AM6234ASGGHAALW [TI]

具有基于 Arm® Cortex®-A53 的对象和手势识别功能的物联网 (IoT) 和网关 SoC | ALW | 425 | -40 to 105;
AM6234ASGGHAALW
型号: AM6234ASGGHAALW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有基于 Arm® Cortex®-A53 的对象和手势识别功能的物联网 (IoT) 和网关 SoC | ALW | 425 | -40 to 105

文件: 总266页 (文件大小:5806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
AM62x Sitara™ 处理器  
存储器子系统  
1 特性  
• 高816KB 的片RAM  
处理器内核:  
– 具SECDED ECC 64KB RAM  
(OCSRAM)可以分为更小的存储器组以  
32KB 为增量递增最多可支2 个独立的存储  
器组  
SMS 子系统中具SECDED ECC 256KB 片  
RAM  
SMS 子系统中具SECDED ECC 176KB 片  
RAMTI 安全固件  
Cortex-M4F MCU 子系统中具SECDED ECC  
• 多达四64 Arm® Cortex®-A53 微处理器子系  
性能高1.4GHz  
– 四Cortex-A53 集群512KB L2 共享缓  
SECDED ECC)  
– 每A53 内核包含具SECDED ECC 功能的  
32KB L1 DCache 和具有奇偶校验保护32KB  
L1 ICache  
• 频率高400MHz 的单Arm® Cortex®-M4F  
MCU  
256KB RAM  
– 具SECDED ECC 256KB SRAM  
• 专用器件/电源管理器  
– 器件/电源管理器子系统中具SECDED ECC  
64KB RAM  
DDR 子系(DDRSS)  
多媒体:  
– 支LPDDR4DDR4 存储器类型  
– 具有内ECC 16 位数据总线  
– 支持高1600MT/s 的速度  
– 最大可寻址范围  
• 显示子系统  
– 双显示支持  
– 每个显示1920x1080 @ 60fps  
1 2048x1080 + 1 1280x720  
– 高165MHz 的像素时钟支持每个显示屏具  
有独PLL  
OLDI4 LVDS - 2xDPI24 RGB  
LVCMOS)  
8GBDDR4)  
4GBLPDDR4)  
功能安全:  
以符合功能安全标准为目[工业]  
– 支持定帧检测MISR 数据检查等安全功能  
– 专为功能安全应用开发  
– 将提供相关文档来协助进行符IEC 61508 标  
准的功能安全系统设计  
– 致力于让系统能力达SIL-3 级  
– 致力于让硬件完整性高SIL-2 级  
– 安全相关认证  
3D 图形处理单元  
– 每个时1 个像素或更高  
– 填充率大500 百万像素/秒  
>500 百万像素/>8 GFLOP  
– 支持至2 个合成层  
– 支持高2048x1080 @60fps 的分辨率  
– 支ARGB32RGB565 YUV 格式  
– 支2D 图形  
• 计划通TUV SUD IEC 61508 认证  
以符合功能安全标准为目[汽车]  
– 专为功能安全应用开发  
– 将提供相关文档来协助进行符ISO 26262 标  
准的功能安全系统设计  
OpenGL ES 3.1Vulkan 1.2  
• 一4 通道摄像头串行接(CSI-Rx) DPHY  
– 符MIPI® CSI-2 v1.3 + MIPI D-PHY 1.2  
– 支持高2.5Gbps 113 4 数据通道模  
– 系统可满ASIL D 等级要求  
– 以硬件完整性高ASIL B 级为目标  
– 安全相关认证  
ECC 验证/校正RAM CRC 校验+ ECC  
– 虚拟通道支持16 )  
• 计划通TUV SUD ISO 26262 认证  
• 符AEC-Q100 标准  
– 能够通DMA 将流数据直接写DDR  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
信息安全:  
高速接口:  
• 支持安全启动  
• 支持集成以太网交换机2 个外部端口)  
– 硬件强制可信(ROT)  
– 支持通过备用密钥转RoT  
– 支持接管保护、IP 保护和防回滚保护  
• 支持可信执行环(TEE)  
RMII (10/100) RGMII (10/100/1000)  
IEEE1588DE F802.1AS  
PTP)  
45 MDIO PHY 管理规范  
– 基ALE 引擎的数据包分类器512 个分  
类器  
– 基Arm TrustZone® TEE  
– 可实现隔离的广泛防火墙支持  
– 安全监视器/计时器/IPC  
– 基于优先级的流量控制  
– 时间敏感型网(TSN) 支持  
– 四CPU 硬件中断节奏  
– 硬件中IP/UDP/TCP 校验和卸载  
• 两USB2.0 端口  
– 安全存储支持  
– 支持回放保护存储器(RPMB)  
• 具有用户可编HSM 内核的专用安全控制器以及  
用于隔离式处理的专用安DMA IPC 子系统  
• 支持加密加速  
– 可配置USB 主机、USB 外设USB 双角色  
器件DRD 模式的端口  
– 集成USB VBUS 检测  
– 会话感知型加密引擎可基于输入数据流自动切换  
密钥材料  
• 支持加密内核  
– 支持通USB 进行跟踪  
AES 128/192/256 位密钥大小  
SHA2 224/256/384/512 位密钥大小  
– 具有真随机数生成器DRBG  
– 可RSA/ECC 处理中提供帮助PKA公钥  
加速器),支持安全启动  
通用连接:  
9 个通用异步接收器/发送(UART)  
5 个串行外设接(SPI) 控制器  
6 个内部集成电(I2C) 端口  
• 调试安全性  
3 个多通道音频串行端(McASP)  
– 受安全软件控制的调试访问  
– 安全感知调试  
– 高50MHz 的发送和接收时钟  
3 McASP 上具有多16/10/6 个串行数据引  
脚并具有独立TX RX 时钟  
– 支持时分多路复(TDM)、内IC (I2S)  
和类似格式  
– 支持数字音频接口传输SPDIFIEC60958-1  
AES-3 格式)  
– 用于发送和接收FIFO 缓冲器256 字节)  
– 支持音频基准输出时钟  
PRU 子系统:  
• 运行频率高333MHz 的双核可编程实时单元子系  
(PRUSS)  
• 用于驱GPIO 以实现周期精确的协议例如:  
– 通用输入/(GPIO)  
UART  
I2C  
3 个增强PWM (ePWM)  
3 个增强型正交编码器脉冲模(eQEP)  
3 个增强型捕捉模(eCAP)  
• 通I/O (GPIO)LVCMOS I/O 均可配置为  
GPIO  
– 外ADC  
• 每PRU 16KB 程序存储器SECDED ECC  
• 每PRU 8KB 数据存储器SECDED ECC  
• 具SECDED ECC 32KB 通用存储器  
CRC32/16 硬件加速器  
3 个支CAN-FD 的控制器局域(CAN) 模块  
• 具3 30 x 32 位寄存器的暂存存储器  
1 个工64 位计时器9 个捕捉事件16 个  
比较事件以及慢速和快速补偿  
– 符CAN 2.0AB ISO 11898-1 标准  
– 完全支CAN FD64 个数据字节)  
– 消RAM 的奇偶校验/ECC 检查  
– 速度高8Mbps  
1 个中断控制(INTC)至少支64 个输入事件  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
媒体和数据存储:  
优化的电源管理解决方案:  
3 个多媒体卡/安全数字® (MMC/SD®) 接口  
• 推荐TPS65219 电源管IC (PMIC)  
1 8 eMMC 接口速度高HS200  
2 个高UHS-I 4 SD/SDIO 接口  
eMMC 5.1SD 3.0 SDIO 3.0 版兼容  
1 个高133MHz 的通用存储器控制(GPMC)  
– 灵活8 16 位异步存储器接口具有多达  
四个芯片22 位地址选择NANDNOR、  
Muxed-NOR SRAM)  
– 专为满足器件电源要求而设计的配PMIC  
– 灵活的映射和出厂编程配置支持多种不同的用  
引导选项:  
UART  
I2C EEPROM  
OSPI/QSPI 闪存  
GPMC NOR/NAND 闪存  
NAND 串行闪存  
– 使BCH 代码4 位、8 16 ECC  
– 使用海明码来支1 ECC  
– 错误定位器模(ELM)  
SD 卡  
eMMC  
GPMC 配合使用以找到来自伴随多项式  
的数据错误在使BCH 算法时生成的地  
• 根BCH 算法4 位、8 16 位每  
512 字节块错误定位  
• 从大容量存储设备进USB主机引导  
• 从外部主机进USB设备引导DFU 模式)  
• 以太网  
• 具DDR/SDR 支持OSPI/QSPI  
技术/封装:  
– 支持串NAND 和串NOR 闪存器件  
– 支4GB 存储器地址  
– 具有可选实时加密XIP 模式  
16nm 技术  
13mm x 13mm0.5mm 间距、425 FCCSP  
BGA (ALW)  
17.2mm x 17.2mm0.8mm 间距、441 引脚  
FCBGA (AMC)  
电源管理:  
• 器件/电源管理器支持多种低功耗模式  
– 部IO CAN/GPIO/UART 唤醒  
DeepSleep  
MCU  
– 待机  
Cortex-A53 的动态频率缩放  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
2 应用  
• 人机界(HMI)  
• 零售自动化  
• 驾驶员监控系(DMS/OMS)/车内监(ICM)  
• 远程信息处理控制单(TCU)  
3D 点云  
• 车辆对基础设(V2V)/车辆对车(V2X)  
3D 可重构汽车仪表组  
• 电器用户界面和连接  
• 医疗设备  
3 说明  
低成本 AM62x Sitara™ MPU 系列应用处理器专为 Linux® 应用开发而构建。凭借可扩展的 Arm® Cortex®-A53  
性能和嵌入式功能例如双显示支持和 3D 图形加速以及一组广泛的外设AM62x 器件非常适合广泛的工业和  
汽车应用同时还提供智能功能和优化的电源架构。  
其中的一些应用包括:  
• 工HMI  
• 电动汽车充电站  
• 非接触式楼宇门禁  
• 驾驶员监控系统  
AM62x Sitara处理器13mm x 13mm (ALW) 型号是工业级处理器17.2mm x 17.2mm (AMC) 型  
号则满足 AEC-Q100 汽车标准。可以使用集成的 Cortex-M4F 内核和专用外设来满足工业和汽车功能安全要求,  
这些内核和外设均可AM62x 处理器的其余部分隔离。  
3 端口千兆以太网交换机具有一个内部端口和两个外部端口支持时间敏感网络 (TSN)。该器件上的附加 PRU 模  
块可为客户自己的用例提供实时 I/O 功能。此外AM62x 中包含大量外设可实现系统级连接例如USB、  
MMC/SD、摄像头接口、OSPICAN-FD GPMC用于将主机接口并行连接到外部 ASIC/FPGAAM62x 器件  
还通过内置硬件安全模块 (HSM) 支持安全启动来实现 IP 保护并为便携式和功耗敏感型应用提供高级电源管理  
支持  
AM62x 处理器系列中的产品:  
AM625 有基Arm® Cortex®-A53 的边AI 和全高清双显示的人机交SoC  
AM625-Q1 用于数字仪表组且具有嵌入式安全功能的汽车显SoC  
AM623 有基Arm® Cortex®-A53 的对象和手势识别功能的物联(IoT) 和网SoC  
AM620-Q1 有嵌入式安全功能的汽车计SoC适用于驾驶员监控、网络V2X 系统  
封装信息  
封装(1)  
封装尺寸(2)  
器件型号  
AM625  
ALWFCCSP BGA425)  
AMCFCBGA441)  
ALWFCCSP BGA425)  
AMCFCBGA441)  
13 mm × 13 mm  
17.2mm × 17.2mm  
13 mm × 13 mm  
17.2 mm x 17.2 mm  
AM625-Q1  
AM623  
AM620-Q1  
(1) 如需了解更多信息请参阅机械、封装和可订购信息。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
3.1 功能方框图  
3-1 展示了器件的功能方框图。  
备注  
要了解 TI 软件开发套件 (SDK) 目前支持的器件功能请搜索位于“Downloads”选项卡选项中的  
AM62x 软件构建表Processor-SDK-AM62x 上提供。  
AM62x  
Application Cores  
MCUSS With FFI  
PRUSS  
®
Arm®  
Arm®  
Arm  
®
Cortex -A53  
Cortex®-A53  
Cortex®-M4F  
System Memory  
®
Arm®  
256KB TCM  
Arm  
®
Cortex -A53  
Cortex®-A53  
64KB OCRAM  
GPMC  
with ECC  
512KB L2 with ECC  
DDR4/LPDDR4  
with inline ECC  
(16b)  
General Connectivity (Main Domain)  
3x MMCSD  
General Connectivity  
(MCUSS)  
2-port Gb Ethernet w/ 1588  
GPIO  
GPIO  
3x SPI  
Multimedia  
2x SPI  
UART  
3x ePWM  
3x eCAP  
3x eQEP  
2x USB 2.0  
2x Display  
with DPI  
and OLDI / LVDS  
8x UART  
CAN-FD  
3D Graphics  
Processing Unit  
2x CAN-FD  
I2C  
5x I2C  
OSPI  
3x McASP  
CSI2 w/ DPHY  
Security Management Subsystem (SMS)  
Secure Boot  
426KB SRAM  
SHA  
MD5  
PKA  
AES  
DRBG  
TRNG  
HSM  
System Services  
DMA  
Firewall  
DCC  
ESM  
ECC  
System  
Monitor  
Secure  
Boot  
Device/Power  
Manager  
Debug  
Timers  
IPC  
3-1. 功能方框图  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
7.10 Thermal Resistance Characteristics..................... 102  
7.11 Timing and Switching Characteristics................... 103  
8 Detailed Description....................................................230  
8.1 Overview.................................................................230  
8.2 Processor Subsystems........................................... 231  
8.3 Accelerators and Coprocessors..............................233  
8.4 Other Subsystems.................................................. 234  
8.5 Peripherals..............................................................236  
9 Applications, Implementation, and Layout............... 240  
9.1 Device Connection and Layout Fundamentals....... 240  
9.2 Peripheral- and Interface-Specific Design  
Information................................................................ 241  
10 Device and Documentation Support........................248  
10.1 Device Nomenclature............................................248  
10.2 Tools and Software............................................... 251  
10.3 Documentation Support........................................ 251  
10.4 支持资源................................................................251  
10.5 Trademarks...........................................................251  
10.6 静电放电警告........................................................ 252  
10.7 术语表................................................................... 252  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 4  
3 说明................................................................................... 4  
3.1 功能方框图..................................................................5  
4 Revision History.............................................................. 7  
5 Device Comparison.........................................................9  
5.1 Related Products...................................................... 10  
6 Terminal Configuration and Functions........................11  
6.1 Pin Diagrams.............................................................11  
6.2 Pin Attributes.............................................................13  
6.3 Signal Descriptions................................................... 56  
6.4 Pin Connectivity Requirements.................................86  
7 Specifications................................................................ 90  
7.1 Absolute Maximum Ratings...................................... 90  
7.2 ESD Ratings for Devices which are not AEC -  
Q100 Qualified............................................................ 92  
7.3 ESD Ratings for AEC - Q100 Qualified Devices  
in the AMC Package....................................................92  
7.4 Power-On Hours (POH)............................................92  
7.5 Recommended Operating Conditions.......................93  
7.6 Operating Performance Points..................................95  
7.7 Power Consumption Summary................................. 95  
7.8 Electrical Characteristics...........................................96  
7.9 VPP Specifications for One-Time Programmable  
Information.................................................................. 253  
11.1 Packaging Information.......................................... 253  
(OTP) eFuses............................................................101  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
4 Revision History  
Changes from November 12, 2022 to June 15, 2023 (from Revision A (NOVEMBER 2022) to  
Revision B (JUNE 2023))  
Page  
通篇将文档产品状态从“混合量产状态”更改为“量产数据”ALW AMC 封装器件均完全符合量产  
数据要求............................................................................................................................................................. 1  
通篇为支17.2mm × 17.2mm AMC 封装AM625-Q1 AM620-Q1 器件添加了汽AEC - Q100 器件特  
定信息.................................................................................................................................................................1  
特性):CSI 数据速率2.5Gbps 更改1.5Gbps以便CSI-2 时序部分中定义的速率一致..............1  
特性):更新了安全功能以阐明支持的内容....................................................................................................1  
特性):在描MMC/SD 特性的第一个要点中添加了多媒体(MMC).........................................................1  
说明):添加AM625-Q1 AM620-Q1 并更新了每个器件的说明.............................................................4  
封装信息):更新了表以便与新的内容标准一致并添加了汽车“-Q1”器件...............................................4  
功能方框图):添加了软件构建表注释...........................................................................................................5  
(Device Comparison): Added AM625-Q1 to the AM625 columns and added new columns for the AM620-Q1  
devices................................................................................................................................................................9  
(Device Comparison): Corrected the name of the JTAG User ID register.......................................................... 9  
(Pin Connectivity Requirements): Updated the second note to include the meaning of "no connect"..............86  
(Pin Connectivity Requirements): Updated the second paragraph of the note following the Connectivity  
Requirements table. The update clarifies the operation of configurable device IOs and includes precautions  
that must be taken to prevent floating signals from damaging device input buffers......................................... 86  
(ESD Ratings for Devices which are not AEC - Q100 Qualified): Changed the title to clarify the ESD ratings  
defined in this table apply to devices which are not AEC - Q100 qualified.......................................................92  
(ESD Ratings for AEC - Q100 Qualified Devices in the AMC Package): Changed the title to clarify the ESD  
ratings defined in this table only apply to AEC - Q100 qualified devices in the AMC package........................ 92  
(Recommended Operating Conditions): Created separate table notes for VDD_CANUART and  
VDDSHV_CANUART........................................................................................................................................93  
(Operating Performance Points): Changed the Maximum Operating Frequency of the Device/Power Manager  
(Cortex-R5F) for speed grades "S" and "T" from 800 to 400............................................................................95  
(DDR Electrical Characteristics): Added references to the respective JEDEC standards..............................100  
(Power-Up Sequencing): Added Power-Up Sequencing Supply / Signal Assignments table with waveform  
references and notes. Added a new waveform for VDD_CANUART to show its sequence requirements  
relative to VDD_CORE when powered from a separate always on power source.........................................106  
(Power-Down Sequencing): Added Power-Down Sequencing Supply / Signal Assignments table with  
waveform references and notes. Added a new waveform for VDD_CANUART to show its sequence  
requirements relative to VDD_CORE when powered from a separate always on power source...................109  
(MCU_RESETSTATz, and RESETSTATz Switching Characteristics): Changed the minimum value of  
parameter RST13 from "0" to "960"................................................................................................................ 112  
(LFXOSC Modes of Operation): Changed the value of PD_C for BYPASS mode from "X" to "0"................. 125  
(DSS Switching Characteristics): Added external pixel clock mode "EXTPCLKIN" to parameters D2, D3, D4,  
and D5. Also changed the "Internal PLL" mode min value for parameters D2 and D3 from "0.0475P" to  
"0.0475P - 0.3"............................................................................................................................................... 139  
(MCASP): Updated each AHCLKR/X table note to include a TRM reference for clock source options. Also  
corrected a typographical error on the signal name associated with the first waveform in each timing diagram  
by changing "MCASP[x]_ACLKR/X" to "MCASP[x]_AHCLKR/X"...................................................................173  
(MMC0 DLL Delay Mapping): Changed the OTAPDLYENA and OTAPDLYSEL values for Legacy SDR and  
High Speed SDR modes................................................................................................................................ 184  
(MMC1/MMC2 DLL Delay Mapping for all Timing Modes): Changed the "UHS-I DR50" mode name to "UHS-I  
DDR50" to correct a typographical error.........................................................................................................198  
(OSPI Switching Characteristics PHY Data Training): Added maximum values to the OSPI0_CLK Cycle  
Time parameter (O1) to define a minimum operating frequency of 133MHz. Also updated Note 1 and Note 4,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
where "in ns" was added to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to  
"reference clock" in Note 4 so it matches the clock name used in the TRM.................................................. 210  
(OSPI0 Switching Characteristics PHY SDR Mode): Updated Note 1 and Note 4, where "in ns" was added  
to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it  
matches the clock name used in the TRM..................................................................................................... 212  
(OSPI0 Switching Characteristics PHY DDR Mode): Updated Note 1 and Note 4, where "in ns" was added  
to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it  
matches the clock name used in the TRM..................................................................................................... 214  
(OSPI0 Timing Requirements Tap SDR Mode): Updated the constant values associated with the minimum  
setup and minimum hold formulas in parameters O19 and O20. Note 2 was also updated to change "refclk" to  
"reference clock" so it matches the clock name used in the TRM..................................................................216  
(OSPI0 Switching Characteristics Tap SDR Mode): Updated Note 1 and Note 4, where "in ns" was added  
to the OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 4 so it  
matches the clock name used in the TRM..................................................................................................... 216  
(OSPI0 Timing Requirements Tap DDR Mode): Updated the constant values associated with the minimum  
setup and minimum hold formulas in parameters O13 and O14. Note 2 was also updated to change "refclk" to  
"reference clock" so it matches the clock name used in the TRM..................................................................218  
(OSPI0 Switching Characteristics Tap DDR Mode): Updated the minimum data output delay and maximum  
data output delay formulas in parameter O6. Also updated Note 1 and Note 5, where "in ns" was added to the  
OSPI_CLK cycle time reference in Note 1 and "refclk" was changed to "reference clock" in Note 5 so it  
matches the clock name used in the TRM..................................................................................................... 218  
(PRUSS PRU Switching Characteristics Direct Output Mode): Changed the maximum skew value for the  
GPO to GPO parameter (PRDO1) from 3ns to 2ns........................................................................................220  
(PRUSS UART Switching Characteristics): Added a maximum value and units to the start bit low pulse width  
parameter (4)..................................................................................................................................................225  
(Device Nomenclature): Updated the orderable part number example in the first paragraph by removing the  
"X" prefix.........................................................................................................................................................248  
(Device Nomenclature): Changed "ALV package type" in the last paragraph to "ALW or AMC package  
types"..............................................................................................................................................................248  
(Device Naming Convention): Added AM620x devices..................................................................................250  
(Device Naming Convention): Changed "ppp" to "PPP" to match the upper case letters used in the Standard  
Package Symbolization figure........................................................................................................................ 250  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Comparison  
5-1 shows a comparison between devices, highlighting the differences.  
备注  
Availability of features listed in this table are a function of shared IO pins, where IO signals associated  
with many of the features are multiplexed to a limited number of pins. The SysConfig tool should be  
used to assign signal functions to pins. This will provide a better understanding of limitations  
associated with pin multiplexing.  
备注  
To understand what device features are currently supported by TI Software Development Kits (SDKs),  
search for the AM62x Software Build Sheet located in the Downloads tab option provided at  
Processor-SDK-AM62x.  
5-1. Device Comparison  
AM625, AM625-Q1  
AM623  
AM620-Q1  
REFERENCE  
NAME  
FEATURES  
AM6254 AM6252 AM6251  
AM6234  
AM6232  
AM6231  
AM6204 AM6202 AM6201  
WKUP_MMR0_JTAG_USER_ID[31:13](1)  
Register bit values by device "Features" code (See Device Naming Convention for more information on device features)  
C: 0x1D123  
G: 0x1D127  
0x1D0A3  
0x1D0A7  
0x1D103  
0x1D107  
0x1D083  
0x1D087  
0x1D067  
0x1D047 0x1D307 0x1D287 0x1D247  
PROCESSORS AND ACCELERATORS  
Speed Grades (See Device Speed Grades)  
T, S, K, G  
Arm Cortex-A53  
Arm A53  
Quad  
Core  
Dual  
Core  
Single  
Core  
Quad  
Core  
Dual  
Core  
Single  
Core  
Quad  
Core  
Dual  
Core  
Single  
Core  
Microprocessor Subsystem  
Arm Cortex-M4F  
Arm M4F  
Single Core  
Functional Safety Optional(5)  
in MCU domain  
3D Graphics Engine  
(OpenGL ES 3.1, Vulkan 1.2)  
3D Graphics  
engine  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Device Management  
Subsystem  
WKUP_R5F  
Security  
Single core  
Yes  
Crypto Accelerators  
PROGRAM AND DATA STORAGE  
On-Chip Shared Memory  
(RAM) in MAIN Domain  
OCSRAM  
MCU_MSRAM  
64KB (with SECDED ECC)  
256KB  
On-Chip Shared Memory  
(RAM) in M4F Domain  
DDR4/LPDDR4 DDR  
Subsystem  
DDRSS  
GPMC  
16-bit data with inline ECC; up to 8GB using DDR4 or 4GB using LPDDR4  
Up to 1GB with ECC  
General-Purpose Memory  
Controller  
PERIPHERALS  
1x DPI  
No  
No  
Display Subsystem  
DSS  
1x LVDS  
Modular Controller Area  
Network Interface with Full  
CAN-FD Support  
MCAN  
3
General-Purpose I/O  
GPIO  
I2C  
Up to 170  
Inter-Integrated Circuit  
Interface  
6
3
5
Multichannel Audio Serial Port MCASP  
Multichannel Serial Peripheral  
Interface  
MCSPI  
1x eMMC (8-bits)  
Multi-Media Card/ Secure  
MM/CSD  
Digital Interface  
2x SD/SDIO (4-bits)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
5-1. Device Comparison (continued)  
AM625, AM625-Q1  
AM623  
AM6232  
Yes(2)  
AM620-Q1  
AM6204 AM6202 AM6201  
REFERENCE  
FEATURES  
NAME  
AM6254 AM6252 AM6251  
AM6234  
AM6231  
Flash Subsystem (FSS)(2)  
OSPI0/QSPI0  
PRUSS  
Programmable Real-Time Unit  
Subsystem(3)  
2x PRU Cores (Optional)  
No  
Industrial Communication  
Subsystem Support(4)  
PRUSS  
Gigabit Ethernet Interface  
General-Purpose Timers  
CPSW3G  
TIMER  
Yes  
12 (4 in MCU Channel)  
Enhanced Pulse-Width  
Modulator Module  
EPWM  
ECAP  
EQEP  
3
3
3
Enhanced Capture Module  
Enhanced Quadrature Encoder  
Pulse Module  
Universal Asynchronous  
Receiver and Transmitter  
UART  
9
CSI2-RX Controller with DPHY CSI-RX  
USB2.0 Controller with PHY USB 2.0  
1
2
(1) For more details about the WKUP_MMR0_JTAG_USER_ID register and DEVICE_ID bit field, see the device TRM.  
(2) One flash interface, configured as OSPI0 or QSPI0.  
(3) PRU Subsystem (PRUSS) is available when selecting an orderable part number that includes a Features code of C. Refer to Device  
Naming Convention for definition of feature codes.  
(4) Industrial Communication Subsystem support is not available for this family of devices.  
(5) Functional Safety is available when selecting an orderable part number that includes a Functional Safety code of F. Refer to Device  
Naming Convention for definition of feature codes.  
5.1 Related Products  
Sitaraprocessors Broad family of scalable processors based on Arm® Cortex®-A cores with flexible  
accelerators, peripherals, connectivity and unified software support perfect for sensors to servers. Sitara  
processors have the reliability needed for use in industrial applications.  
AM625 Sitara™ processors Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-  
HD dual display. The low-cost AM625x Sitara™ MPU family of application processors are built for Linux®  
application development. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-  
display support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x  
device well-suited for a broad range of industrial and automotive applications while offering intelligent features  
and optimized power architecture as well.  
AM623 Sitara™ processors Internet of Things (IoT) and gateway SoC with Arm® Cortex®-A53-based object  
and gesture recognition. The low-cost AM623x Sitara™ MPU family of application processors are built for  
Linux® application development. With scalable Arm® Cortex®-A53 performance and embedded features, such  
as: dual-display support, along with an extensive set of peripherals that make the AM62x device well-suited for a  
broad range of industrial and automotive applications while offering intelligent features and optimized power  
architecture as well.  
Sitara™ AM62x Developer Portal TI provides a wide range of design resource to ease customersevaluation  
and development on AM62x platform. You can find the most important design resource in this page, such as  
evaluation boards/reference designs, demos, software development kit for Linux/Android/Realtime-Linux/  
FreeRTOS, SDK developer guide, configuration tools, Linux academy.  
Sitara™ AM62x processors - Design Galley TI provides many reference designs containing building block’  
solutions to enable customers to rapidly develop their own unique products and solutions. here are 10+  
reference designs with demos for analytic, HMI, and connectivity.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
备注  
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt  
is made to use "ball" only when referring to the physical package.  
6-1 shows the ball locations for the 425-ball flip chip ball grid array (FCCSP BGA) package to quickly locate  
signal names and ball grid numbering. This figure is used in conjunction with 6.2.1 through 6-74 (Pin  
Attributes table and all Signal Descriptions tables, including the Connectivity Requirements table).  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
OLDI0  
_CLK0P  
OLDI0  
_CLK1N  
USB0  
_RCALIB  
CSI0  
_RXCLKP  
RGMII1_RX  
_CTL  
RGMII1  
_TD2  
RGMII1  
_TXC  
RGMII1  
_TD0  
RGMII2  
_TXC  
RGMII2  
_RD3  
RGMII2  
_RD0  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
RSVD3  
OLDI0_A5N  
OLDI0_A6N  
OLDI0_A7P  
VSS  
USB1_DP  
USB0_DM  
VSS  
CSI0_RXP2  
CSI0_RXP1  
VSS  
VSS  
VSS  
OLDI0  
_CLK0N  
OLDI0  
_CLK1P  
CSI0  
_RXCLKN  
RGMII1  
_RXC  
RGMII1  
_TD3  
RGMII1_TX  
_CTL  
RGMII1  
_TD1  
RGMII2  
_TD2  
RGMII2_RX  
_CTL  
RGMII2  
_RXC  
VSS  
MMC0_DAT6 OLDI0_A1N  
OLDI0_A5P  
OLDI0_A4N  
OLDI0_A3N  
OLDI0_A6P  
OLDI0_A7N  
VSS  
USB1_DM  
USB0_DP  
VSS  
CSI0_RXN2  
CSI0_RXP3  
CSI0_RXN1  
VSS  
MDIO0_MDC  
VSS  
USB1  
_RCALIB  
RGMII1  
_RD1  
RGMII2  
_TD3  
RGMII2  
_RD2  
VOUT0  
_PCLK  
VOUT0  
_VSYNC  
MMC0_DAT5 MMC0_DAT7  
OLDI0_A4P  
OLDI0_A0N  
DDR0_DM1  
USB0_VBUS  
CSI0_RXP0  
RGMII1  
_RD2  
RGMII1  
_RD0  
RGMII2  
_RD1  
MDIO0  
_MDIO  
VOUT0  
_HSYNC  
VOUT0  
_DATA12  
MMC0_CLK MMC0_DAT4  
OLDI0_A1P  
VSS  
USB1_VBUS  
CSI0_RXN3  
RSVD6  
CSI0_RXN0  
CSI0  
_RXRCALIB  
RGMII1  
_RD3  
RGMII2  
_TD1  
RGMII2_TX  
_CTL  
VOUT0  
_DATA15  
VOUT0  
_DATA11  
VOUT0  
_DATA13  
VOUT0  
_DATA7  
MMC0_DAT1 MMC0_DAT0 MMC0_DAT2  
OLDI0_A3P  
OLDI0_A2P  
OLDI0_A2N  
VSS  
VDDA_1P8  
_USB  
VDDA_3P3  
_USB  
RGMII2  
_TD0  
VOUT0  
_DATA14  
VOUT0  
_DATA6  
VOUT0  
_DATA5  
VOUT0  
_DATA4  
DDR0_DQ14  
VSS  
MMC0_CMD MMC0_DAT3  
OLDI0_A0P  
RSVD7  
VOUT0_DE  
VDDA_1P8  
_OLDI0  
VDDA_1P8  
_OLDI0  
VDDA_CORE VDDA_CORE VDDA_1P8  
_USB  
VOUT0  
_DATA9  
VOUT0  
_DATA3  
VOUT0  
_DATA2  
W
V
DDR0_DQ15 DDR0_DQ12  
VSS  
VDDSHV2  
CAP_VDDS2  
VDD_CORE  
VDDSHV2  
_CSIRX0  
_CSIRX0  
DDR0_DQS1  
VOUT0  
_DATA10  
VOUT0  
_DATA8  
VOUT0  
_DATA1  
GPMC0  
_WAIT1  
DDR0_DQS1  
_n  
DDR0_DQ11 DDR0_DQ13  
VDD_CORE  
VSS  
VSS  
VDDR_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VSS  
VDDSHV3  
VSS  
VOUT0  
_DATA0  
GPMC0  
_WAIT0  
GPMC0  
_AD15  
GPMC0  
_AD14  
U
DDR0_DQ8 DDR0_DQ10 DDR0_DQ9  
RSVD5  
CAP_VDDS4  
VDDSHV4  
VSS  
VDDA_PLL0 VDD_CORE  
VDDR_CORE VDDA_PLL1  
VSS  
VDDA  
_TEMP0  
GPMC0  
_AD12  
GPMC0  
_AD13  
GPMC0  
_AD10  
T
DDR0_PAR  
DDR0_A13  
DDR0_A8  
DDR0_BA1  
DDR0_BA0  
DDR0_CK0  
DDR0_A5  
DDR0_A0  
RSVD4  
DDR0_A6  
DDR0_A7  
DDR0_BG0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDSHV3  
DDR0  
_ALERT_n  
GPMC0  
_AD11  
R
DDR0_A10  
DDR0_A11  
DDR0_A12  
VDDS_DDR  
VDD_CORE VDDR_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
GPMC0_AD7 GPMC0_AD8 GPMC0_AD9  
GPMC0_AD4 GPMC0_CLK  
P
DDR0_A9  
VSS  
VDDS_DDR  
VDDR_CORE VDD_CORE  
VDDSHV3  
VDDSHV3  
VSS  
CAP_VDDS3  
GPMC0_AD6 GPMC0_AD5  
DDR0_ACT  
_n  
GPMC0  
_BE1n  
N
DDR0_BG1 DDR0_WE_n  
VDD_CORE  
VDD_CORE VDDR_CORE VDD_CORE VDDR_CORE  
VSS  
GPMC0_AD1 GPMC0_AD2 GPMC0_AD3  
DDR0_CAS  
_n  
DDR0_RAS  
_n  
VDDS_DDR  
_C  
GPMC0  
GPMC0  
M
L
DDR0_CAL0  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VDDSHV1  
GPMC0_DIR  
_CSn0  
GPMC0_AD0  
_BE0n_CLE  
DDR0_CK0  
_n  
DDR0_CS0  
_n  
GPMC0  
_CSn1  
GPMC0  
_ADVn_ALE  
GPMC0_OEn  
_REn  
DDR0_A3  
VDDS_DDR  
VDDA_MCU  
VDD_CORE  
VDDA_PLL2 VDD_CORE  
VDDSHV1  
VSS  
GPMC0_WEn  
GPMC0_WPn  
OSPI0_D5  
DDR0_CS1  
DDR0_A2  
_n  
VMON_3P3  
_SOC  
GPMC0  
_CSn2  
GPMC0  
_CSn3  
K
DDR0_A4  
VSS  
VSS  
VDDS_DDR  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDR_CORE VDD_CORE CAP_VDDS1  
VSS  
J
DDR0_A1  
DDR0_ODT1 DDR0_CKE1  
VPP  
VDD_CORE VDDR_CORE  
VDD_CORE  
VDDSHV6  
CAP_VDDS6  
OSPI0_D7  
OSPI0_D4  
OSPI0_DQS  
OSPI0_CLK  
OSPI0_D1  
OSPI0_D3  
VDDSHV  
_CANUART  
CAP_VDDS  
_MCU  
OSPI0  
_CSn2  
H
DDR0_ODT0 DDR0_CKE0  
DDR0_DM0  
DDR0_DQ1  
DDR0_DQ3  
VDD_CORE  
VMON_VSYS  
CAP_VDDS0  
VSS  
CAP_VDDS5  
VDDSHV5  
VSS  
VSS  
OSPI0_D6  
DDR0  
CAP_VDDS  
_CANUART  
VMON_1P8  
_SOC  
VDDSHV  
_MCU  
VDDA  
_TEMP1  
OSPI0  
_CSn1  
OSPI0  
_LBCLKO  
G
F
DDR0_DQ5  
_RESET0_n  
VDDS_OSC0  
VDDSHV0  
VSS  
VDD  
_CANUART  
VDDSHV  
_MCU  
USB1  
_DRVVBUS  
RESET  
_REQz  
RESETSTA  
z
OSPI0  
_CSn0  
DDR0_DQ7  
DDR0_DQ6  
DDR0_DQ2  
DDR0_DQ4  
DDR0_DQ0  
RSVD2  
VDDSHV0  
OSPI0_D2  
OSPI0_D0  
DDR0_DQS0  
_n  
MCU_MCAN1  
_TX  
MCU_SPI0  
_CS0  
MCU  
EMU0  
MCASP0  
_AXR0  
MCASP0  
_AFSR  
OSPI0  
_CSn3  
E
DDR0_DQS0  
RSVD8  
UART0_TXD MCAN0_RX  
PORz_OUT  
MMC1_DAT3  
MMC1_DAT2  
MMC2_DAT2  
_RESETz  
MCU  
_ERRORn  
MCU_MCAN1  
_RX  
MCU_MCAN0  
_TX  
MCU_SPI0  
_D0  
MCU_I2C0  
_SDA  
MCASP0  
_AFSX  
D
MCU_PORz  
TDO  
UART0_RXD  
EXTINTn  
MMC1_SDCD  
MMC1_SDWP  
I2C1_SCL  
MMC2_DAT3 MMC2_CLK  
MMC2_CMD MMC2_DAT1  
WKUP  
_LFOSC0  
_XO  
WKUP  
_LFOSC0  
_XI  
WKUP  
_UART0  
_TXD  
WKUP  
_UART0  
_CTSn  
MCU_SPI0  
_D1  
USB0  
_DRVVBUS  
C
EMU1  
SPI0_CS1  
SPI0_D0  
MCAN0_TX  
WKUP  
_UART0  
_RXD  
MCU_OSC0 MCU_MCAN0  
MCU_UART0 MCU_UART0  
_RXD _RTSn  
PMIC_LPM  
_EN0  
MCU_SPI0  
_CS1  
WKUP_I2C0  
_SCL  
MCU_RESETS  
UART0  
SPI0_D1  
MCASP0  
_AXR1  
MCASP0  
_AXR3  
MCASP0  
_ACLKX  
B
RSVD0  
VSS  
TRSTn  
TCK  
TMS  
TATz  
I2C0_SCL  
I2C0_SDA  
MMC1_DAT1 MMC1_CLK MMC2_SDWP MMC2_DAT0  
VSS  
_XI  
_RX  
_RTSn  
WKUP  
_UART0  
_RTSn  
MCU_OSC0  
_XO  
MCU_UART0 MCU_UART0  
_TXD _CTSn  
MCU_SPI0  
_CLK  
MCU_I2C0  
_SCL  
WKUP_I2C0  
_SDA  
WKUP  
TDI  
UART0  
SPI0_CLK  
EXT  
_REFCLK1  
MCASP0  
_AXR2  
MCASP0  
_ACLKR  
A
RSVD1  
SPI0_CS0  
I2C1_SDA  
MMC1_CMD MMC1_DAT0 MMC2_SDCD  
VSS  
VSS  
_CLKOUT0  
_CTSn  
Not to scale  
6-1. ALW FCCSP Package (Bottom View)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-2 shows the ball locations for the 441-ball flip chip ball grid array (FCBGA BGA) package to quickly locate  
signal names and ball grid numbering. This figure is used in conjunction with 6.2.1 through 6-74 (Pin  
Attributes table and all Signal Descriptions tables, including the Connectivity Requirements table).  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
OLDI0  
_CLK1P  
CSI0  
_RXCLKP  
CSI0  
_RXCLKN  
RGMII1  
_RXC  
RGMII1  
_RD2  
RGMII1  
_TD3  
RGMII1  
_TD1  
RGMII2  
_TD0  
AA  
Y
W
V
U
T
VSS  
OLDI0_A0N  
OLDI0_A0P  
OLDI0_A4N  
OLDI0_A5P  
OLDI0_A5N  
OLDI0_A7N  
VSS  
OLDI0_A6N  
USB0_DM  
VSS  
VSS  
VSS  
OLDI0  
_CLK1N  
RGMII1  
_RD3  
RGMII1  
_RD1  
RGMII1  
_TD2  
RGMII2  
_TXC  
RGMII2  
_RD2  
RGMII2  
_RD1  
RGMII2_TX  
_CTL  
MMC0_CLK MMC0_DAT4  
VSS  
VSS  
OLDI0_A4P  
VSS  
OLDI0_A3N  
OLDI0_A1P  
OLDI0_A2P  
VSS  
OLDI0_A7P  
USB1_DM  
OLDI0_A6P  
USB1_DP  
USB0_DP  
VSS  
CSI0_RXP0  
CSI0_RXN3  
CSI0_RXP1  
CSI0_RXN2  
VSS  
CSI0_RXN0  
VSS  
RGMII1_RX  
_CTL  
RGMII1  
_RD0  
RGMII1  
_TXC  
RGMII2  
_TD2  
RGMII2  
_RD0  
RGMII2_RX  
_CTL  
RGMII2  
_RD3  
VOUT0  
_HSYNC  
MMC0_DAT3 MMC0_DAT2 MMC0_DAT5 MMC0_DAT6 OLDI0_A3P  
MMC0_DAT1 MMC0_DAT0 MMC0_CMD MMC0_DAT7 OLDI0_A1N  
VSS  
VSS  
CSI0_RXP3  
VSS  
OLDI0  
_CLK0N  
OLDI0  
_CLK0P  
USB1  
_RCALIB  
RGMII1_TX  
_CTL  
RGMII2  
_TD3  
RGMII2  
_RXC  
VOUT0  
_DATA15  
VOUT0  
_DATA13  
USB0_VBUS  
VSS  
CSI0_RXN1  
VSS  
MDIO0_MDC  
VSS  
RGMII1  
_TD0  
RGMII2  
_TD1  
MDIO0  
_MDIO  
VOUT0  
_PCLK  
VOUT0  
_DATA14  
VOUT0  
_DATA12  
VOUT0  
_DATA11  
VOUT0  
_DATA8  
VDDS_DDR DDR0_DQ11 DDR0_DQ12 DDR0_DQ13  
VSS  
OLDI0_A2N  
VSS  
USB1_VBUS  
VSS  
CSI0_RXP2  
VSS  
USB0  
_RCALIB  
CSI0  
_RXRCALIB  
VOUT0  
_VSYNC  
VOUT0  
_DATA10  
VOUT0  
_DATA7  
VOUT0  
_DATA5  
VOUT0  
_DATA6  
DDR0_DQS1 DDR0_DQ10  
VSS  
DDR0_DQ14 DDR0_DQ15  
VSS  
VSS  
VSS  
RSVD5  
RSVD6  
VDDSHV2  
VDDA_PLL1  
VSS  
VSS  
VOUT0_DE  
DDR0_DQS1  
DDR0_DQ9  
_n  
VDDA_1P8  
_OLDI0  
VDDA_3P3  
_USB  
VDDA_1P8  
_USB  
VDDA_1P8  
_CSIRX0  
VOUT0  
_DATA9  
VOUT0  
_DATA2  
VOUT0  
_DATA3  
VOUT0  
_DATA4  
VOUT0  
_DATA0  
R
P
N
M
L
DDR0_DQ8  
DDR0_DM1  
DDR0_A6  
DDR0_A9  
RSVD7  
VSS  
RSVD4  
VSS  
VSS  
VSS  
CAP_VDDS2  
VDDSHV2  
VSS  
VSS  
VDDA_1P8  
_OLDI0  
VDDA_CORE VDDA_CORE  
_USB  
GPMC0  
_WAIT1  
VOUT0  
_DATA1  
GPMC0  
_AD14  
GPMC0  
_AD15  
GPMC0  
_WAIT0  
VSS  
DDR0_A8  
DDR0_A7  
VSS  
DDR0_A12  
DDR0_A13  
RSVD8  
VDDSHV4  
VDDSHV4  
VDD_CORE  
VSS  
VSS  
VSS  
_CSIRX0  
DDR0  
_ALERT_n  
GPMC0  
_AD12  
GPMC0  
_AD11  
GPMC0  
_AD13  
DDR0_A10  
DDR0_A11  
DDR0_BA1  
VSS  
VSS  
CAP_VDDS4 VDD_CORE VDDA_PLL0 VDD_CORE  
VSS  
VDD_CORE  
VDDSHV3  
VDDSHV3  
GPMC0_AD8 GPMC0_AD9  
DDR0_ACT  
_n  
VDDA  
_TEMP0  
GPMC0  
_AD10  
DDR0_PAR  
DDR0_BG1  
DDR0_ODT1  
VSS  
VDD_CORE  
VDDS_DDR  
VSS  
VSS  
VDDR_CORE  
VSS  
VDD_CORE VDDR_CORE VDD_CORE CAP_VDDS3  
VSS  
VSS  
GPMC0_CLK GPMC0_AD7 GPMC0_AD4  
VDDS_DDR  
_C  
VDDA_DDR  
_PLL0  
VSS  
DDR0_BG0  
DDR0_CAL0  
DDR0_ODT0  
DDR0_A3  
DDR0_A2  
VSS  
DDR0_BA0  
VSS  
VSS  
VDD_CORE  
VSS  
VDDA_PLL2  
VSS  
VDD_CORE  
VSS  
CAP_VDDS1  
VDDSHV1  
CAP_VDDS6  
VDDSHV6  
CAP_VDDS5  
VSS  
VSS  
GPMC0_AD5 GPMC0_AD6 GPMC0_AD1 GPMC0_AD2 GPMC0_AD3  
DDR0_CK0  
_n  
DDR0_RAS  
_n  
VMON_3P3  
_SOC  
GPMC0  
_BE0n_CLE  
GPMC0  
_BE1n  
GPMC0  
_ADVn_ALE  
GPMC0_OEn  
_REn  
K
J
VSS  
VDDS_DDR  
VDDS_DDR  
VDD_CORE  
VDD_CORE  
VSS  
VDD_CORE  
VDDSHV1  
GPMC0_AD0  
DDR0_CAS  
_n  
GPMC0  
_CSn0  
DDR0_CK0 DDR0_WE_n  
DDR0_A4  
DDR0_A5  
DDR0_A1  
DDR0_A0  
DDR0_DQ3  
VSS  
VDDS_OSC0 VDDS_DDR  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
GPMC0_WEn  
GPMC0_DIR GPMC0_WPn  
OSPI0_D7  
OSPI0_D5  
OSPI0_D4  
OSPI0_D2  
DDR0_CS0  
_n  
VDDSHV  
_CANUART  
VDD  
_CANUART  
VMON_1P8  
_SOC  
GPMC0  
_CSn1  
GPMC0  
_CSn2  
GPMC0  
H
G
F
VSS  
DDR0_CKE1  
VSS  
VDDA_MCU VDDR_CORE VDD_CORE  
VSS  
VDD_CORE  
VDDSHV5  
VDDSHV5  
VDDSHV6  
OSPI0_DQS  
_CSn3  
DDR0_CS1  
_n  
DDR0  
_RESET0_n  
VDDSHV  
_CANUART  
CAP_VDDS  
_CANUART  
VDDSHV  
_MCU  
CAP_VDDS  
_MCU  
OSPI0  
_LBCLKO  
DDR0_CKE0  
DDR0_DQ5  
DDR0_DM0  
DDR0_DQ2  
RSVD1  
VSS  
VSS  
VSS  
CAP_VDDS0  
VDDSHV0  
I2C0_SCL  
SPI0_CLK  
SPI0_D0  
VDDSHV0  
VSS  
OSPI0_D1  
OSPI0_CLK  
OSPI0_D6  
OSPI0_D3  
VDDSHV  
_MCU  
VDDA  
_TEMP1  
OSPI0  
_CSn1  
OSPI0  
_CSn0  
DDR0_DQ6  
DDR0_DQ7  
VMON_VSYS  
RSVD2  
VPP  
RSVD3  
VSS  
UART0_TXD  
VSS  
VSS  
OSPI0_D0  
DDR0_DQS0  
_n  
MCU_SPI0  
_CS0  
MCU_SPI0  
_D0  
WKUP_I2C0  
_SCL  
RESETSTA  
z
RESET  
_REQz  
USB1  
_DRVVBUS  
OSPI0  
_CSn2  
OSPI0  
_CSn3  
E
D
C
B
A
VSS  
DDR0_DQ1  
TDO  
TDI  
PORz_OUT  
SPI0_CS1  
MMC2_DAT2 MMC2_DAT3 MMC2_CLK  
MCU_MCAN1 MCU_MCAN1 MCU_UART0  
MCU_SPI0  
_D1  
MCASP0  
_AFSR  
MCASP0  
_ACLKR  
USB0  
_DRVVBUS  
MCASP0  
_AXR0  
DDR0_DQS0 DDR0_DQ4  
VSS  
EMU0  
I2C0_SDA  
VSS  
MMC2_SDCD MMC2_DAT1  
_TX  
_RX  
_RTSn  
WKUP  
_UART0  
_TXD  
MCU_MCAN0 MCU_MCAN0  
_RX  
PMIC_LPM  
_EN0  
MCU_SPI0  
_CS1  
MCU  
_RESETz  
UART0  
_RTSn  
EXT  
_REFCLK1  
MCASP0  
_AFSX  
MCASP0  
_ACLKX  
VDDS_DDR  
DDR0_DQ0  
MCU_PORz  
TCK  
SPI0_CS0  
MMC1_SDCD  
MMC1_SDWP  
MCAN0_RX  
MMC1_CMD MMC1_DAT3 MMC2_SDWP MMC2_CMD  
_TX  
WKUP  
_UART0  
_RTSn  
WKUP  
_UART0  
_RXD  
MCU  
_ERRORn  
MCU_UART0  
_TXD  
MCU_SPI0  
_CLK  
MCU_UART0  
_CTSn  
MCU_I2C0  
_SCL  
WKUP  
_CLKOUT0  
UART0  
_CTSn  
MCASP0  
_AXR2  
MCASP0  
RSVD0  
EMU1  
TMS  
MCAN0_TX  
EXTINTn  
MMC1_DAT1 MMC1_DAT2 MMC2_DAT0  
_AXR3  
WKUP  
_LFOSC0  
_XI  
WKUP  
_LFOSC0  
_XO  
WKUP  
_UART0  
_CTSn  
MCU_OSC0  
_XI  
MCU_OSC0  
_XO  
MCU_UART0 WKUP_I2C0  
_RXD _SDA  
MCU_I2C0  
_SDA  
MCU_RESETS  
TATz  
MCASP0  
_AXR1  
VSS  
VSS  
TRSTn  
UART0_RXD  
SPI0_D1  
I2C1_SDA  
I2C1_SCL  
MMC1_DAT0 MMC1_CLK  
VSS  
Not to scale  
6-2. AMC FCBGA Package (Bottom View)  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.2 Pin Attributes  
The following list describes the contents of each column in 6-1, Pin Attributes (ALW, AMC Packages):  
1. BALL NUMBER: Ball numbers assigned to each terminal of the Ball Grid Array package.  
2. BALL NAME: Ball name assigned to each terminal of the Ball Grid Array package (this name is typically  
taken from the primary MUXMODE 0 signal function).  
3. SIGNAL NAME: Signal name(s) of all dedicated and pin multiplexed signal functions associated with a ball.  
备注  
Many device pins support multiple signal functions. Some signal functions are selected via a  
single layer of multiplexers associated with pins. Other signal functions are selected via two or  
more layers of multiplexers, where one layer is associated with the pins and other layers are  
associated with peripheral logic functions.  
6-1, Pin Attributes (ALW, AMC Packages) only defines signal multiplexing at the pins. For more  
information, related to signal multiplexing at the pins, see the Pad Configuration Registers section  
in the Device Configuration chapter of the device TRM. For information associated with peripheral  
signal multiplexing, see the respective peripheral chapter in the device TRM.  
4. MUX MODE: The MUXMODE value associated with each pin multiplexed signal function:  
a. MUXMODE 0 is the primary pin multiplexed signal function. However, the primary pin multiplexed signal  
function is not necessarily the default pin multiplexed signal function.  
备注  
The value found in the MUX MODE AFTER RESET column defines the default pin  
multiplexed signal function selected when MCU_PORz is deasserted.  
b. MUXMODE values 1 through 15 are possible for pin multiplexed signal functions. However, not all  
MUXMODE values have been implemented. The only valid MUXMODE values are those defined as pin  
multiplexed signal functions within the Pin Attributes table. Only valid values of MUXMODE should be  
used.  
c. Bootstrap defines SOC configuration pins, where the logic state applied to each pin is latched on the  
rising edge of PORz_OUT. These input signal functions are fixed to their respective pins and are not  
programmable via MUXMODE.  
d. An empty box means Not Applicable.  
备注  
The following configurations of MUXMODE must be avoided for proper device operation.  
Configuring multiple pins operating as inputs to the same pin multiplexed signal function is not  
supported as it can yield unexpected results.  
Configuring a pin to an undefined pin multiplexing mode will cause the pin behavior to be  
undefined.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
5. TYPE: Signal type and direction:  
I = Input  
O = Output  
OD = Output, with open-drain output function  
IO = Input, Output, or simultaneously Input and Output  
IOD = Input, Output, or simultaneously Input and Output, with open-drain output function  
IOZ = Input, Output, or simultaneously Input and Output, with three-state output function  
OZ = Output with three-state output function  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor.  
6. DSIS: The deselected input state (DSIS) indicates the state driven to the subsystem input (logic "0", logic  
"1", or "pad" level) when the pin multiplexed signal function is not selected by MUXMODE.  
0: Logic 0 driven to the subsystem input.  
1: Logic 1 driven to the subsystem input.  
pad: Logic state of the pad is driven to the subsystem input.  
An empty box means Not Applicable.  
7. BALL STATE DURING RESET RX/TX/PULL: State of the terminal while MCU_PORz is asserted, where RX  
defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of  
internal pull resistors:  
RX (Input buffer)  
Off: The input buffer is disabled.  
On: The input buffer is enabled.  
TX (Output buffer)  
Off: The output buffer is disabled.  
Low: The output buffer is enabled and drives VOL  
.
PULL (Internal pull resistors)  
Off: Internal pull resistors are turned off.  
Up: Internal pull-up resistor is turned on.  
Down: Internal pull-down resistor is turned on.  
NA: Not Applicable.  
An empty box means Not Applicable.  
8. BALL STATE AFTER RESET RX/TX/PULL: State of the terminal after MCU_PORz is deasserted, where  
RX defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state  
of internal pull resistors:  
RX (Input buffer)  
Off: The input buffer is disabled.  
On: The input buffer is enabled.  
TX (Output buffer)  
Off: The output buffer is disabled.  
SS: The subsystem selected with MUXMODE determines the output buffer state.  
PULL (Internal pull resistors)  
Off: Internal pull resistors are turned off.  
Up: Internal pull-up resistor is turned on.  
Down: Internal pull-down resistor is turned on.  
NA: Not Applicable.  
An empty box means Not Applicable.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9. MUX MODE AFTER RESET: The value found in this column defines the default pin multiplexed signal  
function after MCU_PORz is deasserted.  
An empty box means Not Applicable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
10. I/O OPERATING VOLTAGE: This column describes I/O operating voltage options of the respective power  
supply, when applicable.  
An empty box means Not Applicable.  
For more information, see valid operating voltage range(s) defined for each power supply in 7.5,  
Recommended Operating Conditions.  
11. POWER: The power supply of the associated I/O, when applicable.  
An empty box means Not Applicable.  
12. HYS: Indicates if the input buffer associated with this I/O has hysteresis:  
Yes: With hysteresis  
No: Without hysteresis  
An empty box means Not Applicable.  
For more information, see the hysteresis values in 7.8, Electrical Characteristics.  
13. BUFFER TYPE: This column defines the buffer type associated with a terminal. This information can be  
used to determine which Electrical Characteristics table is applicable.  
An empty box means Not Applicable.  
For electrical characteristics, refer to the appropriate buffer type table in 7.8, Electrical Characteristics.  
14. PULL UP/DOWN TYPE: Indicates the presence of an internal pullup or pulldown resistor. Pullup and  
pulldown resistors can be enabled or disabled via software.  
PU: Internal pull-up  
PD: Internal pull-down  
PU/PD: Internal pull-up and pull-down  
An empty box means No internal pull.  
