTIVE LOW)  
DDR SDRAM RESET (only for DDR3)  
O
N2  
O
T1  
Voltage Reference  
AP (1)  
I (2)  
O
T6  
External Resistor for Impedance Training  
AC3  
N4  
ddr_wen  
DDR SDRAM WRITE ENABLE (ACTIVE LOW)  
(1) This terminal is an analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).  
(2) This terminal is an analog passive signal that connects to an external 49.9 Ω 1%, 20mW reference resistor which is used to calibrate the  
DDR input/output buffers.  
Table 4-25. General Purpose Memory Controller (GPMC) Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
B22, C3  
gpmc_a0  
gpmc_a1  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
O
O
O
O
O
O
O
O
O
A21, B23, C5  
A23, B21, C6  
A22, A4, C21  
A20, A24, D7  
B20, C10, E7  
C20, E8  
E19, F6  
B23, F7  
74  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-25. General Purpose Memory Controller (GPMC) Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
O
ZDN [4]  
A23, B4  
A22, G8  
A24, D8  
A19  
gpmc_a9  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
gpmc_a10  
gpmc_a11  
gpmc_a12  
gpmc_a13  
gpmc_a14  
gpmc_a15  
gpmc_a16  
gpmc_a17  
gpmc_a18  
gpmc_a19  
gpmc_a20  
gpmc_a21  
gpmc_a22  
gpmc_a23  
gpmc_a24  
gpmc_a25  
gpmc_a26  
gpmc_a27  
gpmc_ad0  
gpmc_ad1  
gpmc_ad2  
gpmc_ad3  
gpmc_ad4  
gpmc_ad5  
gpmc_ad6  
gpmc_ad7  
gpmc_ad8  
gpmc_ad9  
gpmc_ad10  
gpmc_ad11  
gpmc_ad12  
gpmc_ad13  
gpmc_ad14  
gpmc_ad15  
O
O
O
O
B19  
O
A18  
O
B18  
O
C19, C3  
C5, D19  
C17, C6  
A4, D17  
B1, D7  
B2, E7  
C2, E8  
C1, F6  
D1, F7  
B4, D2  
G8  
O
O
O
O
O
O
O
O
O
O
O
D8  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address and Data  
GPMC Address Valid / Address Latch Enable  
GPMC Byte Enable 0 / Command Latch Enable  
GPMC Byte Enable 1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
B5  
A5  
B6  
A6  
B7  
A7  
C8  
B8  
B10  
A10  
F11  
D11  
E11  
C11  
B11  
A11  
gpmc_advn_ale  
gpmc_be0n_cle  
gpmc_be1n  
gpmc_clk  
A9  
O
C10  
O
A3, F10  
A12, B9  
A8  
GPMC Clock  
IO  
O
gpmc_csn0  
gpmc_csn1  
gpmc_csn2  
gpmc_csn3  
gpmc_csn4  
gpmc_csn5  
gpmc_csn6  
gpmc_dir  
GPMC Chip Select  
GPMC Chip Select  
O
B9  
GPMC Chip Select  
O
F10  
GPMC Chip Select  
O
B12  
GPMC Chip Select  
O
A2  
GPMC Chip Select  
O
B3  
GPMC Chip Select  
O
A3  
GPMC Data Direction  
O
A3  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
75  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-25. General Purpose Memory Controller (GPMC) Signal Descriptions (continued)  
SIGNAL NAME [1]  
gpmc_oen_ren  
DESCRIPTION [2]  
GPMC Output / Read Enable  
TYPE [3]  
ZDN [4]  
E10  
O
I
gpmc_wait0  
gpmc_wait1  
gpmc_wen  
gpmc_wpn  
GPMC Wait 0  
A2, B12  
A12  
GPMC Wait 1  
I
GPMC Write Enable  
GPMC Write Protect  
O
O
D10  
B3  
76  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.8 General Purpose IOs  
Table 4-26. GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
gpio0_0  
DESCRIPTION [2]  
TYPE [3]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
ZDN [4]  
A17, D16  
A15, B17  
M25, P23  
L24, T22  
A12, T21  
T20  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
gpio0_1  
gpio0_2  
gpio0_3  
gpio0_4  
gpio0_5  
gpio0_6  
R25  
gpio0_7  
G24  
gpio0_8  
C19, D14  
D13, D19  
C14, C17  
D17, E16  
K22  
gpio0_9  
gpio0_10  
gpio0_11  
gpio0_12  
gpio0_13  
gpio0_14  
gpio0_15  
gpio0_16  
gpio0_17  
gpio0_18  
gpio0_19  
gpio0_20  
gpio0_21  
gpio0_22  
gpio0_23  
gpio0_24  
gpio0_25  
gpio0_26  
gpio0_27  
gpio0_28  
gpio0_29  
gpio0_30  
gpio0_31  
L22  
K21  
L21  
C16  
C13  
G21, L23  
D24, K23  
C24, P22  
A14, P20  
B10, N20  
A10, T23  
H20  
F25  
F11  
D11  
B15  
A16  
A2  
B3  
Table 4-27. GPIO1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
B5  
gpio1_0  
gpio1_1  
gpio1_2  
gpio1_3  
gpio1_4  
gpio1_5  
gpio1_6  
gpio1_7  
gpio1_8  
gpio1_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
A5  
B6  
A6  
B7  
A7  
C8  
B8  
L25  
J25  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
77  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-27. GPIO1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
IO  
ZDN [4]  
K25  
J24  
E11  
C11  
B11  
A11  
C3  
gpio1_10  
gpio1_11  
gpio1_12  
gpio1_13  
gpio1_14  
gpio1_15  
gpio1_16  
gpio1_17  
gpio1_18  
gpio1_19  
gpio1_20  
gpio1_21  
gpio1_22  
gpio1_23  
gpio1_24  
gpio1_25  
gpio1_26  
gpio1_27  
gpio1_28  
gpio1_29  
gpio1_30  
gpio1_31  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
C5  
IO  
C6  
IO  
A4  
IO  
D7  
IO  
E7  
IO  
E8  
IO  
F6  
IO  
F7  
IO  
B4  
IO  
G8  
IO  
D8  
IO  
A3  
IO  
A8  
IO  
B9  
IO  
F10  
Table 4-28. GPIO2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
IO  
ZDN [4]  
B12  
A12  
A9  
gpio2_0  
gpio2_1  
gpio2_2  
gpio2_3  
gpio2_4  
gpio2_5  
gpio2_6  
gpio2_7  
gpio2_8  
gpio2_9  
gpio2_10  
gpio2_11  
gpio2_12  
gpio2_13  
gpio2_14  
gpio2_15  
gpio2_16  
gpio2_17  
gpio2_18  
gpio2_19  
gpio2_20  
gpio2_21  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
E10  
D10  
C10  
B22  
A21  
B21  
C21  
A20  
B20  
C20  
E19  
A19  
B19  
A18  
B18  
C14  
E16  
B16  
F17  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
78  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-28. GPIO2 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
B23  
A23  
A22  
A24  
B1  
gpio2_22  
gpio2_23  
gpio2_24  
gpio2_25  
gpio2_26  
gpio2_27  
gpio2_28  
gpio2_29  
gpio2_30  
gpio2_31  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
B2  
C2  
C1  
D1  
D2  
Table 4-29. GPIO3 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
IO  
ZDN [4]  
D16  
B14  
B13  
A13  
A15  
AB24  
Y22  
N23  
T24  
D14  
D13  
C16  
C13  
F25  
N24  
N22  
H23  
M24  
L23  
gpio3_0  
gpio3_1  
gpio3_2  
gpio3_3  
gpio3_4  
gpio3_5  
gpio3_6  
gpio3_7  
gpio3_8  
gpio3_9  
gpio3_10  
gpio3_11  
gpio3_12  
gpio3_13  
gpio3_14  
gpio3_15  
gpio3_16  
gpio3_17  
gpio3_18  
gpio3_19  
gpio3_20  
gpio3_21  
gpio3_22  
gpio3_23  
gpio3_24  
gpio3_25  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
K23  
M25  
L24  
IO  
IO  
IO  
P22  
P20  
N20  
T23  
IO  
IO  
IO  
Table 4-30. GPIO4 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
AE17  
AD18  
AC18  
AD17  
AC20  
gpio4_0  
gpio4_1  
gpio4_2  
gpio4_3  
gpio4_4  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
79  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-30. GPIO4 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
IO  
ZDN [4]  
AB19  
AA19  
AC24  
AD24  
AD25  
AC23  
AE21  
AC25  
AB25  
AB20  
AC21  
AD21  
AE22  
AD22  
AE23  
AD23  
AE24  
Y18  
gpio4_5  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
gpio4_6  
IO  
gpio4_7  
IO  
gpio4_8  
IO  
gpio4_9  
IO  
gpio4_10  
gpio4_11  
gpio4_12  
gpio4_13  
gpio4_14  
gpio4_15  
gpio4_16  
gpio4_17  
gpio4_18  
gpio4_19  
gpio4_20  
gpio4_21  
gpio4_24  
gpio4_25  
gpio4_26  
gpio4_27  
gpio4_28  
gpio4_29  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AA18  
AE19  
AD19  
AE20  
AD20  
IO  
IO  
IO  
IO  
Table 4-31. GPIO5 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
IO  
ZDN [4]  
H22  
K24  
H25  
H24  
P25  
R24  
P24  
N25  
D25  
F24  
gpio5_0  
gpio5_1  
gpio5_2  
gpio5_3  
gpio5_4  
gpio5_5  
gpio5_6  
gpio5_7  
gpio5_8  
gpio5_9  
gpio5_10  
gpio5_11  
gpio5_12  
gpio5_13  
gpio5_19  
gpio5_20  
gpio5_23  
gpio5_24  
gpio5_25  
gpio5_26  
gpio5_27  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
G20  
F23  
IO  
IO  
E25  
E24  
AE18  
AB18  
D11  
F11  
IO  
IO  
IO  
IO  
IO  
IO  
A10  
B10  
G21  
IO  
IO  
80  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-31. GPIO5 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
D24  
C24  
A2  
gpio5_28  
gpio5_29  
gpio5_30  
gpio5_31  
GPIO  
GPIO  
GPIO  
GPIO  
IO  
IO  
IO  
IO  
B3  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
81  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.9 HDQ Interface  
Table 4-32. HDQ Signal Description  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
hdq_sio  
HDQ 1W Data IO  
IOD  
K24  
82  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.10 I2C Interfaces  
Table 4-33. I2C0 Signal Descriptions  
SIGNAL NAME [1]  
I2C0_SCL  
DESCRIPTION [2]  
TYPE [3]  
IOD  
ZDN [4]  
Y22  
I2C0 Clock  
I2C0 Data  
I2C0_SDA  
IOD  
AB24  
Table 4-34. I2C1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
I2C1_SCL  
I2C1 Clock  
IOD  
AB18, B13, G20, J25,  
L21, N20, T20  
I2C1_SDA  
I2C1 Data  
IOD  
AE18, B14, E25, K21,  
L25, T21, T23  
Table 4-35. I2C2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
I2C2_SCL  
I2C2 Clock  
IOD  
AB19, AC21, J24,  
L22, T22  
I2C2_SDA  
I2C2 Data  
IOD  
AB20, AC20, K22,  
K25, P23  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
83  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.11 McASP Interfaces  
Table 4-36. McASP0 Signal Descriptions  
SIGNAL NAME [1]  
mcasp0_aclkr  
DESCRIPTION [2]  
McASP0 Receive Bit Clock  
TYPE [3]  
ZDN [4]  
IO  
IO  
A15, A3, C19, L23  
mcasp0_aclkx  
McASP0 Transmit Bit Clock  
A19, D14, E11, F7,  
N24  
mcasp0_ahclkr  
mcasp0_ahclkx  
mcasp0_axr0  
McASP0 Receive Master Clock  
McASP0 Transmit Master Clock  
McASP0 Serial Data (IN/OUT)  
IO  
IO  
IO  
B18, M24  
C13, D17, L24  
A18, B11, C14, G8,  
H23  
mcasp0_axr1  
mcasp0_axr2  
mcasp0_axr3  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
IO  
IO  
IO  
A11, C17, D8, E16,  
M25  
B18, C19, D16, L23,  
M24  
D17, D19, F17, K23,  
L24  
mcasp0_fsr  
mcasp0_fsx  
McASP0 Receive Frame Sync  
McASP0 Transmit Frame Sync  
IO  
IO  
A12, C16, D19, K23  
B19, B4, C11, D13,  
N22  
Table 4-37. McASP1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
McASP1 Receive Bit Clock  
TYPE [3]  
ZDN [4]  
B15, F17  
mcasp1_aclkr  
mcasp1_aclkx  
mcasp1_ahclkr  
mcasp1_ahclkx  
mcasp1_axr0  
mcasp1_axr1  
mcasp1_axr2  
mcasp1_axr3  
mcasp1_fsr  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
McASP1 Transmit Bit Clock  
A15, B14, L23  
F17  
McASP1 Receive Master Clock  
McASP1 Transmit Master Clock  
McASP1 Serial Data (IN/OUT)  
McASP1 Serial Data (IN/OUT)  
McASP1 Serial Data (IN/OUT)  
McASP1 Serial Data (IN/OUT)  
McASP1 Receive Frame Sync  
McASP1 Transmit Frame Sync  
A16, F17  
A13, C13, M25  
A14, L24  
B15, D16  
A16, B16  
A14, B16  
mcasp1_fsx  
B13, C16, K23  
84  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.12 Miscellaneous  
Table 4-38. Miscellaneous Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
D24  
clkout1  
Clock out1  
Clock out2  
O
clkout2  
O
C24  
clkreq  
Clock Request Control  
O
H20  
nNMI  
External Interrupt to ARM Cortex A9 core  
Warm Reset Input/Output  
I
G25  
G22  
C25  
nRESETIN_OUT  
OSC0_IN  
OSC0_OUT  
OSC1_IN  
IOD (1)  
High frequency oscillator input  
High frequency oscillator output  
I
O
I
B25  
Low frequency (32.768 KHz) Real Time Clock oscillator  
input  
AE5  
OSC1_OUT  
Low frequency (32.768 KHz) Real Time Clock oscillator  
output  
O
AE4  
porz  
Power on Reset  
I
I
I
I
I
I
I
I
I
I
I
I
Y23  
AE6  
RTC_PORz  
RTC active low reset input  
tclkin  
Timer Clock In  
C24  
xdma_event_intr0  
xdma_event_intr1  
xdma_event_intr2  
xdma_event_intr3  
xdma_event_intr4  
xdma_event_intr5  
xdma_event_intr6  
xdma_event_intr7  
xdma_event_intr8  
External DMA Event or Interrupt 0  
External DMA Event or Interrupt 1  
External DMA Event or Interrupt 2  
External DMA Event or Interrupt 3  
External DMA Event or Interrupt 4  
External DMA Event or Interrupt 5  
External DMA Event or Interrupt 6  
External DMA Event or Interrupt 7  
External DMA Event or Interrupt 8  
D24  
C24  
A16, G24, R25  
AD24  
AD25  
AC23  
AE21  
AC25  
AB25  
(1) Refer to the External Warm Reset section of the Technical Reference Manual for more information related to the operation of this  
terminal.  
Table 4-39. Reserved Signals  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Reserved  
NA  
AA10, AA7, AA9,  
AB10, AB6, AB7,  
AB9, AC10, AC12,  
AC5, AC6, AC7, AC9,  
AD1, AD10, AD11,  
AD2, AD7, AE11,  
AE12, AE9, H19,  
H21, W10, Y10, Y6,  
Y7  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
85  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.13 PRU-ICSS0 Interface  
Table 4-40. PRU-ICSS0-PRU0/General Purpose Inputs Signal Descriptions  
SIGNAL NAME [1]  
pr0_pru0_gpi0  
DESCRIPTION [2]  
PRU-ICSS0 PRU0 Data In  
TYPE [3]  
ZDN [4]  
N24  
N22  
H23  
M24  
L23  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
pr0_pru0_gpi1  
pr0_pru0_gpi2  
pr0_pru0_gpi3  
pr0_pru0_gpi4  
pr0_pru0_gpi5  
pr0_pru0_gpi6  
pr0_pru0_gpi7  
pr0_pru0_gpi8  
pr0_pru0_gpi9  
pr0_pru0_gpi10  
pr0_pru0_gpi11  
pr0_pru0_gpi12  
pr0_pru0_gpi13  
pr0_pru0_gpi14  
pr0_pru0_gpi15  
pr0_pru0_gpi16  
pr0_pru0_gpi17  
pr0_pru0_gpi18  
pr0_pru0_gpi19  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In Capture Enable  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
PRU-ICSS0 PRU0 Data In  
K23  
M25  
L24  
B1  
B2  
C2  
C1  
D1  
D2  
AC20  
AB19  
AA19  
AC24  
H25  
H24  
Table 4-41. PRU-ICSS0-PRU0/General Purpose Outputs Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
PRU-ICSS0 PRU0 Data Out  
TYPE [3]  
ZDN [4]  
N24  
N22  
H23  
M24  
L23  
pr0_pru0_gpo0  
pr0_pru0_gpo1  
pr0_pru0_gpo2  
pr0_pru0_gpo3  
pr0_pru0_gpo4  
pr0_pru0_gpo5  
pr0_pru0_gpo6  
pr0_pru0_gpo7  
pr0_pru0_gpo8  
pr0_pru0_gpo9  
pr0_pru0_gpo10  
pr0_pru0_gpo11  
pr0_pru0_gpo12  
pr0_pru0_gpo13  
pr0_pru0_gpo14  
pr0_pru0_gpo15  
pr0_pru0_gpo16  
pr0_pru0_gpo17  
pr0_pru0_gpo18  
pr0_pru0_gpo19  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
PRU-ICSS0 PRU0 Data Out  
K23  
M25  
L24  
B1  
B2  
C2  
C1  
D1  
D2  
AC20  
AB19  
AA19  
AC24  
H25  
H24  
86  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-42. PRU-ICSS0-PRU1/General Purpose Inputs Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
PRU-ICSS0 PRU1 Data In  
TYPE [3]  
ZDN [4]  
AD24  
AD25  
AC23  
AE21  
K25  
pr0_pru1_gpi0  
pr0_pru1_gpi1  
pr0_pru1_gpi2  
pr0_pru1_gpi3  
pr0_pru1_gpi4  
pr0_pru1_gpi5  
pr0_pru1_gpi6  
pr0_pru1_gpi7  
pr0_pru1_gpi8  
pr0_pru1_gpi9  
pr0_pru1_gpi10  
pr0_pru1_gpi11  
pr0_pru1_gpi12  
pr0_pru1_gpi13  
pr0_pru1_gpi14  
pr0_pru1_gpi15  
pr0_pru1_gpi16  
pr0_pru1_gpi17  
pr0_pru1_gpi18  
pr0_pru1_gpi19  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In Capture Enable  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
PRU-ICSS0 PRU1 Data In  
J24  
B23  
A23  
A22  
A24  
AD21  
AE22  
AD22  
AE23  
AD23  
AE24  
AE18  
AB18  
H22  
K24  
Table 4-43. PRU-ICSS0-PRU1/General Purpose Outputs Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
PRU-ICSS0 PRU1 Data Out  
TYPE [3]  
ZDN [4]  
AD24  
AD25  
AC23  
AE21  
K25  
pr0_pru1_gpo0  
pr0_pru1_gpo1  
pr0_pru1_gpo2  
pr0_pru1_gpo3  
pr0_pru1_gpo4  
pr0_pru1_gpo5  
pr0_pru1_gpo6  
pr0_pru1_gpo7  
pr0_pru1_gpo8  
pr0_pru1_gpo9  
pr0_pru1_gpo10  
pr0_pru1_gpo11  
pr0_pru1_gpo12  
pr0_pru1_gpo13  
pr0_pru1_gpo14  
pr0_pru1_gpo15  
pr0_pru1_gpo16  
pr0_pru1_gpo17  
pr0_pru1_gpo18  
pr0_pru1_gpo19  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
PRU-ICSS0 PRU1 Data Out  
J24  
B23  
A23  
A22  
A24  
AD21  
AE22  
AD22  
AE23  
AD23  
AE24  
AE18  
AB18  
H22  
K24  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
87  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-44. PRU-ICSS0/UART0 Signal Descriptions  
SIGNAL NAME [1]  
pr0_uart0_cts_n  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
P23  
I
pr0_uart0_rts_n  
pr0_uart0_rxd  
pr0_uart0_txd  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
O
I
T22  
T21  
O
T20  
88  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.14 PRU-ICSS1 Interface  
Table 4-45. PRU-ICSS1-PRU0/General Purpose Inputs Signal Descriptions  
SIGNAL NAME [1]  
pr1_pru0_gpi0  
DESCRIPTION [2]  
PRU-ICSS1 PRU0 Data In  
TYPE [3]  
ZDN [4]  
B22  
A21  
B21  
C21  
A20  
B20  
C20  
E19  
B9  
I
I
I
I
I
I
I
I
I
I
I
I
I
pr1_pru0_gpi1  
pr1_pru0_gpi2  
pr1_pru0_gpi3  
pr1_pru0_gpi4  
pr1_pru0_gpi5  
pr1_pru0_gpi6  
pr1_pru0_gpi7  
pr1_pru0_gpi8  
pr1_pru0_gpi9  
pr1_pru0_gpi10  
pr1_pru0_gpi11  
pr1_pru0_gpi16  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In  
PRU-ICSS1 PRU0 Data In Capture Enable  
F10  
E11  
C11  
B11, C24, D24, K21,  
L21  
Table 4-46. PRU-ICSS1-PRU0/General Purpose Outputs Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
PRU-ICSS1 PRU0 Data Out  
TYPE [3]  
ZDN [4]  
B22  
A21  
B21  
C21  
A20  
B20  
C20  
E19  
B9  
pr1_pru0_gpo0  
pr1_pru0_gpo1  
pr1_pru0_gpo2  
pr1_pru0_gpo3  
pr1_pru0_gpo4  
pr1_pru0_gpo5  
pr1_pru0_gpo6  
pr1_pru0_gpo7  
pr1_pru0_gpo8  
pr1_pru0_gpo9  
pr1_pru0_gpo10  
pr1_pru0_gpo11  
O
O
O
O
O
O
O
O
O
O
O
O
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
PRU-ICSS1 PRU0 Data Out  
F10  
E11  
C11  
Table 4-47. PRU-ICSS1/ECAT Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
AE22, K22  
AD22, L22  
L25  
pr1_edc_latch0_in  
pr1_edc_latch1_in  
pr1_edc_sync0_out  
pr1_edc_sync1_out  
pr1_edio_data_in0  
pr1_edio_data_in1  
pr1_edio_data_in2  
pr1_edio_data_in3  
pr1_edio_data_in4  
pr1_edio_data_in5  
pr1_edio_data_in6  
pr1_edio_data_in7  
pr1_edio_data_out0  
Data In  
Data In  
Data Out  
Data Out  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
Data Out  
I
I
O
O
I
J25  
AD23  
AE24  
I
I
B23  
I
A23  
I
A22  
I
A24  
I
B9, C20  
E19, F10  
T21  
I
O
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
89  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-47. PRU-ICSS1/ECAT Signal Descriptions (continued)  
SIGNAL NAME [1]  
pr1_edio_data_out1  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
T20  
Data Out  
O
O
O
O
O
O
O
I
pr1_edio_data_out2  
pr1_edio_data_out3  
pr1_edio_data_out4  
pr1_edio_data_out5  
pr1_edio_data_out6  
pr1_edio_data_out7  
pr1_edio_latch_in  
pr1_edio_outvalid  
pr1_edio_sof  
Data Out  
B23  
Data Out  
A23  
Data Out  
A22  
Data Out  
A24  
Data Out  
B9, C20  
E19, F10  
AE23  
Data Out  
Latch In  
Data Out Valid  
Start of Frame  
O
O
AD18  
AB25, AE17  
Table 4-48. PRU-ICSS1/MDIO Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
pr1_mdio_data  
pr1_mdio_mdclk  
MDIO Data  
MDIO Clk  
IO  
O
A17, B12, D24  
A12, B17, C24  
Table 4-49. PRU-ICSS1/MII0 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Collision Detect  
TYPE [3]  
ZDN [4]  
A10, D25  
B12, G20  
B18  
pr1_mii0_col  
I
I
pr1_mii0_crs  
MII Carrier Sense  
pr1_mii0_rxd0  
pr1_mii0_rxd1  
pr1_mii0_rxd2  
pr1_mii0_rxd3  
pr1_mii0_rxdv  
pr1_mii0_rxer  
pr1_mii0_rxlink  
pr1_mii0_txd0  
pr1_mii0_txd1  
pr1_mii0_txd2  
pr1_mii0_txd3  
pr1_mii0_txen  
pr1_mii_mr0_clk  
pr1_mii_mt0_clk  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Receive Link  
I
I
A18  
I
B19  
I
A19  
I
D17  
I
D19  
I
C19, E25  
B11, B20  
A20, C11  
C21, E11  
B21, D11  
A21, F11  
C17  
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
MII Receive Clock  
O
O
O
O
O
I
MII Transmit Clock  
I
B10, B22  
Table 4-50. PRU-ICSS1/MII1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Collision Detect  
TYPE [3]  
ZDN [4]  
pr1_mii1_col  
pr1_mii1_crs  
pr1_mii1_rxd0  
pr1_mii1_rxd1  
pr1_mii1_rxd2  
pr1_mii1_rxd3  
pr1_mii1_rxdv  
pr1_mii1_rxer  
pr1_mii1_rxlink  
I
I
I
I
I
I
I
I
I
A3, F24  
MII Carrier Sense  
A12, A2, F23  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Receive Link  
D8  
G8  
B4  
F7  
C5  
B3  
C10, E24  
90  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 4-50. PRU-ICSS1/MII1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Transmit Data bit 0  
TYPE [3]  
ZDN [4]  
E7  
pr1_mii1_txd0  
pr1_mii1_txd1  
pr1_mii1_txd2  
pr1_mii1_txd3  
pr1_mii1_txen  
pr1_mii_mr1_clk  
pr1_mii_mt1_clk  
O
O
O
O
O
I
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
MII Receive Clock  
D7  
A4  
C6  
C3  
F6  
MII Transmit Clock  
I
E8  
Table 4-51. PRU-ICSS1/UART0 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
K22, P23  
L22, T22  
K21, T21  
L21, T20  
pr1_uart0_cts_n  
pr1_uart0_rts_n  
pr1_uart0_rxd  
pr1_uart0_txd  
I
UART Request to Send  
UART Receive Data  
O
I
UART Transmit Data  
O
Table 4-52. PRU-ICSS1/eCAP Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
pr1_ecap0_ecap_capin_apwm_o  
Enhanced capture input or Auxiliary PWM out  
IO  
A11, G24  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
91  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.15 QSPI Interface  
Table 4-53. QSPI Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
B12, Y18  
A8, AA18  
A9, AE19  
AD19, E10  
AE20, D10  
AD20, C10  
qspi_clk  
qspi_csn  
qspi_d0  
qspi_d1  
qspi_d2  
qspi_d3  
QSPI Clock  
QSPI Chip Select  
QSPI Data  
IO  
O
IO  
I
QSPI Data  
QSPI Data  
I
QSPI Data  
I
92  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.16 RTC Subsystem Interface  
Table 4-54. RTC Subsystem Signal Descriptions  
SIGNAL NAME [1]  
RTC_KALDO_ENn  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Active low enable input for internal CAP_VDD_RTC  
voltage regulator  
I
AE2  
RTC_PMIC_EN  
RTC_WAKEUP  
PMIC Power Enable output generated from Generic  
RTCSS  
O
I
AD6  
AE3  
External Wakeup Pin when Generic RTC is used  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
93  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.17 Removable Media Interfaces  
Table 4-55. MMC0 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
TYPE [3]  
ZDN [4]  
mmc0_clk  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
D1  
mmc0_cmd  
mmc0_dat0  
mmc0_dat1  
mmc0_dat2  
mmc0_dat3  
mmc0_dat4  
mmc0_dat5  
mmc0_dat6  
mmc0_dat7  
mmc0_pow  
mmc0_sdcd  
mmc0_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD Power Switch Control  
SD Card Detect  
D2  
C1  
C2  
B2  
B1  
E16  
C14  
D13  
D14  
A16, R25  
A17, N24, R25  
B17, G24, L23  
I
SD Write Protect  
I
Table 4-56. MMC1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
TYPE [3]  
ZDN [4]  
B15, B17, B9, Y18  
A14, A17, AA18, F10  
AE19, B10, B5, D14  
A10, A5, AD19, D13  
AE20, B6, C14, F11  
A6, AD20, D11, E16  
B7, E11  
mmc1_clk  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
mmc1_sdcd  
mmc1_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
SD Card Detect  
A7, C11  
B11, C8  
A11, B8  
A2, N22  
SD Write Protect  
I
K21, T21  
Table 4-57. MMC2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
TYPE [3]  
ZDN [4]  
A12, AD21, B16, B17  
A13, A17, AE22, B12  
A15, AD22, C5, E11  
AE23, C11, C16, C6  
A4, AD23, B11, C13  
A11, A3, AE24, D16  
B10, E8  
mmc2_clk  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
mmc2_cmd  
mmc2_dat0  
mmc2_dat1  
mmc2_dat2  
mmc2_dat3  
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dat7  
mmc2_sdcd  
mmc2_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
SD Card Detect  
A10, F6  
F11, F7  
B4, D11  
B3, H23  
SD Write Protect  
I
L21, T20  
94  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.18 SPI Interfaces  
Table 4-58. SPI0 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
spi0_cs0  
spi0_cs1  
spi0_cs2  
spi0_cs3  
spi0_d0  
spi0_d1  
spi0_sclk  
SPI Chip Select  
SPI Chip Select  
SPI Chip Select  
SPI Chip Select  
SPI Data  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
T20  
R25  
AD24, C24, E10  
A9, AD25, N24  
T22  
SPI Data  
T21  
SPI Clock  
P23  
Table 4-59. SPI1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
spi1_cs0  
SPI Chip Select  
IO  
A16, J25, K22, K25,  
M24  
spi1_cs1  
spi1_cs2  
spi1_cs3  
spi1_d0  
spi1_d1  
spi1_sclk  
SPI Chip Select  
SPI Chip Select  
SPI Chip Select  
SPI Data  
IO  
IO  
IO  
IO  
IO  
IO  
D24, G24, J24, L22  
AC23, D10, N22  
AE21, C10, H23  
B14, L25, N22  
SPI Data  
B13, H23, J25  
SPI Clock  
D16, G24, N24  
Table 4-60. SPI2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
SPI Chip Select  
SPI Chip Select  
SPI Chip Select  
SPI Chip Select  
SPI Data  
TYPE [3]  
ZDN [4]  
spi2_cs0  
spi2_cs1  
spi2_cs2  
spi2_cs3  
spi2_d0  
spi2_d1  
spi2_sclk  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AC20, AD25, T23  
AC25, AE17  
AB19, AC23  
AA19, AC24  
AD17, AD24, P22  
AB25, AD18, P20  
AC18, AE21, N20  
SPI Data  
SPI Clock  
Table 4-61. SPI3 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
SPI Chip Select  
SPI Chip Select  
SPI Data  
TYPE [3]  
ZDN [4]  
spi3_cs0  
spi3_cs1  
spi3_d0  
spi3_d1  
spi3_sclk  
IO  
IO  
IO  
IO  
IO  
AD21, D11, D17  
A11, B10, B18, C10  
A10, AB20, D19  
AC21, C17, F11  
AE22, B10, C19  
SPI Data  
SPI Clock  
Table 4-62. SPI4 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
SPI Chip Select  
SPI Chip Select  
SPI Data  
TYPE [3]  
ZDN [4]  
N25  
spi4_cs0  
spi4_cs1  
spi4_d0  
spi4_d1  
spi4_sclk  
IO  
IO  
IO  
IO  
IO  
H22  
R24  
SPI Data  
P24  
SPI Clock  
P25  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
95  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.19 Timer Interfaces  
Table 4-63. Timer0 Signal Descriptions  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
Timer trigger event / PWM out  
TYPE [3]  
ZDN [4]  
timer0  
timer1  
timer4  
timer5  
timer6  
timer7  
IO  
R25  
Table 4-64. Timer1 Signal Descriptions  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Timer trigger event / PWM out  
IO  
G24  
Table 4-65. Timer4 Signal Descriptions  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Timer trigger event / PWM out  
IO  
A13, A9, AB24, D24  
Table 4-66. Timer5 Signal Descriptions  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Timer trigger event / PWM out  
IO  
B1, B17, C10, L22  
Table 4-67. Timer6 Signal Descriptions  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Timer trigger event / PWM out  
IO  
A17, B2, D10, K22  
Table 4-68. Timer7 Signal Descriptions  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Timer trigger event / PWM out  
IO  
C24, E10, L25, Y22  
96  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.20 UART Interfaces  
Table 4-69. UART0 Signal Descriptions  
SIGNAL NAME [1]  
uart0_ctsn  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
AC24, L25  
AD22  
I
I
uart0_dcdn  
UART Data Carrier Detect  
UART Request to Send  
UART Receive Data  
uart0_rtsn  
O
I
AD24, J25  
K25  
uart0_rxd  
uart0_txd  
UART Transmit Data  
O
J24  
Table 4-70. UART1 Signal Descriptions  
SIGNAL NAME [1]  
uart1_ctsn  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
AD21, K22  
IO  
I
uart1_dcdn  
UART Clear to Send  
AD23, B1, D14  
AE23, B2, D13  
AE24, C14, C2  
AD22, C1, E16  
AE22, L22  
uart1_dsrn  
UART Request to Send  
UART Receive Data  
I
uart1_dtrn  
O
I
uart1_rin  
UART Transmit Data  
uart1_rtsn  
UART Request to Send  
UART Receive Data  
O
IO  
IO  
uart1_rxd  
AB20, K21  
uart1_txd  
UART Transmit Data  
AC21, L21  
Table 4-71. UART2 Signal Descriptions  
SIGNAL NAME [1]  
uart2_ctsn  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
IO  
O
A19, AB24, AD23  
AE24, B19, Y22  
uart2_rtsn  
UART Request to Send  
UART Receive Data  
uart2_rxd  
IO  
AD22, B14, D1, D14,  
P23  
uart2_txd  
UART Transmit Data  
IO  
AE23, B13, D13, D2,  
T22  
Table 4-72. UART3 Signal Descriptions  
SIGNAL NAME [1]  
uart3_ctsn  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
IO  
O
A17, A18, D1, H22  
B17, B18, D2, K24  
C14, C2, H25, R25  
C1, E16, G24, H24  
uart3_rtsn  
UART Request to Send  
UART Receive Data  
uart3_rxd  
IO  
IO  
uart3_txd  
UART Transmit Data  
Table 4-73. UART4 Signal Descriptions  
SIGNAL NAME [1]  
uart4_ctsn  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
B1, C19  
I
uart4_rtsn  
UART Request to Send  
UART Receive Data  
O
I
B2, D19  
uart4_rxd  
A2, C16, L25  
B3, C13, J25  
uart4_txd  
UART Transmit Data  
O
Table 4-74. UART5 Signal Descriptions  
SIGNAL NAME [1]  
uart5_ctsn  
DESCRIPTION [2]  
UART Clear to Send  
TYPE [3]  
ZDN [4]  
I
B14, C17, C2  
B13, C1, D17  
uart5_rtsn  
UART Request to Send  
O
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
97  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 4-74. UART5 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DESCRIPTION [2]  
UART Receive Data  
UART Transmit Data  
TYPE [3]  
ZDN [4]  
uart5_rxd  
uart5_txd  
I
A17, B19, C17, D16  
A15, A16, A19, B17  
O
98  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.21 USB Interfaces  
Table 4-75. USB0 Signal Descriptions  
SIGNAL NAME [1]  
USB0_CE  
DESCRIPTION [2]  
USB0 Active high Charger Enable output  
USB0 Data minus  
TYPE [3]  
ZDN [4]  
W22  
W24  
W25  
G21  
A
A
A
O
A
A
USB0_DM  
USB0_DP  
USB0 Data plus  
USB0_DRVVBUS  
USB0_ID  
USB0 Active high VBUS control output  
USB0 ID  
U24  
USB0_VBUS  
USB0 VBUS  
U23  
Table 4-76. USB1 Signal Descriptions  
SIGNAL NAME [1]  
USB1_CE  
DESCRIPTION [2]  
USB1 Active high Charger Enable output  
USB1 Data minus  
TYPE [3]  
ZDN [4]  
U22  
A
A
A
O
A
A
USB1_DM  
V25  
USB1_DP  
USB1 Data plus  
V24  
USB1_DRVVBUS  
USB1_ID  
USB1 Active high VBUS control output  
USB1 ID  
F25  
U25  
USB1_VBUS  
USB1 VBUS  
T25  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
99  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.22 eCAP Interfaces  
Table 4-77. eCAP0 Signal Descriptions  
SIGNAL NAME [1]  
eCAP0_in_PWM0_out  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Enhanced Capture 0 input or Auxiliary PWM0 output  
IO  
G24  
Table 4-78. eCAP1 Signal Descriptions  
SIGNAL NAME [1]  
eCAP1_in_PWM1_out  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Enhanced Capture 1 input or Auxiliary PWM1 output  
IO  
J24, R25, Y22  
Table 4-79. eCAP2 Signal Descriptions  
SIGNAL NAME [1]  
eCAP2_in_PWM2_out  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Enhanced Capture 2 input or Auxiliary PWM2 output  
IO  
AB24, K25, M24  
100  
Terminal Configuration and Functions  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
4.3.23 eHRPWM Interfaces  
Table 4-80. eHRPWM0 Signal Descriptions  
SIGNAL NAME [1]  
ehrpwm0_synci  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
Sync input to eHRPWM0 module from an external pin  
Sync Output from eHRPWM0 module to an external pin  
I
AC21, M24, P25, T20  
ehrpwm0_synco  
O
AE18, B19, C21, C5,  
D11  
ehrpwm0_tripzone_input  
ehrpwm0A  
eHRPWM0 trip zone input  
eHRPWM0 A output.  
eHRPWM0 B output.  
I
AB20, H23, P24, T21  
AD25, N24, P23  
O
O
ehrpwm0B  
AC23, N22, T22  
Table 4-81. eHRPWM1 Signal Descriptions  
SIGNAL NAME [1]  
ehrpwm1_tripzone_input  
ehrpwm1A  
DESCRIPTION [2]  
eHRPWM1 trip zone input  
eHRPWM1 A output.  
TYPE [3]  
ZDN [4]  
I
A19, AD21, C3, P20  
O
A18, AE20, AE21,  
C6, T21  
ehrpwm1B  
eHRPWM1 B output.  
O
A4, AC25, AD20,  
B18, T20  
Table 4-82. eHRPWM2 Signal Descriptions  
SIGNAL NAME [1]  
ehrpwm2_tripzone_input  
ehrpwm2A  
DESCRIPTION [2]  
eHRPWM2 trip zone input  
eHRPWM2 A output.  
TYPE [3]  
ZDN [4]  
I
B21, F11, T23  
B10, B22, R25  
A10, A21, G24  
O
O
ehrpwm2B  
eHRPWM2 B output.  
Table 4-83. eHRPWM3 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
ehrpwm3_synci  
Sync input to eHRPWM3 module or sync output to  
external PWM  
I
R24  
ehrpwm3_synco  
Sync input to eHRPWM3 module or sync output to  
external PWM  
O
AB18  
ehrpwm3_tripzone_input  
ehrpwm3A  
eHRPWM3 trip zone input  
eHRPWM3 A output.  
eHRPWM3 B output.  
I
N25  
O
O
AC25, AE19  
AB25, AD19  
ehrpwm3B  
Table 4-84. eHRPWM4 Signal Descriptions  
SIGNAL NAME [1]  
ehrpwm4_tripzone_input  
ehrpwm4A  
DESCRIPTION [2]  
eHRPWM4 trip zone input  
eHRPWM4 A output.  
TYPE [3]  
ZDN [4]  
N20  
I
O
O
H25  
ehrpwm4B  
eHRPWM4 B output.  
H24  
Table 4-85. eHRPWM5 Signal Descriptions  
SIGNAL NAME [1]  
ehrpwm5_tripzone_input  
ehrpwm5A  
DESCRIPTION [2]  
eHRPWM5 trip zone input  
eHRPWM5 A output.  
TYPE [3]  
ZDN [4]  
P22  
I
O
O
H22  
ehrpwm5B  
eHRPWM5 B output.  
K24  
Copyright © 2014–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
101  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
4.3.24 eQEP Interfaces  
Table 4-86. eQEP0 Signal Descriptions  
SIGNAL NAME [1]  
eQEP0_index  
DESCRIPTION [2]  
TYPE [3]  
ZDN [4]  
A13, M25  
B16, L24  
A14, L23  
B15, K23  
eQEP0 index.  
eQEP0 strobe.  
IO  
IO  
I
eQEP0_strobe  
eQEP0A_in  
eQEP0B_in  
eQEP0A quadrature input  
eQEP0B quadrature input  
I
Table 4-87. eQEP1 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eQEP1 index.  
TYPE [3]  
ZDN [4]  
C17, E8  
D17, F6  
C19, D7  
D19, E7  
eQEP1_index  
eQEP1_strobe  
eQEP1A_in  
IO  
IO  
I
eQEP1 strobe.  
eQEP1A quadrature input  
eQEP1B quadrature input  
eQEP1B_in  
I
Table 4-88. eQEP2 Signal Descriptions  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eQEP2 index.  
TYPE [3]  
ZDN [4]  
B11, C20  
A11, E19  
A20, E11  
B20, C11  
eQEP2_index  
eQEP2_strobe  
eQEP2A_in  
IO  
IO  
I
eQEP2 strobe.  
eQEP2A quadrature input  
eQEP2B quadrature input  
eQEP2B_in  
I
102  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5 Specifications  
5.1 Absolute Maximum Ratings  
over junction temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.3  
MAX  
1.5  
1.5  
1.5  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
4
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD_MPU  
Supply voltage for the MPU domain  
VDD_CORE  
CAP_VDD_RTC(3)  
Supply voltage range for the CORE domain  
Supply voltage range for the RTC domain  
VDDS_RTC  
Supply voltage range for the RTC domain  
VDDS_OSC  
Supply voltage range for the System oscillator  
Supply voltage range for the Core SRAM and Bandgap LDOs  
Supply voltage range for the MPU SRAM and BB LDOs  
Supply voltage range for the DPLL DDR  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_DDR  
Supply voltage range for the DPLL CORE, EXTDEV, and LCD  
Supply voltage range for the DPLL MPU  
Supply voltage range for the DDR IO domain  
Supply voltage range for all dual-voltage IO domains  
Supply voltage range for USBPHY and DPLL PER  
Supply voltage range for USBPHY  
VDDS  
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA_ADC0  
VDDA_ADC1  
VDDSHV1  
Supply voltage range for ADC0  
Supply voltage range for ADC1  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the CLKOUT voltage domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for USBPHY  
VDDSHV2  
VDDSHV3  
VDDSHV5  
VDDSHV6  
VDDSHV7  
VDDSHV8  
VDDSHV9  
VDDSHV10  
VDDSHV11  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDS3P3V_IOLDO  
VDDS_CLKOUT  
USB0_VBUS(4)  
USB1_VBUS(4)  
DDR_VREF  
Supply voltage range for USBPHY  
4
Supply voltage range for the dual-voltage IO LDO  
Supply voltage range for CLKOUT domain  
3.8  
2.1  
5.25  
5.25  
1.1  
Supply voltage range for USB VBUS comparator input  
Supply voltage range for USB VBUS comparator input  
Supply voltage range for the DDR3/DDR3L HSTL, LPDDR2  
HSUL_12 reference voltage  
Steady State Max. Voltage at all  
IO pins(5)  
–0.5 V to IO supply voltage + 0.3 V  
USB0_ID(6)  
USB1_ID(6)  
Steady state maximum voltage range for the USB ID input  
Steady state maximum voltage range for the USB ID input  
–0.5  
–0.5  
2.1  
2.1  
V
V
Transient Overshoot and  
Undershoot specification at IO  
terminal  
20% of corresponding IO supply voltage for  
up to 20% of signal period (see Figure 5-1)  
Latch-up I-test performance current-pulse  
injection on each IO pin  
±100  
±100  
Latch-up Performance(7)  
Class II (105°C)  
mA  
°C  
Latch-up overvoltage performance voltage  
injection on each IO pin  
(8)  
Tstg  
Storage temperature  
–55  
155  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated VSS or VSSA_x.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
103  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Absolute Maximum Ratings (continued)  
over junction temperature range (unless otherwise noted)(1)(2)  
(3) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
(4) This terminal is connected to a fail-safe IO and does not have a dependence on any IO supply voltage.  
(5) This parameter applies to all IO terminals which are not fail-safe and the requirement applies to all values of IO supply voltage. For  
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be  
–0.5 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources used  
to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range,  
including power supply ramp-up and ramp-down sequences.  
(6) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the  
voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal  
should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to  
any external voltage source.  
(7) For current pulse injection:  
Pins stressed per JEDEC JESD78D (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times  
maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.  
For overvoltage performance:  
Supplies stressed per JEDEC JESD78D (Class II) and passed specified voltage injection.  
(8) For tape and reel the storage temperature range is [–10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning  
to ambient room temperature before usage.  
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power  
supply voltage. This allows external voltage sources to be connected to these IO terminals when the  
respective IO power supplies are turned off. The USB0_VBUS, USB1_VBUS, and DDR_RESETn are the  
only fail-safe IO terminals. All other IO terminals are not fail-safe and the voltage applied to them should  
be limited to the value defined by the Steady State Max. Voltage at all IO pins parameter in Section 5.1.  
Overshoot = 20% of nominal  
IO supply voltage  
Tovershoot  
Tperiod  
Tundershoot  
Undershoot = 20% of nominal  
IO supply voltage  
Figure 5-1. Tovershoot + Tundershoot < 20% of Tperiod  
104  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JESD22-C101(2)  
Electrostatic discharge  
(ESD)  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Power-On Hours (POH)(1)(2)(3)(4)  
COMMERCIAL  
INDUSTRIAL  
EXTENDED  
OPERATING  
CONDITION  
JUNCTION TEMP  
LIFETIME  
(POH)(5)  
JUNCTION TEMP  
LIFETIME  
(POH)(5)  
JUNCTION TEMP  
(Tj)  
LIFETIME  
(POH)(5)  
(Tj)  
(Tj)  
Nitro  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
100K  
100K  
100K  
100K  
100K  
–40°C to 90°C  
–40°C to 90°C  
–40°C to 90°C  
–40°C to 90°C  
–40°C to 90°C  
100K  
100K  
100K  
100K  
100K  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
84.4K  
100K  
100K  
100K  
100K  
Turbo  
OPP120  
OPP100  
OPP50  
(1) The POH information in this table is provided solely for your convenience and does not extend or modify the warranty provided under  
TI's standard terms and conditions for TI semiconductor products.  
(2) To avoid significant degradation, the device POH must be limited as described in this table.  
(3) Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.  
(4) The previous notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and  
conditions for TI semiconductor products.  
(5) POH = Power-on hours when the device is fully functional.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
105  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.4 Operating Performance Points  
Device operating performance points (OPPs) are defined in 5-1, 5-2, and 5-3.  
5-1. VDD_CORE OPPs(1)  
VDD_CORE  
VDD_CORE OPP  
DDR3/DDR3L(2)  
LPDDR2(2)  
L3 and L4  
MIN  
NOM  
MAX  
OPP100  
1.056 V  
1.100 V  
1.144 V  
400 MHz  
266 MHz  
200 MHz and  
100 MHz  
OPP50  
0.912 V  
0.950 V  
1 V  
Not supported  
133 MHz  
100 MHz and  
50 MHz  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data  
rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.  
5-2. VDD_MPU OPPs(1)  
VDD_MPU  
VDD_MPU OPP  
ARM (A9)  
MIN  
NOM  
MAX  
Nitro  
1.272 V  
1.210 V  
1.152 V  
1.056 V  
0.912 V  
1.325 V  
1.260 V  
1.200 V  
1.100 V  
0.950 V  
1.378 V  
1.326 V  
1.248 V  
1.144 V  
1.000 V  
1 GHz  
Turbo  
800 MHz  
720 MHz  
600 MHz  
300 MHz  
OPP120  
OPP100  
OPP50  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
5-3. Valid Combinations of VDD_CORE and  
VDD_MPU OPPs(1)  
VDD_CORE  
OPP50  
VDD_MPU  
OPP50  
OPP50  
OPP100  
OPP120  
Turbo  
OPP100  
OPP100  
OPP100  
OPP100  
OPP100  
Nitro  
(1) OPP combinations listed in this table have been tested. Other OPP combinations are not supported.  
106  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.5 Recommended Operating Conditions  
over junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN  
1.056  
0.912  
1.272  
1.210  
1.152  
1.056  
0.912  
0.900  
1.710  
1.425  
1.283  
1.140  
1.710  
1.710  
1.710  
1.710  
NOM  
1.100  
0.950  
1.325  
1.260  
1.200  
1.100  
0.950  
1.100  
1.800  
1.500  
1.350  
1.200  
1.800  
1.800  
1.800  
1.800  
MAX  
1.144  
1.000  
1.378  
1.326  
1.248  
1.144  
1.000  
1.250  
1.890  
1.575  
1.418  
1.260  
1.890  
1.890  
1.890  
1.890  
UNIT  
Supply voltage range for core domain; OPP100  
Supply voltage range for core domain; OPP50  
Supply voltage range for MPU domain, Nitro  
Supply voltage range for MPU domain; Turbo  
Supply voltage range for MPU domain; OPP120  
Supply voltage range for MPU domain; OPP100  
Supply voltage range for MPU domain; OPP50  
Supply voltage range for RTC core domain  
Supply voltage range for RTC domain  
VDD_CORE  
V
VDD_MPU  
V
CAP_VDD_RTC(1)  
VDDS_RTC  
V
V
Supply voltage range for DDR IO domain (DDR3)  
Supply voltage range for DDR IO domain (DDR3L)  
Supply voltage range for DDR IO domain (LPDDR2)  
Supply voltage range for all dual-voltage IO domains  
Supply voltage range for Core SRAM LDOs, Analog  
Supply voltage range for MPU SRAM LDOs, Analog  
Supply voltage range for DPLL DDR, Analog  
VDDS_DDR  
V
VDDS(2)  
V
V
V
V
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR(3)  
Supply voltage range for DPLL CORE, EXTDEV, and LCD,  
Analog  
VDDS_PLL_CORE_LCD(3)  
1.710  
1.800  
1.890  
V
VDDS_PLL_MPU(3)  
VDDS_OSC  
Supply voltage range for DPLL MPU, Analog  
1.710  
1.710  
1.800  
1.800  
1.890  
1.890  
V
V
Supply voltage range for system oscillator, Analog  
Supply voltage range for USBPHY and DPLL PER, Analog,  
1.8 V  
VDDA1P8V_USB0(3)  
1.710  
1.800  
1.890  
V
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDA_ADC0  
Supply voltage range for USBPHY, Analog, 1.8 V  
Supply voltage range for USBPHY, Analog, 3.3 V  
Supply voltage range for USBPHY, Analog, 3.3 V  
Supply voltage range for ADC0, Analog  
1.710  
3.135  
3.135  
1.710  
1.710  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.710  
3.135  
1.800  
3.300  
3.300  
1.800  
1.800  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.800  
3.300  
1.890  
3.465  
3.465  
1.890  
1.890  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
1.890  
3.465  
V
V
V
V
V
VDDA_ADC1  
Supply voltage range for ADC1, Analog  
1.8-V operation  
Supply voltage range for dual-voltage IO  
VDDSHV1  
VDDSHV2  
VDDSHV3  
VDDSHV5  
VDDSHV6  
VDDSHV7  
VDDSHV8  
VDDSHV9  
VDDSHV10  
V
V
V
V
V
V
V
V
V
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for CLKOUT voltage  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
domain  
3.3-V operation  
1.8-V operation  
Supply voltage range for dual-voltage IO  
VDDSHV11  
DDR_VREF  
V
V
domain  
3.3-V operation  
Supply voltage range for the DDR3/DDR3L HSTL, LPDDR2  
HSUL_12 reference input  
0.49 ×  
VDDS_DDR  
0.50 ×  
VDDS_DDR  
0.51 ×  
VDDS_DDR  
VDDS3P3V_IOLDO  
VDDS_CLKOUT  
Supply voltage range for the dual-voltage IO LDO  
Supply voltage range for CLKOUT domain  
3.135  
1.71  
3.3  
1.8  
3.465  
1.89  
V
V
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
107  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
Voltage range for USB VBUS comparator input  
Voltage range for USB VBUS comparator input  
Voltage range for the USB ID input  
Voltage range for the USB ID input  
Commercial Temperature  
MIN  
0.000  
0.000  
NOM  
5.000  
5.000  
MAX  
5.250  
5.250  
UNIT  
USB0_VBUS  
V
V
V
V
USB1_VBUS  
USB0_ID  
(4)  
(4)  
USB1_ID  
0
–40  
–40  
90  
90  
Operating Temperature  
Range, Tj  
Industrial Temperature  
°C  
Extended Temperature  
105  
(1) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
(2) VDDS should be supplied irrespective of 1.8-V or 3.3-V mode of operation of the dual-voltage IOs.  
(3) For more details on power supply requirements, see 5.13.2.1.1.  
(4) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the  
voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal  
should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to  
any external voltage source.  
108  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.6 Power Consumption Summary  
5-4 summarizes the maximum power consumption at each power terminal.  
Note: Data in the Maximum Current Ratings table (5-4) represents worst-case power consumption  
based on various applications of the device using practical operating conditions. The data primarily  
benefits the power supply designer trying to understand the worst-case power consumption expected from  
each power rail.  
5-4. Maximum Current Ratings at Power Terminals(1)  
PARAMETER  
MAX UNIT  
SUPPLY NAME  
VDD_CORE  
DESCRIPTION  
Maximum current rating for the core domain; OPP100  
Maximum current rating for the core domain; OPP50  
Maximum current rating for the MPU domain; Nitro  
Maximum current rating for the MPU domain; Turbo  
Maximum current rating for the MPU domain; OPP120  
Maximum current rating for the MPU domain; OPP100  
Maximum current rating for the MPU domain; OPP50  
Maximum current rating for RTC domain and LDO output  
Maximum current rating for the RTC domain  
600  
400  
1000  
800  
720  
600  
350  
2
mA  
mA  
at 1 GHz  
at 800 MHz  
at 720 MHz  
at 600 MHz  
at 300 MHz  
VDD_MPU  
mA  
CAP_VDD_RTC(2)  
VDDS_RTC  
mA  
mA  
mA  
5
VDDS_DDR  
Maximum current rating for DDR IO domain; DDR3/DDR3L  
Maximum current rating for DDR IO domain; LPDDR2  
Maximum current rating for all dual-voltage IO domains  
Maximum current rating for core SRAM LDOs  
300  
150  
70  
VDDS  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_OSC  
10  
Maximum current rating for MPU SRAM LDOs  
10  
Maximum current rating for the DPLL DDR  
10  
Maximum current rating for the DPLL CORE, EXTDEV, and LCD  
Maximum current rating for the DPLL MPU  
20  
10  
Maximum current rating for the system oscillator  
Maximum current rating for USBPHY 1.8 V and DPLL PER  
Maximum current rating for USBPHY 1.8 V  
5
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDS3P3V_IOLDO  
VDDA_ADC0  
25  
25  
Maximum current rating for USBPHY 3.3 V  
40  
Maximum current rating for USBPHY 3.3 V  
40  
Maximum current rating for the dual-voltage IO LDO  
Maximum current rating for ADC0  
30  
10  
VDDA_ADC1  
Maximum current rating for ADC1  
10  
VDDSHV1  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for CLKOUT domain  
30  
VDDSHV2  
80  
VDDSHV3  
100  
10  
VDDSHV5  
VDDSHV6  
50  
VDDSHV7  
10  
VDDSHV8  
50  
VDDSHV9  
50  
VDDSHV10  
50  
VDDSHV11  
50  
VDDS_CLKOUT  
10  
(1) Current ratings specified in this table are worst-case estimates. Actual application power supply estimates could be lower. For more  
information, see AM43xx Power Consumption Summary.  
(2) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
109  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.7 DC Electrical Characteristics  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
DDR_CSn[1:0], DDR_CKE[1:0], DDR_CK, DDR_CKn, DDR_CASn, DDR_RASn, DDR_WEn, DDR_BA[2:0], DDR_A[15:0],  
DDR_ODT[1:0], DDR_D[31:0], DDR_DQM[3:0], DDR_DQS[3:0], DDR_DQSn[3:0] pins (DDR3/DDR3L - HSTL mode)  
VDDS_DDR =  
1.5 V  
DDR_VREF +  
0.1  
VIH  
High-level input voltage  
V
VDDS_DDR =  
1.35 V  
DDR_VREF +  
0.09  
VDDS_DDR =  
1.5 V  
DDR_VREF –  
0.1  
VIL  
Low-level input voltage  
V
VDDS_DDR =  
1.35 V  
DDR_VREF –  
0.09  
VHYS  
VOH  
Hysteresis voltage at an input  
NA  
V
V
High-level output voltage, driver enabled, pullup  
or pulldown disabled  
IOH = 8 mA  
IOL = 8 mA  
VDDS_DDR –  
0.4  
Low-level output voltage, driver enabled, pullup  
or pulldown disabled  
0.4  
10  
VOL  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–10  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–240  
40  
–40  
240  
10  
Total leakage current through the terminal connection of a driver-  
receiver combination that may include a pullup or pulldown. The  
driver output is disabled and the pullup or pulldown is inhibited.  
–10  
IOZ  
µA  
DDR_CSn[1:0], DDR_CKE[1:0], DDR_CK, DDR_CKn, DDR_CASn, DDR_RASn, DDR_WEn, DDR_BA[2:0], DDR_A[15:0],  
DDR_D[31:0], DDR_DQM[3:0], DDR_DQS[3:0], DDR_DQSn[3:0] pins (LPDDR2 - HSUL_12 mode)(2)  
VDDS_DDR =  
1.2 V  
DDR_VREF +  
0.13  
VIH  
High-level input voltage  
V
VDDS_DDR =  
1.2 V  
DDR_VREF –  
0.13  
VIL  
Low-level input voltage  
V
V
V
VHYS  
VOH  
Hysteresis voltage at an input  
NA  
High-level output voltage, driver enabled, pullup  
or pulldown disabled  
IOH = 8 mA  
IOL = 8 mA  
VDDS_DDR –  
0.4  
Low-level output voltage, driver enabled, pullup  
or pulldown disabled  
0.4  
10  
VOL  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–10  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–240  
40  
–40  
240  
10  
Total leakage current through the terminal connection of a driver-  
receiver combination that may include a pullup or pulldown. The  
driver output is disabled and the pullup or pulldown is inhibited.  
–10  
IOZ  
µA  
DDR_RESETn(3)  
VIH  
High-level input voltage  
NA  
NA  
NA  
VIL  
Low-level input voltage  
VHYS  
Hysteresis voltage at an input  
High-level output voltage, driver enabled, pullup  
or pulldown disabled  
IOH = 8 mA  
IOL = 8 mA  
VDDS_DDR –  
0.4  
VOH  
VOL  
V
V
Low-level output voltage, driver enabled, pullup  
or pulldown disabled  
0.4  
10  
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–10  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–240  
24  
–24  
240  
110  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
DC Electrical Characteristics (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Total leakage current through the terminal connection of a driver-  
receiver combination that may include a pullup or pulldown. The  
driver output is disabled and the pullup or pulldown is inhibited.  
–10  
10  
IOZ  
µA  
RTC_PWRONRSTn  
0.65 ×  
VDDS_RTC  
VIH  
VIL  
High-level input voltage  
V
0.35 ×  
V
Low-level input voltage  
VDDS_RTC  
VHYS  
II  
RTC_PMIC_EN  
Hysteresis voltage at an input  
0.065  
–1  
V
Input leakage current  
1
µA  
High-level output voltage, driver enabled, pullup  
or pulldown disabled  
VDDS_RTC –  
0.45  
VOH  
VOL  
IOH = 6 mA  
IOL = 6 mA  
V
V
Low-level output voltage, driver enabled, pullup  
or pulldown disabled  
0.45  
1
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–1  
II  
µA  
µA  
V
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–200  
40  
–40  
200  
Total leakage current through the terminal connection of a driver-  
receiver combination that may include a pullup or pulldown. The  
driver output is disabled and the pullup or pulldown is inhibited.  
IOZ  
–1  
1
RTC_WAKEUP  
0.65 ×  
VDDS_RTC  
VIH  
High-level input voltage  
0.35 ×  
VDDS_RTC  
VIL  
Low-level input voltage  
V
V
VHYS  
Hysteresis voltage at an input  
0.15  
–1  
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
1
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–200  
40  
–40  
200  
TCK (VDDSHV3 = 1.8 V)  
VIH  
High-level input voltage  
1.45  
V
V
V
VIL  
Low-level input voltage  
0.46  
8
VHYS  
Hysteresis voltage at an input  
0.4  
–8  
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–161  
52  
–100  
100  
–52  
170  
TCK (VDDSHV3 = 3.3 V)  
VIH  
High-level input voltage  
2.15  
V
V
V
VIL  
Low-level input voltage  
0.46  
18  
VHYS  
Hysteresis voltage at an input  
0.4  
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–18  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–243  
51  
–100  
110  
–19  
210  
PWRONRSTn (VDDSHV3 = 1.8 V or 3.3 V)(4)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.35  
V
V
0.5  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
111  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
Hysteresis voltage at an input  
MIN  
TYP  
MAX UNIT  
VHYS  
II  
0.07  
V
VI = 1.8 V  
VI = 3.3 V  
0.1  
µA  
2
Input leakage current  
All other LVCMOS pins (VDDSHVx = 1.8 V; x=1–11)  
High-level input voltage  
VIH  
0.65 ×  
VDDSHVx  
V
Low-level input voltage  
VIL  
0.35 ×  
V
VDDSHVx  
VHYS  
VOH  
Hysteresis voltage at an input  
0.18  
0.305  
V
V
High-level output voltage, driver enabled, pullup  
or pulldown disabled  
IOH = 6 mA  
IOL = 6 mA  
VDDSHVx –  
0.45  
Low-level output voltage, driver enabled, pullup  
or pulldown disabled  
0.45  
8.4  
VOL  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–8.4  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–161  
52  
–100  
100  
–52  
170  
8.4  
Total leakage current through the terminal connection of a driver-  
receiver combination that may include a pullup or pulldown. The  
driver output is disabled and the pullup or pulldown is inhibited.  
–8.4  
IOZ  
µA  
All other LVCMOS pins (VDDSHVx = 3.3 V; x=1–11)  
VIH  
High-level input voltage  
Low-level input voltage  
2
V
V
V
VIL  
0.8  
VHYS  
Hysteresis voltage at an input  
0.265  
0.44  
High-level output voltage, driver enabled, pullup  
or pulldown disabled  
IOH = 6 mA  
IOL = 6 mA  
VDDSHVx –  
0.45  
VOH  
VOL  
V
V
Low-level output voltage, driver enabled, pullup  
or pulldown disabled  
0.45  
18  
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
–18  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
–243  
51  
–100  
110  
–19  
210  
18  
Total leakage current through the terminal connection of a driver-  
receiver combination that may include a pullup or pulldown. The  
driver output is disabled and the pullup or pulldown is inhibited.  
–18  
IOZ  
XTALIN (OSC0)  
High-level input voltage  
0.65 ×  
VDDS_OSC  
VIH  
VIL  
V
V
Low-level input voltage  
0.35 ×  
VDDS_OSC  
RTC_XTALIN (OSC1)  
High-level input voltage  
0.65 ×  
VDDS_RTC  
VIH  
VIL  
V
V
Low-level input voltage  
0.35 ×  
VDDS_RTC  
(1) The interfaces or signals described in this table correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or  
signals multiplexed on the terminals described in this table have the same DC electrical characteristics.  
(2) For mapping to the LPDDR2 interface terminal name, see the AM437x Sitara Processors Technical Reference Manual.  
(3) The DDR_RESETn terminal supports fail-safe operation.  
(4) The input voltage thresholds for this input are not a function of VDDSHV3.  
112  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.8 ADC0: Touch Screen Controller and Analog-to-Digital Subsystem Electrical Parameters  
The touch screen controller (TSC) and analog-to-digital converter (ADC) subsystem (ADC0) contains a  
single-channel ADC connected to an 8:1 analog multiplexer which operates as a general-purpose ADC  
with optional support for interleaving TSC conversions for 4-wire, 5-wire, or 8-wire resistive panels. The  
ADC0 subsystem can be configured for use in one of the following applications:  
8 general-purpose ADC channels  
4-wire TSC with 4 general-purpose ADC channels  
5-wire TSC with 3 general-purpose ADC channels  
8-wire TSC  
Table 5-5 summarizes the ADC0 subsystem electrical parameters.  
Table 5-5. ADC0 Electrical Parameters  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
(0.5 × VDDA_ADC0) +  
0.25  
ADC0_VREFP(1)  
VDDA_ADC0  
V
(0.5 × VDDA_ADC0) –  
0.25  
ADC0_VREFN(1)  
0
V
V
ADC0_VREFP + ADC0_VREFN  
VDDA_ADC0  
Internal Voltage Reference  
External Voltage Reference  
0
VDDA_ADC0  
ADC0_VREFP  
Full-scale Input Range  
V
ADC0_VREFN  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Differential Nonlinearity  
(DNL)  
–1  
–2  
0.5  
±1  
1
LSB  
Source impedance = 50 Ω  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
2
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Integral Nonlinearity (INL)  
LSB  
LSB  
Source Impedance = 1 kΩ  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
±1  
±2  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Gain Error  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Offset Error  
±2  
LSB  
pF  
Input Sampling Capacitance  
5.5  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
Signal-to-Noise Ratio  
(SNR)  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
70  
75  
dB  
dB  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
Total Harmonic Distortion  
(THD)  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
113  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-5. ADC0 Electrical Parameters (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
Spurious Free Dynamic  
Range  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
80  
dB  
Internal Voltage Reference:  
VDDA_ADC0 = 1.8 V  
Signal-to-Noise Plus  
Distortion  
External Voltage Reference:  
VREFP – VREFN = 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
69  
20  
dB  
VREFP and VREFN Input Impedance  
Input Impedance of  
kΩ  
f = input frequency  
[1/((65.97 × 10–12) × f)]  
Ω
AIN[7:0](2)  
SAMPLING DYNAMICS  
ADC Clock Frequency  
13  
MHz  
ADC0  
clock  
Conversion Time  
13  
cycles  
ADC0  
Acquisition Time  
2
257 clock  
cycles  
Sampling Rate(3)  
ADC0 Clock = 13 MHz  
867 kSPS  
dB  
Channel-to-Channel Isolation  
100  
2
TOUCH SCREEN SWITCH DRIVERS  
Pullup and Pulldown Switch ON-Resistance (Ron)  
Pullup and Pulldown Switch  
Ω
Source impedance = 500 Ω  
0.5  
uA  
Current Leakage Ileak  
Drive Current  
25  
6
mA  
kΩ  
kΩ  
Touch Screen Resistance  
Pen Touch Detect  
2
(1) The ADC0_VREFP and ADC0_VREFN terminals should not be allowed to float to prevent noise from coupling into the ADC. If  
ADC0_VREFN is not used to connect an external negative voltage reference to the ADC, connect it to VSSA_ADC. If ADC0_VREFP is  
not used to connect an external positive voltage reference to the ADC, connect it to VSSA_ADC or VDDA_ADC0. Connecting  
ADC0_VREFP to VSSA_ADC in this use case is the preferred option because VDDA_ADC0 may couple more noise into the ADC than  
VSSA_ADC.  
(2) This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.  
(3) The maximum sample rate assumes a conversion time of 13 ADC clock cycles with the acquisition time configured for the minimum of 2  
ADC clock cycles, where it takes a total of 15 ADC clock cycles to sample the analog input and convert it to a positive binary weighted  
digital value.  
114  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.9 ADC1: Analog-to-Digital Subsystem Electrical Parameters  
The analog-to-digital converter (ADC) subsystem implements a basic general-purpose ADC1.  
Table 5-6 summarizes the ADC1 subsystem electrical parameters.  
Table 5-6. ADC1 Electrical Parameters  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
(0.5 × VDDA_ADC1) +  
0.25  
Bypass mode  
VDDA_ADC1  
ADC1_VREFP(1)  
ADC1_VREFN(1)  
V
(0.5 × VDDA_ADC1) +  
0.25  
Gain mode  
Bypass mode  
Gain mode  
1.2(2)  
VDDA_ADC1  
(0.5 × VDDA_ADC1) –  
0.25  
0
0
V
V
(0.5 × VDDA_ADC1) –  
0.25  
0.5(2)  
ADC1_VREFP + ADC1_VREFN  
Bypass mode, Internal Voltage  
VDDA_ADC1  
0
ADC1_VREFN  
VDDA_ADC1  
ADC1_VREFP  
Reference  
Bypass mode, External Voltage  
Reference  
Full-scale Input Range  
V
Gain mode, Internal Voltage  
Reference  
–(VDDA_ADC1 / Gain)  
(VDDA_ADC1 / Gain)  
Gain mode, External Voltage  
Reference  
–((ADC1_VREFP –  
ADC1_VREFN) / Gain)  
((ADC1_VREFP –  
ADC1_VREFN) / Gain)  
Preamp output  
Gain mode (differential)  
2.4  
0.5  
V
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Differential Nonlinearity  
(DNL)  
–1  
1
LSB  
GAIN_CTRLx[MSB:LSB] = 00b  
GAIN_CTRLx[MSB:LSB] = 01b  
GAIN_CTRLx[MSB:LSB] = 10b  
GAIN_CTRLx[MSB:LSB] = 11b  
Gain mode  
12  
14  
16  
18  
50  
Preamp Gain  
Preamp Bandwidth  
15  
–2  
kHz  
LSB  
Bypass mode  
Source impedance = 1 kΩ  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
±1  
±1  
2
Integral Nonlinearity (INL)  
Gain mode  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Gain Error  
±2  
±2  
LSB  
LSB  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Offset Error  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
115  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-6. ADC1 Electrical Parameters (continued)  
PARAMETER  
TEST CONDITIONS  
Bypass mode  
MIN  
NOM  
5.5  
2
MAX UNIT  
pF  
pF  
Input Capacitance  
Gain mode  
Differential Input  
Impedance(3)  
18  
kΩ  
Bypass mode  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
70  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
Signal-to-Noise Ratio  
(SNR)  
dB  
Gain mode  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.2 V  
Input Signal: 5 kHz sine wave at  
Full Scale  
70  
75  
75  
80  
80  
69  
Bypass mode  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
Total Harmonic Distortion  
(THD)  
dB  
dB  
dB  
Gain mode  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.2 V  
Input Signal: 5 kHz sine wave at  
Full Scale  
Bypass mode  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
Spurious Free Dynamic  
Range  
Gain mode  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.2 V  
Input Signal: 5 kHz sine wave at  
Full Scale  
Bypass mode  
Internal Voltage Reference:  
VDDA_ADC1 = 1.8 V  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.8 V  
Input Signal: 30 kHz sine wave at  
–0.5 dB Full Scale  
Signal-to-Noise Plus  
Distortion  
Gain mode  
External Voltage Reference:  
ADC1_VREFP – ADC1_VREFN  
= 1.2 V  
Input Signal: 5 kHz sine wave at  
Full Scale  
69  
20  
ADC1_VREFP and ADC1_VREFN Input Impedance  
kΩ  
Input Impedance of  
f = input frequency  
ADC1_AIN[7:0](4)  
[1/((65.97 × 10–12) × f)]  
Ω
116  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-6. ADC1 Electrical Parameters (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
SAMPLING DYNAMICS  
ADC Clock Frequency  
13  
MHz  
ADC  
clock  
cycles  
Conversion Time  
13  
ADC  
257 clock  
cycles  
Acquisition Time(5)  
Sampling Rate(6)  
2
ADC Clock = 13 MHz  
867 kSPS  
(1) The ADC1_VREFP and ADC1_VREFN terminals should not be allowed to float to prevent noise from coupling into the ADC. If  
ADC1_VREFN is not used to connect an external negative voltage reference to the ADC, connect it to VSSA_ADC. If ADC1_VREFP is  
not used to connect an external positive voltage reference to the ADC, connect it to VSSA_ADC or VDDA_ADC1. Connecting  
ADC1_VREFP to VSSA_ADC in this use case is the preferred option because VDDA_ADC1 may couple more noise into the ADC than  
VSSA_ADC.  
(2) If the application using ADC1 requires low distortion when operating in Gain mode, the preamplifier output should be limited to ±1.2 volts  
differential. To get the full dynamic range of the ADC for this use case it will be necessary to provide a 0.3 volt reference for  
ADC1_VREFN and 1.5 volt reference for ADC1_VREFP.  
(3) The differential input impedance of each preamplifier is biased to VDDA_ADC1 divided by 2 with a 22-kΩ to 50-kΩ source. See the AFE  
Functional Description section of the device-specific TRM for more information.  
(4) This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.  
(5) The maximum sample rate of ADC1 may be reduced when using the internal preamplifiers because the preamplifier outputs require 600  
ns to settle. Sample Delay must be configured to provide a minimum acquisition time of 600 ns when using the preamplifiers.  
An increase in acquisition time may reduce the maximum sample rate because the maximum sample rate is based on a minimum  
acquisition time of 2 ADC clock cycles.  
For example, the minimum Sample Delay value should be 6 when the preamplifiers are being used with a 13-MHz ADC clock. A Sample  
Delay of 6 provides an acquisition time of 8 ADC clock cycles, which reduces the maximum single input sample rate to 619 kSPS when  
the acquisition time is combined with the conversion time of 13 ADC clock cycles.  
(6) The maximum sample rate assumes a conversion time of 13 ADC clock cycles with the acquisition time configured for the minimum of 2  
ADC clock cycles, where it takes a total of 15 ADC clock cycles to sample the analog input and convert it to a positive binary weighted  
digital value.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
117  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.10 VPP Specifications for One-Time Programmable (OTP) eFuses  
This section specifies the operating conditions required for programming the OTP eFuses and is  
applicable only for high-security (AM437xHS) devices.  
5-7. Recommended Operating Conditions for OTP eFuse Programming  
PARAMETER  
VDD_CORE  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
Supply voltage range for the core domain during OTP  
operation; OPP100  
1.056  
1.1  
1.144  
V
Supply voltage range for the eFuse ROM domain during  
normal operation  
NC  
1.7  
VPP  
Supply voltage range for the eFuse ROM domain during  
OTP programming(1)(2)  
1.65  
0
1.75  
V
I(VPP)  
50  
50  
mA  
ºC  
Temperature (ambient)  
30  
(1) Supply voltage range includes DC errors and peak-to-peak noise. TI power management solutions TLV70717 from the TLV707x family  
meet the supply voltage range needed for VPP.  
(2) During normal operation, no voltage should be applied to VPP. This can be typically achieved by disabling the regulator attached to the  
VPP terminal. For more details, see TLV707, TLV707P 200-mA, Low-IQ, Low-Noise, Low-Dropout Regulator for Portable Devices.  
5.10.1 Hardware Requirements  
The following hardware requirements must be met when programming keys in the OTP eFuses:  
The VPP power supply must be disabled when not programming OTP registers.  
The VPP power supply must be ramped up after the proper device power-up sequence (for more  
details, see 5.13.1.2).  
5.10.2 Programming Sequence  
Programming sequence for OTP eFuses:  
1. Power on the board per the power-up sequencing. No voltage should be applied on the VPP terminal  
during power up and normal operation.  
2. Load the OTP write software required to program the eFuse (contact your local TI representative for  
the OTP software package).  
3. Apply the voltage on the VPP terminal according to the specification in 5-7.  
4. Run the software that programs the OTP registers.  
5. After validating the content of the OTP registers, remove the voltage from the VPP terminal.  
5.10.3 Impact to Your Hardware Warranty  
You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You  
acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a  
failure may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI  
device specifications prior to the attempted eFuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY FOR  
ANY TI DEVICES THAT HAVE BEEN eFUSED.  
118  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.11 Thermal Resistance Characteristics  
Failure to maintain a junction temperature within the range specified in Section 5.5 reduces operating  
lifetime, reliability, and performance—and may cause irreversible damage to the system. Therefore, the  
product design cycle should include thermal analysis to verify the maximum operating junction  
temperature of the device. It is important this thermal analysis is performed using specific system use  
cases and conditions. TI provides an application report to aid users in overcoming some of the existing  
challenges of producing a good thermal design. For more information, see AM43xx Thermal  
Considerations.  
5-8 provides thermal characteristics for the packages used on this device.  
This table provides simulation data and may not represent actual use-case values.  
5-8. Thermal Resistance Characteristics (NFBGA Package) [ZDN]  
over operating free-air temperature range (unless otherwise noted)  
ZDN  
AIR FLOW  
(m/s)(1) (3)  
NAME  
DESCRIPTION  
(°C/W)(1) (2)  
RΘJC  
RΘJB  
Junction-to-case  
Junction-to-board  
7.07  
11.11  
23.0  
NA  
NA  
0.0  
0.5  
1.0  
2.0  
3.0  
0.0  
0.5  
1.0  
2.0  
3.0  
0.0  
0.5  
1.0  
2.0  
3.0  
19.5  
RΘJA  
PsiJT  
PsiJB  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
18.5  
17.5  
16.9  
2.10  
2.16  
2.20  
2.27  
2.31  
11.59  
11.18  
11.05  
10.91  
10.80  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
(2) °C/W = degrees Celsius per watt.  
(3) m/s = meters per second.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
119  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.12 External Capacitors  
To improve module performance, decoupling capacitors are required to suppress the switching noise  
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective  
when it is close to the device, because this minimizes the inductance of the circuit board wiring and  
interconnects.  
5.12.1 Voltage Decoupling Capacitors  
5-9 summarizes the Core voltage decoupling characteristics.  
5.12.1.1 Core Voltage Decoupling Capacitors  
To improve module performance, decoupling capacitors are required to suppress high-frequency switching  
noise and to stabilize the supply voltage. A decoupling capacitor is most effective when located close to  
the device, because this minimizes the inductance of the circuit board wiring and interconnects.  
5-9. Core Voltage Decoupling Characteristics  
PARAMETER  
TYP  
10.08  
10.05  
UNIT  
μF  
(1)  
CVDD_CORE  
(2)  
CVDD_MPU  
μF  
(1) The typical value corresponds to 1 capacitor of 10 μF and 8 capacitors of 10 nF.  
(2) The typical value corresponds to 1 capacitor of 10 μF and 5 capacitors of 10 nF.  
5.12.1.2 IO and Analog Voltage Decoupling Capacitors  
5-10 summarizes the power-supply decoupling capacitor recommendations.  