15. PADCONFIG Register:Name of the IO pad configuration register associated with Ball.  
16. PADCONFIG Address:Physical address of the IO pad configuration register associated with Ball.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
H15  
K18  
G12  
L15  
CAP_VDDS0  
CAP_VDDS1  
CAP_VDDS2  
CAP_VDDS3  
CAP_VDDS4  
CAP_VDDS5  
CAP_VDDS6  
CAP_VDDS_CANUART  
CAP_VDDS_MCU  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXRCALIB  
CSI0_RXN0  
CAP_VDDS0  
CAP  
CAP_VDDS1  
CAP_VDDS2  
CAP_VDDS3  
CAP_VDDS4  
CAP_VDDS5  
CAP_VDDS6  
CAP_VDDS_CANUART  
CAP_VDDS_MCU  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXRCALIB  
CSI0_RXN0  
CAP  
W17  
P19  
R13  
M15  
N8  
CAP  
CAP  
U7  
CAP  
H17  
G15  
J15  
CAP  
J19  
CAP  
G9  
G8  
CAP  
H11  
G11  
AA14  
AA13  
T11  
CAP  
AD15  
AE15  
AA14  
AB14  
AD14  
AD13  
AB12  
AC15  
AE14  
AE13  
AC13  
I
I
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
A
I
Y13  
V13  
U12  
W12  
Y12  
V12  
U11  
W11  
CSI0_RXN1  
CSI0_RXN1  
I
CSI0_RXN2  
CSI0_RXN2  
I
CSI0_RXN3  
CSI0_RXN3  
I
CSI0_RXP0  
CSI0_RXP0  
I
CSI0_RXP1  
CSI0_RXP1  
I
CSI0_RXP2  
CSI0_RXP2  
I
CSI0_RXP3  
CSI0_RXP3  
I
VDDS_DDR,  
VDDS_DDR_C  
N6  
R3  
M4  
T1  
M5  
N3  
J1  
M1  
N1  
J3  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
O
IO  
O
O
O
O
O
O
O
O
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
M2  
K5  
J2  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
F5  
G5  
G4  
H4  
VDDS_DDR,  
VDDS_DDR_C  
J2  
DDR0_A1  
DDR0_A1  
VDDS_DDR,  
VDDS_DDR_C  
K3  
L5  
DDR0_A2  
DDR0_A2  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A3  
DDR0_A3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VDDS_DDR,  
VDDS_DDR_C  
K4  
K1  
R2  
P2  
P1  
P4  
R5  
P5  
R6  
R1  
M1  
N1  
T4  
N2  
M2  
L1  
J5  
H5  
P4  
N2  
P2  
N4  
N3  
M3  
P5  
N5  
L5  
DDR0_A4  
DDR0_A4  
DDR0_A5  
DDR0_A6  
DDR0_A7  
DDR0_A8  
DDR0_A9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A5  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A6  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A7  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A8  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A9  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A10  
DDR0_A11  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_A10  
DDR0_A11  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
L3  
VDDS_DDR,  
VDDS_DDR_C  
L4  
VDDS_DDR,  
VDDS_DDR_C  
L2  
VDDS_DDR,  
VDDS_DDR_C  
K4  
J1  
VDDS_DDR,  
VDDS_DDR_C  
O
O
O
O
O
O
IO  
VDDS_DDR,  
VDDS_DDR_C  
L2  
K1  
G3  
H2  
H3  
G1  
E3  
VDDS_DDR,  
VDDS_DDR_C  
H2  
J4  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
L6  
VDDS_DDR,  
VDDS_DDR_C  
K2  
H5  
VDDS_DDR,  
VDDS_DDR_C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
18  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VDDS_DDR,  
VDDS_DDR_C  
W5  
F4  
G5  
F3  
H6  
E3  
G2  
F2  
F1  
U1  
U3  
U2  
V5  
W2  
V6  
Y1  
W1  
E1  
E2  
V1  
V2  
H1  
R4  
C2  
E4  
D3  
E5  
D2  
F3  
F1  
F2  
R3  
R2  
T2  
U2  
U3  
U4  
T4  
T5  
D1  
E1  
T1  
R1  
J4  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
DDR0_DM1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VDDS_DDR,  
VDDS_DDR_C  
J3  
K2  
G2  
DDR0_ODT1  
DDR0_ODT1  
O
O
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
G1  
DDR0_RESET0_n  
EMU0  
DDR0_RESET0_n  
EMU0  
PADCONFIG:  
MCU_PADCONFIG30  
0x04084078  
E12  
C11  
D16  
D9  
0
0
IO  
IO  
0
0
On / Off / Up  
On / Off / Up  
Off / Off / NA  
On / Off / Up  
On / Off / Up  
Off / Off / NA  
0
0
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV0  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
I2C OD FS  
PU/PD  
PU/PD  
EMU1  
PADCONFIG:  
MCU_PADCONFIG31  
0x0408407C  
B10  
B16  
EMU1  
EXTINTn  
EXTINTn  
0
7
I
1
pad  
0
PADCONFIG:  
PADCONFIG125  
0x000F41F4  
GPIO1_31  
IOD  
EXT_REFCLK1  
SYNC1_OUT  
0
1
2
3
4
5
6
7
8
0
2
4
5
6
7
0
2
3
4
5
6
7
I
O
IO  
O
IO  
O
I
SPI2_CS3  
1
0
EXT_REFCLK1  
SYSCLKOUT0  
TIMER_IO4  
PADCONFIG:  
PADCONFIG124  
0x000F41F0  
A18  
C14  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
CLKOUT0  
CP_GEMAC_CPTS0_RFT_CLK  
GPIO1_30  
0
pad  
0
IO  
IO  
O
IO  
IO  
I
ECAP0_IN_APWM_OUT  
GPMC0_ADVn_ALE  
MCASP1_AXR2  
PR0_PRU0_GPO9  
PR0_PRU0_GPI9  
TRC_DATA7  
0
0
0
GPMC0_ADVn_ALE  
PADCONFIG:  
PADCONFIG33  
0x000F4084  
L23  
K20  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
O
IO  
O
IO  
I
GPIO0_32  
pad  
0
GPMC0_CLK  
MCASP1_AXR3  
GPMC0_FCLK_MUX  
PR0_PRU0_GPO8  
PR0_PRU0_GPI8  
TRC_DATA6  
GPMC0_CLK  
PADCONFIG:  
PADCONFIG31  
0x000F407C  
P25  
M19  
0
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
GPIO0_31  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
20  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_DIR  
0
1
3
4
5
6
7
8
0
2
4
5
6
7
0
2
4
5
6
7
0
1
2
3
4
5
6
7
O
IO  
IO  
IO  
I
PR0_ECAP0_IN_APWM_OUT  
MCASP2_AXR13  
PR0_PRU0_GPO16  
PR0_PRU0_GPI16  
TRC_DATA14  
0
0
0
0
GPMC0_DIR  
PADCONFIG:  
PADCONFIG41  
0x000F40A4  
M22  
J19  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
GPIO0_40  
IO  
IO  
O
pad  
0
EQEP2_S  
GPMC0_OEn_REn  
MCASP1_AXR1  
PR0_PRU0_GPO10  
PR0_PRU0_GPI10  
TRC_DATA8  
IO  
IO  
I
0
0
0
GPMC0_OEn_REn  
PADCONFIG:  
PADCONFIG34  
0x000F4088  
L24  
K21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
GPIO0_33  
IO  
O
pad  
GPMC0_WEn  
MCASP1_AXR0  
PR0_PRU0_GPO11  
PR0_PRU0_GPI11  
TRC_DATA9  
IO  
IO  
I
0
0
0
GPMC0_WEn  
PADCONFIG:  
PADCONFIG35  
0x000F408C  
L25  
J17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
GPIO0_34  
IO  
O
pad  
0
GPMC0_WPn  
AUDIO_EXT_REFCLK1  
GPMC0_A22  
IO  
OZ  
O
GPMC0_WPn  
UART6_TXD  
PADCONFIG:  
PADCONFIG40  
0x000F40A0  
K25  
J20  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
PR0_PRU0_GPO15  
PR0_PRU0_GPI15  
TRC_DATA13  
IO  
I
0
0
O
GPIO0_39  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_AD0  
0
IO  
O
I
0
PR0_PRU1_GPO8  
PR0_PRU1_GPI8  
MCASP2_AXR4  
PR0_PRU0_GPO0  
PR0_PRU0_GPI0  
TRC_CLK  
1
2
0
0
0
0
GPMC0_AD0  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG15  
0x000F403C  
M25  
N23  
N24  
N25  
K19  
L19  
L20  
L21  
4
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
5
6
O
IO  
I
GPIO0_15  
7
pad  
0
BOOTMODE00  
GPMC0_AD1  
Bootstrap  
0
IO  
O
I
PR0_PRU1_GPO9  
PR0_PRU1_GPI9  
MCASP2_AXR5  
PR0_PRU0_GPO1  
PR0_PRU0_GPI1  
TRC_CTL  
1
2
0
0
0
0
GPMC0_AD1  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG16  
0x000F4040  
4
VDDSHV3  
VDDSHV3  
VDDSHV3  
LVCMOS  
LVCMOS  
LVCMOS  
5
6
O
IO  
I
GPIO0_16  
7
pad  
0
BOOTMODE01  
GPMC0_AD2  
Bootstrap  
0
IO  
O
I
PR0_PRU1_GPO10  
PR0_PRU1_GPI10  
MCASP2_AXR6  
PR0_PRU0_GPO2  
PR0_PRU0_GPI2  
TRC_DATA0  
1
2
0
0
0
0
GPMC0_AD2  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG17  
0x000F4044  
4
5
6
O
IO  
I
GPIO0_17  
7
pad  
0
BOOTMODE02  
GPMC0_AD3  
Bootstrap  
0
IO  
O
I
PR0_PRU1_GPO11  
PR0_PRU1_GPI11  
MCASP2_AXR7  
PR0_PRU0_GPO3  
PR0_PRU0_GPI3  
TRC_DATA1  
1
2
0
0
0
0
GPMC0_AD3  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG18  
0x000F4048  
4
5
6
7
O
IO  
I
GPIO0_18  
pad  
BOOTMODE03  
Bootstrap  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
22  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_AD4  
0
IO  
O
I
0
PR0_PRU1_GPO12  
PR0_PRU1_GPI12  
MCASP2_AXR8  
PR0_PRU0_GPO4  
PR0_PRU0_GPI4  
TRC_DATA2  
1
2
0
0
0
0
GPMC0_AD4  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG19  
0x000F404C  
P24  
P22  
P21  
R23  
M21  
L17  
L18  
M20  
4
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
5
6
O
IO  
I
GPIO0_19  
7
pad  
0
BOOTMODE04  
GPMC0_AD5  
Bootstrap  
0
IO  
O
I
PR0_PRU1_GPO13  
PR0_PRU1_GPI13  
MCASP2_AXR9  
PR0_PRU0_GPO5  
PR0_PRU0_GPI5  
TRC_DATA3  
1
2
0
0
0
0
GPMC0_AD5  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG20  
0x000F4050  
4
VDDSHV3  
VDDSHV3  
VDDSHV3  
5
6
O
IO  
I
GPIO0_20  
7
pad  
0
BOOTMODE05  
GPMC0_AD6  
Bootstrap  
0
IO  
O
I
PR0_PRU1_GPO14  
PR0_PRU1_GPI14  
MCASP2_AXR10  
PR0_PRU0_GPO6  
PR0_PRU0_GPI6  
TRC_DATA4  
1
2
0
0
0
0
GPMC0_AD6  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG21  
0x000F4054  
4
5
6
O
IO  
I
GPIO0_21  
7
pad  
0
BOOTMODE06  
GPMC0_AD7  
Bootstrap  
0
IO  
O
I
PR0_PRU1_GPO15  
PR0_PRU1_GPI15  
MCASP2_AXR11  
PR0_PRU0_GPO7  
PR0_PRU0_GPI7  
TRC_DATA5  
1
2
0
0
0
0
GPMC0_AD7  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG22  
0x000F4058  
4
5
6
7
O
IO  
I
GPIO0_22  
pad  
BOOTMODE07  
Bootstrap  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_AD8  
0
IO  
O
I
0
VOUT0_DATA16  
UART2_RXD  
1
2
1
0
GPMC0_AD8  
MCASP2_AXR0  
PR0_PRU1_GPO0  
PR0_PRU1_GPI0  
GPIO0_23  
3
IO  
O
I
PADCONFIG:  
PADCONFIG23  
0x000F405C  
R24  
N20  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
4
5
0
7
IO  
I
pad  
BOOTMODE08  
GPMC0_AD9  
Bootstrap  
0
IO  
O
O
IO  
O
I
0
0
VOUT0_DATA17  
UART2_TXD  
1
2
GPMC0_AD9  
MCASP2_AXR1  
PR0_PRU1_GPO1  
PR0_PRU1_GPI1  
GPIO0_24  
3
PADCONFIG:  
PADCONFIG24  
0x000F4060  
R25  
N21  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
4
5
0
7
IO  
I
pad  
BOOTMODE09  
GPMC0_AD10  
VOUT0_DATA18  
UART3_RXD  
Bootstrap  
0
IO  
O
I
0
1
2
1
0
GPMC0_AD10  
MCASP2_AXR2  
PR0_PRU1_GPO2  
PR0_PRU1_GPI2  
GPIO0_25  
3
IO  
O
I
PADCONFIG:  
PADCONFIG25  
0x000F4064  
T25  
M17  
4
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
5
0
7
IO  
O
I
pad  
OBSCLK0  
8
BOOTMODE10  
GPMC0_AD11  
VOUT0_DATA19  
UART3_TXD  
Bootstrap  
0
IO  
O
O
IO  
O
I
0
1
2
GPMC0_AD11  
MCASP2_AXR3  
PR0_PRU1_GPO3  
PR0_PRU1_GPI3  
TRC_DATA23  
GPIO0_26  
3
0
0
PADCONFIG:  
PADCONFIG26  
0x000F4068  
R21  
N18  
4
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
5
6
7
O
IO  
I
pad  
BOOTMODE11  
Bootstrap  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
24  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_AD12  
0
IO  
O
I
0
VOUT0_DATA20  
UART4_RXD  
1
2
1
0
0
0
GPMC0_AD12  
MCASP2_AFSX  
PR0_PRU0_GPO0  
PR0_PRU0_GPI0  
TRC_DATA22  
3
IO  
IO  
I
PADCONFIG:  
PADCONFIG27  
0x000F406C  
T22  
N17  
4
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
5
6
O
IO  
I
GPIO0_27  
7
pad  
0
BOOTMODE12  
GPMC0_AD13  
VOUT0_DATA21  
UART4_TXD  
Bootstrap  
0
IO  
O
O
IO  
IO  
I
1
2
GPMC0_AD13  
MCASP2_ACLKX  
PR0_PRU0_GPO1  
PR0_PRU0_GPI1  
TRC_DATA21  
3
0
0
0
PADCONFIG:  
PADCONFIG28  
0x000F4070  
T24  
N19  
4
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
5
6
O
IO  
I
GPIO0_28  
7
pad  
0
BOOTMODE13  
GPMC0_AD14  
VOUT0_DATA22  
UART5_RXD  
Bootstrap  
0
IO  
O
I
1
2
1
0
0
0
MCASP2_AFSR  
PR0_PRU0_GPO2  
PR0_PRU0_GPI2  
TRC_DATA20  
3
IO  
IO  
I
GPMC0_AD14  
4
PADCONFIG:  
PADCONFIG29  
0x000F4074  
U25  
P19  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
5
6
O
IO  
I
GPIO0_29  
7
8
pad  
1
UART2_CTSn  
BOOTMODE14  
Bootstrap  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_AD15  
0
IO  
O
O
IO  
IO  
I
0
VOUT0_DATA23  
UART5_TXD  
1
2
MCASP2_ACLKR  
PR0_PRU0_GPO3  
PR0_PRU0_GPI3  
TRC_DATA19  
3
0
0
0
GPMC0_AD15  
4
PADCONFIG:  
PADCONFIG30  
0x000F4078  
U24  
P20  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
5
6
O
IO  
O
I
GPIO0_30  
7
pad  
UART2_RTSn  
8
BOOTMODE15  
GPMC0_BE0n_CLE  
MCASP1_ACLKX  
PR0_PRU0_GPO12  
PR0_PRU0_GPI12  
TRC_DATA10  
Bootstrap  
0
2
4
5
6
7
0
3
4
5
6
7
0
3
4
5
6
7
0
1
2
3
4
5
6
7
O
IO  
IO  
I
0
0
0
GPMC0_BE0n_CLE  
PADCONFIG:  
PADCONFIG36  
0x000F4090  
M24  
N20  
M21  
K17  
K18  
J18  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
O
IO  
O
IO  
IO  
I
GPIO0_35  
pad  
GPMC0_BE1n  
MCASP2_AXR12  
PR0_PRU0_GPO13  
PR0_PRU0_GPI13  
TRC_DATA11  
0
0
0
GPMC0_BE1n  
PADCONFIG:  
PADCONFIG37  
0x000F4094  
O
IO  
O
IO  
IO  
I
GPIO0_36  
pad  
GPMC0_CSn0  
MCASP2_AXR14  
PR0_PRU0_GPO17  
PR0_PRU0_GPI17  
TRC_DATA15  
0
0
0
GPMC0_CSn0  
PADCONFIG:  
PADCONFIG42  
0x000F40A8  
O
IO  
O
O
I
GPIO0_41  
pad  
GPMC0_CSn1  
PR0_PRU1_GPO16  
PR0_PRU1_GPI16  
MCASP2_AXR15  
PR0_PRU0_GPO18  
PR0_PRU0_GPI18  
TRC_DATA16  
0
0
0
0
GPMC0_CSn1  
IO  
IO  
I
PADCONFIG:  
PADCONFIG43  
0x000F40AC  
L21  
H17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
GPIO0_42  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
26  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
GPMC0_CSn2  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
6
7
8
0
2
4
5
6
7
0
1
2
3
7
8
O
IOD  
IO  
I
I2C2_SCL  
1
0
1
0
0
MCASP1_AXR4  
UART4_RXD  
GPMC0_CSn2  
PADCONFIG:  
PADCONFIG44  
0x000F40B0  
K22  
H18  
PR0_PRU0_GPO19  
PR0_PRU0_GPI19  
TRC_DATA17  
GPIO0_43  
IO  
I
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
IO  
O
pad  
0
MCASP1_AFSR  
GPMC0_CSn3  
I2C2_SDA  
IOD  
OZ  
O
1
0
GPMC0_A20  
GPMC0_CSn3  
UART4_TXD  
PADCONFIG:  
PADCONFIG45  
0x000F40B4  
K24  
H19  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
MCASP1_AXR5  
TRC_DATA18  
GPIO0_44  
IO  
O
IO  
IO  
I
pad  
0
MCASP1_ACLKR  
GPMC0_WAIT0  
MCASP1_AFSX  
PR0_PRU0_GPO14  
PR0_PRU0_GPI14  
TRC_DATA12  
GPIO0_37  
1
IO  
IO  
I
0
GPMC0_WAIT0  
0
PADCONFIG:  
PADCONFIG38  
0x000F4098  
U23  
P21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
0
O
IO  
I
pad  
1
GPMC0_WAIT1  
VOUT0_EXTPCLKIN  
GPMC0_A21  
I
0
GPMC0_WAIT1  
OZ  
I
PADCONFIG:  
PADCONFIG39  
0x000F409C  
V25  
P17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
UART6_RXD  
1
pad  
0
GPIO0_38  
IO  
IO  
EQEP2_I  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
I2C0_SCL  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
0
1
2
3
4
7
8
9
0
1
2
3
4
7
8
9
IOD  
IO  
O
1
0
PR0_IEP0_EDIO_DATA_IN_OUT30  
SYNC0_OUT  
OBSCLK0  
O
I2C0_SCL  
UART1_DCDn  
EQEP2_A  
I
1
0
PADCONFIG:  
PADCONFIG120  
0x000F41E0  
B16  
E12  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
I
EHRPWM_SOCA  
GPIO1_26  
O
IO  
IO  
IO  
IOD  
IO  
IO  
IO  
I
pad  
0
ECAP1_IN_APWM_OUT  
SPI2_CS0  
1
I2C0_SDA  
1
PR0_IEP0_EDIO_DATA_IN_OUT31  
SPI2_CS2  
0
1
I2C0_SDA  
TIMER_IO5  
0
PADCONFIG:  
PADCONFIG121  
0x000F41E4  
A16  
D14  
UART1_DSRn  
EQEP2_B  
1
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
I
0
EHRPWM_SOCB  
GPIO1_27  
O
IO  
IO  
IOD  
I
pad  
0
ECAP2_IN_APWM_OUT  
I2C1_SCL  
1
UART1_RXD  
1
TIMER_IO0  
IO  
IO  
I
0
I2C1_SCL  
SPI2_CS1  
1
PADCONFIG:  
PADCONFIG122  
0x000F41E8  
B17  
A17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EHRPWM0_SYNCI  
GPIO1_28  
0
IO  
IO  
I
pad  
0
EHRPWM2_A  
MMC2_SDCD  
I2C1_SDA  
1
IOD  
O
1
UART1_TXD  
TIMER_IO1  
IO  
IO  
O
0
0
I2C1_SDA  
SPI2_CLK  
PADCONFIG:  
PADCONFIG123  
0x000F41EC  
A17  
A16  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EHRPWM0_SYNCO  
GPIO1_29  
IO  
IO  
I
pad  
0
EHRPWM2_B  
MMC2_SDWP  
1
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
28  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MCAN0_RX  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
6
7
8
0
1
2
7
8
I
1
0
UART5_TXD  
TIMER_IO3  
O
IO  
O
I
SYNC3_OUT  
UART1_RIn  
MCAN0_RX  
1
0
PADCONFIG:  
PADCONFIG119  
0x000F41DC  
E15  
A15  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EQEP2_S  
IO  
O
IO  
IO  
I
PR0_UART0_TXD  
GPIO1_25  
pad  
0
MCASP2_AXR1  
EHRPWM_TZn_IN4  
MCAN0_TX  
0
O
I
UART5_RXD  
TIMER_IO2  
1
0
IO  
O
O
IO  
I
SYNC2_OUT  
UART1_DTRn  
EQEP2_I  
MCAN0_TX  
PADCONFIG:  
PADCONFIG118  
0x000F41D8  
C15  
B13  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
0
1
PR0_UART0_RXD  
GPIO1_24  
IO  
IO  
I
pad  
0
MCASP2_AXR0  
EHRPWM_TZn_IN3  
MCASP0_ACLKR  
SPI2_CLK  
0
IO  
IO  
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
0
0
MCASP0_ACLKR  
UART1_TXD  
EHRPWM0_B  
GPIO1_14  
PADCONFIG:  
PADCONFIG108  
0x000F41B0  
A20  
D16  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
Yes  
LVCMOS  
PU/PD  
0
pad  
0
EQEP1_I  
MCASP0_ACLKX  
SPI2_CS1  
0
MCASP0_ACLKX  
1
PADCONFIG:  
PADCONFIG105  
0x000F41A4  
B20  
C17  
ECAP2_IN_APWM_OUT  
GPIO1_11  
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
LVCMOS  
PU/PD  
pad  
0
EQEP1_A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MCASP0_AFSR  
0
1
2
6
7
8
0
1
2
7
8
0
1
2
5
6
7
8
0
1
2
5
6
7
8
0
1
2
3
4
5
6
7
8
IO  
IO  
I
0
1
SPI2_CS0  
MCASP0_AFSR  
UART1_RXD  
1
PADCONFIG:  
PADCONFIG107  
0x000F41AC  
E19  
D15  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
Yes  
LVCMOS  
PU/PD  
EHRPWM0_A  
GPIO1_13  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
0
pad  
0
EQEP1_S  
MCASP0_AFSX  
SPI2_CS3  
0
MCASP0_AFSX  
1
PADCONFIG:  
PADCONFIG106  
0x000F41A8  
D20  
C16  
AUDIO_EXT_REFCLK1  
GPIO1_12  
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
LVCMOS  
PU/PD  
pad  
0
EQEP1_B  
MCASP0_AXR0  
PR0_ECAP0_IN_APWM_OUT  
AUDIO_EXT_REFCLK0  
PR0_UART0_TXD  
EHRPWM1_B  
GPIO1_10  
IO  
IO  
IO  
O
0
0
MCASP0_AXR0  
0
PADCONFIG:  
PADCONFIG104  
0x000F41A0  
E18  
D18  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
IO  
IO  
IO  
IO  
I
0
pad  
0
EQEP0_I  
MCASP0_AXR1  
SPI2_CS2  
0
1
MCASP0_AXR1  
ECAP1_IN_APWM_OUT  
PR0_UART0_RXD  
EHRPWM1_A  
GPIO1_9  
0
PADCONFIG:  
PADCONFIG103  
0x000F419C  
B18  
A18  
1
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
IO  
IO  
IO  
O
0
pad  
0
EQEP0_S  
MCASP0_AXR2  
SPI2_D1  
0
0
UART1_RTSn  
UART6_TXD  
MCASP0_AXR2  
O
PADCONFIG:  
PADCONFIG102  
0x000F4198  
A19  
B17  
PR0_IEP0_EDIO_DATA_IN_OUT29  
ECAP2_IN_APWM_OUT  
PR0_UART0_TXD  
GPIO1_8  
IO  
IO  
O
0
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
I
pad  
0
EQEP0_B  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
30  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MCASP0_AXR3  
0
1
2
3
4
5
6
7
8
IO  
IO  
I
0
0
SPI2_D0  
UART1_CTSn  
1
MCASP0_AXR3  
UART6_RXD  
I
1
PADCONFIG:  
PADCONFIG101  
0x000F4194  
B19  
B18  
PR0_IEP0_EDIO_DATA_IN_OUT28  
ECAP1_IN_APWM_OUT  
PR0_UART0_RXD  
GPIO1_7  
IO  
IO  
I
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
0
1
IO  
I
pad  
0
EQEP0_A  
MCU_ERRORn  
PADCONFIG:  
MCU_PADCONFIG24  
0x04084060  
D1  
A8  
B1  
B9  
MCU_ERRORn  
0
IO  
Off / Off / Down On / SS / Down  
0
7
7
1.8 V  
VDDS_OSC0  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
LVCMOS  
I2C OD FS  
I2C OD FS  
PU/PD  
MCU_I2C0_SCL  
MCU_I2C0_SCL  
MCU_GPIO0_17  
MCU_I2C0_SDA  
MCU_GPIO0_18  
0
7
0
7
IOD  
IOD  
IOD  
IOD  
1
PADCONFIG:  
MCU_PADCONFIG17  
0x04084044  
Off / Off / NA  
Off / Off / NA  
On / SS / NA  
On / SS / NA  
1.8 V/3.3 V  
1.8 V/3.3 V  
pad  
1
MCU_I2C0_SDA  
PADCONFIG:  
MCU_PADCONFIG18  
0x04084048  
D10  
A10  
pad  
MCU_MCAN0_RX  
MCU_TIMER_IO0  
MCU_SPI1_CS3  
MCU_GPIO0_14  
MCU_MCAN0_TX  
WKUP_TIMER_IO0  
MCU_SPI0_CS3  
MCU_GPIO0_13  
MCU_MCAN1_RX  
MCU_TIMER_IO3  
MCU_SPI0_CS2  
MCU_SPI1_CS2  
MCU_SPI1_CLK  
MCU_GPIO0_16  
0
1
2
7
0
1
2
7
0
1
2
3
4
7
I
1
0
MCU_MCAN0_RX  
IO  
IO  
IO  
O
PADCONFIG:  
MCU_PADCONFIG14  
0x04084038  
B3  
D6  
C4  
C5  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
pad  
MCU_MCAN0_TX  
IO  
IO  
IO  
I
0
1
PADCONFIG:  
MCU_PADCONFIG13  
0x04084034  
pad  
1
IO  
IO  
IO  
IO  
IO  
0
MCU_MCAN1_RX  
1
PADCONFIG:  
MCU_PADCONFIG16  
0x04084040  
D4  
D6  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV_CANUART  
Yes  
LVCMOS  
PU/PD  
1
0
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MCU_MCAN1_TX  
0
1
3
4
7
O
IO  
IO  
I
MCU_MCAN1_TX  
MCU_TIMER_IO2  
MCU_SPI1_CS1  
MCU_EXT_REFCLK0  
MCU_GPIO0_15  
MCU_OSC0_XI  
0
1
PADCONFIG:  
MCU_PADCONFIG15  
0x0408403C  
E5  
D5  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV_CANUART  
Yes  
LVCMOS  
PU/PD  
0
IO  
I
pad  
B2  
A3  
A5  
A6  
MCU_OSC0_XI  
MCU_OSC0_XO  
MCU_PORz  
1.8 V  
1.8 V  
VDDS_OSC0  
VDDS_OSC0  
HFOSC  
HFOSC  
MCU_OSC0_XO  
O
PADCONFIG:  
MCU_PADCONFIG22  
0x04084058  
D2  
B12  
E11  
A7  
B2  
A12  
C9  
B7  
MCU_PORz  
0
I
0
0
0
7
7
1.8 V  
VDDS_OSC0  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
Yes  
Yes  
FS RESET  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
MCU_RESETSTATz  
MCU_RESETSTATz  
MCU_GPIO0_21  
0
7
O
PADCONFIG:  
MCU_PADCONFIG23  
0x0408405C  
Off / Low / Off  
On / Off / Up  
Off / Off / Off  
Off / Off / Off  
Off / SS / Off  
On / Off / Up  
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
IO  
pad  
MCU_RESETz  
PADCONFIG:  
MCU_PADCONFIG21  
0x04084054  
MCU_RESETz  
0
I
MCU_SPI0_CLK  
MCU_SPI0_CLK  
MCU_GPIO0_2  
0
7
IO  
IO  
0
PADCONFIG:  
MCU_PADCONFIG2  
0x04084008  
pad  
MCU_SPI0_CS0  
MCU_SPI0_CS0  
0
4
IO  
IO  
1
0
PADCONFIG:  
MCU_PADCONFIG0  
0x04084000  
WKUP_TIMER_IO1  
E8  
E7  
MCU_GPIO0_0  
7
IO  
pad  
1
MCU_SPI0_CS1  
MCU_OBSCLK0  
MCU_SYSCLKOUT0  
MCU_EXT_REFCLK0  
MCU_TIMER_IO1  
MCU_GPIO0_1  
0
1
2
3
4
7
0
IO  
O
MCU_SPI0_CS1  
O
PADCONFIG:  
MCU_PADCONFIG1  
0x04084004  
B8  
C8  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV_MCU  
Yes  
LVCMOS  
PU/PD  
I
0
0
IO  
IO  
IO  
pad  
0
MCU_SPI0_D0  
MCU_SPI0_D0  
PADCONFIG:  
MCU_PADCONFIG3  
0x0408400C  
D9  
C9  
E8  
D8  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
MCU_GPIO0_3  
MCU_SPI0_D1  
MCU_GPIO0_4  
7
0
7
IO  
IO  
IO  
pad  
0
MCU_SPI0_D1  
PADCONFIG:  
MCU_PADCONFIG4  
0x04084010  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
32  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MCU_UART0_CTSn  
0
1
3
7
0
1
3
7
0
I
1
0
MCU_UART0_CTSn  
MCU_TIMER_IO0  
MCU_SPI1_D0  
IO  
IO  
IO  
O
PADCONFIG:  
MCU_PADCONFIG7  
0x0408401C  
A6  
B6  
B8  
D7  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
0
MCU_GPIO0_7  
pad  
MCU_UART0_RTSn  
MCU_TIMER_IO1  
MCU_SPI1_D1  
MCU_UART0_RTSn  
IO  
IO  
IO  
I
0
0
PADCONFIG:  
MCU_PADCONFIG8  
0x04084020  
MCU_GPIO0_8  
pad  
1
MCU_UART0_RXD  
MCU_UART0_RXD  
PADCONFIG:  
MCU_PADCONFIG5  
0x04084014  
B5  
A5  
A8  
B6  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
VDDSHV2  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
MCU_GPIO0_5  
MCU_UART0_TXD  
MCU_GPIO0_6  
MDIO0_MDC  
GPIO0_86  
7
0
7
0
7
0
7
IO  
O
pad  
MCU_UART0_TXD  
PADCONFIG:  
MCU_PADCONFIG6  
0x04084018  
IO  
O
pad  
MDIO0_MDC  
PADCONFIG:  
PADCONFIG88  
0x000F4160  
AD24  
AB22  
V17  
U16  
IO  
IO  
IO  
pad  
0
MDIO0_MDIO  
MDIO0_MDIO  
GPIO0_85  
PADCONFIG:  
PADCONFIG87  
0x000F415C  
VDDSHV2  
pad  
MMC0_CLK  
I2C3_SCL  
0
1
2
3
4
5
6
7
IO  
IOD  
IO  
O
0
1
0
EHRPWM2_A  
PR0_PRU1_GPO4  
PR0_PRU1_GPI4  
SPI1_CS1  
MMC0_CLK  
PADCONFIG:  
PADCONFIG134  
0x000F4218  
AB1  
Y1  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
I
0
1
IO  
IO  
IO  
TIMER_IO4  
0
GPIO1_40  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MMC0_CMD  
0
1
2
3
4
5
6
7
0
2
3
7
0
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
IO  
IOD  
IO  
IO  
I
1
1
I2C3_SDA  
EHRPWM2_B  
PR0_PRU0_GPO4  
PR0_PRU0_GPI4  
SPI1_CS2  
0
MMC0_CMD  
0
PADCONFIG:  
PADCONFIG136  
0x000F4220  
Y3  
V3  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
IO  
IO  
IO  
IO  
IO  
I
1
TIMER_IO5  
0
GPIO1_41  
pad  
0
MMC1_CLK  
TIMER_IO4  
MMC1_CLK  
0
PADCONFIG:  
PADCONFIG141  
0x000F4234  
B22  
A21  
A20  
C18  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV5  
VDDSHV5  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
UART3_RXD  
GPIO1_46  
1
IO  
IO  
IO  
O
pad  
1
MMC1_CMD  
TIMER_IO5  
MMC1_CMD  
0
PADCONFIG:  
PADCONFIG143  
0x000F423C  
UART3_TXD  
GPIO1_47  
IO  
I
pad  
1
MMC1_SDCD  
UART6_RXD  
TIMER_IO6  
MMC1_SDCD  
I
1
PADCONFIG:  
PADCONFIG144  
0x000F4240  
D17  
C17  
D25  
C24  
C15  
B15  
E21  
C21  
IO  
O
0
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
SDIO  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
UART3_RTSn  
GPIO1_48  
IO  
I
pad  
1
MMC1_SDWP  
UART6_TXD  
TIMER_IO7  
MMC1_SDWP  
O
PADCONFIG:  
PADCONFIG145  
0x000F4244  
IO  
I
0
1
UART3_CTSn  
GPIO1_49  
IO  
IO  
IO  
IO  
I
pad  
0
MMC2_CLK  
MCASP1_ACLKR  
MCASP1_AXR5  
UART6_RXD  
GPIO0_69  
MMC2_CLK  
0
PADCONFIG:  
PADCONFIG70  
0x000F4118  
0
1
IO  
IO  
IO  
IO  
O
pad  
1
MMC2_CMD  
MCASP1_AFSR  
MCASP1_AXR4  
UART6_TXD  
GPIO0_70  
MMC2_CMD  
0
PADCONFIG:  
PADCONFIG72  
0x000F4120  
0
SDIO  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
34  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
VDDSHV6  
VDDSHV6  
[5]  
[6]  
MMC2_SDCD  
0
1
3
7
0
1
3
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I
1
0
MMC2_SDCD  
MCASP1_ACLKX  
UART4_RXD  
GPIO0_71  
IO  
I
PADCONFIG:  
PADCONFIG73  
0x000F4124  
A23  
B23  
D20  
C20  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
IO  
I
pad  
1
MMC2_SDWP  
MCASP1_AFSX  
UART4_TXD  
GPIO0_72  
MMC2_SDWP  
IO  
O
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG74  
0x000F4128  
pad  
1
MMC0_DAT0  
UART3_CTSn  
EHRPWM_TZn_IN1  
PR0_PRU0_GPO3  
PR0_PRU0_GPI3  
SPI2_CLK  
1
MMC0_DAT0  
I
0
PADCONFIG:  
PADCONFIG133  
0x000F4214  
AA2  
V2  
IO  
I
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
IO  
IO  
IO  
O
IO  
IO  
I
0
GPIO1_39  
pad  
1
MMC0_DAT1  
UART3_RTSn  
EHRPWM1_B  
PR0_PRU0_GPO2  
PR0_PRU0_GPI2  
SPI1_CS3  
0
0
MMC0_DAT1  
PADCONFIG:  
PADCONFIG132  
0x000F4210  
AA1  
V1  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
IO  
IO  
IO  
IO  
O
IO  
IO  
I
1
SPI2_CS0  
1
GPIO1_38  
pad  
1
MMC0_DAT2  
UART3_TXD  
EHRPWM1_A  
PR0_PRU0_GPO1  
PR0_PRU0_GPI1  
SPI1_CLK  
0
0
MMC0_DAT2  
PADCONFIG:  
PADCONFIG131  
0x000F420C  
AA3  
W2  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
IO  
IO  
IO  
0
TIMER_IO0  
0
GPIO1_37  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MMC0_DAT3  
0
1
2
3
4
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
7
IO  
I
1
1
UART3_RXD  
EHRPWM0_B  
PR0_PRU0_GPO0  
PR0_PRU0_GPI0  
SPI1_CS0  
IO  
IO  
I
0
MMC0_DAT3  
0
PADCONFIG:  
PADCONFIG130  
0x000F4208  
Y4  
W1  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
IO  
IO  
IO  
IO  
I
1
SPI2_CS2  
1
GPIO1_36  
pad  
1
MMC0_DAT4  
UART2_CTSn  
EHRPWM0_A  
PR0_PRU1_GPO3  
PR0_PRU1_GPI3  
SPI2_D1  
1
MMC0_DAT4  
IO  
O
I
0
PADCONFIG:  
PADCONFIG129  
0x000F4204  
AB2  
Y2  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
0
IO  
IO  
IO  
O
I
GPIO1_35  
pad  
1
MMC0_DAT5  
UART2_RTSn  
EHRPWM_TZn_IN2  
PR0_PRU1_GPO2  
PR0_PRU1_GPI2  
SPI2_D0  
MMC0_DAT5  
0
PADCONFIG:  
PADCONFIG128  
0x000F4200  
AC1  
W3  
O
I
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
0
IO  
IO  
IO  
O
O
O
I
GPIO1_34  
pad  
1
MMC0_DAT6  
UART2_TXD  
EHRPWM0_SYNCO  
PR0_PRU1_GPO1  
PR0_PRU1_GPI1  
SPI1_D1  
MMC0_DAT6  
PADCONFIG:  
PADCONFIG127  
0x000F41FC  
AD2  
W4  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
0
IO  
IO  
IO  
SPI2_CS3  
1
GPIO1_33  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
36  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
MMC0_DAT7  
0
1
2
3
4
5
6
7
0
1
2
3
4
7
0
1
2
3
4
7
0
1
2
3
7
0
1
2
3
7
0
1
IO  
I
1
1
0
UART2_RXD  
EHRPWM0_SYNCI  
PR0_PRU1_GPO0  
PR0_PRU1_GPI0  
SPI1_D0  
I
MMC0_DAT7  
O
I
PADCONFIG:  
PADCONFIG126  
0x000F41F8  
AC2  
V4  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
0
0
IO  
IO  
IO  
IO  
I
SPI2_CS1  
1
GPIO1_32  
pad  
1
MMC1_DAT0  
CP_GEMAC_CPTS0_HW2TSPUSH  
TIMER_IO3  
0
MMC1_DAT0  
IO  
I
0
PADCONFIG:  
PADCONFIG140  
0x000F4230  
A22  
A19  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV5  
Yes  
SDIO  
PU/PD  
UART2_CTSn  
1
ECAP2_IN_APWM_OUT  
GPIO1_45  
IO  
IO  
IO  
I
0
pad  
1
MMC1_DAT1  
CP_GEMAC_CPTS0_HW1TSPUSH  
TIMER_IO2  
0
MMC1_DAT1  
IO  
O
IO  
IO  
IO  
O
IO  
O
IO  
IO  
O
IO  
I
0
PADCONFIG:  
PADCONFIG139  
0x000F422C  
B21  
B19  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV5  
Yes  
Yes  
SDIO  
PU/PD  
UART2_RTSn  
ECAP1_IN_APWM_OUT  
GPIO1_44  
0
pad  
1
MMC1_DAT2  
MMC1_DAT2  
CP_GEMAC_CPTS0_TS_SYNC  
TIMER_IO1  
PADCONFIG:  
PADCONFIG138  
0x000F4228  
C21  
B20  
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV5  
SDIO  
PU/PD  
UART2_TXD  
GPIO1_43  
pad  
1
MMC1_DAT3  
MMC1_DAT3  
CP_GEMAC_CPTS0_TS_COMP  
TIMER_IO0  
PADCONFIG:  
PADCONFIG137  
0x000F4224  
D22  
B24  
C19  
B21  
0
1
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV5  
VDDSHV6  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
UART2_RXD  
GPIO1_42  
IO  
IO  
IO  
pad  
1
MMC2_DAT0  
MMC2_DAT0  
PADCONFIG:  
PADCONFIG69  
0x000F4114  
MCASP1_AXR0  
0
GPIO0_68  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
VDDSHV6  
VDDSHV6  
[5]  
[6]  
MMC2_DAT1  
MMC2_DAT1  
0
1
IO  
IO  
1
0
PADCONFIG:  
PADCONFIG68  
0x000F4110  
MCASP1_AXR1  
GPIO0_67  
C25  
E23  
D21  
E19  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
Yes  
Yes  
SDIO  
PU/PD  
PU/PD  
7
IO  
pad  
MMC2_DAT2  
MCASP1_AXR2  
UART5_TXD  
GPIO0_66  
0
1
3
7
0
1
3
7
IO  
IO  
O
1
0
MMC2_DAT2  
PADCONFIG:  
PADCONFIG67  
0x000F410C  
SDIO  
SDIO  
IO  
IO  
IO  
I
pad  
1
MMC2_DAT3  
MCASP1_AXR3  
UART5_RXD  
GPIO0_65  
MMC2_DAT3  
0
PADCONFIG:  
PADCONFIG66  
0x000F4108  
D24  
E20  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV6  
Yes  
PU/PD  
1
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
pad  
AA5  
Y6  
AA2  
AA3  
V5  
OLDI0_A0N  
OLDI0_A0P  
OLDI0_A1N  
OLDI0_A1P  
OLDI0_A2N  
OLDI0_A2P  
OLDI0_A3N  
OLDI0_A3P  
OLDI0_A4N  
OLDI0_A4P  
OLDI0_A5N  
OLDI0_A5P  
OLDI0_A6N  
OLDI0_A6P  
OLDI0_A7N  
OLDI0_A7P  
OLDI0_CLK0N  
OLDI0_CLK0P  
OLDI0_CLK1N  
OLDI0_CLK1P  
OSPI0_CLK  
OLDI0_A0N  
OLDI0_A0P  
OLDI0_A1N  
OLDI0_A1P  
OLDI0_A2N  
OLDI0_A2P  
OLDI0_A3N  
OLDI0_A3P  
OLDI0_A4N  
OLDI0_A4P  
OLDI0_A5N  
OLDI0_A5P  
OLDI0_A6N  
OLDI0_A6P  
OLDI0_A7N  
OLDI0_A7P  
OLDI0_CLK0N  
OLDI0_CLK0P  
OLDI0_CLK1N  
OLDI0_CLK1P  
OSPI0_CLK  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
VDDA_1P8_OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
OLDI  
AD3  
AB4  
Y8  
V6  
U7  
AA8  
AB6  
AA7  
AC6  
AC5  
AE5  
AD6  
AE6  
AD7  
AD8  
AE7  
AD4  
AE3  
AE4  
AD5  
U6  
W6  
W5  
AA4  
Y5  
AA6  
AA5  
AA10  
Y9  
AA8  
Y8  
V7  
V8  
Y7  
AA7  
0
7
PADCONFIG:  
PADCONFIG0  
0x000F4000  
H24  
G19  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV1  
Yes  
LVCMOS  
PU/PD  
GPIO0_0  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
38  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
OSPI0_DQS  
OSPI0_DQS  
0
5
I
I
0
1
PADCONFIG:  
PADCONFIG2  
0x000F4008  
UART5_CTSn  
GPIO0_2  
J24  
G25  
F23  
G21  
H20  
G18  
F19  
F17  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
VDDSHV1  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
7
IO  
pad  
0
OSPI0_LBCLKO  
OSPI0_LBCLKO  
UART5_RTSn  
0
5
IO  
O
PADCONFIG:  
PADCONFIG1  
0x000F4004  
GPIO0_1  
7
0
IO  
O
pad  
pad  
OSPI0_CSn0  
OSPI0_CSn0  
PADCONFIG:  
PADCONFIG11  
0x000F402C  
GPIO0_11  
7
0
7
IO  
O
OSPI0_CSn1  
OSPI0_CSn1  
GPIO0_12  
PADCONFIG:  
PADCONFIG12  
0x000F4030  
IO  
pad  
1
OSPI0_CSn2  
0
1
2
3
4
5
7
0
1
2
3
4
5
7
0
O
IO  
O
SPI1_CS1  
OSPI0_CSn2  
OSPI0_RESET_OUT1  
MCASP1_AFSR  
MCASP1_AXR2  
UART5_RXD  
PADCONFIG:  
PADCONFIG13  
0x000F4034  
H21  
E17  
IO  
IO  
I
0
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV1  
Yes  
LVCMOS  
PU/PD  
1
GPIO0_13  
IO  
O
pad  
OSPI0_CSn3  
OSPI0_RESET_OUT0  
OSPI0_ECC_FAIL  
MCASP1_ACLKR  
MCASP1_AXR3  
UART5_TXD  
O
OSPI0_CSn3  
I
1
0
0
PADCONFIG:  
PADCONFIG14  
0x000F4038  
E24  
E18  
IO  
IO  
O
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV1  
Yes  
LVCMOS  
PU/PD  
GPIO0_14  
IO  
IO  
pad  
0
OSPI0_D0  
OSPI0_D0  
PADCONFIG:  
PADCONFIG3  
0x000F400C  
E25  
G24  
F25  
F18  
G17  
F21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
GPIO0_3  
OSPI0_D1  
GPIO0_4  
OSPI0_D2  
GPIO0_5  
7
0
7
0
7
IO  
IO  
IO  
IO  
IO  
pad  
0
OSPI0_D1  
PADCONFIG:  
PADCONFIG4  
0x000F4010  
pad  
0
OSPI0_D2  
PADCONFIG:  
PADCONFIG5  
0x000F4014  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
OSPI0_D3  
OSPI0_D3  
0
7
IO  
IO  
0
PADCONFIG:  
PADCONFIG6  
0x000F4018  
F24  
J23  
F20  
G21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
Yes  
Yes  
LVCMOS  
PU/PD  
PU/PD  
GPIO0_6  
pad  
OSPI0_D4  
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
IO  
IO  
IO  
I
0
1
OSPI0_D4  
SPI1_CS0  
PADCONFIG:  
PADCONFIG7  
0x000F401C  
MCASP1_AXR1  
UART6_RXD  
GPIO0_7  
0
VDDSHV1  
VDDSHV1  
VDDSHV1  
VDDSHV1  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
1
IO  
IO  
IO  
IO  
O
pad  
0
OSPI0_D5  
OSPI0_D5  
SPI1_CLK  
0
PADCONFIG:  
PADCONFIG8  
0x000F4020  
J25  
H25  
J22  
H21  
G20  
J21  
MCASP1_AXR0  
UART6_TXD  
GPIO0_8  
0
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
Yes  
Yes  
Yes  
PU/PD  
PU/PD  
PU/PD  
IO  
IO  
IO  
IO  
O
pad  
0
OSPI0_D6  
OSPI0_D6  
SPI1_D0  
0
PADCONFIG:  
PADCONFIG9  
0x000F4024  
MCASP1_ACLKX  
UART6_RTSn  
GPIO0_9  
0
IO  
IO  
IO  
IO  
I
pad  
0
OSPI0_D7  
OSPI0_D7  
SPI1_D1  
0
PADCONFIG:  
PADCONFIG10  
0x000F4028  
MCASP1_AFSX  
UART6_CTSn  
GPIO0_10  
0
1
IO  
O
pad  
PMIC_LPM_EN0  
PMIC_LPM_EN0  
PADCONFIG:  
MCU_PADCONFIG32  
0x04084080  
B7  
C7  
Off / Off / Off  
Off / Low / Off  
Off / Low / Off  
On / Off / Up  
Off / SS / Off  
Off / SS / Off  
Off / SS / Off  
On / Off / Up  
0
0
0
0
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV0  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
MCU_GPIO0_22  
PORz_OUT  
7
IO  
pad  
PORz_OUT  
PADCONFIG:  
PADCONFIG148  
0x000F4250  
E21  
F22  
F20  
E13  
E14  
E15  
0
O
RESETSTATz  
PADCONFIG:  
PADCONFIG147  
0x000F424C  
RESETSTATz  
RESET_REQz  
0
0
O
I
VDDSHV0  
RESET_REQz  
PADCONFIG:  
PADCONFIG146  
0x000F4248  
VDDSHV0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
40  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
RGMII1_RXC  
0
1
2
7
0
1
I
I
0
0
RGMII1_RXC  
RMII1_REF_CLK  
PR0_UART0_CTSn  
GPIO0_80  
PADCONFIG:  
PADCONFIG82  
0x000F4148  
AD17  
AA16  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
I
1
IO  
I
pad  
0
RGMII1_RX_CTL  
RGMII1_RX_CTL  
RMII1_RX_ER  
PADCONFIG:  
PADCONFIG81  
0x000F4144  
I
0
AE17  
AE19  
AD19  
W14  
W16  
V15  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
GPIO0_79  
7
IO  
pad  
RGMII1_TXC  
RGMII1_TXC  
0
1
IO  
I
0
0
PADCONFIG:  
PADCONFIG76  
0x000F4130  
RMII1_CRS_DV  
GPIO0_74  
7
IO  
pad  
RGMII1_TX_CTL  
RGMII1_TX_CTL  
RMII1_TX_EN  
0
1
O
O
PADCONFIG:  
PADCONFIG75  
0x000F412C  
GPIO0_73  
7
IO  
pad  
RGMII2_RXC  
0
1
2
3
4
5
7
0
1
2
3
4
7
0
1
2
3
4
7
I
I
0
0
RMII2_REF_CLK  
MCASP2_AXR1  
PR0_PRU0_GPO1  
PR0_PRU0_GPI1  
PR0_ECAP0_SYNC_IN  
GPIO1_2  
RGMII2_RXC  
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG96  
0x000F4180  
AD23  
V18  
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
0
I
0
IO  
I
pad  
0
RGMII2_RX_CTL  
RMII2_RX_ER  
MCASP2_AXR3  
PR0_PRU0_GPO0  
PR0_PRU0_GPI0  
GPIO1_1  
I
0
RGMII2_RX_CTL  
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG95  
0x000F417C  
AD22  
W19  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
0
0
IO  
IO  
I
pad  
0
RGMII2_TXC  
RMII2_CRS_DV  
MCASP2_AXR5  
PR0_PRU1_GPO1  
PR0_PRU1_GPI1  
GPIO0_88  
0
RGMII2_TXC  
IO  
O
I
0
PADCONFIG:  
PADCONFIG90  
0x000F4168  
AE21  
Y18  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
RGMII2_TX_CTL  
0
1
2
3
4
7
0
1
O
O
IO  
O
I
RMII2_TX_EN  
MCASP2_AXR4  
PR0_PRU1_GPO0  
PR0_PRU1_GPI0  
GPIO0_87  
RGMII2_TX_CTL  
0
PADCONFIG:  
PADCONFIG89  
0x000F4164  
AA19  
Y21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
0
pad  
0
IO  
I
RGMII1_RD0  
RGMII1_RD0  
PADCONFIG:  
PADCONFIG83  
0x000F414C  
RMII1_RXD0  
I
0
AB17  
AC17  
AB16  
AA15  
AE20  
AD20  
AE18  
AD18  
W15  
Y16  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
GPIO0_81  
7
IO  
pad  
RGMII1_RD1  
RGMII1_RD1  
RMII1_RXD1  
0
1
I
I
0
0
PADCONFIG:  
PADCONFIG84  
0x000F4150  
GPIO0_82  
7
IO  
pad  
0
RGMII1_RD2  
RGMII1_RD2  
0
2
I
PADCONFIG:  
PADCONFIG85  
0x000F4154  
PR0_UART0_RTSn  
O
AA17  
Y15  
GPIO0_83  
7
0
IO  
I
pad  
0
RGMII1_RD3  
RGMII1_RD3  
PADCONFIG:  
PADCONFIG86  
0x000F4158  
GPIO0_84  
7
IO  
pad  
RGMII1_TD0  
RGMII1_TD0  
RMII1_TXD0  
0
1
O
O
PADCONFIG:  
PADCONFIG77  
0x000F4134  
U14  
GPIO0_75  
7
IO  
pad  
pad  
RGMII1_TD1  
RGMII1_TD1  
RMII1_TXD1  
0
1
O
O
PADCONFIG:  
PADCONFIG78  
0x000F4138  
AA19  
Y17  
GPIO0_76  
7
IO  
RGMII1_TD2  
RGMII1_TD2  
0
2
O
I
PADCONFIG:  
PADCONFIG79  
0x000F413C  
PR0_UART0_RXD  
1
GPIO0_77  
7
IO  
pad  
RGMII1_TD3  
RGMII1_TD3  
0
2
O
O
PADCONFIG:  
PADCONFIG80  
0x000F4140  
PR0_UART0_TXD  
AA18  
GPIO0_78  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
42  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
RGMII2_RD0  
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
2
3
4
5
7
8
0
2
3
4
5
7
8
0
1
2
3
4
7
I
I
0
0
0
0
0
RMII2_RXD0  
RGMII2_RD0  
MCASP2_AXR2  
PR0_PRU0_GPO2  
PR0_PRU0_GPI2  
PR0_UART0_RTSn  
GPIO1_3  
IO  
IO  
I
PADCONFIG:  
PADCONFIG97  
0x000F4184  
AE23  
AB20  
AC21  
W18  
Y20  
Y19  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
O
IO  
I
pad  
0
RGMII2_RD1  
RMII2_RXD1  
I
0
RGMII2_RD1  
MCASP2_AFSR  
PR0_PRU0_GPO3  
PR0_PRU0_GPI3  
MCASP2_AXR7  
GPIO1_4  
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG98  
0x000F4188  
0
VDDSHV2  
0
IO  
IO  
I
0
pad  
0
RGMII2_RD2  
MCASP2_AXR0  
PR0_PRU0_GPO4  
PR0_PRU0_GPI4  
PR0_UART0_RXD  
GPIO1_5  
IO  
IO  
I
0
RGMII2_RD2  
0
PADCONFIG:  
PADCONFIG99  
0x000F418C  
0
VDDSHV2  
I
1
IO  
I
pad  
0
EQEP2_A  
RGMII2_RD3  
I
0
AUDIO_EXT_REFCLK0  
PR0_PRU0_GPO16  
PR0_PRU0_GPI16  
PR0_UART0_TXD  
GPIO1_6  
IO  
IO  
I
0
RGMII2_RD3  
0
PADCONFIG:  
PADCONFIG100  
0x000F4190  
AE22  
W20  
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
O
IO  
I
pad  
0
EQEP2_B  
RGMII2_TD0  
O
O
IO  
O
I
RMII2_TXD0  
RGMII2_TD0  
MCASP2_AXR6  
PR0_PRU1_GPO2  
PR0_PRU1_GPI2  
GPIO0_89  
0
PADCONFIG:  
PADCONFIG91  
0x000F416C  
Y18  
AA20  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
RGMII2_TD1  
0
1
2
3
4
5
7
0
2
3
4
5
7
8
0
2
3
4
5
6
7
8
O
O
RMII2_TXD1  
MCASP2_ACLKR  
PR0_PRU1_GPO3  
PR0_PRU1_GPI3  
MCASP2_AXR8  
GPIO0_90  
RGMII2_TD1  
IO  
O
0
PADCONFIG:  
PADCONFIG92  
0x000F4170  
AA18  
U15  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
I
0
0
IO  
IO  
O
pad  
RGMII2_TD2  
MCASP2_AFSX  
PR0_PRU1_GPO4  
PR0_PRU1_GPI4  
PR0_ECAP0_IN_APWM_OUT  
GPIO0_91  
IO  
O
0
RGMII2_TD2  
PADCONFIG:  
PADCONFIG93  
0x000F4174  
AD21  
W17  
I
0
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
IO  
O
pad  
0
EQEP2_I  
RGMII2_TD3  
MCASP2_ACLKX  
PR0_PRU1_GPO16  
PR0_PRU1_GPI16  
PR0_ECAP0_SYNC_OUT  
PR0_UART0_CTSn  
GPIO1_0  
IO  
O
0
0
RGMII2_TD3  
I
PADCONFIG:  
PADCONFIG94  
0x000F4178  
AC20  
V16  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV2  
Yes  
LVCMOS  
PU/PD  
O
I
1
pad  
0
IO  
IO  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IO  
O
EQEP2_S  
B1  
A2  
B3  
C3  
E6  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
RSVD8  
RSVD0  
RSVD1  
F6  
RSVD2  
AE2  
T2  
F8  
RSVD3  
R6  
T13  
T14  
M4  
M5  
RSVD4  
U4  
RSVD5  
AA12  
Y15  
E7  
RSVD6  
RSVD7  
RSVD8  
SPI0_CLK  
0
1
2
7
0
SPI0_CLK  
CP_GEMAC_CPTS0_TS_SYNC  
EHRPWM1_A  
GPIO1_17  
PADCONFIG:  
PADCONFIG111  
0x000F41BC  
A14  
D12  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
0
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
44  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
SPI0_CS0  
0
2
6
7
0
1
2
3
7
9
0
1
2
7
0
1
2
7
IO  
IO  
I
1
0
SPI0_CS0  
EHRPWM0_A  
PADCONFIG:  
PADCONFIG109  
0x000F41B4  
A13  
C13  
C11  
D13  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PR0_ECAP0_SYNC_IN  
GPIO1_15  
0
IO  
IO  
O
IO  
IO  
IO  
I
pad  
1
SPI0_CS1  
CP_GEMAC_CPTS0_TS_COMP  
EHRPWM0_B  
SPI0_CS1  
0
0
PADCONFIG:  
PADCONFIG110  
0x000F41B8  
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
VDDSHV0  
ECAP0_IN_APWM_OUT  
GPIO1_16  
pad  
0
EHRPWM_TZn_IN5  
SPI0_D0  
IO  
I
0
SPI0_D0  
CP_GEMAC_CPTS0_HW1TSPUSH  
EHRPWM1_B  
0
PADCONFIG:  
PADCONFIG112  
0x000F41C0  
B13  
B14  
C12  
A14  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
IO  
IO  
I
0
GPIO1_18  
pad  
0
SPI0_D1  
SPI0_D1  
CP_GEMAC_CPTS0_HW2TSPUSH  
EHRPWM_TZn_IN0  
GPIO1_19  
0
PADCONFIG:  
PADCONFIG113  
0x000F41C4  
I
0
IO  
pad  
TCK  
PADCONFIG:  
MCU_PADCONFIG25  
0x04084064  
A10  
A11  
D12  
B11  
B10  
C10  
D10  
E10  
B11  
A11  
TCK  
TDI  
0
0
0
0
0
I
On / Off / Up  
On / Off / Up  
Off / Off / Up  
On / Off / Up  
On / Off / Up  
On / Off / Up  
Off / SS / Up  
On / Off / Up  
0
0
0
0
0
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
TDI  
PADCONFIG:  
MCU_PADCONFIG27  
0x0408406C  
I
TDO  
PADCONFIG:  
MCU_PADCONFIG28  
0x04084070  
TDO  
TMS  
TRSTn  
OZ  
TMS  
PADCONFIG:  
MCU_PADCONFIG29  
0x04084074  
I
I
TRSTn  
PADCONFIG:  
MCU_PADCONFIG26  
0x04084068  
On / Off / Down On / Off / Down  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
UART0_CTSn  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
7
0
1
2
3
7
I
IO  
IOD  
I
1
1
1
1
0
0
SPI0_CS2  
I2C3_SCL  
UART2_RXD  
UART0_CTSn  
TIMER_IO6  
IO  
IO  
O
PADCONFIG:  
PADCONFIG116  
0x000F41D0  
A15  
B14  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
AUDIO_EXT_REFCLK0  
PR0_ECAP0_SYNC_OUT  
GPIO1_22  
IO  
IO  
I
pad  
0
MCASP2_AFSX  
MMC2_SDCD  
UART0_RTSn  
SPI0_CS3  
1
O
IO  
IOD  
O
1
1
I2C3_SDA  
UART2_TXD  
UART0_RTSn  
TIMER_IO7  
IO  
IO  
IO  
IO  
IO  
I
0
0
PADCONFIG:  
PADCONFIG117  
0x000F41D4  
B15  
C13  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
AUDIO_EXT_REFCLK1  
PR0_ECAP0_IN_APWM_OUT  
GPIO1_23  
0
pad  
0
MCASP2_ACLKX  
MMC2_SDWP  
UART0_RXD  
1
I
1
UART0_RXD  
ECAP1_IN_APWM_OUT  
SPI2_D0  
IO  
IO  
IO  
IO  
O
0
PADCONFIG:  
PADCONFIG114  
0x000F41C8  
D14  
E14  
A13  
E11  
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
EHRPWM2_A  
GPIO1_20  
0
pad  
UART0_TXD  
UART0_TXD  
ECAP2_IN_APWM_OUT  
SPI2_D1  
IO  
IO  
IO  
IO  
0
0
PADCONFIG:  
PADCONFIG115  
0x000F41CC  
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
EHRPWM2_B  
GPIO1_21  
0
pad  
VDDA_1P8_USB,  
VDDA_3P3_USB  
AE11  
AD11  
AA11  
Y10  
USB0_DM  
USB0_DP  
USB0_DM  
USB0_DP  
IO  
IO  
1.8 V/3.3 V  
1.8 V/3.3 V  
USB2PHY  
USB2PHY  
VDDA_1P8_USB,  
VDDA_3P3_USB  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
46  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
USB0_DRVVBUS  
USB0_DRVVBUS  
0
7
O
PADCONFIG:  
PADCONFIG149  
0x000F4254  
C20  
D17  
Off / Off / Down Off / Off / Down  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
GPIO1_50  
IO  
pad  
VDDA_1P8_USB,  
VDDA_3P3_USB  
AE10  
AC11  
AD10  
AE9  
T8  
V10  
W8  
W9  
USB0_RCALIB  
USB0_VBUS  
USB1_DM  
USB0_RCALIB  
USB0_VBUS  
USB1_DM  
A
A
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
USB2PHY  
USB2PHY  
USB2PHY  
USB2PHY  
VDDA_1P8_USB,  
VDDA_3P3_USB  
VDDA_1P8_USB,  
VDDA_3P3_USB  
IO  
VDDA_1P8_USB,  
VDDA_3P3_USB  
USB1_DP  
USB1_DP  
IO  
O
USB1_DRVVBUS  
USB1_DRVVBUS  
0
7
PADCONFIG:  
PADCONFIG150  
0x000F4258  
F18  
E16  
Off / Off / Down Off / Off / Down  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
GPIO1_51  
IO  
pad  
VDDA_1P8_USB,  
VDDA_3P3_USB  
AC9  
V9  
U9  
USB1_RCALIB  
USB1_VBUS  
USB1_RCALIB  
USB1_VBUS  
A
A
1.8 V/3.3 V  
1.8 V/3.3 V  
USB2PHY  
USB2PHY  
VDDA_1P8_USB,  
VDDA_3P3_USB  
AB10  
Y11  
W14  
R11  
R12  
P9, R9  
R10  
P12  
P11  
L9  
VDDA_1P8_USB  
VDDA_1P8_CSIRX0  
VDDA_1P8_OLDI0  
VDDA_3P3_USB  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDA_MCU  
VDDA_1P8_USB  
VDDA_1P8_CSIRX0  
VDDA_1P8_OLDI0  
VDDA_3P3_USB  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDA_MCU  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
W10, W9  
Y13  
W13  
W12  
L11  
U11  
H10  
N10  
P14  
K12  
M7  
VDDA_PLL0  
VDDA_PLL0  
U15  
VDDA_PLL1  
VDDA_PLL1  
L14  
VDDA_PLL2  
VDDA_PLL2  
T9  
VDDA_TEMP0  
VDDA_TEMP0  
G16  
F16  
VDDA_TEMP1  
VDDA_TEMP1  
J12, K16,  
N12, N14, H11, M10,  
VDDR_CORE  
VDDR_CORE  
PWR  
P16, R12,  
T10, U14  
M13  
F15, G14  
L18, M19  
W16, W19  
F12, G13 VDDSHV0  
K15, K16 VDDSHV1  
R14, R15 VDDSHV2  
VDDSHV0  
VDDSHV1  
VDDSHV2  
PWR  
PWR  
PWR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
N18, P18,  
T19, U18  
N15, N16 VDDSHV3  
N7, P7 VDDSHV4  
VDDSHV3  
PWR  
T7  
G17  
VDDSHV4  
PWR  
PWR  
PWR  
PWR  
PWR  
F14, G14 VDDSHV5  
H15, H16 VDDSHV6  
VDDSHV5  
J18  
VDDSHV6  
H9  
G7, H7  
VDDSHV_CANUART  
VDDSHV_CANUART  
VDDSHV_MCU  
F11, G12  
F10, G10 VDDSHV_MCU  
K9, L8, P9, C1, J8, K7,  
VDDS_DDR  
VDDS_DDR  
PWR  
R8  
M9  
G7  
F8  
K9, L8, U1  
L7  
J7  
VDDS_DDR_C  
VDDS_OSC0  
VDDS_DDR_C  