5-10. Power-Supply Decoupling Capacitor Characteristics  
PARAMETER  
TYP  
UNIT  
nF  
CVDDA_ADC0  
10  
10  
CVDDA_ADC1  
nF  
(1)  
CVDDA1P8V_USB0  
2.21  
10  
µF  
CCVDDA3P3V_USB0  
CVDDA1P8V_USB1  
CVDDA3P3V_USB1  
nF  
10  
nF  
10  
nF  
(2)  
CVDDS  
10.04  
μF  
(3)  
CVDDS_DDR  
CVDDS_OSC  
10  
10  
nF  
nF  
nF  
µF  
µF  
nF  
nF  
nF  
nF  
μF  
μF  
μF  
μF  
μF  
μF  
CVDDS_PLL_DDR  
CVDDS_PLL_CORE_LCD  
CVDDS_SRAM_CORE_BG  
10  
(4)  
(5)  
10.01  
10.01  
10  
CVDDS_SRAM_MPU_BB  
CVDDS_PLL_MPU  
CVDDS_RTC  
10  
CVDDS_CLKOUT  
CVDDS3P3V_IOLDO  
10  
10  
(6)  
CVDDSHV1  
10.02  
10.06  
10.06  
10.02  
10.06  
10.02  
(7)  
CVDDSHV2  
(7)  
CVDDSHV3  
(6)  
CVDDSHV5  
(7)  
CVDDSHV6  
(6)  
CVDDSHV7  
120  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5-10. Power-Supply Decoupling Capacitor Characteristics (continued)  
PARAMETER  
TYP  
UNIT  
μF  
(6)  
CVDDSHV8  
10.02  
10.02  
10.02  
10.02  
(6)  
CVDDSHV9  
μF  
(6)  
CVDDSHV10  
μF  
(6)  
CVDDSHV11  
μF  
(1) Typical values consist of 1 capacitor of 10 μF and 4 capacitors of 10 nF.  
(2) Typical values consist of 1 capacitor of 2.2 μF and 1 capacitor of 10 nF.  
(3) For more details on decoupling capacitor requirements for the DDR3 and DDR3L memory interface, see Section 5.13.8.2.1.3.6 and  
Section 5.13.8.2.1.3.7 when using DDR3 and DDR3L memory devices.  
(4) VDDS_SRAM_CORE_BG supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the  
VDDS_SRAM_CORE_BG supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_CORE_BG terminals. TI  
recommends placing a 10-μF capacitor close to the terminal and routing it with the widest traces possible to minimize the voltage drop  
on VDDS_SRAM_CORE_BG terminals.  
(5) VDDS_SRAM_MPU_BB supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the  
VDDS_SRAM_MPU_BB supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_MPU_BB terminals. TI  
recommends placing a 10-μF capacitor close to the terminal and routing it with the widest traces possible to minimize the voltage drop  
on VDDS_SRAM_MPU_BB terminals.  
(6) Typical values consist of 1 capacitor of 10 μF and 2 capacitors of 10 nF.  
(7) Typical values consist of 1 capacitor of 10 μF and 6 capacitors of 10 nF.  
5.12.2 Output Capacitors  
Internal low dropout output (LDO) regulators require external capacitors to stabilize their outputs. These  
capacitors should be placed as close as possible to the respective terminals of the device. 5-11  
summarizes the LDO output capacitor recommendations.  
5-11. Output Capacitor Characteristics  
PARAMETER  
TYP  
1
UNIT  
μF  
(1)  
CCAP_VDD_SRAM_CORE  
(1)(2)  
CCAP_VDD_RTC  
1
μF  
(1)  
CCAP_VDD_SRAM_MPU  
1
μF  
(1)  
CCAP_VBB_MPU  
1
μF  
(1)(3)  
CCAP_VDDS1P8V_IOLDO  
2.2  
μF  
(1) LDO regulator outputs should not be used as a power source for any external components.  
(2) The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the RTC_KALDO_ENn terminal is high.  
(3) The CAP_VDDS1P8V_IOLDO terminal is the output of the IO LDO and required for simplified power sequencing. For more details, see  
5-8. If simplified power sequencing is not used, this terminal can be left floating.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
121  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5-2 shows an example of the external capacitors.  
Device  
VDDS_PLL_MPU  
CVDDS_PLL_MPU  
MPU  
PLL  
VDD_MPU  
CVDD_MPU  
EXTDEV  
PLL  
MPU  
VDDS_PLL_CORE_LCD  
CVDDS_PLL_CORE_LCD  
CORE  
PLL  
LCD  
PLL  
VDD_CORE  
CORE  
CAP_VBB_MPU  
CCAP_VBB_MPU  
CVDD_CORE  
VDDS  
IO  
CVDDS  
VDDS_SRAM_MPU_BB  
CVDDS_SRAM_MPU_BB  
VDDSHV1  
IOs  
MPU SRAM  
LDO  
CVDDSHV1  
Back Bias  
LDO  
CAP_VDD_SRAM_MPU  
CCAP_VDD_SRAM_MPU  
VDDSHV2  
IOs  
CVDDSHV2  
CVDDSHV3  
VDDS_SRAM_CORE_BG  
CVDDS_SRAM_CORE_BG  
VDDSHV3  
IOs  
CORE SRAM  
LDO  
Band Gap  
Reference  
CAP_VDD_SRAM_CORE  
CCAP_VDD_SRAM_CORE  
VDDSHV5  
IOs  
CVDDSHV5  
CVDDSHV6  
VDDA_3P3V_USB0  
CVDDA_3P3V_USB0  
VDDSHV6  
IOs  
VSSA_USB  
USBPHY0  
VDDA_1P8V_USB0  
VDDSHV7  
IOs  
CVDDSHV7  
CVDDSHV8  
CVDDSHV9  
CVDDSHV10  
PER PLL  
CVDDA_1P8V_USB0  
VSSA_USB  
VDDSHV8  
IOs  
VDDA_3P3V_USB1  
CVDDA_3P3V_USB1  
VDDSHV9  
IOs  
VSSA_USB  
USBPHY1  
VDDA_1P8V_USB1  
CVDDA_1P8V_USB1  
VDDSHV10  
IOs  
VSSA_USB  
VDDA_ADC0  
CVDDA_ADC0  
VDDSHV11  
IOs  
ADC0  
CVDDSHV11  
CVDDS_DDR  
VSSA_ADC  
VDDA_ADC1  
VDDS_DDR  
IOs  
CVDDA_ADC1  
ADC1  
VDDS_OSC  
RTC  
VSSA_ADC  
VDDS_RTC  
IOs  
CVDDS_RTC  
CVDDS_OSC  
VDDS_PLL_DDR  
CVDDS_PLL_DDR  
CAP_VDD_RTC  
CCAP_VDD_RTC  
DDR  
PLL  
VDDS3P3V_  
IOLDO  
CAP_VDDS1P8V_IOLDO  
A. Decoupling capacitors must be placed as closed as possible to the power terminal. Choose the ground closest to the  
power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor and  
then interconnect the powers.  
B. The decoupling capacitor value depends on the board characteristics.  
5-2. External Capacitors  
122  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13 Timing and Switching Characteristics  
The data provided in the following timing requirements and switching characteristics tables assumes the  
device is operating within the recommended operating conditions defined in Section 5.5, unless otherwise  
noted.  
5.13.1 Power Supply Sequencing  
5.13.1.1 Power Supply Slew Rate Requirement  
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the  
maximum slew rate of supplies to be less than 1.0E + 5 V/s. For instance, as shown in 5-3, TI  
recommends having the supply ramp slew for a 1.8-V supply of more than 18 µs.  
Supply value  
t
slew rate < 1E + 5 V/s  
slew > (supply value) / (1E + 5V/s)  
supply value ´ 10 µs  
0
5-3. Power Supply Slew and Slew Rate  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
123  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.1.2 Power-Up Sequencing  
1.8V  
1.8V  
VDDS_RTC(A)  
RTC_PWRONRSTn(B)  
RTC_PMIC_EN  
1.8V  
1.8V  
1.8V  
VDDS,  
VDDS_CLKOUT  
VDDS_OSC, VDDA_ADC0/1, VDDS_PLL_DDR,  
VDDS_PLL_CORE_LCD, VDDS_PLL_MPU,  
VDDS_SRAM_MPU_BB,  
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(C)  
1.2V/1.35V/1.5V  
VDDS_DDR  
3.3V  
1.1V  
1.1V  
VDDSHVx [x=1-11]  
VDDA3P3V_USB0/1  
VDD_CORE(D)  
VDD_MPU(D)  
CLK_32K_RTC  
CLK_M_OSC  
PWRONRSTn  
1.8V/3.3V(E)  
(F)  
A. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.  
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If  
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE.  
VDDS_RTC can be ramped independent of other supplies if RTC_PMIC_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE when internal RTC LDO is enabled, there might be a small amount of  
leakage current on VDD_CORE.  
B. RTC_PWRONRSTn should be asserted for at least 1 ms and can be released before the 32-kHz clock is stable.  
C. These supplies can be ramped together with VDDS, VDDS_CLKOUT supplies if powered from the same source only.  
If a USB port is not used, the respective VDDA1P8V_USB may be connected to any 1.8-V power supply and the  
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-  
V supply, the VDDA3P3V_USB may be connected to ground.  
D. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.  
E. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.  
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,  
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input  
terminal, see Section 5.7.  
F. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock  
CLK_M_OSC is stable.  
5-4. Power Sequencing With RTC Feature Enabled, All Dual-Voltage IOs Configured as 3.3 V  
124  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1.8V  
1.8V  
VDDS_RTC(A)  
RTC_PWRONRSTn(B)  
1.8V  
1.8V  
1.8V  
RTC_PMIC_EN  
VDDS, VDDSHVx [x=1-11]  
VDDS_CLKOUT  
VDDS_OSC, VDDA_ADC0/1, VDDS_PLL_DDR,  
VDDS_PLL_CORE_LCD, VDDS_PLL_MPU,  
VDDS_SRAM_MPU_BB,  
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(C)  
1.2V/1.35V/1.5V  
VDDS_DDR  
3.3V  
1.1V  
1.1V  
VDDA3P3V_USB0/1  
VDD_CORE(D)  
VDD_MPU(D)  
CLK_32K_RTC  
CLK_M_OSC  
PWRONRSTn  
1.8V  
(E)  
A. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.  
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If  
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE.  
B. RTC_PWRONRSTn should be asserted for at least 1 ms and can be released before the 32-kHz clock is stable.  
C. These supplies can be ramped together with the VDDS, VDDSHVx [x=1-11], VDDS_CLKOUT supplies if powered  
from the same source.  
If a USB port is not used, the respective VDDA1P8V_USB may be connected to any 1.8-V power supply and the  
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-  
V supply, the VDDA3P3V_USB may be connected to ground.  
D. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.  
E. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock  
CLK_M_OSC is stable.  
5-5. Power Sequencing With RTC Feature Enabled, All Dual-Voltage IOs Configured as 1.8 V  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
125  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
1.8V  
1.8V  
VDDS_RTC(A)  
RTC_PWRONRSTn(B)  
RTC_PMIC_EN  
1.8V  
1.8V  
1.8V  
VDDS,  
VDDS_CLKOUT  
VDDSHVx [x=1-11]  
VDDS_OSC, VDDA_ADC0/1, VDDS_PLL_DDR,  
VDDS_PLL_CORE_LCD, VDDS_PLL_MPU,  
VDDS_SRAM_MPU_BB,  
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(C)  
1.2V/1.35V/1.5V  
VDDS_DDR  
3.3V  
1.1V  
1.1V  
VDDSHVx [x=1-11]  
VDDA3P3V_USB0/1  
VDD_CORE(D)  
VDD_MPU(D)  
CLK_32K_RTC  
CLK_M_OSC  
PWRONRSTn  
1.8V/3.3V(E)  
(F)  
A. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.  
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If  
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE.  
B. RTC_PWRONRSTn should be asserted for at least 1 ms and can be released before the 32-kHz clock is stable.  
C. These supplies can be ramped together with the VDDS, VDDSHVx [x=1-11], VDDS_CLKOUT supplies if powered  
from the same source.  
If a USB port is not used, the respective VDDA1P8V_USB may be connected to any 1.8-V power supply and the  
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-  
V supply, the VDDA3P3V_USB may be connected to ground.  
D. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.  
E. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.  
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,  
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input  
terminal, see Section 5.7.  
F. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock  
CLK_M_OSC is stable.  
5-6. Power Sequencing With RTC Feature Enabled, Dual-Voltage IOs Configured as 1.8 V, 3.3 V  
126  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1.8V  
VDDS,  
VDDS_CLKOUT  
VDDSHVx [x=1-11]  
1.8V  
VDDS_RTC, VDDS_OSC, VDDA_ADC0/1,  
VDDS_PLL_DDR, VDDS_PLL_CORE_LCD,  
VDDS_PLL_MPU, VDDS_SRAM_MPU_BB,  
(A)  
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1  
1.2V/1.35V/1.5V  
VDDS_DDR  
3.3V  
1.1V  
1.1V  
VDDSHVx [x=1-11]  
VDDA3P3V_USB0/1  
(B)  
VDD_CORE  
,
(C)  
CAP_VDD_RTC  
(B)  
VDD_MPU  
CLK_M_OSC  
(D)  
1.8V/3.3V  
(E)  
PWRONRSTn  
A. These supplies can be ramped together with the VDDS, VDDSHVx [x=1-11], VDDS_CLKOUT supplies if powered  
from the same source.  
If a USB port is not used, the repsective VDDA1P8V_USB may be connected to any 1.8-V power supply and the  
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-  
V supply, the VDDA3P3V_USB may be connected to ground.  
B. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.  
C. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.  
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If  
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE.  
VDDS_RTC can be ramped independent of other supplies if RTC_PMIC_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE when internal RTC LDO is enabled, there might be a small amount of  
leakage current on VDD_CORE.  
D. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.  
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,  
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input  
terminal, see Section 5.7.  
E. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock  
CLK_M_OSC is stable.  
5-7. Power Sequencing With RTC Feature Disabled, Dual-Voltage IOs Configured as 1.8 V, 3.3 V  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
127  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
3.3V  
VDDS3P3V_IOLDO,  
VDDSHVx [x=1-11]  
(A)  
VDDA3P3V_USB0/1  
1.8V  
VDDS_RTC, VDDS_OSC, VDDA_ADC0/1,  
VDDS_PLL_DDR, VDDS_PLL_CORE_LCD,  
VDDS_PLL_MPU, VDDS_SRAM_MPU_BB,  
(B)  
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1  
1.2V/1.35V/1.5V  
VDDS_DDR  
1.1V  
(C)  
VDD_CORE  
(D)  
CAP_VDD_RTC  
1.1V  
(C)  
VDD_MPU  
CLK_M_OSC  
(E)  
1.8V/3.3V  
(F)  
PWRONRSTn  
A. Power source supplying VDDS3P3V_IOLDO should have a supply slew of >100us.  
CAP_VDDS1P8V_IOLDO is the 1.8-V output of VDDA3P3V_IOLDO. VDDS, VDDS_CLKOUT terminals are powered  
by shorting them to CAP_VDDS1P8V_IOLDO on the board.  
B. If a USB port is not used, the repsective VDDA1P8V_USB may be connected to any 1.8-V power supply and the  
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-  
V supply, the VDDA3P3V_USB may be connected to ground.  
C. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.  
D. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.  
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If  
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE.  
VDDS_RTC can be ramped independent of other supplies if RTC_PMIC_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE when internal RTC LDO is enabled, there might be a small amount of  
leakage current on VDD_CORE.  
E. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.  
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,  
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input  
terminal, see Section 5.7.  
F. The PWRONRSTn terminal must be held low until all the supplies have ramped and the input clock CLK_M_OSC is  
stable.  
5-8. Simplified Power Sequencing With RTC Feature Disabled, Dual-Voltage IOs  
Configured as 3.3 V  
128  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.1.3 Power-Down Sequencing  
PWRONRSTn input terminal should be taken low, which stops all internal clocks before power supplies  
are turned off. All other external clocks to the device should be shut off.  
The preferred way to sequence power down is to have all the power supplies ramped down sequentially in  
the exact reverse order of the power-up sequencing. In other words, the power supply that has been  
ramped up first should be the last one that is ramped down. This ensures there would be no spurious  
current paths during the power-down sequence. The VDDS, VDDS_CLKOUT power supply must ramp  
down after all 3.3-V VDDSHVx [x=1-11] power supplies.  
If it is desired to ramp down VDDS, VDDS_CLKOUT and VDDSHVx [x=1-11] simultaneously, it should  
always be ensured that the difference between VDDS, VDDS_CLKOUT and VDDSHVx [x=1-11] during  
the entire power-down sequence is <2 V. Any violation of this could cause reliability risks for the device.  
Further, it is recommended to maintain VDDS, VDDS_CLKOUT 1.5V as all the other supplies fully ramp  
down to minimize in-rush currents.  
If none of the VDDSHVx [x=1-11] power supplies are configured as 3.3 V, the VDDS, VDDS_CLKOUT  
power supply may ramp down along with the VDDSHVx [x=1-11] supplies or after all the VDDSHVx [x=1-  
11] supplies have ramped down. TI recommends maintaining VDDS, VDDS_CLKOUT 1.5V as all the  
other supplies fully ramp down to minimize in-rush currents.  
When using simplified power-down sequence, there are no power-down requirements between the VDDS,  
VDDS_CLKOUT and VDDSHVx [x=1-11] supplies and are ramped down together without any reliability  
concerns.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
129  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.2 Clock  
5.13.2.1 PLLs  
5.13.2.1.1 Digital Phase-Locked Loop Power Supply Requirements  
The digital phase-locked loop (DPLL) provides all interface clocks and functional clocks to the processor  
of the device. The device integrates six different DPLLs:  
Core DPLL  
Per DPLL  
Display DPLL  
DDR DPLL  
MPU DPLL  
EXTDEV DPLL  
5-9 shows the power supply connectivity implemented in the device. 5-12 provides the power supply  
requirements for the DPLL.  
MPU  
PLL  
PER  
PLL  
VDDS_PLL_MPU  
VDDA1P8V_USB0  
CORE  
PLL  
DDR  
PLL  
VDDS_PLL_DDR  
EXTDEV  
PLL  
VDDS_PLL_CORE_LCD  
LCD  
PLL  
5-9. DPLL Power Supply Connectivity  
5-12. DPLL Power Supply Requirements  
SUPPLY NAME  
DESCRIPTION  
MIN NOM MAX  
UNIT  
VDDA1P8V_USB0  
Supply voltage range for USBPHY and PER DPLL, Analog, 1.8V  
Max. peak-to-peak supply noise  
1.71 1.8  
1.71 1.8  
1.71 1.8  
1.71 1.8  
1.89  
V
50 mV (p-p)  
VDDS_PLL_MPU  
Supply voltage range for DPLL MPU, Analog  
Max. peak-to-peak supply noise  
1.89  
V
50 mV (p-p)  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
Supply voltage range for DPLL CORE, EXTDEV, and LCD, Analog  
Max. peak-to-peak supply noise  
1.89  
V
50 mV (p-p)  
Supply voltage range for DPLL DDR, Analog  
Max. peak-to-peak supply noise  
1.89  
V
50 mV (p-p)  
130  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.2.2 Input Clock Specifications  
The device has two clock inputs. Each clock input passes through an internal oscillator which can be  
connected to an external crystal circuit (oscillator mode) or external LVCMOS square-wave digital clock  
source (bypass mode). The oscillators automatically operate in bypass mode when their input is  
connected to an external LVCMOS square-wave digital clock source. The oscillator associated with a  
specific clock input must be enabled when the clock input is being used in either oscillator mode or bypass  
mode.  
The OSC1 oscillator provides a 32.768-kHz reference clock to the real-time clock (RTC) and is connected  
to the RTC_XTALIN and RTC_XTALOUT terminals. This clock source is referred to as the 32K oscillator  
(CLK_32K_RTC) in the device-specific technical reference manual. OSC1 is disabled by default after  
power is applied. This clock input is optional and may not be required if the RTC is configured to receive a  
clock from the internal 32k RC oscillator (CLK_RC32K) or peripheral PLL (CLK_32KHZ) which receives a  
reference clock from the OSC0 input.  
The OSC0 oscillator provides a 19.2-MHz, 24-MHz, 25-MHz, or 26-MHz reference clock which is used to  
clock all non-RTC functions and is connected to the XTALIN and XTALOUT terminals. This clock source is  
referred to as the master oscillator (CLK_M_OSC) in the device-specific technical reference manual.  
OSC0 is enabled by default after power is applied.  
For more information related to recommended circuit topologies and crystal oscillator circuit requirements  
for these clock inputs, see 5.13.2.3.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
131  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.2.3 Input Clock Requirements  
5.13.2.3.1 OSC0 Internal Oscillator Clock Source  
5-10 shows the recommended crystal circuit. It is recommended that preproduction printed-circuit board  
(PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper oscillator  
operation when combined with production crystal circuit components. In most cases, Rbias is not required  
and Rd is a 0-Ω resistor. These resistors may be removed from production PCB designs after evaluating  
oscillator performance with production crystal circuit components installed on preproduction PCBs.  
The XTALIN terminal has a 15-kΩ to 40-kΩ internal pulldown resistor which is enabled when OSC0 is  
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which  
may increase leakage current through the oscillator input buffer.  
Device  
XTALIN  
VSS_OSC  
XTALOUT  
C1  
C2  
Optional Rd  
Crystal  
Optional Rbias  
Copyright © 2016, Texas Instruments Incorporated  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the package. Parasitic  
capacitance to the printed circuit board (PCB) ground and other signals should be minimized to reduce noise coupled  
into the oscillator. The external crystal component grounds should be connected to the VSS_OSC terminal. The  
VSS_OSC terminal should be connected to the PCB ground plane as close as possible to the device.  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL  
=
[(C1×C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer  
plus any mutual capacitance (Cpkg + CPCB) seen across the XTALIN and XTALOUT signals. For recommended values  
of crystal circuit components, see 5-13.  
5-10. OSC0 Crystal Circuit Schematic  
132  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5-13. OSC0 Crystal Circuit Requirements  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Crystal parallel resonance  
frequency  
Fundamental mode oscillation only  
19.2, 24.0,  
25.0, or  
26.0  
MHz  
fxtal  
Crystal frequency stability  
and tolerance  
–50.0  
50.0  
ppm  
CC1  
C1 capacitance  
C2 capacitance  
Shunt capacitance  
12.0  
12.0  
24.0  
24.0  
5.0  
pF  
pF  
pF  
CC2  
Cshunt  
Crystal effective series  
resistance  
fxtal = 19.2 MHz, oscillator has nominal  
negative resistance of 272 Ω and worst-  
case negative resistance of 163 Ω  
54.4  
fxtal = 24.0 MHz, oscillator has nominal  
negative resistance of 240 Ω and worst-  
case negative resistance of 144 Ω  
48.0  
46.6  
45.3  
ESR  
Ω
fxtal = 25.0 MHz, oscillator has nominal  
negative resistance of 233 Ω and worst-  
case negative resistance of 140 Ω  
fxtal = 26.0 MHz, oscillator has nominal  
negative resistance of 227 Ω and worst-  
case negative resistance of 137 Ω  
5-14. OSC0 Crystal Circuit Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Shunt capacitance of  
package  
ZDN package  
0.01  
Cpkg  
pF  
The actual values of the ESR, fxtal, and CL should be used to yield a  
typical crystal power dissipation value. Using the maximum values  
specified for ESR, fxtal, and CL parameters yields a maximum power  
dissipation value.  
Pxtal = 0.5 ESR (2 π fxtal  
CL VDDS_OSC)2  
Pxtal  
tsX  
Start-up time  
1.5  
ms  
VDD_CORE (min.)  
VDD_CORE  
VSS  
VDDS_OSC (min.)  
VDDS_OSC  
XTALOUT  
VSS  
tsX  
Time  
5-11. OSC0 Start-up Time  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
133  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.2.3.2 OSC0 LVCMOS Digital Clock Source  
5-12 shows the recommended oscillator connections when OSC0 is connected to an LVCMOS square-  
wave digital clock source. The LVCMOS clock source is connected to the XTALIN terminal. In this mode  
of operation, the XTALOUT terminal should not be used to source any external components. The printed  
circuit board design should provide a mechanism to disconnect the XTALOUT terminal from any external  
components or signal traces that may couple noise into OSC0 via the XTALOUT terminal.  
The XTALIN terminal has a 15-kΩ to 40-kΩ internal pulldown resistor which is enabled when OSC0 is  
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which  
may increase leakage current through the oscillator input buffer.  
Device  
XTALIN  
VSS_OSC  
XTALOUT  
VDDS_OSC  
LVCMOS  
Digital  
Clock  
Source  
Copyright © 2016, Texas Instruments Incorporated  
5-12. OSC0 LVCMOS Circuit Schematic  
5-15. OSC0 LVCMOS Reference Clock Requirements  
NAME  
f(XTALIN)  
DESCRIPTION  
Frequency, LVCMOS reference clock  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
19.2, 24, 25,  
or 26  
Frequency, LVCMOS reference clock stability and tolerance(1)  
Duty cycle, LVCMOS reference clock period  
Jitter peak-to-peak, LVCMOS reference clock period  
Time, LVCMOS reference clock rise  
–50  
45%  
–1%  
50  
55%  
1%  
5
tdc(XTALIN)  
tjpp(XTALIN)  
tR(XTALIN)  
tF(XTALIN)  
ns  
ns  
Time, LVCMOS reference clock fall  
5
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.  
134  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.2.3.3 OSC1 Internal Oscillator Clock Source  
5-13 shows the recommended crystal circuit for OSC1 of the package. It is recommended that pre-  
production printed circuit board (PCB) designs include the two optional resistors Rbias and Rd in case they  
are required for proper oscillator operation when combined with production crystal circuit components. In  
most cases, Rbias is not required and Rd is a 0-Ω resistor. These resistors may be removed from  
production PCB designs after evaluating oscillator performance with production crystal circuit components  
installed on preproduction PCBs.  
The RTC_XTALIN terminal has a 10-kΩ to 40-kΩ internal pullup resistor which is enabled when OSC1 is  
disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level  
which may increase leakage current through the oscillator input buffer.  
Device  
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
Optional Rbias  
Optional Rd  
Crystal  
C1  
C2  
Copyright © 2016, Texas Instruments Incorporated  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the package. Parasitic  
capacitance to the printed circuit board (PCB) ground and other signals should be minimized to reduce noise coupled  
into the oscillator.  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL  
=
[(C1×C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer  
plus any mutual capacitance (Cpkg + CPCB) seen across the RTC_XTALIN and RTC_XTALOUT signals. For  
recommended values of crystal circuit components, see 5-16.  
5-13. OSC1 Crystal Circuit Schematic  
5-16. OSC1 Crystal Circuit Requirements  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Crystal parallel resonance  
frequency  
Fundamental mode oscillation only  
32.768  
kHz  
Crystal frequency stability  
and tolerance  
Maximum RTC error = 10.512 minutes  
per year  
–20.0  
–50.0  
20.0  
50.0  
fxtal  
ppm  
ppm  
Maximum RTC error = 26.28 minutes per  
year  
CC1  
C1 capacitance  
C2 capacitance  
Shunt capacitance  
12.0  
12.0  
24.0  
24.0  
1.5  
pF  
pF  
pF  
CC2  
Cshunt  
Crystal effective series  
resistance  
fxtal = 32.768 kHz, oscillator has nominal  
negative resistance of 725 kΩ and worst-  
case negative resistance of 250 kΩ  
80  
ESR  
kΩ  
5-17. OSC1 Crystal Circuit Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Shunt capacitance of  
package  
ZDN package  
0.17  
Cpkg  
pF  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
135  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5-17. OSC1 Crystal Circuit Characteristics (continued)  
NAME  
Pxtal  
tsX  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
The actual values of the ESR, fxtal, and CL should be used to yield a  
typical crystal power dissipation value. Using the maximum values  
specified for ESR, fxtal, and CL parameters yields a maximum power  
dissipation value.  
Pxtal = 0.5 ESR (2 π fxtal  
CL VDDS_RTC)2  
Start-up time  
2
s
CAP_VDD_RTC (min.)  
CAP_VDD_RTC  
VSS_RTC  
VDDS_RTC (min.)  
VDDS_RTC  
RTC_XTALOUT  
VSS_RTC  
tsX  
Time  
5-14. OSC1 Start-up Time  
136  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.2.3.4 OSC1 LVCMOS Digital Clock Source  
5-15 shows the recommended oscillator connections when OSC1 of the package is connected to an  
LVCMOS square-wave digital clock source. The LVCMOS clock source is connected to the RTC_XTALIN  
terminal. In this mode of operation, the RTC_XTALOUT terminal should not be used to source any  
external components. The printed circuit board design should provide a mechanism to disconnect the  
RTC_XTALOUT terminal from any external components or signal traces that may couple noise into OSC1  
via the RTC_XTALOUT terminal.  
The RTC_XTALIN terminal has a 10-kΩ to 40-kΩ internal pullup resistor which is enabled when OSC1 is  
disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level  
which may increase leakage current through the oscillator input buffer.  
Device  
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
VDDS_RTC  
LVCMOS  
Digital  
Clock  
N/C  
Source  
Copyright © 2016, Texas Instruments Incorporated  
5-15. OSC1 LVCMOS Circuit Schematic  
5-18. OSC1 LVCMOS Reference Clock Requirements  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Frequency, LVCMOS reference clock  
32.768  
kHz  
Maximum RTC error =  
10.512 minutes/year  
–20  
–50  
20  
50  
ppm  
ppm  
f(RTC_XTALIN)  
Frequency, LVCMOS reference clock  
stability and tolerance(1)  
Maximum RTC error = 26.28  
minutes/year  
tdc(RTC_XTALIN)  
tjpp(RTC_XTALIN)  
tR(RTC_XTALIN)  
tF(RTC_XTALIN)  
Duty cycle, LVCMOS reference clock period  
45%  
–1%  
55%  
1%  
5
Jitter peak-to-peak, LVCMOS reference clock period  
Time, LVCMOS reference clock rise  
ns  
ns  
Time, LVCMOS reference clock fall  
5
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.  
5.13.2.3.5 OSC1 Not Used  
5-16 shows the recommended oscillator connections when OSC1 is not used. An internal 10-kΩ pullup  
on the RTC_XTALIN terminal is turned on when OSC1 is disabled to prevent this input from floating to an  
invalid logic level which may increase leakage current through the oscillator input buffer. OSC1 is disabled  
by default after power is applied. Therefore, both RTC_XTALIN and RTC_XTALOUT terminals should be  
a no connect (NC) when OSC1 is not used.  
For more information on disabling OSC1, see the device-specific technical reference manual.  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
137  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Device  
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
N/C  
N/C  
Copyright © 2016, Texas Instruments Incorporated  
5-16. OSC1 Not Used Schematic  
5.13.2.4 Output Clock Specifications  
The device has two clock output signals. The CLKOUT1 signal can be configured to output the master  
oscillator (CLK_M_OSC), EXTDEV_PLL, 32-kHz, or several other internal clocks. See the device-specific  
TRM for more details. The CLKOUT2 signal can be configured to output the OSC1 input clock, which is  
referred to as the 32K oscillator (CLK_32K_RTC) in the device-specific technical reference manual, or four  
other internal clocks. For more information related to configuring these clock output signals, see the  
CLKOUT Signals section of the device-specific technical reference manual.  
5.13.2.5 Output Clock Characteristics  
5.13.2.5.1 CLKOUT1  
The CLKOUT1 signal can be output on the XDMA_EVENT_INTR0 terminal. This terminal connects to one  
of seven internal signals through configurable multiplexers. The XDMA_EVENT_INTR0 multiplexer must  
be configured for Mode 3 to connect the CLKOUT1 signal to the XDMA_EVENT_INTR0 terminal.  
The default reset configuration of the XDMA_EVENT_INTR0 multiplexer is selected by the logic level  
applied to the DSS_HSYNC terminal on the rising edge of PWRONRSTn. The XDMA_EVENT_INTR0  
multiplexer is configured to Mode 7 if the DSS_HSYNC terminal is low on the rising edge of PWRONRSTn  
or Mode 3 if the DSS_HSYNC terminal is high on the rising edge of PWRONRSTn. This allows the  
CLKOUT1 signal to be output on the XDMA_EVENT_INTR0 terminal without software intervention. In this  
mode, the output is held low while PWRONRSTn is active and begins to toggle after PWRONRSTn is  
released.  
5.13.2.5.2 CLKOUT2  
The CLKOUT2 signal can be output on the XDMA_EVENT_INTR1 terminal. This terminal connects to one  
of seven internal signals through configurable multiplexers. The XDMA_EVENT_INTR1 multiplexer must  
be configured for Mode 3 to connect the CLKOUT2 signal to the XDMA_EVENT_INTR1 terminal.  
The default reset configuration of the XDMA_EVENT_INTR1 multiplexer is always Mode 7. Software must  
configure the XDMA_EVENT_INTR1 multiplexer to Mode 3 for the CLKOUT2 signal to be output on the  
XDMA_EVENT_INTR1 terminal.  
5.13.3 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data manual do not include delays by board routings. As a  
good board design practice, such delays must always be taken into account. Timing values may be  
adjusted by increasing or decreasing such delays. TI recommends using the available IO buffer  
information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external  
logic hardware such as buffers may be used to compensate any timing differences.  
The timing parameter values specified in this data manual assume the SLEWCTRL bit in each pad control  
register is configured for fast mode (0b).  
138  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
For the LPDDR2, DDR3, and DDR3L memory interfaces, it is not necessary to use the IBIS models to  
analyze timing characteristics. TI provides a PCB routing rules solution that describes the routing rules to  
ensure the memory interface timings are met.  
5.13.4 Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
139  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.5 Controller Area Network (CAN)  
For more information, see the Controller Area Network (CAN) section of the AM437x Sitara Processors  
Technical Reference Manual.  
5.13.5.1 DCAN Electrical Data and Timing  
Table 5-19. Timing Requirements for DCANx Receive  
(see Figure 5-17)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
1
MAX  
1
fbaud(baud)  
tw(RX)  
Maximum programmable baud rate  
Pulse duration, receive data bit  
Mbps  
ns  
1
H - 2(1)  
H + 2(1)  
H + 2(1)  
H + 2(1)  
(1) H = period of baud rate, 1/programmed baud rate.  
Table 5-20. Switching Characteristics for DCANx Transmit  
(see Figure 5-17)  
NO.  
OPP100  
OPP50  
PARAMETER  
UNIT  
MIN  
MAX  
1
MIN  
MAX  
1
fbaud(baud)  
Maximum programmable baud rate  
Pulse duration, transmit data bit  
Mbps  
ns  
2
tw(TX)  
H - 2(1)  
H + 2(1)  
H - 2(1)  
H + 2(1)  
(1) H = period of baud rate, 1/programmed baud rate.  
1
2
DCANx_RX  
DCANx_TX  
Figure 5-17. DCANx Timings  
140  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.6 DMTimer  
5.13.6.1 DMTimer Electrical Data and Timing  
Table 5-21. Timing Requirements for DMTimer [1-11]  
(see Figure 5-18)  
NO.  
MIN  
4P+1(1)  
MAX  
MAX  
UNIT  
1
tc(TCLKIN)  
Cycle time, TCLKIN  
ns  
(1) P = period of PICLKOCP (interface clock).  
Table 5-22. Switching Characteristics for DMTimer [4-7]  
(see Figure 5-18)  
NO.  
PARAMETER  
MIN  
4P-3(1)  
4P-3(1)  
UNIT  
ns  
2
3
tw(TIMERxH)  
tw(TIMERxL)  
Pulse duration, high  
Pulse duration, low  
ns  
(1) P = period of PICLKTIMER (functional clock).  
1
TCLKIN  
2
3
TIMER[x]  
Figure 5-18. Timer Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
141  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.7 Ethernet Media Access Controller (EMAC) and Switch  
5.13.7.1 Ethernet MAC and Switch Electrical Data and Timing  
The Ethernet MAC and Switch implemented in the device supports GMII mode, but the design does not  
pin out 9 of the 24 GMII signals. This was done to reduce the total number of package terminals.  
Therefore, the device does not support GMII mode. MII mode is supported with the remaining GMII  
signals.  
The AM437x Sitara Processors Technical Reference Manual and this document may reference internal  
signal names when discussing peripheral input and output signals because many of the package terminals  
can be multiplexed to one of several peripheral signals. For example, the terminal names for port 1 of the  
Ethernet MAC and switch have been changed from GMII to MII to indicate their Mode 0 function, but the  
internal signal is named GMII. However, documents that describe the Ethernet switch reference these  
signals by their internal signal name. For a cross-reference of internal signal names to terminal names,  
see Table 4-7.  
Operation of the Ethernet MAC and switch in RGMII mode is not supported for OPP50.  
Table 5-23. Ethernet MAC and Switch Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
5(1)  
5(1)  
ns  
ns  
Output Condition  
CLOAD Output load capacitance  
3
30  
pF  
(1) Except when specified otherwise.  
5.13.7.1.1 Ethernet MAC/Switch MDIO Electrical Data and Timing  
Table 5-24. Timing Requirements for MDIO_DATA  
(see Figure 5-19)  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tsu(MDIO-MDC) Setup time, MDIO valid before MDC high  
90  
0
2
th(MDIO-MDC)  
Hold time, MDIO valid from MDC high  
ns  
1
2
MDIO_CLK (Output)  
MDIO_DATA (Input)  
Figure 5-19. MDIO_DATA Timing - Input Mode  
Table 5-25. Switching Characteristics for MDIO_CLK  
(see Figure 5-20)  
NO.  
1
PARAMETER  
Cycle time, MDC  
MIN  
400  
160  
160  
TYP  
MAX  
UNIT  
ns  
tc(MDC)  
tw(MDCH)  
tw(MDCL)  
tt(MDC)  
2
Pulse duration, MDC high  
Pulse duration, MDC low  
Transition time, MDC  
ns  
3
ns  
4
5
ns  
142  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1
4
2
3
MDIO_CLK  
4
Figure 5-20. MDIO_CLK Timing  
Table 5-26. Switching Characteristics for MDIO_DATA  
(see Figure 5-21)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
1
td(MDC-MDIO)  
Delay time, MDC high to MDIO valid  
10  
390  
ns  
1
MDIO_CLK (Output)  
MDIO_DATA (Output)  
Figure 5-21. MDIO_DATA Timing - Output Mode  
5.13.7.1.2 Ethernet MAC and Switch MII Electrical Data and Timing  
Table 5-27. Timing Requirements for GMII[x]_RXCLK - MII Mode  
(see Figure 5-22)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(RX_CLK)  
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Cycle time, RX_CLK  
ns  
ns  
ns  
ns  
Pulse Duration, RX_CLK high  
Pulse Duration, RX_CLK low  
Transition time, RX_CLK  
140  
260  
14  
26  
5
5
1
4
2
3
GMII[x]_RXCLK  
4
Figure 5-22. GMII[x]_RXCLK Timing - MII Mode  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
143  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-28. Timing Requirements for GMII[x]_TXCLK - MII Mode  
(see Figure 5-23)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
1
2
3
4
tc(TX_CLK)  
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Cycle time, TX_CLK  
40.004  
ns  
ns  
ns  
ns  
Pulse Duration, TX_CLK high  
Pulse Duration, TX_CLK low  
Transition time, TX_CLK  
26  
26  
5
140  
260  
14  
5
1
4
2
3
GMII[x]_TXCLK  
4
Figure 5-23. GMII[x]_TXCLK Timing - MII Mode  
Table 5-29. Timing Requirements for GMII[x]_RXD[3:0], GMII[x]_RXDV, and GMII[x]_RXER - MII Mode  
(see Figure 5-24)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
tsu(RXD-RX_CLK)  
Setup time, RXD[3:0] valid before RX_CLK  
1
tsu(RX_DV-RX_CLK) Setup time, RX_DV valid before RX_CLK  
tsu(RX_ER-RX_CLK) Setup time, RX_ER valid before RX_CLK  
8
8
ns  
th(RX_CLK-RXD)  
Hold time RXD[3:0] valid after RX_CLK  
Hold time RX_DV valid after RX_CLK  
Hold time RX_ER valid after RX_CLK  
2
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
8
8
ns  
1
2
GMII[x]_MRCLK (Input)  
GMII[x]_RXD[3:0], GMII[x]_RXDV,  
GMII[x]_RXER (Inputs)  
Figure 5-24. GMII[x]_RXD[3:0], GMII[x]_RXDV, GMII[x]_RXER Timing - MII Mode  
144  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-30. Switching Characteristics for GMII[x]_TXD[3:0], and GMII[x]_TXEN - MII Mode  
(see Figure 5-25)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(TX_CLK-TXD)  
Delay time, TX_CLK high to TXD[3:0] valid  
Delay time, TX_CLK to TX_EN valid  
1
5
25  
5
25 ns  
td(TX_CLK-TX_EN)  
1
GMII[x]_TXCLK (input)  
GMII[x]_TXD[3:0],  
GMII[x]_TXEN (outputs)  
Figure 5-25. GMII[x]_TXD[3:0], GMII[x]_TXEN Timing - MII Mode  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
145  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.7.1.3 Ethernet MAC and Switch RMII Electrical Data and Timing  
Table 5-31. Timing Requirements for RMII[x]_REFCLK - RMII Mode  
(see Figure 5-26)  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
2
3
tc(REF_CLK)  
tw(REF_CLKH)  
tw(REF_CLKL)  
Cycle time, REF_CLK  
19.999  
20.001  
13  
Pulse Duration, REF_CLK high  
Pulse Duration, REF_CLK low  
7
7
ns  
13  
ns  
1
2
RMII[x]_REFCLK  
(Input)  
3
Figure 5-26. RMII[x]_REFCLK Timing - RMII Mode  
Table 5-32. Timing Requirements for RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER - RMII Mode  
(see Figure 5-27)  
NO.  
MIN  
TYP  
MAX  
UNIT  
tsu(RXD-REF_CLK)  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
Setup time, RXD[1:0] valid before REF_CLK  
Setup time, CRS_DV valid before REF_CLK  
Setup time, RX_ER valid before REF_CLK  
Hold time RXD[1:0] valid after REF_CLK  
Hold time, CRS_DV valid after REF_CLK  
Hold time, RX_ER valid after REF_CLK  
1
4
ns  
2
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
2
ns  
1
2
RMII[x]_REFCLK (input)  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RXER (inputs)  
Figure 5-27. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing - RMII Mode  
146  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-33. Switching Characteristics for RMII[x]_TXD[1:0], and RMII[x]_TXEN - RMII Mode  
(see Figure 5-28)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(REF_CLK-TXD)  
td(REF_CLK-TXEN)  
tr(TXD)  
Delay time, REF_CLK high to TXD[1:0] valid  
Delay time, REF_CLK to TXEN valid  
Rise time, TXD outputs  
1
2
14.2  
ns  
2
3
1
1
5
5
ns  
ns  
tr(TX_EN)  
Rise time, TX_EN output  
tf(TXD)  
Fall time, TXD outputs  
tf(TX_EN)  
Fall time, TX_EN output  
1
RMII[x]_REFCLK (Input)  
RMII[x]_TXD[1:0],  
RMII[x]_TXEN (Outputs)  
3
2
Figure 5-28. RMII[x]_TXD[1:0], RMII[x]_TXEN Timing - RMII Mode  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
147  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.7.1.4 Ethernet MAC and Switch RGMII Electrical Data and Timing  
Table 5-34. Timing Requirements for RGMII[x]_RCLK - RGMII Mode  
(see Figure 5-29)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
TYP  
NO.  
UNIT  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
1
2
tc(RXC)  
Cycle time, RXC  
360  
440  
36  
44  
7.2  
8.8 ns  
Pulse duration, RXC  
high  
tw(RXCH)  
160  
160  
240  
16  
16  
24  
3.6  
3.6  
4.4 ns  
3
4
tw(RXCL)  
tt(RXC)  
Pulse duration, RXC low  
Transition time, RXC  
240  
24  
4.4 ns  
0.75  
0.75  
0.75 ns  
1
4
2
4
3
RGMII[x]_RCLK  
Figure 5-29. RGMII[x]_RCLK Timing - RGMII Mode  
Table 5-35. Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL - RGMII Mode  
(see Figure 5-30)  
10 Mbps  
MIN TYP  
100 Mbps  
MIN TYP  
1000 Mbps  
MIN TYP  
NO.  
UNIT  
MAX  
MAX  
MAX  
Setup time, RD[3:0] valid  
before RXC high or low  
tsu(RD-RXC)  
tsu(RX_CTL-RXC)  
1
1
1
1
1
1
1
1
1
1
1
1
1
ns  
Setup time, RX_CTL valid  
before RXC high or low  
Hold time, RD[3:0] valid  
after RXC high or low  
th(RXC-RD)  
2
3
ns  
ns  
Hold time, RX_CTL valid  
after RXC high or low  
th(RXC-RX_CTL)  
tt(RD)  
Transition time, RD  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
tt(RX_CTL)  
Transition time, RX_CTL  
RGMII[x]_RCLK(A)  
1
1st Half-byte  
2
2nd Half-byte  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RCTL(B)  
RGRXD[3:0]  
RXDV  
RGRXD[7:4]  
3
A. RGMII[x]_RCLK must be externally delayed relative to the RGMII[x]_RD[3:0] and RGMII[x]_RCTL signals to meet the  
respective timing requirements.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the  
rising edge of RGMII[x]_RCLK and data bits 7-4 on the falling edge of RGMII[x]_RCLK. Similarly, RGMII[x]_RCTL  
carries RXDV on rising edge of RGMII[x]_RCLK and RXERR on falling edge of RGMII[x]_RCLK.  
Figure 5-30. RGMII[x]_RD[3:0], RGMII[x]_RCTL Timing - RGMII Mode  
148  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-36. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode  
(see Figure 5-31)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
8.8 ns  
1
2
tc(TXC)  
Cycle time, TXC  
360  
440  
36  
44  
7.2  
Pulse duration, TXC  
high  
tw(TXCH)  
160  
160  
240  
16  
16  
24  
3.6  
3.6  
4.4 ns  
3
4
tw(TXCL)  
tt(TXC)  
Pulse duration, TXC low  
Transition time, TXC  
240  
24  
4.4 ns  
0.75  
0.75  
0.75 ns  
1
4
2
4
3
RGMII[x]_TCLK  
Figure 5-31. RGMII[x]_TCLK Timing - RGMII Mode  
Table 5-37. Switching Characteristics for RGMII[x]_TD[3:0], and RGMII[x]_TCTL - RGMII Mode  
(see Figure 5-32)  
10 Mbps  
MIN TYP  
100 Mbps  
MIN TYP  
1000 Mbps  
MIN TYP  
NO.  
PARAMETER  
UNIT  
ns  
MAX  
0.5  
MAX  
0.5  
MAX  
0.5  
tsk(TD-TXC)  
TD to TXC output skew  
TX_CTL to TXC output skew  
Transition time, TD  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
1
tsk(TX_CTL-TXC)  
0.5  
0.5  
0.5  
tt(TD)  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
2
ns  
tt(TX_CTL)  
Transition time, TX_CTL  
RGMII[x]_TCLK(A)  
1
1
2
RGMII[x]_TD[3:0](B)  
RGMII[x]_TCTL(B)  
1st Half-byte  
2nd Half-byte  
TXERR  
TXEN  
A. The Ethernet MAC and switch implemented in the device supports internal TX delay mode.  
B. Data and control information is transmitted using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on  
the rising edge of RGMII[x]_TCLK and data bits 7-4 on the falling edge of RGMII[x]_TCLK. Similarly, RGMII[x]_TCTL  
carries TXEN on rising edge of RGMII[x]_TCLK and TXERR of falling edge of RGMII[x]_TCLK.  
Figure 5-32. RGMII[x]_TD[3:0], RGMII[x]_TCTL Timing - RGMII Mode  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
149  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8 External Memory Interfaces  
The device includes the following external memory interfaces:  
General-purpose memory controller (GPMC)  
LPDDR2, DDR3, and DDR3L Memory Interface (EMIF)  
5.13.8.1 General-Purpose Memory Controller (GPMC)  
NOTE  
For more information, see the Memory Subsystem and General-Purpose Memory Controller  
section of the AM437x Sitara Processors Technical Reference Manual.  
The GPMC is the unified memory controller used to interface external memory devices such as:  
Asynchronous SRAM-like memories and ASIC devices  
Asynchronous page mode and synchronous burst NOR flash  
NAND flash  
5.13.8.1.1 GPMC and NOR Flash—Synchronous Mode  
Table 5-39 and Table 5-40 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-33 through Figure 5-37).  
Table 5-38. GPMC and NOR Flash Timing Conditions—Synchronous Mode  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
0.3  
0.3  
1.8  
1.8  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
Table 5-39. GPMC and NOR Flash Timing Requirements—Synchronous Mode  
OPP100  
OPP50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
F12 tsu(dV-clkH)  
Setup time, input data gpmc_ad[15:0] valid before output clock  
gpmc_clk high  
3.5  
13.2  
ns  
F13 th(clkH-dV)  
Hold time, input data gpmc_ad[15:0] valid after output clock  
gpmc_clk high  
Setup time, input wait gpmc_wait[x](1) valid before output clock  
gpmc_clk high  
Hold time, input wait gpmc_wait[x](1) valid after output clock  
gpmc_clk high  
2.5  
3.5  
2.5  
2.75  
13.2  
2.5  
ns  
ns  
ns  
F21 tsu(waitV-clkH)  
F22 th(clkH-waitV)  
(1) In gpmc_wait[x], x is equal to 0 or 1.  
150  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-40. GPMC and NOR Flash Switching Characteristics—Synchronous Mode  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
100  
0.5P(2)  
0.5P(2)  
500  
33.33  
2
MIN  
MAX  
F0  
F1  
F1  
1 / tc(clk)  
Frequency(1), output clock gpmc_clk  
50 MHz  
tw(clkH)  
tw(clkL)  
tdc(clk)  
tJ(clk)  
Typical pulse duration, output clock gpmc_clk high  
Typical pulse duration, output clock gpmc_clk low  
Duty cycle error, output clock gpmc_clk  
Jitter standard deviation(3), output clock gpmc_clk  
Rise time, output clock gpmc_clk  
0.5P(2)  
0.5P(2)  
–500  
0.5P(2)  
0.5P(2)  
–500  
0.5P(2)  
0.5P(2)  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
500  
33.33  
tR(clk)  
2
tF(clk)  
Fall time, output clock gpmc_clk  
2
2
tR(do)  
Rise time, output data gpmc_ad[15:0]  
Fall time, output data gpmc_ad[15:0]  
2
2
2
tF(do)  
2
F2  
F3  
F4  
F5  
F6  
td(clkH-csnV)  
Delay time, output clock gpmc_clk rising edge to  
output chip select gpmc_csn[x](4) transition  
F(5) – 2.2 F(5) + 4.5  
F(5) – 3.2  
F(5) + 9.5  
td(clkH-csnIV)  
td(aV-clk)  
td(clkH-aIV)  
td(be[x]nV-clk)  
Delay time, output clock gpmc_clk rising edge to  
output chip select gpmc_csn[x](4) invalid  
E(6) – 2.2 E(6) + 4.5 E(6) – 3.2  
E(6) + 9.5  
ns  
ns  
ns  
ns  
Delay time, output address gpmc_a[27:1] valid to  
output clock gpmc_clk first edge  
B(7) – 4.5 B(7) + 3.1 B(7) – 5.5 B(7) + 13.1  
-2.3 4.5 -3.3 15.3  
B(7) - 1.9 B(7) + 2.3 B(7) – 2.9 B(7) + 12.3  
Delay time, output clock gpmc_clk rising edge to  
output address gpmc_a[27:1] invalid  
Delay time, output lower byte enable and command  
latch enable gpmc_be0n_cle, output upper byte  
enable gpmc_be1n valid to output clock gpmc_clk  
first edge  
F7  
td(clkH-be[x]nIV)  
Delay time, output clock gpmc_clk rising edge to  
output lower byte enable and command latch enable  
gpmc_be0n_cle, output upper byte enable  
gpmc_be1n invalid(8)  
D(9) – 2.3 D(9) + 1.9 D(9) – 3.3  
D(9) + 6.9  
ns  
F7  
F7  
F8  
td(clkL-be[x]nIV)  
td(clkL-be[x]nIV)  
td(clkH-advn)  
Delay time, gpmc_clk falling edge to  
gpmc_nbe0_cle, gpmc_nbe1 invalid(10)  
D(9) – 2.3 D(9) + 1.9 D(9) – 3.3  
D(9) + 6.9  
ns  
ns  
ns  
Delay time, gpmc_clk falling edge to  
gpmc_nbe0_cle, gpmc_nbe1 invalid(11)  
D(9) – 2.3 D(9) + 1.9 D(9) – 3.3 D(9) + 11.9  
G(12) – 2.3 G(12) + 4.5 G(12) – 3.3 G(12) + 9.5  
Delay time, output clock gpmc_clk rising edge to  
output address valid and address latch enable  
gpmc_advn_ale transition  
F9  
td(clkH-advnIV)  
Delay time, output clock gpmc_clk rising edge to  
output address valid and address latch enable  
gpmc_advn_ale invalid  
D(9) – 2.3 D(9) + 4.5 D(9) – 3.3  
D(9) + 9.5  
ns  
F10  
F11  
F14  
F15  
F15  
F15  
F17  
td(clkH-oen)  
td(clkH-oenIV)  
td(clkH-wen)  
td(clkH-do)  
Delay time, output clock gpmc_clk rising edge to  
output enable gpmc_oen transition  
H(13) – 2.3 H(13) + 3.5 H(13) – 3.3  
H(13) – 2.3 H(13) + 3.5 H(13) – 3.3  
I(14) – 2.3 I(14) + 4.5 I(14) – 3.3  
J(15) – 2.3 J(15) + 2.7 J(15) – 3.3  
H(13) + 8.5  
H(13) + 8.5  
I(14) + 9.5  
J(15) + 7.7  
J(15) + 7.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, output clock gpmc_clk rising edge to  
output enable gpmc_oen invalid  
Delay time, output clock gpmc_clk rising edge to  
output write enable gpmc_wen transition  
Delay time, output clock gpmc_clk rising edge to  
output data gpmc_ad[15:0] transition(8)  
td(clkL-do)  
Delay time, gpmc_clk falling edge to gpmc_ad[15:0] J(15) – 2.3 J(15) + 2.7 J(15) – 3.3  
data bus transition(10)  
td(clkL-do)  
Delay time, gpmc_clk falling edge to gpmc_ad[15:0] J(15) – 2.3 J(15) + 2.7 J(15) – 3.3 J(15) + 12.7  
data bus transition(11)  
td(clkH-be[x]n)  
Delay time, output clock gpmc_clk rising edge to  
output lower byte enable and command latch enable  
gpmc_be0n_cle transition(8)  
J(15) – 2.3 J(15) + 1.9 J(15) – 3.3  
J(15) + 6.9  
F17  
F17  
td(clkL-be[x]n)  
td(clkL-be[x]n)  
Delay time, gpmc_clk falling edge to  
J(15) – 2.3 J(15) + 1.9 J(15) – 3.3  
J(15) + 6.9  
ns  
ns  
gpmc_nbe0_cle, gpmc_nbe1 transition(10)  
Delay time, gpmc_clk falling edge to  
J(15) – 2.3 J(15) + 1.9 J(15) – 3.3 J(15) + 11.9  
gpmc_nbe0_cle, gpmc_nbe1 transition(11)  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
151  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-40. GPMC and NOR Flash Switching Characteristics—Synchronous Mode (continued)  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
F18  
tw(csnV)  
Pulse duration, output chip select  
gpmc_csn[x](4) low  
Read  
Write  
Read  
Write  
A(16)  
A(16)  
C(17)  
C(17)  
A(16)  
A(16)  
C(17)  
C(17)  
ns  
ns  
ns  
ns  
F19  
F20  
tw(be[x]nV)  
Pulse duration, output lower byte enable  
and command latch enable  
gpmc_be0n_cle, output upper byte enable  
gpmc_be1n low  
tw(advnV)  
Pulse duration, output address valid and  
address latch enable gpmc_advn_ale low  
Read  
Write  
K(18)  
K(18)  
K(18)  
K(18)  
ns  
ns  
(1) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.  
(2) P = gpmc_clk period in ns  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
(5) For csn falling edge (CS activated):  
Case GpmcFCLKDivider = 0:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and  
CSOnTime are even)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(19) if ((CSOnTime – ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(19) if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)  
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(19) if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)  
(6) For single read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst write: E = (CSWrOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
(7) B = ClkActivationTime × GPMC_FCLK(19)  
(8) First transfer only for CLK DIV 1 mode.  
(9) For single read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst write: D = (WrCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
(10) Half cycle; for all data after initial transfer for CLK DIV 1 mode.  
(11) Half cycle of GPMC_CLK_OUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLK_OUT divide down from GPMC_FCLK.  
(12) For ADV falling edge (ADV activated):  
Case GpmcFCLKDivider = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if ((ADVOnTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GpmcFCLKDivider = 0:  
152  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)  
(13) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):  
Case GpmcFCLKDivider = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and  
OEOnTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if ((OEOnTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GpmcFCLKDivider = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and  
OEOffTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if ((OEOffTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(14) For WE falling edge (WE activated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(19)  
Case GpmcFCLKDivider = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and  
WEOnTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if ((WEOnTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK (19)  
Case GpmcFCLKDivider = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and  
WEOffTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if ((WEOffTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(15) J = GPMC_FCLK(19)  
(16) For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
With n being the page burst access number.  
(17) For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst read: C = (RdCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For burst write: C = (WrCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
With n being the page burst access number.  
(18) For read: K = (ADVRdOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
For write: K = (ADVWrOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)  
(19) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
153  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
F18  
gpmc_csn[x](A)  
F4  
gpmc_a[10:1]  
Valid Address  
F19  
F6  
F7  
gpmc_be0n_cle  
gpmc_be1n  
F19  
F6  
F8  
F8  
F20  
F9  
gpmc_advn_ale  
gpmc_oen  
F10  
F11  
F13  
F12  
D 0  
gpmc_ad[15:0]  
gpmc_wait[x](B)  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-33. GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0)  
154  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
F1  
F0  
F1  
gpmc_clk  
gpmc_csn[x](A)  
gpmc_a[10:1]  
gpmc_be0n_cle  
gpmc_be1n  
F2  
F3  
F4  
F6  
Valid Address  
F7  
F7  
F6  
F8  
F8  
F9  
gpmc_advn_ale  
gpmc_oen  
F10  
F11  
F13  
F13  
F12  
D 0  
F22  
F12  
D 3  
gpmc_ad[15:0]  
gpmc_wait[x](B)  
D 1  
D 2  
F21  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-34. GPMC and NOR Flash—Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0)  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
155  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
gpmc_csn[x](A)  
F4  
gpmc_a[10:1]  
Valid Address  
F17  
F17  
F6  
F17  
F17  
F17  
F17  
gpmc_be0n_cle  
gpmc_be1n  
gpmc_advn_ale  
gpmc_wen  
F6  
F8  
F8  
F9  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_ad[15:0]  
gpmc_wait[x](B)  
D 0  
D 3  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-35. GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)  
156  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
gpmc_csn[x](A)  
gpmc_be0n_cle  
gpmc_be1n  
F6  
F6  
F4  
F7  
Valid  
F7  
Valid  
gpmc_a[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
gpmc_ad[15:0]  
gpmc_advn_ale  
gpmc_oen  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
F10  
F11  
gpmc_wait[x](B)  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-36. GPMC and Multiplexed NOR Flash—Synchronous Burst Read  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
157  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
F18  
gpmc_csn[x](A)  
F4  
gpmc_a[27:17]  
Address (MSB)  
F17  
F17  
F6  
F17  
F17  
F17  
F17  
gpmc_be1n  
F6  
gpmc_be0n_cle  
F8  
F8  
F20  
F9  
gpmc_advn_ale  
F14  
F14  
gpmc_wen  
F15  
D 1  
F15  
D 2  
F15  
gpmc_ad[15:0]  
Address (LSB)  
D 0  
D 3  
F22  
F21  
gpmc_wait[x](B)  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-37. GPMC and Multiplexed NOR Flash—Synchronous Burst Write  
158  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.1.2 GPMC and NOR Flash—Asynchronous Mode  
Table 5-42 and Table 5-43 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-38 through Figure 5-43).  
Table 5-41. GPMC and NOR Flash Timing Conditions—Asynchronous Mode  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
0.3  
0.3  
1.8  
1.8  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
Table 5-42. GPMC and NOR Flash Internal Timing Parameters—Asynchronous Mode(1)(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
MAX  
FI1 Delay time, output data gpmc_ad[15:0] generation from internal functional clock  
GPMC_FCLK(3)  
6.5  
6.5  
ns  
FI2 Delay time, input data gpmc_ad[15:0] capture from internal functional clock  
GPMC_FCLK(3)  
4
6.5  
6.5  
6.5  
4
6.5  
6.5  
6.5  
ns  
ns  
ns  
ns  
FI3 Delay time, output chip select gpmc_csn[x] generation from internal functional  
clock GPMC_FCLK(3)  
FI4 Delay time, output address gpmc_a[27:1] generation from internal functional clock  
GPMC_FCLK(3)  
FI5 Delay time, output address gpmc_a[27:1] valid from internal functional clock  
GPMC_FCLK(3)  
FI6 Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle,  
output upper-byte enable gpmc_be1n generation from internal functional clock  
GPMC_FCLK(3)  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
ns  
ps  
FI7 Delay time, output enable gpmc_oen generation from internal functional clock  
GPMC_FCLK(3)  
FI8 Delay time, output write enable gpmc_wen generation from internal functional  
clock GPMC_FCLK(3)  
FI9 Skew, internal functional clock GPMC_FCLK(3)  
6.5  
6.5  
100  
100  
(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
159  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-43. GPMC and NOR Flash Timing Requirements—Asynchronous Mode  
NO.  
OPP100  
MIN  
OPP50  
MIN  
UNIT  
MAX  
H(4)  
P(5)  
MAX  
H(4)  
P(5)  
H(4)  
FA5(1)  
FA20(2) tacc1-pgmode(d)  
FA21(3) tacc2-pgmode(d)  
tacc(d)  
Data access time  
ns  
ns  
ns  
Page mode successive data access time  
Page mode first data access time  
H(4)  
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock  
edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock  
edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(3) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by  
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.  
(4) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)  
(5) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)  
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Table 5-44. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
2
MAX  
2
tR(d)  
tF(d)  
Rise time, output data gpmc_ad[15:0]  
Fall time, output data gpmc_ad[15:0]  
ns  
ns  
2
2
Pulse duration, output lower-byte  
enable and command latch enable  
gpmc_be0n_cle, output upper-byte  
enable gpmc_be1n valid time  
Read  
Write  
N(1)  
N(1)  
FA0  
FA1  
FA3  
tw(be[x]nV)  
ns  
ns  
ns  
N(1)  
N(1)  
Read  
Write  
Read  
A(3)  
A(3)  
B(4) + 2.0  
A(3)  
A(3)  
B(4) + 2.0  
Pulse duration, output chip select  
gpmc_csn[x](2) low  
tw(csnV)  
Delay time, output chip select  
gpmc_csn[x](2) valid to output address  
valid and address latch enable  
gpmc_advn_ale invalid  
B(4) – 0.2  
B(4) – 0.2  
B(4) – 0.2  
B(4) – 0.2  
td(csnV-advnIV)  
Write  
B(4) + 2.0  
B(4) + 2.0  
Delay time, output chip select gpmc_csn[x](2)  
valid to output enable gpmc_oen invalid (Single  
read)  
FA4  
FA9  
td(csnV-oenIV)  
C(5) – 0.2  
J(6) – 0.2  
C(5) + 2.0  
J(6) + 2.0  
C(5) – 0.2  
J(6) – 0.2  
C(5) + 2.0  
J(6) + 2.0  
ns  
ns  
Delay time, output address gpmc_a[27:1] valid  
to output chip select gpmc_csn[x](2) valid  
td(aV-csnV)  
Delay time, output lower-byte enable and  
command latch enable gpmc_be0n_cle, output  
upper-byte enable gpmc_be1n valid to output  
chip select gpmc_csn[x](2) valid  
Delay time, output chip select gpmc_csn[x](2)  
valid to output address valid and address latch  
enable gpmc_advn_ale valid  
FA10 td(be[x]nV-csnV)  
J(6) – 0.2  
J(6) + 2.0  
J(6) – 0.2  
K(7) – 0.2  
J(6) + 2.0  
ns  
FA12 td(csnV-advnV)  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
K(7) – 0.2  
L(8) – 0.2  
G(9)  
K(7) + 2.0  
L(8) + 2.0  
K(7) + 2.0  
L(8) + 2.0  
ns  
ns  
ns  
Delay time, output chip select gpmc_csn[x](2)  
valid to output enable gpmc_oen valid  
L
(8) – 0.2  
G(9)  
Pulse durationm output address gpmc_a[26:1]  
invalid between 2 successive read and write  
accesses  
Delay time, output chip select gpmc_csn[x](2)  
valid to output enable gpmc_oen invalid (Burst  
read)  
FA18 td(csnV-oenIV)  
I(10) – 0.2  
D(11)  
E(12) – 0.2 E(12) + 2.0 E(12) – 0.2 E(12) + 2.0  
I(10) + 2.0  
I(10) – 0.2  
I(10) + 2.0  
ns  
Pulse duration, output address gpmc_a[27:1]  
valid — 2nd, 3rd, and 4th accesses  
Delay time, output chip select gpmc_csn[x](2)  
valid to output write enable gpmc_wen valid  
FA20 tw(aV)  
D(11)  
ns  
ns  
FA25 td(csnV-wenV)  
160  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-44. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode (continued)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Delay time, output chip select gpmc_csn[x](2)  
valid to output write enable gpmc_wen invalid  
FA27 td(csnV-wenIV)  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
FA37 td(oenV-aIV)  
F(13) – 0.2 F(13) + 2.0 F(13) – 0.2 F(13) + 2.0  
ns  
ns  
ns  
ns  
Delay time, output write enable gpmc_ wen  
valid to output data gpmc_ad[15:0] valid  
2.8  
J(6) + 2.8  
2.8  
5
J(6) + 2.8  
2.8  
Delay time, output data gpmc_ad[15:0] valid to  
output chip select gpmc_csn[x](2) valid  
J(6) – 0.2  
J(6) – 0.2  
Delay time, output enable gpmc_oen valid to  
output address gpmc_ad[15:0] phase end  
(1) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(2) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
(3) For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: A = (CSWrOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
with n being the page burst access number  
(4) For reading: B = ((ADVRdOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) ×  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) ×  
GPMC_FCLK(14)  
(5) C = ((OEOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(6) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)  
(7) K = ((ADVOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(8) L = ((OEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(9) G = Cycle2CycleDelay × GPMC_FCLK(14)  
(10) I = ((OEOffTime + (n – 1) × PageBurstAccessTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay))  
× GPMC_FCLK(14)  
(11) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(12) E = ((WEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(13) F = ((WEOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – CSExtraDelay)) × GPMC_FCLK(14)  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
161  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
GPMC_FCLK(A)  
gpmc_clk  
FA5(B)  
FA1  
gpmc_csn[x](C)  
FA9  
gpmc_a[10:1]  
Valid Address  
FA0  
FA10  
gpmc_be0n_cle  
Valid  
FA0  
gpmc_be1n  
Valid  
FA10  
FA3  
FA12  
gpmc_advn_ale  
FA4  
FA13  
gpmc_oen  
Data IN 0  
Data IN 0  
gpmc_ad[15:0]  
gpmc_wait[x](C)  
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-38. GPMC and NOR Flash—Asynchronous Read—Single Word  
162  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
GPMC_FCLK(A)  
gpmc_clk  
FA5(B)  
FA5(B)  
FA1  
FA1  
gpmc_csn[x](C)  
gpmc_a[10:1]  
FA16  
FA9  
FA9  
Address 0  
FA0  
Address 1  
FA0  
FA10  
FA10  
Valid  
FA0  
gpmc_be0n_cle  
gpmc_be1n  
Valid  
FA0  
Valid  
Valid  
FA10  
FA10  
FA3  
FA3  
FA12  
FA12  
gpmc_advn_ale  
FA4  
FA4  
FA13  
FA13  
gpmc_oen  
Data Upper  
gpmc_ad[15:0]  
gpmc_wait[x](C)  
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-39. GPMC and NOR Flash—Asynchronous Read—32-Bit  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
163  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
GPMC_FCLK(A)  
gpmc_clk  
FA20(C)  
FA20(C)  
FA20(C)  
FA21(B)  
FA1  
gpmc_csn[x](D)  
FA9  
Add0  
Add1  
Add2  
Add3  
Add4  
gpmc_a[10:1]  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
FA0  
gpmc_be1n  
FA12  
gpmc_advn_ale  
FA18  
FA13  
gpmc_oen  
D3  
D0  
D1  
D2  
D3  
gpmc_ad[15:0]  
gpmc_wait[x](D)  
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in  
number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input  
page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside  
AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in  
number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally  
sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address  
phases for successive input page data (excluding first input page data). FA20 value must be stored in  
PageBurstAccessTime register bits field.  
D. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-40. GPMC and NOR Flash—Asynchronous Read—Page Mode 4x16-Bit  
164  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_csn[x](A)  
gpmc_a[10:1]  
FA9  
Valid Address  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
FA0  
FA3  
FA12  
gpmc_advn_ale  
FA27  
FA25  
gpmc_wen  
gpmc_ad[15:0]  
gpmc_wait[x](A)  
FA29  
Data OUT  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-41. GPMC and NOR Flash—Asynchronous Write—Single Word  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
165  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
GPMC_FCLK(A)  
gpmc_clk  
FA1  
FA5(B)  
gpmc_csn[x](C)  
FA9  
Address (MSB)  
FA0  
gpmc_a[27:17]  
FA10  
gpmc_be0n_cle  
Valid  
FA0  
FA10  
gpmc_be1n  
Valid  
FA3  
FA12  
gpmc_advn_ale  
FA4  
FA13  
gpmc_oen  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
gpmc_ad[15:0]  
gpmc_wait[x](C)  
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-42. GPMC and Multiplexed NOR Flash—Asynchronous Read—Single Word  
166  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_csn[x](A)  
gpmc_a[27:17]  
FA9  
Address (MSB)  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
FA0  
FA3  
FA12  
gpmc_advn_ale  
FA27  
FA25  
gpmc_wen  
gpmc_ad[15:0]  
gpmc_wait[x](A)  
FA29  
FA28  
Valid Address (LSB)  
Data OUT  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-43. GPMC and Multiplexed NOR Flash—Asynchronous Write—Single Word  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
167  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.1.3 GPMC and NAND Flash—Asynchronous Mode  
Table 5-46 and Table 5-47 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-44 through Figure 5-47).  
Table 5-45. GPMC and NAND Flash Timing Conditions—Asynchronous Mode  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
0.3  
0.3  
1.8  
1.8  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
Table 5-46. GPMC and NAND Flash Internal Timing Parameters—Asynchronous Mode(1)(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
MAX  
GNFI1 Delay time, output data gpmc_ad[15:0] generation from internal  
functional clock GPMC_FCLK(3)  
6.5  
6.5  
ns  
GNFI2 Delay time, input data gpmc_ad[15:0] capture from internal functional  
clock GPMC_FCLK(3)  
4.0  
6.5  
6.5  
4.0  
6.5  
6.5  
ns  
ns  
ns  
GNFI3 Delay time, output chip select gpmc_csn[x] generation from internal  
functional clock GPMC_FCLK(3)  
GNFI4 Delay time, output address valid and address latch enable  
gpmc_advn_ale generation from internal functional clock  
GPMC_FCLK(3)  
GNFI5 Delay time, output lower-byte enable and command latch enable  
gpmc_be0n_cle generation from internal functional clock  
GPMC_FCLK(3)  
6.5  
6.5  
ns  
GNFI6 Delay time, output enable gpmc_oen generation from internal functional  
clock GPMC_FCLK(3)  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
ps  
GNFI7 Delay time, output write enable gpmc_wen generation from internal  
functional clock GPMC_FCLK(3)  
GNFI8 Skew, functional clock GPMC_FCLK(3)  
100  
100  
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.  
Table 5-47. GPMC and NAND Flash Timing Requirements—Asynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
J(2)  
MAX  
J(2)  
GNF12(1) tacc(d)  
Access time, input data gpmc_ad[15:0]  
ns  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
168  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-48. GPMC and NAND Flash Switching Characteristics—Asynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
tR(d)  
tF(d)  
Rise time, output data gpmc_ad[15:0]  
Fall time, output data gpmc_ad[15:0]  
2
2
2
2
ns  
ns  
ns  
GNF0 tw(wenV)  
Pulse duration, output write enable gpmc_wen  
valid  
A(1)  
A(1)  
GNF1 td(csnV-wenV)  
GNF2 tw(cleH-wenV)  
Delay time, output chip select gpmc_csn[x](2)  
valid to output write enable gpmc_wen valid  
B(3) - 0.2  
B(3) + 2.0  
B(3) - 0.2  
B(3) + 2.0  
ns  
ns  
Delay time, output lower-byte enable and  
command latch enable gpmc_be0n_cle high to  
output write enable gpmc_wen valid  
C(4) - 0.2 C(4) + 2.0  
D(5) - 0.2 D(5) + 2.8  
C(4) - 0.2 C(4) + 2.0  
D(5) - 0.2 D(5) + 2.0  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
GNF5 tw(wenIV-cleIV)  
Delay time, output data gpmc_ad[15:0] valid to  
output write enable gpmc_wen valid  
ns  
ns  
ns  
Delay time, output write enable gpmc_wen  
invalid to output data gpmc_ad[15:0] invalid  
E(6) - 0.2  
F(7) - 0.2  
E(6) + 2.8  
F(7) + 2.0  
E(6) - 0.2  
F(7) - 0.2  
E(6) + 2.0  
F(7) + 2.0  
Delay time, output write enable gpmc_wen  
invalid to output lower-byte enable and command  
latch enable gpmc_be0n_cle invalid  
GNF6 tw(wenIV-csnIV)  
GNF7 tw(aleH-wenV)  
GNF8 tw(wenIV-aleIV)  
Delay time, output write enable gpmc_wen  
invalid to output chip select gpmc_csn[x](2)  
invalid  
G(8) - 0.2 G(8) + 2.0  
C(4) - 0.2 C(4) + 2.0  
G(8) - 0.2 G(8) + 2.0  
C(4) - 0.2 C(4) + 2.0  
ns  
ns  
ns  
Delay time, output address valid and address  
latch enable gpmc_advn_ale high to output write  
enable gpmc_wen valid  
Delay time, output write enable gpmc_wen  
invalid to output address valid and address latch  
enable gpmc_advn_ale invalid  
F(7) - 0.2  
F(7) + 2.0  
F(7) - 0.2  
F(7) + 2.0  
GNF9 tc(wen)  
Cycle time, write  
Delay time, output chip select gpmc_csn[x](2)  
valid to output enable gpmc_oen valid  
H(9)  
I(10) + 2.0  
H(9)  
ns  
ns  
GNF10 td(csnV-oenV)  
I(10) - 0.2  
I(10) - 0.2 I(10) + 2.0  
GNF13 tw(oenV)  
GNF14 tc(oen)  
Pulse duration, output enable gpmc_oen valid  
Cycle time, read  
K(11)  
K(11)  
ns  
ns  
ns  
L(12)  
L(12)  
GNF15 tw(oenIV-csnIV)  
Delay time, output enable gpmc_oen invalid to  
output chip select gpmc_csn[x](2) invalid  
M(13) - 0.2 M(13) + 2.0 M(13) - 0.2 M(13) + 2.0  
(1) A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(2) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
(3) B = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(4) C = ((WEOnTime - ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - ADVExtraDelay)) × GPMC_FCLK(14)  
(5) D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK(14)  
(6) E = ((WrCycleTime - WEOffTime) × (TimeParaGranularity + 1) - 0.5 × WEExtraDelay) × GPMC_FCLK(14)  
(7) F = ((ADVWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)  
(8) G = ((CSWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)  
(9) H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(10) I = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(11) K = (OEOffTime - OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(12) L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(13) M = ((CSRdOffTime - OEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - OEExtraDelay)) × GPMC_FCLK(14)  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
169  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
GPMC_FCLK  
GNF1  
GNF6  
GNF5  
gpmc_csn[x](A)  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF2  
GNF0  
gpmc_wen  
GNF3  
GNF4  
gpmc_ad[15:0]  
Command  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
Figure 5-44. GPMC and NAND Flash—Command Latch Cycle  
GPMC_FCLK  
gpmc_csn[x](A)  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF1  
GNF7  
GNF6  
GNF8  
GNF9  
GNF0  
gpmc_wen  
GNF3  
GNF4  
Address  
gpmc_ad[15:0]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
Figure 5-45. GPMC and NAND Flash—Address Latch Cycle  
170  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
GPMC_FCLK(A)  
GNF12(B)  
GNF10  
GNF15  
gpmc_csn[x](C)  
gpmc_be0n_cle  
gpmc_advn_ale  
GNF14  
GNF13  
gpmc_oen  
gpmc_ad[15:0]  
DATA  
gpmc_wait[x](C)  
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
B. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of  
GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be  
internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field.  
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-46. GPMC and NAND Flash—Data Read Cycle  
GPMC_FCLK  
GNF1  
GNF6  
gpmc_csn[x](A)  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF9  
GNF0  
gpmc_wen  
GNF3  
GNF4  
gpmc_ad[15:0]  
DATA  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.  
Figure 5-47. GPMC and NAND Flash—Data Write Cycle  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
171  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2 Memory Interface  
The device has a dedicated interface to LPDDR2, DDR3, and DDR3L SDRAM. It supports JEDEC  
standard compliant LPDDR2, DDR3, and DDR3L SDRAM devices with a 16- or 32-bit data path to  
external SDRAM memory.  
For more details on the LPDDR2, DDR3, and DDR3L memory interface, see the EMIF section of the  
AM437x Sitara Processors Technical Reference Manual.  
5.13.8.2.1 DDR3 and DDR3L Routing Guidelines  
This section provides the timing specification for the DDR3 and DDR3L interface as a PCB design and  
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal  
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR3 or DDR3L  
memory system without the need for a complex timing closure process. For more information regarding  
the guidelines, see Understanding TI’s PCB Routing Rule-Based DDR Timing Specification. This  
application report provides generic guidelines and approach. All the specifications provided in the data  
manual take precedence over the generic guidelines and must be adhered to for a reliable DDR3 or  
DDR3L interface operation.  
NOTE  
All references to DDR3 in this section apply to DDR3 and DDR3L devices, unless otherwise  
noted.  
5.13.8.2.1.1 Board Designs  
TI only supports board designs using DDR3 memory that follow the guidelines in this document. The  
switching characteristics and timing diagram for the DDR3 memory interface are shown in Table 5-49 and  
Figure 5-48.  
Table 5-49. Switching Characteristics for DDR3 Memory Interface  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
tc(DDR_CK)  
tc(DDR_CKn)  
1
Cycle time, DDR_CK and DDR_CKn  
2.5  
3.3(1)  
ns  
(1) The JEDEC JESD79-3F Standard defines the maximum clock period of 3.3 ns for all standard-speed bin DDR3 and DDR3L memory  
devices. Therefore, all standard-speed bin DDR3 and DDR3L memory devices are required to operate at 303 MHz.  
1
DDR_CK  
DDR_CKn  
Figure 5-48. DDR3 Memory Interface Clock Timing  
172  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.2 DDR3 Device Combinations  
Because there are several possible combinations of device counts and single-side or dual-side mounting,  
Table 5-50 summarizes the supported device configurations.  
Table 5-50. Supported DDR3 Device Combinations  
NUMBER OF DDR3 DEVICES  
DDR3 DEVICE WIDTH (BITS)  
MIRRORED?  
DDR3 EMIF WIDTH (BITS)  
1
2
2
4
16  
8
N
16  
16  
32  
32  
Y(1)  
Y(1)  
Y(1)  
16  
8
(1) DDR3 devices are mirrored when half of the devices are placed on the top of the board and the other half are placed on the bottom of  
the board.  