VDDS_OSC0  
PWR  
PWR  
PWR  
H8  
VDD_CANUART  
VDD_CANUART  
H8, J11,  
J14, K17,  
L12, L15,  
M16, N11,  
N13, N8,  
P17, R11,  
R14, U12,  
V15, V17,  
V8  
H12, H14,  
J11, J13,  
J9, K10,  
K14, L11,  
L13, M12,  
M14, M8,  
N11, N13,  
N9, P8  
VDD_CORE  
VDD_CORE  
PWR  
G10  
K10  
H10  
H9  
K11  
F6  
VMON_1P8_SOC  
VMON_3P3_SOC  
VMON_VSYS  
VMON_1P8_SOC  
VMON_3P3_SOC  
VMON_VSYS  
A
A
A
VOUT0_DE  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
OZ  
O
I
GPMC0_A17  
PR0_PRU1_GPO17  
PR0_PRU1_GPI17  
UART3_CTSn  
VOUT0_DE  
0
1
PADCONFIG:  
PADCONFIG63  
0x000F40FC  
Y20  
T17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
I
PR0_PRU0_GPO7  
PR0_PRU0_GPI7  
GPIO0_62  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_HSYNC  
GPMC0_A16  
PR0_PRU1_GPO15  
PR0_PRU1_GPI15  
UART3_RTSn  
VOUT0_HSYNC  
0
PADCONFIG:  
PADCONFIG62  
0x000F40F8  
AB24  
W21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
I
PR0_PRU0_GPO6  
PR0_PRU0_GPI6  
GPIO0_61  
0
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
48  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VOUT0_PCLK  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
OZ  
O
I
GPMC0_A19  
PR0_PRU1_GPO19  
PR0_PRU1_GPI19  
UART2_CTSn  
VOUT0_PCLK  
0
1
PADCONFIG:  
PADCONFIG65  
0x000F4104  
AC24  
U17  
I
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
PR0_PRU0_GPO19  
PR0_PRU0_GPI19  
GPIO0_64  
IO  
I
0
0
IO  
IO  
O
OZ  
O
I
pad  
0
PR0_ECAP0_IN_APWM_OUT  
VOUT0_VSYNC  
GPMC0_A18  
PR0_PRU1_GPO18  
PR0_PRU1_GPI18  
UART2_RTSn  
VOUT0_VSYNC  
0
PADCONFIG:  
PADCONFIG64  
0x000F4100  
AC25  
T16  
R21  
P18  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
O
IO  
I
PR0_PRU0_GPO18  
PR0_PRU0_GPI18  
GPIO0_63  
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA0  
GPMC0_A0  
PR0_PRU1_GPO0  
PR0_PRU1_GPI0  
UART2_RXD  
VOUT0_DATA0  
0
1
PADCONFIG:  
PADCONFIG46  
0x000F40B8  
U22  
I
PR0_PRU0_GPO8  
PR0_PRU0_GPI8  
GPIO0_45  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA1  
GPMC0_A1  
PR0_PRU1_GPO1  
PR0_PRU1_GPI1  
UART2_TXD  
VOUT0_DATA1  
0
PADCONFIG:  
PADCONFIG47  
0x000F40BC  
V24  
O
IO  
I
PR0_PRU0_GPO9  
PR0_PRU0_GPI9  
GPIO0_46  
0
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VOUT0_DATA2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
OZ  
O
I
GPMC0_A2  
PR0_PRU1_GPO2  
PR0_PRU1_GPI2  
UART3_RXD  
VOUT0_DATA2  
0
1
PADCONFIG:  
PADCONFIG48  
0x000F40C0  
W25  
W24  
Y25  
Y24  
R18  
R19  
R20  
T20  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
I
PR0_PRU0_GPO10  
PR0_PRU0_GPI10  
GPIO0_47  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA3  
GPMC0_A3  
PR0_PRU1_GPO3  
PR0_PRU1_GPI3  
UART3_TXD  
VOUT0_DATA3  
0
PADCONFIG:  
PADCONFIG49  
0x000F40C4  
VDDSHV3  
VDDSHV3  
VDDSHV3  
LVCMOS  
LVCMOS  
LVCMOS  
O
IO  
I
PR0_PRU0_GPO11  
PR0_PRU0_GPI11  
GPIO0_48  
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA4  
GPMC0_A4  
PR0_PRU1_GPO4  
PR0_PRU1_GPI4  
UART4_RXD  
VOUT0_DATA4  
0
1
PADCONFIG:  
PADCONFIG50  
0x000F40C8  
I
PR0_PRU0_GPO12  
PR0_PRU0_GPI12  
GPIO0_49  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA5  
GPMC0_A5  
PR0_PRU1_GPO5  
PR0_PRU1_GPI5  
UART4_TXD  
VOUT0_DATA5  
0
PADCONFIG:  
PADCONFIG51  
0x000F40CC  
O
IO  
I
PR0_PRU0_GPO13  
PR0_PRU0_GPI13  
GPIO0_50  
0
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
50  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VOUT0_DATA6  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
OZ  
O
I
GPMC0_A6  
PR0_PRU1_GPO6  
PR0_PRU1_GPI6  
UART5_RXD  
VOUT0_DATA6  
0
1
PADCONFIG:  
PADCONFIG52  
0x000F40D0  
Y23  
AA25  
V21  
T21  
T19  
U21  
R17  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
I
PR0_PRU0_GPO14  
PR0_PRU0_GPI14  
GPIO0_51  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA7  
GPMC0_A7  
PR0_PRU1_GPO7  
PR0_PRU1_GPI7  
UART5_TXD  
VOUT0_DATA7  
0
PADCONFIG:  
PADCONFIG53  
0x000F40D4  
VDDSHV3  
VDDSHV3  
VDDSHV3  
O
IO  
I
PR0_PRU0_GPO15  
PR0_PRU0_GPI15  
GPIO0_52  
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA8  
GPMC0_A8  
PR0_PRU1_GPO16  
PR0_PRU1_GPI16  
UART6_RXD  
VOUT0_DATA8  
0
1
PADCONFIG:  
PADCONFIG54  
0x000F40D8  
I
PR0_PRU0_GPO17  
PR0_PRU0_GPI17  
GPIO0_53  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA9  
GPMC0_A9  
PR0_PRU1_GPO8  
PR0_PRU1_GPI8  
UART6_TXD  
VOUT0_DATA9  
0
PADCONFIG:  
PADCONFIG55  
0x000F40DC  
W21  
O
IO  
I
PR0_PRU0_GPO16  
PR0_PRU0_GPI16  
GPIO0_54  
0
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VOUT0_DATA10  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
OZ  
O
I
GPMC0_A10  
PR0_PRU1_GPO9  
PR0_PRU1_GPI9  
UART6_RTSn  
VOUT0_DATA10  
0
PADCONFIG:  
PADCONFIG56  
0x000F40E0  
V20  
T18  
U20  
U19  
V21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
O
IO  
I
PR0_PRU0_GPO0  
PR0_PRU0_GPI0  
GPIO0_55  
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA11  
GPMC0_A11  
PR0_PRU1_GPO10  
PR0_PRU1_GPI10  
UART6_CTSn  
VOUT0_DATA11  
0
1
PADCONFIG:  
PADCONFIG57  
0x000F40E4  
AA23  
AB25  
AA24  
VDDSHV3  
VDDSHV3  
VDDSHV3  
LVCMOS  
LVCMOS  
LVCMOS  
I
PR0_PRU0_GPO1  
PR0_PRU0_GPI1  
GPIO0_56  
IO  
I
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA12  
GPMC0_A12  
PR0_PRU1_GPO11  
PR0_PRU1_GPI11  
UART5_RTSn  
VOUT0_DATA12  
0
PADCONFIG:  
PADCONFIG58  
0x000F40E8  
O
IO  
I
PR0_PRU0_GPO2  
PR0_PRU0_GPI2  
GPIO0_57  
0
0
IO  
O
OZ  
O
I
pad  
VOUT0_DATA13  
GPMC0_A13  
PR0_PRU1_GPO12  
PR0_PRU1_GPI12  
UART5_CTSn  
VOUT0_DATA13  
0
1
PADCONFIG:  
PADCONFIG59  
0x000F40EC  
I
PR0_PRU0_GPO3  
PR0_PRU0_GPI3  
GPIO0_58  
IO  
I
0
0
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
52  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
VOUT0_DATA14  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
OZ  
O
GPMC0_A14  
PR0_PRU1_GPO13  
PR0_PRU1_GPI13  
UART4_RTSn  
PR0_PRU0_GPO4  
PR0_PRU0_GPI4  
GPIO0_59  
VOUT0_DATA14  
I
0
PADCONFIG:  
PADCONFIG60  
0x000F40F0  
Y22  
U18  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
I
0
0
IO  
O
pad  
VOUT0_DATA15  
GPMC0_A15  
OZ  
O
PR0_PRU1_GPO14  
PR0_PRU1_GPI14  
UART4_CTSn  
PR0_PRU0_GPO5  
PR0_PRU0_GPI5  
GPIO0_60  
VOUT0_DATA15  
I
0
1
PADCONFIG:  
PADCONFIG61  
0x000F40F4  
AA21  
V20  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
I
IO  
I
0
0
IO  
PWR  
pad  
J8  
F7  
VPP  
VPP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL  
NUMBER  
[1]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
A1, A21,  
A4, AA1,  
AA12,  
A1, A24,  
AA15,  
A25, AA11, AA21, AA9,  
AB9, AD1, D11, D19,  
AD12,  
AD16,  
AD25, AD9,  
D4, E2,  
F11, F13,  
F15, F4,  
AE1, AE12, F9, G16,  
AE16,  
AE24,  
AE25, AE8,  
B25, F13,  
G13, G19,  
H13, H16,  
G6, G9,  
H1, H13,  
H6, J10,  
J12, J14,  
J16, J6,  
K13, K3,  
H18, H20, K6, K8, L1,  
J13, J7,  
K13, K15,  
K19, K7,  
L10, L12,  
L14, L16,  
L6, M11, VSS  
VSS  
PWR  
L20, M10, M16, M18,  
M12, M13, M6, M9,  
M17, M18, N12, N14,  
M7, M8,  
N15, P10,  
P13, P7,  
R13, R15,  
R18, R20,  
T13, T14,  
T16, T17,  
T18, T8,  
N6, P1,  
P10, P13,  
P15, P16,  
P3, P6,  
R16, R5,  
R7, R8,  
T10, T12,  
T15, T3,  
U19, U8,  
V10, V11,  
V13, V16,  
V18, V9,  
W7, Y2  
T6, T7, T9,  
U10, U13,  
U5, U8,  
V11, V14,  
V19, W10,  
W13, W7,  
Y11, Y14,  
Y3, Y4, Y6  
WKUP_CLKOUT0  
WKUP_CLKOUT0  
MCU_GPIO0_23  
WKUP_I2C0_SCL  
MCU_GPIO0_19  
WKUP_I2C0_SDA  
MCU_GPIO0_20  
0
7
0
7
0
7
O
PADCONFIG:  
MCU_PADCONFIG33  
0x04084084  
A12  
B9  
B12  
E9  
Off / Off / Off  
Off / Off / NA  
Off / Off / NA  
Off / SS / Off  
On / SS / NA  
On / SS / NA  
0
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
LVCMOS  
I2C OD FS  
I2C OD FS  
PU/PD  
IO  
pad  
1
WKUP_I2C0_SCL  
IOD  
IOD  
IOD  
IOD  
PADCONFIG:  
MCU_PADCONFIG19  
0x0408404C  
pad  
1
WKUP_I2C0_SDA  
PADCONFIG:  
MCU_PADCONFIG20  
0x04084050  
A9  
A9  
pad  
C2  
C1  
A2  
A3  
WKUP_LFOSC0_XI  
WKUP_LFOSC0_XO  
WKUP_LFOSC0_XI  
WKUP_LFOSC0_XO  
I
1.8 V  
1.8 V  
VDDS_OSC0  
VDDS_OSC0  
LFXOSC  
LFXOSC  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP58  
54  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALW, AMC Packages) (continued)  
BALL  
STATE  
DURING  
RESET  
(RX/TX/PULL)  
[7]  
BALL  
STATE  
AFTER  
RESET  
(RX/TX/PULL)  
[8]  
MUX  
MODE  
AFTER OPERATING  
RESET VOLTAGE [10]  
[9]  
ALW  
BALL  
NUMBER  
[1]  
AMC  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER  
[1]  
MUX  
MODE [4]  
TYPE DSIS  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
POWER [11]  
[5]  
[6]  
WKUP_UART0_CTSn  
0
1
3
7
0
1
3
7
0
2
I
1
0
WKUP_UART0_CTSn  
WKUP_TIMER_IO0  
MCU_SPI1_CS0  
IO  
IO  
IO  
O
PADCONFIG:  
MCU_PADCONFIG11  
0x0408402C  
C6  
A4  
A7  
B4  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
MCU_GPIO0_11  
pad  
WKUP_UART0_RTSn  
WKUP_TIMER_IO1  
MCU_SPI1_CLK  
WKUP_UART0_RTSn  
IO  
IO  
IO  
I
0
0
PADCONFIG:  
MCU_PADCONFIG12  
0x04084030  
MCU_GPIO0_12  
WKUP_UART0_RXD  
MCU_SPI0_CS2  
pad  
1
WKUP_UART0_RXD  
PADCONFIG:  
IO  
1
B4  
C5  
B5  
C6  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
MCU_PADCONFIG9  
0x04084024  
MCU_GPIO0_9  
7
IO  
pad  
WKUP_UART0_TXD  
WKUP_UART0_TXD  
MCU_SPI1_CS2  
0
2
O
PADCONFIG:  
MCU_PADCONFIG10  
0x04084028  
IO  
1
MCU_GPIO0_10  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3 Signal Descriptions  
Many signals are available on multiple pins, according to the software configuration of the pin multiplexing  
options.  
The following list describes the column headers:  
1. SIGNAL NAME: The name of the signal passing through the pin.  
备注  
Signal names and descriptions provided in each Signal Descriptions table, represent the pin  
multiplexed signal function which is implemented at the pin and selected via PADCONFIG  
registers. Device subsystems may provide secondary multiplexing of signal functions, which are  
not described in these tables. For more information on secondary multiplexed signal functions,  
see the respective peripheral chapter of the device TRM.  
2. PIN TYPE: Signal direction and type:  
I = Input  
O = Output  
OD = Output, with open-drain output function  
IO = Input, Output, or simultaneously Input and Output  
IOD = Input, Output, or simultaneously Input and Output with open-drain output function  
IOZ = Input, Output, or simultaneously Input and Output with three-state output function  
OZ = Output with three-state output function  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor  
3. DESCRIPTION: Description of the signal  
4. BALL: Ball number(s) associated with signal  
For more information on the IO cell configurations, see the Pad Configuration Registers section in Device  
Configuration chapter of the device TRM.  
6.3.1 CPSW3G  
6.3.1.1 MAIN Domain  
6-2. CPSW3G0 RGMII1 Signal Descriptions  
SIGNAL NAME [1]  
RGMII1_RXC  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AD17  
AE17  
AMC PIN [4]  
AA16  
W14  
I
I
RGMII Receive Clock  
RGMII1_RX_CTL  
RGMII1_TXC  
RGMII1_TX_CTL  
RGMII1_RD0  
RGMII1_RD1  
RGMII1_RD2  
RGMII1_RD3  
RGMII1_TD0  
RGMII1_TD1  
RGMII1_TD2  
RGMII1_TD3  
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
IO  
O
I
AE19  
W16  
AD19  
AB17  
V15  
W15  
I
AC17  
AB16  
Y16  
I
AA17  
Y15  
I
AA15  
O
O
O
O
AE20  
U14  
AD20  
AE18  
AA19  
Y17  
AD18  
AA18  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-3. CPSW3G0 RGMII2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AD23  
AD22  
AE21  
AA19  
AE23  
AB20  
AC21  
AE22  
Y18  
AMC PIN [4]  
V18  
RGMII2_RXC  
RGMII2_RX_CTL  
RGMII2_TXC  
RGMII2_TX_CTL  
RGMII2_RD0  
RGMII2_RD1  
RGMII2_RD2  
RGMII2_RD3  
RGMII2_TD0  
RGMII2_TD1  
RGMII2_TD2  
RGMII2_TD3  
I
I
RGMII Receive Clock  
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
W19  
Y18  
IO  
O
I
Y21  
W18  
Y20  
I
I
Y19  
I
W20  
AA20  
U15  
O
O
O
O
AA18  
AD21  
AC20  
W17  
V16  
6-4. CPSW3G0 RMII1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
RMII Receive Data Error  
RMII Transmit Enable  
ALW PIN [4]  
AE19  
AMC PIN [4]  
W16  
RMII1_CRS_DV  
RMII1_REF_CLK  
RMII1_RX_ER  
RMII1_TX_EN  
RMII1_RXD0  
RMII1_RXD1  
RMII1_TXD0  
I
I
AD17  
AA16  
W14  
I
AE17  
O
I
AD19  
V15  
RMII Receive Data 0  
AB17  
W15  
I
RMII Receive Data 1  
AC17  
Y16  
O
O
RMII Transmit Data 0  
AE20  
U14  
RMII1_TXD1  
RMII Transmit Data 1  
AD20  
AA19  
6-5. CPSW3G0 RMII2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
RMII Receive Data Error  
RMII Transmit Enable  
ALW PIN [4]  
AE21  
AMC PIN [4]  
Y18  
RMII2_CRS_DV  
RMII2_REF_CLK  
RMII2_RX_ER  
RMII2_TX_EN  
RMII2_RXD0  
RMII2_RXD1  
RMII2_TXD0  
I
I
AD23  
AD22  
AA19  
V18  
I
W19  
O
I
Y21  
RMII Receive Data 0  
AE23  
W18  
I
RMII Receive Data 1  
AB20  
Y20  
O
O
RMII Transmit Data 0  
Y18  
AA20  
U15  
RMII2_TXD1  
RMII Transmit Data 1  
AA18  
6.3.2 CPTS  
备注  
Some CPTS signals are connected directly to CPTS modules within the device. Other CPTS signals  
are connected to the Time Sync Router and fanned out to peripherals linked to the router. Input  
signals are sent to the peripherals while output signals are sourced from the peripherals. For more  
information, see the Time Sync and Compare Events section in the Time Sync chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3.2.1 MAIN Domain  
6-6. CPTS Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
CP_GEMAC_CPTS0_RFT_CLK  
I
CPTS Reference Clock Input  
A18  
C14  
CPTS Time Stamp Counter Compare Output  
from CPSW3G0 CPTS  
CP_GEMAC_CPTS0_TS_COMP  
CP_GEMAC_CPTS0_TS_SYNC  
CP_GEMAC_CPTS0_HW1TSPUSH  
CP_GEMAC_CPTS0_HW2TSPUSH  
SYNC0_OUT  
O
C13, D22  
A14, C21  
B13, B21  
A22, B14  
B16  
C19, D13  
B20, D12  
B19, C12  
A14, A19  
E12  
CPTS Time Stamp Counter Bit Output from  
CPSW3G0 CPTS  
O
I
CPTS Hardware Time Stamp Push Input to  
Time Sync Router  
CPTS Hardware Time Stamp Push Input to  
Time Sync Router  
I
CPTS Time Stamp Generator Bit 0 Output from  
Time Sync Router  
O
O
O
O
CPTS Time Stamp Generator Bit 1 Output from  
Time Sync Router  
SYNC1_OUT  
A18  
C14  
CPTS Time Stamp Generator Bit 2 Output from  
Time Sync Router  
SYNC2_OUT  
C15  
B13  
CPTS Time Stamp Generator Bit 3 Output from  
Time Sync Router  
SYNC3_OUT  
E15  
A15  
6.3.3 CSI-2  
6.3.3.1 MAIN Domain  
6-7. CSIRX0 Signal Descriptions  
SIGNAL NAME [1]  
CSI0_RXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AD15  
AMC PIN [4]  
AA14  
CSI-2 Differential Receive Clock Input  
(negative)  
I
I
CSI0_RXCLKP  
CSI-2 Differential Receive Clock Input (positive)  
AE15  
AA13  
CSI-2 D-PHY connection to external calibration  
resistor  
CSI0_RXRCALIB (1)  
A
AA14  
T11  
CSI0_RXN0  
CSI0_RXN1  
CSI0_RXN2  
CSI0_RXN3  
CSI0_RXP0  
CSI0_RXP1  
CSI0_RXP2  
CSI0_RXP3  
I
I
I
I
I
I
I
I
CSI-2 Differential Receive Input (negative)  
CSI-2 Differential Receive Input (negative)  
CSI-2 Differential Receive Input (negative)  
CSI-2 Differential Receive Input (negative)  
CSI-2 Differential Receive Input (positive)  
CSI-2 Differential Receive Input (positive)  
CSI-2 Differential Receive Input (positive)  
CSI-2 Differential Receive Input (positive)  
AB14  
AD14  
AD13  
AB12  
AC15  
AE14  
AE13  
AC13  
Y13  
V13  
U12  
W12  
Y12  
V12  
U11  
W11  
(1) An external 499 Ω±1% resistor must be connected between this pin and VSS and the maximum power dissipation for the resistor is  
7.2mW. No external voltage should be applied to this pin.  
6.3.4 DDRSS  
6.3.4.1 MAIN Domain  
6-8. DDRSS0 Signal Descriptions  
SIGNAL NAME [1]  
DDR0_ACT_n  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Activation Command  
DDRSS Alert  
ALW PIN [4]  
AMC PIN [4]  
O
IO  
O
N6  
R3  
M4  
T1  
M1  
N1  
J3  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDRSS Column Address Strobe  
DDRSS Command and Address Parity  
DDRSS Row Address Strobe  
O
M2  
K5  
DDR0_RAS_n  
O
M5  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-8. DDRSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
N3  
J1  
AMC PIN [4]  
J2  
DDR0_WE_n  
DDR0_A0  
O
O
DDRSS Write Enable  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Bank Address  
DDRSS Bank Address  
DDRSS Bank Group  
DDRSS Bank Group  
IO Pad Calibration Resistor  
DDRSS Clock  
F5  
DDR0_A1  
O
J2  
G5  
G4  
H4  
J5  
DDR0_A2  
O
K3  
L5  
DDR0_A3  
O
DDR0_A4  
O
K4  
K1  
R2  
P2  
P1  
P4  
R5  
P5  
R6  
R1  
M1  
N1  
T4  
DDR0_A5  
O
H5  
P4  
N2  
P2  
N4  
N3  
M3  
P5  
N5  
L5  
DDR0_A6  
O
DDR0_A7  
O
DDR0_A8  
O
DDR0_A9  
O
DDR0_A10  
DDR0_A11  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0 (1)  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
O
O
O
O
O
O
L3  
O
L4  
O
N2  
M2  
L1  
L2  
A
K4  
J1  
O
O
DDRSS Negative Clock  
DDRSS Clock Enable  
DDRSS Clock Enable  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
L2  
K1  
G3  
H2  
H3  
G1  
E3  
R4  
C2  
E4  
D3  
E5  
D2  
F3  
O
H2  
J4  
O
O
L6  
O
K2  
H5  
W5  
F4  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Data  
G5  
F3  
DDRSS Data  
DDRSS Data  
H6  
E3  
G2  
F2  
DDRSS Data  
DDRSS Data  
DDRSS Data  
F1  
DDRSS Data  
F1  
F2  
DDRSS Data  
U1  
U3  
U2  
V5  
W2  
V6  
Y1  
W1  
E1  
R3  
R2  
T2  
DDRSS Data  
DDRSS Data  
DDRSS Data  
U2  
U3  
U4  
T4  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
T5  
DDRSS Data Strobe  
D1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-8. DDRSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DDR0_DQS0_n  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
IO  
O
E2  
V1  
V2  
H1  
J3  
E1  
T1  
R1  
J4  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
DDRSS Complimentary Data Strobe  
DDRSS On-Die Termination for Chip Select 0  
DDRSS On-Die Termination for Chip Select 1  
DDRSS Reset  
DDR0_ODT1  
O
K2  
G2  
DDR0_RESET0_n  
O
G1  
(1) An external 240 Ω±1% resistor must be connected between this pin and VSS. The maximum power dissipation for the resistor is  
5.2mW. No external voltage should be applied to this pin.  
6.3.5 DSS  
6.3.5.1 MAIN Domain  
6-9. DSS0 Signal Descriptions  
SIGNAL NAME [1]  
VOUT0_DE  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
Y20  
AMC PIN [4]  
T17  
O
I
Video Output Data Enable  
VOUT0_EXTPCLKIN  
VOUT0_HSYNC  
VOUT0_PCLK  
Video Output External Pixel Clock Input  
Video Output Horizontal Sync  
Video Output Pixel Clock Output  
Video Output Vertical Sync  
Video Output Data 0  
V25  
P17  
W21  
U17  
T16  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
AB24  
AC24  
AC25  
U22  
VOUT0_VSYNC  
VOUT0_DATA0  
VOUT0_DATA1  
VOUT0_DATA2  
VOUT0_DATA3  
VOUT0_DATA4  
VOUT0_DATA5  
VOUT0_DATA6  
VOUT0_DATA7  
VOUT0_DATA8  
VOUT0_DATA9  
VOUT0_DATA10  
VOUT0_DATA11  
VOUT0_DATA12  
VOUT0_DATA13  
VOUT0_DATA14  
VOUT0_DATA15  
VOUT0_DATA16  
VOUT0_DATA17  
VOUT0_DATA18  
VOUT0_DATA19  
VOUT0_DATA20  
VOUT0_DATA21  
VOUT0_DATA22  
VOUT0_DATA23  
R21  
P18  
R18  
R19  
R20  
T20  
Video Output Data 1  
V24  
Video Output Data 2  
W25  
W24  
Y25  
Video Output Data 3  
Video Output Data 4  
Video Output Data 5  
Y24  
Video Output Data 6  
Y23  
T21  
Video Output Data 7  
AA25  
V21  
T19  
Video Output Data 8  
U21  
R17  
T18  
Video Output Data 9  
W21  
V20  
Video Output Data 10  
Video Output Data 11  
Video Output Data 12  
Video Output Data 13  
Video Output Data 14  
Video Output Data 15  
Video Output Data 16  
Video Output Data 17  
Video Output Data 18  
Video Output Data 19  
Video Output Data 20  
Video Output Data 21  
Video Output Data 22  
Video Output Data 23  
AA23  
AB25  
AA24  
Y22  
U20  
U19  
V21  
U18  
V20  
N20  
N21  
M17  
N18  
N17  
N19  
P19  
P20  
AA21  
R24  
R25  
T25  
R21  
T22  
T24  
U25  
U24  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3.6 ECAP  
6.3.6.1 MAIN Domain  
6-10. ECAP0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary  
PWM (APWM) Ouput  
ECAP0_IN_APWM_OUT  
IO  
A18, C13  
C14, D13  
6-11. ECAP1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary  
PWM (APWM) Ouput  
B16, B18, B19, A13, A18, B18,  
ECAP1_IN_APWM_OUT  
IO  
B21, D14  
B19, E12  
6-12. ECAP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary  
PWM (APWM) Ouput  
A16, A19, A22, A19, B17, C17,  
ECAP2_IN_APWM_OUT  
IO  
B20, E14  
D14, E11  
6.3.7 Emulation and Debug  
6.3.7.1 MAIN Domain  
6-13. Trace Signal Descriptions  
SIGNAL NAME [1]  
TRC_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
M25  
N23  
N24  
N25  
P24  
P22  
P21  
R23  
P25  
L23  
AMC PIN [4]  
K19  
L19  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Trace Clock  
TRC_CTL  
Trace Control  
Trace Data 0  
Trace Data 1  
Trace Data 2  
Trace Data 3  
Trace Data 4  
Trace Data 5  
Trace Data 6  
Trace Data 7  
Trace Data 8  
Trace Data 9  
Trace Data 10  
Trace Data 11  
Trace Data 12  
Trace Data 13  
Trace Data 14  
Trace Data 15  
Trace Data 16  
Trace Data 17  
Trace Data 18  
Trace Data 19  
Trace Data 20  
Trace Data 21  
Trace Data 22  
TRC_DATA0  
TRC_DATA1  
TRC_DATA2  
TRC_DATA3  
TRC_DATA4  
TRC_DATA5  
TRC_DATA6  
TRC_DATA7  
TRC_DATA8  
TRC_DATA9  
TRC_DATA10  
TRC_DATA11  
TRC_DATA12  
TRC_DATA13  
TRC_DATA14  
TRC_DATA15  
TRC_DATA16  
TRC_DATA17  
TRC_DATA18  
TRC_DATA19  
TRC_DATA20  
TRC_DATA21  
TRC_DATA22  
L20  
L21  
M21  
L17  
L18  
M20  
M19  
K20  
K21  
J17  
L24  
L25  
M24  
N20  
U23  
K25  
M22  
M21  
L21  
K17  
K18  
P21  
J20  
J19  
J18  
H17  
H18  
H19  
P20  
P19  
N19  
N17  
K22  
K24  
U24  
U25  
T24  
T22  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-13. Trace Signal Descriptions (continued)  
SIGNAL NAME [1]  
TRC_DATA23  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
O
Trace Data 23  
R21  
N18  
6.3.7.2 MCU Domain  
6-14. JTAG Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
E12  
AMC PIN [4]  
D9  
EMU0  
EMU1  
TCK  
IO  
Emulation Control 0  
IO  
Emulation Control 1  
JTAG Test Clock Input  
JTAG Test Data Input  
JTAG Test Data Output  
JTAG Test Mode Select Input  
JTAG Reset  
C11  
B10  
I
A10  
C10  
TDI  
I
A11  
D10  
TDO  
OZ  
D12  
E10  
TMS  
I
I
B11  
B11  
TRSTn  
B10  
A11  
6.3.8 EPWM  
6.3.8.1 MAIN Domain  
6-15. EPWM Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM_SOCA  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
B16  
AMC PIN [4]  
E12  
O
O
I
EHRPWM Start of Conversion A  
EHRPWM_SOCB  
EHRPWM Start of Conversion B  
A16  
D14  
EHRPWM_TZn_IN0  
EHRPWM_TZn_IN1  
EHRPWM_TZn_IN2  
EHRPWM_TZn_IN3  
EHRPWM_TZn_IN4  
EHRPWM_TZn_IN5  
EHRPWM Trip Zone Input 0 (active low)  
EHRPWM Trip Zone Input 1 (active low)  
EHRPWM Trip Zone Input 2 (active low)  
EHRPWM Trip Zone Input 3 (active low)  
EHRPWM Trip Zone Input 4 (active low)  
EHRPWM Trip Zone Input 5 (active low)  
B14  
A14  
I
AA2  
V2  
I
AC1  
W3  
I
C15  
B13  
I
E15  
A15  
I
C13  
D13  
6-16. EPWM0 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM0_A  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
EHRPWM Output A  
A13, AB2, E19 C11, D15, Y2  
A20, C13, Y4 D13, D16, W1  
EHRPWM0_B  
EHRPWM Output B  
Sync Input to EHRPWM module from an  
external pin  
EHRPWM0_SYNCI  
EHRPWM0_SYNCO  
I
AC2, B17  
A17, AD2  
A17, V4  
A16, W4  
Sync Input to EHRPWM module from an  
external pin  
O
6-17. EPWM1 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM1_A  
PIN TYPE [2]  
DESCRIPTION [3]  
EHRPWM Output A  
EHRPWM Output B  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
A14, AA3, B18 A18, D12, W2  
AA1, B13, E18 C12, D18, V1  
EHRPWM1_B  
6-18. EPWM2 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM2_A  
PIN TYPE [2]  
DESCRIPTION [3]  
EHRPWM Output A  
EHRPWM Output B  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
AB1, B17, D14 A13, A17, Y1  
A17, E14, Y3 A16, E11, V3  
EHRPWM2_B  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3.9 EQEP  
6.3.9.1 MAIN Domain  
6-19. EQEP0 Signal Descriptions  
SIGNAL NAME [1]  
EQEP0_A (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
B19  
AMC PIN [4]  
B18  
I
EQEP Quadrature Input A  
EQEP0_B (1)  
I
EQEP Quadrature Input B  
EQEP Index  
A19  
B17  
EQEP0_I (1)  
IO  
IO  
E18  
D18  
EQEP0_S (1)  
EQEP Strobe  
B18  
A18  
(1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6-20. EQEP1 Signal Descriptions  
SIGNAL NAME [1]  
EQEP1_A (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
B20  
AMC PIN [4]  
C17  
I
EQEP Quadrature Input A  
EQEP1_B (1)  
EQEP1_I (1)  
EQEP1_S (1)  
I
EQEP Quadrature Input B  
EQEP Index  
D20  
C16  
IO  
IO  
A20  
D16  
EQEP Strobe  
E19  
D15  
(1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6-21. EQEP2 Signal Descriptions  
SIGNAL NAME [1]  
EQEP2_A (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AC21, B16  
A16, AE22  
AMC PIN [4]  
E12, Y19  
I
I
EQEP Quadrature Input A  
EQEP2_B (1)  
EQEP Quadrature Input B  
EQEP Index  
D14, W20  
AD21, C15,  
V25  
EQEP2_I (1)  
IO  
IO  
B13, P17, W17  
A15, J19, V16  
AC20, E15,  
M22  
EQEP2_S (1)  
EQEP Strobe  
(1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6.3.10 GPIO  
6.3.10.1 MAIN Domain  
6-22. GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
ALW PIN [4]  
H24  
AMC PIN [4]  
G19  
G18  
H20  
GPIO0_0  
GPIO0_1  
GPIO0_2  
GPIO0_3  
GPIO0_4  
GPIO0_5  
GPIO0_6  
GPIO0_7  
GPIO0_8  
GPIO0_9  
GPIO0_10  
GPIO0_11  
GPIO0_12  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
G25  
J24  
E25  
F18  
G24  
F25  
G17  
F21  
F24  
F20  
J23  
G21  
H21  
J25  
H25  
G20  
J21  
J22  
F23  
F19  
G21  
F17  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-22. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
GPIO0_13 (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
ALW PIN [4]  
H21  
E24  
M25  
N23  
N24  
N25  
P24  
P22  
P21  
R23  
R24  
R25  
T25  
AMC PIN [4]  
E17  
E18  
K19  
L19  
IO  
GPIO0_14 (1)  
GPIO0_15  
GPIO0_16  
GPIO0_17  
GPIO0_18  
GPIO0_19  
GPIO0_20  
GPIO0_21  
GPIO0_22  
GPIO0_23  
GPIO0_24  
GPIO0_25  
GPIO0_26  
GPIO0_27  
GPIO0_28  
GPIO0_29  
GPIO0_30  
GPIO0_31  
GPIO0_32  
GPIO0_33  
GPIO0_34  
GPIO0_35  
GPIO0_36  
GPIO0_37  
GPIO0_38  
GPIO0_39  
GPIO0_40  
GPIO0_41  
GPIO0_42  
GPIO0_43 (1)  
GPIO0_44 (1)  
GPIO0_45  
GPIO0_46  
GPIO0_47  
GPIO0_48  
GPIO0_49  
GPIO0_50  
GPIO0_51  
GPIO0_52  
GPIO0_53  
GPIO0_54  
GPIO0_55  
GPIO0_56  
GPIO0_57  
IO  
IO  
IO  
IO  
L20  
IO  
L21  
IO  
M21  
L17  
IO  
IO  
L18  
IO  
M20  
N20  
N21  
M17  
N18  
N17  
N19  
P19  
P20  
M19  
K20  
K21  
J17  
IO  
IO  
IO  
IO  
R21  
T22  
IO  
IO  
T24  
IO  
U25  
U24  
P25  
L23  
IO  
IO  
IO  
IO  
L24  
IO  
L25  
IO  
M24  
N20  
U23  
V25  
K25  
M22  
M21  
L21  
K17  
K18  
P21  
P17  
J20  
IO  
IO  
IO  
IO  
IO  
J19  
IO  
J18  
IO  
H17  
H18  
H19  
R21  
P18  
R18  
R19  
R20  
T20  
T21  
T19  
U21  
R17  
T18  
U20  
U19  
IO  
K22  
K24  
U22  
V24  
W25  
W24  
Y25  
Y24  
Y23  
AA25  
V21  
W21  
V20  
AA23  
AB25  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-22. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
ALW PIN [4]  
AA24  
Y22  
AMC PIN [4]  
V21  
GPIO0_58  
GPIO0_59  
GPIO0_60  
GPIO0_61  
GPIO0_62  
GPIO0_63  
GPIO0_64  
GPIO0_65 (1)  
GPIO0_66 (1)  
GPIO0_67 (1)  
GPIO0_68 (1)  
GPIO0_69 (1)  
GPIO0_70 (1)  
GPIO0_71 (1)  
GPIO0_72 (1)  
GPIO0_73  
GPIO0_74  
GPIO0_75  
GPIO0_76  
GPIO0_77  
GPIO0_78  
GPIO0_79  
GPIO0_80  
GPIO0_81  
GPIO0_82  
GPIO0_83  
GPIO0_84  
GPIO0_85  
GPIO0_86  
GPIO0_87  
GPIO0_88  
GPIO0_89  
GPIO0_90  
GPIO0_91  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
U18  
AA21  
AB24  
Y20  
V20  
W21  
T17  
AC25  
AC24  
D24  
T16  
U17  
E20  
E23  
E19  
C25  
D21  
B24  
B21  
D25  
E21  
C24  
C21  
A23  
D20  
B23  
C20  
AD19  
AE19  
AE20  
AD20  
AE18  
AD18  
AE17  
AD17  
AB17  
AC17  
AB16  
AA15  
AB22  
AD24  
AA19  
AE21  
Y18  
V15  
W16  
U14  
AA19  
Y17  
AA18  
W14  
AA16  
W15  
Y16  
AA17  
Y15  
U16  
V17  
Y21  
Y18  
AA20  
U15  
AA18  
AD21  
W17  
(1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6-23. GPIO1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
ALW PIN [4]  
AC20  
AMC PIN [4]  
V16  
GPIO1_0  
GPIO1_1  
GPIO1_2  
GPIO1_3  
GPIO1_4  
GPIO1_5  
GPIO1_6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AD22  
W19  
AD23  
V18  
AE23  
W18  
AB20  
Y20  
AC21  
Y19  
AE22  
W20  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-23. GPIO1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
ALW PIN [4]  
B19  
A19  
B18  
E18  
B20  
D20  
E19  
A20  
A13  
C13  
A14  
B13  
B14  
D14  
E14  
A15  
B15  
C15  
E15  
B16  
A16  
B17  
A17  
A18  
D16  
AC2  
AD2  
AC1  
AB2  
Y4  
AMC PIN [4]  
B18  
B17  
A18  
D18  
C17  
C16  
D15  
D16  
C11  
D13  
D12  
C12  
A14  
A13  
E11  
B14  
C13  
B13  
A15  
E12  
D14  
A17  
A16  
C14  
B16  
V4  
GPIO1_7  
GPIO1_8  
GPIO1_9  
GPIO1_10  
GPIO1_11  
GPIO1_12  
GPIO1_13  
GPIO1_14  
GPIO1_15  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
GPIO1_16 (1)  
IO  
GPIO1_17  
IO  
GPIO1_18  
IO  
GPIO1_19  
IO  
GPIO1_20  
IO  
GPIO1_21  
IO  
GPIO1_22  
IO  
GPIO1_23  
IO  
GPIO1_24  
IO  
GPIO1_25  
IO  
GPIO1_26  
IO  
GPIO1_27  
IO  
GPIO1_28  
IO  
GPIO1_29  
IO  
GPIO1_30  
IO  
GPIO1_31 (1)  
GPIO1_32 (1)  
GPIO1_33 (1)  
GPIO1_34 (1)  
GPIO1_35 (1)  
GPIO1_36 (1)  
GPIO1_37 (1)  
GPIO1_38 (1)  
GPIO1_39 (1)  
GPIO1_40 (1)  
GPIO1_41 (1)  
GPIO1_42 (1)  
GPIO1_43 (1)  
GPIO1_44 (1)  
GPIO1_45 (1)  
GPIO1_46 (1)  
GPIO1_47 (1)  
GPIO1_48 (1)  
GPIO1_49 (2)  
GPIO1_50  
IOD  
IO  
IO  
W4  
IO  
W3  
IO  
Y2  
IO  
W1  
IO  
AA3  
AA1  
AA2  
AB1  
Y3  
W2  
IO  
V1  
IO  
V2  
IO  
Y1  
IO  
V3  
IO  
D22  
C21  
B21  
A22  
B22  
A21  
D17  
C17  
C20  
C19  
B20  
B19  
A19  
A20  
C18  
C15  
B15  
D17  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-23. GPIO1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
GPIO1_51  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
General Purpose Input/Output  
F18  
E16  
(1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
(2) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6.3.10.2 MCU Domain  
6-24. MCU_GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_GPIO0_0 (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
ALW PIN [4]  
E8  
AMC PIN [4]  
E7  
IO  
IO  
MCU_GPIO0_1 (1)  
MCU_GPIO0_2  
MCU_GPIO0_3  
MCU_GPIO0_4  
MCU_GPIO0_5  
MCU_GPIO0_6  
MCU_GPIO0_7 (1)  
MCU_GPIO0_8 (1)  
MCU_GPIO0_9  
MCU_GPIO0_10  
MCU_GPIO0_11 (1)  
MCU_GPIO0_12 (1)  
MCU_GPIO0_13  
MCU_GPIO0_14  
MCU_GPIO0_15 (1)  
MCU_GPIO0_16 (1)  
MCU_GPIO0_17  
MCU_GPIO0_18  
MCU_GPIO0_19  
MCU_GPIO0_20  
MCU_GPIO0_21  
MCU_GPIO0_22  
MCU_GPIO0_23  
B8  
C8  
IO  
A7  
B7  
IO  
D9  
E8  
IO  
C9  
D8  
IO  
B5  
A8  
IO  
A5  
B6  
IO  
A6  
B8  
IO  
B6  
D7  
IO  
B4  
B5  
IO  
C5  
C6  
IO  
C6  
A7  
IO  
A4  
B4  
IO  
D6  
C5  
IO  
B3  
C4  
IO  
E5  
D5  
IO  
D4  
D6  
IOD  
IOD  
IOD  
IOD  
IO  
A8  
B9  
D10  
B9  
A10  
E9  
A9  
A9  
B12  
B7  
A12  
C7  
IO  
IO  
A12  
B12  
(1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6.3.11 GPMC  
6.3.11.1 MAIN Domain  
6-25. GPMC0 Signal Descriptions  
SIGNAL NAME [1]  
GPMC0_ADVn_ALE  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
GPMC Address Valid (active low) or Address  
Latch Enable  
O
L23  
K20  
GPMC0_CLK  
O
O
O
GPMC clock  
P25  
M22  
P25  
M19  
J19  
GPMC0_DIR  
GPMC Data Bus Signal Direction Control  
GPMC functional clock output  
GPMC0_FCLK_MUX  
M19  
GPMC Output Enable (active low) or Read  
Enable (active low)  
GPMC0_OEn_REn  
O
L24  
K21  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-25. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
GPMC0_WEn  
PIN TYPE [2]  
DESCRIPTION [3]  
GPMC Write Enable (active low)  
GPMC Flash Write Protect (active low)  
ALW PIN [4]  
L25  
AMC PIN [4]  
J17  
O
O
GPMC0_WPn  
K25  
J20  
GPMC Address 0 Output. Only used to  
effectively address 8-bit data non-multiplexed  
memories  
GPMC0_A0  
OZ  
U22  
R21  
GPMC address 1 Output in A/D non-multiplexed  
mode and Address 17 in A/D multiplexed mode  
GPMC0_A1  
GPMC0_A2  
GPMC0_A3  
GPMC0_A4  
GPMC0_A5  
GPMC0_A6  
GPMC0_A7  
GPMC0_A8  
GPMC0_A9  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
V24  
W25  
W24  
Y25  
P18  
R18  
R19  
R20  
T20  
T21  
T19  
U21  
R17  
GPMC address 2 Output in A/D non-multiplexed  
mode and Address 18 in A/D multiplexed mode  
GPMC address 3 Output in A/D non-multiplexed  
mode and Address 19 in A/D multiplexed mode  
GPMC address 4 Output in A/D non-multiplexed  
mode and Address 20 in A/D multiplexed mode  
GPMC address 5 Output in A/D non-multiplexed  
mode and Address 21 in A/D multiplexed mode  
Y24  
GPMC address 6 Output in A/D non-multiplexed  
mode and Address 22 in A/D multiplexed mode  
Y23  
GPMC address 7 Output in A/D non-multiplexed  
mode and Address 23 in A/D multiplexed mode  
AA25  
V21  
GPMC address 8 Output in A/D non-multiplexed  
mode and Address 24 in A/D multiplexed mode  
GPMC address 9 Output in A/D non-multiplexed  
mode and Address 25 in A/D multiplexed mode  
W21  
GPMC address 10 Output in A/D non-  
multiplexed mode and Address 26 in A/D  
multiplexed mode  
GPMC0_A10  
GPMC0_A11  
GPMC0_A12  
GPMC0_A13  
GPMC0_A14  
GPMC0_A15  
GPMC0_A16  
GPMC0_A17  
GPMC0_A18  
GPMC0_A19  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
V20  
AA23  
AB25  
AA24  
Y22  
T18  
U20  
U19  
V21  
U18  
V20  
W21  
T17  
T16  
U17  
GPMC address 11 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC address 12 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC address 13 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC address 14 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC address 15 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
AA21  
AB24  
Y20  
GPMC address 16 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC address 17 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC address 18 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
AC25  
AC24  
GPMC address 19 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-25. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
GPMC address 20 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC0_A20  
GPMC0_A21  
GPMC0_A22  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
GPMC0_AD9  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC0_AD14  
GPMC0_AD15  
OZ  
K24  
H19  
GPMC address 21 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
OZ  
OZ  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
V25  
K25  
M25  
N23  
N24  
N25  
P24  
P22  
P21  
R23  
R24  
R25  
T25  
R21  
T22  
T24  
U25  
U24  
P17  
J20  
GPMC address 22 Output in A/D non-  
multiplexed mode and unused in A/D  
multiplexed mode  
GPMC Data 0 Input/Output in A/D non-  
multiplexed mode and additionally Address 1  
Output in A/D multiplexed mode  
K19  
L19  
L20  
L21  
M21  
L17  
L18  
M20  
N20  
N21  
M17  
N18  
N17  
N19  
P19  
P20  
GPMC Data 1 Input/Output in A/D non-  
multiplexed mode and additionally Address 2  
Output in A/D multiplexed mode  
GPMC Data 2 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 3 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 4 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 5 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 6 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 7 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 8 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 9 Input/Output in A/D non-  
multiplexed mode and additionally Address 3  
Output in A/D multiplexed mode  
GPMC Data 10 Input/Output in A/D non-  
multiplexed mode and additionally Address 11  
Output in A/D multiplexed mode  
GPMC Data 11 Input/Output in A/D non-  
multiplexed mode and additionally Address 12  
Output in A/D multiplexed mode  
GPMC Data 12 Input/Output in A/D non-  
multiplexed mode and additionally Address 13  
Output in A/D multiplexed mode  
GPMC Data 13 Input/Output in A/D non-  
multiplexed mode and additionally Address 14  
Output in A/D multiplexed mode  
GPMC Data 14 Input/Output in A/D non-  
multiplexed mode and additionally Address 15  
Output in A/D multiplexed mode  
GPMC Data 15 Input/Output in A/D non-  
multiplexed mode and additionally Address 16  
Output in A/D multiplexed mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-25. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
GPMC0_BE0n_CLE  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
GPMC Lower-Byte Enable (active low) or  
Command Latch Enable  
O
M24  
K17  
GPMC0_BE1n  
GPMC0_CSn0  
GPMC0_CSn1  
GPMC0_CSn2  
GPMC0_CSn3  
GPMC0_WAIT0  
GPMC0_WAIT1  
O
O
O
O
O
I
GPMC Upper-Byte Enable (active low)  
GPMC Chip Select 0 (active low)  
GPMC Chip Select 1 (active low)  
GPMC Chip Select 2 (active low)  
GPMC Chip Select 3 (active low)  
GPMC External Indication of Wait  
GPMC External Indication of Wait  
N20  
M21  
L21  
K22  
K24  
U23  
V25  
K18  
J18  
H17  
H18  
H19  
P21  
P17  
I
6.3.12 I2C  
6.3.12.1 MAIN Domain  
6-26. I2C0 Signal Descriptions  
SIGNAL NAME [1]  
I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
B16  
AMC PIN [4]  
E12  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C0_SDA  
A16  
D14  
6-27. I2C1 Signal Descriptions  
SIGNAL NAME [1]  
I2C1_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
B17  
AMC PIN [4]  
A17  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C1_SDA  
A17  
A16  
6-28. I2C2 Signal Descriptions  
SIGNAL NAME [1]  
I2C2_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
K22  
AMC PIN [4]  
H18  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C2_SDA  
K24  
H19  
6-29. I2C3 Signal Descriptions  
SIGNAL NAME [1]  
I2C3_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
A15, AB1  
B15, Y3  
AMC PIN [4]  
B14, Y1  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C3_SDA  
C13, V3  
6.3.12.2 MCU Domain  
6-30. MCU_I2C0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IOD  
I2C Clock  
I2C Data  
A8  
B9  
MCU_I2C0_SDA  
IOD  
D10  
A10  
6.3.12.3 WKUP Domain  
6-31. WKUP_I2C0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IOD  
I2C Clock  
I2C Data  
B9  
A9  
E9  
A9  
WKUP_I2C0_SDA  
IOD  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3.13 MCAN  
6.3.13.1 MAIN Domain  
6-32. MCAN0 Signal Descriptions  
SIGNAL NAME [1]  
MCAN0_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALW PIN [4]  
E15  
AMC PIN [4]  
A15  
I
MCAN0_TX  
O
C15  
B13  
6.3.13.2 MCU Domain  
6-33. MCU_MCAN0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MCAN0_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALW PIN [4]  
AMC PIN [4]  
I
B3  
D6  
C4  
C5  
MCU_MCAN0_TX  
O
6-34. MCU_MCAN1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MCAN1_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALW PIN [4]  
AMC PIN [4]  
I
D4  
E5  
D6  
D5  
MCU_MCAN1_TX  
O
6.3.14 MCASP  
6.3.14.1 MAIN Domain  
6-35. MCASP0 Signal Descriptions  
SIGNAL NAME [1]  
MCASP0_ACLKR  
MCASP0_ACLKX  
MCASP0_AFSR  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
A20  
AMC PIN [4]  
D16  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
B20  
C17  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
E19  
D15  
MCASP0_AFSX  
D20  
C16  
MCASP0_AXR0  
E18  
D18  
MCASP0_AXR1  
B18  
A18  
MCASP0_AXR2  
A19  
B17  
MCASP0_AXR3  
B19  
B18  
6-36. MCASP1 Signal Descriptions  
SIGNAL NAME [1]  
MCASP1_ACLKR  
MCASP1_ACLKX  
MCASP1_AFSR  
MCASP1_AFSX  
MCASP1_AXR0  
MCASP1_AXR1  
MCASP1_AXR2  
MCASP1_AXR3  
MCASP1_AXR4  
MCASP1_AXR5  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
D25, E24, K24 E18, E21, H19  
A23, H25, M24 D20, G20, K17  
C24, H21, K22 C21, E17, H18  
B23, J22, U23 C20, J21, P21  
B24, J25, L25 B21, H21, J17  
C25, J23, L24 D21, G21, K21  
E23, H21, L23 E17, E19, K20  
D24, E24, P25 E18, E20, M19  
MCASP Transmit Bit Clock  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
C24, K22  
D25, K24  
C21, H18  
E21, H19  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-37. MCASP2 Signal Descriptions  
SIGNAL NAME [1]  
MCASP2_ACLKR  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
AA18, U24  
P20, U15  
AC20, B15,  
T24  
MCASP2_ACLKX  
MCASP2_AFSR  
MCASP2_AFSX  
MCASP Transmit Bit Clock  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
C13, N19, V16  
P19, Y20  
AB20, U25  
A15, AD21,  
T22  
B14, N17, W17  
AC21, C15,  
R24  
MCASP2_AXR0  
MCASP2_AXR1  
IO  
IO  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
B13, N20, Y19  
A15, N21, V18  
AD23, E15,  
R25  
MCASP2_AXR2  
MCASP2_AXR3  
MCASP2_AXR4  
MCASP2_AXR5  
MCASP2_AXR6  
MCASP2_AXR7  
MCASP2_AXR8  
MCASP2_AXR9  
MCASP2_AXR10  
MCASP2_AXR11  
MCASP2_AXR12  
MCASP2_AXR13  
MCASP2_AXR14  
MCASP2_AXR15  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
AE23, T25  
AD22, R21  
AA19, M25  
AE21, N23  
N24, Y18  
AB20, N25  
AA18, P24  
P22  
M17, W18  
N18, W19  
K19, Y21  
L19, Y18  
AA20, L20  
L21, Y20  
M21, U15  
L17  
P21  
L18  
R23  
M20  
N20  
K18  
M22  
J19  
M21  
J18  
L21  
H17  
6.3.15 MCSPI  
6.3.15.1 MAIN Domain  
6-38. MCSPI0 Signal Descriptions  
SIGNAL NAME [1]  
SPI0_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
A14  
AMC PIN [4]  
D12  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI0_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
A13  
C11  
SPI0_CS1  
C13  
D13  
SPI0_CS2  
A15  
B14  
SPI0_CS3  
B15  
C13  
SPI0_D0  
B13  
C12  
SPI0_D1  
SPI Data 1  
B14  
A14  
6-39. MCSPI1 Signal Descriptions  
SIGNAL NAME [1]  
SPI1_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AA3, J25  
J23, Y4  
AB1, H21  
Y3  
AMC PIN [4]  
H21, W2  
G21, W1  
E17, Y1  
V3  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI1_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI1_CS1  
SPI1_CS2  
SPI1_CS3  
AA1  
V1  
SPI1_D0  
AC2, H25  
G20, V4  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-39. MCSPI1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
SPI1_D1  
IO  
SPI Data 1  
AD2, J22  
J21, W4  
6-40. MCSPI2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
SPI2_CLK  
SPI2_CS0  
SPI2_CS1  
SPI2_CS2  
SPI2_CS3  
SPI2_D0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
A17, A20, AA2 A16, D16, V2  
AA1, B16, E19 D15, E12, V1  
AC2, B17, B20 A17, C17, V4  
A16, B18, Y4 A18, D14, W1  
A18, AD2, D20 C14, C16, W4  
AC1, B19, D14 A13, B18, W3  
A19, AB2, E14 B17, E11, Y2  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI2_D1  
SPI Data 1  
6.3.15.2 MCU Domain  
6-41. MCU_MCSPI0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_SPI0_CLK  
MCU_SPI0_CS0  
MCU_SPI0_CS1  
MCU_SPI0_CS2  
MCU_SPI0_CS3  
MCU_SPI0_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
A7  
E8  
B7  
E7  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
B8  
C8  
B4, D4  
D6  
B5, D6  
C5  
D9  
E8  
MCU_SPI0_D1  
SPI Data 1  
C9  
D8  
6-42. MCU_MCSPI1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_SPI1_CLK  
MCU_SPI1_CS0  
MCU_SPI1_CS1  
MCU_SPI1_CS2  
MCU_SPI1_CS3  
MCU_SPI1_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
A4, D4  
C6  
B4, D6  
A7  
SPI Chip Select 0  
SPI Chip Select 2  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
E5  
D5  
C5, D4  
B3  
C6, D6  
C4  
A6  
B8  
MCU_SPI1_D1  
SPI Data 1  
B6  
D7  
6.3.16 MDIO  
6.3.16.1 MAIN Domain  
6-43. MDIO0 Signal Descriptions  
SIGNAL NAME [1]  
MDIO0_MDC  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AD24  
AMC PIN [4]  
V17  
O
MDIO Clock  
MDIO Data  
MDIO0_MDIO  
IO  
AB22  
U16  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3.17 MMC  
6.3.17.1 MAIN Domain  
6-44. MMC0 Signal Descriptions  
SIGNAL NAME [1]  
MMC0_CLK (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AB1  
AMC PIN [4]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Clock  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
Y1  
V3  
MMC0_CMD  
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
MMC0_DAT5  
MMC0_DAT6  
MMC0_DAT7  
Y3  
AA2  
V2  
AA1  
V1  
AA3  
W2  
W1  
Y2  
Y4  
AB2  
AC1  
AD2  
AC2  
W3  
W4  
V4  
(1) For MMC0_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG135 register must remain in its default state  
of 0x1 because of retiming purposes.  
6-45. MMC1 Signal Descriptions  
SIGNAL NAME [1]  
MMC1_CLK (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
B22  
AMC PIN [4]  
A20  
IO  
IO  
I
MMC/SD/SDIO Clock  
MMC1_CMD  
MMC1_SDCD  
MMC1_SDWP  
MMC1_DAT0  
MMC1_DAT1  
MMC1_DAT2  
MMC1_DAT3  
MMC/SD/SDIO Command  
SD Card Detect  
A21  
C18  
D17  
C15  
I
SD Write Protect  
C17  
B15  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
A22  
A19  
B21  
B19  
C21  
B20  
D22  
C19  
(1) For MMC1_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG142 register must remain in its default state  
of 0x1 because of retiming purposes.  
6-46. MMC2 Signal Descriptions  
SIGNAL NAME [1]  
MMC2_CLK (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
D25  
AMC PIN [4]  
E21  
IO  
IO  
I
MMC/SD/SDIO Clock  
MMC2_CMD  
MMC2_SDCD  
MMC2_SDWP  
MMC2_DAT0  
MMC2_DAT1  
MMC2_DAT2  
MMC2_DAT3  
MMC/SD/SDIO Command  
SD Card Detect  
C24  
C21  
A15, A23, B17 A17, B14, D20  
A17, B15, B23 A16, C13, C20  
I
SD Write Protect  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
B24  
C25  
E23  
D24  
B21  
D21  
E19  
E20  
(1) For MMC2_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG71 register must remain in its default state  
of 0x1 because of retiming purposes.  
6.3.18 OLDI  
6.3.18.1 MAIN Domain  
6-47. OLDI0 Signal Descriptions  
SIGNAL NAME [1]  
OLDI0_A0N  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
IO  
OLDI Differential Data (negative)  
AA5  
AA2  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-47. OLDI0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Data (negative)  
OLDI Differential Data (positive)  
OLDI Differential Clock (negative)  
OLDI Differential Clock (positive)  
OLDI Differential Clock (negative)  
OLDI Differential Clock (positive)  
ALW PIN [4]  
Y6  
AMC PIN [4]  
AA3  
V5  
OLDI0_A0P  
OLDI0_A1N  
OLDI0_A1P  
OLDI0_A2N  
OLDI0_A2P  
OLDI0_A3N  
OLDI0_A3P  
OLDI0_A4N  
OLDI0_A4P  
OLDI0_A5N  
OLDI0_A5P  
OLDI0_A6N  
OLDI0_A6P  
OLDI0_A7N  
OLDI0_A7P  
OLDI0_CLK0N  
OLDI0_CLK0P  
OLDI0_CLK1N  
OLDI0_CLK1P  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AD3  
AB4  
Y8  
V6  
U7  
AA8  
AB6  
AA7  
AC6  
AC5  
AE5  
AD6  
AE6  
AD7  
AD8  
AE7  
AD4  
AE3  
AE4  
AD5  
U6  
W6  
W5  
AA4  
Y5  
AA6  
AA5  
AA10  
Y9  
AA8  
Y8  
V7  
V8  
Y7  
AA7  
6.3.19 OSPI  
6.3.19.1 MAIN Domain  
6-48. OSPI0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
OSPI0_CLK  
O
I
OSPI Clock  
H24  
G19  
OSPI Data Strobe (DQS) or Loopback Clock  
Input  
OSPI0_DQS  
J24  
H20  
OSPI0_ECC_FAIL  
OSPI0_LBCLKO  
OSPI0_CSn0  
OSPI0_CSn1  
OSPI0_CSn2  
OSPI0_CSn3  
OSPI0_D0  
I
OSPI ECC Status  
OSPI Loopback Clock Output  
OSPI Chip Select 0 (active low)  
OSPI Chip Select 1 (active low)  
OSPI Chip Select 2 (active low)  
OSPI Chip Select 3 (active low)  
OSPI Data 0  
E24  
G25  
F23  
G21  
H21  
E24  
E25  
G24  
F25  
F24  
J23  
J25  
H25  
J22  
E24  
H21  
E18  
G18  
F19  
F17  
E17  
E18  
F18  
G17  
F21  
F20  
G21  
H21  
G20  
J21  
IO  
O
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
OSPI0_D1  
OSPI Data 1  
OSPI0_D2  
OSPI Data 2  
OSPI0_D3  
OSPI Data 3  
OSPI0_D4  
OSPI Data 4  
OSPI0_D5  
OSPI Data 5  
OSPI0_D6  
OSPI Data 6  
OSPI0_D7  
OSPI Data 7  
OSPI0_RESET_OUT0  
OSPI0_RESET_OUT1  
OSPI Reset  
E18  
E17  
O
OSPI Reset  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3.20 Power Supply  
6-49. Power Supply Signal Descriptions  
SIGNAL NAME [1]  
CAP_VDDS0 (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
External capacitor connection for IO group 0  
External capacitor connection for IO group 1  
External capacitor connection for IO group 2  
External capacitor connection for IO group 3  
External capacitor connection for IO group 4  
External capacitor connection for IO group 5  
External capacitor connection for IO group 6  
External capacitor connection for IO CANUART  
External capacitor connection for IO MCU  
USB 1.8 V analog supply  
ALW PIN [4]  
H15  
AMC PIN [4]  
G12  
L15  
CAP  
CAP_VDDS1 (1)  
CAP  
K18  
CAP_VDDS2 (1)  
CAP  
W17  
P19  
R13  
M15  
N8  
CAP_VDDS3 (1)  
CAP  
CAP_VDDS4 (1)  
CAP  
U7  
CAP_VDDS5 (1)  
CAP  
H17  
G15  
J15  
CAP_VDDS6 (1)  
CAP  
J19  
CAP_VDDS_CANUART (1)  
CAP_VDDS_MCU (1)  
VDDA_1P8_USB  
VDDA_1P8_CSIRX0  
VDDA_1P8_OLDI0  
VDDA_3P3_USB  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDA_MCU  
CAP  
G9  
G8  
CAP  
H11  
G11  
R11  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Y11  
CSIRX analog supply high  
W14  
W10, W9  
Y13  
R12  
P9, R9  
R10  
P12  
OLDI analog supply  
USB 3.3 V analog supply  
CSIRX analog supply low  
W13  
W12  
USB Core Supply  
P11  
DDR Deskew PLL analog supply  
POR and MCU PLL analog supply  
L9  
L11  
H10  
MAIN PLL, DDR PLL, DSS PLL0, and DSS  
PLL1 analog supply  
VDDA_PLL0  
PWR  
U11  
N10  
VDDA_PLL1  
VDDA_PLL2  
VDDA_TEMP0  
VDDA_TEMP1  
PWR  
PWR  
PWR  
PWR  
PER0 PLL and PER1 PLL analog supply  
ARM0 PLL and SMS PLL analog supply  
TEMP0 analog supply  
U15  
L14  
T9  
P14  
K12  
M7  
TEMP1 analog supply  
G16  
F16  
J12, K16, N12,  
N14, P16,  
VDDR_CORE  
PWR  
Core Supply  
H11, M10, M13  
R12, T10, U14  
VDDSHV0  
VDDSHV1  
VDDSHV2  
PWR  
PWR  
PWR  
IO supply for IO group 0  
IO supply for IO group 1  
IO supply for IO group 2  
F15, G14  
L18, M19  
W16, W19  
F12, G13  
K15, K16  
R14, R15  
N18, P18, T19,  
U18  
VDDSHV3  
PWR  
IO supply for IO group 3  
N15, N16  
VDDSHV4  
PWR  
PWR  
PWR  
PWR  
PWR  
IO supply for IO group 4  
IO supply for IO group 5  
IO supply for IO group 6  
IO supply for IO CANUART  
IO supply for IO MCU  
T7  
G17  
N7, P7  
F14, G14  
H15, H16  
G7, H7  
VDDSHV5  
VDDSHV6  
J18  
VDDSHV_CANUART  
VDDSHV_MCU  
H9  
F11, G12  
F10, G10  
C1, J8, K7, K9,  
L8, U1  
VDDS_DDR  
PWR  
DDR PHY IO supply  
K9, L8, P9, R8  
VDDS_DDR_C  
VDDS_OSC0  
PWR  
PWR  
PWR  
DDR clock IO supply  
MCU_OSC0 supply  
CANUART Core Supply  
M9  
G7  
F8  
L7  
J7  
VDD_CANUART  
H8  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-49. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
H8, J11, J14,  
K17, L12, L15,  
M16, N11,  
N13, N8, P17,  
R11, R14,  
H12, H14, J11,  
J13, J9, K10,  
K14, L11, L13,  
M12, M14, M8,  
N11, N13, N9,  
P8  
VDD_CORE  
VPP  
PWR  
Core supply  
U12, V15, V17,  
V8  
PWR  
eFuse ROM programming supply  
J8  
F7  
A1, A21, A4,  
AA1, AA12,  
A1, A24, A25, AA15, AA21,  
AA11, AB9,  
AD1, AD12,  
AA9, D11,  
D19, D4, E2,  
AD16, AD25, F11, F13, F15,  
AD9, AE1,  
AE12, AE16,  
F4, F9, G16,  
G6, G9, H1,  
AE24, AE25, H13, H6, J10,  
AE8, B25, F13, J12, J14, J16,  
G13, G19,  
H13, H16,  
J6, K13, K3,  
K6, K8, L1,  
H18, H20, J13, L10, L12, L14,  
J7, K13, K15, L16, L6, M11,  
K19, K7, L20, M16, M18, M6,  
VSS  
PWR  
Ground  
M10, M12,  
M13, M17,  
M9, N12, N14,  
N6, P1, P10,  
M18, M7, M8, P13, P15, P16,  
N15, P10, P13, P3, P6, R16,  
P7, R13, R15,  
R5, R7, R8,  
R18, R20, T13, T10, T12, T15,  
T14, T16, T17, T3, T6, T7, T9,  
T18, T8, U19, U10, U13, U5,  
U8, V10, V11, U8, V11, V14,  
V13, V16, V18,  
V19, W10,  
V9, W7, Y2 W13, W7, Y11,  
Y14, Y3, Y4,  
Y6  
(1) This pin must always be connected via a 1-μF capacitor to VSS.  
6.3.21 PRUSS  
备注  
The PRUSS contains a second layer of peripheral signal multiplexing to enable additional functionality  
on the PRU GPO and GPI signals. This internal wrapper multiplexing is described in the PRUSS  
chapter in the device TRM  
6.3.21.1 MAIN Domain  
6-50. PRUSS0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
PRUSS Enhanced Capture (ECAP) Input or  
Auxiliary PWM (APWM) Ouput  
AC24, AD21, C13, D18, J19,  
PR0_ECAP0_IN_APWM_OUT  
IO  
B15, E18, M22  
A13, AD23  
U17, W17  
C11, V18  
B14, V16  
PR0_ECAP0_SYNC_IN  
I
PRUSS ECAP Sync Input  
PRUSS ECAP Sync Output  
PR0_ECAP0_SYNC_OUT  
O
A15, AC20  
PRUSS Industrial Ethernet Digital I/O Data  
Input/Output  
PR0_IEP0_EDIO_DATA_IN_OUT28  
PR0_IEP0_EDIO_DATA_IN_OUT29  
IO  
IO  
B19  
A19  
B18  
B17  
PRUSS Industrial Ethernet Digital I/O Data  
Input/Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-50. PRUSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
PRUSS Industrial Ethernet Digital I/O Data  
Input/Output  
PR0_IEP0_EDIO_DATA_IN_OUT30  
IO  
B16  
E12  
PRUSS Industrial Ethernet Digital I/O Data  
Input/Output  
PR0_IEP0_EDIO_DATA_IN_OUT31  
PR0_PRU0_GPI0  
IO  
I
A16  
D14  
AD22, M25, K19, N17, T18,  
T22, V20, Y4  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
W1, W19  
AA23, AA3,  
AD23, N23,  
T24  
L19, N19, U20,  
V18, W2  
PR0_PRU0_GPI1  
PR0_PRU0_GPI2  
I
I
AA1, AB25,  
AE23, N24,  
U25  
L20, P19, U19,  
V1, W18  
PRUSS PRU Data Input  
AA2, AA24,  
AB20, N25,  
U24  
L21, P20, V2,  
V21, Y20  
PR0_PRU0_GPI3  
PR0_PRU0_GPI4  
I
I
PRUSS PRU Data Input  
PRUSS PRU Data Input  
AC21, P24,  
Y22, Y3  
M21, U18, V3,  
Y19  
PR0_PRU0_GPI5  
PR0_PRU0_GPI6  
PR0_PRU0_GPI7  
PR0_PRU0_GPI8  
PR0_PRU0_GPI9  
PR0_PRU0_GPI10  
PR0_PRU0_GPI11  
PR0_PRU0_GPI12  
PR0_PRU0_GPI13  
PR0_PRU0_GPI14  
PR0_PRU0_GPI15  
I
I
I
I
I
I
I
I
I
I
I
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
AA21, P22  
AB24, P21  
R23, Y20  
P25, U22  
L23, V24  
L24, W25  
L25, W24  
M24, Y25  
N20, Y24  
U23, Y23  
AA25, K25  
L17, V20  
L18, W21  
M20, T17  
M19, R21  
K20, P18  
K21, R18  
J17, R19  
K17, R20  
K18, T20  
P21, T21  
J20, T19  
AE22, M22,  
W21  
PR0_PRU0_GPI16  
I
PRUSS PRU Data Input  
J19, R17, W20  
PR0_PRU0_GPI17  
PR0_PRU0_GPI18  
PR0_PRU0_GPI19  
I
I
I
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
M21, V21  
AC25, L21  
AC24, K22  
J18, U21  
H17, T16  
H18, U17  
AD22, M25, K19, N17, T18,  
PR0_PRU0_GPO0  
PR0_PRU0_GPO1  
IO  
IO  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
T22, V20, Y4  
W1, W19  
AA23, AA3,  
AD23, N23,  
T24  
L19, N19, U20,  
V18, W2  
AA1, AB25,  
AE23, N24,  
U25  
L20, P19, U19,  
V1, W18  
PR0_PRU0_GPO2  
IO  
PRUSS PRU Data Output  
AA2, AA24,  
AB20, N25,  
U24  
L21, P20, V2,  
V21, Y20  
PR0_PRU0_GPO3  
PR0_PRU0_GPO4  
IO  
IO  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
AC21, P24,  
Y22, Y3  
M21, U18, V3,  
Y19  
PR0_PRU0_GPO5  
PR0_PRU0_GPO6  
PR0_PRU0_GPO7  
PR0_PRU0_GPO8  
PR0_PRU0_GPO9  
IO  
IO  
IO  
IO  
IO  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
AA21, P22  
AB24, P21  
R23, Y20  
P25, U22  
L23, V24  
L17, V20  
L18, W21  
M20, T17  
M19, R21  
K20, P18  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-50. PRUSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
L24, W25  
L25, W24  
M24, Y25  
N20, Y24  
U23, Y23  
AA25, K25  
AMC PIN [4]  
K21, R18  
J17, R19  
K17, R20  
K18, T20  
P21, T21  
J20, T19  
PR0_PRU0_GPO10  
PR0_PRU0_GPO11  
PR0_PRU0_GPO12  
PR0_PRU0_GPO13  
PR0_PRU0_GPO14  
PR0_PRU0_GPO15  
IO  
IO  
IO  
IO  
IO  
IO  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
AE22, M22,  
W21  
PR0_PRU0_GPO16  
IO  
PRUSS PRU Data Output  
J19, R17, W20  
PR0_PRU0_GPO17  
PR0_PRU0_GPO18  
PR0_PRU0_GPO19  
PR0_UART0_CTSn  
PR0_UART0_RTSn  
IO  
IO  
IO  
I
PRUSS PRU Data Output  
M21, V21  
AC25, L21  
AC24, K22  
AC20, AD17  
AB16, AE23  
J18, U21  
H17, T16  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
H18, U17  
AA16, V16  
AA17, W18  
PRUSS UART Clear to Send (active low)  
PRUSS UART Request to Send (active low)  
O
AC21, AE18, A18, B13, B18,  
PR0_UART0_RXD  
PR0_UART0_TXD  
I
PRUSS UART Receive Data  
PRUSS UART Transmit Data  
B18, B19, C15  
Y17, Y19  
A19, AD18,  
AE22, E15,  
E18  
A15, AA18,  
B17, D18, W20  
O
6-51. PRUSS1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
AA19, AC2,  
R24, U22  
N20, R21, V4,  
Y21  
PR0_PRU1_GPI0  
PR0_PRU1_GPI1  
PR0_PRU1_GPI2  
PR0_PRU1_GPI3  
PR0_PRU1_GPI4  
I
PRUSS PRU Data Input  
AD2, AE21, N21, P18, W4,  
R25, V24  
I
I
I
I
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
Y18  
AC1, T25,  
W25, Y18  
AA20, M17,  
R18, W3  
AA18, AB2,  
R21, W24  
N18, R19,  
U15, Y2  
AB1, AD21,  
Y25  
R20, W17, Y1  
PR0_PRU1_GPI5  
PR0_PRU1_GPI6  
PR0_PRU1_GPI7  
PR0_PRU1_GPI8  
PR0_PRU1_GPI9  
PR0_PRU1_GPI10  
PR0_PRU1_GPI11  
PR0_PRU1_GPI12  
PR0_PRU1_GPI13  
PR0_PRU1_GPI14  
PR0_PRU1_GPI15  
I
I
I
I
I
I
I
I
I
I
I
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
Y24  
T20  
Y23  
T21  
AA25  
T19  
M25, W21  
N23, V20  
AA23, N24  
AB25, N25  
AA24, P24  
P22, Y22  
AA21, P21  
AB24, R23  
K19, R17  
L19, T18  
L20, U20  
L21, U19  
M21, V21  
L17, U18  
L18, V20  
M20, W21  
AC20, L21,  
V21  
PR0_PRU1_GPI16  
I
PRUSS PRU Data Input  
H17, U21, V16  
PR0_PRU1_GPI17  
PR0_PRU1_GPI18  
PR0_PRU1_GPI19  
I
I
I
PRUSS PRU Data Input  
PRUSS PRU Data Input  
PRUSS PRU Data Input  
Y20  
T17  
T16  
U17  
AC25  
AC24  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-51. PRUSS1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PR0_PRU1_GPO0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
AA19, AC2,  
R24, U22  
N20, R21, V4,  
Y21  
O
PRUSS PRU Data Output  
AD2, AE21, N21, P18, W4,  
PR0_PRU1_GPO1  
PR0_PRU1_GPO2  
PR0_PRU1_GPO3  
PR0_PRU1_GPO4  
O
O
O
O
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
R25, V24  
Y18  
AC1, T25,  
W25, Y18  
AA20, M17,  
R18, W3  
AA18, AB2,  
R21, W24  
N18, R19,  
U15, Y2  
AB1, AD21,  
Y25  
R20, W17, Y1  
PR0_PRU1_GPO5  
PR0_PRU1_GPO6  
PR0_PRU1_GPO7  
PR0_PRU1_GPO8  
PR0_PRU1_GPO9  
PR0_PRU1_GPO10  
PR0_PRU1_GPO11  
PR0_PRU1_GPO12  
PR0_PRU1_GPO13  
PR0_PRU1_GPO14  
PR0_PRU1_GPO15  
O
O
O
O
O
O
O
O
O
O
O
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
Y24  
T20  
Y23  
T21  
AA25  
T19  
M25, W21  
N23, V20  
AA23, N24  
AB25, N25  
AA24, P24  
P22, Y22  
AA21, P21  
AB24, R23  
K19, R17  
L19, T18  
L20, U20  
L21, U19  
M21, V21  
L17, U18  
L18, V20  
M20, W21  
AC20, L21,  
V21  
PR0_PRU1_GPO16  
O
PRUSS PRU Data Output  
H17, U21, V16  
PR0_PRU1_GPO17  
PR0_PRU1_GPO18  
PR0_PRU1_GPO19  
O
O
O
PRUSS PRU Data Output  
PRUSS PRU Data Output  
PRUSS PRU Data Output  
Y20  
T17  
T16  
U17  
AC25  
AC24  
6.3.22 Reserved  
6-52. Reserved Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
ALW PIN [4]  
AMC PIN [4]  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
RSVD8  
N/A  
B1  
A2  
B3  
C3  
E6  
N/A  
N/A  
F6  
N/A  
AE2  
T2  
F8  
N/A  
R6  
T13  
T14  
M4  
M5  
N/A  
U4  
N/A  
AA12  
Y15  
E7  
N/A  
N/A  
6.3.23 System and Miscellaneous  
6.3.23.1 Boot Mode Configuration  
6.3.23.1.1 MAIN Domain  
6-53. Sysboot Signal Descriptions  
SIGNAL NAME [1]  
BOOTMODE00  
BOOTMODE01  
PIN TYPE [2]  
DESCRIPTION [3]  
Bootmode pin 0  
Bootmode pin 1  
ALW PIN [4]  
M25  
AMC PIN [4]  
K19  
I
I
N23  
L19  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-53. Sysboot Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
N24  
AMC PIN [4]  
L20  
BOOTMODE02  
BOOTMODE03  
BOOTMODE04  
BOOTMODE05  
BOOTMODE06  
BOOTMODE07  
BOOTMODE08  
BOOTMODE09  
BOOTMODE10  
BOOTMODE11  
BOOTMODE12  
BOOTMODE13  
BOOTMODE14  
BOOTMODE15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Bootmode pin 2  
Bootmode pin 3  
Bootmode pin 4  
Bootmode pin 5  
Bootmode pin 6  
Bootmode pin 7  
Bootmode pin 8  
Bootmode pin 9  
Bootmode pin 10  
Bootmode pin 11  
Bootmode pin 12  
Bootmode pin 13  
Bootmode pin 14  
Bootmode pin 15  
N25  
L21  
P24  
M21  
L17  
P22  
P21  
L18  
R23  
M20  
N20  
R24  
R25  
N21  
T25  
M17  
N18  
R21  
T22  
N17  
T24  
N19  
U25  
P19  
U24  
P20  
6.3.23.2 Clock  
6.3.23.2.1 MCU Domain  
6-54. MCU Clock Signal Descriptions  
SIGNAL NAME [1]  
MCU_OSC0_XI  
PIN TYPE [2]  
DESCRIPTION [3]  
High frequency oscillator input  
High frequency oscillator output  
ALW PIN [4]  
AMC PIN [4]  
I
B2  
A3  
A5  
A6  
MCU_OSC0_XO  
O
6.3.23.2.2 WKUP Domain  
6-55. WKUP Clock Signal Descriptions  
SIGNAL NAME [1]  
WKUP_LFOSC0_XI  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
I
Low frequency (32.768 KHz) oscillator input  
Low frequency (32.768 KHz) oscillator output  
C2  
C1  
A2  
A3  
WKUP_LFOSC0_XO  
O
6.3.23.3 System  
6.3.23.3.1 MAIN Domain  
6-56. System Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
External clock input to McASP or output from  
McASP  
A15, AE22,  
E18  
AUDIO_EXT_REFCLK0  
IO  
IO  
B14, D18, W20  
External clock input to McASP or output from  
McASP  
AUDIO_EXT_REFCLK1  
CLKOUT0  
B15, D20, K25 C13, C16, J20  
RMII Clock Output (50 MHz). This pin is used  
for clock source to the external RMII PHY and  
must also be routed back to the respective  
RMII[x]_REF_CLK pin for proper device  
operation.  
O
A18  
C14  
EXTINTn  
I
I
External Interrupt  
D16  
A18  
B16  
C14  
EXT_REFCLK1  
External clock input to Main Domain  
Main Domain Observation clock output for test  
and debug purposes only  
OBSCLK0  
O
B16, T25  
E12, M17  
PORz_OUT  
O
O
Main Domain POR status output  
E21  
F22  
E13  
E14  
RESETSTATz  
Main Domain warm reset status output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-56. System Signal Descriptions (continued)  
SIGNAL NAME [1]  
RESET_REQz  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
I
Main Domain external warm reset request input  
F20  
E15  
Main Domain system clock output (divided by 4)  
for test and debug purposes only  
SYSCLKOUT0  
O
A18  
C14  
6.3.23.3.2 MCU Domain  
6-57. MCU System Signal Descriptions  
SIGNAL NAME [1]  
MCU_ERRORn  
PIN TYPE [2]  
DESCRIPTION [3]  
Error signal output from MCU Domain ESM  
External input to MCU Domain  
ALW PIN [4]  
D1  
AMC PIN [4]  
B1  
IO  
I
MCU_EXT_REFCLK0  
B8, E5  
C8, D5  
MCU Domain Observation clock output for test  
and debug purposes only  
MCU_OBSCLK0  
O
B8  
C8  
MCU_PORz  
I
O
I
MCU Domain cold reset  
D2  
B12  
E11  
B2  
A12  
C9  
MCU_RESETSTATz  
MCU_RESETz  
MCU Domain warm reset status output  
MCU Domain warm reset  
MCU Domain system clock output (divided by 4)  
for test and debug purposes only  
MCU_SYSCLKOUT0  
O
B8  
C8  
6.3.23.3.3 WKUP Domain  
6-58. WKUP System Signal Descriptions  
SIGNAL NAME [1]  
PMIC_LPM_EN0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Dual-function PMIC control output, Low Power  
Mode (active low) or PMIC Enable (active high)  
O
O
B7  
C7  
WKUP_CLKOUT0  
WKUP Domain CLKOUT0 output  
A12  
B12  
6.3.23.4 VMON  
6-59. VMON Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Voltage monitor input for 1.8 V SoC power  
supply  
VMON_1P8_SOC  
A
A
G10  
H9  
Voltage monitor input for 3.3 V SoC power  
supply  
VMON_3P3_SOC  
VMON_VSYS  
K10  
H10  
K11  
F6  
Voltage monitor input, fixed 0.45 V (+/-3%)  
threshold. Use with external precision voltage  
divider to monitor a higher voltage rail such as  
the PMIC input supply.  
A
6.3.24 TIMER  
6.3.24.1 MAIN Domain  
6-60. TIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Timer Inputs and Outputs (not tied to single  
timer instance)  
TIMER_IO0  
IO  
IO  
IO  
IO  
AA3, B17, D22 A17, C19, W2  
Timer Inputs and Outputs (not tied to single  
timer instance)  
TIMER_IO1  
TIMER_IO2  
TIMER_IO3  
A17, C21  
B21, C15  
A22, E15  
A16, B20  
B13, B19  
A15, A19  
Timer Inputs and Outputs (not tied to single  
timer instance)  
Timer Inputs and Outputs (not tied to single  
timer instance)  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-60. TIMER Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Timer Inputs and Outputs (not tied to single  
timer instance)  
TIMER_IO4  
TIMER_IO5  
TIMER_IO6  
TIMER_IO7  
IO  
A18, AB1, B22 A20, C14, Y1  
A16, A21, Y3 C18, D14, V3  
Timer Inputs and Outputs (not tied to single  
timer instance)  
IO  
IO  
IO  
Timer Inputs and Outputs (not tied to single  
timer instance)  
A15, D17  
B15, C17  
B14, C15  
B15, C13  
Timer Inputs and Outputs (not tied to single  
timer instance)  
6.3.24.2 MCU Domain  
6-61. MCU_TIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Timer Inputs and Outputs (not tied to single  
timer instance)  
MCU_TIMER_IO0  
IO  
A6, B3  
B8, C4  
Timer Inputs and Outputs (not tied to single  
timer instance)  
MCU_TIMER_IO1  
MCU_TIMER_IO2  
MCU_TIMER_IO3  
IO  
IO  
IO  
B6, B8  
E5  
C8, D7  
D5  
Timer Inputs and Outputs (not tied to single  
timer instance)  
Timer Inputs and Outputs (not tied to single  
timer instance)  
D4  
D6  
6.3.24.3 WKUP Domain  
6-62. WKUP_TIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
Timer Inputs and Outputs (not tied to single  
timer instance)  
WKUP_TIMER_IO0  
IO  
C6, D6  
A7, C5  
Timer Inputs and Outputs (not tied to single  
timer instance)  
WKUP_TIMER_IO1  
IO  
A4, E8  
B4, E7  
6.3.25 UART  
6.3.25.1 MAIN Domain  
6-63. UART0 Signal Descriptions  
SIGNAL NAME [1]  
UART0_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALW PIN [4]  
A15  
AMC PIN [4]  
B14  
I
UART0_RTSn  
O
I
B15  
C13  
UART0_RXD  
D14  
A13  
UART0_TXD  
O
UART Transmit Data  
E14  
E11  
6-64. UART1 Signal Descriptions  
SIGNAL NAME [1]  
UART1_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Clear to Send (active low)  
UART Data Set Ready (active low)  
UART Data Terminal Ready (active low)  
UART Ring Indicator  
ALW PIN [4]  
B19  
AMC PIN [4]  
B18  
I
I
UART1_DCDn  
UART1_DSRn  
UART1_DTRn  
B16  
E12  
I
A16  
D14  
O
I
C15  
B13  
UART1_RIn  
E15  
A15  
UART1_RTSn  
O
I
UART Request to Send (active low)  
UART Receive Data  
A19  
B17  
UART1_RXD  
B17, E19  
A17, D15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-64. UART1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
UART1_TXD  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
O
UART Transmit Data  
A17, A20  
A16, D16  
6-65. UART2 Signal Descriptions  
SIGNAL NAME [1]  
UART2_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
A22, AB2,  
AC24, U25  
A19, P19, U17,  
Y2  
I
UART Clear to Send (active low)  
AC1, AC25, B19, P20, T16,  
UART2_RTSn  
UART2_RXD  
UART2_TXD  
O
I
UART Request to Send (active low)  
UART Receive Data  
B21, U24  
W3  
A15, AC2,  
B14, C19,  
D22, R24, U22 N20, R21, V4  
AD2, B15, B20, C13,  
C21, R25, V24 N21, P18, W4  
O
UART Transmit Data  
6-66. UART3 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
UART3_CTSn  
UART3_RTSn  
I
UART Clear to Send (active low)  
AA2, C17, Y20 B15, T17, V2  
AA1, AB24,  
C15, V1, W21  
D17  
O
UART Request to Send (active low)  
UART Receive Data  
B22, T25,  
W25, Y4  
A20, M17,  
R18, W1  
UART3_RXD  
UART3_TXD  
I
A21, AA3,  
R21, W24  
C18, N18,  
R19, W2  
O
UART Transmit Data  
6-67. UART4 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALW PIN [4]  
AA21  
AMC PIN [4]  
V20  
UART4_CTSn  
UART4_RTSn  
I
O
Y22  
U18  
A23, K22, T22,  
Y25  
D20, H18,  
N17, R20  
UART4_RXD  
UART4_TXD  
I
UART Receive Data  
UART Transmit Data  
B23, K24, T24,  
Y24  
C20, H19,  
N19, T20  
O
6-68. UART5 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALW PIN [4]  
AA24, J24  
AB25, G25  
AMC PIN [4]  
H20, V21  
UART5_CTSn  
UART5_RTSn  
I
O
G18, U19  
C15, D24,  
H21, U25, Y23  
B13, E17, E20,  
P19, T21  
UART5_RXD  
UART5_TXD  
I
UART Receive Data  
UART Transmit Data  
AA25, E15, A15, E18, E19,  
E23, E24, U24  
O
P20, T19  
6-69. UART6 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALW PIN [4]  
AA23, J22  
H25, V20  
AMC PIN [4]  
J21, U20  
UART6_CTSn  
UART6_RTSn  
I
O
G20, T18  
B19, D17,  
D25, J23, V21,  
V25  
B18, C15, E21,  
G21, P17, U21  
UART6_RXD  
I
UART Receive Data  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-69. UART6 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALW PIN [4]  
AMC PIN [4]  
A19, C17,  
C24, J25, K25,  
W21  
B15, B17, C21,  
H21, J20, R17  
UART6_TXD  
O
UART Transmit Data  
6.3.25.2 MCU Domain  
6-70. MCU_UART0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_UART0_CTSn  
MCU_UART0_RTSn  
MCU_UART0_RXD  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALW PIN [4]  
AMC PIN [4]  
I
A6  
B6  
B5  
A5  
B8  
D7  
A8  
B6  
O
I
MCU_UART0_TXD  
O
UART Transmit Data  
6.3.25.3 WKUP Domain  
6-71. WKUP_UART0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_UART0_CTSn  
WKUP_UART0_RTSn  
WKUP_UART0_RXD  
WKUP_UART0_TXD  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALW PIN [4]  
AMC PIN [4]  
I
C6  
A4  
B4  
C5  
A7  
B4  
B5  
C6  
O
I
O
UART Transmit Data  
6.3.26 USB  
6.3.26.1 MAIN Domain  
6-72. USB0 Signal Descriptions  
SIGNAL NAME [1]  
USB0_DM  
PIN TYPE [2]  
DESCRIPTION [3]  
USB 2.0 Differential Data (negative)  
USB 2.0 Differential Data (positive)  
USB VBUS control output (active high)  
Pin to connect to calibration resistor  
USB Level-shifted VBUS Input  
ALW PIN [4]  
AE11  
AMC PIN [4]  
AA11  
Y10  
IO  
IO  
O
A
USB0_DP  
AD11  
USB0_DRVVBUS  
USB0_RCALIB (1)  
USB0_VBUS (2)  
C20  
D17  
AE10  
T8  
A
AC11  
V10  
(1) An external 499 Ω±1% resistor must be connected between this pin and VSS and the maximum power dissipation for the resistor is  
7.2mW. No external voltage should be applied to this pin.  
(2) An external resistor divider is required to limit the voltage applied to the device pin. For more information, see 9.2.3, USB VBUS  
Design Guidelines.  
6-73. USB1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
USB 2.0 Differential Data (negative)  
USB 2.0 Differential Data (positive)  
USB VBUS control output (active high)  
Pin to connect to calibration resistor  
USB Level-shifted VBUS Input  
ALW PIN [4]  
AD10  
AE9  
AMC PIN [4]  
USB1_DM  
USB1_DP  
IO  
IO  
O
A
W8  
W9  
E16  
V9  
USB1_DRVVBUS  
USB1_RCALIB (1)  
USB1_VBUS (2)  
F18  
AC9  
A
AB10  
U9  
(1) An external 499 Ω±1% resistor must be connected between this pin and VSS and the maximum power dissipation for the resistor is  
7.2mW. No external voltage should be applied to this pin.  
(2) An external resistor divider is required to limit the voltage applied to the device pin. For more information, see 9.2.3, USB VBUS  
Design Guidelines.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.4 Pin Connectivity Requirements  
This section describes connectivity requirements for package balls that have specific connectivity requirements  
and unused package balls.  
备注  
All power balls must be supplied with the voltages specified in 7.5, Recommended Operating  
Conditions, unless otherwise specified .  
备注  
For additional clarification, "leave unconnected" or "no connect" (NC) means no signal traces can be  
connected to these device ball numbers.  
6-74. Connectivity Requirements  
ALW  
BALL  
AMC  
BALL  
BALL NAME  
CONNECTION REQUIREMENTS  
NUMBER  
NUMBER  
Each of these balls must be connected to VSS through separate  
external pull resistors to ensure the inputs associated with these  
balls are held to a valid logic low level if a PCB signal trace is  
connected and not actively driven by an attached device. The  
internal pull-down can be used to hold a valid logic low level if no  
PCB signal trace is connected to the ball.  
D1  
B10  
B1  
A11  
MCU_ERRORn  
TRSTn  
E12  
C11  
E11  
F20  
A10  
A11  
B11  
D9  
B10  
C9  
E15  
C10  
D10  
B11  
EMU0  
EMU1  
MCU_RESETz  
RESET_REQz  
TCK  
Each of these balls must be connected to the corresponding power  
supply(1) through separate external pull resistors to ensure the inputs  
associated with these balls are held to a valid logic high level if a  
PCB signal trace is connected and not actively driven by an attached  
device. The internal pull-up can be used to hold a valid logic high  
level if no PCB signal trace is connected to the ball.  
TDI  
TMS  
A8  
D10  
B9  
B9  
A10  
E9  
MCU_I2C0_SCL  
MCU_I2C0_SDA  
WKUP_I2C0_SCL  
WKUP_I2C0_SDA  
Each of these balls must be connected to the corresponding power  
supply(1) through separate external pull resistors to ensure the inputs  
associated with these balls are held to a valid logic high level.  
A9  
A9  
M25  
N23  
N24  
N25  
P24  
P22  
P21  
R23  
R24  
R25  
T25  
R21  
T22  
T24  
U25  
U24  
K19  
L19  
L20  
L21  
M21  
L17  
L18  
M20  
N20  
N21  
M17  
N18  
N17  
N19  
P19  
P20  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
GPMC0_AD9  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC0_AD14  
GPMC0_AD15  
Each of these balls must be connected to the corresponding power  
supply(1) or VSS through separate external pull resistors to ensure  
the inputs associated with these balls are held to a valid logic high or  
low level as appropriate to select the desired device boot mode.  
K9  
L8  
P9  
R8  
-
K9  
L8  
J8  
K7  
C1  
U1  
L7  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR_C  
If DDRSS is not used, each of these balls must be connected directly  
to VSS.  
-
M9  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-74. Connectivity Requirements (continued)  
ALW  
BALL  
AMC  
BALL  
BALL NAME  
CONNECTION REQUIREMENTS  
NUMBER  
NUMBER  
N6  
R3  
M4  
T1  
M5  
N3  
J1  
J2  
K3  
L5  
K4  
K1  
R2  
P2  
P1  
P4  
R5  
P5  
R6  
R1  
M1  
N1  
T4  
N2  
M2  
L1  
M1  
N1  
J3  
M2  
K5  
J2  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
DDR0_A1  
DDR0_A2  
DDR0_A3  
DDR0_A4  
DDR0_A5  
DDR0_A6  
DDR0_A7  
DDR0_A8  
DDR0_A9  
DDR0_A10  
DDR0_A11  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
DDR0_ODT1  
DDR0_RESET0_n  
F5  
G5  
G4  
H4  
J5  
H5  
P4  
N2  
P2  
N4  
N3  
M3  
P5  
N5  
L5  
L3  
L4  
L2  
K4  
J1  
If DDRSS is not used, leave unconnected.  
L2  
H2  
J4  
K1  
G3  
H2  
H3  
G1  
E3  
R4  
C2  
E4  
D3  
E5  
D2  
F3  
F1  
F2  
R3  
R2  
T2  
U2  
U3  
U4  
T4  
T5  
D1  
E1  
T1  
R1  
J4  
Note: The DDR0 pins in this list can only be left unconnected when  
VDDS_DDR and VDDS_DDR_C are connected to VSS. The DDR0  
pins must be connected as defined in the DDR Board Design and  
Layout Guidelines, when VDDS_DDR and VDDS_DDR_C are  
connected to a power source.  
L6  
K2  
H5  
W5  
F4  
G5  
F3  
H6  
E3  
G2  
F2  
F1  
U1  
U3  
U2  
V5  
W2  
V6  
Y1  
W1  
E1  
E2  
V1  
V2  
H1  
J3  
K2  
G2  
G1  
USB0 and USB1 share these power rails, so each of these balls  
must be connected to valid power sources when either USB0 or  
USB1 is used.  
W12  
Y11  
Y13  
P11  
R11  
R10  
VDDA_CORE_USB  
VDDA_1P8_USB  
VDDA_3P3_USB  
If USB0 and USB1 are not used, each of these balls must be  
connected directly to VSS.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-74. Connectivity Requirements (continued)  
ALW  
BALL  
AMC  
BALL  
BALL NAME  
CONNECTION REQUIREMENTS  
NUMBER  
NUMBER  
If USB0 or USB1 is not used, leave the respective DM, DP, and  
VBUS balls unconnected.  
AE11  
AA11  
Y10  
T8  
V10  
W8  
W9  
V9  
USB0_DM  
USB0_DP  
USB0_RCALIB  
USB0_VBUS  
USB1_DM  
USB1_DP  
USB1_RCALIB  
USB1_VBUS  
AD11  
AE10  
AC11  
AD10  
AE9  
Note: The USB0_RCALIB and USB1_RCALIB pins can only be left  
unconnected when VDDA_CORE_USB, VDDA_1P8_USB, and  
VDDA_3P3_USB are connected to VSS. The USB0_RCALIB and  
USB1_RCALIB pins must be connected to VSS through separate  
appropriate external resistors when VDDA_CORE_USB,  
VDDA_1P8_USB, and VDDA_3P3_USB are connected to power  
sources.  
AC9  
AB10  
U9  
If CSIRX0 is not used and the device boundary scan function is  
required, each of these balls must be connected to valid power  
sources.  
W13  
W14  
P12  
R12  
VDDA_CORE_CSIRX0  
VDDA_1P8_CSIRX0  
If CSIRX0 is not used and the device boundary scan function is not  
required, each of these balls can alternatively be connected directly  
to VSS.  
AD15  
AE15  
AB14  
AC15  
AD14  
AE14  
AD13  
AE13  
AB12  
AC13  
AA14  
AA14  
AA13  
Y13  
Y12  
V13  
V12  
U12  
U11  
W12  
W11  
T11  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXN0  
CSI0_RXP0  
CSI0_RXN1  
CSI0_RXP1  
CSI0_RXN2  
CSI0_RXP2  
CSI0_RXN3  
CSI0_RXP3  
CSI0_RXRCALIB  
If CSIRX0 is not used, leave unconnected.  
AA5  
Y6  
AD3  
AB4  
Y8  
AA2  
AA3  
V5  
V6  
U7  
OLDI0_A0N  
OLDI0_A0P  
OLDI0_A1N  
OLDI0_A1P  
OLDI0_A2N  
OLDI0_A2P  
OLDI0_A3N  
OLDI0_A3P  
OLDI0_A4N  
OLDI0_A4P  
OLDI0_A5N  
OLDI0_A5P  
OLDI0_A6N  
OLDI0_A6P  
OLDI0_A7N  
OLDI0_A7P  
OLDI0_CLK0N  
OLDI0_CLK0P  
OLDI0_CLK1N  
OLDI0_CLK1P  
AA8  
AB6  
AA7  
AC6  
AC5  
AE5  
AD6  
AE6  
AD7  
AD8  
AE7  
AD4  
AE3  
AE4  
AD5  
U6  
W6  
W5  
AA4  
Y5  
AA6  
AA5  
AA10  
Y9  
AA8  
Y8  
V7  
V8  
Y7  
If OLDI0 is not used, leave unconnected.  
AA7  
If VMON_VSYS is not used, this ball must be connected directly to  
VSS.  
H10  
F6  
VMON_VSYS  
If VMON_1P8_SOC and VMON_3P3_SOC are not used to monitor  
the SOC power rails, these balls must still be connected to their  
respective 1.8V and 3.3V power rails.  
G10  
K10  
H9  
K11  
VMON_1P8_SOC  
VMON_3P3_SOC  
(1) To determine which power supply is associated with any IO, see POWER column of the Pin Attributes table.  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
备注  
Internal pull resistors are weak and may not source enough current to maintain a valid logic level for  
some operating conditions. This can be the case when connected to components with leakage to the  
opposite logic level, or when external noise sources couple to signal traces attached to balls which are  
only pulled to a valid logic level by the internal resistor. Therefore, external pull resistors are  
recommended to hold a valid logic level on balls with external connections.  
Many of the device IOs are turned off by default and external pull resistors may be required to hold  
inputs of any attached device in a valid logic state until software initializes the respective IOs. The  
state of configurable device IOs are defined in the BALL STATE DURING RESET RX/TX/PULL and  
BALL STATE AFTER RESET RX/TX/PULL columns of the Pin Attributes table. Any IO with its input  
buffer (RX) turned off is allowed to float without damaging the device. However, any IO with its input  
buffer (RX) turned on shall never be allowed to float to any potential between VILSS and VIHSS. The  
input buffer can enter a high-current state which could damage the IO cell if allowed to float between  
these levels.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1) (2)  
PARAMETER  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX UNIT  
VDD_CORE  
Core supply  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
1.57  
1.57  
1.98  
1.98  
V
V
V
V
V
V
V
V
V
V
VDDR_CORE  
RAM supply  
VDD_CANUART  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0(3)  
VDDS_DDR  
CANUART core supply  
CSIRX0 core supply  
USB0 and USB1 core supply  
DDR Deskew PLL supply  
DDR PHY IO supply  
VDDS_DDR_C  
VDDS_OSC0  
DDR clock IO supply  
MCU_OSC0 supply  
VDDA_MCU  
RCOSC, POR, POK, and MCU PLL analog supply  
MAIN PLL, DDR PLL, DSS PLL0, and DSS PLL1 analog  
supply  
VDDA_PLL0  
-0.3  
1.98  
V
VDDA_PLL1  
VDDA_PLL2  
VDDA_1P8_CSIRX0  
VDDA_1P8_OLDI0  
VDDA_1P8_USB  
VDDA_TEMP0  
VDDA_TEMP1  
VPP  
PER0 PLL and PER1 PLL analog supply  
ARM0 PLL and SMS PLL analog supply  
CSIRX0 1.8 V analog supply  
OLDI0 1.8 V analog supply  
USB0 and USB1 1.8 V analog supply  
TEMP0 analog supply  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.98  
1.98  
1.98  
1.98  
1.98  
1.98  
1.98  
1.98  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
TEMP1 analog supply  
eFuse ROM programming supply  
IO supply for IO MCU  
VDDSHV_MCU  
VDDSHV_CANUART  
VDDSHV0  
IO supply for IO CANUART  
IO supply for IO group 0  
VDDSHV1  
IO supply for IO group 1  
VDDSHV2  
IO supply for IO group 2  
VDDSHV3  
IO supply for IO group 3  
VDDSHV4  
IO supply for IO group 4  
VDDSHV5  
IO supply for IO group 5  
VDDSHV6  
IO supply for IO group 6  
VDDA_3P3_USB  
USB0 and USB1 3.3 V analog supply  
MCU_PORz  
MCU_I2C0_SCL, MCU_I2C0_SDA,  
WKUP_I2C0_SCL, WKUP_I2C0_SDA,  
and EXTINTn  
-0.3  
-0.3  
1.98(4)  
3.63(4)  
V
When operating at 1.8V  
MCU_I2C0_SCL, MCU_I2C0_SDA,  
WKUP_I2C0_SCL, WKUP_I2C0_SDA,  
and EXTINTn  
Steady-state max voltage at all fail-safe IO pins  
When operating at 3.3V  
VMON_1P8_SOC  
VMON_3P3_SOC  
VMON_VSYS(5)  
-0.3  
-0.3  
-0.3  
1.98  
3.63  
1.98  
V
V
V
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
over operating junction temperature range (unless otherwise noted)(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
USB0_VBUS, USB1_VBUS(7)  
-0.3  
3.6  
V
V
Steady-state max voltage at all other IO pins(6)  
IO supply  
voltage + 0.3  
All other IO pins  
-0.3  
20% of IO supply voltage for up to 20%  
of the signal period (see 7-1, IO  
Transient overshoot and undershoot at IO pin  
0.2 × VDD(8)  
V
Transient Voltage Ranges)  
I-Test  
Latch-up performance(9)  
-100  
-55  
100  
1.5 x VDD(8)  
+150  
mA  
V
Over-Voltage (OV) Test  
TSTG  
Storage temperature  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under 7.5, Recommended Operating  
Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be  
fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) The VDDA_DDR_PLL0 power rail is only available on the AMC package. This power rail is internally connected to VDD_CORE in the  
ALW package.  