5.13.8.2.1.3 DDR3 Interface  
5.13.8.2.1.3.1 DDR3 Interface Schematic  
The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used.  
Figure 5-49 shows the schematic connections for 16-bit interface using one x16 DDR3 device. Figure 5-50  
shows the schematic connections for 16-bit interface without using VTT termination for the ADDR_CTRL  
net class signals. Figure 5-51 shows the schematic connections for 16-bit interface using two x8 DDR3  
devices.  
Figure 5-52 shows the schematic connections for 32-bit interface using two x16 DDR3 device and  
Figure 5-53 shows the schematic connections for 32-bit interface using four x8 DDR3 devices.  
When not using all or part of a DDR3 interface, the proper method of handling the unused pins is to tie off  
the DDR_DQS[x] pins to the VDDS_DDR supply via a 1-kΩ resistor and pulling the DDR_DQSn[x] pins to  
ground via a 1k-Ω resistor. This must be done for each byte not used. Although these signals have  
internal pullup and pulldown, external pullup and pulldown provide additional protection against external  
electrical noise causing activity on the signals. Also, include the 49.9-Ω pulldown for DDR_VTP. The  
VDDS_DDR and DDR_VREF power supply terminals need to be connected to their respective power  
supplies even if the DDR3 interface is not being used. All other DDR3 interface pins can be left  
unconnected. The supported modes for use of the DDR3 EMIF are 32 bits wide, 16 bits wide, or not used.  
The device can only source one load connected to the DQS[x] and DQ[x] net class signals and up to four  
loads connected to the CK and ADDR_CTRL net class signals. For more information related to net  
classes, see Section 5.13.8.2.1.3.9.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
173  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
16-Bit DDR3  
Interface  
16-Bit DDR3  
Device  
DDR_D15  
8
DQU7  
DDR_D8  
DQU0  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DMU  
DQSU  
DQSUn  
DDR_D7  
8
DQL7  
DDR_D0  
DQL0  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DML  
DQSL  
DQSLn  
0.1 µF  
Zo  
Zo  
DDR_CK  
CK  
VDDS_DDR  
DDR_CKn  
CKn  
DDR_ODT0  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
CSn  
BA0  
BA1  
BA2  
DDR_VTT  
Zo  
Zo  
DDR_A0  
16  
A0  
DDR_A15  
A15  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CASn  
RASn  
WEn  
DDR_CKE0  
DDR_RESETn  
CKE  
DDR_VREF  
RESETn  
ZQ  
ZQ  
VREFDQ  
VREFCA  
DDR_VREF  
DDR_VTP  
0.1 µF  
0.1 µF  
0.1 µF  
49.9 Ω  
( 1%, 20 mW)  
Zo  
Termination is required. See terminator comments.  
ZQ  
Value determined according to the DDR3 memory device data sheet.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-49. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device With VTT Termination  
174  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
16-Bit DDR3  
Interface  
16-Bit DDR3  
Device  
DDR_D15  
DQU7  
8
DDR_D8  
DQU0  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DMU  
DQSU  
DQSUn  
DDR_D7  
DQL7  
8
DDR_D0  
DQL0  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DML  
DQSL  
DQSLn  
DDR_CK  
CK  
DDR_CKn  
CKn  
DDR_ODT0  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
CSn  
BA0  
BA1  
BA2  
DDR_A0  
A0  
16  
DDR_A15  
A15  
VDDS_DDR(A)  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CASn  
RASn  
WEn  
DDR_CKE0  
DDR_RESETn  
CKE  
RESETn  
ZQ  
1 K Ω 1%  
0.1 µF  
0.1 µF  
ZQ  
VREFDQ  
VREFCA  
DDR_VREF  
DDR_VREF  
0.1 µF  
0.1 µF  
1 K Ω 1%  
DDR_VTP  
49.9 Ω  
( 1%, 20 mW)  
ZQ  
Value determined according to the DDR3 memory device data sheet.  
Copyright © 2016, Texas Instruments Incorporated  
A. VDDS_DDR is the power supply for the DDR3 memories and the DDR3 interface.  
Figure 5-50. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device Without VTT Termination  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
175  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
16-Bit DDR3  
Interface  
8-Bit DDR3  
Devices  
DDR_D15  
8
DQ7  
DQ0  
DDR_D8  
DDR_DQM1  
DM/TDQS  
TDQSn  
DQS  
NC  
DDR_DQS1  
DDR_DQSn1  
DQSn  
DDR_D7  
8
DQ7  
DQ0  
DDR_D0  
DDR_DQM0  
DM/TDQS  
TDQSn  
DQS  
NC  
DDR_DQS0  
DDR_DQSn0  
DQSn  
0.1 µF  
Zo  
Zo  
DDR_CK  
CK  
CK  
VDDS_DDR  
DDR_CKn  
CKn  
CKn  
DDR_ODT0  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
ODT  
CSn  
BA0  
BA1  
BA2  
CSn  
BA0  
BA1  
BA2  
DDR_VTT  
Zo  
Zo  
DDR_A0  
16  
A0  
A0  
DDR_A15  
A15  
A15  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CASn  
RASn  
WEn  
CASn  
RASn  
WEn  
DDR_CKE0  
DDR_RESETn  
CKE  
CKE  
DDR_VREF  
RESETn  
ZQ  
RESETn  
ZQ  
ZQ  
ZQ  
VREFDQ  
VREFCA  
VREFDQ  
VREFCA  
DDR_VREF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
DDR_VTP  
49.9 Ω  
( 1%, 20 mW)  
Zo  
Termination is required. See terminator comments.  
ZQ  
Value determined according to the DDR3 memory device data sheet.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-51. 16-Bit DDR3 Interface Using Two 8-Bit DDR3 Devices With VTT Termination  
176  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
32-bit DDR3 EMIF  
DDR_CKE1  
DDR_ODT1  
DDR_CSn1  
NC  
NC  
NC  
16-Bit DDR3  
Devices  
DDR_D31  
DQU7  
DQU0  
8
DDR_D24  
DDR_DQM3  
DDR_DQS3  
DDR_DQSn3  
DMU  
DQSU  
DQSUn  
DDR_D23  
DQL7  
8
DDR_D16  
DQL0  
DDR_DQM2  
DDR_DQS2  
DDR_DQSn2  
DML  
DQSL  
DQSLn  
DDR_D15  
DQU7  
DQU0  
8
DDR_D8  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DMU  
DQSU  
DQSUn  
DDR_D7  
DQL7  
8
DDR_D0  
DQL0  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DML  
DQSL  
DQSLn  
0.1 µF  
Zo  
Zo  
DDR_CLK  
CK  
CK  
VDDS_DDR  
DDR_CLKn  
CKn  
CKn  
DDR_ODT0  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
ODT  
CSn  
BA0  
BA1  
BA2  
CSn  
BA0  
BA1  
BA2  
DDR_VTT  
Zo  
Zo  
DDR_A0  
A0  
A0  
16  
DDR_A15  
A15  
A15  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CASn  
RASn  
WEn  
CASn  
RASn  
WEn  
DDR_CKE0  
DDR_RESETn  
CKE  
CKE  
DDR_VREF  
RSTn  
ZQ  
RSTn  
ZQ  
ZQ  
ZQ  
VREFDQ  
VREFCA  
VREFDQ  
VREFCA  
DDR_VREF  
DDR_VTP  
0.1 µF  
0.1 µF  
0.1 µF  
49.9 Ω ( 1% 20mW)  
Zo  
Termination is required. See terminator comments.  
Value determined according to the DDR memory device data sheet.  
ZQ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-52. 32-Bit DDR3 Interface Using Two 16-Bit DDR3 Devices With VTT Termination  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
177  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
32-bit DDR3 EMIF  
DDR_CKE1  
DDR_ODT1  
DDR_CSn1  
NC  
NC  
NC  
8-Bit DDR3  
Devices  
8-Bit DDR3  
Devices  
DDR_D31  
DQ7  
DQ0  
8
DDR_D24  
DDR_DQM3  
DM/TQS  
TDQSn  
DQS  
NC  
DDR_DQS3  
DDR_DQSn3  
DQSn  
DDR_D23  
DQ7  
DQ0  
8
DDR_D16  
DDR_DQM2  
DM/TQS  
TDQSn  
DQS  
NC  
DDR_DQS2  
DDR_DQSn2  
DQSn  
DDR_D15  
DQ7  
DQ0  
8
DDR_D8  
DDR_DQM1  
DM/TQS  
TDQSn  
DQS  
NC  
DDR_DQS1  
DDR_DQSn1  
DQSn  
DDR_D7  
DQ7  
DQ0  
8
DDR_D0  
DDR_DQM0  
DM/TQS  
TDQSn  
DQS  
NC  
DDR_DQS0  
DDR_DQSn0  
DQSn  
0.1 µF  
Zo  
Zo  
DDR_CLK  
CK  
CK  
CK  
CK  
VDDS_DDR  
DDR_CLKn  
CKn  
CKn  
CKn  
CKn  
DDR_ODT0  
DDR_CSn0  
DDR_BA0  
DDR_BA1  
DDR_BA2  
ODT  
CSn  
BA0  
BA1  
BA2  
ODT  
ODT  
ODT  
CSn  
BA0  
BA1  
BA2  
CSn  
BA0  
BA1  
BA2  
CSn  
BA0  
BA1  
BA2  
DDR_VTT  
Zo  
Zo  
DDR_A0  
A0  
A0  
A0  
A0  
16  
DDR_A15  
A15  
A15  
A15  
A15  
DDR_CASn  
DDR_RASn  
DDR_WEn  
CASn  
RASn  
WEn  
CASn  
RASn  
WEn  
CASn  
RASn  
WEn  
CASn  
RASn  
WEn  
DDR_CKE0  
DDR_RESETn  
CKE  
CKE  
CKE  
CKE  
RSTn  
ZQ  
RSTn  
RSTn  
ZQ  
RSTn  
DDR_VREF  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
VREFDQ  
VREFCA  
VREFDQ  
VREFCA  
VREFDQ  
VREFCA  
VREFDQ  
VREFCA  
DDR_VREF  
DDR_VTP  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
49.9 Ω ( 1% 20mW)  
Zo  
Termination is required. See terminator comments.  
Value determined according to the DDR memory device data sheet.  
ZQ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-53. 32-Bit DDR3 Interface Using Four 8-Bit DDR3 Devices With VTT Termination  
178  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.3.2 Compatible JEDEC DDR3 Devices  
Table 5-51 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface.  
Table 5-51. Compatible JEDEC DDR3 Devices (Per Interface)  
NO.  
PARAMETER  
JEDEC DDR3 device speed grade  
CONDITION  
tC(DDR_CK) and  
tC(DDR_CKn) = 2.5ns  
MIN  
MAX  
UNIT  
1
DDR3-1600  
2
3
JEDEC DDR3 device bit width  
JEDEC DDR3 device count(1)  
x8  
1
x32  
4
Devices  
(1) For valid DDR3 device configurations and device counts, see Section 5.13.8.2.1.3.1, Figure 5-49, and Figure 5-51.  
5.13.8.2.1.3.3 DDR3 PCB Stackup  
The minimum stackup for routing the DDR3 interface is a four-layer stack up as shown in Table 5-52.  
Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal  
integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.  
Table 5-52. Minimum PCB Stackup(1)  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
DESCRIPTION  
Top signal routing  
Ground  
1
2
3
4
Split Power Plane  
Bottom signal routing  
(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these  
signals on layer 1 which requires some to be routed on layer 4. When this is done, the signal routes on layer 4 should not cross splits in  
the power plane.  
Table 5-53. PCB Stackup Specifications(1)  
NO.  
1
PARAMETER  
MIN  
4
TYP  
MAX  
UNIT  
PCB routing and plane layers  
Signal routing layers  
2
2
3
Full ground reference layers under DDR3 routing region(2)  
Full VDDS_DDR power reference layers under the DDR3 routing region(2)  
Number of reference plane cuts allowed within DDR3 routing region(3)  
Number of layers between DDR3 routing layer and reference plane(4)  
PCB routing feature size  
1
4
1
5
0
0
6
7
4
4
mils  
mils  
mils  
mils  
Ω
8
PCB trace width, w  
PCB BGA escape via pad size(5)  
9
18  
10  
50  
Zo  
20  
10 PCB BGA escape via hole size  
13 Single-ended impedance, Zo(6)  
14 Impedance control(7)(8)  
75  
Zo-5  
Zo+5  
Ω
(1) For the DDR3 device BGA pad size, see the DDR3 device manufacturer documentation.  
(2) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer  
return current as the trace routes switch routing layers.  
(3) No traces should cross reference plane cuts within the DDR3 routing region. High-speed signal traces crossing reference plane cuts  
create large return current paths which can lead to excessive crosstalk and EMI radiation.  
(4) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.  
(5) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available  
for power routing. An 18-mil pad is required for minimum layer count escape.  
(6) Zo is the nominal singled-ended impedance selected for the PCB.  
(7) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo  
defined by the single-ended impedance parameter.  
(8) Tighter impedance control is required to ensure flight time skew is minimal.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
179  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2.1.3.4 DDR3 Placement  
Figure 5-54 shows the required placement for the device as well as the DDR3 devices. The dimensions  
for this figure are defined in Table 5-54. The placement does not restrict the side of the PCB on which the  
devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and  
allow for proper routing space.  
X1  
X2  
X2  
X2  
DDR3  
Controller  
Y
Figure 5-54. Placement Specifications  
Table 5-54. Placement Specifications(1)  
NO.  
1
PARAMETER  
MIN  
MAX  
1000  
600  
UNIT  
mils  
mils  
mils  
w
X1(2)(3)(4)  
X2(2)(3)  
Y Offset(2)(3)(4)  
2
3
1500  
4
Clearance from non-DDR3 signal to DDR3 keepout region(5)(6)  
4
(1) DDR3 keepout region to encompass entire DDR3 routing area.  
(2) For dimension definitions, see Figure 5-54.  
(3) Measurements from center of device to center of DDR3 device.  
(4) Minimizing X1 and Y improves timing margins.  
(5) w is defined as the signal trace width.  
(6) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane.  
180  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.3.5 DDR3 Keepout Region  
The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout  
region is defined for this purpose and is shown in Figure 5-55. This region should encompass all DDR3  
circuitry and the region size varies with component placement and DDR3 routing. Additional clearances  
required for the keepout region are shown in Table 5-54. Non-DDR3 signals should not be routed on the  
same signal layer as DDR3 signals within the DDR3 keepout region. Non-DDR3 signals may be routed in  
the region provided they are routed on layers separated from DDR3 signal layers by a ground layer. No  
breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In addition,  
the VDDS_DDR power plane should cover the entire keepout region.  
DDR3 Controller  
DDR3 Keepout Region  
Encompasses Entire DDR3 Routing Area  
Figure 5-55. DDR3 Keepout Region  
5.13.8.2.1.3.6 DDR3 Bulk Bypass Capacitors  
Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry.  
Table 5-55 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note  
that this table only covers the bypass needs of the DDR3 interface and DDR3 devices. Additional bulk  
bypass capacitance may be needed for other circuitry.  
Table 5-55. Bulk Bypass Capacitors(1)  
NO.  
1
PARAMETER  
VDDS_DDR bulk bypass capacitor count  
MIN  
2
MAX  
UNIT  
Devices  
μF  
2
VDDS_DDR bulk bypass total capacitance  
DDR3#1 bulk bypass capacitor count  
DDR3#1 bulk bypass total capacitance  
DDR3#2 bulk bypass capacitor count(2)  
DDR3#2 bulk bypass total capacitance(2)  
DDR3#3 bulk bypass capacitor count(3)  
DDR3#3 bulk bypass total capacitance(3)  
DDR3#4bulk bypass capacitor count(3)  
20  
2
3
Devices  
μF  
4
20  
2
5
Devices  
μF  
6
20  
2
7
Devices  
μF  
8
20  
2
9
Devices  
μF  
10 DDR3#4 bulk bypass total capacitance(3)  
20  
(1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the high-  
speed (HS) bypass capacitors and DDR3 signal routing.  
(2) Only used when two DDR3 devices are used.  
(3) Only used when four DDR3 devices are used.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
181  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2.1.3.7 DDR3 High-Speed Bypass Capacitors  
High-speed (HS) bypass capacitors are critical for proper DDR3 interface operation. It is particularly  
important to minimize the parasitic series inductance of the HS bypass capacitors, device DDR3 power,  
and device DDR3 ground connections. Table 5-56 contains the specification for the HS bypass capacitors  
as well as for the power connections on the PCB. Generally speaking, it is good to:  
1. Fit as many HS bypass capacitors as possible.  
2. Minimize the distance from the bypass cap to the power terminals being bypassed.  
3. Use the smallest physical sized capacitors possible with the highest capacitance readily available.  
4. Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest  
hole size via possible.  
5. Minimize via sharing. Note the limites on via sharing shown in Table 5-56.  
Table 5-56. High-Speed Bypass Capacitors  
NO.  
1
PARAMETER  
HS bypass capacitor package size(1)  
MIN  
TYP  
MAX  
UNIT  
0201  
0402 10 mils  
2
Distance, HS bypass capacitor to VDDS_DDR and VSS terminal being  
bypassed(2)(3)(4)  
400  
mils  
3
4
5
6
7
8
9
VDDS_DDR HS bypass capacitor count  
20  
1
Devices  
μF  
VDDS_DDR HS bypass capacitor total capacitance  
Trace length from VDDS_DDR and VSS terminal to connection via(2)  
Distance, HS bypass capacitor to DDR3 device being bypassed(5)  
DDR3 device HS bypass capacitor count(6)  
DDR3 device HS bypass capacitor total capacitance(6)  
Number of connection vias for each HS bypass capacitor(7)(8)  
35  
70  
mils  
150  
mils  
12  
0.85  
2
Devices  
μF  
Vias  
mils  
10 Trace length from bypass capacitor connect to connection via(2)(8)  
35  
35  
100  
60  
11 Number of connection vias for each DDR3 device power and ground  
terminal(9)  
1
Vias  
12 Trace length from DDR3 device power and ground terminal to connection  
via(2)(7)  
mils  
(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.  
(2) Closer and shorter is better.  
(3) Measured from the nearest VDDS_DDR and ground terminal to the center of the capacitor package.  
(4) Three of these capacitors should be underneath the device, between the cluster of VDDS_DDR and ground terminals, between the  
DDR3 interfaces on the package.  
(5) Measured from the DDR3 device power and ground terminal to the center of the capacitor package.  
(6) Per DDR3 device.  
(7) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of  
vias is permitted on the same side of the board.  
(8) An HS bypass capacitor may share a via with a DDR3 device mounted on the same side of the PCB. A wide trace should be used for  
the connection and the length from the capacitor pad to the DDR3 device pad should be less than 150 mils.  
(9) Up to two pairs of DDR3 power and ground terminals may share a via.  
5.13.8.2.1.3.8 Return Current Bypass Capacitors  
Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals  
hopping from one signal layer to another. The bypass capacitor here provides a path for the return current  
to hop planes along with the signal. As many of these return current bypass capacitors should be used as  
possible. Because these are returns for signal current, the signal via size may be used for these  
capacitors.  
182  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.3.9 DDR3 Net Classes  
Table 5-57 lists the clock net classes for the DDR3 interface. Table 5-58 lists the signal net classes, and  
associated clock net classes, for signals in the DDR3 interface. These net classes are used for the  
termination and routing rules that follow.  
Table 5-57. Clock Net Class Definitions  
CLOCK NET CLASS PIN NAMES  
CK  
DDR_CK and DDR_CKn  
DQS0  
DQS1  
DQS2  
DQS3  
DDR_DQS0 and DDR_DQSn0  
DDR_DQS1 and DDR_DQSn1  
DDR_DQS2 and DDR_DQSn2  
DDR_DQS3 and DDR_DQSn3  
Table 5-58. Signal Net Class Definitions  
ASSOCIATED CLOCK  
SIGNAL NET CLASS  
PIN NAMES  
NET CLASS  
ADDR_CTRL  
CK  
DDR_BA[2:0], DDR_A[15:0], DDR_CSn0, DDR_CSn1, DDR_CASn,  
DDR_RASn, DDR_WEn, DDR_CKE0, DDR_CKE1, DDR_ODT0,  
DDR_ODT1  
DQ0  
DQ1  
DQ2  
DQ3  
DQS0  
DQS1  
DQS2  
DQS3  
DDR_D[7:0], DDR_DQM0  
DDR_D[15:8], DDR_DQM1  
DDR_D[23:16], DDR_DQM2  
DDR_D[31:24], DDR_DQM3  
5.13.8.2.1.3.10 DDR3 Signal Termination  
Signal terminations are required for the CK and ADDR_CTRL net class signals. On-device terminations  
(ODTs) are required on the DQS[x] and DQ[x] net class signals. Detailed termination specifications are  
covered in the routing rules in the following sections.  
Figure 5-50 provides an example DDR3 schematic with one 16-bit DDR3 memory device that does not  
have VTT termination on the address and control signals. A typical DDR3 point-to-point topology may  
provide acceptable signal integrity without VTT termination. System performance should be verified by  
performing signal integrity analysis using specific PCB design details before implementing this topology.  
5.13.8.2.1.3.11 DDR3 DDR_VREF Routing  
DDR_VREF is used as a reference by the input buffers of the DDR3 memories as well as the device.  
DDR_VREF is intended to be half the DDR3 power supply voltage and is typically generated with a  
voltage divider connected to the VDDS_DDR power supply. It should be routed as a nominal 20-mil wide  
trace with 0.1 µF bypass capacitors near each device connection. Narrowing of DDR_VREF is allowed to  
accommodate routing congestion.  
5.13.8.2.1.3.12 DDR3 VTT  
Like DDR_VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike  
DDR_VREF, VTT is expected to source and sink current, specifically the termination current for the  
ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should  
be routed as a power subplane. VTT should be bypassed near the terminator resistors.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
183  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2.1.4 DDR3 CK and ADDR_CTRL Topologies and Routing Definition  
The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew  
between them. CK is a bit more complicated because it runs at a higher transition rate and is differential.  
The following subsections show the topology and routing for various DDR3 configurations for CK and  
ADDR_CTRL. The figures in the following subsections define the terms for the routing specification  
detailed in Table 5-59.  
5.13.8.2.1.4.1 Using Two DDR3 Devices (x8 or x16)  
Two DDR3 devices are supported on the DDR3 interface consisting of two x8 DDR3 devices arranged as  
one 16-bit bank or two x16 DDR3 devices arranged as one 32-bit bank. These two devices may be  
mounted on one side of the PCB, or may be mirrored in a pair to save board space at a cost of increased  
routing complexity and parts on the backside of the PCB.  
5.13.8.2.1.4.2 CK and ADDR_CTRL Topologies, Two DDR3 Devices  
Figure 5-56 shows the topology of the CK net classes and Figure 5-57 shows the topology for the  
corresponding ADDR_CTRL net classes.  
DDR3 Differential CK Input Buffers  
+
+
Clock Parallel  
Terminator  
VDDS_DDR  
Rcp  
A1  
A1  
A2  
A2  
A3  
A3  
AT  
AT  
Cac  
Device  
Differential Clock  
Output Buffer  
+
0.1 µF  
Rcp  
Routed as Differential Pair  
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-56. CK Topology for Two DDR3 Devices  
DDR3 Address and Control Input Buffers  
Address and Control  
Terminator  
Rtt  
Device  
Address and Control  
Output Buffer  
A1  
A2  
A3  
AT  
Vtt  
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-57. ADDR_CTRL Topology for Two DDR3 Devices  
184  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.4.3 CK and ADDR_CTRL Routing, Two DDR3 Devices  
Figure 5-58 shows the CK routing for two DDR3 devices placed on the same side of the PCB. Figure 5-59  
shows the corresponding ADDR_CTRL routing.  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
A3  
A3  
AT  
AT  
0.1 µF  
=
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-58. CK Routing for Two Single-Side DDR3 Devices  
Rtt  
A2  
A3  
AT  
Vtt  
=
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-59. ADDR_CTRL Routing for Two Single-Side DDR3 Devices  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
185  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased  
routing and assembly complexity. Figure 5-60 and Figure 5-61 show the routing for CK and ADDR_CTRL,  
respectively, for two DDR3 devices mirrored in a single-pair configuration.  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
A3  
A3  
AT  
AT  
0.1 µF  
=
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-60. CK Routing for Two Mirrored DDR3 Devices  
Rtt  
A2  
A3  
AT  
Vtt  
=
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-61. ADDR_CTRL Routing for Two Mirrored DDR3 Devices  
186  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.4.4 Using Four 8-Bit DDR3 Devices  
Two DDR3 devices are supported on the DDR3 interface consisting of four x8 DDR3 devices arranged as  
one 32-bit bank. These four devices may be mounted on one side of the PCB, or may be mirrored in pairs  
to save board space at a cost of increased routing complexity and parts on the backside of the PCB.  
5.13.8.2.1.4.5 CK and ADDR_CTRL Topologies, Four DDR3 Devices  
Figure 5-62 shows the topology of the CK net classes and Figure 5-63 shows the topology for the  
corresponding ADDR_CTRL net classes.  
DDR Differential CK Input Buffers  
+
+
+
+
Clock Parallel  
Terminator  
VDDS_DDR  
Rcp  
A1  
A1  
A2  
A2  
A3  
A3  
A4  
A4  
A3  
A3  
AT  
AT  
Cac  
Device  
Differential Clock  
Output Buffer  
+
0.1 µF  
Rcp  
Routed as Differential Pair  
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-62. CK Topology for Four DDR3 Devices  
DDR Address and Control Input Buffers  
Address and Control  
Terminator  
Rtt  
Device  
Address and Control  
Output Buffer  
A1  
A2  
A3  
A4  
A3  
AT  
Vtt  
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-63. ADDR_CTRL Topology for Four DDR3 Devices  
5.13.8.2.1.4.6 CK and ADDR_CTRL Routing, Four DDR3 Devices  
Figure 5-64 shows the CK routing for four DDR3 devices placed on the same side of the PCB. Figure 5-65  
shows the corresponding ADDR_CTRL routing.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
187  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
A3  
A3  
A4  
A4  
A3  
A3  
AT  
AT  
0.1 µF  
=
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-64. CK Routing for Four Single-Side DDR3 Devices  
Rtt  
A2  
A3  
A4  
A3  
AT  
Vtt  
=
NOTE: For routing definitions, see Table 5-59, CK and ADDR_CTRL Routing Specification.  
Figure 5-65. ADDR_CTRL Routing for Four Single-Side DDR3 Devices  
188  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
To save PCB space, the four DDR3 memories may be mounted as a mirrored pair at a cost of increased  
routing and assembly complexity. Figure 5-66 and Figure 5-67 show the routing for CK and ADDR_CTRL,  
respectively, for four DDR3 devices mirrored in a single-pair configuration.  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
A3  
A3  
A4  
A4  
A3  
A3  
AT  
AT  
0.1 µF  
=
Figure 5-66. CK Routing for Four Mirrored DDR3 Devices  
Rtt  
A2  
A3  
A4  
A3  
AT  
Vtt  
=
Figure 5-67. ADDR_CTRL Routing for Four Mirrored DDR3 Devices  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
189  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2.1.4.7 One 16-Bit DDR3 Device  
One DDR3 device is supported on the DDR3 interface consisting of one x16 DDR3 device arranged as  
one 16-bit bank.  
5.13.8.2.1.4.8 CK and ADDR_CTRL Topologies, One DDR3 Device  
Figure 5-68 shows the topology of the CK net classes and Figure 5-69 shows the topology for the  
corresponding ADDR_CTRL net classes.  
DDR3 Differential CK Input Buffer  
+
Clock Parallel  
Terminator  
VDDS_DDR  
Rcp  
A1  
A1  
A2  
A2  
AT  
AT  
Cac  
Device  
Differential Clock  
Output Buffer  
+
0.1 µF  
Rcp  
Routed as Differential Pair  
Figure 5-68. CK Topology for One DDR3 Device  
DDR3 Address and Control Input Buffers  
Address and Control  
Terminator  
Rtt  
Device  
Address and Control  
Output Buffer  
A1  
A2  
AT  
Vtt  
Figure 5-69. ADDR_CTRL Topology for One DDR3 Device  
190  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.4.9 CK and ADDR_CTRL Routing, One DDR3 Device  
Figure 5-70 shows the CK routing for one DDR3 device. Figure 5-71 shows the corresponding  
ADDR_CTRL routing.  
VDDS_DDR  
Cac  
Rcp  
Rcp  
A2  
A2  
AT  
AT  
0.1 µF  
=
Figure 5-70. CK Routing for One DDR3 Device  
Rtt  
A2  
AT  
Vtt  
=
Figure 5-71. ADDR_CTRL Routing for One DDR3 Device  
5.13.8.2.1.5 Data Topologies and Routing Definition  
No matter the number of DDR3 devices used, the data line topology is always point to point, so its  
definition is simple.  
5.13.8.2.1.5.1 DQS[x] and DQ[x] Topologies, Any Number of Allowed DDR3 Devices  
DQS[x] lines are point-to-point differential, and DQ[x] lines are point-to-point singled ended. Figure 5-72  
and Figure 5-73 show these topologies.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
191  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Device  
DQS[x]  
DDR3  
DQS[x]+  
DQS[x]-  
DQS[x]  
IO Buffer  
IO Buffer  
Routed Differentially  
x = 0, 1, 2, 3  
Figure 5-72. DQS[x] Topology  
Device  
DQ[x]  
DDR3  
DQ[x]  
DQ[x]  
IO Buffer  
IO Buffer  
x = 0, 1, 2, 3  
Figure 5-73. DQ[x] Topology  
5.13.8.2.1.5.2 DQS[x] and DQ[x] Routing, Any Number of Allowed DDR3 Devices  
Figure 5-74 and Figure 5-75 show the DQS[x] and DQ[x] routing.  
DQS[x]  
DQS[x]+  
DQS[x]-  
Routed Differentially  
x = 0, 1, 2, 3  
Figure 5-74. DQS[x] Routing With Any Number of Allowed DDR3 Devices  
DQ[x]  
x = 0, 1, 2, 3  
Figure 5-75. DQ[x] Routing With Any Number of Allowed DDR3 Devices  
192  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.1.6 Routing Specification  
5.13.8.2.1.6.1 CK and ADDR_CTRL Routing Specification  
Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this  
skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter  
traces up to the length of the longest net in the net class and its associated clock. A metric to establish  
this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the  
length between the points when connecting them only with horizontal or vertical segments. A reasonable  
trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address  
Control Longest Manhattan distance.  
Given the clock and address pin locations on the device and the DDR3 memories, the maximum possible  
Manhattan distance can be determined given the placement. Figure 5-76 shows this distance for two  
loads. It is from this distance that the specifications on the lengths of the transmission lines for the  
address bus are determined. CACLM is determined similarly for other address bus configurations; that is,  
it is based on the longest net of the CK and ADDR_CTRL net class. For CK and ADDR_CTRL routing,  
these specifications are contained in Table 5-59.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
193  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
A8(A)  
CACLMY  
CACLMX  
A8(A)  
A8(A)  
Rtt  
A2  
A3  
AT  
Vtt  
=
A8(A)  
CACLMY  
CACLMX  
A8(A)  
A8(A)  
A8(A)  
A8(A)  
Rtt  
A2  
A3  
A4  
A3  
AT  
Vtt  
=
A. It is very likely that the longest CK and ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the  
DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net  
class that satisfies this criteria and use as the baseline for CK and ADDR_CTRL skew matching and length control.  
The length of shorter CK and ADDR_CTRL stubs as well as the length of the terminator stub are not included in this  
length calculation. Nonincluded lengths are grayed out in the figure.  
Assuming A8 is the longest, CACLM = CACLMY + CACLMX + 300 mils.  
The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8.  
Figure 5-76. CACLM for Two or Four Address Loads on One Side of PCB  
Table 5-59. CK and ADDR_CTRL Routing Specification(1)(2)(3)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
2500  
25  
UNIT  
mils  
mils  
mils  
mils  
mils  
A1+A2 length  
A1+A2 skew  
A3 length  
A3 skew(4)  
A3 skew(5)  
2
3
660  
25  
4
5
125  
194  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-59. CK and ADDR_CTRL Routing Specification(1)(2)(3) (continued)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
660  
25  
UNIT  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
w
6
7
8
9
A4 length  
A4 skew  
AS length  
AS skew  
100  
25  
10 AS+ and AS- length  
11 AS+ and AS- skew  
12 AT length(6)  
13 AT skew(7)  
14 AT skew(8)  
15 CK and ADDR_CTRL nominal trace length(9)  
16 Center-to-center CK to other DDR3 trace spacing(10)  
17 Center-to-center ADDR_CTRL to other DDR3 trace spacing(10)(11)  
18 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(10)  
19 CK center-to-center spacing(12)  
70  
5
500  
100  
5
CACLM-50  
CACLM  
CACLM+50  
4
4
3
w
w
20 CK spacing to other net(10)  
21 Rcp(13)  
22 Rtt(13)(14)  
4
Zo-1  
Zo-5  
w
Ω
Ω
Zo  
Zo  
Zo+1  
Zo+5  
(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.  
(2) The use of vias should be minimized.  
(3) Additional bypass capacitors are required when using the VDDS_DDR plane as the reference plane to allow the return current to jump  
between the VDDS_DDR plane and the ground plane when the net class switches layers at a via.  
(4) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom).  
(5) Nonmirrored configuration (all DDR3 memories on same side of PCB).  
(6) While this length can be increased for convenience, its length should be minimized.  
(7) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required.  
(8) CK net class only.  
(9) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes + 300 mils. For definition, see Section 5.13.8.2.1.6.1  
and Figure 5-76.  
(10) Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.  
(11) Signals from one DQ net class should be considered other DDR3 traces to another DQ net class.  
(12) CK spacing set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-ended  
impedance defined in Table 5-53.  
(13) Source termination (series resistor at driver) is specifically not allowed.  
(14) Termination values should be uniform across the net class.  
5.13.8.2.1.6.2 DQS[x] and DQ[x] Routing Specification  
Skew within the DQS[x] and DQ[x] net classes directly reduces setup and hold margin and, thus, this skew  
must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces  
up to the length of the longest net in the net class and its associated clock. DQLMn is defined as DQ  
Longest Manhattan distance n, where n is the byte number. For a 16-bit interface, there are two DQLMs,  
DQLM0 and DQLM1.  
NOTE  
It is not required, nor is it recommended, to match the lengths across all bytes. Length  
matching is only required within each byte.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
195  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Given the DQS[x] and DQ[x] pin locations on the device and the DDR3 memories, the maximum possible  
Manhattan distance can be determined given the placement. Figure 5-77 shows this distance for a two-  
load case. It is from this distance that the specifications on the lengths of the transmission lines for the  
data bus are determined. For DQS[x] and DQ[x] routing, these specifications are contained in Table 5-60.  
DQLMX0  
DQ[0:7], DM0, DQS0  
DQ0  
DQ[8:15], DM1, DQS1  
DQ1  
DQLMX1  
DQ[16:23], DM2, DQS2  
DQ2  
DQLMY0  
DQLMX2  
DQ[24:31], DM3, DQS3  
DQLMY1  
DQLMY3 DQLMY2  
DQ3  
DQLMX3  
3
2
1
0
DQ0 - DQ3 represent data bytes 0 - 3.  
There are four DQLMs, one for each byte (16-bit interface). Each DQLM is the longest Manhattan distance of the  
byte; therefore:  
DQLM0 = DQLMX0 + DQLMY0  
DQLM1 = DQLMX1 + DQLMY1  
DQLM2 = DQLMX2 + DQLMY2  
DQLM3 = DQLMX3 + DQLMY3  
Figure 5-77. DQLM for Any Number of Allowed DDR3 Devices  
Table 5-60. DQS[x] and DQ[x] Routing Specification(1)(2)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
DQLM0  
DQLM1  
DQLM2  
DQLM3  
25  
UNIT  
mils  
mils  
mils  
mils  
mils  
mils  
mils  
w
DQ0 nominal length(3)(4)  
DQ1 nominal length(3)(5)  
DQ2 nominal length  
DQ3 nominal length  
DQ[x] skew(6)  
2
3
4
5
6
DQS[x] skew  
DQS[x]-to-DQ[x] skew(6)(7)  
5
7
25  
8
Center-to-center DQ[x] to other DDR3 trace spacing(8)(9)  
Center-to-center DQ[x] to other DQ[x] trace spacing(8)(10)  
4
3
9
w
10 DQS[x] center-to-center spacing(11)  
11 DQS[x] center-to-center spacing to other net(8)  
4
w
(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.  
(2) External termination disallowed. Data termination should use built-in ODT functionality.  
(3) DQLMn is the longest Manhattan distance of a byte. For definition, see Section 5.13.8.2.1.6.2 and Figure 5-77.  
(4) DQLM0 is the longest Manhattan length for the DQ0 net class.  
(5) DQLM1 is the longest Manhattan length for the DQ1 net class.  
(6) Length matching is only done within a byte. Length matching across bytes is not required. To maintain tighter delay skew, route the  
DQ[x] and DQS[x] signals within a byte to have same number of VIA and layer transitions.  
(7) Each DQS clock net class is length matched to its associated DQ signal net class.  
(8) Center-to-center spacing is allowed to fall to minimum for up to 1250 mils of routed length.  
(9) Other DDR3 trace spacing means signals that are not part of the same DQ[x] signal net class.  
(10) This applies to spacing within same DQ[x] signal net class.  
(11) DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo × 2, where Zo is the single-  
ended impedance defined in Table 5-53.  
196  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.2 LPDDR2 Routing Guidelines  
This section provides the timing specification for the LPDDR2 interface as a PCB design and  
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal  
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR2 memory  
system without the need for a complex timing closure process. For more information regarding guidelines  
for using this LPDDR2 specification, see Understanding TI's PCB Routing Rule-Based DDR Timing  
Specification. This application report provides generic guidelines and approach. All the specifications  
provided in the data manual take precedence over the generic guidelines and must be adhered to for a  
reliable LPDDR2 interface operation.  
5.13.8.2.2.1 LPDDR2 Board Designs  
TI only supports board designs using LPDDR2 memory that follow the guidelines in this document. The  
switching characteristics and timing diagram for the LPDDR2 memory interface are shown in Table 5-61  
and Figure 5-78.  
Table 5-61. Switching Characteristics for LPDDR2 Memory Interface  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1
tc(DDR_CK)  
Cycle time, DDR_CK and DDR_CKn  
7.52  
3.76(1)  
ns  
(1) The JEDEC JESD209-2F standard defines the maximum clock period of 100 ns for all standard-speed bin LPDDR2 memory. The  
device has only been tested per the limits published in this table.  
1
DDR_CK  
DDR_CKn  
Figure 5-78. LPDDR2 Memory Interface Clock Timing  
5.13.8.2.2.2 LPDDR2 Device Configurations  
There are several possible combinations of device counts and single-side or dual-side mounting. Table 5-  
62 lists all the supported configurations.  
Table 5-62. Supported LPDDR2 Device Combinations  
NUMBER OF LPDDR2  
LPDDR2 DEVICE WIDTH (BITS)  
MIRRORED?(1)  
LPDDR2 EMIF WIDTH (BITS)  
DEVICES  
1
2(2)  
32  
32  
16  
16  
N
N
N
N
32  
32  
16  
16  
1
2(2)  
(1) Two LPDDR2 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of  
the board.  
(2) Two devices are supported only with twin-die configuration which embeds two devices in the same package.  
Details on treating unused pins are listed in Section 5.13.8.2.2.3.1.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
197  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2.2.3 LPDDR2 Interface  
5.13.8.2.2.3.1 LPDDR2 Interface Schematic  
The LPDDR2 interface schematic varies, depending upon the width of the LPDDR2 devices used.  