(4) The absolute maximum ratings for these fail-safe pins depends on their IO supply operating voltage. Therefore, this value is also  
defined by the maximum VIH value found in the I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics section, where  
the electrical characteristics table has separate parameter values for 1.8-V mode and 3.3-V mode.  
(5) The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see 9.2.4, System Power Supply  
Monitor Design Guidelines.  
(6) This parameter applies to all IO pins which are not fail-safe and the requirement applies to all values of IO supply voltage. For  
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be  
0.3 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources  
used to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage  
range, including power supply ramp-up and ramp-down sequences.  
(7) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see 9.2.3, USB Design  
Guidelines.  
(8) VDD is the voltage on the corresponding power-supply pin(s) for the IO.  
(9) For current pulse injection (I-Test):  
Pins stressed per JEDEC JESD78 (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times  
maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.  
For over-voltage performance (Over-Voltage (OV) Test):  
Supplies stressed per JEDEC JESD78 (Class II) and passed specified voltage injection.  
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power supply  
voltage. This allows external voltage sources to be connected to these IO terminals when the respective IO  
power supplies are turned off. The MCU_I2C0_SCL, MCU_I2C0_SDA, WKUP_I2C0_SCL, WKUP_I2C0_SDA,  
EXTINTn, VMON_1P8_SOC, VMON_3P3_SOC, VMON_VSYS, and MCU_PORz are the only fail-safe IO  
terminals. All other IO terminals are not fail-safe and the voltage applied to them should be limited to the value  
defined by the "Steady-state max voltage at all other IO pins" parameter in 7.1.  
Overshoot = 20% of nominal  
IO supply voltage  
Tovershoot  
Tperiod  
Tundershoot  
Undershoot = 20% of nominal  
IO supply voltage  
A. Tovershoot + Tundershoot < 20% of Tperiod  
7-1. IO Transient Voltage Ranges  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.2 ESD Ratings for Devices which are not AEC - Q100 Qualified  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic discharge  
V(ESD)  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
(ESD)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings for AEC - Q100 Qualified Devices in the AMC Package  
VALUE  
±1000  
UNIT  
Human-body model (HBM), per AEC - Q100-002(1)  
Charged-device model (CDM), per AEC - Q100-011  
Corner pins  
(A1, A21, AA1, and  
AA21)  
V(ESD)  
Electrostatic discharge  
±750  
±250  
V
All other pins  
(1) AEC - Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.4 Power-On Hours (POH)  
POWER ON HOURS (POH)(1) (2) (3)  
JUNCTION TEMPERATURE RANGE (TJ)  
LIFETIME (POH)  
100000  
Commercial  
0°C to 95°C  
Extended Industrial  
Automotive  
100000  
40°C to 105°C  
40°C to 125°C  
20000(4)  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted  
temperatures.  
(3) POH is a function of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH.  
(4) Automotive profile is defined as 20000 power on hours with a junction temperature as follows: 5%@-40°C, 65%@70°C, 20%@110°C,  
and 10%@125°C.  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.5 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN(1)  
NOM MAX(1) UNIT  
VDD_CORE(2)  
Core supply  
CSIRX0 core supply  
USB0 and USB1 core supply  
DDR Deskew PLL supply  
0.75-V operation  
0.85-V operation  
0.715  
0.75  
0.79  
V
VDDA_CORE_CSIRX0(2)  
VDDA_CORE_USB(2)  
VDDA_DDR_PLL0(2) (3)  
0.81  
0.85  
0.895  
V
0.75-V operation  
0.85-V operation  
0.715  
0.81  
0.81  
1.06  
1.14  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
see(6)  
1.71  
3.135  
3.135  
0
0.75  
0.85  
0.85  
1.1  
0.79  
0.895  
0.895  
1.17  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD_CANUART(4)  
CANUART core supply  
RAM supply  
VDDR_CORE  
VDDS_DDR(5)  
DDR PHY IO supply  
DDR clock IO supply  
1.1-V operation  
1.2-V operation  
VDDS_DDR_C(5)  
1.2  
1.26  
VDDS_OSC0  
VDDA_MCU  
MCU_OSC0 supply  
1.8  
1.89  
RCOSC, POR, POK, and MCU PLL analog supply  
MAIN PLL, DDR PLL, DSS PLL0, and DSS PLL1 analog supply  
PER0 PLL and PER1 PLL analog supply  
ARM0 PLL and SMS PLL analog supply  
CSIRX0 1.8 V analog supply  
1.8  
1.89  
VDDA_PLL0  
1.8  
1.89  
VDDA_PLL1  
1.8  
1.89  
VDDA_PLL2  
1.8  
1.89  
VDDA_1P8_CSIRX0  
VDDA_1P8_OLDI0  
VDDA_1P8_USB  
VDDA_TEMP0  
VDDA_TEMP1  
VPP  
1.8  
1.89  
OLDI0 1.8 V analog supply  
1.8  
1.89  
USB0 and USB1 1.8 V analog supply  
TEMP0 analog supply  
1.8  
1.89  
1.8  
1.89  
TEMP1 analog supply  
1.8  
1.89  
eFuse ROM programming supply  
Voltage monitor for 1.8 V SoC power supply  
USB0 and USB1 3.3 V analog supply  
Voltage monitor for 3.3 V SoC power supply  
Voltage monitor pin  
see(6)  
see(6)  
VMON_1P8_SOC  
VDDA_3P3_USB  
VMON_3P3_SOC  
VMON_VSYS  
USB0_VBUS  
1.8  
1.89  
3.3  
3.465  
3.465  
1
3.3  
see(7)  
see(8)  
see(8)  
1.8  
USB0 Level-shifted VBUS Input  
0
3.465  
3.465  
1.89  
USB1_VBUS  
USB1 Level-shifted VBUS Input  
0
1.8-V operation  
Dual-voltage IO supply  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
VDDSHV_CANUART(9)  
VDDSHV_MCU  
VDDSHV0  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
VDDSHV1  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
VDDSHV2  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
VDDSHV3  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
VDDSHV4  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
VDDSHV5  
3.3-V operation  
3.3  
3.465  
1.89  
1.8-V operation  
Dual-voltage IO supply  
1.8  
VDDSHV6  
3.3-V operation  
3.3  
3.465  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
over operating junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN(1)  
NOM MAX(1) UNIT  
Automotive  
-40  
125  
105  
95  
°C  
°C  
°C  
Extended  
Industrial  
TJ  
Operating junction temperature range  
-40  
0
Commercial  
(1) The voltage at the device ball must never drop below the MIN voltage or rise above the MAX voltage for any amount of time during  
normal device operation.  
(2) VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 shall be sourced from the same power source.  
Care should be taken to ensure that voltage differential between VDD_CORE and VDDA_CORE_USB is within +/- 1%.  
(3) The VDDA_DDR_PLL0 power rail is only available on the AMC package. This power rail is internally connected to VDD_CORE in the  
ALW package.  
(4) VDD_CANUART shall be connected to an always on power source when using Partial IO low power mode. VDD_CANUART shall be  
connected to the same power source as VDD_CORE, VDDA_CORE_CSI_DSI, VDDA_CORE_USB, and VDDA_DDR_PLL0 when not  
using Partial IO low power mode.  
(5) VDDS_DDR and VDDS_DDR_C shall be sourced from the same power source.  
(6) Refer to the Recommended Operating Conditions for OTP eFuse Programming table for VPP supply voltages based on eFuse usage.  
(7) The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see 9.2.4, System Power Supply  
Monitor Design Guidelines.  
(8) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see 9.2.3, USB Design  
Guidelines.  
(9) VDDSHV_CANUART shall be connected to an always on power sources when using Partial IO low power mode. VDDSHV_CANUART  
shall be connected to any valid IO power source when not using Partial IO low power mode.  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Operating Performance Points  
This section describes maximum operating conditions of the device in 7-1 and describes each Operating  
Performance Point (OPP) for processor clocks and device core clocks in 7-2.  
7-1. Device Speed Grades  
MAXIMUM  
MAXIMUM OPERATING FREQUENCY (MHz)  
TRANSITION  
RATE (MT/s)(2)  
Speed  
Grade  
VDD_CORE  
(V)(1)  
Device/  
Power  
(Cortex- Manager  
SMS  
Subsystem  
(Dual  
Cortex-  
M4F)  
A53SS  
(Cortex- GPU PRU  
A53x)  
Main  
Infra  
(CBA)  
MCUSS  
OCSRAM  
DDR4  
LPDDR4  
M4F)  
(Cortex-  
R5F)  
G
K
S
0.75/0.85  
0.75/0.85  
0.75/0.85  
0.75/0.85  
0.85  
300  
800  
500  
500  
500  
250  
250  
333  
250  
250  
250  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
1600  
1600  
1600  
1600  
1600  
1600  
1000  
1250  
1400  
T
500  
333  
250  
400  
400  
400  
400  
1600  
1600  
(1) Nominal operating voltage, see Recommended Operating Conditions.  
(2) Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation.  
Refer to DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR frequency.  
7-2. Device Operating Performance Points  
FIXED OPERATING FREQUENCY OPTIONS (MHz)(2)  
MT/s(3)  
DEVICE/  
POWER  
MANAGER  
OPP  
High  
Low  
A53SS(1)  
MAIN  
INFRA (CBA)  
SMS /  
SMS CBA  
GPU  
PRU  
MCUSS  
OCSRAM  
DDR4  
LPDDR4  
From  
ARM0  
PLL  
Bypass  
to  
Speed  
Grade  
Maximum  
1600  
(Max)  
500  
250  
125  
400  
133  
400  
400  
From  
DDR  
333,  
250,  
or  
400  
or  
200  
PLL  
Bypass(4)  
to  
1600  
250  
(DRAM DLL  
Bypass)  
200  
N/A  
133  
133  
(1) Default operating frequency, set by software at boot. Supports Dynamic Frequency Scaling after boot.  
(2) Fixed operating frequency, set by software at boot.  
(3) Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation.  
Refer to DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR frequency.  
(4) The DDR PLL output, which sources DDR0_CK0 and DDR0_CK0_n, is typically defined in units of frequency. So the "DDR PLL  
Bypass" transaction rate is equal to 2x the DDR PLL output frequency when operating in bypass mode.  
7.7 Power Consumption Summary  
For information on the device power consumption, see the AM62x Power Estimation Tool application note.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.8 Electrical Characteristics  
备注  
The interfaces or signals described in 7.8 correspond to the interfaces or signals available in  
multiplexing mode 0 (Primary Signal Function).  
All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical  
characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC  
electrical characteristics are specified for the different multiplexing modes (Functions).  
7.8.1 I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8 V MODE  
VIL  
Input Low Voltage  
0.3 × VDD(1)  
0.3 × VDD(1)  
V
V
VILSS  
Input Low Voltage Steady State  
Input High Voltage  
VIH  
0.7 × VDD(1)  
0.7 × VDD(1)  
0.1 × VDD(1)  
1.98(2)  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0 V  
VOL  
Output Low Voltage  
0.2 × VDD(1)  
V
(3)  
IOL  
Low Level Output Current  
VOL(MAX)  
10  
mA  
18f(4)  
or  
(5)  
SRI  
Input Slew Rate  
V/s  
1.8E+6  
3.3 V MODE (6)  
VIL  
Input Low Voltage  
0.3 × VDD(1)  
0.25 × VDD(1)  
3.63(2)  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.7 × VDD(1)  
0.7 × VDD(1)  
0.05 × VDD(1)  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
mV  
VI = 3.3 V  
or  
VI = 0 V  
IIN  
Input Leakage Current.  
±10  
0.4  
µA  
VOL  
Output Low Voltage  
V
(3)  
IOL  
Low Level Output Current  
VOL(MAX)  
10  
mA  
33f(4)  
or  
(5)  
SRI  
Input Slew Rate  
8E+7  
V/s  
3.3E+6  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
(2) This value also defines the Absolute Maximum Ratings value the IO.  
(3) The IOL parameter defines the minimum Low Level Output Current for which the device is able to maintain the specified VOL value. The  
value defined by this parameter should be considered the maximum current available to a system implementation which needs to  
maintain the specified VOL value for attached components.  
(4) f = toggle frequency of the input signal in Hz.  
(5) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
(6) I2C Hs-mode is not supported when operating the IO in 3.3 V mode.  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.8.2 Fail-Safe Reset (FS RESET) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.3 ×  
VDDS_OSC0  
VIL  
Input Low Voltage  
V
0.3 ×  
VDDS_OSC0  
VILSS  
VIH  
VIHSS  
VHYS  
Input Low Voltage Steady State  
Input High Voltage  
V
V
0.7 ×  
VDDS_OSC0  
0.7 ×  
VDDS_OSC0  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
200  
mV  
VI = 1.8 V  
or  
VI = 0 V  
IIN  
Input Leakage Current.  
Input Slew Rate  
±10  
µA  
18f(1)  
or  
(2)  
SRI  
V/s  
1.8E+6  
(1) f = toggle frequency of the input signal in Hz.  
(2) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
7.8.3 High-Frequency Oscillator (HFOSC) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.35 ×  
VDDS_OSC0  
VIL  
Input Low Voltage  
V
0.65 ×  
VDDS_OSC0  
VIH  
Input High Voltage  
V
VHYS  
Input Hysteresis Voltage  
49  
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
7.8.4 Low-Frequency Oscillator (LFXOSC) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.30 ×  
VDDS_OSC0  
VIL  
VIH  
Input Low Voltage  
V
0.70 ×  
VDDS_OSC0  
Input High Voltage  
V
Active Mode  
85  
mV  
mV  
VHYS  
Input Hysteresis Voltage  
Bypass Mode  
324  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
MAX UNIT  
7.8.5 SDIO Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.8 V MODE  
VIL  
Input Low Voltage  
0.58  
0.58  
V
V
VILSS  
Input Low Voltage Steady State  
Input High Voltage  
VIH  
1.27  
1.7  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0 V  
RPU  
RPD  
VOL  
Pull-up Resistor  
40  
40  
50  
50  
60  
60  
kΩ  
kΩ  
V
Pull-down Resistor  
Output Low Voltage  
0.45  
VDDSHV5 -  
0.45  
VOH  
Output High Voltage  
V
(1)  
IOL  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MIN)  
4
4
mA  
mA  
(1)  
IOH  
18f(2)  
or  
(3)  
SRI  
Input Slew Rate  
V/s  
1.8E+6  
3.3 V MODE  
0.25 ×  
VDDSHV5  
VIL  
Input Low Voltage  
V
V
V
0.15 ×  
VDDSHV5  
VILSS  
VIH  
VIHSS  
VHYS  
Input Low Voltage Steady State  
Input High Voltage  
0.625 ×  
VDDSHV5  
0.625 ×  
VDDSHV5  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
VI = 3.3 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0 V  
RPU  
RPD  
Pull-up Resistor  
40  
40  
50  
50  
60  
60  
kΩ  
kΩ  
Pull-down Resistor  
0.125 ×  
VDDSHV5  
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
V
V
0.75 ×  
VDDSHV5  
(1)  
IOL  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MIN)  
6
mA  
mA  
(1)  
IOH  
10  
33f(2)  
or  
(3)  
SRI  
Input Slew Rate  
V/s  
3.3E+6  
(1) The IOL and IOH parameters define the minimum Low Level Output Current and High Level Output Current for which the device is able  
to maintain the specified VOL and VOH values. Values defined by these parameters should be considered the maximum current  
available to a system implementation which needs to maintain the specified VOL and VOH values for attached components.  
(2) f = toggle frequency of the input signal in Hz.  
(3) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.8.6 LVCMOS Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8-V MODE  
VIL  
Input Low Voltage  
0.35 × VDD(1)  
0.3 × VDD(1)  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.65 × VDD(1)  
0.85 × VDD(1)  
150  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
RPU  
RPD  
VOL  
VOH  
Pull-up Resistor  
15  
15  
22  
22  
30  
30  
kΩ  
kΩ  
V
Pull-down Resistor  
Output Low Voltage  
Output High Voltage  
Low Level Output Current  
High Level Output Current  
0.45  
VDD(1) - 0.45  
V
(2)  
IOL  
VOL(MAX)  
VOH(MIN)  
3
3
mA  
mA  
(2)  
IOH  
18f(3)  
or  
(4)  
SRI  
Input Slew Rate  
V/s  
1.8E+6  
3.3-V MODE  
VIL  
Input Low Voltage  
0.8  
0.6  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
2.0  
2.0  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
VI = 3.3 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
RPU  
RPD  
VOL  
VOH  
Pull-up Resistor  
15  
15  
22  
22  
30  
30  
kΩ  
kΩ  
V
Pull-down Resistor  
Output Low Voltage  
Output High Voltage  
Low Level Output Current  
High Level Output Current  
0.4  
2.4  
5
V
(2)  
IOL  
VOL(MAX)  
VOH(MIN)  
mA  
mA  
(2)  
IOH  
9
33f(3)  
or  
(4)  
SRI  
Input Slew Rate  
V/s  
3.3E+6  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
(2) The IOL and IOH parameters define the minimum Low Level Output Current and High Level Output Current for which the device is able  
to maintain the specified VOL and VOH values. Values defined by these parameters should be considered the maximum current  
available to a system implementation which needs to maintain the specified VOL and VOH values for attached components.  
(3) f = toggle frequency of the input signal in Hz.  
(4) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.8.7 OLDI LVDS (OLDI) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
Voltage, Output High  
1.5  
Voltage, Output Low  
0.925  
1.125  
V
VOCM  
Voltage, Output Common Mode  
1.375  
30  
V
Delta Voltage, Output Common Mode  
(Difference between high and low steady-states)  
mV  
Differential Load = 100Ω  
ΔVOCM  
VOD  
Voltage, Output Differential  
250  
-10  
400  
50  
mV  
mV  
Delta Voltage, Output Differential  
(Difference between high and low steady-states)  
ΔVOD  
V = VSS  
Differential Load = 100Ω  
-5  
mA  
µA  
IOS  
Current, Output Short-Circuit  
Current, Output High-Z  
V = VDD(1)  
or  
4
40  
IOZ  
V = VSS  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
7.8.8 CSI-2 (D-PHY) Electrical Characteristics  
备注  
CSIRX0 is compliant with MIPI DPHY v1.2 dated August 1, 2014 including ECNs and Errata as  
applicable  
7.8.9 USB2PHY Electrical Characteristics  
备注  
The USB0 and USB1 interfaces are compliant with Universal Serial Bus Revision 2.0 Specification  
dated April 27, 2000 including ECNs and Errata as applicable.  
7.8.10 DDR Electrical Characteristics  
备注  
The DDR interface is compatible with DDR4 devices that are JESD79-4B standard-compliant, and  
LPDDR4 devices that are JESD209-4B standard-compliant  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.9 VPP Specifications for One-Time Programmable (OTP) eFuses  
This section specifies the operating conditions required for programming the OTP eFuses.  
7.9.1 Recommended Operating Conditions for OTP eFuse Programming  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
VDD_CORE  
Supply voltage range for the core domain during OTP  
operation; OPP NOM (BOOT)  
V
See 7.5  
VPP  
Supply voltage range for the eFuse ROM domain during  
normal operation without hardware support to program  
eFuse ROM  
NC(1)  
V
V
V
Supply voltage range for the eFuse ROM domain during  
normal operation with hardware support to program eFuse  
ROM  
0
Supply voltage range for the eFuse ROM domain during  
OTP programming(2)  
1.71  
1.8  
1.89  
I(VPP)  
SR(VPP)  
Tj  
VPP current  
400  
6E + 4  
85  
mA  
V/s  
°C  
VPP Slew Rate  
Operating junction temperature range while programming  
eFuse ROM.  
0
25  
(1) NC indicates No Connect.  
(2) Supply voltage range includes DC errors and peak-to-peak noise.  
7.9.2 Hardware Requirements  
The following hardware requirements must be met when programming keys in the OTP eFuses:  
The VPP power supply must be disabled when not programming OTP registers.  
The VPP power supply must be ramped up after the proper device power-up sequence (for more details, see  
7.11.2.2, Power Supply Sequencing).  
7.9.3 Programming Sequence  
Programming sequence for OTP eFuses:  
Power on the board per the power-up sequencing. No voltage should be applied on the VPP terminal during  
power up and normal operation.  
Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP  
software package).  
Apply the voltage on the VPP terminal according to the specification in 7.9.1.  
Run the software that programs the OTP registers.  
After validating the content of the OTP registers, remove the voltage from the VPP terminal.  
7.9.4 Impact to Your Hardware Warranty  
You accept that e-Fusing the TI Devices with security keys permanently alters them. You acknowledge that the  
e-Fuse can fail, for example, due to incorrect or aborted program sequence or if you omit a sequence step.  
Further the TI Device may fail to secure boot if the error code correction check fails for the Production Keys or if  
the image is not signed and optionally encrypted with the current active Production Keys. These types of  
situations will render the TI Device inoperable and TI will be unable to confirm whether the TI Devices conformed  
to their specifications prior to the attempted e-Fuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY  
(WARRANTY OR OTHERWISE) FOR ANY TI DEVICES THAT HAVE BEEN e-FUSED WITH SECURITY KEYS.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.10 Thermal Resistance Characteristics  
This section provides the thermal resistance characteristics used on this device.  
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below  
the TJ value identified in 7.5, Recommended Operating Conditions.  
7.10.1 Thermal Resistance Characteristics for ALW and AMC Packages  
It is recommended to perform thermal simulations at the system level with the worst case device power consumption.  
ALW  
AMC  
AIR  
NO.  
PARAMETER  
DESCRIPTION  
PACKAGE  
PACKAGE  
FLOW  
°C/W(1) (2)  
°C/W(1) (2)  
(m/s)(3)  
T1  
T2  
Junction-to-case  
Junction-to-board  
Junction-to-free air  
3.7  
8.3  
1.2  
3.9  
N/A  
N/A  
0
RΘJC  
RΘJB  
RΘJA  
T3  
22.3  
15.7  
14.5  
13.9  
0.2  
13.3  
9.7  
T4  
1
T5  
Junction-to-moving air  
8.7  
2
T6  
8.1  
3
T7  
0.73  
0.75  
0.76  
0.77  
3.7  
0
T8  
0.3  
1
Junction-to-package top  
Junction-to-board  
ΨJT  
T9  
0.3  
2
T10  
T11  
T12  
T13  
T14  
0.3  
3
8.2  
0
7.7  
3.4  
1
ΨJB  
7.6  
3.3  
2
7.5  
3.3  
3
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Packages  
(3) m/s = meters per second.  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11 Timing and Switching Characteristics  
备注  
The Timing Requirements and Switching Characteristics values may change following the silicon  
characterization result.  
备注  
The default SLEWRATE settings in each pad configuration register must be used to ensure timings,  
unless specific instructions are given otherwise.  
7.11.1 Timing Parameters and Information  
The timing parameter symbols used in 7.11, Timing and Switching Characteristics are created in accordance  
with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies have been  
abbreviated in 7-3:  
7-3. Timing Parameters Subscripts  
SYMBOL  
PARAMETER  
Cycle time (period)  
Delay time  
c
d
dis  
en  
h
Disable time  
Enable time  
Hold time  
su  
START  
t
Setup time  
Start bit  
Transition time  
Valid time  
v
w
Pulse duration (width)  
Unknown, changing, or don't care level  
Fall time  
X
F
H
High  
L
Low  
R
Rise time  
V
Valid  
IV  
AE  
FE  
LE  
Z
Invalid  
Active Edge  
First Edge  
Last Edge  
High impedance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.2 Power Supply Requirements  
This section describes the power supply requirements to ensure proper device operation.  
备注  
All power balls must be supplied with the voltages specified in the Recommended Operating  
Conditions section, unless otherwise specified in Signal Descriptions and Pin Connectivity  
Requirements.  
7.11.2.1 Power Supply Slew Rate Requirement  
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the  
maximum slew rate of supplies to be less than 18 mV/µs. For instance, as shown in 7-2, TI recommends  
having the supply ramp slew for a 1.8-V supply of more than 100 µs.  
7-2 describes the Power Supply Slew Rate Requirement in the device.  
Supply value  
t
slew rate < 18 mV/μs  
slew > (supply value) / (18 mV/μs)  
or  
supply value × 55.6 μs/V  
SPRT740_ELCH_06  
7-2. Power Supply Slew and Slew Rate  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.2.2 Power Supply Sequencing  
This section describes power sequence requirements using power sequence diagrams and associated notes.  
Each power sequence diagram demonstrates the sequential order expected for each device power rail. This is  
done by assigning each device power rail to one or more waveform. A dual-voltage power rail may be associated  
with more than one waveform and the associated note will describe which waveform is applicable. Each  
waveform defines a transition region for the associated power rails and shows its sequential relationship to the  
transition regions of other power rails. The notes associated with the power sequence diagram provides further  
detail of these requirements. See the Power-up Sequence section for details on power-up requirements, and the  
Power-down Sequence section for details on power-down requirements.  
Two types of power supply transition regions are used to simplify the power supply sequencing diagrams. The  
legends shown in 7-3 and 7-4 along with their descriptions are provided to clarify what each transition  
regions represents.  
7-3 defines a transition region with multiple power rails which may be sourced from multiple power supplies or  
a single power supply. Transitions shown within the transition region represent a use case where multiple power  
supplies are used to source power rails associated with this waveform, and these power supplies are allowed to  
ramp at different times within the region since they do not have any specific sequence requirement relative to  
each other.  
7-3. Multiple Power Supply Transition Legend  
7-4 defines a transition region with one or more power rails which must be sourced from a single common  
power supply. No transitions are shown within the region to represent a single ramp within the transition region.  
7-4. Single Common Power Supply Transition Legend  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.2.2.1 Power-Up Sequencing  
7-4 and 7-5 describes the device power-up sequencing.  
备注  
The power supply sequencing requirements defined in this section does not include entry or exit from  
low power modes. See 7.11.2.2.3, Partial IO Power Sequencing for more information on power  
supply sequence requirements when entering or exiting low power modes.  
7-4. Power-Up Sequencing Supply / Signal Assignments  
See: 7-5  
WAVEFORM  
SUPPLY / SIGNAL NAME  
A
B
VSYS(1), VMON_VSYS(2)  
VDDSHV_CANUART(3), VDDSHV_MCU(3), VDDSHV0(3), VDDSHV1(3), VDDSHV2(3), VDDSHV3(3), VDDA_3P3_USB,  
VMON_3P3_SOC(4)  
VDDSHV_CANUART(5), VDDSHV_MCU(5), VDDSHV0(5), VDDSHV1(5), VDDSHV2(5), VDDSHV3(5), VDDA_MCU,  
VDDS_OSC0, VDDA_PLL0, VDDA_PLL1, VDDA_PLL2, VDDA_1P8_CSIRX0, VDDA_1P8_USB, VDDA_TEMP0,  
VDDA_TEMP1, VMON_1P8_SOC(6)  
C
D
E
F
VDDSHV4(7), VDDSHV5(7), VDDSHV6(7)  
VDDS_DDR(8), VDDS_DDR_C(8)  
VDD_CANUART(9)  
G
VDD_CANUART(10), VDD_CORE(10) (12), VDDA_CORE_CSIRX0(10), VDDA_CORE_USB0(10), VDDA_DDR_PLL0(10)  
VDD_CANUART(11), VDD_CORE(11) (12), VDDA_CORE_CSIRX0(11), VDDA_CORE_USB0(11), VDDA_DDR_PLL0(11)  
VDDR_CORE(12)  
,
H
I
VPP(13)  
J
K
MCU_PORz  
MCU_OSC0_XI, MCU_OSC0_XI  
(1) VSYS represents the name of a supply which sources power to the entire system. This supply is expected to be a pre-regulated supply  
that sources power management devices which source all other supplies.  
(2) VMON_VSYS input is used to monitor VSYS via an external resistor divider circuit. For more information, see the System Power  
Supply Monitor Design Guidelines.  
(3) VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-3] are dual voltage IO supplies which can be operated at 1.8V or 3.3V  
depending on the application requirements.  
VDDSHV_CANUART shall be connected to an always-on power source when using Partial IO low power mode, or connected to any  
valid IO power source when not using Partial IO low power mode. When VDDSHV_CANUART is not connected to an always-on power  
source and is operating at 3.3V, it shall be ramped up with other 3.3V supplies during the 3.3V ramp period defined by this waveform.  
When any of the VDDSHV_MCU and VDDSHVx [x=0-3] IO supplies are operating at 3.3V, they shall be ramped up with other 3.3V  
supplies during the 3.3V ramp period defined by this waveform.  
(4) The VMON_3P3_SOC input is used to monitor supply voltage and shall be connected to the respective 3.3V supply source.  
(5) VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-3] are dual voltage IO supplies which can be operated at 1.8V or 3.3V  
depending on the application requirements.  
VDDSHV_CANUART shall be connected to an always-on power source when using Partial IO low power mode, or connected to any  
valid IO power source when not using Partial IO low power mode. When VDDSHV_CANUART is not connected to an always-on power  
source and is operating at 1.8V, it shall be ramped up with other 1.8V supplies during the 1.8V ramp period defined by this waveform.  
When any of the VDDSHV_MCU and VDDSHVx [x=0-3] IO supplies are operating at 1.8V, they shall be ramped up with other 1.8V  
supplies during the 1.8V ramp period defined by this waveform.  
(6) The VMON_1P8_SOC input is used to monitor supply voltage and shall be connected to the respective 1.8V supply source.  
(7) VDDSHV4, VDDSHV5, and VDDSHV6 were designed to support power-up, power-down, or dynamic voltage change without any  
dependency on other power rails. This capability is required to support UHS-I SD Cards.  
(8) VDDS_DDR and VDDS_DDR_C are expected to be powered by the same source such that they ramp together.  
(9) VDD_CANUART shall be connected to an always-on power source when using Partial IO low power mode.  
When VDD_CANUART is connected to an always-on power source, the potential applied to VDD_CORE must never be greater than  
the potential applied to VDD_CANUART + 0.18V during power-up or power-down. This requires VDD_CANUART to ramp up before  
and ramp down after VDD_CORE. VDD_CANUART does not have any ramp requirements beyond the one defined for VDD_CORE.  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
(10) VDD_CANUART shall be connected to the same power source as VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and  
VDDA_DDR_PLL0 when not using Partial IO low power mode.  
VDD_CANUART, VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 can be operated at 0.75V or  
0.85V. When these supplies are operating at 0.75V, they shall be ramped up prior to VDDR_CORE as defined by this waveform.  
(11) VDD_CANUART shall be connected to the same power source as VDD_CORE, VDD_CORE, VDDA_CORE_CSIRX0,  
VDDA_CORE_USB, and VDDA_DDR_PLL0 when not using Partial IO low power mode.  
VDD_CANUART, VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 can be operated at 0.75V or  
0.85V. When these supplies are operating at 0.85V, they shall be powered from the same source as VDDR_CORE and ramped during  
the 0.85V ramp period defined by this waveform.  
(12) The potential applied to VDDR_CORE must never be greater than the potential applied to VDD_CORE + 0.18V during power-up or  
power-down. This requires VDD_CORE to ramp up before and ramp down after VDDR_CORE when VDD_CORE is operating at  
0.75V. VDD_CORE does not have any ramp requirements beyond the one defined for VDDR_CORE.  
VDD_CORE and VDDR_CORE are expected to be powered by the same source so they ramp together when VDD_CORE is  
operating at 0.85V.  
(13) VPP is the 1.8V eFuse programming supply, which shall be left floating (HiZ) or grounded during power-up/down sequences and  
during normal device operation. This supply shall only be sourced while programming eFuse.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
VSYS  
Waveform A  
Waveform B  
VMON_VSYS  
Waveform C  
Waveform D  
Waveform E  
Waveform F  
Waveform G  
Waveform H  
Waveform I  
Hi-Z  
Waveform J  
Waveform K  
AM62Ax_ELCH_01  
7-5. Power-Up Sequencing  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.2.2.2 Power-Down Sequencing  
7-5 and 7-6 describes the device power-down sequencing.  
备注  
The power supply sequencing requirements defined in this section does not include entry or exit from  
low power modes. See 7.11.2.2.3, Partial IO Power Sequencing for more information on power  
supply sequence requirements when entering or exiting low power modes.  
7-5. Power-Down Sequencing Supply / Signal Assignments  
See: 7-6  
WAVEFORM  
SUPPLY / SIGNAL NAME  
A
B
VSYS, VMON_VSYS  
VDDSHV_CANUART(1), VDDSHV_MCU(1), VDDSHV0(1), VDDSHV1(1), VDDSHV2(1), VDDSHV3(1), VDDA_3P3_USB,  
VMON_3P3_SOC  
VDDSHV_CANUART(2), VDDSHV_MCU(2), VDDSHV0(2), VDDSHV1(2), VDDSHV2(2), VDDSHV3(2), VDDA_MCU,  
VDDS_OSC0, VDDA_PLL0, VDDA_PLL1, VDDA_PLL2, VDDA_1P8_CSIRX0, VDDA_1P8_USB, VDDA_TEMP0,  
VDDA_TEMP1, VMON_1P8_SOC  
C
D
E
F
VDDSHV4(3), VDDSHV5(3), VDDSHV6(3)  
VDDS_DDR, VDDS_DDR_C  
VDD_CANUART(4)  
G
VDD_CANUART(5), VDD_CORE(5), VDDA_CORE_CSIRX0(5), VDDA_CORE_USB0(5), VDDA_DDR_PLL0(5)  
VDD_CANUART(6), VDD_CORE(6), VDDA_CORE_CSIRX0(6), VDDA_CORE_USB0(6), VDDA_DDR_PLL0(6)  
VDDR_CORE  
,
H
I
VPP  
J
K
MCU_PORz  
MCU_OSC0_XI, MCU_OSC0_XI  
(1) VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-3] when operating at 3.3V.  
(2) VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-3] when operating at 1.8V.  
(3) VDDSHV4, VDDSHV5, and VDDSHV6 were designed to support power-up, power-down, or dynamic voltage change without any  
dependency on other power rails. This capability is required to support UHS-I SD Cards.  
(4) VDDSHV_CANUART when connected to an always-on power source for Partial IO low power mode.  
(5) VDD_CANUART, VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB0, and VDDA_DDR_PLL0 when operating at 0.75V  
(6) VDD_CANUART, VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB0, and VDDA_DDR_PLL0 when operating at 0.85V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
VSYS  
VMON_VSYS  
Waveform A  
Waveform B  
Waveform C  
Waveform D  
Waveform E  
Waveform F  
Waveform G  
Waveform H  
Waveform I  
Hi-Z  
Waveform J  
Waveform K  
AM62Ax_ELCH_02  
7-6. Power-Down Sequencing  
Copyright © 2023 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.2.2.3 Partial IO Power Sequencing  
This section describes power supply sequence requirements when entering or exiting low power modes.  
For more information on low power modes supported by this device and the names assigned to each low power  
mode, see the Power Modes section in the Device Configuration chapter of the Technical Reference Manual.  
Partial IO is the only low power mode that requires power supply changes to the device power rails. All power  
supply rails except VDD_CANUART and VDDSHV_CANUART are turned off when operating in Partial IO mode.  
The power sequence required to enter Partial IO is the same sequence defined in 7.11.2.2.2, Power-Down  
Sequencing with the exception of VDD_CANUART and VDDSHV_CANUART, which remain powered. The  
power sequence required to exit Partial IO is the same sequence defined in 7.11.2.2.1, Power-Up Sequencing  
with the exception of VDD_CANUART and VDDSHV_CANUART, which are already powered.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.3 System Timing  
For more details about features and additional description information on the subsystem multiplexing signals,  
see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.11.3.1 Reset Timing  
Tables and figures provided in this section define timing conditions, timing requirements, and switching  
characteristics for reset related signals.  
7-6. Reset Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
VDD(1) = 1.8V  
VDD(1) = 3.3V  
0.0033  
0.0018  
V/ns  
V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30 pF  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
7-7. MCU_PORz Timing Requirements  
see 7-7  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Hold time, MCU_PORz active (low) at Power-up  
after supplies valid (using external crystal circuit)  
RST1  
9500000  
ns  
th(SUPPLIES_VALID - MCU_PORz)  
Hold time, MCU_PORz active (low) at Power-up  
after supplies valid and external clock stable (using  
external LVCMOS clock source)  
RST2  
1200  
1200  
ns  
ns  
Pulse Width, MCU_PORz low after Power-up  
(without removal of Power or system reference  
clock MCU_OSC0_XI/XO)  
RST3 tw(MCU_PORzL)  
7-7. MCU_PORz Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-8. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see 7-8  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
MCU_RESETSTATz active (low)  
RST4 td(MCU_PORzL-MCU_RESETSTATzL)  
RST5 td(MCU_PORzH-MCU_RESETSTATzH)  
RST6 td(MCU_PORzL-RESETSTATzL)  
RST7 td(MCU_PORzH-RESETSTATzH)  
RST8 tw(MCU_RESETSTATzL)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
MCU_RESETSTATz inactive (high)  
6120*S(1)  
0
ns  
ns  
ns  
ns  
Delay time, MCU_PORz active (low) to  
RESETSTATz active (low)  
Delay time, MCU_PORz inactive (high) to  
RESETSTATz inactive (high)  
9195*S(1)  
966*S(1)  
Pulse Width, MCU_RESETSTATz low  
(SW_MCU_WARMRST)  
Pulse Width, RESETSTATz low  
(SW_MCU_WARMRST, SW_MAIN_PORz, or  
SW_MAIN_WARMRST)  
RST9 tw(RESETSTATzL)  
4040*S  
ns  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
7-8. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-9. MCU_RESETz Timing Requirements  
see 7-9  
NO.  
PARAMETER  
MIN  
MAX UNIT  
(1)  
RST10 tw(MCU_RESETzL)  
Pulse Width, MCU_RESETz active (low)  
1200  
ns  
(1) This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
7-10. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see 7-9  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_RESETz active (low) to  
MCU_RESETSTATz active (low)  
RST11 td(MCU_RESETzL-MCU_RESETSTATzL)  
0
ns  
Delay time, MCU_RESETz inactive (high) to  
MCU_RESETSTATz inactive (high)  
RST12 td(MCU_RESETzH-MCU_RESETSTATzH)  
RST13 td(MCU_RESETzL-RESETSTATzL)  
966*S(1)  
960  
ns  
ns  
ns  
Delay time, MCU_RESETz active (low) to  
RESETSTATz active (low)  
RST14 td(MCU_RESETzH-RESETSTATzH)  
Delay time, MCU_RESETz inactive (high) to  
RESETSTATz inactive (high)  
4040*S(1)  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
7-9. MCU_RESETz, MCU_RESETSTATz, and RESETSTATz Timing Requirements and Switching  
Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-11. RESET_REQz Timing Requirements  
see 7-10  
NO.  
PARAMETER  
MIN  
MAX UNIT  
(1)  
RST15 tw(RESET_REQzL)  
Pulse Width, RESET_REQz active (low)  
1200  
ns  
(1) This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
7-12. RESETSTATz Switching Characteristics  
see 7-10  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, RESET_REQz active (low) to  
RESETSTATz active (low)  
RST16 td(RESET_REQzL-RESETSTATzL)  
900*T(1)  
ns  
Delay time, RESET_REQz inactive (high) to  
RESETSTATz inactive (high)  
RST17 td(RESET_REQzH-RESETSTATzH)  
4040*S(2)  
ns  
(1) T = Reset Isolation Time (Software Dependent)  
(2) S = MCU_OSC0_XI/XO clock period in ns.  
7-10. RESET_REQz and RESETSTATz Timing Requirements and Switching Characteristics  
7-13. EMUx Timing Requirements  
see 7-11  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Setup time, EMU[1:0] before MCU_PORz inactive  
(high)  
RST18 tsu(EMUx-MCU_PORz)  
3*S(1)  
ns  
Hold time, EMU[1:0] after MCU_PORz inactive  
(high)  
RST19 th(MCU_PORz - EMUx)  
10  
ns  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
7-11. EMUx Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-14. BOOTMODE Timing Requirements  
see 7-12  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Setup time, BOOTMODE[15:00] before  
PORz_OUT high (External MCU PORz event or  
Software SW_MAIN_PORz)  
RST23 tsu(BOOTMODE-PORz_OUT)  
3*S(1)  
ns  
Hold time, BOOTMODE[15:00] after PORz_OUT  
high (External MCU PORz event, or Software  
SW_MAIN_PORz)  
RST24 th(PORz_OUT - BOOTMODE)  
0
ns  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
7-15. PORz_OUT Switching Characteristics  
see 7-12  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
PORz_OUT active (low)  
RST25 td(MCU_PORzL-PORz_OUT)  
RST26 td(MCU_PORzH-PORz_OUT)  
RST27 tw(PORz_OUTL)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
PORz_OUT inactive (high)  
1840  
1200  
ns  
ns  
Pulse Width, PORz_OUT low (MCU_PORz or  
SW_MAIN_PORz)  
7-12. BOOTMODE Timing Requirements and PORz_OUT Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.3.2 Error Signal Timing  
Tables and figures provided in this section define timing conditions and switching characteristics for  
MCU_ERRORn.  
7-16. Error Signal Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30 pF  
7-17. MCU_ERRORn Switching Characteristics  
see 7-13  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Cycle time minimum, MCU_ERRORn (PWM  
mode enabled)  
ERR1 tc(MCU_ERRORn)  
ERR2 tw(MCU_ERRORn)  
td (ERROR_CONDITION-  
(P*H)+(P*L)(1) (3) (4)  
P*R(1) (2)  
ns  
Pulse width minimum, MCU_ERRORn active  
(PWM mode disabled)(5)  
ns  
ns  
Delay time, ERROR CONDITION to  
MCU_ERRORn active(5)  
ERR3  
50*P(1)  
MCU_ERRORnL)  
(1) P = ESM functional clock period in ns.  
(2) R = Error Pin Counter Pre-Load Register count value.  
(3) H = Error Pin PWM High Pre-Load Register count value.  
(4) L = Error Pin PWM Low Pre-Load Register count value.  
(5) When PWM mode is enabled, MCU_ERRORn stops toggling after ERR3 and will maintain its value (either high or low) until the error is  
cleared. When PWM mode is disabled, MCU_ERRORn is active low.  
Internal Error Condition  
(Active High)  
ERR1  
MCU_ERRORn  
(PWM Mode Enabled)  
ERR2  
ERR3  
MCU_ERRORn  
(PWM Mode Disabled)  
7-13. MCU_ERRORn Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.3.3 Clock Timing  
Tables and figures provided in this section define timing conditions, timing requirements and switching  
characteristics for clock signals.  
7-18. Clock Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
0.5  
V/ns  
OUTPUT CONDITIONS  
pF  
pF  
pF  
5
10  
30  
5 ns tc < 8 ns  
8 ns tc < 20 ns  
20 ns tc  
CL  
Output load capacitance  
7-19. Clock Timing Requirements  
see 7-14  
NO.  
MIN  
MAX UNIT  
CLK1 tc(EXT_REFCLK1)  
Cycle time minimum, EXT_REFCLK1  
10  
E*0.45(1)  
E*0.45(1)  
10  
ns  
CLK2 tw(EXT_REFCLK1H)  
Pulse Duration, EXT_REFCLK1 high  
E*0.55(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK3 tw(EXT_REFCLK1L)  
Pulse Duration, EXT_REFCLK1 low  
E*0.55(1)  
CLK1 tc(MCU_EXT_REFCLK0)  
CLK2 tw(MCU_EXT_REFCLK0H)  
CLK3 tw(MCU_EXT_REFCLK0L)  
CLK1 tc(AUDIO_EXT_REFCLK0)  
CLK2 tw(AUDIO_EXT_REFCLK0H)  
CLK3 tw(AUDIO_EXT_REFCLK0L)  
CLK1 tc(AUDIO_EXT_REFCLK1)  
CLK2 tw(AUDIO_EXT_REFCLK1H)  
CLK3 tw(AUDIO_EXT_REFCLK1L)  
Cycle time minimum, MCU_EXT_REFCLK0  
Pulse Duration, MCU_EXT_REFCLK0 high  
Pulse Duration, MCU_EXT_REFCLK0 low  
Cycle time minimum, AUDIO_EXT_REFCLK0  
Pulse Duration, AUDIO_EXT_REFCLK0 high  
Pulse Duration, AUDIO_EXT_REFCLK0 low  
Cycle time minimum, AUDIO_EXT_REFCLK1  
Pulse Duration, AUDIO_EXT_REFCLK1 high  
Pulse Duration, AUDIO_EXT_REFCLK1 low  
F*0.45(2)  
F*0.45(2)  
20  
F*0.55(2)  
F*0.55(2)  
G*0.45(3)  
G*0.45(3)  
20  
G*0.55(3)  
G*0.55(3)  
H*0.45(4)  
H*0.45(4)  
H*0.55(4)  
H*0.55(4)  
(1) E = EXT_REFCLK1 cycle time in ns.  
(2) F = MCU_EXT_REFCLK0 cycle time in ns.  
(3) G = AUDIO_EXT_REFCLK0 cycle time in ns.  
(4) H = AUDIO_EXT_REFCLK1 cycle time in ns.  
CLK1  
CLK2  
CLK3  
Input Clock  
7-14. Clock Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-20. Clock Switching Characteristics  
see 7-15  
NO.  
PARAMETER  
MIN  
8
MAX UNIT  
CLK4 tc(SYSCLKOUT0)  
CLK5 tw(SYSCLKOUT0H)  
CLK6 tw(SYSCLKOUT0L)  
CLK4 tc(OBSCLK0)  
Cycle time minimum,SYSCLKOUT0  
Pulse Duration, SYSCLKOUT0 high  
Pulse Duration, SYSCLKOUT0 low  
Cycle time minimum, OBSCLK0  
ns  
A*0.4(1)  
A*0.4(1)  
5
A*0.6(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A*0.6(1)  
CLK5 tw(OBSCLK0H)  
Pulse Duration, OBSCLK0 high  
B*0.45(2)  
B*0.45(2)  
20  
B*0.55(2)  
B*0.55(2)  
CLK6 tw(OBSCLK0L)  
Pulse Duration, OBSCLK0 low  
CLK4 tc(CLKOUT0)  
Cycle time minimum, CLKOUT0  
CLK5 tw(CLKOUT0H)  
Pulse Duration, CLKOUT0 high  
C*0.4(3)  
C*0.4(3)  
10  
C*0.6(3)  
C*0.6(3)  
CLK6 tw(CLKOUT0L)  
Pulse Duration, CLKOUT0 low  
CLK4 tc(MCU_SYSCLKOUT0)  
CLK5 tw(MCU_SYSCLKOUT0H)  
CLK6 tw(MCU_SYSCLKOUT0L)  
CLK4 tc(MCU_OBSCLK0)  
CLK5 tw(MCU_OBSCLK0H)  
CLK6 tw(MCU_OBSCLK0L)  
CLK4 tc(WKUP_CLKOUT0)  
CLK5 tw(WKUP_CLKOUT0H)  
CLK6 tw(WKUP_CLKOUT0L)  
Cycle time minimum, MCU_SYSCLKOUT0  
Pulse Duration, MCU_SYSCLKOUT0 high  
Pulse Duration, MCU_SYSCLKOUT0 low  
Cycle time minimum, MCU_OBSCLK0  
Pulse Duration, MCU_OBSCLK0 high  
Pulse Duration, MCU_OBSCLK0 low  
Cycle time minimum, WKUP_CLKOUT0  
Pulse Duration, WKUP_CLKOUT0 high  
Pulse Duration, WKUP_CLKOUT0 low  
E*0.4(4)  
E*0.4(4)  
5
E*0.6(4)  
E*0.6(4)  
D*0.45(5)  
D*0.45(5)  
5
D*0.55(5)  
D*0.55(5)  
W*0.4(6)  
W*0.4(6)  
W*0.6(6)  
W*0.6(6)  
Cycle time minimum, AUDIO_EXT_REFCLK0  
(McASP Clock Source)  
20  
ns  
ns  
CLK4 tc(AUDIO_EXT_REFCLK0 )  
Cycle time minimum, AUDIO_EXT_REFCLK0  
(PLL Clock Source)  
10  
CLK5 tw(AUDIO_EXT_REFCLK0 H)  
CLK6 tw(AUDIO_EXT_REFCLK0 L)  
Pulse Duration, AUDIO_EXT_REFCLK0 high  
Pulse Duration, AUDIO_EXT_REFCLK0 low  
G*0.4(7)  
G*0.4(7)  
G*0.6(7)  
G*0.6(7)  
ns  
ns  
Cycle time minimum, AUDIO_EXT_REFCLK1  
(McASP Clock Source)  
20  
ns  
ns  
CLK4 tc(AUDIO_EXT_REFCLK1 )  
Cycle time minimum, AUDIO_EXT_REFCLK1  
(PLL Clock Source)  
10  
CLK5 tw(AUDIO_EXT_REFCLK1 H)  
CLK6 tw(AUDIO_EXT_REFCLK1 L)  
Pulse Duration, AUDIO_EXT_REFCLK1 high  
Pulse Duration, AUDIO_EXT_REFCLK1 low  
J*0.4(8)  
J*0.4(8)  
J*0.6(8)  
J*0.6(8)  
ns  
ns  
(1) A = SYSCLKOUT0 cycle time in ns.  
(2) B = OBSCLK0 cycle time in ns.  
(3) C = CLKOUT0 cycle time in ns.  
(4) E = MCU_SYSCLKOUT0 cycle time in ns.  
(5) D = MCU_OBSCLK0 cycle time in ns.  
(6) W = WKUP_CLKOUT0 cycle time in ns.  
(7) G = AUDIO_EXT_REFCLK0 cycle time in ns.  
(8) J = AUDIO_EXT_REFCLK1 cycle time in ns.  
CLK4  
CLK5  
CLK6  
Output Clock  
7-15. Clock Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4 Clock Specifications  
7.11.4.1 Input Clocks / Oscillators  
Various external clock inputs/outputs are needed to drive the device. Summary of these input clock signals is as  
follows:  
MCU_OSC0_XO/MCU_OSC0_XI external main crystal interface pins connected to the internal high-  
frequency oscillator (MCU_HFOSC0), which is the default clock source for internal reference clock  
HFOSC0_CLKOUT.  
WKUP_LFOSC0_XO/WKUP_LFOSC0_XI external crystal interface pins connected to internal low-  
frequency oscillator (WKUP_LFOSC0), which sources optional 32768 Hz reference clock.  
General purpose clock inputs  
MCU_EXT_REFCLK0 optional external system clock.  
EXT_REFCLK1 optional external system clock.  
External CPTS reference clock input  
CP_GEMAC_CPTS0_RFT_CLK optional reference clock input for CPTS_RFT_CLK.  
External audio reference clock inputs/outputs  
AUDIO_EXT_REFCLK[1:0] optional McASP high-frequency input clocks when configured to operate as  
an input.  
For more information about Input clock interfaces, see Clocking section in Device Configuration chapter in the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4.1.1 MCU_OSC0 Internal Oscillator Clock Source  
7-16 shows the recommended crystal circuit. All discrete components used to implement the oscillator circuit  
must be placed as close as possible to the MCU_OSC0_XI and MCU_OSC0_XO pins.  
Device  
MCU_OSC0_XO  
MCU_OSC0_XI  
Crystal  
CL2  
CL1  
PCB Ground  
AM65x_MCU_OSC_INT_01  
7-16. MCU_OSC0 Crystal Implementation  
The crystal must be in the fundamental mode of operation and parallel resonant. 7-21 summarizes the  
required electrical constraints.  
7-21. MCU_OSC0 Crystal Circuit Requirements  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
Fxtal  
Fxtal  
Crystal Parallel Resonance Frequency  
25  
Crystal Frequency Stability and Tolerance  
Ethernet RGMII and RMII  
not used  
±100  
Ethernet RGMII and RMII  
using derived clock  
±50  
CL1+PCBXI  
CL2+PCBXO  
CL  
Capacitance of CL1 + CPCBXI  
Capacitance of CL2 + CPCBXO  
Crystal Load Capacitance  
12  
12  
6
24  
24  
12  
7
pF  
pF  
pF  
pF  
pF  
pF  
Cshunt  
Crystal Circuit Shunt Capacitance  
25 MHz  
25 MHz  
25 MHz  
ESRxtal = 30 Ω  
ESRxtal = 40 Ω  
ESRxtal = 50 Ω  
5
5
(1)  
ESRxtal  
Crystal Effective Series Resistance  
Ω
(1) The maximum ESR of the crystal is a function of the crystal frequency and shunt capacitance. See the Cshunt parameter.  
When selecting a crystal, the system design must consider temperature and aging characteristics of the crystal  
based on worst case environment and expected life expectancy of the system.  
7-22 details the switching characteristics of the oscillator.  
7-22. MCU_OSC0 Switching Characteristics - Crystal Mode  
PARAMETER  
PACKAGE  
MIN  
TYP  
MAX  
0.812  
1.635  
UNIT  
pF  
CXI  
XI Capacitance  
ALW  
AMC  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-22. MCU_OSC0 Switching Characteristics - Crystal Mode (continued)  
PARAMETER  
PACKAGE  
MIN  
TYP  
MAX  
UNIT  
pF  
CXO  
CXIXO  
ts  
XO Capacitance  
ALW  
0.83  
AMC  
1.72  
0.0114  
0.267  
pF  
XI to XO Mutual Capacitance  
Start-up Time  
ALW  
pF  
AMC  
pF  
4
ms  
VDD_CORE (min.)  
VDD_CORE  
VSS  
VDDS_OSC0 (min.)  
VDDS_OSC0  
MCU_OSC0_XO  
tsX  
VSS  
Time  
AM65x_MCU_OSC_STARTUP_02  
7-17. MCU_OSC0 Start-up Time  
7.11.4.1.1.1 Load Capacitance  
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined  
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors CL1,  
CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to  
MCU_OSC0_XI and MCU_OSC0_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the PCB  
designer should be able to extract parasitic capacitance for each signal trace. The MCU_OSC0 circuits and  
device package have combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic  
capacitance values are defined in 7-22.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
MCU_OSC0_XI  
CL1  
CPCBXI  
CXI  
CL2  
CPCBXO  
CXO  
MCU_OSC0_XO  
AM65x_MCU_OSC_CC_05  
7-18. Load Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
Load capacitors, CL1 and CL2 in 7-16, should be chosen such that the below equation is satisfied. CL in the  
equation is the load specified by the crystal manufacturer.  
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]  
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the  
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to  
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO = 0.5  
pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) -  
(CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF  
7.11.4.1.1.2 Shunt Capacitance  
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for  
MCU_OSC0 operating conditions defined in 7-21. Shunt capacitance, Cshunt, of the crystal circuit is a  
combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal  
circuit components to MCU_OSC0 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB  
designer should be able to extract mutual parasitic capacitance between these signal traces. The device  
package also has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined  
in 7-22.  
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is  
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can  
also be minimized by placing a ground trace between these signals when the layout requires them to be routed  
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as  
possible when selecting a crystal.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
MCU_OSC0_XI  
CPCBXIXO  
CXIXO  
CO  
MCU_OSC0_XO  
AM65x_MCU_OSC_SC_06  
7-19. Shunt Capacitance  
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt  
capacitance specified by the crystal manufacturer.  
C
shunt CO + CPCBXIXO + CXIXO  
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 ,  
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4.1.2 MCU_OSC0 LVCMOS Digital Clock Source  
7-20 shows the recommended oscillator connections when MCU_OSC0_XI is connected to a 1.8-V LVCMOS  
square-wave digital clock source.  
备注  
A DC steady-state condition is not allowed on MCU_OSC0_XI when the oscillator is powered up. This  
is not allowed because MCU_OSC0_XI is internally AC coupled to a comparator that can enter an  
unknown state when DC is applied to the input. Therefore, application software must power down  
MCU_OSC0 any time MCU_OSC0_XI is not toggling between logic states.  
Device  
MCU_OSC0_XO  
MCU_OSC0_XI  
PCB Ground  
AM65x_MCU_OSC_EXT_CLK_03  
7-20. 1.8-V LVCMOS-Compatible Clock Input  
Copyright © 2023 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4.1.3 WKUP_LFOSC0 Internal Oscillator Clock Source  
7-21 shows the recommended crystal circuit. It is recommended that preproduction printed-circuit board  
(PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper oscillator  
operation when combined with production crystal circuit components. In most cases, Rbias is not required and Rd  
is a 0-resistor. These resistors may be removed from production PCB designs after evaluating oscillator  
performance with production crystal circuit components installed on preproduction PCBs.  
Device  
WKUP_LFOSC0_XO  
WKUP_LFOSC0_XI  
Rd  
Crystal  
(Optional)  
(Optional)  
Rbias  
Cf2  
Cf1  
PCB Ground  
J7ES_LF_OSC_INT_12  
7-21. WKUP_LFOSC0 Crystal Implementation  
7-23 presents LFXOSC modes of operation.  
7-23. LFXOSC Modes of Operation  
CLK_O  
UT  
MODE  
BP_C PD_C  
XI  
XO  
DESCRIPTION  
ACTIVE  
0
0
XTAL  
XTAL CLK_OU  
T
Active oscillator mode providing 32kHz  
PWRDN  
BYPASS  
0
1
1
0
X
PD  
PD  
LOW Output will be pulled down to LOW. PAD to be tri-stated. Active mode disabled  
CLK  
CLK  
XI is driven by external clock source. XO is pulled down to LOW. Due to ESD  
diode to supply, XI should not be driven unless oscillator supply is present.  
备注  
User should set CTRLMMR_WKUP_LFXOSC_TRIM[18:16] i_mult = 3b001 for CL in the range 6pf  
to 9.5pf. CTRLMMR_WKUP_LFXOSC_TRIM [18:16] i_mult = 3b010 for CL in the range 8.5pf to  
12pf. Default setting is 3b010.  
备注  
The load capacitors, Cf1 and Cf2 in 7-22, should be chosen such that the below equation is  
satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components  
used to implement the oscillator circuit should be placed as close as possible to the associated  
oscillator WKUP_LFOSC0_XI, WKUP_LFOSC0_XO, and VSS pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
Cf1Cf2  
= (Cf1+Cf2)  
C
L
J7ES_CL_MATH_03  
7-22. Load Capacitance Equation  
The crystal must be in the fundamental mode of operation and parallel resonant. 7-24 summarizes the  
required electrical constraints.  
7-24. WKUP_LFOSC0 Crystal Electrical Characteristics  
NAME  
fp  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
Parallel resonance crystal frequency  
32768  
Hz  
Cf1  
Cf2  
Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2  
Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2  
12  
12  
24  
24  
4
pF  
pF  
pF  
pF  
pF  
pF  
ESRxtal 40 kΩ  
ESRxtal 60 kΩ  
ESRxtal 80 kΩ  
ESRxtal 100 kΩ  
3
Cshunt Shunt capacitance  
2
1
(1)  
ESR  
Crystal effective series resistance  
Ω
(1) The maximum ESR of the crystal is a function of the crystal frequency and shunt capacitance. See the Cshunt parameter.  
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based  
on the worst case environment and expected life expectancy of the system.  
7-25 details the switching characteristics of the oscillator and the requirements of the input clock.  
7-25. WKUP_LFOSC0 Switching Characteristics Crystal Mode  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Hz  
fxtal  
tsX  
Oscillation frequency  
Start-up time  
32768  
96.5  
ms  
VDD_CORE (min.)  
VSS  
VDD_CORE  
VDDS_OSC0  
VDDS_OSC0 (min.)  
WKUP_LFOSC0_XO  
tsX  
VSS  
Time  
LFXOSC_STARTUP_02  
7-23. WKUP_LFOSC0 Start-up Time  
Copyright © 2023 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4.1.4 WKUP_LFOSC0 LVCMOS Digital Clock Source  
7-24 shows the recommended oscillator connections when WKUP_LFOSC0_XI is connected to a 1.8-V  
LVCMOS square-wave digital clock source.  
Device  
WKUP_LFOSC0_XI  
WKUP_LFOSC0_XO  
PCB Ground  
AM62x_MCU_OSC_EXT_CLK_03  
7-24. 1.8-V LVCMOS-Compatible Clock Input  
7.11.4.1.5 WKUP_LFOSC0 Not Used  
7-25 shows the recommended oscillator connections when WKUP_LFOSC0 is not used.  
Device  
WKUP_LFOSC0_XO  
WKUP_LFOSC0_XI  
NC  
PCB Ground  
7-25. WKUP_LFOSC0 Not Used  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4.2 Output Clocks  
The device provides several system clock outputs. Summary of these output clocks are as follows:  
MCU_SYSCLKOUT0  
MCU_PLL0_HSDIV0_CLKOUT (MCU_SYSCLKOUT0) divided by 4 and sent out of the device as  
MCU_SYSCLKOUT0. This clock output is provided for test and debug purposes only.  
MCU_OBSCLK0  
Observation clock output for test and debug purposes only.  
WKUP_CLKOUT0  
WKUP domain CLKOUT0 output.  
SYSCLKOUT0  
MAIN_PLL0_HSDIV0_CLKOUT (SYSCLKOUT0) divided by 4 and then sent out of the device as  
SYSCLKOUT0. This clock output is provided for test and debug purposes only.  
CLKOUT0  
CLKOUT0 is the Ethernet subsystem clock (MAIN_PLL2_HSDIV1_CLKOUT) divided-by-5 or divided-  
by-10. This clock output was provided as an optional source to the external PHY. When configured to  
operate as the RMII Clock source (50 MHz) the signal must also be routed back to the respective  
RMII[x]_REF_CLK pin for proper device operation.  
OBSCLK0  
Observation clock output for test and debug purposes only.  
AUDIO_EXT_REFCLK[1:0]  
Option of sourcing one of six McASP high-frequency audio reference clocks,  
MAIN_PLL1_HSDIV6_CLKOUT, or MAIN_PLL2_HSDIV8_CLKOUT when configured to operate as an  
output.  
7.11.4.3 PLLs  
Power is supplied to the Phase-Locked Loop circuits (PLLs) by internal regulators that derive their power from  
off-chip power-sources.  
There is one PLL in the MCU domain:  
MCU PLL  
There are eight PLLs in the MAIN domain:  
MAIN PLL  
PER0 PLL  
PER1 PLL  
ARM0 PLL  
DDR PLL  
SMS_PLL  
DSS0 PLL  
DSS1 PLL  
The system designer should consider the reference clock source start-up time and the PLL lock requirements  
before configuring and using any of the PLL outputs as clock sources. The device reference clock input  
requirements are defined in 7.11.4.1, Input Clocks / Oscillators. PLL configuration details are described in the  
device TRM.  
For more information on PLLs, see the PLL subsection in the Clocking subsection of the Device Configuration  
section in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.4.4 Recommended System Precautions for Clock and Control Signal Transitions  
All clock and strobe signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
Monotonic transitions are more likely to occur with fast signal transitions. It is easy for noise to create non-  
monotonic events on a signal with slow transitions. Therefore, avoid slow signal transitions on all clock and  
control signals since they are more likely to generate glitches inside the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5 Peripherals  
7.11.5.1 CPSW3G  
For more details about features and additional description information on the device Gigabit Ethernet MAC, see  
the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.11.5.1.1 CPSW3G MDIO Timing  
7-26, 7-27, 7-28, and 7-26 present timing conditions, requirements, and switching characteristics for  
CPSW3G MDIO.  
7-26. CPSW3G MDIO Timing Conditions  
PARAMETER  
MIN  
0.9  
10  
MAX  
3.6  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
470  
7-27. CPSW3G MDIO Timing Requirements  
see 7-26  
NO.  
PARAMETER  
MIN  
90  
0
MAX  
UNIT  
ns  
MDIO1 tsu(MDIO_MDC)  
MDIO2 th(MDC_MDIO)  
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high  
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high  
ns  
7-28. CPSW3G MDIO Switching Characteristics  
see 7-26  
NO.  
PARAMETER  
MIN  
400  
160  
160  
-150  
MAX  
UNIT  
ns  
MDIO3 tc(MDC)  
Cycle time, MDIO[x]_MDC  
MDIO4 tw(MDCH)  
MDIO5 tw(MDCL)  
MDIO7 td(MDC_MDIO)  
Pulse Duration, MDIO[x]_MDC high  
ns  
Pulse Duration, MDIO[x]_MDC low  
ns  
Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid  
150  
ns  
MDIO3  
MDIO4  
MDIO5  
MDIO[x]_MDC  
MDIO1  
MDIO2  
MDIO[x]_MDIO  
(input)  
MDIO7  
MDIO[x]_MDIO  
(output)  
CPSW2G_MDIO_TIMING_01  
7-26. CPSW3G MDIO Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.1.2 CPSW3G RMII Timing  
7-29, 7-30, 7-27, 7-31, 7-28, 7-32, and 7-29 present timing conditions, requirements, and  
switching characteristics for CPSW3G RMII.  
7-29. CPSW3G RMII Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
VDD(1) = 1.8V  
VDD(1) = 3.3V  
0.18  
0.4  
0.54 V/ns  
1.2 V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
3
25  
pF  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
7-30. RMII[x]_REF_CLK Timing Requirements RMII Mode  
see 7-27  
NO.  
PARAMETER  
tc(REF_CLK)  
tw(REF_CLKH)  
tw(REF_CLKL)  
DESCRIPTION  
MIN  
MAX  
20.001  
13  
UNIT  
ns  
RMII1  
RMII2  
RMII3  
Cycle time, RMII[x]_REF_CLK  
19.999  
Pulse Duration, RMII[x]_REF_CLK High  
Pulse Duration, RMII[x]_REF_CLK Low  
7
7
ns  
13  
ns  
RMII1  
RMII2  
RMII[x]_REF_CLK  
RMII3  
7-27. CPSW3G RMII[x]_REF_CLK Timing Requirements RMII Mode  
7-31. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements RMII Mode  
see 7-28  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
4
MAX  
UNIT  
ns  
RMII4  
tsu(RXD-REF_CLK)  
Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK  
Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK  
Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK  
Hold time RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK  
Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK  
Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
4
ns  
4
ns  
RMII5  
2
ns  
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
2
ns  
2
ns  
RMII4  
RMII5  
RMII[x]_REF_CLK  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RX_ER  
7-28. CPSW3G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements RMII Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-32. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics RMII Mode  
see 7-29  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
RMII6 td(REF_CLK-TXD)  
Delay time, RMII[x]_REF_CLK High to RMII[x]_  
TXD[1:0] valid  
2
10  
ns  
td(REF_CLK-TX_EN)  
Delay time, RMII[x]_REF_CLK to RMII[x]_TX_EN  
valid  
2
10  
ns  
RMII6  
RMII[x]_REF_CLK  
RMII[x]_TXD[1:0], RMII[x]_TX_EN  
7-29. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics RMII Mode  
Copyright © 2023 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.1.3 CPSW3G RGMII Timing  
7-33, 7-34, 7-35, 7-30, 7-36, 7-37, and 7-31 present timing conditions, requirements, and  
switching characteristics for CPSW3G RGMII.  
7-33. CPSW3G RGMII Timing Conditions  
PARAMETER  
MIN  
2.64  
2
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
5
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
20  
PCB CONNECTIVITY REQUIREMENTS  
RGMII[x]_RXC,  
RGMII[x]_RD[3:0],  
RGMII[x]_RX_CTL  
50  
50  
ps  
ps  
td(Trace Mismatch  
Propagation delay mismatch across all traces  
Delay)  
RGMII[x]_TXC,  
RGMII[x]_TD[3:0],  
RGMII[x]_TX_CTL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
MAX UNIT  
7-34. RGMII[x]_RXC Timing Requirements RGMII Mode  
see 7-30  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_RXC  
MODE  
10Mbps  
MIN  
360  
36  
RGMII1 tc(RXC)  
RGMII2 tw(RXCH)  
RGMII3 tw(RXCL)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
Pulse duration, RGMII[x]_RXC high  
Pulse duration, RGMII[x]_RXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
100Mbps  
1000Mbps  
3.6  
4.4  
7-35. RGMII[x]_RD[3:0], and RGMII[x]_RX_CTL Timing Requirements RGMII Mode  
see 7-30  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10Mbps  
MIN  
1
MAX UNIT  
RGMII4 tsu(RD-RXC)  
Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC  
high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
1
1
tsu(RX_CTL-RXC)  
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
10Mbps  
1
1
RGMII5 th(RXC-RD)  
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
10Mbps  
1
1
th(RXC-RX_CTL)  
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
1
1
RGMII1  
RGMII2  
RGMII3  
RGMII[x]_RXC(A)  
RGMII4  
RGMII5  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RX_CTL(B)  
1st Half-byte  
RXDV  
2nd Half-byte  
RXERR  
A. RGMII[x]_RXC must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of  
RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC.  
7-30. CPSW3G RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements - RGMII  
Mode  
Copyright © 2023 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-36. RGMII[x]_TXC Switching Characteristics RGMII Mode  
see 7-31  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_TXC  
MODE  
10Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII6 tc(TXC)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
RGMII7 tw(TXCH)  
Pulse duration, RGMII[x]_TXC high  
Pulse duration, RGMII[x]_TXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
RGMII8 tw(TXCL)  
100Mbps  
1000Mbps  
3.6  
4.4  
7-37. RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL Switching Characteristics RGMII Mode  
see 7-31  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10Mbps  
MIN  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
MAX UNIT  
RGMII9 tosu(TD-TXC)  
Output setup time(1), RGMII[x]_TD[3:0] valid to  
RGMII[x]_TXC high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
tosu(TX_CTL-TXC)  
Output setup time(1), RGMII[x]_TX_CTL valid to  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
10Mbps  
RGMII10 toh(TXC-TD)  
Output hold time(1), RGMII[x]_TD[3:0] valid after  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
10Mbps  
toh(TXC-TX_CTL)  
Output hold time(1), RGMII[x]_TX_CTL valid after  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
(1) Output setup/hold times are defining a delay relationship of the transmit data and control outputs relative to the transmit clock output,  
but this output relationship is being presented as the minimum setup/hold times provided to the attached receiver. This approach  
matches how the output timing relationships are defined in the RGMII specification.  
RGMII6  
RGMII7  
RGMII8  
RGMII[x]_TXC(A)  
RGMII9  
RGMII[x]_TD[3:0](B)  
RGMII[x]_TX_CTL(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
RGMII10  
A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of  
RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC.  
7-31. CPSW3G RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics -  
RGMII Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.2 CPTS  
7-38, 7-39, 7-32, 7-40, and 7-33 present timing conditions, requirements, and switching  
characteristics for CPTS.  
7-38. CPTS Timing Conditions  
PARAMETER  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
7-39. CPTS Timing Requirements  
see 7-32  
NO.  
T1  
T2  
T3  
T4  
T5  
PARAMETER  
DESCRIPTION  
Pulse duration, HWnTSPUSH high  
MIN  
12P(1) + 2  
12P(1) + 2  
5
MAX  
UNIT  
ns  
tw(HWTSPUSHH)  
tw(HWTSPUSHL)  
tc(RFT_CLK)  
Pulse duration, HWnTSPUSH low  
Cycle time, RFT_CLK  
ns  
8
ns  
tw(RFT_CLKH)  
tw(RFT_CLKL)  
Pulse duration, RFT_CLK high  
Pulse duration, RFT_CLK low  
0.45T(2)  
0.45T(2)  
ns  
ns  
(1) P = functional clock period in ns.  
(2) T = RFT_CLK cycle time in ns.  
T1  
T2  
HWn_TSPUSH  
RFT_CLK  
T3  
T4  
T5  
7-32. CPTS Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-40. CPTS Switching Characteristics  
see 7-33  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, TS_COMP high  
SOURCE  
MIN  
36P(1) - 2  
36P(1) - 2  
36P(1) - 2  
36P(1) - 2  
36P(1) - 2  
5P(1) - 2  
MAX UNIT  
T6  
tw(TS_COMPH)  
tw(TS_COMPL)  
tw(TS_SYNCH)  
tw(TS_SYNCL)  
tw(SYNC_OUTH)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T7  
Pulse duration, TS_COMP low  
Pulse duration, TS_SYNC high  
Pulse duration, TS_SYNC low  
Pulse duration, SYNCn_OUT high  
T8  
T9  
T10  
TS_SYNC  
GENF  
T11  
tw(SYNC_OUTL)  
Pulse duration, SYNCn_OUT low  
TS_SYNC  
GENF  
36P(1) - 2  
5P(1) - 2  
(1) P = functional clock period in ns.  
T6  
T7  
TS_COMP  
T8  
T9  
TS_SYNC  
T10  
T11  
SYNCn_OUT  
7-33. CPTS Switching Characteristics  
For more information, see Data Movement Architecture (DMA) chapter in the device TRM.  
7.11.5.3 CSI-2  
备注  
For more information, see the Camera Streaming Interface Receiver (CSI_RX_IF) section in the  
device TRM.  
The CSI_RX_IF deals with the processing of the pixel data coming from an external image sensor. It is a key  
component for the following multimedia applications: camera viewfinder, video record, and still image capture.  
The CSI_RX_IF has a primary serial interface CSI-2 port (CSIRX0) compliant with the MIPI D-PHY RX  
specification v1.2 and the MIPI CSI-2 specification v1.3, with 4 differential data lanes plus 1 differential clock  
lane in synchronous mode, double data rate. Refer to the MIPI specifications for timing details.  
Support for 1,2,3 or 4 data lane mode up to 1.5Gbps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.4 DDRSS  
For more details about features and additional description information on the device (LP)DDR4 Memory  
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7-41 and 7-34 present switching characteristics for DDRSS.  
7-41. DDRSS Switching Characteristics  
see 7-34  
NO.  
PARAMETER  
DDR TYPE  
LPDDR4  
DDR4  
MIN  
1.25(1)  
1.25(1)  
MAX UNIT  
20  
ns  
ns  
tc(DDR_CKP/  
1
Cycle time, DDR_CKP and DDR_CKN  
DDR_CKN)  
1.6  
(1) Minimum DDR clock Cycle time will be limited based on the specific memory type (vendor) used in a system and by PCB  
implementation. Refer to DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR  
frequency.  
1
DDR0_CKP  
DDR0_CKN  
7-34. DDRSS Switching Characteristics  
For more information, see DDR Subsystem (DDRSS) section in Memory Controllers chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.5 DSS  
7-42, 7-43, 7-35, 7-44 and 7-36 present timing conditions, requirements, and switching  
characteristics for DSS.  
7-42. DSS Timing Conditions  
PARAMETER  
MIN  
1.44  
1.5  
MAX  
26.4  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Mismatch Delay)  
Propagation delay mismatch across all traces  
100  
ps  
7-43. DSS External Pixel Clock Timing Requirements  
see 7-35  
NO.  
MIN  
6.06  
MAX  
UNIT  
D6  
D7  
D8  
tc(extpclkin)  
Cycle time, VOUT(x)_EXTPCLKIN(2)  
ns  
ns  
ns  
tw(extpclkinL)  
tw(extpclkinH)  
Pulse duration, VOUT(x)_EXTPCLKIN(2) low  
Pulse duration, VOUT(x)_EXTPCLKIN(2) high  
0.475P(1)  
0.475P(1)  
(1) P = VOUT(x)_EXTPCLKIN cycle time in ns  
(2) x in VOUT(x) = 0  
D7  
D8  
D6  
Falling-edge Clock Reference  
Rising-edge Clock Reference  
VOUT(x)_EXTPCLKIN  
VOUT(x)_EXTPCLKIN  
DPI_TIMING_02  
7-35. DSS External Pixel Clock Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-44. DSS Switching Characteristics  
see 7-36  
NO.  
PARAMETER  
MODE  
MIN  
MAX UNIT  
D1  
tc(pclk)  
Cycle time, VOUT(x)_PCLK(2)  
6.06  
ns  
ns  
ns  
ns  
ns  
Internal PLL 0.475P(1) - 0.3  
EXTPCLKIN  
Y(3) - 0.45  
Internal PLL 0.475P(1) -0.3  
D2  
D3  
D4  
tw(pclkL)  
Pulse duration, VOUT(x)_PCLK(2) low  
tw(pclkH)  
Pulse duration, VOUT(x)_PCLK(2) high  
EXTPCLKIN  
Internal PLL  
EXTPCLKIN  
Internal PLL  
Z(4) - 0.45  
Delay time, VOUT(x)_PCLK(2) transition to  
VOUT(x)_DATA[23:0](2) transition  
-0.68  
1.78  
1.78  
1.78  
ns  
ns  
ns  
td(pclkV-dataV)  
-0.68  
Delay time, VOUT(x)_PCLK(2) transition to control signals  
VOUT(x)_VSYNC(2), VOUT(x)_HSYNC(2), VOUT(x)_DE(2)  
falling edge  
-0.68  
D5  
td(pclkV-ctrlL)  
EXTPCLKIN  
-0.68  
1.78  
ns  
(1) P = VOUT(x)_PCLK cycle time in ns  
(2) x in VOUT(x) = 0  
(3) Y = tw(extpclkinL), parameter D7 from 7-43, DSS External Pixel Clock Timing Requirements  
(4) Z = tw(extpclkinH), parameter D8 from 7-43, DSS External Pixel Clock Timing Requirements  
D2  
D3  
D1  
Falling-edge Clock Reference  
Rising-edge Clock Reference  
VOUT(x)_PCLK  
VOUT(x)_PCLK  
D5  
VOUT(x)_VSYNC  
D5  
VOUT(x)_HSYNC  
VOUT(x)_DATA[23:0]  
VOUT(x)_DE  
D4  
data_1 data_2  
D5  
data_n  
DPI_TIMING_01  
A. The assertion of data can be programmed to occur on the falling or rising edge of the pixel clock. Refer to Display Subsystem (DSS)  
section in Peripherals chapter in the device TRM.  
B. The polarity and pulse width of VOUT(x)_HSYNC and VOUT(x)_VSYNC are programmable, refer to Display Subsystem (DSS) section  
in Peripherals chapter in the device TRM.  
C. The VOUT(x)_PCLK frequency is configurable, refer to Display Subsystem section in Peripherals chapter in the device TRM.  
7-36. DSS Switching Characteristics  
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter of the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.6 ECAP  
7-45, 7-46, 7-37, 7-47, and 7-38 present timing conditions, requirements, and switching  
characteristics for ECAP.  
7-45. ECAP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7-46. ECAP Timing Requirements  
see 7-37  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, CAP (asynchronous)  
MIN  
MAX  
UNIT  
CAP1 tw(CAP)  
2P(1) + 2  
ns  
(1) P = sysclk period in ns.  
CAP1  
CAP  
EPERIPHERALS_TIMNG_01  
7-37. ECAP Timings Requirements  
7-47. ECAP Switching Characteristics  
see 7-38  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
CAP2 tw(APWM)  
Pulse duration, APWMx high/low  
2P(1) - 2  
ns  
(1) P = sysclk period in ns.  
CAP2  
APWM  
EPERIPHERALS_TIMNG_02  
7-38. ECAP Switching Characteristics  
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.7 Emulation and Debug  
For more details about features and additional description information on the device Trace and JTAG interfaces,  
see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.11.5.7.1 Trace  
7-48. Trace Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
OUTPUT CONDITIONS  
CL Output load capacitance  
PCB CONNECTIVITY REQUIREMENTS  
2
5
pF  
ps  
td(Trace Mismatch)  
Propagation delay mismatch across all traces  
200  
7-49. Trace Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1.8V Mode  
DBTR1 tc(TRC_CLK)  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Cycle time, TRC_CLK  
6.83  
2.66  
2.66  
ns  
ns  
ns  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
tosu(TRC_DATAV-  
DBTR4  
Output setup time, TRC_DATA valid to TRC_CLK edge  
0.85  
ns  
TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI) Output hold time, TRC_CLK edge to TRC_DATA invalid  
DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge  
0.85  
0.85  
0.85  
ns  
ns  
ns  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
3.3V Mode  
DBTR1 tc(TRC_CLK)  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Cycle time, TRC_CLK  
8.78  
3.64  
3.64  
ns  
ns  
ns  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
tosu(TRC_DATAV-  
DBTR4  
Output setup time, TRC_DATA valid to TRC_CLK edge  
1.10  
ns  
TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI) Output hold time, TRC_CLK edge to TRC_DATA invalid  
DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge  
1.10  
1.10  
1.10  
ns  
ns  
ns  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
DBTR1  
DBTR2  
DBTR3  
TRC_CLK  
(Worst Case 1)  
(Ideal)  
(Worst Case 2)  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
TRC_DATA  
TRC_CTL  
SPRSP08_Debug_01  
7-39. Trace Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.7.2 JTAG  
7-50. JTAG Timing Conditions  
PARAMETER  
MIN  
0.5  
5
MAX  
2.0  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
15  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
Propagation delay mismatch across all traces  
83.5  
1000(1)  
100  
ps  
ps  
td(Trace Mismatch Delay)  
(1) Maximum propagation delay associated with the JTAG signal traces has a significant impact on maximum TCK operating frequency. It  
may be possible to increase the trace delay beyond this value, but the operating frequency of TCK must be reduced to account for the  
additional trace delay.  
7-51. JTAG Timing Requirements  
see 7-40  
NO.  
MIN  
MAX  
UNIT  
ns  
J1  
tc(TCK)  
Cycle time minimum, TCK  
40(1)  
J2  
tw(TCKH)  
Pulse width minimum, TCK high  
0.4P(2)  
ns  
J3  
tw(TCKL)  
Pulse width minimum, TCK low  
0.4P(2)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
Input setup time minimum, TDI valid to TCK high  
Input setup time minimum, TMS valid to TCK high  
Input hold time minimum, TDI valid from TCK high  
Input hold time minimum, TMS valid from TCK high  
2
2
3
3
ns  
J4  
J5  
ns  
ns  
ns  
(1) The maximum TCK operating frequency assumes the following timing requirements and switching characteristis for the attached  
debugger. The operating frequency of TCK must be reduced to provide appropriate timing margin if the debugger exceeds any of these  
assumptions.  
Minimum TDO setup time of 2 ns relative to the rising edge of TCK  
TDI and TMS output delay in the range of -12.9 ns to 13.9 ns relative to the falling edge of TCK  
(2) P = TCK cycle time in ns  
7-52. JTAG Switching Characteristics  
see 7-40  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
J6  
J7  
td(TCKL-TDOI)  
td(TCKL-TDOV)  
Delay time minimum, TCK low to TDO invalid  
Delay time maximum, TCK low to TDO valid  
0
12  
ns  
J1  
J2  
J3  
TCK  
TDI / TMS  
TDO  
J4  
J5  
J4  
J5  
J7  
J6  
7-40. JTAG Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.8 EPWM  
7-53, 7-54, 7-41, 7-55, 7-42, 7-43, and 7-44 present timing conditions, requirements, and  
switching characteristics for EPWM.  
7-53. EPWM Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7-54. EPWM Timing Requirements  
see 7-41  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_SYNCI  
MIN  
2P(1) + 2  
3P(1) + 2  
MAX  
UNIT  
ns  
PWM6 tw(SYNCIN)  
PWM7 tw(TZ)  
Pulse duration, EHRPWM_TZn_IN low  
ns  
(1) P = sysclk period in ns.  
PWM6  
EHRPWM_SYNCI  
PWM7  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMNG_07  
7-41. EPWM Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-55. EPWM Switching Characteristics  
see 7-42, 7-43, and 7-44  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_A/B high/low  
Pulse duration, EHRPWM_SYNCO  
MIN  
P(1) - 3  
P(1) - 3  
MAX  
UNIT  
ns  
PWM1 tw(PWM)  
PWM2 tw(SYNCOUT)  
PWM3 td(TZ-PWM)  
ns  
Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B forced  
high/low  
11  
11  
ns  
PWM4 td(TZ-PWMZ)  
PWM5 tw(SOC)  
Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B Hi-Z  
Pulse duration, EHRPWM_SOCA/B output  
ns  
ns  
P(1) - 3  
(1) P = sysclk period in ns.  
PWM1  
EHRPWM_A/B  
PWM1  
PWM2  
EHRPWM_SYNCO  
EHRPWM_SOCA/B  
PWM5  
EPERIPHERALS_TIMNG_04  
7-42. EHRPWM Switching Characteristics  
PWM3  
EHRPWM_A/B  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMING_05  
7-43. EHRPWM_TZn_IN to EHRPWM_A/B Forced Switching Characteristics  
PWM4  
EHRPWM_A/B  
EHRPWM_TZn_IN  
7-44. EHRPWM_TZn_IN to EHRPWM_A/B Hi-Z Switching Characteristics  
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in  
the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.9 EQEP  
7-56, 7-57, 7-45, and 7-58 present timing conditions, requirements, and switching characteristics for  
EQEP.  
7-56. EQEP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7-57. EQEP Timing Requirements  
see 7-45  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2P(1) + 2  
2P(1) + 2  
2P(1) + 2  
2P(1) + 2  
2P(1) + 2  
MAX  
UNIT  
ns  
QEP1  
QEP2  
QEP3  
QEP4  
QEP5  
tw(QEP)  
Pulse duration, QEP_A/B  
Pulse duration, QEP_I high  
Pulse duration, QEP_I low  
tw(QEPIH)  
tw(QEPIL)  
tw(QEPSH)  
tw(QEPSL)  
ns  
ns  
Pulse duration, QEP_S high  
Pulse duration, QEP_S low  
ns  
ns  
(1) P = sysclk period in ns  
QEP1  
QEP_A/B  
QEP2  
QEP_I  
QEP3  
QEP4  
QEP_S  
QEP5  
EPERIPHERALS_TIMNG_03  
7-45. EQEP Timing Requirements  
7-58. EQEP Switching Characteristics  
DESCRIPTION  
NO.  
PARAMETER  
td(QEP-CNTR)  
MIN  
MAX  
UNIT  
QEP6  
Delay time, external clock to counter increment  
24  
ns  
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter  
in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.10 GPIO  
7-59, 7-60, and 7-61 present timing conditions, requirements, and switching characteristics for GPIO.  
The device has three instances of the GPIO module.  
MCU_GPIO0  
GPIO0  
GPIO1  
备注  
GPIOn_x is generic name used to describe a GPIO signal, where n represents the specific GPIO  
module and x represents one of the input/output signals associated with the module.  
For additional description information on the device GPIO, see the corresponding subsections within  
Signal Descriptions and Detailed Description sections.  
7-59. GPIO Timing Conditions  
PARAMETER  
BUFFER TYPE  
MIN  
MAX UNIT  
INPUT CONDITIONS  
LVCMOS  
0.2  
0.2  
6.6 V/ns  
0.8 V/ns  
SRI  
Input slew rate  
I2C OD FS  
OUTPUT CONDITIONS  
LVCMOS  
3
3
10  
pF  
pF  
CL  
Output load capacitance  
I2C OD FS  
100  
7-60. GPIO Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
1.8 V  
3.3 V  
MIN  
MAX UNIT  
2P + 2.6(1)  
2P + 3.5(1)  
ns  
ns  
GPIO1 tw(GPIO_IN)  
Pulse width, GPIOn_x  
(1) P = functional clock period in ns.  
7-61. GPIO Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
BUFFER TYPE  
MIN  
MAX UNIT  
0.975P(1)  
-
LVCMOS  
ns  
ns  
3.6  
GPIO2 tw(GPIO_OUT)  
Pulse width, GPIOn_x  
I2C OD FS  
160  
(1) P = functional clock period in ns.  
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.11 GPMC  
For more details about features and additional description information on the device General-Purpose Memory  
Controller, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7-62 presents timing conditions for GPMC.  
7-62. GPMC Timing Conditions  
PARAMETER  
MIN  
1.65  
2
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
20  
PCB CONNECTIVITY REQUIREMENTS  
133 MHz Synchronous Mode  
All other modes  
140  
140  
360  
720  
ps  
ps  
td(Trace Delay)  
Propagation delay of each trace  
td(Trace Mismatch  
Propagation delay mismatch across all traces  
200  
ps  
Delay)  
For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the  
device TRM.  
7.11.5.11.1 GPMC and NOR Flash Synchronous Mode  
7-63 and 7-64 present timing requirements and switching characteristics for GPMC and NOR Flash -  
Synchronous Mode.  
7-63. GPMC and NOR Flash Timing Requirements Synchronous Mode  
see 7-46, 7-47, and 7-50  
MIN  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(4)  
UNIT  
GPMC_FCLK = GPMC_FCLK =  
100 MHz(1)  
133 MHz(1)  
F12 tsu(dV-clkH)  
F13 th(clkH-dV)  
F21 tsu(waitV-clkH)  
Setup time, input data  
GPMC_AD[15:0] valid before output  
clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
1.61  
0.92  
ns  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
0.86  
2.09  
2.09  
1.61  
0.86  
3.41  
2.09  
2.09  
0.92  
3.41  
ns  
ns  
ns  
ns  
ns  
Hold time, input data  
GPMC_AD[15:0] valid after output  
clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Setup time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j](2) (3) valid before  
output clock GPMC_CLK high  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Copyright © 2023 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-63. GPMC and NOR Flash Timing Requirements Synchronous Mode (continued)  
see 7-46, 7-47, and 7-50  
MIN  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(4)  
UNIT  
GPMC_FCLK = GPMC_FCLK =  
100 MHz(1)  
133 MHz(1)  
F22 th(clkH-waitV)  
Hold time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2.09  
2.09  
ns  
GPMC_WAIT[j](2) (3) valid after  
output clock GPMC_CLK high  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
2.09  
2.09  
ns  
TIMEPARAGRANULARITY_X1  
(1) GPMC_FCLK select  
gpmc_fclk_sel[1:0] = 2b01 to select the 100MHz GPMC_FCLK  
gpmc_fclk_sel[1:0] = 2b00 to select the 133MHz GPMC_FCLK  
(2) In GPMC_WAIT[j], j is equal to 0 or 1.  
(3) Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see General-  
Purpose Memory Controller (GPMC) section in the device TRM.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For not_div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 1h to 3h:  
GPMC_CLK frequency = GPMC_FCLK frequency / (2 to 4)  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
7-64. GPMC and NOR Flash Switching Characteristics Synchronous Mode  
see 7-46, 7-47, 7-48, 7-49, and 7-50  
MIN  
100 MHz  
10.00  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(16)  
UNIT  
(2)  
133 MHz  
F0 1 / tc(clk)  
F1 tw(clkH)  
Period, output clock GPMC_CLK(15)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
7.52  
ns  
Typical pulse duration, output clock  
GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
0.475P  
- 0.3(14)  
0.475P  
ns  
ns  
- 0.3(14)  
F1 tw(clkL)  
Typical pulse duration, output clock  
GPMC_CLK low  
div_by_1_mode;  
GPMC_FCLK_MUX;  
0.475P  
- 0.3(14)  
0.475P  
- 0.3(14)  
TIMEPARAGRANULARITY_X1  
F2 td(clkH-csnV)  
Delay time, output clock GPMC_CLK  
rising edge to output chip select  
GPMC_CSn[i] transition(13)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
F - 2.2  
F + F - 2.2  
3.75  
F + ns  
3.75  
(5)  
(5)  
F3 td(clkH-CSn[i]V) Delay time, output clock GPMC_CLK  
rising edge to output chip select  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
E - 2.2  
E + E - 2.2 E + 4.5 ns  
3.18  
(4)  
(4)  
GPMC_CSn[i] invalid(13)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-64. GPMC and NOR Flash Switching Characteristics Synchronous Mode (continued)  
see 7-46, 7-47, 7-48, 7-49, and 7-50  
MIN  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(16)  
UNIT  
(2)  
100 MHz  
133 MHz  
F4 td(aV-clk)  
Delay time, output address  
GPMC_A[27:1] valid to output clock  
GPMC_CLK first edge  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
B - 2.3 B + 4.5 B - 2.3 B + 4.5 ns  
(2)  
(2)  
F5 td(clkH-aIV)  
Delay time, output clock GPMC_CLK  
rising edge to output address  
GPMC_A[27:1] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3  
4.5  
-2.3  
4.5 ns  
F6 td(be[x]nV-clk)  
Delay time, output lower byte enable  
and command latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
B - 2.3 B + 1.9 B - 2.3 B + 1.9 ns  
(2)  
(2)  
GPMC_BE0n_CLE, output upper byte TIMEPARAGRANULARITY_X1  
enable GPMC_BE1n valid to output  
clock GPMC_CLK first edge  
F7 td(clkH-be[x]nIV) Delay time, output clock GPMC_CLK  
rising edge to output lower byte  
div_by_1_mode;  
GPMC_FCLK_MUX;  
D - D + 1.9 D - 2.3 D + 1.9 ns  
2.3(3)  
(3)  
enable and command latch enable  
TIMEPARAGRANULARITY_X1  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n invalid(10)  
F7 td(clkL-be[x]nIV) Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
invalid(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
D - 2.3 D + 1.9 D - 2.3 D + 1.9 ns  
(3)  
(3)  
F7 td(clkL-be[x]nIV). Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
invalid(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
D - 2.3 D + 1.9 D - 2.3 D + 1.9 ns  
(3)  
(3)  
F8 td(clkH-advn)  
F9 td(clkH-advnIV)  
F10 td(clkH-oen)  
F11 td(clkH-oenIV)  
F14 td(clkH-wen)  
Delay time, output clock GPMC_CLK  
rising edge to output address valid  
and address latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
G - G + 4.5 G - 2.3 G + 4.5 ns  
2.3(6)  
(6)  
GPMC_ADVn_ALE transition  
Delay time, output clock GPMC_CLK  
rising edge to output address valid  
and address latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
D - 2.3 D + 4.5 D - 2.3 D + 4.5 ns  
(3)  
(3)  
GPMC_ADVn_ALE invalid  
Delay time, output clock GPMC_CLK  
rising edge to output enable  
GPMC_OEn_REn transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
H - 2.3 H + 3.5 H - 2.3 H + 3.5 ns  
(7)  
(7)  
Delay time, output clock GPMC_CLK  
rising edge to output enable  
GPMC_OEn_REn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
H - 2.3 H + 3.5 H - 2.3 H + 3.5 ns  
(7)  
(7)  
Delay time, output clock GPMC_CLK  
rising edge to output write enable  
GPMC_WEn transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
I - 2.3 I + 4.5 I - 2.3 I + 4.5 ns  
(8)  
(8)  
F15 td(clkH-do)  
F15 td(clkL-do)  
F15 td(clkL-do).  
F17 td(clkH-be[x]n)  
Delay time, output clock GPMC_CLK  
rising edge to output data  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns  
(9)  
(9)  
GPMC_AD[15:0] transition(10)  
Delay time, GPMC_CLK falling edge  
to GPMC_AD[15:0] data bus  
transition(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns  
(9)  
(9)  
Delay time, GPMC_CLK falling edge  
to GPMC_AD[15:0] data bus  
transition(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns  
(9)  
(9)  
Delay time, output clock GPMC_CLK  
rising edge to output lower byte  
enable and command latch enable  
GPMC_BE0n_CLE transition(10)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns  
(9)  
(9)  
Copyright © 2023 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-64. GPMC and NOR Flash Switching Characteristics Synchronous Mode (continued)  
see 7-46, 7-47, 7-48, 7-49, and 7-50  
MIN  
100 MHz  
J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(16)  
UNIT  
(2)  
133 MHz  
F17 td(clkL-be[x]n)  
Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
transition(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
(9)  
(9)  
F17 td(clkL-be[x]n).  
Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
transition(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns  
(9)  
(9)  
F18 tw(csnV)  
Pulse duration, output chip select  
GPMC_CSn[i](13) low  
Read  
Write  
Read  
Write  
A
A
C
C
A
A
C
C
ns  
ns  
ns  
ns  
F19 tw(be[x]nV)  
Pulse duration, output lower byte  
enable and command latch enable  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n low  
F20 tw(advnV)  
Pulse duration, output address valid  
and address latch enable  
GPMC_ADVn_ALE low  
Read  
Write  
K
K
K
K
ns  
ns  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
With n being the page burst access number.  
(2) B = ClkActivationTime × GPMC_FCLK(14)  
(3) For single read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(4) For single read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) For csn falling edge (CS activated):  
Case GPMCFCLKDIVIDER = 0:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and  
CSOnTime are even)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(14) if ((CSOnTime - ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(14) if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)  
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(14) if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)  
(6) For ADV falling edge (ADV activated):  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if ((ADVOnTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GPMCFCLKDIVIDER = 0:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)  
(7) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and  
OEOnTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if ((OEOnTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and  
OEOffTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if ((OEOffTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(8) For WE falling edge (WE activated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and  
WEOnTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
Copyright © 2023 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if ((WEOnTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK (14)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and  
WEOffTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if ((WEOffTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(9) J = GPMC_FCLK(14)  
(10) First transfer only for CLK DIV 1 mode.  
(11) Half cycle; for all data after initial transfer for CLK DIV 1 mode.  
(12) Half cycle of GPMC_CLKOUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLKOUT divide down from GPMC_FCLK.  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
(14) P = GPMC_CLK period in ns  
(15) Related to the GPMC_CLK output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_i configuration register bit field GPMCFCLKDIVIDER.  
(16) For div_by_1_mode:  
GPMC_CONFIG1_i register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
For no extra_delay:  
GPMC_CONFIG2_i Register: CSEXTRADELAY = 0h = CSn Timing control signal is not delayed  
GPMC_CONFIG4_i Register: WEEXTRADELAY = 0h = nWE timing control signal is not delayed  
GPMC_CONFIG4_i Register: OEEXTRADELAY = 0h = nOE timing control signal is not delayed  
GPMC_CONFIG3_i Register: ADVEXTRADELAY = 0h = nADV timing control signal is not delayed  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
GPMC_A[MSB:1]  
Valid Address  
F19  
F6  
F7  
GPMC_BE0n_CLE  
F19  
GPMC_BE1n  
F6  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F12  
D 0  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_01  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-46. GPMC and NOR Flash Synchronous Single Read (GPMCFCLKDIVIDER = 0)  
Copyright © 2023 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
GPMC_CSn[i]  
F4  
F6  
GPMCA[MSB:1]  
Valid Address  
F7  
F7  
F9  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F13  
F12  
D 0  
F22  
F12  
D 3  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 1  
D 2  
F21  
GPMC_02  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-47. GPMC and NOR Flash Synchronous Burst Read 4x16bit (GPMCFCLKDIVIDER = 0)  
F1  
F1  
F0  
GPMC_CLK  
GPMC_CSn[i]  
F2  
F3  
F4  
F6  
Valid Address  
GPMC_A[MSB:1]  
F17  
F17  
F17  
F17  
F17  
F17  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F9  
GPMC_ADVn_ALE  
GPMC_WEn  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 0  
D 3  
GPMC_03  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-48. GPMC and NOR FlashSynchronous Burst Write (GPMCFCLKDIVIDER = 0)  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
GPMC_CSn[i]  
F6  
F6  
F4  
F7  
GMPC_BE0n_CLE  
Valid  
F7  
Valid  
GPMC_BE1n  
GPMC_A[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
GPMC_AD[15:0]  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
GPMC_ADVn_ALE  
F10  
F11  
GPMC_OEn_REn  
GPMC_WAIT[j]  
GPMC_04  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-49. GPMC and Multiplexed NOR Flash Synchronous Burst Read  
Copyright © 2023 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
F1  
F1  
F0  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
F6  
F6  
GPMC_A[27:17]  
Address (MSB)  
F17  
F17  
F17  
F17  
GPMC_BE1n  
F17  
F17  
BPMC_BE0n_CLE  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
F14  
F14  
GPMC_WEn  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
Address (LSB)  
D 0  
D 3  
F22  
F21  
GPMC_WAIT[j]  
GPMC_05  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-50. GPMC and Multiplexed NOR Flash Synchronous Burst Write  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.11.2 GPMC and NOR Flash Asynchronous Mode  
7-65 and 7-66 present timing requirements and switching characteristics for GPMC and NOR Flash —  
Asynchronous Mode.  
7-65. GPMC and NOR Flash Timing Requirements Asynchronous Mode  
see 7-51, 7-52, 7-53, and 7-55  
NO. PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
FA5(1) tacc(d)  
Data access time  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H(4) ns  
TIMEPARAGRANULARITY_X1  
FA2 tacc1-pgmode(d)  
0(2)  
Page mode successive data access time  
Page mode first data access time  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
P(3) ns  
FA2 tacc2-pgmode(d)  
1(1)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H(4) ns  
TIMEPARAGRANULARITY_X1  
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active  
functional clock edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional  
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(3) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5)  
(4) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5)  
(5) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
7-66. GPMC and NOR Flash Switching Characteristics Asynchronous Mode  
see 7-51, 7-52, 7-53, 7-54, 7-55, and 7-56  
MIN  
MAX  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
N (12) ns  
N (12)  
133 MHz  
FA0 tw(be[x]nV)  
Pulse duration, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid time  
Read  
Write  
FA1 tw(csnV)  
Pulse duration, output chip select GPMC_CSn[i](13)  
low  
Read  
Write  
Read  
Write  
A (1) ns  
A (1)  
FA3 td(csnV-advnIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
B - 2 (2) B + 2(2) ns  
B - 2(2) B + 2(2)  
FA4 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Single read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
C - 2(3) C + 2(3) ns  
FA9 td(aV-csnV)  
Delay time, output address GPMC_A[27:1] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
J - 2(9)  
J + 2(9) ns  
TIMEPARAGRANULARITY_X1  
FA10 td(be[x]nV-csnV)  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid to output  
chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2(9)  
J + 2(9) ns  
FA12 td(csnV-advnV)  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
K - 2(10) K + 2(10) ns  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
L - 2(11) L + 2(11) ns  
Pulse duration output address GPMC_A[26:1]  
invalid between 2 successive read and write  
accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
G (7)  
ns  
Copyright © 2023 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-66. GPMC and NOR Flash Switching Characteristics Asynchronous Mode (continued)  
see 7-51, 7-52, 7-53, 7-54, 7-55, and 7-56  
MIN  
MAX  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
133 MHz  
FA18 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Burst read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
I - 2(8)  
I + 2(8) ns  
FA20 tw(aV)  
Pulse duration, output address GPMC_A[27:1]  
valid - 2nd, 3rd, and 4th accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
D (4)  
ns  
TIMEPARAGRANULARITY_X1  
FA25 td(csnV-wenV)  
FA27 td(csnV-wenIV)  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
FA37 td(oenV-aIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
E - 2(5) E + 2(5) ns  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
F - 2(6) F + 2(6) ns  
Delay time, output write enable GPMC_WEn valid  
to output data GPMC_AD[15:0] valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2
ns  
Delay time, output data GPMC_AD[15:0] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2(9)  
J + 2(9) ns  
Delay time, output enable GPMC_OEn_REn valid  
to output address GPMC_AD[15:0] phase end  
div_by_1_mode;  
GPMC_FCLK_MUX;  
2
ns  
TIMEPARAGRANULARITY_X1  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
with n being the page burst access number  
(2) For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
(3) C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(4) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(6) F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(7) G = Cycle2CycleDelay × GPMC_FCLK(14)  
(8) I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay))  
× GPMC_FCLK(14)  
(9) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)  
(10) K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(11) L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(12) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(15) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
Valid Address  
FA0  
FA10  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA10  
FA3  
FA12  
GPMC_ADVn_ALE  
FA4  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data IN 0  
Data IN 0  
GPMC_WAIT[j]  
GPMC_06  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], jis equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-51. GPMC and NOR Flash Asynchronous Read Single Word  
Copyright © 2023 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
GPMC_CSn[i]  
FA5  
FA5  
FA1  
FA1  
FA16  
FA9  
FA9  
Address 0  
FA0  
Address 1  
FA0  
GPMC_A[MSB:1]  
FA10  
FA10  
Valid  
FA0  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
Valid  
FA10  
FA10  
FA3  
FA3  
FA12  
FA12  
GPMC_ADCn_ALE  
FA4  
FA4  
FA13  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data Upper  
GPMC_WAIT[j]  
GPMC_07  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-52. GPMC and NOR Flash Asynchronous Read 32Bit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA20  
Add3  
FA20  
Add1  
FA21  
FA20  
Add2  
FA1  
GPMC_CSn[i]  
FA9  
Add0  
Add4  
GPMC_A[MSB:1]  
FA0  
FA10  
GPMC_BE0n_CLE  
FA0  
FA10  
GPMC_BE1n  
FA12  
GPMC_ADVn_ALE  
FA18  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
D3  
D0  
D1  
D2  
D3  
GPMC_WAIT[j]  
GPMC_08  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by  
active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC  
functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock  
edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first  
input page data). FA20 value must be stored in PageBurstAccessTime register bits field.  
D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-53. GPMC and NOR Flash Asynchronous Read Page Mode 4x16Bit  
Copyright © 2023 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid Address  
FA0  
FA10  
FA10  
FA0  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
FA29  
Data OUT  
GPMC_09  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-54. GPMC and NOR Flash Asynchronous Write Single Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA1  
FA5  
GPMC_CSn[i]  
FA9  
Address (MSB)  
FA0  
GPMC_A[27:17]  
FA10  
GPMC_BE0n_CLE  
Valid  
FA0  
FA10  
GPMC_BE1n  
Valid  
FA3  
FA12  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_10  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-55. GPMC and Multiplexed NOR Flash Asynchronous Read Single Word  
Copyright © 2023 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
GPMC_CSn[i]  
FA1  
FA9  
GPMC_A[27:17]  
Address (MSB)  
FA0  
FA10  
FA10  
GPMC_BE0n_CLE  
GPMC_BE1n  
FA0  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
FA29  
FA28  
GPMC_AD[15:0]  
Valid Address (LSB)  
Data OUT  
GPMC_WAIT[j]  
GPMC_11  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-56. GPMC and Multiplexed NOR Flash Asynchronous Write Single Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.11.3 GPMC and NAND Flash Asynchronous Mode  
7-67 and 7-68 present timing requirements and switching characteristics for GPMC and NAND Flash —  
Asynchronous Mode.  
7-67. GPMC and NAND Flash Timing Requirements Asynchronous Mode  
see 7-59  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(4)  
UNIT  
133 MHz  
GNF12(1) tacc(d)  
Access time, input data GPMC_AD[15:0](3)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
J(2) ns  
TIMEPARAGRANULARITY_X1  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
7-68. GPMC and NAND Flash Switching Characteristics Asynchronous Mode  
see 7-57, 7-58, 7-59 and 7-60  
NO.  
PARAMETER  
MODE(4)  
MIN  
MAX UNIT  
GNF0 tw(wenV)  
Pulse duration, output write enable GPMC_WEn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
A
ns  
TIMEPARAGRANULARITY_X1  
GNF1 td(csnV-wenV)  
GNF2 tw(cleH-wenV)  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
GNF5 tw(wenIV-cleIV)  
Delay time, output chip select GPMC_CSn[i](2)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
B - 2  
C - 2  
D - 2  
E - 2  
F - 2  
G - 2  
C - 2  
B + 2 ns  
C + 2 ns  
D + 2 ns  
E + 2 ns  
F + 2 ns  
G + 2 ns  
C + 2 ns  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE high to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output data GPMC_AD[15:0] valid to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn  
invalid to output data GPMC_AD[15:0] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn  
invalid to output lower-byte enable and command  
latch enable GPMC_BE0n_CLE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF6 tw(wenIV-CSn[i]V) Delay time, output write enable GPMC_WEn  
invalid to output chip select GPMC_CSn[i](2)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF7 tw(aleH-wenV)  
Delay time, output address valid and address latch  
enable GPMC_ADVn_ALE high to output write  
enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Copyright © 2023 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-68. GPMC and NAND Flash Switching Characteristics Asynchronous Mode (continued)  
see 7-57, 7-58, 7-59 and 7-60  
NO.  
PARAMETER  
MODE(4)  
MIN  
MAX UNIT  
GNF8 tw(wenIV-aleIV)  
Delay time, output write enable GPMC_WEn  
invalid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
F - 2  
F + 2 ns  
GNF9 tc(wen)  
Cycle time, write  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H
ns  
TIMEPARAGRANULARITY_X1  
GNF10 td(csnV-oenV)  
GNF13 tw(oenV)  
GNF14 tc(oen)  
Delay time, output chip select GPMC_CSn[i](2)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
I - 2  
I + 2 ns  
Pulse duration, output enable GPMC_OEn_REn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
K
ns  
ns  
Cycle time, read  
div_by_1_mode;  
GPMC_FCLK_MUX;  
L
TIMEPARAGRANULARITY_X1  
GNF15 tw(oenIV-CSn[i]V) Delay time, output enable GPMC_OEn_REn  
invalid to output chip select GPMC_CSn[i](2)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
M - 2  
M + 2 ns  
(1) A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(2) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF2  
GNF6  
GNF5  
GPMC_BE0n_CLE  
GPMC_ADCn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF0  
GNF3  
GNF4  
GPMC_AD[15:0]  
Command  
GPMC_12  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
7-57. GPMC and NAND Flash Command Latch Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF7  
GNF6  
GNF8  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF9  
GNF0  
GNF3  
GNF4  
Address  
GPMC_AD[15:0]  
GPMC_13  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
7-58. GPMC and NAND Flash Address Latch Cycle  
GPMC_FCLK  
GPMC_CSn[i]  
GNF12  
GNF10  
GNF15  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GNF14  
GNF13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
DATA  
GPMC_14  
A. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional  
clock edge. GNF12 value must be stored inside AccessTime register bits field.  
B. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
7-59. GPMC and NAND Flash Data Read Cycle  
Copyright © 2023 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
GPMC_FCLK  
GNF1  
GNF6  
GPMC_CSn[i]  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GNF9  
GNF0  
GPMC_WEn  
GNF3  
GNF4  
GPMC_AD[15:0]  
DATA  
GPMC_15  
A. `In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
7-60. GPMC and NAND Flash Data Write Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.12 I2C  
The device contains six multicontroller Inter-Integrated Circuit (I2C) controllers. Each I2C controller was  
designed to be compliant to the Philips I2C-bus™ specification version 2.1. However, the device IOs are not fully  
compliant to the I2C electrical specification. The speeds supported and exceptions are described per port below:  
I2C0, I2C1, I2C2, and I2C3  
Speeds:  
Standard-mode (up to 100 Kbits/s)  
1.8 V  
3.3 V  
Fast-mode (up to 400 Kbits/s)  
1.8 V  
3.3 V  
Exceptions:  
The IOs associated with these ports are not compliant to the fall time requirements defined in the I2C  
specification because they are implemented with higher performance LVCMOS push-pull IOs that were  
designed to support other signal functions that could not be implemented with I2C compatible IOs. The  
LVCMOS IOs being used on these ports are connected such they emulate open-drain outputs. This  
emulation is achieved by forcing a constant low output and disabling the output buffer to enter the Hi-Z  
state.  
The I2C specification defines a maximum input voltage VIH of (VDD + 0.5 V), which exceeds the  
absolute maximum ratings for the device IOs. The system must bemdaex signed to ensure the I2C signals  
never exceed the limits defined in the Absolute Maximum Ratings section of this datasheet.  
MCU_I2C0 and WKUP_I2C0  
Speeds:  
Standard-mode (up to 100 Kbits/s)  
1.8 V  
3.3 V  
Fast-mode (up to 400 Kbits/s)  
1.8 V  
3.3 V  
Hs-mode (up to 3.4 Mbits/s)  
1.8 V  
Exceptions:  
The IOs associated with these ports were not design to support Hs-mode while operating at 3.3 V. So  
Hs-mode is limited to 1.8-V operation.  
The rise and fall times of the I2C signals connected to these ports must not exceed a slew rate of 0.8  
V/ns (or 8E+7 V/s). This limit is more restrictive than the minimum fall time limits defined in the I2C  
specification. Therefore, it may be necessary to add additional capacitance to the I2C signals to slow  
the rise and fall times such that they do not exceed a slew rate of 0.8 V/ns.  
The I2C specification defines a maximum input voltage VIH of (VDD + 0.5 V), which exceeds the  
absolute maximum ratings for the device IOs. The system must bemdaex signed to ensure the I2C signals  
never exceed the limits defined in the Absolute Maximum Ratings section of this datasheet.  
备注  
I2C3 has one or more signals which can be multiplexed to more than one pin. Timing is only valid for  
specific pin combinations known as IOSETs. Valid pin combinations or IOSETs for this interface are  
defined in the SysConfig-PinMux Tool.  
Refer to the Philips I2C-bus specification version 2.1 for timing details.  
Copyright © 2023 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
For more details about features and additional description information on the device Inter-Integrated Circuit, see  
the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.13 MCAN  
7-69 and 7-70 presents timing conditions and switching characteristics for MCAN.  