Figure 5-79 shows the schematic connections for 16-bit interface using one x16 LPDDR2 device. Two x16  
LPDDR2 devices are supported for twin-die configuration which embeds two devices in the same  
package.  
16-Bit LPDDR2  
Interface  
16-Bit LPDDR2  
Device  
DDR_D15  
DQ15  
8
DDR_D8  
DQ8  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DM1  
DQS1_t  
DQS1_c  
DDR_D7  
DQ7  
8
DDR_D0  
DQ0  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DM0  
DQS0_t  
DQS0_c  
DDR_CK  
CK_t  
CK_c  
DDR_CKn  
DDR_CKE0  
DDR_CKE1  
DDR_CSn0  
DDR_CSn1  
DDR_RASn  
CKE0  
CKE1  
CS0_n  
CS1_n  
CA0  
DDR_CASn  
DDR_WEn  
DDR_BA0  
DDR_BA1  
DDR_BA2  
CA1  
CA2  
CA7  
CA8  
CA9  
DDR_A1  
DDR_A2  
CA5  
CA6  
CA4  
CA3  
VDDS_DDR  
1 K  
DDR_A10  
DDR_A13  
0.1 µF  
0.1 µF  
ZQ0/1  
ZQ  
Vref(CA)  
Vref(DQ)  
DDR_VREF  
DDR_VTP  
DDR_VREF  
0.1 µF  
0.1 µF  
1 K  
49.9 Ω  
( 1%, 20 mW)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-79. 16-Bit Interface Using One 16-Bit LPDDR2 Device  
Figure 5-80 shows the schematic connections for 32-bit interface using one x32 LPDDR2 device.  
198  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
32-Bit LPDDR2  
Interface  
32-Bit LPDDR2  
Device  
DDR_D31  
DQ31  
8
DDR_D24  
DQ24  
DDR_DQM3  
DDR_DQS3  
DDR_DQSn3  
DM31  
DQS3_t  
DQS3_c  
DDR_D23  
DQ23  
8
DDR_D16  
DQ16  
DDR_DQM2  
DDR_DQS2  
DDR_DQSn2  
DM2  
DQS2_t  
DQS2_c  
DDR_D15  
DQ15  
8
DDR_D8  
DQ8  
DDR_DQM1  
DDR_DQS1  
DDR_DQSn1  
DM1  
DQS1_t  
DQS1_c  
DDR_D7  
DQ7  
8
DQ0  
DDR_D0  
DDR_DQM0  
DDR_DQS0  
DDR_DQSn0  
DM0  
DQS0_t  
DQS0_c  
DDR_CK  
CK_t  
CK_c  
DDR_CKn  
DDR_CKE0  
DDR_CKE1  
DDR_CSn0  
DDR_CSn1  
DDR_RASn  
CKE0  
CKE1  
CS0_n  
CS1_n  
CA0  
DDR_CASn  
DDR_WEn  
DDR_BA0  
DDR_BA1  
DDR_BA2  
CA1  
CA2  
CA7  
CA8  
CA9  
DDR_A1  
DDR_A2  
CA5  
CA6  
CA4  
CA3  
VDDS_DDR  
1 K  
DDR_A10  
DDR_A13  
0.1 µF  
0.1 µF  
ZQ0/1  
ZQ  
Vref(CA)  
Vref(DQ)  
DDR_VREF  
DDR_VTP  
DDR_VREF  
0.1 µF  
0.1 µF  
1 K  
49.9 Ω ( 1% 20mW)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-80. 32-Bit Interface Using One 32-Bit LPDDR2 Device  
When not using a part of LPDDR2 interface (using x16 or not using the LPDDR2 interface):  
Connect the VDDS_DDR supply to 1.8 V  
Connect the DDR_VREF supply to 0.9 V  
Tie off DDR_DQS[x] (x=0,1,2,3) that are unused to VSS via 1 kΩ  
Tie off DDR_DQSn[x] (x=0,1,2,3) that are unused to VDDS_DDR via 1 kΩ  
All other unused pins can be left as NC.  
Note: All the unused DDR ADDR_CTRL lines used for DDR3 operation should be left as NC.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
199  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.8.2.2.3.2 Compatible JEDEC LPDDR2 Devices  
Table 5-63 shows the supported LPDDR2 device configurations which are compatible with this interface.  
Table 5-63. Compatible JEDEC LPDDR2 Devices (Per Interface)  
NO.  
1
PARAMETER  
JEDEC LPDDR2 device speed grade  
JEDEC LPDDR2 device bit width  
JEDEC LPDDR2 device count  
CONDITION  
MIN  
MAX  
UNIT  
tc(DDR_CK) and tc(DDR_CKn)  
LPDDR2-533  
2
x16  
1
x32  
Bits  
3
2(1) Devices  
(1) Two devices are supported only with twin-die configuration which embeds two devices in the same package.  
5.13.8.2.2.3.3 LPDDR2 PCB Stackup  
Table 5-64 shows the minimum stackup requirements. Additional layers may be added to the PCB  
stackup to accommodate other circuitry, enhance signal integrity and electromagnetic interference  
performance, or to reduce the size of the PCB footprint.  
Table 5-64. Minimum PCB Stackup  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
DESCRIPTION  
Top signal routing  
Ground  
1
2
3
4
Power  
Bottom signal routing  
PCB stackup specifications for LPDDR2 interface are listed in Table 5-65.  
Table 5-65. PCB Stackup Specifications(1)  
NO.  
1
PARAMETER  
MIN  
4
TYP  
MAX  
UNIT  
PCB routing and plane layers  
Signal routing layers  
2
2
3
Full ground reference layers under LPDDR2 routing region(1)  
1
4
Full VDDS_DDR power reference layers under the LPDDR2 routing  
region(1)  
1
5
6
7
8
9
Number of reference plane cuts allowed within LPDDR2 routing region(2)  
Number of layers between LPDDR2 routing layer and reference plane(3)  
PCB routing feature size  
0
0
4
4
mils  
mils  
mils  
mils  
Ω
PCB trace width, w  
PCB BGA escape via pad size(4)  
18  
10  
50  
Zo  
20  
10 PCB BGA escape via hole size  
11 Single-ended impedance, Zo(5)  
12 Impedance control(6)(7)  
75  
Zo-5  
Zo+5  
Ω
(1) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer  
return current as the trace routes switch routing layers.  
(2) No traces should cross reference plane cuts within the LPDDR2 routing region. High-speed signal traces crossing reference plane cuts  
create large return current paths which can lead to excessive crosstalk and EMI radiation.  
(3) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.  
(4) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available  
for power routing. An 18-mil pad is required for minimum layer count escape.  
(5) Zo is the nominal singled-ended impedance selected for the PCB.  
(6) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo  
defined by the single-ended impedance parameter.  
(7) Tighter impedance control is required to ensure flight time skew is minimal.  
200  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.2.3.4 LPDDR2 Placement  
Figure 5-81 shows the placement rules for the device as well as the LPDDR2 memory device. Placement  
restrictions are provided as a guidance to restrict maximum trace lengths and allow for proper routing  
space.  
X1  
LPDDR2  
interface  
Y
Figure 5-81. Placement Specifications  
Table 5-66. Placement Specifications(1)  
NO.  
1
PARAMETER  
MIN  
MAX  
1500  
1500  
UNIT  
mils  
mils  
w
X1 Offset(2)(3)  
Y Offset(2)(3)(4)  
2
3
Clearance from non-LPDDR2 signal to LPDDR2 keepout region(4)(5)  
4
(1) LPDDR2 keepout region to encompass entire LPDDR2 routing area.  
(2) Measurements from center of device to center of LPDDR2 device.  
(3) Minimizing X1 and Y improves timing margins.  
(4) w is defined as the signal trace width.  
(5) Non-LPDDR2 signals allowed within LPDDR2 keepout region provided they are separated from LPDDR2 routing layers by a ground  
plane.  
5.13.8.2.2.3.5 LPDDR2 Keepout Region  
The region of the PCB used for LPDDR2 circuitry must be isolated from other signals. The LPDDR2  
keepout region is defined for this purpose and is shown in Figure 5-82. This region should encompass all  
LPDDR2 circuitry and the region size varies with component placement and LPDDR2 routing. Non-  
LPDDR2 signals should not be routed on the same signal layer as LPDDR2 signals within the LPDDR2  
keepout region. Non-LPDDR2 signals may be routed in the region provided they are routed on layers  
separated from LPDDR2 signal layers by a ground layer. No breaks should be allowed in the reference  
ground or VDDS_DDR power plane in this region. In addition, the VDDS_DDR power plane should cover  
the entire keepout region.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
201  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
LPDDR2  
interface  
LPDDR2 Keepout Region  
Encompasses Entire  
LPDDR2 Routing Area  
Figure 5-82. LPDDR2 Keepout Region  
5.13.8.2.2.3.6 LPDDR2 Net Classes  
Table 5-67. Clock Net Class Definitions for the LPDDR2  
Interface  
CLOCK NET CLASS PIN NAMES  
CK  
DDR_CK and DDR_CKn  
DQS0  
DQS1  
DQS2  
DQS3  
DDR_DQS0 and DDR_DQSn0  
DDR_DQS1 and DDR_DQSn1  
DDR_DQS2 and DDR_DQSn2  
DDR_DQS3 and DDR_DQSn3  
Table 5-68. Signal Net Class and Associated Clock Net Class for LPDDR2 Interface  
ASSOCIATED CLOCK  
SIGNAL NET CLASS  
PIN NAMES  
NET CLASS  
ADDR_CTRL  
CK  
DDR_BA[2:0], DDR_CSn0, DDR_CSn1, DDR_CKE0, DDR_CKE1,  
DDR_RASn, DDR_CASn, DDR_WEn, DDR_A1, DDR_A2, DDR_A10,  
DDR_A13  
DQ0  
DQ1  
DQ2  
DQ3  
DQS0  
DQS1  
DQS2  
DQS3  
DDR_D[7:0], DDR_DQM0  
DDR_D[15:8], DDR_DQM1  
DDR_D[23:16], DDR_DQM2  
DDR_D[31:24], DDR_DQM3  
5.13.8.2.2.3.7 LPDDR2 Signal Termination  
On-device termination (ODT) is available for DQ[3:0] signal net classes, but is not specifically required for  
normal operation. System designers may evaluate the need for additional series termination if required  
based on signal integrity, EMI and overshoot/undershoot reduction.  
5.13.8.2.2.3.8 LPDDR2 DDR_VREF Routing  
DDR_VREF is the reference voltage for the input buffers on the LPDDR2 memory as well as the device.  
DDR_VREF is intended to be half the LPDDR2 power supply voltage and is typically generated with a  
voltage divider connected to the VDDS_DDR power supply. It should be routed as a nominal 20-mil wide  
trace with 0.1-µF bypass capacitors near each device connection. Narrowing of DDR_VREF is allowed to  
accommodate routing congestion.  
202  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.8.2.2.4 Routing Specification  
5.13.8.2.2.4.1 DQS[x] and DQ[x] Routing Specification  
DQS[x] lines are point-to-point differential and DQ[x] lines are point-to-point single ended. Figure 5-83 and  
Figure 5-84 represent the supported topologies. Figure 5-85 and Figure 5-86 show the DQS[x] and DQ[x]  
routing. Figure 5-87 shows the DQLM for the LPDDR2 interface.  
Device  
DQS[x]  
DDR3  
DQS[x]+  
DQS[x]-  
DQS[x]  
IO Buffer  
IO Buffer  
Routed Differentially  
x = 0, 1, 2, 3  
Figure 5-83. DQS[x] Topology  
Device  
DQ[x]  
DDR3  
DQ[x]  
DQ[x]  
IO Buffer  
IO Buffer  
x = 0, 1, 2, 3  
Figure 5-84. DQ[x] Topology  
DQS[x]  
DQS[x]+  
DQS[x]-  
Routed Differentially  
x = 0, 1, 2, 3  
Figure 5-85. DQS[x] Routing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
203  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
DQ[x]  
x = 0, 1, 2, 3  
Figure 5-86. DQ[x] Routing  
DQLMXi  
DQi  
LPDDR2  
interface  
i = 0, 1, 2, 3  
DQLMYi  
DQLM0 = DQLMX0 + DQLMY0  
DQLM1 = DQLMX1 + DQLMY1  
DQLM2 = DQLMX2 + DQLMY2  
DQLM3 = DQLMX3 + DQLMY3  
DQ0 - DQ3 represent data bytes 0 - 3.  
There are four DQLMs, one for each data byte, in a 32-bit interface and two DQLMs, one for each data byte, in a 16-  
bit interface. Each DQLM is the longest Manhattan distance of the byte.  
Figure 5-87. DQLM for LPDDR2 Interface  
Trace routing specifications for the DQ[x] and the DQS[x] are specified in Table 5-69.  
Table 5-69. DQS[x] and DQ[x] Routing Specification(1)(2)  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
DQLM0  
DQLM1  
DQLM2  
DQLM3  
50  
UNIT  
mils  
mils  
mils  
mils  
mils  
mils  
DQ0 nominal length(3)(4)  
DQ1 nominal length(3)(5)  
DQ2 nominal length (3)(6)  
DQ3 nominal length (3)(7)  
DQ[x] skew(8)  
2
3
4
5
6
DQS[x] skew  
10  
7
Via count per each trace in DQ[x], DQS[x]  
Via count difference across a given DQ[x], DQS[x]  
DQS[x]-to-DQ[x] skew(8)(9)  
2
8
0
9
50  
mils  
w
10 Center-to-center DQ[x] to other LPDDR2 trace spacing(10)(11)  
11 Center-to-center DQ[x] to other DQ[x] trace spacing(10)(12)  
12 DQS[x] center-to-center spacing(13)  
4
3
w
13 DQS[x] center-to-center spacing to other net(10)  
4
w
204  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
(1) DQS[x] represents the DQS0, DQS1, DQS2, DQS3 clock net classes, and DQ[x] represents the DQ0, DQ1, DQ2, DQ3 signal net  
classes.  
(2) External termination disallowed. Data termination should use built-in ODT functionality.  
(3) DQLMn is the longest Manhattan distance of a byte.  
(4) DQLM0 is the longest Manhattan length for the DQ0 net class.  
(5) DQLM1 is the longest Manhattan length for the DQ1 net class.  
(6) DQLM2 is the longest Manhattan length for the DQ2 net class.  
(7) DQLM3 is the longest Manhattan length for the DQ3 net class.  
(8) Length matching is only done within a byte. Length matching across bytes is not required.  
(9) Each DQS clock net class is length matched to its associated DQ signal net class.  
(10) Center-to-center spacing is allowed to fall to minimum for up to 1000 mils of routed length.  
(11) Other LPDDR2 trace spacing means signals that are not part of the same DQ[x] signal net class.  
(12) This applies to spacing within same DQ[x] signal net class.  
(13) DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-  
ended impedance.  
5.13.8.2.2.4.2 CK and ADDR_CTRL Routing Specification  
CK signals are routed as point-to-point differential, and ADDR_CTRL signals are routed as point-to-point  
single ended. The supported topology for CK and ADDR_CTRL are shown in Figure 5-88 through  
Figure 5-91. ADDR_CTRL are routed very similar to DQ and CK is routed very similar to DQS.  
CK+  
Device CK  
LPDDR2  
Output Buffer  
Input Buffer  
CK-  
Routed Differentially  
Figure 5-88. CK Signals Topology  
Device  
ADDR_CTRL  
Output Buffer  
LPDDR2  
ADDR_CTRL  
ADDR_CTRL  
Input Buffer  
Figure 5-89. ADDR_CTRL Signals Topology  
CK-  
CK+  
CK-  
Routed Differentially  
Figure 5-90. CK Signals Routing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
205  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
ADDR_CTRL  
Figure 5-91. ADDR_CTRL Signals Routing  
CACLMX  
LPDDR2  
interface  
CACLM = CACLMX + CACLMY  
CACLMY  
CACLM is the longest Manhattan distance of the CK/ADDR_CTRL signal class.  
Figure 5-92. CACLM for LPDDR2 Interface  
Trace routing specifications for the CK and the ADD_CTRL are specified in Table 5-70.  
Table 5-70. CK and ADDR_CTRL Routing Specification  
NO.  
1
PARAMETER  
CK and ADDR_CTRL nominal trace length(1)  
ADDR_CTRL skew  
MIN  
TYP  
MAX  
UNIT  
mils  
mils  
mils  
CACLM  
2
50  
10  
2
3
CK skew  
4
Via count per each trace ADDR_CTRL, CK  
Via count difference across ADDR_CTRL, CK  
ADDR_CTRL-to-CK skew  
Center-to-center ADDR_CTRL to other LPDDR2 trace spacing(2)(3)  
Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(2)  
CK center-to-center spacing(4)  
5
0
6
50  
mils  
w
7
4
3
8
w
9
10 CK center-to-center spacing to other net(2)  
4
w
(1) CACLM is the longest Manhattan distance of ADDR_CTRL and CK.  
(2) Center-to-center spacing is allowed to fall to minimum for up to 1000 mils of routed length.  
(3) Other LPDDR2 trace spacing means signals that are not part of the same CK, ADDR_CTRL signal net class.  
(4) CK pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single ended  
impedance.  
206  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.9 Display Subsystem (DSS)  
NOTE  
For more information, see the Display Subsystem chapter of the AM437x Sitara Processors  
Technical Reference Manual.  
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or  
internal (SRAM) memory on an LCD panel or a TV set. The display subsystem integrates the following  
elements:  
Display controller (DISPC) module  
Remote frame buffer interface (RFBI) module  
The DSS can be used in the following configuration: LCD display with parallel interface  
5.13.9.1 DSS—Parallel Interface  
In parallel interface, the paths of the display subsystem modules are the display controller and the RFBI.  
The display controller has two I/O pad modes and could be in the following configuration:  
Bypass mode (RFBI disabled), which implements the MIPI DPI protocol  
RFBI mode (RFBI enabled), which implements MIPI DBI 2.0 type B protocol  
5.13.9.1.1 DSS—Parallel Interface—Bypass Mode  
Two types of LCD panel are supported:  
Thin film transistor (TFT) or active matrix technology  
Supertwisted nematic (STN) or passive matrix technology  
Both configurations are discussed in the following paragraphs.  
5.13.9.1.1.1 DSS—Parallel Interface—Bypass Mode—TFT Mode  
Table 5-72 assumes testing over the recommended operating conditions and electrical characteristic  
conditions below (see Figure 5-93).  
Table 5-71. DSS Timing Conditions—TFT Mode  
VALUE  
TIMING CONDITION PARAMETER  
UNIT  
MIN  
MAX  
Output Condition  
CLOAD  
Output load capacitance  
10  
pF  
Table 5-72. DSS Switching Characteristics—TFT Mode  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
DL0  
DL1  
DL2  
DL3  
DL4  
td(pclkA-hsync)  
Delay time, output pixel clock dss_pclk active edge to  
output horizontal synchronization dss_hsync transition  
-2.4  
2.4  
-3.5  
2.5  
ns  
ns  
td(pclkA-vsync)  
td(pclkA-acbiasA)  
td(pclkA-dV)  
Delay time, output pixel clock dss_pclk active edge to  
output vertical synchronization dss_vsync transition  
-2.4  
-2.4  
-2.4  
2.4  
2.4  
2.4  
100  
-3.5  
-3.5  
-3.5  
2.5  
2.5  
2.5  
75  
Delay time, output pixel clock dss_pclk active edge to  
output data enable dss_acbias active level  
ns  
Delay time, output pixel clock dss_pclk active edge to  
output data dss_data[23:0] valid  
Frequency(1), output pixel clock dss_pclk  
ns  
1 / tc(pclk)  
MHz  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
207  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-72. DSS Switching Characteristics—TFT Mode (continued)  
OPP100  
MIN MAX  
0.45P(2) 0.55P(2)(3) 0.45P(2) 0.55P(2)(3)  
200 200  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
DL5  
tw(pclk)  
tJ(pclk)  
Pulse duration, output pixel clock dss_pclk low or high  
Peak-peak jitter, output pixel clock dss_pclk  
ns  
ps  
(1) The pixel clock frequency is software programmable via the pixel clock DISPC_DIVISOR register.  
(2) P = dss_pclk period in ns  
(3) tw(pclk) = 0.66P when DISPC_DIVISOR[7:0] PCD = 3  
DL5  
DL4  
dss_pclk  
DL1  
dss_vsync  
DL0  
dss_hsync  
DL2  
dss_acbias  
DL3  
dss_data[23:0]  
A. The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.  
B. The pixel clock frequency is programmable.  
C. All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of  
dss_pclk too.  
D. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.  
Figure 5-93. DSS—TFT Mode  
5.13.9.1.1.2 DSS—Parallel Interface—Bypass Mode—STN Mode  
Table 5-74 assumes testing over the recommended operating conditions and electrical characteristic  
conditions below (see Figure 5-94).  
Table 5-73. DSS Timing Conditions—STN Mode  
VALUE  
TIMING CONDITION PARAMETER  
UNIT  
MIN  
MAX  
Output Condition  
CLOAD  
Output load capacitance  
40  
pF  
Table 5-74. DSS Switching Characteristics—STN Mode(1)  
OPP100  
OPP50  
MAX  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
-6  
DL3  
td(pclkA-dV)  
Delay time, output pixel clock dss_pclk active edge to  
output data dss_data[7:0] valid  
-6  
6
6
ns  
DL4  
DL5  
1 / tc(pclk)  
tw(pclk)  
Frequency(2), output pixel clock dss_pclk  
Pulse duration, output pixel clock dss_pclk low or high 0.45P(3) 0.55P(3)(4) 0.45P(3) 0.55P(3)(4)  
45  
45  
MHz  
ns  
(1) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.  
(2) The pixel clock frequency is software programmable via the pixel clock divider DISPC_DIVISOR register.  
(3) P = dss_pclk period in ns  
(4) tW(pclk) = 0.66P when DISPC_DIVISOR[7:0] PCD = 3  
208  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-74. DSS Switching Characteristics—STN Mode(1) (continued)  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
tJ(pclk)  
Peak-peak jitter, output pixel clock dss_pclk  
200  
200  
ps  
DL5  
DL4  
dss_pclk  
dss_vsync  
dss_hsync  
dss_acbias  
DL3  
dss_data[23:0]  
A. The pixel data bus depends on the use of 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.  
B. All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of  
dss_pclk too.  
C. dss_vsync width must be programmed to be as small as possible.  
D. The pixel clock frequency is programmable.  
E. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.  
Figure 5-94. DSS—STN Mode  
5.13.9.1.2 DSS—Parallel Interface—RFBI Mode—Applications  
5.13.9.1.2.1 DSS—Parallel Interface—RFBI Mode—MIPI DBI 2.0—LCD Panel  
The Remote Frame Buffer Interface (RFBI) module provides the necessary control signals and data  
(MIPI® DBI 2.0 type B protocol) to interface to the LCD driver of the LCD panel.  
Table 5-76 and Table 5-77 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-95, Figure 5-96, and Figure 5-97).  
Table 5-75. DSS Timing Conditions—RFBI Mode—MIPI DBI 2.0—LCD Panel(1)  
VALUE  
TIMING CONDITION PARAMETER  
UNIT  
MIN  
MAX  
Input Conditions  
tR  
Input signal rise time  
7
7
ns  
ns  
tF  
Input signal fall time  
Output Condition  
CLOAD  
Output load capacitance  
30  
pF  
(1) For any information regarding the RFBI registers configuration, see the Display Subsystem / Display Subsystem Environment / LCD  
Support / Parallel Interface / Parallel Interface in RFBI Mode (MIPI DBI Protocol) / Transaction Timing Diagrams section of the AM437x  
Sitara Processors Technical Reference Manual.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
209  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-76. DSS Timing Requirements—RFBI Mode—MIPI DBI 2.0—LCD Panel  
OPP100  
MIN MAX  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
DR0  
tsu(dV-rdH)  
Setup time, input data rfbi_da[15:0] valid to output  
read enable rfbi_rd high  
7
7
ns  
ns  
ns  
DR1  
th(rdH-dIV)  
Hold time, output read enable rfbi_rd high to input data  
rfbi_da[15:0] invalid  
5
5
td(Data sampled)  
Input data rfbi_da[15:0] sampled at the end of the  
access time  
N(1)  
N(1)  
(1) N = (AccessTime) × (TimeParaGranularity + 1) × L4CLK  
Table 5-77. DSS Switching Characteristics—RFBI Mode—MIPI DBI 2.0—LCD Panel  
OPP100  
MIN MAX  
OPP50  
MIN MAX  
PARAMETER  
UNIT  
tw(wrH)  
tw(wrL)  
Pulse duration, output write enable rfbi_wr high  
Pulse duration, output write enable rfbi_wr low  
A(1)  
B(2)  
C(3)  
A(1)  
B(2)  
C(3)  
ns  
ns  
ns  
td(a0-wrL)  
Delay time, output command/data control rfbi_a0 transition to  
output write enable rfbi_wr low  
td(wrH-a0)  
td(csx-wrL)  
td(wrH-csxH)  
Delay time, output write enable rfbi_wr high to output  
command/data control rfbi_a0 transition  
Delay time, output chip select rfbi_csx(14) low to output write  
enable rfbi_wr low  
D(4)  
E(5)  
F(6)  
D(4)  
E(5)  
F(6)  
ns  
ns  
ns  
Delay time, output write enable rfbi_wr high to output chip select  
rfbi_csx(14) high  
td(dV)  
Output data rfbi_da[15:0] valid  
G(7)  
H(8)  
G(7)  
H(8)  
ns  
ns  
td(a0H-rdL)  
Delay time, output command/data control rfbi_a0 high to output  
read enable rfbi_rd low  
td(rdlH-a0)  
Delay time, output read enable rfbi_rd high to output  
command/data control rfbi_a0 transition  
I(9)  
I(9)  
ns  
tw(rdH)  
Pulse duration, output read enable rfbi_rd high  
Pulse duration, output read enable rfbi_rd low  
J(10)  
K(11)  
L(12)  
J(10)  
K(11)  
L(12)  
ns  
ns  
ns  
tw(rdL)  
td(rdL-csxL)  
Delay time, output read enable rfbi_rd low to output chip select  
rfbi_csx(14) low  
td(rdH-csxH)  
Delay time, output read enable rfbi_rd high to output chip select  
rfbi_csx(14) high  
M(13)  
M(13)  
ns  
tR(wr)  
tF(wr)  
tR(a0)  
tF(a0)  
tR(csx)  
tF(csx)  
tR(d)  
Rise time, output write enable rfbi_wr  
Fall time, output write enable rfbi_wr  
Rise time, output command/data control rfbi_a0  
Fall time, output command/data control rfbi_a0  
Rise time, output chip select rfbi_csx(14)  
Fall time, output chip select rfbi_csx(14)  
Rise time, output data rfbi_da[15:0]  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tF(d)  
Fall time, output data rfbi_da[15:0]  
tR(rd)  
tF(rd)  
Rise time, output read enable rfbi_rd  
Fall time, output read enable rfbi_rd  
(1) A = (WECycleTime – WEOffTime) × (TimeParaGranularity + 1) × L4CLK  
(2) B = (WEOffTime – WEOntime) × (TimeParaGranularity + 1) × L4CLK  
(3) C = WEOnTime × (TimeParaGranularity + 1) × L4CLK  
(4) D = (WECycleTime + CSPulseWidth – WEOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is  
enabled  
(5) E = (WEOnTime – CSOnTime) × (TimeParaGranularity + 1) × L4CLK  
(6) F = (CSOffTime – WEOffTime) × (TimeParaGranularity + 1) × L4CLK  
(7) G = WECycleTime × (TimeParaGranularity + 1) × L4CLK  
210  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
(8) H = REOnTime × (TimeParaGranularity + 1) × L4CLK  
(9) I = (RECycleTime + CSPulseWidth – REOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is  
enabled  
(10) J = (RECycleTime – REOffTime) × (TimeParaGranularity + 1) × L4CLK  
(11) K = (REOffTime – REOntime) × (TimeParaGranularity + 1) × L4CLK  
(12) L = (REOnTime – CSOnTime) × (TimeParaGranularity + 1) × L4CLK  
(13) M = (CSOffTime – REOffTime) × (TimeParaGranularity + 1) × L4CLK  
(14) In rfbi_csx, x is equal to 0 or 1.  
CsPulseWidth  
WeCycleTime  
CsOffTime  
WeCycleTime  
rfbi_a0  
CsOffTime  
CsOnTime  
CsOnTime  
rfbi_csx(A)  
WeOffTime  
WeOnTime  
WeOffTime  
WeOnTime  
rfbi_wr  
rfbi_da[n:0](B)  
rfbi_rd  
DATA0  
DATA1  
rfbi_te_vsync[1:0]  
rfbi_hsync[1:0]  
A. In rfbi_csx, x is equal to 0 or 1.  
B. rfbi_da[n:0], n up to 15  
C. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.  
Figure 5-95. DSS—RFBI Mode—MIPI DBI 2.0—LCD Panel—Command / Data Write  
AccessTime  
ReCycleTime  
AccessTime  
ReCycleTime  
CsPulseWidth  
rfbi_a0  
rfbi_csx(A)  
rfbi_rd  
CsOffTime  
CsOnTime  
CsOffTime  
CsOnTime  
ReOffTime  
ReOnTime  
ReOffTime  
ReOnTime  
DR0  
DATA0  
DR1  
rfbi_da[n:0](B)  
rfbi_wr  
DATA1  
rfbi_te_vsync[1:0]  
rfbi_hsync[1:0]  
A. In rfbi_csx, x is equal to 0 or 1.  
B. rfbi_da[n:0], n up to 15  
C. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.  
Figure 5-96. DSS—RFBI Mode—MIPI DBI 2.0—LCD Panel—Command / Data Read  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
211  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
WECycleTime  
ReCycleTime  
AccessTime  
WECycleTime  
rfbi_a0  
CsOffTime  
CsOnTime  
CsOffTime  
CsOnTime  
CsOffTime  
CsOnTime  
rfbi_csx(A)  
WEOffTime  
WEOnTime  
rfbi_wr  
WEOffTime  
WEOnTime  
ReOffTime  
ReOnTime  
rfbi_rd  
CsPulseWidth  
CsPulseWidth  
WRITE  
rfbi_da[n:0](B)  
WRITE  
READ  
rfbi_te_vsync[1:0]  
rfbi_hsync[1:0]  
A. In rfbi_csx, x is equal to 0 or 1.  
B. rfbi_da[n:0], n up to 15  
C. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.  
Figure 5-97. DSS—RFBI Mode—MIPI DBI 2.0—LCD Panel—Command / Data Write to Read and Read to  
Write Modes  
5.13.9.1.2.2 DSS—Parallel Interface—RFBI Mode—Pico DLP  
The Remote Frame Buffer Interface (RFBI) module can provide also the necessary control signals and  
data to interface to the Pico DLP driver of the Pico DLP panel. Table 5-78 assumes testing over the  
recommended operating conditions and electrical characteristic conditions below (see Figure 5-98).  
Table 5-78. DSS Timing Conditions—RFBI Mode—Pico DLP  
VALUE  
TIMING CONDITION PARAMETER  
UNIT  
MIN  
MAX  
Output Condition  
CLOAD  
Output load capacitance  
5
pF  
To use Pico DLP application, RFBI register must be configured as shown in Table 5-79:  
Table 5-79. DSS Register Configuration—RFBI Mode—Pico DLP  
DESCRIPTION  
Selection parallel mode  
REGISTER AND BIT FIELD(1)  
BIT  
VALUES  
RFBI_CONFIGi and  
ParallelMode  
[1:0]  
0b11: 16-bit parallel output interface  
selected  
Time Granularity (multiplies signal timing  
latencies by 2).  
RFBI_CONFIGi  
andTimeGranularity  
[4]  
0b0: x2 latency disable  
CS signal assertion time from Start Access  
Time  
RFBI_ONOFF_TIMEi and  
CSOnTime  
[3:0]  
0b0000  
CS signal deassertion time from Start Access  
Time  
RFBI_ONOFF_TIMEi and  
CSOffTime  
[9:4]  
0b000100: 4 cycles  
0b0000  
WE signal assertion time from Start Access  
Time  
RFBI_ONOFF_TIMEi and  
WEOnTime  
[13:10]  
[19:14]  
[23:20]  
WE signal deassertion time from Start Access  
Time  
RFBI_ONOFF_TIMEi and  
WEOffTime  
0b000010: 2 cycles  
0b0000  
RE signal assertion time from Start Access  
Time  
RFBI_ONOFF_TIMEi and  
REOnTime  
212  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-79. DSS Register Configuration—RFBI Mode—Pico DLP (continued)  
DESCRIPTION  
REGISTER AND BIT FIELD(1)  
BIT  
VALUES  
RE signal deassertion time from Start Access  
Time  
RFBI_ONOFF_TIMEi and  
REOffTime  
[29:24]  
0b0000  
Write cycle time  
RFBI_CYCLE_TIMEi and  
WECycleTime  
[5:0]  
[11:6]  
[17:12]  
[18]  
0b000100: 4 cycles  
0b000000  
0b000000  
0b0  
Read cycle time  
RFBI_CYCLE_TIMEi and  
ReCycleTime  
CS pulse width  
RFBI_CYCLE_TIMEi and  
CSPulseWidth  
Read to Write CS pulse width enable  
Read to Read CS pulse width enable  
Write to Write CS pulse width enable  
Write to Read CS pulse width enable  
RFBI_CYCLE_TIMEi and  
RWEnable  
RFBI_CYCLE_TIMEi and  
RREnable  
[19]  
0b0  
RFBI_CYCLE_TIMEi and  
WWEnable  
[20]  
0b0  
RFBI_CYCLE_TIMEi and  
WREnable  
[21]  
0b0  
From Start Access Time to CLK rising edge  
used for the first data capture  
RFBI_CYCLE_TIMEi and  
AccessTime  
[27:22]  
0b000000  
(1) i is equal to 0 or 1. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
213  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-80. DSS Switching Characteristics—RFBI Mode—Pico DLP(1)(2)(3)  
OPP100  
MAX  
OPP50  
PARAMETER  
UNIT  
MIN  
MIN  
MAX  
tw(wrH)  
tw(wrL)  
Pulse duration, output write enable rfbi_wr high  
Pulse duration, output write enable rfbi_wr low  
A(4)  
B(5)  
C(6)  
A(4)  
B(5)  
C(6)  
ns  
ns  
ns  
td(a0-wrL)  
Delay time, output command/data control rfbi_a0  
transition to output write enable rfbi_wr low  
td(wrH-a0)  
td(csx-wrL)  
td(wrH-csxH)  
Delay time, output write enable rfbi_wr high to output  
command/data control rfbi_a0 transition  
Delay time, output chip select rfbi_csx(8) low to output  
write enable rfbi_wr low  
D(7)  
E(9)  
D(7)  
E(9)  
ns  
ns  
ns  
Delay time, output write enable rfbi_wr high to output  
chip select rfbi_csx(8) high  
F(10)  
F(10)  
td(dataV)  
td(Skew)  
Output data rfbi_da[15:0](11) valid  
G(12)  
15.5  
G(12)  
15.5  
ns  
ns  
Skew between output write enable falling rfbi_wr and  
output data rfbi_da[15:0](11) high or low  
td(a0H-rdL)  
td(rdlH-a0)  
Delay time, output command/data control rfbi_a0 high to  
output read enable rfbi_rd low  
H(13)  
I(14)  
H(13)  
I(14)  
ns  
ns  
Delay time, output read enable rfbi_rd high to output  
command/data control rfbi_a0 transition  
tw(rdH)  
Pulse duration, output read enable rfbi_rd high  
Pulse duration, output read enable rfbi_rd low  
J(15)  
K(16)  
L(17)  
J(15)  
K(16)  
L(17)  
ns  
ns  
ns  
tw(rdL)  
td(rdL-csxL)  
Delay time, output read enable rfbi_rd low to output chip  
select rfbi_csx(8) low  
td(rdL-csxH)  
Delay time, output read enable rfbi_rd low to output chip  
select rfbi_csx(8) high  
M(18)  
M(18)  
ns  
tR(wr)  
tF(wr)  
tR(a0)  
tF(a0)  
Rise time, output write enable rfbi_wr  
Fall time, output write enable rfbi_wr  
Rise time, output command/data control rfbi_a0  
Fall time, output command/data control rfbi_a0  
Rise time, output chip select rfbi_csx(8)  
Fall time, output chip select rfbi_csx(8)  
Rise time, output data rfbi_da[15:0](11)  
Fall time, output data rfbi_da[15:0](11)  
Rise time, output read enable rfbi_rd  
Fall time, output read enable rfbi_rd  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tR(csx)  
tF(csx)  
tR(d)  
tF(d)  
tR(rd)  
tF(rd)  
CsOnTime  
CS signal assertion time from Start Access Time –  
RFBI_ONOFF_TIMEi Register  
0(19)  
40(19)  
0(19)  
20(19)  
-
CsOffTime  
WeOnTime  
WeOffTime  
ReOnTime  
ReOffTime  
CS signal deassertion time from Start Access Time –  
RFBI_ONOFF_TIMEi Register  
ns  
ns  
ns  
ns  
ns  
WE signal assertion time from Start Access Time –  
RFBI_ONOFF_TIMEi Register  
WE signal deassertion time from Start Access Time –  
RFBI_ONOFF_TIMEi Register  
RE signal assertion time from Start Access Time –  
RFBI_ONOFF_TIMEi Register  
RE signal deassertion time from Start Access Time –  
RFBI_ONOFF_TIMEi Register  
-
WeCycleTime  
ReCycleTime  
CsPulseWidth  
Write cycle time – RFBI_CYCLE_TIMEi Register  
Read cycle time – RFBI_CYCLE_TIMEi Register  
CS pulse width – RFBI_CYCLE_TIMEi Register  
40(19)  
-
0(19)  
ns  
ns  
ns  
214  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
(1) See DM Operating Condition Addendum for OPP voltages.  
(2) At OPP100, L4 clock is 100 MHz and at OPP50, L4 clock is 50 MHz.  
(3) rfbi_wr must be at 25 MHz.  
(4) A = (WECycleTime – WEOffTime) × (TimeParaGranularity + 1) × L4CLK  
(5) B = (WEOffTime – WEOntime) × (TimeParaGranularity + 1) × L4CLK  
(6) C = WEOnTime × (TimeParaGranularity + 1) × L4CLK  
(7) D = (WECycleTime + CSPulseWidth – WEOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is  
enabled.  
(8) In rfbi_csx, x is equal to 0 or 1.  
(9) E = (WEOnTime – CSOnTime) × (TimeParaGranularity + 1) × L4CLK  
(10) F = (CSOffTime – WEOffTime) × (TimeParaGranularity + 1) × L4CLK  
(11) 16-bit parallel output interface is selected in DSS register.  
(12) G = WECycleTime × (TimeParaGranularity + 1) × L4CLK  
(13) H = REOnTime × (TimeParaGranularity + 1) × L4CLK  
(14) I = (RECycleTime + CSPulseWidth – REOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is  
enabled.  
(15) J = (RECycleTime – REOffTime) × (TimeParaGranularity + 1) × L4CLK  
(16) K = (REOffTime – REOntime) × (TimeParaGranularity + 1) × L4CLK  
(17) L = (REOnTime – CSOnTime) × (TimeParaGranularity + 1) × L4CLK  
(18) M = (CSOffTime – REOffTime) × (TimeParaGranularity + 1) × L4CLK  
(19) These values are calculated by the following formula: RFBI Register (Value) × L4 Clock (ns).  
CsPulseWidth  
WeCycleTime  
CsOffTime  
WeCycleTime  
rfbi_a0  
rfbi_csx(A)  
rfbi_wr  
CsOffTime  
CsOnTime  
CsOnTime  
WeOffTime  
WeOnTime  
WeOffTime  
WeOnTime  
rfbi_da[n:0](B)  
rfbi_rd  
DATA0  
DATA1  
rfbi_te_vsync[1:0]  
rfbi_hsync[1:0]  
A. In rfbi_csx, x is equal to 0 or 1.  
B. rfbi_da[n:0], n up to 15  
Figure 5-98. DSS—RFBI Mode—Pico DLP—Command / Data Write  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
215  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.10 Camera (VPFE)  
The camera (VPFE) controller receives input video/image data from external capture devices and stores it  
to external memory which is transferred into the external memory via a built-in DMA engine. An internal  
buffer block provides a high bandwidth path between the module and the external memory. The Cortex-A9  
will process the image data based on application requirements.  