For more details about features and additional description information on the device Controller Area Network  
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
备注  
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,  
where n represents the specific MCAN module.  
7-69. MCAN Timing Conditions  
PARAMETER  
MIN  
2
MAX  
15  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
5
20  
7-70. MCAN Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
Delay time, transmit shift register to MCANn_TX  
Delay time, MCANn_RX to receive shift register  
MIN  
MAX  
10  
UNIT  
ns  
MCAN1 td(MCAN_TX)  
MCAN2 td(MCAN_RX)  
10  
ns  
For more information, see Controller Area Network (MCAN) section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.14 MCASP  
备注  
McASP has one or more signals which can be multiplexed to more than one pin. Timing requirements  
and switching characteristics defined in this section are only valid for specific pin combinations known  
as IOSETs. Valid pin combinations or IOSETs for this interface are defined in the SysConfig-PinMux  
Tool.  
7-71, 7-72, 7-61, 7-73, and 7-62 present timing conditions, requirements, and switching  
characteristics for MCASP.  
7-71. MCASP Timing Conditions  
PARAMETER  
MIN  
0.7  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
100  
1100  
100  
ps  
ps  
td(Trace Mismatch Delay)  
Propagation delay mismatch across all traces  
7-72. MCASP Timing Requirements  
see 7-61  
NO.  
MODE(1)  
MIN  
20  
MAX UNIT  
ASP1 tc(AHCLKRX)  
ASP2 tw(AHCLKRX)  
ASP3 tc(ACLKRX)  
ASP4 tw(ACLKRX)  
Cycle time, MCASP[x]_AHCLKR/X(4)  
ns  
ns  
0.5P(2)  
-
Pulse duration, MCASP[x]_AHCLKR/X(4) high or low  
Cycle time, MCASP[x]_ACLKR/X(4)  
1.53  
20  
ns  
ns  
0.5R(3)  
-
Pulse duration, MCASP[x]_ACLKR/X(4) high or low  
1.53  
Setup time, MCASP[x]_AFSR/X(4) input valid before  
MCASP[x]_ACLKR/X(4)  
ACLKR/X int  
9.29  
4
ns  
ns  
ns  
ns  
ASP5 tsu(AFSRX-ACLKRX)  
ASP6 th(ACLKRX-AFSRX)  
ASP7 tsu(AXR-ACLKRX)  
ASP8 th(ACLKRX-AXR)  
ACLKR/X ext in/out  
ACLKR/X int  
Hold time, MCASP[x]_AFSR/X(4) input valid after  
MCASP[x]_ACLKR/X(4)  
-1  
ACLKR/X ext in/out  
ACLKR/X int  
1.6  
9.29  
4
Setup time, MCASP[x]_AXR(4) input valid before  
MCASP[x]_ACLKR/X(4)  
ACLKR/X ext in/out  
ACLKR/X int  
Hold time, MCASP[x]_AXR(4) input valid after  
MCASP[x]_ACLKR/X(4)  
-1  
ACLKR/X ext in/out  
1.6  
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0  
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0  
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1  
(2) P = AHCLKR/X period in ns. For details on AHCLKR/X clock source options, see the McASP Clocks table in the Multichannel Audio  
Serial Port (MCASP) section of the Module Integration chapter found in the Technical Reference Manual.  
(3) R = ACLKR/X period in ns.  
(4) x in MCASP[x]_* is 0, 1 or 2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
ASP2  
ASP2  
ASP1  
MCASP[x]_AHCLKR/X (Falling Edge Priority)  
MCASP[x]_AHCLKR/X (Rising Edge Polarity)  
ASP4  
ASP4  
ASP3  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(A)  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(B)  
ASP6  
ASP5  
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
ASP8  
ASP7  
MCASP[x]_AXR[x] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured  
for falling edge (to shift data in).  
B. For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured  
for rising edge (to shift data in).  
7-61. MCASP Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-73. MCASP Switching Characteristics  
see 7-62  
NO.  
PARAMETER  
DESCRIPTION  
MODE(1)  
MIN  
20  
MAX UNIT  
ASP9 tc(AHCLKRX)  
ASP10 tw(AHCLKRX)  
ASP11 tc(ACLKRX)  
ASP12 tw(ACLKRX)  
Cycle time, MCASP[x]_AHCLKR/X(4)  
ns  
ns  
ns  
ns  
Pulse duration, MCASP[x]_AHCLKR/X(4) high or low  
Cycle time, MCASP[x]_ACLKR/X(4)  
0.5P(2) - 2  
20  
Pulse duration, MCASP[x]_ACLKR/X(4) high or low  
0.5R(3) - 2  
-1  
Delay time, MCASP[x]_ACLKR/X(4) transmit edge to  
MCASP[x]_AFSR/X(4) output valid  
ACLKR/X int  
7.25  
ns  
12.84  
ASP13 td(ACLKRX-AFSRX)  
ASP14 td(ACLKX-AXR)  
ASP15 tdis(ACLKX-AXR)  
ACLKR/X ext in/out  
ACLKR/X int  
-15.29  
-1  
Delay time, MCASP[x]_ACLKX(4) transmit edge to  
MCASP[x]_AXR(4) output valid  
7.25  
ns  
12.84  
ACLKR/X ext in/out  
ACLKR/X int  
-15.29  
-1  
Disable time, MCASP[x]_ACLKX(4) transmit edge to  
MCASP[x]_AXR(4) output high impedance  
7.25  
ns  
14  
ACLKR/X ext in/out  
-14.9  
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0  
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0  
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1  
(2) P = AHCLKR/X period in ns. For details on AHCLKR/X clock source options, see the McASP Clocks table in the Multichannel Audio  
Serial Port (MCASP) section of the Module Integration chapter found in the Technical Reference Manual.  
(3) R = ACLKR/X period in ns.  
(4) x in MCASP[x]_* is 0, 1 or 2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
ASP10  
ASP10  
ASP9  
MCASP[x]_AHCLKR/X (Falling Edge Priority)  
MCASP[x]_AHCLKR/X (Rising Edge Polarity)  
ASP12  
ASP12  
ASP11  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(A)  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(B)  
ASP13  
ASP13  
ASP13  
ASP13  
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
MCASP[x]_AXR[x] (Data Out/Transmit)  
ASP13  
ASP13  
ASP13  
ASP14  
ASP15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured  
for rising edge (to shift data in).  
B. For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured  
for falling edge (to shift data in).  
7-62. MCASP Switching Characteristics  
For more information, see Multichannel Audio Serial Port (MCASP) section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.15 MCSPI  
备注  
McSPI has one or more signals which can be multiplexed to more than one pin. Timing requirements  
and switching characteristics defined in this section are only valid for specific pin combinations known  
as IOSETs. Valid pin combinations or IOSETs for this interface are defined in the SysConfig-PinMux  
Tool.  
For more details about features and additional description information on the device Serial Port Interface, see  
the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7-74 presents timing conditions for MCSPI.  
7-74. MCSPI Timing Conditions  
PARAMETER  
MIN  
2
MAX  
8.5  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
6
12  
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.15.1 MCSPI Controller Mode  
7-75, 7-63, 7-76, and 7-64 present timing requirements and switching characteristics for SPI –  
Controller Mode.  
7-75. MCSPI Timing Requirements Controller Mode  
see 7-63  
NO.  
SM4  
SM5  
PARAMETER  
DESCRIPTION  
MIN  
2.8  
3
MAX  
UNIT  
ns  
tsu(POCI-SPICLK)  
Setup time, SPIn_D[x] valid before SPIn_CLK active edge  
Hold time, SPIn_D[x] valid after SPIn_CLK active edge  
th(SPICLK-POCI)  
ns  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SM5  
SM5  
SM4  
SM4  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM2  
SM1  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SM5  
SM4  
SM5  
Bit n-2  
SM4  
Bit n-1  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_02  
7-63. SPI Controller Mode Receive Timing  
Copyright © 2023 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-76. MCSPI Switching Characteristics - Controller Mode  
see 7-64  
NO.  
PARAMETER  
MIN  
20  
0.5P - 1(1)  
0.5P - 1(1)  
-3  
MAX UNIT  
SM1  
SM2  
SM3  
SM6  
SM7  
SM8  
tc(SPICLK)  
Cycle time, SPIn_CLK  
ns  
ns  
ns  
tw(SPICLKL)  
Pulse duration, SPIn_CLK low  
tw(SPICLKH)  
td(SPICLK-PICO)  
td(CS-PICO)  
Pulse duration, SPIn_CLK high  
Delay time, SPIn_CLK active edge to SPIn_D[x]  
Delay time, SPIn_CSi active edge to SPIn_D[x]  
Delay time, SPIn_CSi active to SPIn_CLK first edge  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
5
td(CS-SPICLK)  
PHA = 0  
PHA = 1  
PHA = 0  
PHA = 1  
B - 4 (3)  
A - 4 (2)  
A - 4(2)  
B - 4(3)  
SM9  
td(SPICLK-CS)  
Delay time, SPIn_CLK last edge to SPIn_CSi inactive  
(1) P = SPI_CLK period in ns.  
(2) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8 ns, A =  
(TCS + 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.  
(3) B = (TCS + .5) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even >= 2.  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM7  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM1  
SM2  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM6  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
SM6  
Bit 1  
Bit0  
SPRSP08_TIMING_McSPI_01  
7-64. SPI Controller Mode Transmit Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.15.2 MCSPI Peripheral Mode  
7-77, 7-65, 7-78, and 7-66 present timing requirements and switching characteristics for SPI –  
Peripheral Mode.  
7-77. MCSPI Timing Requirements Peripheral Mode  
see 7-65  
NO.  
SS1  
SS2  
SS3  
SS4  
SS5  
SS8  
SS9  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ns  
tc(SPICLK)  
Cycle time, SPIn_CLK  
20  
0.45P(1)  
0.45P(1)  
tw(SPICLKL)  
Pulse duration, SPIn_CLK low  
ns  
tw(SPICLKH)  
Pulse duration, SPIn_CLK high  
ns  
tsu(PICO-SPICLK)  
th(SPICLK-PICO)  
tsu(CS-SPICLK)  
th(SPICLK-CS)  
Setup time, SPIn_D[x] valid before SPIn_CLK active edge  
Hold time, SPIn_D[x] valid after SPIn_CLK active edge  
Setup time, SPIn_CSi valid before SPIn_CLK first edge  
Hold time, SPIn_CSi valid after SPIn_CLK last edge  
5
5
5
5
ns  
ns  
ns  
ns  
(1) P = SPIn_CLK period in ns.  
Copyright © 2023 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
POL=1  
SPI_SCLK (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS5  
SS4  
SS5  
Bit n-2  
SS4  
Bit n-1  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
SPI_CS[i] (IN)  
PHA=1  
EPOL=1  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
POL=1  
SPI_SCLK (IN)  
SPI_SCLK (IN)  
SS1  
SS3  
SS4  
SS5  
SS4  
SS5  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_04  
7-65. SPI Peripheral Mode Receive Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-78. MCSPI Switching Characteristics Peripheral Mode  
see 7-66  
NO.  
PARAMETER  
td(SPICLK-POCI)  
tsk(CS-POCI)  
DESCRIPTION  
Delay time, SPIn_CLK active edge to SPIn_D[x]  
Delay time, SPIn_CSi active edge to SPIn_D[x]  
MIN  
2
MAX  
17.12  
UNIT  
ns  
SS6  
SS7  
20.95  
ns  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
POL=1  
SS1  
SS2  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS7  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
POL=1  
SS1  
SS3  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS6  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
SS6  
Bit 1  
Bit 0  
SPRSP08_TIMING_McSPI_03  
7-66. SPI Peripheral Mode Transmit Timing  
Copyright © 2023 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16 MMCSD  
The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC), Secure Digital (SD),  
and Secure Digital IO (SDIO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO protocol at  
transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking  
for syntactical correctness.  
For more details about MMCSD interfaces, see the corresponding MMC0, MMC1, and MMC2 subsections within  
Signal Descriptions and Detailed Description sections.  
备注  
Some operating modes require software configuration of the MMC DLL delay settings, as shown in 表  
7-79 and 7-97.  
The modes which show a value of "Tuning" in the ITAPDLYSEL column of 7-79 and 7-97 require  
a tuning algorithm to be used for optimizing input timing. Refer to the MMCSD Programming Guide in  
the device TRM for more information on the tuning algorithm and configuration of input delays  
required to optimize input timing.  
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in  
the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1 MMC0 - eMMC/SD/SDIO Interface  
MMC0 interface is compliant with the JEDEC eMMC electrical standard v5.1 (JESD84-B51) and it supports the  
following eMMC applications:  
Legacy SDR  
High Speed SDR  
HS200  
MMC0 interface is also compliant with the SD Host Controller Standard Specification 4.10 and SD Physical  
Layer Specification v3.01 as well as SDIO Specification v3.00 and it supports the following SD Card applications:  
Default Speed  
High Speed  
UHSI SDR12  
UHSI SDR25  
UHSI SDR50  
UHSI DDR50  
UHSI SDR104  
7-79 presents the required DLL software configuration settings for MMC0 timing modes.  
7-79. MMC0 DLL Delay Mapping for all Timing Modes  
REGISTER NAME  
BIT FIELD  
MMCSD0_SS_PHY_CTRL_4_REG  
[15:12] [8]  
OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL  
MMCSD0_SS_PHY_CTRL_5_REG  
[20]  
[4:0]  
[2:0]  
BIT FIELD NAME  
CLKBUFSEL  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DELAY  
BUFFER  
DURATION  
DELAY  
ENABLE  
DELAY  
VALUE  
MODE  
DESCRIPTION  
8-bit PHY operating  
1.8 V, 25 MHz  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
0x6  
0x0  
0x0  
0xF  
0xF  
0xC  
0x9  
0x6  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
NA(1)  
NA(1)  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
Legacy  
SDR  
8-bit PHY operating  
3.3 V, 25 MHz  
8-bit PHY operating  
1.8 V, 50 MHz  
NA(1)  
High  
Speed  
SDR  
8-bit PHY operating  
3.3 V, 50 MHz  
NA(1)  
8-bit PHY operating  
1.8 V, 200 MHz  
HS200  
Tuning(2)  
0x0  
Default  
Speed  
4-bit PHY operating  
3.3 V, 25 MHz  
High  
Speed  
4-bit PHY operating  
3.3 V, 50 MHz  
0x0  
UHS-I  
SDR12  
4-bit PHY operating  
1.8 V, 25 MHz  
0x0  
UHS-I  
SDR25  
4-bit PHY operating  
1.8 V, 50 MHz  
0x0  
UHS-I  
SDR50  
4-bit PHY operating  
1.8 V, 100 MHz  
Tuning(2)  
Tuning(2)  
Tuning(2)  
UHS-I  
DDR50  
4-bit PHY operating  
1.8 V, 50 MHz  
UHS-I  
SDR104  
4-bit PHY operating  
1.8, V 200 MHz  
(1) NA means Not Applicable  
(2) Tuning means this mode requires a tuning algorithm to be used for optimal input timing  
Copyright © 2023 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-80 presents timing conditions for MMC0.  
7-80. MMC0 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
Legacy SDR @ 3.3 V  
High Speed SDR@ 3.3V  
Default Speed  
0.69  
0.14  
2.06 V/ns  
High Speed  
Legacy SDR @ 1.8 V  
UHS-I SDR12  
SRI  
Input slew rate  
1.44 V/ns  
1.34 V/ns  
High Speed SDR @ 1.8 V  
UHS-I SDR25  
0.3  
1
UHS-I DDR50  
2
V/ns  
OUTPUT CONDITIONS  
HS200  
UHS-I SDR104  
1
1
10  
12  
pF  
pF  
CL  
Output load capacitance  
All other modes  
PCB CONNECTIVITY REQUIREMENTS  
Legacy SDR  
High Speed SDR  
HS200  
126  
756  
ps  
ps  
Default Speed  
High Speed  
UHS-I SDR12  
UHS-I SDR25  
UHS-I SDR50  
UHS-I SDR104  
td(Trace Delay)  
Propagation delay of each trace  
126  
239  
1386  
UHS-I DDR50  
1134  
8
ps  
ps  
High Speed SDR  
HS200  
High Speed  
UHS-I SDR104  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
Delay)  
UHS-I DDR50  
20  
ps  
ps  
All other modes  
100  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.1 Legacy SDR Mode  
7-81, 7-67, 7-82, and 7-68 present timing requirements and switching characteristics for MMC0 –  
Legacy SDR Mode.  
7-81. MMC0 Timing Requirements Legacy SDR Mode  
see 7-67  
IO  
NO.  
Operating  
Voltage  
MIN  
MAX  
UNIT  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
4.2  
2.15  
0.87  
1.67  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LSDR1  
LSDR2  
LSDR3  
LSDR4  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
2.15  
0.87  
1.67  
7-67. MMC0 Legacy SDR Receive Mode  
7-82. MMC0 Switching Characteristics Legacy SDR Mode  
see 7-68  
IO  
NO.  
PARAMETER  
Operating  
Voltage  
MIN  
MAX UNIT  
fop(clk)  
tc(clk)  
tw(clkH)  
tw(clkL)  
Operating frequency, MMC0_CLK  
Cycle time, MMC0_CLK  
25  
MHz  
ns  
LSDR5  
LSDR6  
LSDR7  
40  
18.7  
18.7  
-2.1  
-1.8  
-2.1  
-1.8  
Pulse duration, MMC0_CLK high  
Pulse duration, MMC0_CLK low  
ns  
ns  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
2.1  
2.2  
2.1  
2.2  
ns  
LSDR8  
LSDR9  
td(clkL-cmdV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
ns  
ns  
td(clkL-dV)  
ns  
Copyright © 2023 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-68. MMC0 Legacy SDR Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.2 High Speed SDR Mode  
7-83, 7-69, 7-84, and 7-70 present timing requirements and switching characteristics for MMC0 –  
High Speed SDR Mode.  
7-83. MMC0 Timing Requirements High Speed SDR Mode  
see 7-69  
IO  
NO.  
Operating  
Voltage  
MIN  
MAX UNIT  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
2.15  
2.24  
1.27  
1.66  
2.15  
2.24  
1.27  
1.66  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HSSDR1  
HSSDR2  
HSSDR3  
HSSDR4  
tsu(cmdV-clkH) Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
7-69. MMC0 High Speed SDR Mode Receive Mode  
7-84. MMC0 Switching Characteristics High Speed SDR Mode  
see 7-70  
IO  
NO.  
PARAMETER  
Operating  
Voltage  
MIN  
MAX UNIT  
fop(clk)  
tc(clk)  
tw(clkH)  
tw(clkL)  
Operating frequency, MMC0_CLK  
Cycle time, MMC0_CLK  
50  
MHz  
ns  
HSSDR5  
HSSDR6  
HSSDR7  
20  
9.2  
Pulse duration, MMC0_CLK high  
Pulse duration, MMC0_CLK low  
ns  
9.2  
ns  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
-1.55  
-1.8  
-1.55  
-1.8  
3.05  
2.2  
ns  
HSSDR8  
HSSDR9  
td(clkL-cmdV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
ns  
3.05  
2.2  
ns  
td(clkL-dV)  
ns  
Copyright © 2023 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-70. MMC0 High Speed SDR Mode Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.3 HS200 Mode  
7-85 and 7-71 present switching characteristics for MMC0 HS200 Mode.  
7-85. MMC0 Switching Characteristics HS200 Mode  
see 7-71  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
200  
HS2005  
HS2006  
HS2007  
HS2008  
HS2009  
tc(clk)  
Cycle time, MMC0_CLK  
5
2.12  
2.12  
1.07  
1.07  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[7:0] transition  
3.21  
3.21  
ns  
ns  
7-71. MMC0 HS200 Mode Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.4 Default Speed Mode  
7-86, 7-72, 7-87, and 7-73 present timing requirements and switching characteristics for MMC0 –  
Default Speed Mode.  
7-86. Timing Requirements for MMC0 Default Speed Mode  
see 7-72  
NO.  
DS1  
DS2  
DS3  
DS4  
MIN  
2.15  
1.67  
2.15  
1.67  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
DS2  
DS4  
DS1  
DS3  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-72. MMC0 Default Speed Receive Mode  
7-87. Switching Characteristics for MMC0 Default Speed Mode  
see 7-73  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
25  
DS5  
DS6  
DS7  
DS8  
DS9  
tc(clk)  
Cycle time, MMC0_CLK  
40  
18.7  
18.7  
- 1.8  
- 1.8  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[3:0] transition  
2.2  
2.2  
ns  
ns  
DS5  
DS6  
DS7  
MMC[x]_CLK  
MMC[x]_CMD  
DS8  
DS9  
MMC[x]_DAT[3:0]  
7-73. MMC0 Default Speed Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.5 High Speed Mode  
7-88, 7-74, 7-89, and 7-75 present timing requirements and switching characteristics for MMC0 –  
High Speed Mode.  
7-88. Timing Requirements for MMC0 High Speed Mode  
see 7-74  
NO.  
HS1  
HS2  
HS3  
HS4  
MIN  
2.24  
1.66  
2.24  
1.66  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
HS1  
HS3  
HS2  
HS4  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-74. MMC0 High Speed Receive Mode  
7-89. Switching Characteristics for MMC0 High Speed Mode  
see 7-75  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
50  
HS5  
HS6  
HS7  
HS8  
HS9  
tc(clk)  
Cycle time. MMC0_CLK  
20  
9.2  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
9.2  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[3:0] transition  
-1.8  
-1.8  
2.2  
2.2  
ns  
ns  
HS5  
HS6  
HS7  
MMC[x]_CLK  
HS8  
HS9  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-75. MMC0 High Speed Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.6 UHSI SDR12 Mode  
7-90, 7-76, 7-91, and 7-77 present timing requirements and switching characteristics for MMC0 –  
UHS-I SDR12 Mode.  
7-90. Timing Requirements for MMC0 UHS-I SDR12 Mode  
see 7-76  
NO.  
MIN  
4.2  
MAX  
UNIT  
ns  
SDR121 tsu(cmdV-clkH)  
SDR122 th(clkH-cmdV)  
SDR123 tsu(dV-clkH)  
SDR124 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
0.87  
4.2  
ns  
ns  
0.87  
ns  
MMC[x]_CLK  
SDR122  
SDR124  
SDR121  
SDR123  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-76. MMC0 UHS-I SDR12 Receive Mode  
7-91. Switching Characteristics for MMC0 UHS-I SDR12 Mode  
see 7-77  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
25  
SDR125 tc(clk)  
Cycle time, MMC0_CLK  
40  
18.7  
18.7  
1.5  
SDR126 tw(clkH)  
SDR127 tw(clkL)  
SDR128 td(clkL-cmdV)  
SDR129 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
8.6  
8.6  
ns  
1.5  
ns  
SDR125  
SDR126  
SDR127  
MMC[x]_CLK  
SDR128  
SDR128  
MMC[x]_CMD  
SDR129  
SDR129  
MMC[x]_DAT[3:0]  
7-77. MMC0 UHS-I SDR12 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.7 UHSI SDR25 Mode  
7-92, 7-78, 7-93, and 7-79 present timing requirements and switching characteristics for MMC0 –  
UHS-I SDR25 Mode.  
7-92. Timing Requirements for MMC0 UHS-I SDR25 Mode  
see 7-78  
NO.  
MIN  
2.15  
1.27  
2.15  
1.27  
MAX  
UNIT  
ns  
SDR251 tsu(cmdV-clkH)  
SDR252 th(clkH-cmdV)  
SDR253 tsu(dV-clkH)  
SDR254 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
SDR252  
SDR254  
SDR251  
SDR253  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-78. MMC0 UHS-I SDR25 Receive Mode  
7-93. Switching Characteristics for MMC0 UHS-I SDR25 Mode  
see 7-79  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
50  
SDR255 tc(clk)  
Cycle time, MMC0_CLK  
20  
9.2  
9.2  
2.4  
2.4  
SDR256 tw(clkH)  
SDR257 tw(clkL)  
SDR258 td(clkL-cmdV)  
SDR259 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
8.1  
8.1  
ns  
ns  
SDR255  
SDR256  
SDR257  
MMC[x]_CLK  
SDR258  
SDR258  
MMC[x]_CMD  
SDR259  
SDR259  
MMC[x]_DAT[3:0]  
7-79. MMC0 UHS-I SDR25 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.8 UHSI SDR50 Mode  
7-94 and 7-80 presents switching characteristics for MMC0 UHS-I SDR50 Mode.  
7-94. Switching Characteristics for MMC0 UHS-I SDR50 Mode  
see 7-80  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
100  
SDR505 tc(clk)  
Cycle time, MMC0_CLK  
10  
4.45  
4.45  
1.2  
SDR506 tw(clkH)  
SDR507 tw(clkL)  
SDR508 td(clkL-cmdV)  
SDR509 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
6.35  
6.35  
ns  
1.2  
ns  
SDR505  
SDR506  
SDR507  
MMC[x]_CLK  
SDR508  
SDR508  
MMC[x]_CMD  
SDR509  
SDR509  
MMC[x]_DAT[3:0]  
7-80. MMC0 UHS-I SDR50 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.9 UHSI DDR50 Mode  
7-95 and 7-81 present switching characteristics for MMC0 UHS-I DDR50 Mode.  
7-95. Switching Characteristics for MMC0 UHS-I DDR50 Mode  
see 7-81  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
50  
DDR505  
DDR506  
DDR507  
DDR508  
DDR509  
tc(clk)  
Cycle time, MMC0_CLK  
20  
9.2  
tw(clkH)  
tw(clkL)  
td(clk-cmdV)  
td(clk-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
9.2  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK transition to MMC0_DAT[3:0] transition  
1.12  
1.12  
6.43  
6.43  
ns  
ns  
DDR505  
DDR506  
DDR507  
MMC[x]_CLK  
MMC[x]_CMD  
DDR508  
DDR509  
DDR509  
MMC[x]_DAT[3:0]  
7-81. MMC0 UHS-I DDR50 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.1.10 UHSI SDR104 Mode  
7-96 and 7-82 present switching characteristics for MMC0 UHS-I SDR104 Mode.  
7-96. Switching Characteristics for MMC0 UHS-I SDR104 Mode  
see 7-82  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
200  
SDR1045 tc(clk)  
Cycle time, MMC0_CLK  
5
2.12  
2.12  
1.07  
1.07  
SDR1046 tw(clkH)  
SDR1047 tw(clkL)  
SDR1048 td(clkL-cmdV)  
SDR1049 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
3.21  
3.21  
ns  
ns  
SDR1045  
SDR1046  
SDR1047  
MMC[x]_CLK  
SDR1048  
SDR1048  
MMC[x]_CMD  
SDR1049  
SDR1049  
MMC[x]_DAT[3:0]  
7-82. MMC0 UHS-I SDR104 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2 MMC1/MMC2 - SD/SDIO Interface  
MMC1/MMC2 interface is compliant with the SD Host Controller Standard Specification 4.10 and SD Physical  
Layer Specification v3.01 as well as SDIO Specification v3.00 and it supports the following SD Card applications:  
Default speed  
High speed  
UHSI SDR12  
UHSI SDR25  
UHSI SDR50  
UHSI DDR50  
UHSI SDR104  
7-97 presents the required DLL software configuration settings for MMC1/2 timing modes.  
7-97. MMC1/MMC2 DLL Delay Mapping for all Timing Modes  
MMCSD1_SS_PHY_CTRL_4_REG/  
MMCSD2_SS_PHY_CTRL_4_REG  
MMCSD1_SS_PHY_CTRL_5_REG/  
MMCSD2_SS_PHY_CTRL_5_REG  
REGISTER NAME  
BIT FIELD  
[20]  
[15:12]  
[8]  
[4:0]  
[2:0]  
BIT FIELD NAME  
OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL  
CLKBUFSEL  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DELAY  
BUFFER  
DURATION  
DELAY  
ENABLE  
DELAY  
VALUE  
MODE  
DESCRIPTION  
Default  
Speed  
4-bit PHY operating  
3.3 V, 25 MHz  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0xF  
0xF  
0xC  
0x9  
0x6  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
High  
Speed  
4-bit PHY operating  
3.3 V, 50 MHz  
UHS-I  
SDR12  
4-bit PHY operating  
1.8 V, 25 MHz  
0x0  
UHS-I  
SDR25  
4-bit PHY operating  
1.8 V, 50 MHz  
0x0  
UHS-I  
SDR50  
4-bit PHY operating  
1.8 V, 100 MHz  
Tuning(1)  
Tuning(1)  
Tuning(1)  
UHS-I  
DDR50  
4-bit PHY operating  
1.8 V, 50 MHz  
UHS-I  
SDR104  
4-bit PHY operating  
1.8, V 200 MHz  
(1) Tuning means this mode requires a tuning algorithm to be used for optimal input timing  
Copyright © 2023 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-98 presents timing conditions for MMC1.  
7-98. MMC1/MMC2 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
Input Conditions  
Default Speed  
High Speed  
0.69  
2.06 V/ns  
1.34 V/ns  
UHSI SDR12  
UHSI SDR25  
SRI  
Input slew rate  
0.34  
1
2
V/ns  
pF  
UHSI DDR50  
Output Conditions  
CL  
Output load capacitance  
All modes  
1
10  
PCB Connectivity Requirements  
239  
126  
1134  
1386  
ps  
ps  
UHSI DDR50  
td(Trace Delay)  
Propagation delay of each trace  
All other modes  
High Speed  
UHSI SDR104  
8
ps  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
20  
ps  
ps  
UHSI DDR50  
Delay)  
All other modes  
100  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.1 Default Speed Mode  
7-99, 7-83, 7-100, and 7-84 present timing requirements and switching characteristics for MMC1/  
MMC2 Default Speed Mode.  
7-99. Timing Requirements for MMC1/MMC2 Default Speed Mode  
see 7-83  
NO.  
DS1  
DS2  
DS3  
DS4  
MIN  
2.15  
1.67  
2.15  
1.67  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
DS2  
DS4  
DS1  
DS3  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-83. MMC1/MMC2 Default Speed Receive Mode  
7-100. Switching Characteristics for MMC1/MMC2 Default Speed Mode  
see 7-84  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
25  
DS5  
DS6  
DS7  
DS8  
DS9  
tc(clk)  
Cycle time, MMCx_CLK  
40  
18.7  
18.7  
- 1.8  
- 1.8  
tw(clkH)  
Pulse duration, MMCx_CLK high  
ns  
tw(clkL)  
Pulse duration, MMCx_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMCx_CLK falling edge to MMCx_CMD transition  
Delay time, MMCx_CLK falling edge to MMCx_DAT[3:0] transition  
2.2  
2.2  
ns  
ns  
DS5  
DS6  
DS7  
MMC[x]_CLK  
MMC[x]_CMD  
DS8  
DS9  
MMC[x]_DAT[3:0]  
7-84. MMC1/MMC2 Default Speed Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.2 High Speed Mode  
7-101, 7-85, 7-102, and 7-86 present timing requirements and switching characteristics for MMC1/  
MMC2 High Speed Mode.  
7-101. Timing Requirements for MMC1/MMC2 High Speed Mode  
see 7-85  
NO.  
HS1  
HS2  
HS3  
HS4  
MIN  
2.24  
1.66  
2.24  
1.66  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
HS1  
HS3  
HS2  
HS4  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-85. MMC1/MMC2 High Speed Receive Mode  
7-102. Switching Characteristics for MMC1/MMC2 High Speed Mode  
see 7-86  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
50  
HS5  
HS6  
HS7  
HS8  
HS9  
tc(clk)  
Cycle time. MMCx_CLK  
20  
9.2  
tw(clkH)  
Pulse duration, MMCx_CLK high  
ns  
tw(clkL)  
Pulse duration, MMCx_CLK low  
9.2  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMCx_CLK falling edge to MMCx_CMD transition  
Delay time, MMCx_CLK falling edge to MMCx_DAT[3:0] transition  
- 1.8  
- 1.8  
2.2  
2.2  
ns  
ns  
HS5  
HS6  
HS7  
MMC[x]_CLK  
HS8  
HS9  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-86. MMC1/MMC2 High Speed Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.3 UHSI SDR12 Mode  
7-103, 7-87, 7-104, and 7-88 present timing requirements and switching characteristics for MMC1/  
MMC2 UHS-I SDR12 Mode.  
7-103. Timing Requirements for MMC1/MMC2 UHS-I SDR12 Mode  
see 7-87  
NO.  
MIN  
MAX  
UNIT  
ns  
SDR121 tsu(cmdV-clkH)  
SDR122 th(clkH-cmdV)  
SDR123 tsu(dV-clkH)  
SDR124 th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
4.2  
0.87  
4.2  
ns  
ns  
0.87  
ns  
MMC[x]_CLK  
SDR122  
SDR124  
SDR121  
SDR123  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-87. MMC1/MMC2 UHS-I SDR12 Receive Mode  
7-104. Switching Characteristics for MMC1/MMC2 UHS-I SDR12 Mode  
see 7-88  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
25  
SDR125 tc(clk)  
Cycle time, MMCx_CLK  
40  
18.7  
18.7  
1.5  
SDR126 tw(clkH)  
SDR127 tw(clkL)  
SDR128 td(clkL-cmdV)  
SDR129 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
8.6  
8.6  
ns  
1.5  
ns  
SDR125  
SDR126  
SDR127  
MMC[x]_CLK  
SDR128  
SDR128  
MMC[x]_CMD  
SDR129  
SDR129  
MMC[x]_DAT[3:0]  
7-88. MMC1/MMC2 UHS-I SDR12 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.4 UHSI SDR25 Mode  
7-105, 7-89, 7-106, and 7-90 present timing requirements and switching characteristics for MMC1/  
MMC2 UHS-I SDR25 Mode.  
7-105. Timing Requirements for MMC1/MMC2 UHS-I SDR25 Mode  
see 7-89  
NO.  
MIN  
2.15  
1.27  
2.15  
1.27  
MAX  
UNIT  
ns  
SDR251 tsu(cmdV-clkH)  
SDR252 th(clkH-cmdV)  
SDR253 tsu(dV-clkH)  
SDR254 th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
SDR252  
SDR254  
SDR251  
SDR253  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-89. MMC1/MMC2 UHS-I SDR25 Receive Mode  
7-106. Switching Characteristics for MMC1/MMC2 UHS-I SDR25 Mode  
see 7-90  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
50  
SDR255 tc(clk)  
Cycle time, MMCx_CLK  
20  
9.2  
9.2  
2.4  
2.4  
SDR256 tw(clkH)  
SDR257 tw(clkL)  
SDR258 td(clkL-cmdV)  
SDR259 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
8.1  
8.1  
ns  
ns  
SDR255  
SDR256  
SDR257  
MMC[x]_CLK  
SDR258  
SDR258  
MMC[x]_CMD  
SDR259  
SDR259  
MMC[x]_DAT[3:0]  
7-90. MMC1/MMC2 UHS-I SDR25 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.5 UHSI SDR50 Mode  
7-107 and 7-91 presents switching characteristics for MMC1/MMC2 UHS-I SDR50 Mode.  
7-107. Switching Characteristics for MMC1/MMC2 UHS-I SDR50 Mode  
see 7-91  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
100  
SDR505 tc(clk)  
Cycle time, MMCx_CLK  
10  
4.45  
4.45  
1.2  
SDR506 tw(clkH)  
SDR507 tw(clkL)  
SDR508 td(clkL-cmdV)  
SDR509 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
6.35  
6.35  
ns  
1.2  
ns  
SDR505  
SDR506  
SDR507  
MMC[x]_CLK  
SDR508  
SDR508  
MMC[x]_CMD  
SDR509  
SDR509  
MMC[x]_DAT[3:0]  
7-91. MMC1/MMC2 UHS-I SDR50 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.6 UHSI DDR50 Mode  
7-108 and 7-92 present switching characteristics for MMC1/MMC2 UHS-I DDR50 Mode.  
7-108. Switching Characteristics for MMC1/MMC2 UHS-I DDR50 Mode  
see 7-92  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
50  
DDR505  
DDR506  
DDR507  
DDR508  
DDR509  
tc(clk)  
Cycle time, MMCx_CLK  
20  
9.2  
tw(clkH)  
tw(clkL)  
td(clk-cmdV)  
td(clk-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
9.2  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK transition to MMCx_DAT[3:0] transition  
1.12  
1.12  
6.43  
6.43  
ns  
ns  
DDR505  
DDR506  
DDR507  
MMC[x]_CLK  
MMC[x]_CMD  
DDR508  
DDR509  
DDR509  
MMC[x]_DAT[3:0]  
7-92. MMC1/MMC2 UHS-I DDR50 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.16.2.7 UHSI SDR104 Mode  
7-109 and 7-93 present switching characteristics for MMC1/MMC2 UHS-I SDR104 Mode.  
7-109. Switching Characteristics for MMC1/MMC2 UHS-I SDR104 Mode  
see 7-93  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
200  
SDR1045 tc(clk)  
Cycle time, MMCx_CLK  
5
2.12  
2.12  
1.07  
1.07  
SDR1046 tw(clkH)  
SDR1047 tw(clkL)  
SDR1048 td(clkL-cmdV)  
SDR1049 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
3.21  
3.21  
ns  
ns  
SDR1045  
SDR1046  
SDR1047  
MMC[x]_CLK  
SDR1048  
SDR1048  
MMC[x]_CMD  
SDR1049  
SDR1049  
MMC[x]_DAT[3:0]  
7-93. MMC1/MMC2 UHS-I SDR104 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.17 OLDI  
7.11.5.17.1 OLDI0 Switching Characteristics  
7-110 and 7-94 present switching characteristics for OLDI0.  
7-110. OLDI0 Switching Characteristics  
NO.  
PARAMETER  
MODE  
MIN  
TYP  
MAX UNIT  
Rise time, OLDI0_CLK[1:0]P,  
OLDI0_CLK[1:0]N, OLDI0_A[7:0]P,  
and OLDI0_A[7:0]N  
Slow(1)  
0.5  
0.25  
ns  
ns  
ns  
ns  
OLDI1 tt(LHTT)  
Fast(2)  
Slow(1)  
Fast(2)  
Fall time, OLDI0_CLK[1:0]P,  
OLDI0_CLK[1:0]N, OLDI0_A[7:0]P,  
and OLDI0_A[7:0]N  
0.5  
OLDI2 tt(HLTT)  
0.25  
OLDI3 tc(CLK)  
OLDI4 tw(BIT)  
Cycle time, OLDI0_CLK[1:0]P and OLDI0_CLK[1:0]N  
Bit width, OLDI0_A[7:0]P and OLDI0_A[7:0]N  
6.06  
110.01  
ns  
ns  
(1/7)OLDI3  
Bit 1 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
OLDI5 td(BIT1)  
OLDI6 td(BIT0)  
OLDI7 td(BIT6)  
OLDI8 td(BIT5)  
OLDI9 td(BIT4)  
OLDI10 td(BIT3)  
- (0.1)OLDI3  
(0.1)OLDI3  
ns  
ns  
ns  
ns  
ns  
ns  
Bit 0 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
(1/7)OLDI3  
- (0.1)OLDI3  
(1/7) OLDI3  
+ (0.1)OLDI3  
Bit 6 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
(2/7)OLDI3  
- (0.1)OLDI3  
(2/7) OLDI3  
+ (0.1)OLDI3  
Bit 5 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
(3/7)OLDI3  
- (0.1)OLDI3  
(3/7) OLDI3  
+ (0.1)OLDI3  
Bit 4 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
(4/7)OLDI3  
- (0.1)OLDI3  
(4/7) OLDI3  
+ (0.1)OLDI3  
Bit 3 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
(5/7)OLDI3  
- (0.1)OLDI3  
(5/7) OLDI3  
+ (0.1)OLDI3  
Bit 2 delay time, OLDI0_CLK[1:0]P and  
OLDI0_CLK[1:0]N to OLDI0_A[7:0]P and  
OLDI0_A[7:0]N  
(6/7)OLDI3  
- (0.1)OLDI3  
(6/7) OLDI3  
+ (0.1)OLDI3  
OLDI11 td(BIT2)  
ns  
ps  
Skew, OLDI0_A[7:0]P and OLDI0_A[7:0]N relative to  
any other OLDI0_A[7:0]P and OLDI0_A[7:0]N  
OLDI12 tsk(TCCS)  
50  
(1) Slow mode: TXDRV[3:0] = 0100b without back termination (RTERM_EN = 0b with 100Ωdifferential termination on far-end only)  
(2) Fast mode: TXDRV[3:0] = 1000b with back termination (RTERM_EN = 1b with 100Ωdifferential termination on far-end only, or  
RTERM_EN = 0b with 100Ωdifferential termination on near-end and far-end)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
OLDI3  
OLDI1, OLDI2  
80%  
20%  
OLDI0_CLK[1:0]P  
OLDI0_CLK[1:0]N  
80%  
20%  
OLDI11  
OLDI10  
OLDI9  
OLDI8  
OLDI7  
OLDI6  
OLDI5  
OLDI4  
OLDI1, OLDI2  
OLDI0_A[7:0]P  
80%  
20%  
bit 2  
bit 1  
bit 0  
bit 6  
bit 5  
bit 4  
bit 3  
OLDI0_A[7:0]N  
7-94. OLDI0 Switching Characteristics  
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.18 OSPI  
OSPI0 offers two data capture modes, PHY mode and Tap mode.  
PHY mode uses an internal reference clock to transmit and receive data via a DLL based PHY, where each  
reference clock cycle produces a single cycle of OSPI0_CLK for Single Data Rate (SDR) transfers or a half cycle  
of OSPI0_CLK for Double Data Rate (DDR) transfers. PHY mode supports four clocking topologies for the  
receive data capture clock. Internal PHY Loopback - uses the internal reference clock as the PHY receive data  
capture clock. Internal Pad Loopback - uses OSPI0_LBCLKO looped back into the PHY from the  
OSPI0_LBCLKO pin as the PHY receive data capture clock. External Board Loopback - uses OSPI0_LBCLKO  
looped back into the PHY from the OSPI0_DQS pin as the PHY receive data capture clock. DQS - uses the DQS  
output from the attached device as the PHY receive data capture clock. SDR transfers are not supported when  
using the Internal Pad Loopback and DQS clocking topologies. DDR transfers are not supported when using the  
Internal PHY Loopback or Internal Pad Loopback clocking topologies.  
Tap mode uses an internal reference clock with selectable taps to adjusted data transmit and receive capture  
delays relative to OSPI0_CLK, which is a divide by 4 of the internal reference clock for SDR transfers or a divide  
by 8 of the internal reference clock for DDR transfers. Tap mode only supports one clocking topology for the  
receive data capture clock. No Loopback - uses the internal reference clock as the Tap receive data capture  
clock. This clocking topology supports a maximum internal reference clock rate of 200 MHz, which produces an  
OSPI0_CLK rate up to 50 MHz for SDR mode or 25 MHz for DDR mode.  
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device  
TRM.  
For more details about features and additional description information on the device Octal Serial Peripheral  
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.11.5.18.1 defines timing requirements and switching characteristics associated with PHY mode and 节  
7.11.5.18.2 defines timing requirements and switching characteristics associated with Tap mode.  
7-111 presents timing conditions for OSPI0.  
7-111. OSPI0 Timing Conditions  
PARAMETER  
MODE  
MIN  
1
MAX UNIT  
INPUT CONDITIONS  
SRI Input slew rate  
OUTPUT CONDITIONS  
6
V/ns  
pF  
CL  
Output load capacitance  
3
10  
PCB CONNECTIVITY REQUIREMENTS  
No Loopback  
Propagation delay of OSPI0_CLK trace  
Internal PHY Loopback  
Internal Pad Loopback  
450  
ps  
td(Trace Delay)  
Propagation delay of OSPI0_LBCLKO  
trace  
External Board Loopback  
DQS  
2L(1) - 30  
L(1) - 30  
2L(1) + 30  
L(1) + 30  
ps  
ps  
Propagation delay of OSPI0_DQS trace  
Propagation delay mismatch of  
OSPI0_D[7:0] and OSPI0_CSn[3:0]  
relative to OSPI0_CLK  
td(Trace Mismatch  
All modes  
60  
ps  
Delay)  
(1) L = Propagation delay of OSPI0_CLK trace  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.18.1 OSPI0 PHY Mode  
7.11.5.18.1.1 OSPI0 With PHY Data Training  
Read and write data valid windows will shift due to variation in process, voltage, temperature, and operating  
frequency. A data training method may be implemented to dynamically configure optimal read and write timing.  
Implementing data training enables proper operation across temperature with a specific process, voltage, and  
frequency operating condition, while achieving a higher operating frequency.  
Data transmit and receive timing parameters are not defined for the data training use case since they are  
dynamically adjusted based on the operating condition.  
7-112 defines DLL delays required for OSPI0 with Data Training. 7-113, 7-95, 7-114, and 7-96  
present timing requirements and switching characteristics for OSPI0 with Data Training.  
7-112. OSPI0 DLL Delay Mapping for PHY Data Training  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
PHY_CONFIG_TX_DLL_DELAY_FLD,  
DELAY VALUE  
Transmit  
All modes  
Receive  
(1)  
(2)  
All modes  
PHY_CONFIG_RX_DLL_DELAY_FLD  
(1) Transmit DLL delay value determined by training software  
(2) Receive DLL delay value determined by training software  
7-113. OSPI0 Timing Requirements PHY Data Training  
see 7-95  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_DQS edge  
(1)  
O15 tsu(D-LBCLK)  
O16 th(LBCLK-D)  
DDR with DQS  
ns  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_DQS edge  
(1)  
DDR with DQS  
ns  
(1) Minimum setup and hold time requirements for OSPI0_D[7:0] inputs are not defined when Data Training is used to find the optimum  
data valid window.  
OSPI_DQS  
O15 O16 O15 O16  
OSPI_D[i:0]  
OSPI_TIMING_04  
7-95. OSPI0 Timing Requirements PHY Data Training, DDR with DQS  
Copyright © 2023 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-114. OSPI Switching Characteristics PHY Data Training  
See 7-96  
NO.  
PARAMETER  
MODE  
1.8V, DDR  
3.3V, DDR  
DDR  
MIN  
6.02  
MAX UNIT  
7.52  
7.52  
ns  
ns  
ns  
ns  
O1  
tc(CLK)  
Cycle time, OSPI0_CLK  
7.52  
O2  
O3  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
DDR  
((0.475P(1)) +  
(0.975M(2)R(4)) +  
(0.04TD(5)) - 1)  
((0.525P(1)) +  
(1.025M(2)R(4)) +  
(0.11TD(5)) + 1)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
O4  
td(CSn-CLK)  
DDR  
ns  
((0.475P(1)) +  
(0.975N(3)R(4)) -  
(0.04TD(5)) - 1)  
((0.525P(1)) +  
(1.025N(3)R(4)) -  
(0.11TD(5)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
O5  
O6  
td(CLK-CSn)  
DDR  
DDR  
ns  
ns  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
(6)  
(6)  
td(CLK-D)  
(1) P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = reference clock cycle time in ns  
(5) TD = PHY_CONFIG_TX_DLL_DELAY_FLD  
(6) Minimum and maximum delay times for OSPI0_D[7:0] outputs are not defined when Data Training is used to find the optimum data  
valid window.  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
OSPI_D[i:0]  
O2  
O6  
O6  
O1  
OSPI_TIMING_01  
7-96. OSPI0 Switching Characteristics PHY DDR Data Training  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.18.1.2 OSPI0 Without Data Training  
备注  
Timing parameters defined in this section are only applicable when data training is not implemented  
and DLL delays are configured as described in 7-115 and 7-118.  
7.11.5.18.1.2.1 OSPI0 PHY SDR Timing  
7-115 defines DLL delays required for OSPI0 PHY SDR Mode. 7-116, 7-97, 7-98, 7-117, and 图  
7-99 present timing requirements and switching characteristics for OSPI0 PHY SDR Mode.  
7-115. OSPI0 DLL Delay Mapping for PHY SDR Timing Modes  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
DELAY VALUE  
Transmit  
All modes  
Receive  
PHY_CONFIG_TX_DLL_DELAY_FLD,  
0x0  
0x0  
All modes  
PHY_CONFIG_RX_DLL_DELAY_FLD  
7-116. OSPI0 Timing Requirements PHY SDR Mode  
see 7-97 and 7-98  
NO.  
MODE  
MIN  
MAX UNIT  
1.8V, SDR with Internal PHY Loopback  
3.3V, SDR with Internal PHY Loopback  
1.8V, SDR with Internal PHY Loopback  
3.3V, SDR with Internal PHY Loopback  
1.8V, SDR with External Board Loopback  
3.3V, SDR with External Board Loopback  
1.8V, SDR with External Board Loopback  
3.3V, SDR with External Board Loopback  
4.8  
5.19  
-0.5  
-0.5  
0.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_CLK edge  
O19 tsu(D-CLK)  
O20 th(CLK-D)  
O21 tsu(D-LBCLK)  
O22 th(LBCLK-D)  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_CLK edge  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_DQS edge  
0.9  
1.7  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_DQS edge  
2.0  
OSPI_CLK  
O19  
O20  
OSPI_D[i:0]  
OSPI_TIMING_05  
7-97. OSPI0 Timing Requirements PHY SDR with Internal PHY Loopback  
OSPI_DQS  
O21  
O22  
OSPI_D[i:0]  
OSPI_TIMING_06  
7-98. OSPI0 Timing Requirements PHY SDR with External Board Loopback  
Copyright © 2023 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-117. OSPI0 Switching Characteristics PHY SDR Mode  
see 7-99  
NO.  
PARAMETER  
MODE  
1.8V  
MIN  
7
MAX UNIT  
ns  
ns  
ns  
ns  
O7  
tc(CLK)  
Cycle time, OSPI0_CLK  
3.3V  
6.03  
O8  
O9  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O10 td(CSn-CLK)  
O11 td(CLK-CSn)  
ns  
ns  
(0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
1.8V  
3.3V  
-1.16  
-1.33  
1.25  
1.51  
ns  
ns  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
O12 td(CLK-D)  
(1) P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = reference clock cycle time in ns  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
7-99. OSPI0 Switching Characteristics PHY SDR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.18.1.2.2 OSPI0 PHY DDR Timing  
7-118 defines DLL delays required for OSPI0 PHY DDR Mode. 7-119, 7-100, 7-120, and 7-101  
present timing requirements and switching characteristics for OSPI0 PHY DDR Mode.  
7-118. OSPI0 DLL Delay Mapping for PHY DDR Timing Modes  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
DELAY VALUE  
Transmit  
1.8V  
PHY_CONFIG_TX_DLL_DELAY_FLD  
PHY_CONFIG_TX_DLL_DELAY_FLD  
0x46  
0x43  
3.3V  
Receive  
1.8V, DQS  
3.3V, DQS  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
0x15  
0x3A  
0x0  
All other modes  
7-119. OSPI0 Timing Requirements PHY DDR Mode  
see 7-100  
NO.  
MODE  
MIN  
MAX UNIT  
1.8V, DDR with External Board Loopback  
1.8V, DDR with DQS  
0.53  
-0.46  
1.23  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_DQS edge  
O15 tsu(D-LBCLK)  
3.3V, DDR with External Board Loopback  
3.3V, DDR with DQS  
-0.66  
1.24(1)  
3.59  
1.8V, DDR with External Board Loopback  
1.8V, DDR with DQS  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_DQS edge  
O16 th(LBCLK-D)  
3.3V, DDR with External Board Loopback  
3.3V, DDR with DQS  
1.44(1)  
7.92  
(1) This Hold time requirement is larger than the Hold time provided by a typical OSPI/QSPI/SPI device. Therefore, the trace length  
between the SoC and attached OSPI/QSPI/SPI device must be sufficiently long enough to ensure that the Hold time is met at the SoC.  
The length of the SoC's external loopback clock (OSPI0_LBCLKO to OSPI0_DQS) may need to be shortened to compensate.  
OSPI_DQS  
O15 O16 O15 O16  
OSPI_D[i:0]  
OSPI_TIMING_04  
7-100. OSPI0 Timing Requirements PHY DDR with External Board Loopback or DQS  
Copyright © 2023 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-120. OSPI0 Switching Characteristics PHY DDR Mode  
see 7-101  
NO.  
PARAMETER  
MODE  
MIN  
19  
MAX UNIT  
O1  
O2  
O3  
tc(CLK)  
Cycle time, OSPI0_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) -  
((0.525P(1)) -  
O4  
O5  
td(CSn-CLK)  
td(CLK-CSn)  
ns  
ns  
(0.975M(2)R(4))) (1.025M(2)R(4)) + 7)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 7)  
(1.025N(3)R(4)))  
1.8V  
3.3V  
-7.71  
-7.71  
-1.56  
-1.56  
ns  
ns  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
O6  
td(CLK-D)  
(1) P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = reference clock cycle time in ns  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O6  
O6  
O1  
OSPI_D[i:0]  
OSPI_TIMING_01  
7-101. OSPI0 Switching Characteristics PHY DDR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.18.2 OSPI0 Tap Mode  
7.11.5.18.2.1 OSPI0 Tap SDR Timing  
7-121, 7-102, 7-122, and 7-103 present timing requirements and switching characteristics for OSPI0  
Tap SDR Mode.  
7-121. OSPI0 Timing Requirements Tap SDR Mode  
see 7-102  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_CLK edge  
(15.4 -  
O19 tsu(D-CLK)  
No Loopback  
ns  
(0.975T(1)R(2)))  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_CLK edge  
(- 4.3 +  
O20 th(CLK-D)  
No Loopback  
ns  
(0.975T(1)R(2)))  
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]  
(2) R = reference clock cycle time in ns  
OSPI_CLK  
O19  
O20  
OSPI_D[i:0]  
OSPI_TIMING_05  
7-102. OSPI0 Timing Requirements Tap SDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-122. OSPI0 Switching Characteristics Tap SDR Mode  
see 7-103  
NO.  
PARAMETER  
MODE  
MIN  
20  
MAX UNIT  
O7  
O8  
O9  
tc(CLK)  
Cycle time, OSPI0_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O10 td(CSn-CLK)  
O11 td(CLK-CSn)  
O12 td(CLK-D)  
ns  
ns  
ns  
(0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
- 4.25  
7.25  
(1) P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = reference clock cycle time in ns  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
7-103. OSPI0 Switching Characteristics Tap SDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.18.2.2 OSPI0 Tap DDR Timing  
7-123, 7-104, 7-124, and 7-105 present timing requirements and switching characteristics for OSPI0  
Tap DDR Mode.  
7-123. OSPI0 Timing Requirements Tap DDR Mode  
see 7-104  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_CLK edge  
(17.04 -  
O13 tsu(D-CLK)  
No Loopback  
ns  
(0.975T(1)R(2)))  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_CLK edge  
(- 3.16 +  
O14 th(CLK-D)  
No Loopback  
ns  
(0.975T(1)R(2)))  
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]  
(2) R = reference clock cycle time in ns  
OSPI_CLK  
O13 O14 O13 O14  
OSPI_D[i:0]  
OSPI_TIMING_03  
7-104. OSPI0 Timing Requirements Tap DDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-124. OSPI0 Switching Characteristics Tap DDR Mode  
see 7-105  
NO.  
PARAMETER  
MODE  
MIN  
40  
MAX UNIT  
O1  
O2  
O3  
tc(CLK)  
Cycle time, OSPI0_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O4  
O5  
td(CSn-CLK)  
td(CLK-CSn)  
ns  
ns  
((0.975M(2)R(5)) - 1) ( 1.025M(2)R(5)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(5)) - 1) (1.025N(3)R(5)) + 1)  
(- 5.04 + (3.64 +  
(0.975(T(4) + 1)R(5)  
- (0.525P(1)))  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
O6  
td(CLK-D)  
)
(1.025(T(4) + 1)R(5)  
)
ns  
- (0.475P(1)))  
(1) P = SCLK cycle time in ns = OSPI0_CLK cycle time in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) T = OSPI_RD_DATA_CAPTURE_REG[DDR_READ_DELAY_FLD]  
(5) R = reference clock cycle time in ns  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O6  
O6  
O1  
OSPI_D[i:0]  
OSPI_TIMING_01  
7-105. OSPI0 Switching Characteristics Tap DDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.19 PRUSS  
The device has a single Programmable Real-Time Unit Subsystem (PRUSS), which includes two PRU cores.  
The programmable nature of the PRU cores, along with their access to pins, events and all device resources,  
provides flexibility in implementing fast real-time responses, specialized data handling operations, custom  
peripheral interfaces, and off-loading of tasks from the other processor cores in the device.  
For more details about features and additional description information on the device PRUSS, see the  
corresponding sections within Signal Descriptions and Detailed Description.  