5.13.10.1 Camera (VPFE) Timing  
The following tables assume testing over recommended operating conditions.  
Table 5-81. VPFE Timing Requirements  
1.8 V, 3.3 V  
NO.  
OPP50  
MIN MAX  
OPP100  
MIN MAX  
UNIT  
VF1 tc(CAMx_CLK)  
Cycle time, pixel clock input, CAMx_CLK  
20  
13.3  
ns  
ns  
tsu(CAMx_D-  
CAMx_CLK)  
VF2  
VF3  
VF4  
VF5  
Setup time, CAMx_D to CAMx_CLK rising edge  
7.5  
3.5  
tsu(CAMx_HD-  
CAMx_CLK)  
Setup time, CAMx_HD to CAMx_CLK rising edge  
Setup time, CAMx_VD to CAMx_CLK rising edge  
Setup time, CAMx_WEN to CAMx_CLK rising edge  
7.5  
7.5  
3.5  
3.5  
ns  
ns  
tsu(CAMx_VD-  
CAMx_CLK)  
tsu(CAMx_WEN-  
CAMx_CLK)  
7.5  
7.5  
6.5  
3.5  
3.5  
2.5  
ns  
ns  
ns  
VF6 tsu(C_FLD-CAMx_CLK) Setup time, CAMx_FIELD to CAMx_CLK rising edge  
th(CAMx_CLK-  
VF7  
Hold time, CAMx_D valid after CAMx_CLK rising edge  
Hold time, CAMx_HD to CAMx_CLK rising edge  
Hold time, CAMx_VD to CAMx_CLK rising edge  
Hold time, CAMx_WEN to CAMx_CLK rising edge  
CAMx_D)  
th(VDIN-HD-  
CAMx_CLK)  
th(CAMx_VD-  
CAMx_CLK)  
th(CAMx_WEN-  
CAMx_CLK)  
VF8  
6.5  
6.5  
2.5  
2.5  
ns  
ns  
VF9  
VF10  
6.5  
6.5  
2.5  
2.5  
ns  
ns  
VF11 th(C_FLD-CAMx_CLK) Hold time, CAMx_FIELD to CAMx_CLK rising edge  
Table 5-82. VPFE Output Switching Characteristics  
1.8 V, 3.3 V  
OPP100  
MIN MAX  
NO.  
PARAMETER  
OPP50  
MIN MAX  
UNIT  
td(CAMx_HD-  
CAMx_CLK)  
td(CAMx_VD-  
CAMx_CLK)  
td(CAMx_WEN-  
CAMx_CLK)  
VF12  
VF13  
VF14  
Output delay time, CAMx_HD to CLK rising edge  
Output delay time, CAMx_VD to CLK rising edge  
Output delay time, CAMx_WEN to CLK rising edge  
9
9
9
15  
2
2
2
9
9
9
ns  
ns  
ns  
15  
15  
216  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
VF1  
VF2  
CAMx_CLK  
(Falling Edge)  
CAMx_CLK  
(Rising Edge)  
VF7  
VF7  
CAMx_D[xx]  
VF8, VF9, VF11  
VF10  
VF3, VF4, VF6  
VF5  
CAMx_HD,  
CAMx_VD,  
CAMx_FIELD  
CAMx_WEN  
Figure 5-99. Camera Input Timings  
CAMx_CLK  
(Falling Edge)  
CAMx_CLK  
(Rising Edge)  
VF15, VF16,  
VF17  
VF15, VF16,  
VF17  
VF12,  
VF13, VF14  
VF12, VF13, VF14  
CAMx_HD,  
CAMx_VD,  
CAMx_FIELD  
Figure 5-100. Camera Output Timings  
VF18  
CAMx_HD  
(Falling Edge)  
CAMx_HD  
(Rising Edge)  
VF20  
VF19  
CAMx_D[xx]  
Figure 5-101. Camera Input Timings With VDIN0_HD as Pixel Clock  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
217  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.11 Inter-Integrated Circuit (I2C)  
For more information, see the Inter-Integrated Circuit (I2C) section of the AM437x ARM Cortex-A9  
Microprocessors (MPUs) Technical Reference Manual.  
5.13.11.1 I2C Electrical Data and Timing  
Table 5-83. I2C Timing Conditions - Slave Mode  
STANDARD MODE  
MIN MAX  
FAST MODE  
MIN  
TIMING CONDITION PARAMETER  
UNIT  
MAX  
Output Condition  
Cb  
Capacitive load for each bus line  
400  
400  
pF  
Table 5-84. Timing Requirements for I2C Input Timings  
(see Figure 5-102)  
STANDARD MODE  
FAST MODE  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
tc(SCL)  
Cycle time, SCL  
10  
2.5  
us  
us  
Setup Time, SCL high before SDA low (for a repeated  
START condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
3
th(SDAL-SCLL)  
us  
4
5
6
7
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100(1)  
0(2)  
us  
us  
ns  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDAV-SCLH)  
th(SCLL-SDAV)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0(2)  
3.45(3)  
0.9(3) us  
Pulse duration, SDA high between STOP and START  
conditions  
8
9
tw(SDAH)  
tr(SDA)  
4.7  
1.3  
us  
Rise time, SDA  
1000  
1000  
300  
300 ns  
300 ns  
300 ns  
300 ns  
us  
10 tr(SCL)  
Rise time, SCL  
11 tf(SDA)  
Fall time, SDA  
12 tf(SCL)  
Fall time, SCL  
300  
13 tsu(SCLH-SDAH)  
14 tw(SP)  
Setup time, high before SDA high (for STOP condition)  
Pulse duration, spike (must be suppressed)  
4
0
0.6  
0
50  
50 ns  
(1) A fast-mode I2C-bus™ device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)250 ns must then be  
met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device stretches the LOW  
period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the  
standard-mode I2C-Bus Specification) before the SCL line is released.  
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(3) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
218  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
9
11  
I2C[x]_SDA  
6
8
14  
4
13  
5
10  
I2C[x]_SCL  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-102. I2C Receive Timing  
Table 5-85. Switching Characteristics for I2C Output Timings  
(see Figure 5-120)  
STANDARD MODE  
PARAMETER  
FAST MODE  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
15 tc(SCL)  
Cycle time, SCL  
10  
2.5  
us  
us  
Setup Time, SCL high before SDA low (for a repeated  
START condition)  
16 tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
17 th(SDAL-SCLL)  
us  
18 tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
us  
us  
ns  
19 tw(SCLH)  
Pulse duration, SCL high  
20 tsu(SDAV-SCLH)  
21 th(SCLL-SDAV)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45  
0.9 us  
Pulse duration, SDA high between STOP and START  
conditions  
22 tw(SDAH)  
4.7  
1.3  
us  
23 tr(SDA)  
Rise time, SDA  
1000 20 + 0.1Cb(1)  
1000 20 + 0.1Cb(1)  
300 20 + 0.1Cb(1)  
300 20 + 0.1Cb(1)  
0.6  
300 ns  
300 ns  
300 ns  
300 ns  
us  
24 tr(SCL)  
Rise time, SCL  
25 tf(SDA)  
Fall time, SDA  
26 tf(SCL)  
Fall time, SCL  
27 tsu(SCLH-SDAH)  
(1) Cb is line load in pF.  
Setup time, high before SDA high (for STOP condition)  
4
26  
24  
I2C[x]_SDA  
I2C[x]_SCL  
21  
23  
19  
28  
20  
25  
27  
16  
18  
22  
17  
18  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-103. I2C Transmit Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
219  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.12 Multichannel Audio Serial Port (McASP)  
The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for  
the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM)  
stream, Inter-Integrated Sound (I2S) protocols, and inter-component digital audio interface transmission  
(DIT).  
5.13.12.1 McASP Device-Specific Information  
The device includes two multichannel audio serial port (McASP) interface peripherals (McASP0 and  
McASP1). The McASP module consists of a transmit and receive section. These sections can operate  
completely independently with different data formats, separate master clocks, bit clocks, and frame syncs  
or, alternatively, the transmit and receive sections may be synchronized. The McASP module also  
includes shift registers that may be configured to operate as either transmit data or receive data.  
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM)  
synchronous serial format or in a DIT format where the bit stream is encoded for SPDIF, AES-3, IEC-  
60958, CP-430 transmission. The receive section of the McASP peripheral supports the TDM  
synchronous serial format.  
The McASP module can support one transmit data format (either a TDM format or DIT format) and one  
receive format at a time. All transmit shift registers use the same format and all receive shift registers use  
the same format; however, the transmit and receive formats need not be the same. Both the transmit and  
receive sections of the McASP also support burst mode, which is useful for nonaudio data (for example,  
passing control information between two devices).  
The McASP peripheral has additional capability for flexible clock generation and error detection/handling,  
as well as error management.  
The device McASP0 and McASP1 modules have up to four serial data pins each. The McASP FIFO size  
is 256 bytes and two DMA and two interrupt requests are supported. Buffers are used transparently to  
better manage DMA, which can be leveraged to manage data flow more efficiently.  
For more detailed information on and the functionality of the McASP peripheral, see the Multichannel  
Audio Serial Port (McASP) section of the AM437x ARM Cortex-A9 Microprocessors (MPUs) Technical  
Reference Manual.  
220  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.12.2 McASP Electrical Data and Timing  
Table 5-86. McASP Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
4(1)  
4(1)  
ns  
ns  
Output Condition  
CLOAD Output load capacitance  
15  
30  
pF  
(1) Except when specified otherwise.  
Table 5-87. Timing Requirements for McASP(1)  
(see Figure 5-104)  
OPP100  
OPP50  
MIN  
NO.  
UNIT  
MIN  
MAX  
MAX  
Cycle time, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX  
1
2
3
4
tc(AHCLKRX)  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
20  
38.46  
ns  
ns  
ns  
ns  
Pulse duration, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX high or low  
0.5P - 2.5(2)  
0.5P - 2.5(2)  
Cycle time, McASP[x]_ACLKR and  
McASP[x]_ACLKX  
20  
38.46  
Pulse duration, McASP[x]_ACLKR and  
McASP[x]_ACLKX high or low  
0.5R - 2.5(3)  
0.5R - 2.5(3)  
ACLKR and  
ACLKX int  
12.3  
4
15.5  
6
Setup time, McASP[x]_AFSR and  
McASP[x]_AFSX input valid before  
McASP[x]_ACLKR and  
tsu(AFSRX-  
ACLKRX)  
ACLKR and  
ACLKX ext in  
5
6
7
8
ns  
ns  
ns  
ns  
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext out  
4
6
ACLKR and  
ACLKX int  
-1  
-1  
Hold time, McASP[x]_AFSR and  
McASP[x]_AFSX input valid after  
McASP[x]_ACLKR and  
th(ACLKRX-  
AFSRX)  
ACLKR and  
ACLKX ext in  
1.6  
1.6  
12.3  
4
2.3  
2.3  
15.5  
6
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext out  
ACLKR and  
ACLKX int  
Setup time, McASP[x]_AXR input  
tsu(AXR-ACLKRX) valid before McASP[x]_ACLKR and  
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext in  
ACLKR and  
ACLKX ext out  
4
6
ACLKR and  
ACLKX int  
-1  
-1  
Hold time, McASP[x]_AXR input  
th(ACLKRX-AXR) valid after McASP[x]_ACLKR and  
McASP[x]_ACLKX  
ACLKR and  
ACLKX ext in  
1.6  
1.6  
2.3  
2.3  
ACLKR and  
ACLKX ext out  
(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
(2) P = McASP[x]_AHCLKR and McASP[x]_AHCLKX period in nano seconds (ns).  
(3) R = McASP[x]_ACLKR and McASP[x]_ACLKX period in ns.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
221  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
2
1
2
McASP[x]_ACLKR/X (Falling Edge Polarity)  
McASP[x]_AHCLKR/X (Rising Edge Polarity)  
4
4
3
McASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(A)  
McASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(B)  
6
5
McASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
8
7
McASP[x]_AXR[x] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP  
receiver is configured for falling edge (to shift data in).  
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP  
receiver is configured for rising edge (to shift data in).  
Figure 5-104. McASP Input Timing  
222  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-88. Switching Characteristics for McASP(1)  
(see Figure 5-105)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
UNIT  
MAX  
MAX  
Cycle time, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX  
9
tc(AHCLKRX)  
20(2)  
38.46  
0.5P - 2.5(3)  
38.46  
ns  
ns  
ns  
ns  
Pulse duration, McASP[x]_AHCLKR and  
McASP[x]_AHCLKX high or low  
10 tw(AHCLKRX)  
11 tc(ACLKRX)  
12 tw(ACLKRX)  
0.5P - 2.5(3)  
Cycle time, McASP[x]_ACLKR and  
McASP[x]_ACLKX  
20  
Pulse duration, McASP[x]_ACLKR and  
McASP[x]_ACLKX high or low  
0.5P - 2.5(3)  
0.5P - 2.5(3)  
0
ACLKR and  
ACLKX int  
Delay time, McASP[x]_ACLKR and  
McASP[x]_ACLKX transmit edge to  
McASP[x]_AFSR and  
0
2
7.25  
14  
8.5  
18  
ACLKR and  
ACLKX ext in  
2.7  
McASP[x]_AFSX output valid  
13 td(ACLKRX-AFSRX)  
ns  
Delay time, McASP[x]_ACLKR and  
McASP[x]_ACLKX transmit edge to ACLKR and  
McASP[x]_AFSR and  
McASP[x]_AFSX output valid with  
Pad Loopback  
ACLKX ext  
out  
2
14  
2.7  
18  
Delay time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output valid  
ACLKX int  
0
2
7.25  
14  
0
8.5  
18  
ACLKX ext in  
2.7  
14 td(ACLKX-AXR)  
ns  
ns  
Delay time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output valid with Pad Loopback  
ACLKX ext  
out  
2
14  
2.7  
18  
Disable time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output high impedance  
ACLKX int  
0
2
7.25  
14  
0
8.5  
18  
ACLKX ext in  
2.7  
15 tdis(ACLKX-AXR)  
Disable time, McASP[x]_ACLKX  
transmit edge to McASP[x]_AXR  
output high impedance with Pad  
Loopback  
ACLKX ext  
out  
2
14  
2.7  
18  
(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
(2) 50 MHz  
(3) P = AHCLKR and AHCLKX period.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
223  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
10  
10  
9
McASP[x]_ACLKR/X (Falling Edge Polarity)  
McASP[x]_AHCLKR/X (Rising Edge Polarity)  
12  
11  
12  
McASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(A)  
McASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(B)  
13  
13  
13  
13  
McASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
13  
13  
13  
McASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
McASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
McASP[x]_AXR[x] (Data Out/Transmit)  
14  
15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP  
receiver is configured for rising edge (to shift data in).  
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP  
receiver is configured for falling edge (to shift data in).  
Figure 5-105. McASP Output Timing  
224  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.13 Multichannel Serial Port Interface (McSPI)  
For more information, see the Multichannel Serial Port Interface (McSPI) section of the AM437x ARM  
Cortex-A9 Microprocessors (MPUs) Technical Reference Manual.  
5.13.13.1 McSPI Electrical Data and Timing  
The following timings are applicable to the different configurations of McSPI in master or slave mode for  
any McSPI and any channel (n).  
5.13.13.1.1 McSPI—Slave Mode  
Table 5-89. McSPI Timing Conditions—Slave Mode  
TIMING CONDITION PARAMETER  
MIN  
MAX UNIT  
Input Conditions  
tr  
Input signal rise time  
5
5
ns  
ns  
tf  
Input signal fall time  
Output Condition  
Cload  
Output load capacitance  
20  
pF  
Table 5-90. Timing Requirements for McSPI Input Timings—Slave Mode  
(see Figure 5-106)  
OPP100  
MIN  
OPP50  
NO.  
UNIT  
MAX  
MIN  
MAX  
1
2
3
tc(SPICLK)  
Cycle time, SPI_CLK  
62.5  
0.45P(1)  
0.45P(1)  
83.2  
ns  
ns  
ns  
tw(SPICLKL)  
tw(SPICLKH)  
Typical Pulse duration, SPI_CLK low  
Typical Pulse duration, SPI_CLK high  
0.45P(1)  
0.45P(1)  
0.45P(1)  
0.45P(1)  
0.45P(1)  
0.45P(1)  
Setup time, SPI_D[x] (SIMO) valid before SPI_CLK  
active edge(2)(3)  
4
5
tsu(SIMO-SPICLK)  
th(SPICLK-SIMO)  
tsu(CS-SPICLK)  
th(SPICLK-CS)  
12  
13  
13  
ns  
ns  
Hold time, SPI_D[x] (SIMO) valid after SPI_CLK  
active edge(2)(3)  
12  
Setup time, SPI_CS valid before SPI_CLK first  
edge(2)  
Hold time, SPI_CS valid after SPI_CLK last edge(2)  
8
9
12  
12  
13  
13  
ns  
ns  
(1) P = SPI_CLK period.  
(2) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(3) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
Table 5-91. Switching Characteristics for McSPI Output Timings—Slave Mode  
(see Figure 5-107)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Delay time, SPI_CLK active edge to  
SPI_D[x] (SOMI) transition(1)(2)  
6
7
td(SPICLK-SOMI)  
td(CS-SOMI)  
17  
0
19  
ns  
ns  
Delay time, SPI_CS active edge to SPI_D[x]  
(SOMI) transition(2)  
26  
29  
(1) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
225  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[x] (In)  
1
1
3
3
8
2
2
9
POL=0  
SPI_SCLK (In)  
POL=1  
SPI_SCLK (In)  
4
5
4
5
SPI_D[x] (SIMO, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (In)  
SPI_SCLK (In)  
1
3
2
8
2
3
9
POL=0  
POL=1  
1
SPI_SCLK (In)  
4
4
5
5
SPI_D[x] (SIMO, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Figure 5-106. SPI Slave Mode Receive Timing  
226  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
PHA=0  
EPOL=1  
SPI_CS[x] (In)  
1
1
3
8
2
2
9
POL=0  
POL=1  
SPI_SCLK (In)  
3
SPI_SCLK (In)  
6
7
6
SPI_D[x] (SOMI, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (In)  
SPI_SCLK (In)  
1
1
3
2
8
2
3
9
POL=0  
POL=1  
SPI_SCLK (In)  
6
6
6
6
SPI_D[x] (SOMI, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Figure 5-107. SPI Slave Mode Transmit Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
227  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.13.1.2 McSPI—Master Mode  
Table 5-92. McSPI Timing Conditions—Master Mode  
LOW LOAD  
MIN  
HIGH LOAD  
MIN  
TIMING CONDITION PARAMETER  
UNIT  
MAX  
MAX  
Input Conditions  
tr  
Input signal rise time  
Input signal fall time  
4
4
8
8
ns  
ns  
tf  
Output Condition  
Cload  
Output load capacitance  
5
25  
pF  
Table 5-93. Timing Requirements for McSPI Input Timings—Master Mode  
(see Figure 5-108)  
OPP100  
LOW LOAD HIGH LOAD  
OPP50  
NO.  
LOW LOAD  
HIGH LOAD  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Setup time, SPI_D[x]  
(SOMI) valid before  
SPI_CLK active edge(2)  
(1)  
4
5
tsu(SOMI-SPICLK)  
3
4.5  
4.5  
4.5  
ns  
ns  
Hold time, SPI_D[x]  
(SOMI) valid after  
(1)  
th(SPICLK-SOMI)  
6
6
6
6
SPI_CLK active edge(2)  
(1) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to capture input data.  
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
Table 5-94. Switching Characteristics for McSPI Output Timings—Master Mode  
(see Figure 5-109)  
OPP100  
OPP50  
NO.  
PARAMETER  
LOW LOAD  
MIN  
HIGH LOAD  
MIN  
LOW LOAD  
MIN  
HIGH LOAD  
MIN MAX  
UNIT  
MAX  
MAX  
MAX  
1
2
tc(SPICLK)  
Cycle time, SPI_CLK  
20.8  
41.6  
41.6  
41.6  
ns  
ns  
Typical Pulse duration,  
SPI_CLK low  
tw(SPICLKL)  
0.45P(1) 0.45P(1)  
0.45P(1) 0.45P(1)  
0.45P(1) 0.55P(1)  
0.45P(1) 0.55P(1)  
0.45P(1) 0.45P(1)  
0.45P(1) 0.45P(1)  
0.45P(1) 0.45P(1)  
0.45P(1) 0.45P(1)  
Typical Pulse duration,  
SPI_CLK high  
tw(SPICLKH)  
ns  
3
tr(SPICLK)  
tf(SPICLK)  
Rising time, SPI_CLK  
Falling time, SPI_CLK  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.82  
3.44  
ns  
ns  
Delay time, SPI_CLK active  
edge to SPI_D[x] (SIMO)  
transition(2)  
td(SPICLK-  
6
7
-1  
4.5  
4.5  
-1  
6.5  
6.5  
0
6.5  
6.5  
0
6.5  
6.5  
ns  
ns  
SIMO)  
Delay time, SPI_CS active  
edge to SPI_D[x] (SIMO)  
transition(2)  
td(CS-SIMO)  
Mode 1  
A - 4.2(4)  
B - 4.2(5)  
B - 4.2(5)  
A - 4.2(4)  
A - 4.2(4)  
B - 4.2(5)  
B - 4.2(5)  
A - 4.2(4)  
A - 5.2(4)  
B - 5.2(5)  
B - 5.2(5)  
A - 5.2(4)  
A - 5.2(4)  
B - 5.2(5)  
B - 5.2(5)  
A - 5.2(4)  
ns  
ns  
ns  
ns  
and 3(3)  
Delay time, SPI_CS  
td(CS-SPICLK) active to SPI_CLK  
first edge  
8
9
Mode 0  
and 2(3)  
Mode 1  
and 3(3)  
Delay time,  
td(SPICLK-CS) SPI_CLK last edge  
to SPI_CS inactive  
Mode 0  
and 2(3)  
(1) P = SPI_CLK period.  
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.  
(3) The polarity of SPIx_CLK and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all  
software configurable:  
SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).  
SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).  
228  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
(4) Case P = 20.8 ns, A = (TCS+1)*TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register).  
Case P > 20.8 ns, A = (TCS+0.5)*Fratio*TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register).  
Note: P = SPI_CLK clock period.  
(5) B = (TCS+0.5)*TSPICLKREF*Fratio (TCS is a bit field of MCSPI_CH(i)CONF register, Fratio: Even2).  
PHA=0  
EPOL=1  
SPI_CS[x] (Out)  
1
3
8
2
3
9
POL=0  
POL=1  
SPI_SCLK (Out)  
1
2
SPI_SCLK (Out)  
4
4
5
5
SPI_D[x] (SOMI, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (Out)  
SPI_SCLK (Out)  
1
2
1
3
3
2
8
9
POL=0  
POL=1  
SPI_SCLK (Out)  
4
4
5
5
SPI_D[x] (SOMI, In)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Figure 5-108. SPI Master Mode Receive Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
229  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[x] (Out)  
1
1
3
2
8
2
3
9
POL=0  
SPI_SCLK (Out)  
POL=1  
SPI_SCLK (Out)  
6
7
6
SPI_D[x] (SIMO, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (Out)  
SPI_SCLK (Out)  
1
3
2
8
2
3
9
POL=0  
POL=1  
1
SPI_SCLK (Out)  
6
6
6
6
SPI_D[x] (SIMO, Out)  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Figure 5-109. SPI Master Mode Transmit Timing  
230  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.14 Quad Serial Port Interface (QSPI)  
The Quad SPI (QSPI) module allows single, dual or quad read access to external SPI devices. This  
module provides a memory mapped register interface, which provides a direct interface to access data  
from external SPI devices and to simplify software requirements. It functions as a master only. There is  
one QSPI module in the device and it is primary intended for fast booting from quad-SPI flash  
memories.  
General SPI features:  
Programmable clock divider  
Six pin interface (QSPI_CLK, QSPI_D0, QSPI_D1,QSPI_D2,QSPI_D3, QSPI_CS0)  
One external chip select signal  
Support for 3-, 4- or 6-pin SPI interface  
Programmable CS0 to DATA_OUT delay from 0 to 3 QSPI_CLKs  
Only supports SPI MODE 3  
NOTE  
For more information, see the Quad Serial Port Interface section of the AM437x ARM  
Cortex-A9 Microprocessors (MPUs) Technical Reference Manual.  
Table 5-95 displays the switching characteristics for the Quad SPI module.  
Table 5-95. QSPI Switching Characteristics  
(see Figure 5-110 and Figure 5-111)  
OPP100  
OPP50  
MIN  
20.8(1)  
9.77(1)  
NO.  
PARAMETER  
MIN  
20.8(1)  
9.77(1)  
MAX  
MAX  
UNIT  
ns  
1
2
3
4
tc(QSPI_CLK)  
Cycle time, QSPI_CLK  
tw(QSPI_CLKL)  
Pulse duration, QSPI_CLK low  
ns  
tw(QSPI_CLKH) Pulse duration, QSPI_CLK high  
9.77(1)  
9.77(1)  
ns  
td(CS-QSPI_CLK) Delay time, QSPI_CSn active edge to  
QSPI_CLK transition  
M*P+5(2)(3)  
M*P+5(2)(3)  
ns  
5
6
7
8
td(QSPI_CLK-  
QSPI_CSn)  
Delay time, QSPI_CLK transition to  
QSPI_CSn inactive edge  
M*P+5(2)(3)  
M*P+5(2)(3)  
ns  
ns  
ns  
ns  
td(QSPI_CLK-D1) Delay time, QSPI_CLK active edge to  
QSPI_D[0] transition  
0
8.5  
0
5.5  
0
8.5  
0
5.5  
tsu(D-QSPI_CLK) Setup time, QSPI_D[3:0] valid before active  
QSPI_CLK edge  
th(QSPI_CLK-D) Hold time, QSPI_D[3:0] valid after active  
QSPI_CLK edge  
(1) Maximum supported frequency is 48 MHz.  
(2) P = QSPI_CLK period.  
(3) M = Programmable via Data Delay Zero (DD0) register.  
QSPI_CSn  
5
1
4
3
2
QSPI_CLK  
6
6
7
7
min  
max  
8
Read Data  
8
Read Data  
Command  
n-1  
Command  
n-2  
QSPI_D[3:0]  
1
0
Figure 5-110. QSPI Read Active High Polarity  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
231  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
QSPI_CS  
5
1
4
3
2
QSPI_CLK  
6
6
6
6
min  
max  
min  
max  
Command  
n-1  
Command  
n-2  
Write Data  
Write Data  
0
QSPI_D[0]  
1
QSPI_D[3:1]  
Figure 5-111. QSPI Write Active High Polarity  
232  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.15 HDQ/1-Wire Interface (HDQ/1-Wire)  
NOTE  
For more information, see HDQ/1-Wire Interface chapter of the AM437x ARM Cortex-A9  
Microprocessors (MPUs) Technical Reference Manual.  
The module is intended to work with both HDQ and 1-Wire protocols. The protocols use one wire to  
communicate between the master and the slave. The protocols employ an asynchronous return to one  
mechanism where, after any command, the line is pulled high.  
5.13.15.1 HDQ Protocol  
Table 5-96 and Table 5-97 assume testing over the recommended operating conditions (see Figure 5-112,  
Figure 5-113, Figure 5-114, and Figure 5-115).  
Table 5-96. HDQ Timing Requirements  
PARAMETER  
MIN  
190  
32  
MAX  
UNIT  
μs  
tCYCD  
Bit window  
tHW1  
Reads 1  
66  
μs  
tHW0  
Reads 0  
Command to host respond time(1)  
70  
145  
320  
μs  
tRSPS  
190  
μs  
(1) Defined by software  
Table 5-97. HDQ Switching Characteristics  
PARAMETER  
DESCRIPTION  
MIN  
190  
40  
MAX  
UNIT  
μs  
tB  
Break timing  
Break recovery  
Bit window  
tBR  
μs  
tCYCH  
tDW1  
tDW0  
190  
0.5  
86  
250  
50  
μs  
Sends 1 (write)  
Sends 0 (write)  
μs  
145  
μs  
tB  
tBR  
HDQ  
HDQ  
HDQ  
Figure 5-112. HDQ Break (Reset) Timing  
tCYCH  
tHW0  
tHW1  
Figure 5-113. HDQ Read Bit Timing (Data)  
tCYCD  
tDW0  
tDW1  
Figure 5-114. HDQ Write Bit Timing (Command/Address or Data)  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
233  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Command_byte_written  
0_(LSB)  
Data_byte_received  
1
tRSPS  
Break  
7_(MSB)  
0_(LSB)  
1
6
6
HDQ  
Figure 5-115. HDQ Communication Timing  
5.13.15.2 1-Wire Protocol  
Table 5-98 and Table 5-99 assume testing over the recommended operating conditions (see Figure 5-116,  
Figure 5-117, and Figure 5-118).  
Table 5-98. HDQ/1-Wire Timing Requirements—1-Wire Mode  
PARAMETER  
tPDH  
MIN  
15  
MAX  
60  
UNIT  
μs  
Presence pulse delay high  
Presence pulse delay low  
Read bit-zero time  
tPDL  
60  
240  
60  
μs  
tRDV + tREL  
μs  
Table 5-99. HDQ/1-Wire Switching Characteristics—1-Wire Mode  
PARAMETER  
tRSTL  
DESCRIPTION  
MIN  
480  
480  
60  
1
MAX  
UNIT  
μs  
Reset time low  
Reset time high  
Bit cycle time  
960  
tRSTH  
μs  
tSLOT  
120  
15  
μs  
tLOW1  
Write bit-one time  
Write bit-zero time  
Recovery time  
μs  
tLOW0  
60  
1
120  
μs  
tREC  
μs  
tLOWR  
Read bit strobe time  
1
15  
μs  
tRSTH  
tPDL  
tRTSL  
tPDH  
1-WIRE  
Figure 5-116. 1-Wire Break (Reset) Timing  
tSLOT_and_tREC  
tRDV_and_tREL  
tLOWR  
1-WIRE  
Figure 5-117. 1-Wire Read Bit Timing (Data)  
tSLOT_and_tREC  
tLOW0  
1-WIRE  
tLOW1  
Figure 5-118. 1-Wire Write Bit Timing (Command/Address or Data)  
234  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.16 Programmable Real-Time Unit Subsystem and Industrial Communication  
Subsystem (PRU-ICSS)  
For more information, see the Programmable Real-Time Unit Subsystem and Industrial Communication  
Subsystem Interface (PRU-ICSS) section of the AM437x Sitara Processors Technical Reference Manual.  
5.13.16.1 Programmable Real-Time Unit (PRU-ICSS PRU)  
Table 5-100. PRU-ICSS PRU Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
MAX  
UNIT  
Output Condition  
Cload  
Capacitive load for each bus line  
3
30  
pF  
5.13.16.1.1 PRU-ICSS PRU Direct Input/Output Mode Electrical Data and Timing  
Table 5-101. PRU-ICSS PRU Timing Requirements - Direct Input Mode  
(see Figure 5-119)  
NO.  
MIN  
2*P(1)  
1.00  
MAX  
UNIT  
1
tw(GPI)  
tr(GPI)  
tf(GPI)  
Pulse width, GPI  
ns  
Rise time, GPI  
3.00  
3.00  
5.00  
2
3
ns  
ns  
Fall time, GPI  
Internal skew between GPI[n:0] signals(2)  
1.00  
tsk(GPI)  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
(2) n = 16, 11 for PRU-ICSS1 and 19 for PRU-ICSS0  
2
1
GPI[m:0]  
3
Figure 5-119. PRU-ICSS PRU Direct Input Timing  
Table 5-102. PRU-ICSS PRU Switching Requirements - Direct Output Mode  
(see Figure 5-120)  
NO.  
MIN  
MAX  
UNIT  
1
2
3
tw(GPO)  
tr(GPO)  
tf(GPO)  
tsk(GPO)  
Pulse width, GPO  
2*P(1)  
ns  
Rise time, GPO  
1.00  
3.00  
3.00  
5.00  
ns  
ns  
Fall time, GPO  
Internal skew between GPO[n:0] signals(2)  
1.00  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
(2) n = 11 for PRU-ICSS1 and 19 for PRU-ICSS0  
2
1
GPO[n:0]  
3
Figure 5-120. PRU-ICSS PRU Direct Output Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
235  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.16.1.2 PRU-ICSS PRU Parallel Capture Mode Electrical Data and Timing  
Table 5-103. PRU-ICSS PRU Timing Requirements - Parallel Capture Mode  
(see Figure 5-121 and Figure 5-122)  
NO.  
1
MIN  
20.00  
10.00  
10.00  
1.00  
1.00  
4.00  
0
MAX  
UNIT  
ns  
tc(CLOCKIN)  
Cycle time, CLOCKIN  
2
tw(CLOCKIN_L)  
tw(CLOCKIN_H)  
tr(CLOCKIN)  
Pulse duration, CLOCKIN low  
Pulse duration, CLOCKIN high  
Rising time, CLOCKIN  
ns  
3
ns  
4
3.00  
3.00  
ns  
5
tf(CLOCKIN)  
Falling time, CLOCKIN  
ns  
6
tsu(DATAIN-CLOCKIN)  
th(CLOCKIN-DATAIN)  
tr(DATAIN)  
Setup time, DATAIN valid before CLOCKIN  
Hold time, DATAIN valid after CLOCKIN  
Rising time, DATAIN  
ns  
7
ns  
1.00  
1.00  
3.00  
3.00  
8
ns  
tf(DATAIN)  
Falling time, DATAIN  
1
3
5
4
2
CLOCKIN  
DATAIN  
7
6
8
Figure 5-121. PRU-ICSS PRU Parallel Capture Timing - Rising Edge Mode  
1
3
4
5
2
CLOCKIN  
DATAIN  
7
6
8
Figure 5-122. PRU-ICSS PRU Parallel Capture Timing - Falling Edge Mode  
5.13.16.1.3 PRU-ICSS PRU Shift Mode Electrical Data and Timing  
Table 5-104. PRU-ICSS PRU Timing Requirements - Shift In Mode  
(see Figure 5-123)  
NO.  
MIN  
10.00  
0.45*P(1)  
MAX  
UNIT  
ns  
1
2
3
4
tc(DATAIN)  
tw(DATAIN)  
tr(DATAIN)  
tf(DATAIN)  
Cycle time, DATAIN  
Pulse width, DATAIN  
Rising time, DATAIN  
Falling time, DATAIN  
0.55*P(1)  
3.00  
ns  
1.00  
ns  
1.00  
3.00  
ns  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
236  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1
2
3
4
DATAIN  
Figure 5-123. PRU-ICSS PRU Shift In Timing  
Table 5-105. PRU-ICSS PRU Switching Requirements - Shift Out Mode  
(see Figure 5-124)  
NO.  
MIN  
MAX  
UNIT  
ns  
1
2
3
4
5
tc(CLOCKOUT)  
tw(CLOCKOUT)  
tr(CLOCKOUT)  
tf(CLOCKOUT)  
Cycle time, CLOCKOUT  
10.00  
0.45*P(1)  
1.00  
Pulse width, CLOCKOUT  
0.55*P(1)  
3.00  
ns  
Rising time, CLOCKOUT  
ns  
Falling time, CLOCKOUT  
1.00  
3.00  
ns  
td(CLOCKOUT-  
DATAOUT)  
Delay time, CLOCKOUT to DATAOUT Valid  
-1.50  
3.00  
ns  
tr(DATAOUT)  
Rising time, DATAOUT  
Falling time, DATAOUT  
1.00  
1.00  
3.00  
3.00  
6
ns  
tf(DATAOUT)  
(1) P = L3_CLK (PRU-ICSS ocp clock) period.  
1
2
4
3
CLOCKOUT  
DATAOUT  
5
6
Figure 5-124. PRU-ICSS PRU Shift Out Timing  
5.13.16.1.4 PRU-ICSS Sigma Delta Electrical Data and Timing  
Table 5-106. PRU-ICSS Timing Requirements - Sigma Delta Mode  
(see Figure 5-125 and Figure 5-126)  
NO.  
1
MIN  
20.00  
1.00  
MAX  
UNIT  
ns  
tw(SDx_CLK)  
tr(SDx_CLK)  
Pulse width, SDx_CLK  
2
Rising time, SDx_CLK  
3.00  
3.00  
ns  
3
tf(SDx_CLK)  
Falling time, SDx_CLK  
1.00  
ns  
4
tsu(SDx_D-SDx_CLK)  
th(SDx_CLK-SDx_D)  
tr(SDx_D)  
Setup time, SDx_D valid before SDx_CLK active edge  
Hold time, SDx_D valid before SDx_CLK active edge  
Rising time, SDx_D  
10.00  
5.00  
ns  
5
ns  
1.00  
3.00  
3.00  
6
ns  
tf(SDx_D)  
Falling time, SDx_D  
1.00  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
237  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
1
2
3
SDx_CLK  
SDx_D  
4
5
6
Figure 5-125. PRU-ICSS Sigma Delta Timing - SD_CLK Rising Active Edge  
1
3
2
SDx_CLK  
SDx_D  
4
5
6
Figure 5-126. PRU-ICSS Sigma Delta Timing - SD_CLK Falling Active Edge  
5.13.16.1.5 PRU-ICSS ENDAT Electrical Data and Timing  
Table 5-107. PRU-ICSS Timing Requirements - ENDAT Mode  
(see Figure 5-127)  
NO.  
MIN  
MAX  
UNIT  
ns  
1
2
3
tw(ENDATx_IN)  
tr(ENDATx_IN)  
tf(ENDATx_IN)  
Pulse width, ENDATx_IN  
Rising time, ENDATx_IN  
Falling time, ENDATx_IN  
40.00  
1.00  
1.00  
10.00  
10.00  
ns  
ns  
Table 5-108. PRU-ICSS Switching Requirements - ENDAT Mode  
(see Figure 5-127)  
NO.  
MIN  
MAX  
UNIT  
ns  
4
5
6
7
tw(ENDATx_CLK)  
tr(ENDATx_CLK)  
tf(ENDATx_CLK)  
Pulse width, ENDATx_CLK  
20.00  
1.00  
Rising time, ENDATx_CLK  
3.00  
3.00  
ns  
Falling time, ENDATx_CLK  
1.00  
ns  
td(ENDATx_OUT-  
ENDATx_CLK)  
Delay time, ENDATx_CLK fall to ENDATx_OUT  
-10.00  
10.00  
ns  
tr(ENDATx_OUT)  
Rising time, ENDATx_OUT  
1.00  
1.00  
3.00  
3.00  
8
9
ns  
ns  
tf(ENDATx_OUT)  
Falling time, ENDATx_OUT  
td(ENDATx_OUT_EN-  
Delay time, ENDATx_CLK Fall to ENDATx_OUT_EN  
-10.00  
10.00  
ENDATx_CLK)  
238  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
3
2
ENDATx_IN  
1
4
5
6
ENDATx_CLK  
ENDATx_OUT  
8
ENDATx_OUT_EN  
9
Figure 5-127. PRU-ICSS ENDAT Timing  
5.13.16.2 PRU-ICSS EtherCAT (PRU-ICSS ECAT)  
Table 5-109. PRU-ICSS ECAT Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
MAX  
UNIT  
Output Condition  
Cload  
Capacitive load for each bus line  
30  
pF  
5.13.16.2.1 PRU-ICSS ECAT Electrical Data and Timing  
Table 5-110. PRU-ICSS ECAT Timing Requirements - Input Validated With LATCH_IN  
(see Figure 5-128)  
NO.  