备注  
PRUSS contains a second layer of peripheral signal multiplexing to enable additional functionality on  
the PRU GPO and GPI signals. This peripheral multiplexing is described in the PRUSS chapter in the  
device TRM.  
备注  
PRUSS has one or more signals which can be multiplexed to more than one pin. Timing requirements  
and switching characteristics defined in this section are only valid for specific pin combinations known  
as IOSETs. Valid pin combinations or IOSETs for this interface are defined in the SysConfig-PinMux  
Tool.  
7.11.5.19.1 PRUSS Programmable Real-Time Unit (PRU)  
备注  
PRUSS signals have different functionality depending on the mode of operation. The signal naming in  
this section matches the naming used in the PRU Module Interface section in the device TRM.  
7-125. PRUSS PRU Timing Conditions  
PARAMETER  
MIN  
1
MAX  
3
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
30  
7.11.5.19.1.1 PRUSS PRU Direct Output Mode Timing  
7-126. PRUSS PRU Switching Characteristics Direct Output Mode  
see 7-106  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
PRDO1 tsk(GPO-GPO)  
Skew, GPO to GPO  
2
ns  
GPO[n:0]  
PRDO1  
PRU_TIMING_02  
A. n in GPO[n:0] = 19.  
7-106. PRUSS PRU Direct Output Timing  
Copyright © 2023 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.19.1.2 PRUSS PRU Parallel Capture Mode Timing  
7-127. PRUSS PRU Timing Requirements Parallel Capture Mode  
see 7-107 and 7-108  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ns  
PRPC1 tc(CLOCK)  
Cycle time, CLOCKIN  
20  
0.45P(1)  
0.45P(1)  
4
PRPC2 tw(CLOCKL)  
Pulse duration, CLOCKIN low  
ns  
PRPC3 tw(CLOCKH)  
PRPC4 tsu(DATAIN-CLOCK)  
PRPC5 th(CLOCK-DATAIN)  
Pulse duration, CLOCKIN high  
ns  
Setup time, DATAIN valid before CLOCKIN active edge  
Hold time, DATAIN valid after CLOCKIN active edge  
ns  
0
ns  
(1) P = CLOCKIN cycle time in ns  
PRPC1  
PRPC3  
PRPC2  
CLOCKIN  
DATAIN  
PRPC5  
PRPC4  
PRU_TIMING_03  
7-107. PRUSS PRU Parallel Capture Timing Requirements Rising Edge Mode  
PRPC1  
PRPC3  
PRPC2  
CLOCKIN  
DATAIN  
PRPC5  
PRPC4  
PRU_TIMING_04  
7-108. PRUSS PRU Parallel Capture Timing Requirements Falling Edge Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.19.1.3 PRUSS PRU Shift Mode Timing  
7-128. PRUSS PRU Timing Requirements Shift In Mode  
see 7-109  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, DATAIN high  
Pulse duration, DATAIN low  
MIN  
2P(1) + 2  
2P(1) + 2  
MAX  
UNIT  
ns  
PRSI1 tw(DATAINH)  
PRSI2 tw(DATAINL)  
ns  
(1) P = Internal shift in clock period in ns, defined by PRUn_GPI_DIV0 and PRUn_GPI_DIV1 bit fields in the GPCFGn_REG register,  
where PRUn represents the respective PRU0 or PRU1 instance.  
PRSI1  
PRSI2  
DATAIN  
PRU_TIMING_05  
7-109. PRUSS PRU Shift In Timing  
Copyright © 2023 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7-129. PRUSS PRU Switching Characteristics Shift Out Mode  
see 7-110  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ns  
PRSO1  
tc(CLOCKOUT)  
Cycle time, CLOCKOUT  
10  
PRSO2L tw(CLOCKOUTL)  
Pulse duration, CLOCKOUT low  
0.475P(1)Z(2)  
-
ns  
0.3  
PRSO2H tw(CLOCKOUTH)  
Pulse duration, CLOCKOUT high  
0.475P(1)Y(3)  
-
ns  
ns  
0.3  
PRSO3  
td(CLOCKOUT-DATAOUT) Delay time, CLOCKOUT to DATAOUT valid  
0
3
(1) P = Software programmable shift out clock period in ns, defined by PRUn_GPO_DIV0 and PRUn_GPO_DIV1 bit fields in the  
GPCFGn_REG register, where PRUn represents the respective PRU0 or PRU1 instance.  
(2) The Z parameter is defined as follows, where PRUn represents the respective PRU0 or PRU1 instance.  
a. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are INTEGERS -or- if PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is  
an EVEN INTEGER then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1).  
b. If PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an ODD INTEGER then, Z equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 + 0.5).  
c. If PRUn_GPI_DIV0 is an INTEGER and PRUn_GPI_DIV1 is a NON-INTEGER then, Z equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 + 0.5 * PRUn_GPI_DIV0).  
d. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are NON-INTEGERS then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.25 *  
PRUn_GPI_DIV0).  
(3) The Y parameter is defined as follows, where PRUn represents the respective PRU0 or PRU1 instance.  
a. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are INTEGERS -or- if PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is  
an EVEN INTEGER then, Y equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1).  
b. If PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an ODD INTEGER then, Y equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 - 0.5).  
c. If PRUn_GPI_DIV0 is an INTEGER and PRUn_GPI_DIV1 is a NON-INTEGER then, Y equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 - 0.5 * PRUn_GPI_DIV0).  
d. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are NON-INTEGERS then, Y1 equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 - 0.25 *  
PRUn_GPI_DIV0) and Y2 equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.25 * PRUn_GPI_DIV0), where Y1 is the first high  
pulse and Y2 is the second high pulse.  
PRSO1  
PRSO2H  
PRSO2L  
CLOCKOUT  
DATAOUT  
PRSO3  
PRU_TIMING_06  
7-110. PRUSS PRU Shift Out Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.19.2 PRUSS Industrial Ethernet Peripheral (IEP)  
7-130. PRUSS IEP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
3
OUTPUT CONDITIONS  
CL  
Output load capacitance  
3
10  
7.11.5.19.2.1 PRUSS IEP Timing  
7-131. PRUSS IEP Switching Characteristics Digital IOs  
see 7-111  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
IEPIO4 tsk(EDIO_DATA_OUT)  
EDIO_DATA_OUT skew  
5
ns  
EDIO_DATA_OUT  
IEPIO4  
PRU_EDIO_DATA_OUT_TIMING_00  
7-111. PRUSS IEP Digital IOs Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.19.3 PRUSS Universal Asynchronous Receiver Transmitter (UART)  
7-132. PRUSS UART Timing Conditions  
PARAMETER  
MIN  
0.5  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30(1)  
(1) This value represents an absolute maximum load capacitance. As the UART baud rate increases, it may be necessary to reduce the  
load capacitance to a value less than this maximum limit to provide enough timing margin for the attached device. The output rise/fall  
times increase as capacitive load increases, which decreases the time data is valid for the receiver of the attached devices. Therefore,  
it is important to understand the minimum data valid time required by the attached device at the operating baud rate. Then use the  
device IBIS models to verify the actual load capacitance on the UART signals does not increase the rise/fall times beyond the point  
where the minimum data valid time of the attached device is violated.  
7.11.5.19.3.1 PRUSS UART Timing  
7-133. PRUSS UART Timing Requirements  
see 7-112  
NO.  
PARAMETER  
tw(RXD)  
tw(RXDS)  
DESCRIPTION  
MIN  
MAX  
UNIT  
0.95U(1)  
1.05U(1)  
1
Pulse width, receive data bit high or low  
ns  
(2)  
(2)  
0.95U(1)  
2
Pulse width, receive start bit low  
ns  
(2)  
(1) U = UART baud time in ns = 1/programmed baud rate.  
(2) This value defines the data valid time, where the input voltage is required to be above VIH or below VIL.  
7-134. PRUSS UART Switching Characteristics  
see 7-112  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
12  
UNIT  
Mbps  
ns  
f(baud)  
Programmed baud rate  
3
4
tw(TXD)  
Pulse width, transmit data bit high or low  
Pulse width, transmit start bit low  
U(1) - 2  
U(1) - 2  
U(1) + 2  
U(1) + 2  
tw(TXDS)  
ns  
(1) U = UART baud time in ns = 1/actual baud rate, where the actual baud rate is defined in the UART Baud Rate Settings table of the  
device TRM.  
2
1
Start  
VIH  
Bit  
PRGi_UART0_RXD  
VIL  
Data Bits  
4
3
Start  
Bit  
PRGi_UART0_TXD  
Data Bits  
PRU_UART_TIMING_01_RCVRVIHVIL  
7-112. PRUSS UART Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.19.4 PRUSS Enhanced Capture Peripheral (ECAP)  
7-135. PRUSS ECAP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
3
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.11.5.19.4.1 PRUSS ECAP Timing  
7-136. PRUSS ECAP Timing Requirements  
see 7-113  
NO.  
PARAMETER  
DESCRIPTION  
Pulse Duration, CAP (asynchronous)  
Pulse Duration, SYNCI (asynchronous)  
MIN  
2P(1) + 2  
2P(1) + 2  
MAX  
UNIT  
ns  
PREP1 tw(CAP)  
PREP2 tw(SYNCI)  
ns  
(1) P = CORE_CLK period in ns.  
PREP1  
PREP2  
CAP  
SYNCI  
7-113. PRUSS ECAP Timing  
7-137. PRUSS ECAP Switching Characteristics  
see 7-114  
NO.  
PARAMETER  
DESCRIPTION  
Pulse Duration, APWM high/low  
MIN  
2P(1) - 2  
P(1) - 2  
MAX  
UNIT  
ns  
PREP3 tw(APWM)  
PREP4 tw(SYNCO)  
Pulse Duration, SYNCO (asynchronous)  
ns  
(1) P = CORE_CLK period in ns.  
PREP3  
PREP4  
APWM  
SYNCO  
7-114. PRUSS ECAP Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.20 Timers  
For more details about features and additional description information on the device Timers, see the  
corresponding subsections within Signal Descriptions and Detailed Description sections.  
7-138. Timer Timing Conditions  
PARAMETER  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
7-139. Timer Input Timing Requirements  
see 7-115  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
T1  
tw(TINPH)  
Pulse duration, high  
Pulse duration, low  
CAPTURE  
4P(1)  
+
ns  
2.5  
T2  
tw(TINPL)  
CAPTURE  
4P(1)  
+
ns  
2.5  
(1) P = functional clock period in ns.  
7-140. Timer Output Switching Characteristics  
see 7-115  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
T3  
tw(TOUTH)  
Pulse duration, high  
Pulse duration, low  
PWM  
4P(1)  
-
ns  
2.5  
T4  
tw(TOUTL)  
PWM  
4P(1)  
-
ns  
2.5  
(1) P = functional clock period in ns.  
T1  
T2  
TIMER_IOx (inputs)  
T3  
T4  
TIMER_IOx (outputs)  
TIMER_01  
7-115. Timer Timing Requirements and Switching Characteristics  
For more information, see Timers section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.11.5.21 UART  
For more details about features and additional description information on the device Universal Asynchronous  
Receiver Transmitter, see the corresponding subsections within Signal Descriptions and Detailed Description  
sections.  
7-141. UART Timing Conditions  
PARAMETER  
MIN  
0.5  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30(1)  
(1) This value represents an absolute maximum load capacitance. As the UART baud rate increases, it may be necessary to reduce the  
load capacitance to a value less than this maximum limit to provide enough timing margin for the attached device. The output rise/fall  
times increase as capacitive load increases, which decreases the time data is valid for the receiver of the attached devices. Therefore,  
it is important to understand the minimum data valid time required by the attached device at the operating baud rate. Then use the  
device IBIS models to verify the actual load capacitance on the UART signals does not increase the rise/fall times beyond the point  
where the minimum data valid time of the attached device is violated.  
7-142. UART Timing Requirements  
see 7-116  
NO.  
PARAMETER  
tw(RXD)  
tw(RXDS)  
DESCRIPTION  
MIN  
MAX  
UNIT  
0.95U(1)  
1.05U(1)  
1
Pulse width, receive data bit high or low  
ns  
(2)  
(2)  
0.95U(1)  
2
Pulse width, receive start bit low  
ns  
(2)  
(1) U = UART baud time in ns = 1/programmed baud rate.  
(2) This value defines the data valid time, where the input voltage is required to be above VIH or below VIL.  
7-143. UART Switching Characteristics  
see 7-116  
NO.  
PARAMETER  
DESCRIPTION  
Programmable baud rate for Main Domain UARTs  
Programmable baud rate for MCU and WKUP Domain UARTs  
Pulse width, transmit data bit high or low  
MIN  
MAX  
12  
UNIT  
Mbps  
Mbps  
ns  
f(baud)  
3.7  
3
4
tw(TXD)  
U(1) - 2  
U(1) - 2  
U(1) + 2  
tw(TXDS)  
Pulse width, transmit start bit low  
ns  
(1) U = UART baud time in ns = 1/actual baud rate, where the actual baud rate is defined in the UART Baud Rate Settings table of the  
device TRM.  
2
1
Start  
VIH  
Bit  
UARTi_RXD  
VIL  
Data Bits  
4
3
Start  
Bit  
UARTi_TXD  
Data Bits  
UART_TIMING_01_RCVRVIHVIL  
7-116. UART Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter  
in the device TRM.  
7.11.5.22 USB  
The USB 2.0 subsystem is compliant with the Universal Serial Bus (USB) Specification, revision 2.0. Refer to the  
specification for timing details.  
For more details about features and additional description information on the device Universal Serial Bus  
Subsystem (USB), see the corresponding subsections within Signal Descriptions and Detailed Description  
sections.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The low-cost AM62x Sitara™ MPU family of application processors are built for Linux® application development.  
With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display support and 3D  
graphics acceleration, along with an extensive set of peripherals that make the AM62x device well-suited for a  
broad range of industrial and automotive applications while offering intelligent features and optimized power  
architecture as well.  
Some of these applications include:  
Industrial HMI  
EV charging stations  
Touchless building access  
Driver monitoring systems  
AM62x Sitaraprocessors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC - Q100  
automotive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety  
requirements can be addressed using the integrated Cortex-M4F cores and dedicated peripherals, which can all  
be isolated from the rest of the AM62x processor.  
The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking  
(TSN) support. An additional PRU module on the device enables real-time I/O capability for customers own  
use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity,  
such as: USB, MMC/SD, Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external  
ASIC/FPGA. The AM62x device also supports secure boot for IP protection with the built-in Hardware Security  
Module (HSM) and employs advanced power management support for portable and power-sensitive applications  
备注  
For more information on features, subsystems, and architecture of superset device System on Chip  
(SoC), see the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.2 Processor Subsystems  
8.2.1 Arm Cortex-A53 Subsystem  
The SoC implements one cluster of quad-core Arm® Cortex®-A53 MPCore, with 32KB L1 instruction, 32KB L1  
data, per core and 512KB L2 shared cache.  
The Cortex®-A53 cores are general-purpose processors that can be used for running customer applications.  
备注  
Notes on references used in this document:  
A53SS is also referred to as Arm® CorePac.  
Cortex®-A53 is often shortened to A53.  
The A53SS is built around the Cortex®-A53 MPCore™ (Arm®-A53 Cluster), which is provided by Arm and  
configured by TI. It is based on the symmetric multiprocessor (SMP) architecture, and thus, it delivers high  
performance and optimal power management, debug and emulation capabilities.  
The A53 processor is a multi-issue out-of-order superscalar execution engine with integrated L1 Instruction and  
Data Caches, compatible with Arm®v8-A architecture. It delivers significantly more performance than its  
predecessors at a higher level of power efficiency.  
The Arm®v8-A architecture brings a number of new features. These include 64-bit data processing, extended  
virtual addressing and 64-bit general purpose registers. The A53 processor is Arms first Arm®v8-A processor  
aimed at providing power-efficient 64-bit processing. It features an in-order, 8-stage, dual-issue pipeline, and  
improved integer, Arm® Neon, Floating-Point Unit (FPU) and memory performance.  
The A53 CPU supports two execution states: AArch32 and AArch64. The AArch64 state gives the A53 CPU its  
ability to execute 64-bit applications, while the AArch32 state allows the processor to execute existing Arm®v7-A  
applications.  
For more information, see Arm Cortex-A53 Subsystem section in Processors and Accelerators chapter in the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.2.2 Device/Power Manager  
The WKUP_R5FSS is a single-core implementation of the Arm® Cortex®-R5F processor that acts as the Device  
Manager responsible for boot, resource management, and power management functions. It also includes  
accompanying memories (L1 caches and tightly-coupled memories), standard Arm® CoreSight™ debug and  
trace architecture, integrated vectored interrupt manager (VIM), ECC aggregators, and various other modules for  
protocol conversion and address translation for easy integration into the SoC.  
备注  
The Cortex-R5F processor is a Cortex-R5 processor that includes the optional floating point unit  
(FPU) extension. In this TRM, all references to the Cortex-R5 processor apply to the Cortex-R5F  
processor by default.  
For more information, see Device Manager Cortex R5F Subsystem section in Processors and Accelerators  
chapter in the device TRM.  
8.2.3 Arm Cortex-M4F  
The MCU_M4FSS is an Arm® Cortex®-M4F based subsystem that can run safety processing or be used as a  
general purpose MCU. During the boot process, the MCU_M4FSS will be configured by an initial software  
running on a different core. Following configuration, software will release the safety processor (M4F) out of reset,  
and at this point safety processor code or general purpose code can start execution.  
备注  
The Cortex-M4F processor is a Cortex-M4 processor that includes the optional floating point unit  
(FPU) extension.  
For more information, see Cortex-M4F Subsystem section in Processors and Accelerators chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
232 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.3 Accelerators and Coprocessors  
8.3.1 Graphics Processing Unit (GPU)  
The GPU is an area optimized Graphics Core supporting OpenGL ES 3.1 and Vulkan 1.2.  
For more information, see Graphics Processing Unit section in Processors and Accelerators chapter in the  
device TRM.  
8.3.2 Programmable Real-Time Unit Subsystem (PRUSS)  
The PRUSS consists of:  
Two 32-bit load/store RISC CPU cores Programmable Real-Time Units (PRU0 and PRU1)  
Data RAMs per PRU core (DRAM)  
Instruction RAMs per PRU core (IRAM)  
Shared RAM (SRAM)  
Peripheral modules: UART0, ECAP0, IEP0, MDIO  
Interrupt Controller (INTC) per core  
The PRU cores are programmed with a small, deterministic instruction set. Each PRU can operate  
independently or in coordination with each other and can also work in coordination with the device-level host  
CPU. This interaction between processors is determined by the nature of the firmware loaded into the PRUs  
instruction memory.  
The programmable nature of the PRU cores, along with their access to pins, events and all device resources,  
provides flexibility in implementing fast real-time responses, specialized data handling operations, custom  
peripheral interfaces, and in offloading tasks from the other processor cores of the device.  
For more information, see Programmable Real-Time Unit Subsystem section in Processors and Accelerators  
chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.4 Other Subsystems  
8.4.1 Dual Clock Comparator (DCC)  
The Dual Clock Comparator (DCC) is used to determine the accuracy of a clock signal during the time execution  
of an application. Specifically, the DCC is designed to detect drifts from the expected clock frequency. The  
desired accuracy can be programed based on calculation for each application. The DCC measures the  
frequency of a selectable clock source using another input clock as a reference.  
For more information, see Dual Clock Comparator section in Peripherals chapter in the device TRM.  
8.4.2 Data Movement Subsystem (DMSS)  
The DMSS module provides data movement (DMA) and bridges between the CBA switched interconnect and  
the packet streaming fabric (network on chip) on the device.  
The Data Movement Subsystem (DMSS) consists of DMA/Queue Management components and Peripherals:  
Packet DMA  
Block Copy DMA  
Ring Accelerator  
Packet Streaming Interface (PSILSS)  
Infrastructure components such as CBASS, secure proxy, and an interrupt aggregator  
8.4.3 Memory Cyclic Redundancy Check (MCRC)  
VBUSM CRC controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the  
integrity of a memory system. A signature representing the contents of the memory is obtained when the  
contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to calculate the  
signature for a set of data and then compare the calculated signature value against a pre-determined good  
signature value. MCRC controller provides four channels to perform CRC calculation on multiple memories in  
parallel and can be used on any memory system.  
For more information, see Memory Cyclic Redundancy Check section in Peripherals chapter in the device TRM.  
8.4.4 Peripheral DMA Controller (PDMA)  
The Peripheral DMA is a simple DMA which has been architected to specifically meet the data transfer needs of  
peripherals, which perform data transfers using memory mapped registers (MMRs) accessed via a standard  
non-coherent bus fabric. The PDMA module is located close to one or more peripherals which require an  
external DMA for data movement and is architected to reduce cost by using VBUSP interfaces and supporting  
only statically configured transfer request (TR) operations.  
The PDMA is only responsible for performing the data movement transactions which interact with the peripherals  
themselves. Data which is read from a given peripheral is packed by a PDMA source channel into a PSI-L data  
stream which is then sent to a remote peer DMSS destination channel which then performs the movement of the  
data into memory. Likewise, a remote DMSS source channel fetches data from memory and transfers it to a peer  
PDMA destination channel over PSI-L which then performs the writes to the peripheral.  
The PDMA architecture is intentionally heterogeneous (DMSS + PDMA) to right size the data transfer complexity  
at each point in the system to match the requirements of whatever is being transferred to or from. Peripherals  
are typically FIFO based and do not require multi-dimensional transfers beyond their FIFO dimensioning  
requirements, so the PDMA transfer engines are kept simple with only a few dimensions (typically for sample  
size and FIFO depth), hardcoded address maps, and simple triggering capabilities.  
Multiple source and destination channels are provided within the PDMA which allow multiple simultaneous  
transfer operations to be ongoing. The DMA controller maintains state information for each of the channels and  
employs round-robin scheduling between channels in order to share the underlying DMA hardware.  
Copyright © 2023 Texas Instruments Incorporated  
234 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.4.5 Real-Time Clock (RTC)  
The basic purpose for the RTC is to keep time of day. The other equally important purpose of RTC is for Digital  
Rights management. Some degree of tamper proofing is needed to ensure that simply stopping, resetting, or  
corrupting the RTC does not go unnoticed so that if this occurs, the application can re-acquire the time of day  
from a trusted source.  
For more information, see Real-Time Clock section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.5 Peripherals  
8.5.1 Gigabit Ethernet Switch (CPSW3G)  
The 3-port Gigabit Ethernet Switch (CPSW0) subsystem provides Ethernet packet communication for the device  
and can be configured as an Ethernet switch.  
For more information, see Gigabit Ethernet Switch section in Peripherals chapter in the device TRM.  
8.5.2 Camera Streaming Interface Receiver (CSI_RX_IF)  
The integration of the CSI_RX_IF module allows the device to stream video inputs from multiple cameras to  
internal memory.  
For more information, see Camera Streaming Interface Receiver section in Peripherals chapter in the device  
TRM.  
8.5.3 DDR Subsystem (DDRSS)  
The DDR subsystem in this device comprises DDR controller, DDR PHY and wrapper logic to integrate these  
blocks in the device. The DDR subsystem is referred to as DDRSS0 and is used to provide an interface to  
external SDRAM devices which can be utilized for storing program or data. DDRSS0 is accessed via CBASS0  
interconnect.  
For more information, see DDR Subsystem section in Peripherals chapter in the device TRM.  
8.5.4 Display Subsystem (DSS)  
The Display Subsystem (DSS) is a flexible, multi-pipeline subsystem that supports high-resolution display  
outputs. DSS includes input pipelines providing multi-layer blending with transparency to enable on-the-fly  
composition. Various pixel processing capabilities are supported, such as color space conversion and scaling,  
among others. DSS includes a DMA engine, which allows direct access to the frame buffer (device system  
memory). Display outputs can connect seamlessly to an Open LVDS Display Interface transmitter (OLDITX), or  
can directly drive device pads as a Display Parallel Interface (DPI).  
For more information, see Display Subsystem section in Peripherals chapter in the device TRM.  
8.5.5 Enhanced Capture (ECAP)  
The ECAP module provides accurate timing of events. When not being used for event capture, its resources can  
be used to generate a single channel of asymmetrical PWM waveforms.  
The Enhanced Capture (ECAP) module can be used for:  
Sample rate measurements of audio inputs  
Speed measurements of rotating machinery (for example, toothed sprockets sensed via Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
For more information, see Enhanced Capture section in Peripherals chapter in the device TRM.  
8.5.6 Error Location Module (ELM)  
The ELM extracts error addresses from generated syndrome polynomials.  
The ELM is used with the GPMC. Syndrome polynomials generated on-the-fly when reading a NAND flash page  
and stored in GPMC registers are passed to the ELM. A host processor can then correct the data block by  
flipping the bits to which the ELM error-location outputs point.  
When reading from NAND flash memories, some level of error-correction is required. In the case of NAND  
modules with no internal correction capability, sometimes referred to as bare NANDs, the correction process is  
delegated to the memory controller. ELM can be also used to support parallel NOR flash or NAND flash.  
For more information, see Error Location Module section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
236 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.5.7 Enhanced Pulse Width Modulation (EPWM)  
An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU  
overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand  
and use. The EPWM unit described here addresses these requirements by allocating all needed timing and  
control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided;  
instead, the EPWM is built up from smaller single channel modules with separate resources and that can  
operate together as required to form a system. This modular approach results in an orthogonal architecture and  
provides a more transparent view of the peripheral structure, helping users to understand its operation quickly.  
For more information, see Enhanced Pulse Width Modulation section in Peripherals chapter in the device TRM.  
8.5.8 Error Signaling Module (ESM)  
The Error Signaling Module (ESM) aggregates events and/or errors from throughout the device into one location.  
It can signal both low and high priority interrupts to a processor to deal with an event and/or manipulate an I/O  
error pin to signal an external hardware that an error has occurred. Therefore an external controller is able to  
reset the device or keep the system in a safe, known state.  
For more information, see Error Signaling Module section in Peripherals chapter in the device TRM.  
8.5.9 Enhanced Quadrature Encoder Pulse (EQEP)  
The Enhanced Quadrature Encoder Pulse (EQEP) peripheral is used for direct interface with a linear or rotary  
incremental encoder to get position, direction and speed information from a rotating machine for use in high  
performance motion and position control system. The disk of an incremental encoder is patterned with a single  
track of slots patterns. These slots create an alternating pattern of dark and light lines. The disk count is defined  
as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second track is  
added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used to indicate  
an absolute position. Encoder manufacturers identify the index pulse using different terms such as index,  
marker, home position and zero reference.  
For more information, see Enhanced Quadrature Encoder Pulse section in Peripherals chapter in the device  
TRM.  
8.5.10 General-Purpose Interface (GPIO)  
The general-purpose input/output (GPIO) peripheral provides dedicated general-purpose pins that can be  
configured as either inputs or outputs. When configured as an output, user can write to an internal register to  
control the state driven on the output pin. When configured as an input, user can obtain the state of the input by  
reading the state of an internal register.  
In addition, the GPIO peripheral can produce host CPU interrupts and DMA synchronization events in different  
interrupt/event generation modes.  
For more information, see General-Purpose Interface section in Peripherals chapter in the device TRM.  
8.5.11 General-Purpose Memory Controller (GPMC)  
The General-Purpose Memory Controller is a unified memory controller dedicated for interfacing with external  
memory devices like:  
Asynchronous SRAM-like memories and application-specific integrated circuit (ASIC) devices  
Asynchronous, synchronous, and page mode (available only in non-multiplexed mode) burst NOR flash  
devices  
NAND flash  
Pseudo-SRAM devices  
For more information, see General-Purpose Memory Controller section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.5.12 Global Timebase Counter (GTC)  
The GTC module provides a continuous running counter that can be used for time synchronization and debug  
trace time stamping.  
For more information, see Global Timebase Counter section in Peripherals chapter in the device TRM.  
8.5.13 Inter-Integrated Circuit (I2C)  
The device contains multicontroller Inter-Integrated Circuit (I2C) controllers each of which provides an interface  
between a local host (LH), such as an Arm and any I2C-bus-compatible device that connects via the I2C serial  
bus. External components attached to the I2C bus can serially transmit and receive up to 8 bits of data to and  
from the LH device through the 2-wire I2C interface.  
Each multicontroller I2C module can be configured to act like a target or controller I2C-compatible device.  
I2C instances may be implemented with dedicated, I2C compliant, open-drain I/O buffers, or with standard  
LVCMOS I/O buffers. The I2C instances associated with open-drain I/O buffers can support Hs-mode (up to 3.4  
Mbps when the I/O buffers are operating at 1.8 V but limited to 400 kbps when the I/O buffers are operating at  
3.3 V).  
The I2C instances associated with standard LVCMOS I/O buffers can support Fast-mode (up to 400 kbps). The  
LVCMOS I/O buffers being used on these ports are connected such they emulate open-drain outputs. This  
emulation is achieved by forcing a constant low output and disabling the output buffer to enter the Hi-Z state.  
For more information, see Inter-Integrated Circuit section in Peripherals chapter in the device TRM.  
8.5.14 Modular Controller Area Network (MCAN)  
The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed  
real-time control with a high level of security. CAN has high immunity to electrical interference and the ability to  
self-diagnose and repair data errors. In a CAN network, many short messages are broadcast to the entire  
network, which provides for data consistency in every node of the system.  
The MCAN module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications. CAN  
FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD devices  
can coexist on the same network without any conflict.  
For more information, see Modular Controller Area Network section in Peripherals chapter in the device TRM.  
8.5.15 Multichannel Audio Serial Port (MCASP)  
This section introduces the Multichannel Audio Serial Port (MCASP) module and describes its main functions  
and connections in the device.  
The MCASP functions as a general-purpose audio serial port are optimized to the requirements of various audio  
applications. The MCASP module can operate in both transmit and receive modes. The MCASP is useful for  
time-division multiplexed (TDM) stream, Inter-IC Sound (I2S) protocols reception and transmission as well as for  
an inter-component digital audio interface transmission (DIT). The MCASP has the flexibility to gluelessly  
connect to a Sony/Philips digital interface (S/PDIF) transmit physical layer component.  
Although inter-component digital audio interface reception (DIR) mode (this is, S/PDIF stream receiving) is not  
natively supported by the MCASP module, a specific TDM mode implementation for the MCASP receivers allows  
an easy connection to external DIR components (for example, S/PDIF to I2S format converters).  
For more information, see Multichannel Audio Serial Port section in Peripherals chapter in the device TRM.  
8.5.16 Multichannel Serial Peripheral Interface (MCSPI)  
The MCSPI module is a multichannel transmit/receive, controller/peripheral synchronous serial bus.  
For more information, see Multichannel Serial Peripheral Interface section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
238 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.5.17 Multi-Media Card Secure Digital (MMCSD)  
The MMCSD Host Controller provides an interface to eMMC 5.1 (embedded Multi-Media Card), SD 4.10 (Secure  
Digital), and SDIO 4.0 (Secure Digital IO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO  
protocol at transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion,  
and checking for syntactical correctness  
For more information, see Multi-Media Card Secure Digital section in Peripherals chapter in the device TRM.  
8.5.18 Octal Serial Peripheral Interface (OSPI)  
The Octal Serial Peripheral Interface (OSPI) module is a Serial Peripheral Interface (SPI) module which allows  
single, dual, quad or octal read and write access to external flash devices. This module has a memory mapped  
register interface, which provides a direct memory interface for accessing data from external flash devices,  
simplifying software requirements.  
The OSPI module is used to transfer data, either in a memory mapped direct mode (for example a processor  
wishing to execute code directly from external flash memory), or in an indirect mode where the module is set-up  
to silently perform some requested operation, signaling its completion via interrupts or status registers. For  
indirect operations, data is transferred between system memory and external flash memory via an internal  
SRAM which is loaded for writes and unloaded for reads by a device controller at low latency system speeds.  
Interrupts or status registers are used to identify the specific times at which this SRAM should be accessed using  
user programmable configuration registers.  
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device  
TRM.  
8.5.19 Timers  
All timers include specific functions to generate accurate tick interrupts to the operating system.  
For more information, see Timers section in Peripherals chapter in the device TRM.  
8.5.20 Universal Asynchronous Receiver/Transmitter (UART)  
The UART is a peripheral that utilizes the DMA for data transfer or interrupt polling via host CPU. All UART  
modules support IrDA and CIR modes when 48 MHz function clock is used. Each UART can be used for  
configuration and data exchange with a number of external peripheral devices or interprocessor communication  
between devices.  
For more information, see Universal Synchronous/Asynchronous Receiver/Transmitter section in Peripherals  
chapter in the device TRM.  
8.5.21 Universal Serial Bus Subsystem (USBSS)  
USB (Universal Serial Bus) provides a low-cost connectivity solution for numerous consumer portable devices by  
implementing a mechanism for data transfer between USB devices.  
The device instantiates two independent instances of a third-party USB subsystem (USB2SS) operating at up to  
USB2.0 speeds (480Mb/s), either of which can be independently configured to act as a USB Host or a USB  
Device.  
For more information, see Universal Serial Bus Subsystem section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9 Applications, Implementation, and Layout  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Device Connection and Layout Fundamentals  
9.1.1 Power Supply  
9.1.1.1 Power Supply Designs  
The TPS65219 Power Management IC (PMIC) is recommended for an integrated AM62x power solution. This  
cost and space optimized solution is designed to power the AM62 processor and its principal peripherals. For the  
full application note and operational details, refer to Powering the AM62x with the TPS65219 PMIC  
List of benefits when using TPS65219 PMIC to power AM62x:  
Full device performance entitlement as validated on TI Evaluation boards  
Factory programmed configurations support power rail load steps, supply voltage accuracies and maximum  
load currents with margins  
Factory programmed configurations support LPDDR4 and DDR4 memory  
Meets all AM62x voltage and sequencing requirements, refer to 7.5, Recommended Operating Conditions  
and 7.11.2.2, Power Supply Sequencing  
9.1.1.2 Power Distribution Network Implementation Guidance  
The Sitara Processor Power Distribution Networks: Implementation and Analysis provides guidance for  
successful implementation of the power distribution network. This includes PCB stackup guidance as well as  
guidance for optimizing the selection and placement of the decoupling capacitors. TI only supports designs that  
follow the board design guidelines contained in the application report.  
9.1.2 External Oscillator  
For more information about External Oscillators, see the Clock Specifications section.  
9.1.3 JTAG, EMU, and TRACE  
Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various  
debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target  
Connection Guide.  
For recommendations on JTAG, EMU, and TRACE routing, see the Emulation and Trace Headers Technical  
Reference Manual  
9.1.4 Reset  
9.1.5 Unused Pins  
For more information about Unused Pins, see 6.4, Pin Connectivity Requirements  
Copyright © 2023 Texas Instruments Incorporated  
240 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2 Peripheral- and Interface-Specific Design Information  
9.2.1 DDR Board Design and Layout Guidelines  
The goal of the AM62x DDR Board Design and Layout Guidelines is to make the DDR system implementation  
straightforward for all designers. Requirements have been distilled down to a set of layout and routing rules that  
allow designers to successfully implement a robust design for the topologies that TI supports. TI only supports  
board designs using DDR4 or LPDDR4 memories that follow the guidelines in this document.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.2 OSPI/QSPI/SPI Board Design and Layout Guidelines  
The following section details the PCB routing guidelines that must be observed when connecting OSPI, QSPI, or  
SPI devices.  
9.2.2.1 No Loopback, Internal PHY Loopback, and Internal Pad Loopback  
The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device  
The signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to  
B) must be 450 ps (~7cm as stripline or ~8cm as microstrip)  
The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached  
OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal  
propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B)  
50 ΩPCB routing is recommended along with series terminations, as shown in 9-1  
Propagation delays and matching:  
(A to B) 450 ps  
(E to F, or F to E) = ((A to B) ± 60 ps)  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
OSPI[x]_CLK  
OSPI[x]_LBCLKO  
OSPI Device DQS  
OSPI[x]_DQS  
E
F
OSPI[x]_D[y],  
OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
OSPI_Board_01  
* 0 Ωresistor (R1), located as close as possible to the OSPI[x]_CLK pin, is placeholder for fine tuning, if needed.  
9-1. OSPI Connectivity Schematic for No Loopback, Internal PHY Loopback, and Internal Pad  
Loopback  
Copyright © 2023 Texas Instruments Incorporated  
242 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.2.2 External Board Loopback  
The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device  
The OSPI[x]_LBCLKO output pin must be looped back to the OSPI[x]_DQS input pin  
The signal propagation delay of the OSPI[x]_LBCLKO pin to the OSPI[x]_DQS pin (C to D) must be  
approximately twice the propagation delay of the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device  
CLK pin (A to B)  
The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached  
OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal  
propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B)  
50 ΩPCB routing is recommended along with series terminations, as shown in 9-2  
Propagation delays and matching:  
(C to D) = 2 x ((A to B) ± 30 ps), see the exception note below.  
(E to F, or F to E) = ((A to B) ± 60 ps)  
备注  
The External Board Loopback hold time requirement (defined by parameter number O16 in 7-119,  
OSPI0 Timing Requirements - PHY DDR Mode) may be larger than the hold time provided by a typical  
OSPI/QSPI/SPI device. In this case, the propagation delay of OPSI[x]_LBCLKO pin to the  
OSPI[x]_DQS pin (C to D) can be reduced to provide additional hold time.  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
OSPI[x]_CLK  
C
R1  
0 Ω*  
OSPI[x]_LBCLKO  
D
OSPI Device DQS  
OSPI[x]_DQS  
E
F
OSPI[x]_D[y],  
OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
OSPI_Board_02  
* 0 Ωresistor (R1), located as close as possible to the OSPI[x]_CLK and OSPI[x]_LBCLKO pins, is a placeholder for fine tuning, if  
needed.  
9-2. OSPI Connectivity Schematic for External Board Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.2.3 DQS (only available in Octal SPI devices)  
The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device  
The DQS pin of the attached OSPI/QSPI/SPI device must be connected to OSPI[x]_DQS pin  
The signal propagation delay from the attached OSPI/QSPI/SPI device DQS pin to the OSPI[x]_DQS pin (D  
to C) must be approximately equal to the signal propagation delay from the OSPI[x]_CLK pin to the attached  
OSPI/QSPI/SPI device CLK pin (A to B)  
The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached  
OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal  
propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B)  
50 ΩPCB routing is recommended along with series terminations, as shown in 9-3  
Propagation delays and matching:  
(D to C) = ((A to B) ± 30 ps)  
(E to F, or F to E) = ((A to B) ± 60 ps)  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
OSPI[x]_CLK  
OSPI[x]_LBCLKO  
C
D
OSPI Device DQS  
OSPI[x]_DQS  
E
F
OSPI[x]_D[y],  
OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
OSPI_Board_03  
* 0 Ωresistor (R1), located as close as possible to the OSPI[x]_CLK pin, is a placeholder for fine tuning, if needed.  
9-3. OSPI Connectivity Schematic for DQS  
Copyright © 2023 Texas Instruments Incorporated  
244 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.3 USB VBUS Design Guidelines  
The USB 3.1 specification allows the VBUS voltage to be as high as 5.5 V for normal operation, and as high as  
20 V when the Power Delivery addendum is supported. Some automotive applications require a max voltage to  
be 30 V.  
The device requires the VBUS signal voltage be scaled down using an external resistor divider (as shown in the  
9-4), which limits the voltage applied to the actual device pin (USB0_VBUS). The tolerance of these external  
resistors should be equal to or less than 1%, and the leakage current of Zener diode at 5 V should be less than  
100 nA.  
Device  
USBn_VBUS  
16.5 kΩ  
1%  
3.5 kΩ  
1%  
VBUS signal  
10 kΩ  
1%  
6.8V  
(BZX84C6V8 or equivalent)  
VSS  
VSS  
J7ES_USB_VBUS_01  
9-4. USB VBUS Detect Voltage Divider / Clamp Circuit  
The USB0_VBUS pin can be considered to be fail-safe because the external circuit in 9-4 limits the input  
current to the actual device pin in a case where VBUS is applied while the device is powered off.  
9.2.4 System Power Supply Monitor Design Guidelines  
The VMON_VSYS pin provides a way to monitor a system power supply. This system power supply is typically a  
single pre-regulated power source for the entire system and can be connected to the VMON_VSYS pin via and  
external resistor divider circuit. This system supply is monitored by comparing the external voltage divider output  
voltage to an internal voltage reference, where a power fail event is triggered when the voltage applied to  
VMON_VSYS drops below the internal reference voltage. The actual system power supply voltage trip point is  
determined by the system designer when selecting component values used to implement the external resistor  
voltage divider circuit.  
When designing the resistor divider circuit the designer must understand various factors which contribute to  
variability in the system power supply monitor trip point. The first thing to consider is the initial accuracy of the  
VMON_VSYS input threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision 1%  
resistors with similar thermal coefficient are recommended for implementing the resistor voltage divider. This  
minimizes variability contributed by resistor value tolerances. Input leakage current associated with  
VMON_VSYS must also be considered since any current flowing into the pin creates a loading error on the  
voltage divider output. The VMON_VSYS input leakage current can be in the range of 10 nA to 2.5 µA when  
applying 0.45 V.  
备注  
The resistor voltage divider shall be designed such that the output voltage never exceeds the  
maximum value defined in the Recommended Operating Conditions section, during normal operating  
conditions.  
9-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger threshold  
is 5 V - 10%, or 4.5 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 245  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
For this example, the designer must understand which variables effect the maximum trigger threshold when  
selecting resistor values. A device which has a VMON_VSYS input threshold of 0.45 V + 3% needs to be  
considered when trying to design a voltage divider that doesnt trip until the system supply drops 10%. The  
effect of resistor tolerance and input leakage also needs to be considered, but the contribution to the maximum  
trigger point is not obvious. When selecting component values which produce a maximum trigger voltage, the  
system designer must consider a condition where the value of R1 is 1% low and the value of R2 is 1% high  
combined with a condition where input leakage current for the VMON_VSYS pin is 2.5 µA. When implementing a  
resistor divider where R1 = 4.81 KΩand R2 = 40.2 KΩ, the result is a maximum trigger threshold of 4.517 V.  
Once component values have been selected to satisfy the maximum trigger voltage as described above, the  
system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an  
output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input  
leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result  
is a minimum trigger threshold of 4.013 V.  
This example demonstrates a system power supply voltage trip point that ranges from 4.013 V to 4.517 V.  
Approximately 250 mV of this range is introduced by VMON_VSYS input threshold accuracy of ±3%,  
approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV of this  
range is introduced by loading error when VMON_VSYS input leakage current is 2.5 µA.  
The resistor values selected in this example produces approximately 100 µA of bias current through the resistor  
divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above can be reduced to about  
10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor divider bias  
current vs loading error is something the system designer needs to consider when selecting component values.  
The system designer must also consider implementing a noise filter on the voltage divider output since  
VMON_VSYS has minimum hysteresis and a high-bandwidth response to transients. This can be done by  
installing a capacitor across R1 as shown in 9-5. However, the system designer must determine the response  
time of this filter based on system supply noise and expected response to transient events.  
Device  
VMON_VSYS  
R2  
VSYS  
40.2 kΩ 1%  
C1  
Value = Determined by system designer  
(System Power Supply)  
4.81 kΩ  
1%  
R1  
VSS  
SPRSP56_VMON_ER_MON_01  
9-5. System Supply Monitor Voltage Divider Circuit  
VMON_1P8_SOC pin provides a way to monitor external 1.8 V power supplies. This pin must be connected  
directly to their respective power source. An internal resistor divider with software control is implemented inside  
the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under  
voltage and over voltage interrupts.  
VMON_3P3_SOC pin provides a way to monitor external 3.3 V power supplies. This pin must be connected  
directly to their respective power source. An internal resistor divider with software control is implemented inside  
the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under  
voltage and over voltage interrupts.  
Copyright © 2023 Texas Instruments Incorporated  
246 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.5 High Speed Differential Signal Routing Guidance  
The High Speed Interface Layout Guidelines provides guidance for successful routing of the high speed  
differential signals. This includes PCB stackup and materials guidance as well as routing skew, length and  
spacing limits. TI supports only designs that follow the board design guidelines contained in the application note.  
9.2.6 Thermal Solution Guidance  
The Thermal Design Guide for DSP and ARM Application Processors provides guidance for successful  
implementation of a thermal solution for system designs containing this device. This document provides  
background information on common terms and methods related to thermal solutions. TI only supports designs  
that follow system design guidelines contained in the application note.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 247  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AM6254ATCGGAALW). Texas Instruments recommends two of three possible prefix designators for  
related support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final  
electrical specifications.  
null (BLANK) Production version of the silicon die that is fully qualified and meets final electrical specifications.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
For orderable part numbers of AM62x devices in the ALW or AMC package types, see the Package Option  
Addendum at the end of this document, the TI website (ti.com), or contact your TI sales representative.  
Copyright © 2023 Texas Instruments Incorporated  
248 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.1.1 Standard Package Symbolization  
备注  
Some devices may have a cosmetic circular marking visible on the top of the device package which  
results from the production test process. In addition, some devices may also show a color variation in  
the package substrate which results from the substrate manufacturer. These differences are cosmetic  
only with no reliability impact.  
SITARA  
SITARA  
aBBBBBBr  
ZfYytPPPQ1  
XXXXXXX  
aBBBBBBr  
ZfYytPPPQ1  
XXXXXXX  
A1 (PIN ONE INDICATOR)  
YYY  
G1  
A1 (PIN ONE INDICATOR)  
G1  
ZZZ  
YYY  
O
O
10-1. Printed Device Reference  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 249  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.1.2 Device Naming Convention  
FIELD PARAMETER FIELD DESCRIPTION  
VALUE  
DESCRIPTION  
X
Prototype  
a
Device evolution stage  
P
BLANK(1)  
AM6254  
AM6252  
AM6251  
AM6234  
AM6232  
AM6231  
AM6204  
AM6202  
AM6201  
A
Preproduction (production test flow, no reliability data)  
Production  
Base production part  
number  
BBBBBB  
See 5-1, Device Comparison  
r
Device revision  
SR1.0  
G
K
Z
Device Speed Grade  
See 7-1, Device Speed Grades  
S
T
G
Base, no additional Features  
Base, plus PRU Subsystem (PRUSS) enabled  
Non-Functional Safety  
Functional Safety  
Features  
(see 5-1)  
f
C
G
Y
y
Functional Safety  
Security  
F
G
Non-Secure  
Other  
Secure  
40°C to 105°C - Extended Industrial (see 7.5, Recommended  
Operation Conditions)  
A
H
I
0°C to 95°C - Commercial (see 7.5, Recommended Operation  
Conditions)  
t
Temperature(2)  
40°C to 125°C - Automotive (see 7.5, Recommended Operation  
Conditions)  
ALW  
AMC  
FCCSP BGA (425-pin)  
PPP  
Q1  
Package Designator  
FCBGA (441-pin)  
Q1  
Automotive Qualified (AEC - Q100)  
Standard  
Automotive Designator  
BLANK(1)  
xxxxxxx  
YYY  
ZZZ  
O
Lot Trace Code (LTC)  
Production Code, For TI use only  
Production Code, For TI use only  
Pin one designator  
G1  
ECAT - Green package designator  
(1) BLANK in the symbol or part number is collapsed so there are no gaps between characters.  
(2) Applies to device max junction temperature.  
Copyright © 2023 Texas Instruments Incorporated  
250 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.2 Tools and Software  
The following Development Tools support development for TI's Embedded Processing platforms:  
Development Tools  
Code Composer StudioIntegrated Development Environment Code Composer Studio (CCS) Integrated  
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded  
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded  
applications. The tool includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar tools and interfaces allow users to get started faster than  
ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced  
embedded debug capabilities from TI resulting in a compelling feature-rich development environment for  
embedded developers.  
SysConfig-PinMux Tool The SysConfig-PinMux Tool is a software tool which provides a Graphical User  
Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI  
Embedded Processor devices. The tool can be used to automatically calculate the optimal pinmux configuration  
to satisfy entered system requirements. The tool generates output C header/code files that can be imported into  
software development kits (SDKs) and used to configure customer's software to meet custom hardware  
requirements. The Cloud-based SysConfig-PinMux Tool is also available.  
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments  
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized  
distributor.  
10.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The following documents describe the AM62x devices.  
Technical Reference Manual  
AM62x Sitara Processors Technical Reference Manual: Details the integration, the environment, the  
functional description, and the programming models for each peripheral and subsystem in the AM62x family of  
devices.  
Errata  
AM62x Sitara Processors Silicon Errata: Describes the known exceptions to the functional specifications for  
the device.  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
Sitara, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
MPCore, Neon, and CoreSightare trademarks of Arm Limited (or its subsidiaries) in the US and/or  
elsewhere.  
Arm®, Cortex®, and TrustZone® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or  
elsewhere.  
MIPI® is a registered trademark of MIPI Alliance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 251  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
安全数字® and SD® are registered trademarks of SD Card Association.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
252 Submit Document Feedback  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
AM625, AM625-Q1, AM623, AM620-Q1  
ZHCSQL8B JUNE 2022 REVISED JUNE 2023  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 253  
Product Folder Links: AM625 AM625-Q1 AM623 AM620-Q1  
English Data Sheet: SPRSP58  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM6201ASGFHIAMCRQ1  
AM6202ATGFHIAMCRQ1  
AM6204ASGFHIAMCRQ1  
ACTIVE  
FCBGA  
FCBGA  
FCBGA  
AMC  
441  
441  
441  
500  
RoHS & Green  
RoHS & Green  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
AM6201A  
SGFHIAMCQ1  
131  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
AMC  
AMC  
500  
500  
Call TI  
Call TI  
-40 to 125  
AM6202A  
TGFHIAMCQ1  
131  
-40 to 125  
AM6204A  
SGFHIAMCQ1  
131  
AM6231AGGGGHALW  
AM6231AKGGHHALW  
AM6231ASGGGAALW  
PREVIEW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
ALW  
ALW  
ALW  
425  
425  
425  
119  
119  
119  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
0 to 95  
0 to 95  
RoHS & Green  
Level-3-250C-168 HR  
-40 to 105  
AM6231A  
SGGGAALW  
131  
Samples  
Samples  
AM6231ASGGHAALW  
AM6231ATCGHAALW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
ALW  
ALW  
425  
425  
119  
119  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
RoHS & Green  
Level-3-250C-168 HR  
AM6231A  
TCGHAALW  
131  
AM6231ATGGHAALW  
AM6232ASGGHAALW  
AM6232ATCGGAALW  
PREVIEW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
ALW  
ALW  
ALW  
425  
425  
425  
119  
119  
119  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
RoHS & Green  
Level-3-250C-168 HR  
AM6232A  
TCGGAALW  
131  
Samples  
Samples  
AM6232ATCGHAALW  
ACTIVE  
FCCSP  
ALW  
425  
119  
RoHS & Green  
Call TI  
Level-3-250C-168 HR  
-40 to 105  
AM6232A  
TCGHAALW  
131  
AM6232ATGGHAALW  
AM6234ASGGHAALW  
AM6234ATCGGAALW  
PREVIEW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
ALW  
ALW  
ALW  
425  
425  
425  
119  
119  
119  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
RoHS & Green  
Level-3-250C-168 HR  
AM6234A  
TCGGAALW  
131  
Samples  
Samples  
AM6234ATCGHAALW  
ACTIVE  
FCCSP  
ALW  
425  
119  
RoHS & Green  
Call TI  
Level-3-250C-168 HR  
-40 to 105  
AM6234A  
TCGHAALW  
131  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM6234ATGGHAALW  
AM6251AKGGHHALW  
AM6251ASGGHAALW  
AM6251ATCGHAALW  
PREVIEW  
PREVIEW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
ALW  
ALW  
ALW  
ALW  
425  
425  
425  
425  
119  
119  
119  
119  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
0 to 95  
TBD  
Call TI  
-40 to 105  
-40 to 105  
RoHS & Green  
Level-3-250C-168 HR  
AM6251A  
TCGHAALW  
131  
Samples  
Samples  
AM6251ATGGHAALW  
PREVIEW  
ACTIVE  
FCCSP  
FCBGA  
ALW  
AMC  
425  
441  
119  
500  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 125  
AM6252ASGFHIAMCRQ1  
RoHS & Green  
Level-3-260C-168 HR  
AM6252A  
SGFHIAMCQ1  
131  
AM6252ASGGHAALW  
AM6252ATCGGAALW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
ALW  
ALW  
425  
425  
119  
119  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
RoHS & Green  
Level-3-250C-168 HR  
AM6252A  
TCGGAALW  
131  
Samples  
Samples  
AM6252ATCGHAALW  
ACTIVE  
FCCSP  
ALW  
425  
119  
RoHS & Green  
Call TI  
Level-3-250C-168 HR  
-40 to 105  
AM6252A  
TCGHAALW  
131  
AM6252ATGGHAALW  
AM6254ASGGHAALW  
AM6254ATCGGAALW  
PREVIEW  
PREVIEW  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
ALW  
ALW  
ALW  
425  
425  
425  
119  
119  
119  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
RoHS & Green  
Level-3-250C-168 HR  
AM6254A  
TCGGAALW  
131  
Samples  
Samples  
Samples  
AM6254ATCGHAALW  
AM6254ATGFHIAMCRQ1  
AM6254ATGGHAALW  
ACTIVE  
ACTIVE  
FCCSP  
FCBGA  
FCCSP  
ALW  
AMC  
ALW  
425  
441  
425  
119  
500  
119  
RoHS & Green  
RoHS & Green  
TBD  
Call TI  
Call TI  
Call TI  
Level-3-250C-168 HR  
Level-3-260C-168 HR  
Call TI  
-40 to 105  
-40 to 125  
-40 to 105  
AM6254A  
TCGHAALW  
131  
AM6254A  
TGFHIAMCQ1  
131  
PREVIEW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF AM625, AM625-Q1 :  
Catalog : AM625  
Automotive : AM625-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AM6201ASGFHIAMCRQ1 FCBGA  
AM6202ATGFHIAMCRQ1 FCBGA  
AM6204ASGFHIAMCRQ1 FCBGA  
AM6252ASGFHIAMCRQ1 FCBGA  
AM6254ATGFHIAMCRQ1 FCBGA  
AMC  
AMC  
AMC  
AMC  
AMC  
441  
441  
441  
441  
441  
500  
500  
500  
500  
500  
330.0  
330.0  
330.0  
330.0  
330.0  
32.4  
32.4  
32.4  
32.4  
32.4  
17.6  
17.6  
17.6  
17.6  
17.6  
17.6  
17.6  
17.6  
17.6  
17.6  
3.74  
3.74  
3.74  
3.74  
3.74  
24.0  
24.0  
24.0  
24.0  
24.0  
32.0  
32.0  
32.0  
32.0  
32.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AM6201ASGFHIAMCRQ1  
AM6202ATGFHIAMCRQ1  
AM6204ASGFHIAMCRQ1  
AM6252ASGFHIAMCRQ1  
AM6254ATGFHIAMCRQ1  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
AMC  
AMC  
AMC  
AMC  
AMC  
441  
441  
441  
441  
441  
500  
500  
500  
500  
500  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
41.3  
41.3  
41.3  
41.3  
41.3  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AM6231ASGGGAALW  
AM6231ATCGHAALW  
AM6232ATCGGAALW  
AM6232ATCGHAALW  
AM6234ATCGGAALW  
AM6234ATCGHAALW  
AM6251ATCGHAALW  
AM6252ATCGGAALW  
AM6252ATCGHAALW  
AM6254ATCGGAALW  
AM6254ATCGHAALW  
ALW  
ALW  
ALW  
ALW  
ALW  
ALW  
ALW  
ALW  
ALW  
ALW  
ALW  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
425  
425  
425  
425  
425  
425  
425  
425  
425  
425  
425  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
07x17  
07x17  
07x17  
07x17  
07x17  
07x17  
07x17  
07x17  
07x17  
07x17  
07x17  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
315 135.9 7620 18.1  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.9  
12.9  
12.9  
12.9  
12.9  
12.9  
12.9  
12.9  
12.9  
12.9  
12.9  
Pack Materials-Page 3  
PACKAGE OUTLINE  
AMC0441A  
FCBGA - 2.57 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
17.3  
17.1  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
17.3  
17.1  
(
12.8)  
0.1 C  
(
11)  
16.8)  
(
(1.45)  
2.57  
2.29  
0.2 C  
C
SEATING PLANE  
0.15 C  
(0.577)  
0.5  
TYP  
0.3  
16 TYP  
SYMM  
(0.6