1
MIN  
100.00  
1.00  
MAX  
UNIT  
ns  
tw(EDIO_LATCH_IN)  
tr(EDIO_LATCH_IN)  
tf(EDIO_LATCH_IN)  
Pulse width, EDIO_LATCH_IN  
Rising time, EDIO_LATCH_IN  
Falling time, EDIO_LATCH_IN  
2
3.00  
3.00  
ns  
3
1.00  
ns  
4
tsu(EDIO_DATA_IN-  
EDIO_LATCH_IN)  
th(EDIO_LATCH_IN-  
EDIO_DATA_IN)  
Setup time, EDIO_DATA_IN valid before  
EDIO_LATCH_IN active edge  
20.00  
ns  
5
6
Hold time, EDIO_DATA_IN valid after EDIO_LATCH_IN  
active edge  
20.00  
ns  
ns  
tr(EDIO_DATA_IN)  
Rising time, EDIO_DATA_IN  
Falling time, EDIO_DATA_IN  
1.00  
1.00  
3.00  
3.00  
tf(EDIO_DATA_IN)  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
239  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
2
3
EDIO_LATCH_IN  
1
4
5
EDIO_DATA_IN[7:0]  
6
Figure 5-128. PRU-ICSS ECAT Input Validated With LATCH_IN Timing  
Table 5-111. PRU-ICSS ECAT Timing Requirements - Input Validated With SYNCx  
(see Figure 5-129)  
NO.  
1
MIN  
100.00  
1.00  
MAX  
UNIT  
ns  
tw(EDC_SYNCx_OUT)  
tr(EDC_SYNCx_OUT)  
tf(EDC_SYNCx_OUT)  
Pulse width, EDC_SYNCx_OUT  
Rising time, EDC_SYNCx_OUT  
Falling time, EDC_SYNCx_OUT  
2
3.00  
3.00  
ns  
3
1.00  
ns  
4
tsu(EDIO_DATA_IN-  
EDC_SYNCx_OUT)  
th(EDC_SYNCx_OUT-  
EDIO_DATA_IN)  
Setup time, EDIO_DATA_IN valid before  
EDC_SYNCx_OUT active edge  
24.50  
ns  
5
6
Hold time, EDIO_DATA_IN valid after EDC_SYNCx_OUT  
active edge  
22.00  
ns  
ns  
tr(EDIO_DATA_IN)  
Rising time, EDIO_DATA_IN  
Falling time, EDIO_DATA_IN  
1.00  
1.00  
3.00  
3.00  
tf(EDIO_DATA_IN)  
2
3
EDC_SYNCx_OUT  
1
4
5
EDIO_DATA_IN[7:0]  
6
Figure 5-129. PRU-ICSS ECAT Input Validated With SYNCx Timing  
240  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-112. PRU-ICSS ECAT Timing Requirements - Input Validated With Start of Frame (SOF)  
(see Figure 5-130)  
NO.  
1
MIN  
4*P(1)  
1.00  
MAX  
5*P(1)  
3.00  
UNIT  
ns  
tw(EDIO_SOF)  
tr(EDIO_SOF)  
tf(EDIO_SOF)  
Pulse duration, EDIO_SOF  
Rising time, EDIO_SOF  
Falling time, EDIO_SOF  
2
ns  
3
1.00  
3.00  
ns  
4
tsu(EDIO_DATA_IN-  
EDIO_SOF)  
Setup time, EDIO_DATA_IN valid before EDIO_SOF  
active edge  
20.00  
ns  
5
6
th(EDIO_SOF-EDIO_DATA_IN) Hold time, EDIO_DATA_IN valid after EDIO_SOF active  
edge  
20.00  
ns  
ns  
tr(EDIO_DATA_IN)  
tf(EDIO_DATA_IN)  
Rising time, EDIO_DATA_IN  
Falling time, EDIO_DATA_IN  
1.00  
1.00  
3.00  
3.00  
(1) P = PRU-ICSS IEP clock source period.  
2
3
EDIO_SOF  
1
4
5
EDIO_DATA_IN[7:0]  
6
Figure 5-130. PRU-ICSS ECAT Input Validated With SOF  
Table 5-113. PRU-ICSS ECAT Timing Requirements - LATCHx_IN  
(see Figure 5-131)  
NO.  
MIN  
3*P(1)  
MAX  
UNIT  
ns  
1
2
3
tw(EDC_LATCHx_IN)  
tr(EDC_LATCHx_IN)  
tf(EDC_LATCHx_IN)  
Pulse duration, EDC_LATCHx_IN  
Rising time, EDC_LATCHx_IN  
Falling time, EDC_LATCHx_IN  
1.00  
3.00  
3.00  
ns  
1.00  
ns  
(1) P = PRU-ICSS IEP clock source period.  
2
3
EDC_LATCHx_IN  
1
Figure 5-131. PRU-ICSS ECAT LATCHx_IN Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
241  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-114. PRU-ICSS ECAT Switching Requirements - Digital IOs  
NO.  
1
MIN  
14*P(1)  
1.00  
MAX  
32*P(1)  
UNIT  
ns  
tw(EDIO_OUTVALID)  
tr(EDIO_OUTVALID)  
tf(EDIO_OUTVALID)  
Pulse duration, EDIO_OUTVALID  
Rising time, EDIO_OUTVALID  
2
3.00  
ns  
3
Falling time, EDIO_OUTVALID  
1.00  
3.00  
ns  
4
td(EDIO_OUTVALID-  
EDIO_DATA_OUT)  
tr(EDIO_DATA_OUT)  
Delay time, EDIO_OUTVALID to EDIO_DATA_OUT  
0.00  
18*P(1)  
ns  
5
6
7
Rising time, EDIO_DATA_OUT  
Falling time, EDIO_DATA_OUT  
EDIO_DATA_OUT skew  
1.00  
1.00  
3.00  
3.00  
8.00  
ns  
ns  
ns  
tf(EDIO_DATA_OUT)  
tsk(EDIO_DATA_OUT)  
(1) P = PRU-ICSS IEP clock source period.  
5.13.16.3 PRU-ICSS MII_RT and Switch  
Table 5-115. PRU-ICSS MII_RT Switch Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tr  
tf  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
5(1)  
5(1)  
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
20  
pF  
(1) Except when specified otherwise.  
5.13.16.3.1 PRU-ICSS MDIO Electrical Data and Timing  
Table 5-116. PRU-ICSS MDIO Timing Requirements - MDIO_DATA  
(see Figure 5-132)  
NO.  
MIN  
90  
0
TYP  
MAX  
UNIT  
ns  
1
2
tsu(MDIO-MDC) Setup time, MDIO valid before MDC high  
th(MDIO-MDC) Hold time, MDIO valid from MDC high  
ns  
1
2
MDIO_CLK (Output)  
MDIO_DATA (Input)  
Figure 5-132. PRU-ICSS MDIO_DATA Timing - Input Mode  
Table 5-117. PRU-ICSS MDIO Switching Characteristics - MDIO_CLK  
(see Figure 5-133)  
NO.  
MIN  
400  
160  
160  
TYP  
MAX  
UNIT  
ns  
1
2
3
4
tc(MDC)  
tw(MDCH)  
tw(MDCL)  
tt(MDC)  
Cycle time, MDC  
Pulse duration, MDC high  
Pulse duration, MDC low  
Transition time, MDC  
ns  
ns  
5
ns  
242  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1
4
2
3
MDIO_CLK  
4
Figure 5-133. PRU-ICSS MDIO_CLK Timing  
Table 5-118. PRU-ICSS MDIO Switching Characteristics - MDIO_DATA  
(see Figure 5-134)  
NO.  
MIN  
TYP  
MAX  
UNIT  
1
td(MDC-MDIO)  
Delay time, MDC high to MDIO valid  
10  
390  
ns  
1
MDIO_CLK (Output)  
MDIO_DATA (Output)  
Figure 5-134. PRU-ICSS MDIO_DATA Timing - Output Mode  
5.13.16.3.2 PRU-ICSS MII_RT Electrical Data and Timing  
Table 5-119. PRU-ICSS MII_RT Timing Requirements - MII_RXCLK  
(see Figure 5-135)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(RX_CLK)  
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Cycle time, RX_CLK  
ns  
ns  
ns  
ns  
Pulse Duration, RX_CLK high  
Pulse Duration, RX_CLK low  
Transition time, RX_CLK  
140  
260  
14  
26  
3
3
1
4
2
3
MII_RXCLK  
4
Figure 5-135. PRU-ICSS MII_RXCLK Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
243  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-120. PRU-ICSS MII_RT Timing Requirements - MII[x]_TXCLK  
(see Figure 5-136)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
1
2
3
4
tc(TX_CLK)  
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Cycle time, TX_CLK  
40.004  
ns  
ns  
ns  
ns  
Pulse Duration, TX_CLK high  
Pulse Duration, TX_CLK low  
Transition time, TX_CLK  
26  
26  
3
140  
260  
14  
3
1
4
2
3
MII_TXCLK  
4
Figure 5-136. PRU-ICSS MII_TXCLK Timing  
Table 5-121. PRU-ICSS MII_RT Timing Requirements - MII_RXD[3:0], MII_RXDV, and MII_RXER  
(see Figure 5-137)  
NO.  
10 Mbps  
TYP  
100 Mbps  
TYP  
UNIT  
MIN  
MAX  
MIN  
MAX  
tsu(RXD-RX_CLK)  
Setup time, RXD[3:0] valid before RX_CLK  
1
2
tsu(RX_DV-RX_CLK) Setup time, RX_DV valid before RX_CLK  
tsu(RX_ER-RX_CLK) Setup time, RX_ER valid before RX_CLK  
8
8
ns  
ns  
th(RX_CLK-RXD)  
Hold time RXD[3:0] valid after RX_CLK  
Hold time RX_DV valid after RX_CLK  
Hold time RX_ER valid after RX_CLK  
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
8
8
1
2
MII_MRCLK (Input)  
MII_RXD[3:0],  
MII_RXDV,  
MII_RXER (Inputs)  
Figure 5-137. PRU-ICSS MII_RXD[3:0], MII_RXDV, and MII_RXER Timing  
244  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-122. PRU-ICSS MII_RT Switching Characteristics - MII_TXD[3:0] and MII_TXEN  
(see Figure 5-138)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(TX_CLK-TXD)  
Delay time, TX_CLK high to TXD[3:0] valid  
Delay time, TX_CLK to TX_EN valid  
1
5
25  
5
25 ns  
td(TX_CLK-TX_EN)  
1
MII_TXCLK (input)  
MII_TXD[3:0],  
MII_TXEN (outputs)  
Figure 5-138. PRU-ICSS MII_TXD[3:0], MII_TXEN Timing  
5.13.16.4 PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)  
Table 5-123. Timing Requirements for PRU-ICSS UART Receive  
(see Figure 5-139)  
NO.  
MIN  
0.96U(1)  
MAX  
1.05U(1)  
UNIT  
3
tw(RX)  
Pulse width, receive start, stop, data bit  
ns  
(1) U = UART baud time = 1/programmed baud rate.  
Table 5-124. Switching Characteristics Over Recommended Operating Conditions for PRU-ICSS UART  
Transmit  
(see Figure 5-139)  
NO.  
1
MIN  
0
U - 2(1)  
MAX  
12  
U + 2(1)  
UNIT  
MHz  
ns  
fbaud(baud)  
tw(TX)  
Maximum programmable baud rate  
2
Pulse width, transmit start, stop, data bit  
(1) U = UART baud time = 1/programmed baud rate.  
3
2
Start  
Bit  
UART_TXD  
Data Bits  
5
4
Start  
Bit  
UART_RXD  
Data Bits  
Figure 5-139. PRU-ICSS UART Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
245  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.17 Multimedia Card (MMC) Interface  
For more information, see the Multimedia Card (MMC) section of the AM437x ARM Cortex-A9  
Microprocessors (MPUs) Technical Reference Manual.  
5.13.17.1 MMC Electrical Data and Timing  
Table 5-125. MMC Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX UNIT  
Input Conditions  
tr  
tf  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
Cload  
Output load capacitance  
3
30  
pF  
Table 5-126. Timing Requirements for MMC[0]_CMD and MMC[0]_DAT[7:0]  
(see Figure 5-140)  
OPP50/OPP100  
NO.  
1.8 V  
TYP  
3.3 V  
TYP  
UNIT  
MIN  
MAX  
MIN  
MAX  
Setup time, MMC_CMD valid before  
MMC_CLK rising clock edge  
1
2
3
4
tsu(CMDV-CLKH)  
th(CLKH-CMDV)  
tsu(DATV-CLKH)  
th(CLKH-DATV)  
4.1  
4.1  
ns  
ns  
ns  
ns  
Hold time, MMC_CMD valid after  
MMC_CLK rising clock edge  
1.5  
4.1  
1.5  
1.5  
4.1  
1.5  
Setup time, MMC_DATx valid before  
MMC_CLK rising clock edge  
Hold time, MMC_DATx valid after  
MMC_CLK rising clock edge  
Table 5-127. Timing Requirements for MMC[1/2]_CMD and MMC[1/2]_DAT[7:0]  
(see Figure 5-140)  
OPP50/OPP100  
NO.  
1.8 V  
TYP  
3.3 V  
TYP  
UNIT  
MIN  
MAX  
MIN  
MAX  
Setup time, MMC_CMD valid before  
MMC_CLK rising clock edge  
1
2
3
4
tsu(CMDV-CLKH)  
th(CLKH-CMDV)  
tsu(DATV-CLKH)  
th(CLKH-DATV)  
4.1  
4.1  
3.76  
4.1  
ns  
ns  
ns  
ns  
Hold time, MMC_CMD valid after  
MMC_CLK rising clock edge  
2.55  
4.1  
Setup time, MMC_DATx valid before  
MMC_CLK rising clock edge  
Hold time, MMC_DATx valid after  
MMC_CLK rising clock edge  
2.55  
3.76  
246  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
1
2
MMC[x]_CLK (Output)  
MMC[x]_CMD (Input)  
MMC[x]_DAT[7:0] (Inputs)  
3
4
Figure 5-140. MMC[x]_CMD and MMC[x]_DAT[7:0] Input Timing  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
247  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-128. Switching Characteristics for MMC[x]_CLK  
(see Figure 5-141)  
STANDARD MODE  
MIN TYP MAX  
HIGH-SPEED MODE  
MIN TYP MAX  
NO.  
PARAMETER  
UNIT  
fop(CLK)  
Operating frequency, MMC_CLK  
Operating period: MMC_CLK  
24  
48 MHz  
ns  
tcop(CLK)  
41.7  
20.8  
5
fid(CLK)  
Identification mode frequency, MMC_CLK  
Identification mode period: MMC_CLK  
Pulse duration, MMC_CLK low  
400  
400 kHz  
ns  
tcid(CLK)  
2500  
2500  
(1)  
(1)  
6
7
8
9
tw(CLKL)  
tw(CLKH)  
tr(CLK)  
(0.5*P) - tf(CLK)  
(0.5*P) - tf(CLK)  
ns  
(1)  
(1)  
Pulse duration, MMC_CLK high  
Rise time, All Signals (10% to 90%)  
Fall time, All Signals (10% to 90%)  
(0.5*P) - tr(CLK)  
(0.5*P) - tr(CLK)  
ns  
2.2  
2.2  
2.2 ns  
2.2 ns  
tf(CLK)  
(1) P = MMC_CLK period.  
5
6
7
8
9
MMC[x]_CLK (Output)  
Figure 5-141. MMC[x]_CLK Timing  
Table 5-129. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—HSPE=0  
(see Figure 5-142)  
OPP50/OPP100  
NO.  
PARAMETER  
1.8 V  
TYP  
3.3 V  
TYP  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, MMC_CLK falling clock  
edge to MMC_CMD transition  
10 td(CLKL-CMD)  
11 td(CLKL-DAT)  
-4  
14  
-4  
-4  
17.5  
ns  
ns  
Delay time, MMC_CLK falling clock  
edge to MMC_DATx transition  
-4  
14  
17.5  
10  
MMC[x]_CLK (Output)  
MMC[x]_CMD (Output)  
MMC[x]_DAT[7:0] (Outputs)  
11  
Figure 5-142. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—HSPE=0  
248  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Table 5-130. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—HSPE=1  
(see Figure 5-143)  
OPP50/OPP100  
1.8 V  
TYP  
3.3 V  
TYP  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, MMC_CLK rising clock  
edge to MMC_CMD transition  
12 td(CLKL-CMD)  
13 td(CLKL-DAT)  
0.8  
7.4  
0.8  
0.8  
7.4  
ns  
ns  
Delay time, MMC_CLK rising clock  
edge to MMC_DATx transition  
0.8  
7.4  
7.4  
12  
MMC[x]_CLK (Output)  
MMC[x]_CMD (Output)  
MMC[x]_DAT[7:0] (Outputs)  
13  
Figure 5-143. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—HSPE=1  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
249  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
5.13.18 Universal Asynchronous Receiver/Transmitter (UART)  
For more information, see the Universal Asynchronous Receiver/Transmitter (UART) section of the  
AM437x ARM Cortex-A9 Microprocessors (MPUs) Technical Reference Manual.  
5.13.18.1 UART Electrical Data and Timing  
Table 5-131. Timing Requirements for UARTx Receive  
(see Figure 5-144)  
NO.  
MIN  
MAX  
UNIT  
3
tw(RX)  
Pulse width, receive start, stop, data bit  
0.96U(1)  
1.05U(1)  
ns  
(1) U = UART baud time = 1/programmed baud rate.  
Table 5-132. Switching Characteristics for UARTx Transmit  
(see Figure 5-144)  
NO.  
PARAMETER  
Maximum programmable baud rate  
Pulse width, transmit start, stop, data bit  
MIN  
MAX  
3.6864  
U + 2(1)  
UNIT  
MHz  
ns  
1
2
fbaud(baud)  
tw(TX)  
U - 2(1)  
(1) U = UART baud time = 1/programmed baud rate.  
2
2
2
Start  
Bit  
UARTx_TXD  
Stop Bit  
Data Bits  
3
3
3
Start  
Bit  
UARTx_RXD  
Stop Bit  
Data Bits  
Figure 5-144. UART Timings  
250  
Specifications  
Copyright © 2014–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.13.18.2 UART IrDA Interface  
The IrDA module operates in three different modes:  
Slow infrared (SIR) (115.2 kbps)  
Medium infrared (MIR) (0.576 Mbps and 1.152 Mbps)  
Fast infrared (FIR) (4 Mbps).  
Figure 5-145 shows the UART IrDA pulse parameters. Table 5-133 and Table 5-134 list the signaling  
rates and pulse durations for UART IrDA receive and transmit modes.  
Pulse Duration  
Pulse Duration  
50%  
50%  
50%  
Figure 5-145. UART IrDA Pulse Parameters  
Table 5-133. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode  
ELECTRICAL PULSE DURATION  
SIGNALING RATE  
UNIT  
MIN  
MAX  
SIR  
2.4 kbps  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
88.55  
22.13  
11.07  
5.96  
µs  
µs  
µs  
µs  
µs  
µs  
9.6 kbps  
19.2 kbps  
38.4 kbps  
57.6 kbps  
115.2 kbps  
MIR  
4.34  
2.23  
0.576 Mbps  
1.152 Mbps  
FIR  
297.2  
149.6  
518.8  
258.4  
ns  
ns  
4 Mbps (Single pulse)  
4 Mbps (Double pulse)  
67  
164  
289  
ns  
ns  
190  
Copyright © 2014–2016, Texas Instruments Incorporated  
Specifications  
251  
Submit Documentation Feedback  
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379  
 
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Table 5-134. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode  
ELECTRICAL PULSE DURATION  
MIN  
SIGNALING RATE  
UNIT  
MAX  
SIR  
2.4 kbps  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
µs  
µs  
µs  
µs  
µs  
µs  
9.6 kbps  
19.2 kbps  
38.4 kbps  
57.6 kbps  
115.2 kbps  
MIR  
0.576 Mbps  
1.152 Mbps  
FIR  
414  
206  
419  
211  
ns  
ns  
4 Mbps (Single pulse)  
4 Mbps (Double pulse)  
123  
248  
128  
253  
ns  
ns  
252  
Specifications  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
5.14 Emulation and Debug  
5.14.1 IEEE 1149.1 JTAG  
5.14.1.1 JTAG Electrical Data and Timing  
Table 5-135. Timing Requirements for JTAG  
(see Figure 5-146)  
OPP100  
OPP50  
MIN  
NO.  
UNIT  
MIN  
60  
24  
24  
3
MAX  
MAX  
1
tc(TCK)  
1a tw(TCKH)  
1b tw(TCKL)  
Cycle time, TCK  
60  
24  
24  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
tsu(TDI-TCKH)  
3
4
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
3
8
8
8
8
Table 5-136. Switching Characteristics for JTAG  
(see Figure 5-146)  
OPP100  
OPP50  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
0
23  
0
23  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
Figure 5-146. JTAG Timing  
版权 © 2014–2016, Texas Instruments Incorporated  
Specifications  
253  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
6 Device and Documentation Support  
6.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
processors and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example,  
XAM4379xZDN). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications.  
null  
Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ZDN), the temperature range (for example, blank is the default commercial  
temperature range), and the device speed range, in megahertz (for example, 80 is 800 MHz). 6-1  
provides a legend for reading the complete device name for any device.  
For orderable part numbers of AM437x devices in the ZDN package type, see the Package Option  
Addendum of this document, the TI website, or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AM437x Sitara  
Processors Silicon Errata.  
254  
Device and Documentation Support  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
(
)
X
(
)
AM4379  
A
ZDN  
S
PREFIX  
SUFFIX  
Blank = Only Public Boot Supported  
S = High-Security (AM437xHS) device, Secure Boot Supported  
X = Experimental device  
Blank = Qualified device  
DEVICE(A)  
ARM Cortex-A9 MPU:  
AM4372  
AM4376  
AM4377  
DEVICE SPEED RANGE  
30 = 300-MHZ Cortex-A9  
60 = 600-MHz Cortex-A9  
80 = 800-MHz Cortex-A9  
100 = 1000-MHz Cortex-A9  
AM4378  
AM4379  
TEMPERATURE RANGE  
Blank = 0°C to 90°C (commercial junction temperature)  
A = –40°C to 105°C (extended junction temperature)  
D = –40°C to 90°C (industrial junction temperature)  
DEVICE REVISION CODE  
A = silicon revision 1.1  
B = silicon revision 1.2  
PACKAGE TYPE(B)  
ZDN = 491-pin plastic BGA, with Pb-free solder balls  
A. The device shown in this device nomenclature example is one of several valid part numbers for this family of devices.  
For orderable device part numbers, see the Package Option Addendum of this document.  
B. BGA = Ball Grid Array.  
6-1. Device Nomenclature  
6.2 Tools and Software  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the  
device, generate code, and develop solutions are listed below.  
Models  
AM437x BSDL Model ZDN package BSDL model.  
AM437x IBIS Model ZDN package IBIS model.  
Design Kits and Evaluation Modules  
AM437x Evaluation Module Enables developers to immediately start evaluating the AM437x processor  
family (AM4372, AM4376, AM4377, AM4378 and AM4379) and begin building applications  
such as portable navigation, patient monitoring, home/building automation, barcode  
scanners, portable data terminals and others.  
AM437x Industrial Development Kit (IDK) An application development platform for evaluating the  
industrial communication and control capabilities of Sitara AM4379 and AM4377 processors  
for industrial applications.  
AM437x Starter Kit Provides a stable and affordable platform to quickly start evaluation of Sitara ARM  
Cortex-A9 AM437x Processors (AM4372, AM4376, AM4378) and accelerate development  
for HMI, industrial and networking applications. It is a low-cost development platform based  
on the ARM Cortex-A9 processor that is integrated with options such as Dual Gigabit  
Ethernet, DDR3L, Camera and Capacitive Touch Screen LCD.  
TI Designs  
ARM MPU with Integrated BiSS C Master Interface Reference Design Impelementation of BiSS C  
Master protocol on Industrial Communication Sub-System (PRU-ICSS). The design provides  
full documentation and source code for Programmable Realtime Unit (PRU).  
Sercos III Slave For AM437x Communication Development Platform Reference Design  
Combines  
the AM437x Sitara processor family from Texas Instruments (TI) and the Sercos III media  
access control (MAC) layer into a single system-on-chip (SoC) solution. Targeted for Sercos  
III slave communications, the TIDEP0039 allows designers to implement the real-time  
Sercos III communication standard for a broad range of industrial automation equipment.  
EnDat 2.2 System Reference Design Implements the EnDat 2.2 Master protocol stack and hardware  
interface solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary  
encoders. The design is composed of the EnDat 2.2 Master protocol stack, half-duplex  
communications using RS485 transceivers and the line termination implemented on the  
Sitara AM437x Industrial Development Kit.  
版权 © 2014–2016, Texas Instruments Incorporated  
Device and Documentation Support  
255  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
Acontis EtherCAT Master Stack Reference Design A highly portable software stack that can be used  
on various embedded platforms. The EC-Master supports the high performane TI Sitara  
MPUs, it provides a sophisticated EtherCAT Master solution which customers can use to  
implement EtherCAT communication interface boards, EtherCAT based PLC or motion  
control applications.  
SPI Master with Signal Path Delay Compensation Reference Design Describes the implementation of  
the SPI master protocol with signal path delay compensation on PRU-ICSS. It supports the  
32-bit communication protocol of ADS8688 with a SPI clock frequency of up to 16.7MHz.  
Isolated Current Shunt and Voltage Measurement Reference Design for Motor Drives Using  
AM437x  
Uses the AMC130x reinforced isolated delta-sigma modulators along with AM437x Sitara  
ARM Cortex-A9 Processor, which implements Sinc filters on PRU-ICSS. The design  
provides an ability to evaluate the performance of these measurements: three motor  
currents, three inverter voltages, and the DC Link voltage.  
Single Chip Drive for Industrial Communications and Motor Control Implements a hardware interface  
solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary encoders. The  
platform also allows designers to implement real-time EtherCAT communications standards  
in a broad range of industrial automation equipment.  
AM437x Low Power Suspend Mode with LPDDR2 Realizes processor power consumption less than 0.1  
mW while keeping LPDDR2 memory in self refresh consuming ~ 1.6 mW. The system  
solution is comprised of AM437x Sitara processor, LPDDR2 memory and TPS65218 power  
management IC and optimized for new low power mode along with support for legacy low  
power modes.  
AM437x Discrete Power Reference Design Provides flexibility to power designers. This reference  
design implementation is a BOM-optimized discrete power solution for the AM437x  
processor with a minimal number of discrete ICs and basic feature set. T  
Embedded USB 2.0 Reference Design The USB 2.0 reference design guidelines are extremely  
important for designers considering USB2.0 electrical compliance testing. The guidelines are  
applicable to AM335x and AM437x but also generic to other processors. The approach taken  
for these guidelines is highly practical, without complex formulas or theory.  
ARM MPU with Integrated HIPERFACE DSL Master Interface Reference Design Implementation of  
HIPERFACE DSL Master protocol on Industrial Communication Sub-System (PRU-ICSS).  
The two wire interface allows for integration of position feedback wires into motor cable.  
Complete solution consists of AM437x PRU-ICSS firmware and TIDA-00177 transceiver  
reference design.  
Software  
Processor SDK for AM437X Sitara Processors - Linux and TI-RTOS Support  
A
unified software  
platform for TI embedded processors providing easy setup and fast out-of-the-box access to  
benchmarks and demos. All releases of Processor SDK are consistent across TI’s broad  
portfolio, allowing developers to seamlessly reuse and migrate software across devices.  
Programmable Real-time Unit (PRU) Software Support Package An add-on package that provides a  
framework and examples for developing software for the Programmable Real-time Unit sub-  
system and Industrial Communication Sub-System (PRU-ICSS) in the supported TI  
processors.  
SYS/BIOS Industrial Software Development Kit (SDK) for Sitara Processors Gives customers the  
ability to easily add real-time industrial communications to their design so they can focus on  
differentiating their application code.  
TI Dual-Mode Bluetooth® Stack Comprised of Single-Mode and Dual-Mode offerings implementing the  
Bluetooth 4.0 specification. The Bluetooth stack is fully Bluetooth Special Interest Group  
(SIG) qualified, certified and royalty-free, provides simple command line sample applications  
to speed development, and upon request has MFI capability.  
256  
Device and Documentation Support  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
Development Tools  
Clock Tree Tool for Sitara ARM Processors Interactive clock tree configuration software that provides  
information about the clocks and modules in Sitara devices.  
Pin Mux Tool Provides a Graphical User Interface for configuring pin multiplexing settings, resolving  
conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C  
header/code files that can be imported into software development kits (SDK) or used to  
configure customer's custom software. Version 3 of the Pin Mux utility adds the capability of  
automatically selecting a mux configuration that satisfies the entered requirements.  
Power Estimation Tool (PET) Provides users the ability to gain insight in to the power consumption of  
select TI processors. The tool includes the ability for the user to choose multiple application  
scenarios and understand the power consumption as well as how advanced power saving  
techniques can be applied to further reduce overall power consumption.  
XDS200 USB Debug Probe Connects to the target board via a TI 20-pin connector (with multiple  
adapters for TI 14-pin, ARM 10-pin and ARM 20-pin) and to the host PC via USB2.0 High  
Speed (480Mbps). It also requires a license of Code Composer Studio IDE running on the  
host PC.  
XDS560v2 System Trace USB and Ethernet Debug Probe Adds system pin trace in its large external  
memory buffer. Available for selected TI devices, this external memory buffer captures  
device-level information that allows obtaining accurate bus performance activity and  
throughput, as well as power management of core and peripherals. Also, all XDS debug  
probes support Core and System Trace in all ARM and DSP processors that feature an  
Embedded Trace Buffer (ETB).  
XDS560v2 System Trace USB Debug Probe Adds system pin trace in its large external memory buffer.  
Available for selected TI devices, this external memory buffer captures device-level  
information that allows obtaining accurate bus performance activity and throughput, as well  
as power management of core and peripherals. Also, all XDS debug probes support Core  
and System Trace in all ARM and DSP processors that feature an Embedded Trace Buffer  
(ETB).  
6.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the  
upper right corner, click on Alert me to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
is listed below.  
Errata  
AM437x Sitara Processors Silicon Errata  
Describes the known exceptions to the functional  
specifications for this microprocessor.  
Application Reports  
High-Speed Interface Layout Guidelines As modern bus interface frequencies scale higher, care must  
be taken in the printed circuit board (PCB) layout phase of a design to ensure a robust  
solution.  
User's Guides  
AM437x Sitara Processors Technical Reference Manual Collection of documents providing detailed  
information on the device including power, reset, and clock control, interrupts, memory map,  
and switch fabric interconnect. Detailed information on the microprocessor unit (MPU)  
subsystem as well as a functional description of the peripherals supported is also included.  
Discrete Power Solution for AM437x Details the implementation of a BOM-optimized discrete power  
solution for the AM437x processor with a minimal number of discrete ICs and basic feature  
set. The solution represents a baseline for a discrete power solution that can be extended for  
additional features of the AM437x processor.  
Powering the AM335x/AM437x with TPS65218 A reference for connectivity between the TPS65218  
power management IC and the AM335x or AM437x processor.  
版权 © 2014–2016, Texas Instruments Incorporated  
Device and Documentation Support  
257  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
AM437x GP EVM Hardware User's Guide Describes the hardware architecture of the AM437x  
Evaluation Module (EVM) (part number TMDXEVM437X), which is based on the Texas  
Instruments (TI) AM437x processor. This EVM is also commonly known as the AM437x  
General Purpose (GP) EVM.  
White Papers  
Highly Integrated industrial Drive to Connect, Control and Communicate Discusses the overall drive  
architecture with emphasis on the highly integrated industrial drive solution by Texas  
Instruments.  
Ensuring Real-Time Predictability High-performance processors like ARM Cortex-A cores have an  
entirely different set of resources and pro- cessing capabilities than those of real-time  
processing cores, like the Programmable Real-Time Unit (PRU) coprocessor in TI’s Sitara  
processors.  
Mainline Linux Ensures Stability and Innovation Enabling and empowering the rapid development of  
new functionality starts at the foundational level of the system’s software environment – that  
is, at the level of the Linux kernel – and builds upward from there.  
Scalable Solutions for HMI A well designed HMI system decreases that gap between the production  
process and operator through an intuitive visualization system, layers of detail to allow for a  
bird’s eye view down to the minute details, as well as training material and documentation at  
the operators’ fingertips.  
Linaro Speeds Development in TI Linux SDKs Linaro’s software is not a Linux distribution; in fact, it is  
distribution neutral. The focus of the organization’s 120 engineers is on optimizing base-level  
open-source software in areas that interact directly with the silicon such as multimedia,  
graphics, power management, the Linux kernel and booting processes.  
Getting Started on TI ARM Embedded Processor Development Beginning with an overview of ARM  
technology and available processor platforms, this paper will then explore the fundamentals  
of embedded design that influence a system’s architecture and, consequently, impact  
processor selection.  
The Yocto Project: Changing the Way Embedded Linux Software Solutions are Developed Enabling  
complex silicon devices such as SoC with operating firmware and application software can  
be a challenge for equipment manufacturers who often are more comfortable with hardware  
than software issues.  
Other Documents  
Sitara AM437x Processor With ARM Cortex-A9 Core TI continues to optimize and expand its portfolio  
of Sitara processor solutions for the embedded market. With the Sitara AM437x processors  
support for the ARM Cortex-A9 core, extending performance by up to 40 percent over the  
current Sitara AM335x processor line.  
Sitara Processors Using the ARM Cortex-A series of cores, are optimized system solutions that go  
beyond the core, delivering products that support rich graphics capabilities, LCD displays  
and multiple industrial protocols.  
AM437x Evaluation Module Quick Start Guide Designed to help you through the initial setup of the  
EVM. This EVM allows you to experience Linux and other operating systems (OSs) that  
showcase the AM437x Cortex-A9 processor, 3D graphics and more.  
The following documents are related to the processor. Copies of these documents can be obtained  
directly from the internet or from your Texas Instruments representative. To determine the revision of the  
Cortex-A9 core used on your device, see the device-specific errata.  
Cortex-A9 Technical Reference Manual Technical reference manual for the Cortex-A9 processor.  
ARM Core Cortex-A9 (AT400/AT401) Errata Notice Provides a list of advisories for the different  
revisions of the Cortex-A9 processor. For a copy of this document, contact your TI  
representative.  
258  
Device and Documentation Support  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
AM4372, AM4376, AM4377, AM4378, AM4379  
www.ti.com.cn  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
6.4 Related Links  
6-1 lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
6-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
AM4372  
AM4376  
AM4377  
AM4378  
AM4379  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
6.5 Community Resources  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社为了促进工程师之间的合作,我们创建了 TI 工程师对工程师 (E2E) 社区。在 e2e.ti.com  
中,您可以提问、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors  
from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
6.6 商标  
Sitara, E2E are trademarks of Texas Instruments.  
NEON is a trademark of ARM Ltd or its subsidiaries.  
ARM, Cortex are registered trademarks of ARM Ltd or its subsidiaries.  
Bluetooth is a registered trademark of Bluetooth SIG.  
EtherCAT is a registered trademark of EtherCAT Technology Group.  
PowerVR SGX is a trademark of Imagination Technologies Limited.  
基于 Linux is a registered trademark of Linus Torvalds.  
单线 is a registered trademark of Maxim Integrated Products, Inc.  
EtherNet/IP is a trademark of ODVA, Inc.  
PROFIBUS, PROFINET are registered trademarks of PROFIBUS & PROFINET International (PI).  
All other trademarks are the property of their respective owners.  
6.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
6.8 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2014–2016, Texas Instruments Incorporated  
Device and Documentation Support  
259  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
 
AM4372, AM4376, AM4377, AM4378, AM4379  
ZHCSDC3D JUNE 2014REVISED SEPTEMBER 2016  
www.ti.com.cn  
7 Mechanical, Packaging, and Orderable Information  
7.1 Via Channel  
The ZDN package has been specially engineered with Via Channel technology. This technology allows  
larger than normal PCB via and trace sizes and reduced PCB signal layers to be used in a PCB design  
with the 0.65-mm pitch package, and substantially reduces PCB costs. It allows PCB routing in only two  
signal layers (four layers total) due to the increased layer efficiency of the Via Channel BGA technology.  
Via Channel technology implemented on the this package makes it possible to build a  
product with a 4-layer PCB, but a 4-layer PCB may not meet system performance goals.  
Therefore, system performance using a 4-layer PCB design must be evaluated during  
product design.  
7.2 Packaging Information  
The following packaging information and addendum reflect the most current data available for the  
designated device. This data is subject to change without notice and without revision of this document.  
The following figure is a preliminary package drawing for the ZDN package option.  
Note: The ZDN package is shown with a 17-mm × 17-mm array of 491 solder balls with 0.65-mm pitch,  
with via channel array (VCA) technology.  
260  
Mechanical, Packaging, and Orderable Information  
版权 © 2014–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: AM4372 AM4376 AM4377 AM4378 AM4379  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM4372BZDN60  
AM4372BZDN80  
AM4372BZDNA60  
AM4372BZDNA80  
AM4376BZDN100  
AM4376BZDN80  
AM4376BZDNA100  
AM4376BZDNA80  
AM4376BZDND100  
AM4376BZDND30  
AM4376BZDND80  
AM4377BZDNA100  
AM4377BZDNA80  
AM4377BZDND100  
AM4377BZDND80  
AM4378BZDN100  
AM4378BZDN80  
AM4378BZDNA100  
AM4378BZDNA80  
AM4378BZDND100  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
0 to 90  
0 to 90  
AM4372BZDN60  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
AM4372BZDN80  
AM4372BZDNA60  
AM4372BZDNA80  
AM4376BZDN100  
AM4376BZDN80  
AM4376BZDNA100  
AM4376BZDNA80  
AM4376BZDND100  
AM4376BZDND30  
AM4376BZDND80  
AM4377BZDNA100  
AM4377BZDNA80  
AM4377BZDND100  
AM4377BZDND80  
AM4378BZDN100  
AM4378BZDN80  
AM4378BZDNA100  
AM4378BZDNA80  
AM4378BZDND100  
-40 to 105  
-40 to 105  
0 to 90  
0 to 90  
-40 to 105  
-40 to 105  
-40 to 90  
-40 to 90  
-40 to 90  
-40 to 105  
-40 to 105  
-40 to 90  
-40 to 90  
0 to 90  
0 to 90  
-40 to 105  
-40 to 105  
-40 to 90  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM4378BZDND80  
AM4379BZDNA100  
AM4379BZDNA80  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
ZDN  
ZDN  
ZDN  
491  
491  
491  
90  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 90  
-40 to 105  
-40 to 105  
AM4378BZDND80  
AM4379BZDNA100  
AM4379BZDNA80  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AM4372BZDN60  
AM4372BZDN80  
AM4372BZDNA60  
AM4372BZDNA80  
AM4376BZDN100  
AM4376BZDN80  
AM4376BZDNA100  
AM4376BZDNA80  
AM4376BZDND100  
AM4376BZDND30  
AM4376BZDND80  
AM4377BZDNA100  
AM4377BZDNA80  
AM4377BZDND100  
AM4377BZDND80  
AM4378BZDN100  
AM4378BZDN80  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
491  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
Device  
Package Package Pins SPQ Unit array  
Max  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
matrix temperature  
(°C)  
(mm) (µm) (mm) (mm) (mm)  
AM4378BZDNA100  
AM4378BZDNA80  
AM4378BZDND100  
AM4378BZDND80  
AM4379BZDNA100  
AM4379BZDNA80  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
ZDN  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
491  
491  
491  
491  
491  
491  
90  
90  
90  
90  
90  
90  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
6 X 15  
150  
150  
150  
150  
150  
150  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
21  
21  
21  
21  
21  
21  
19.2  
19.2  
19.2  
19.2  
19.2  
19.2  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY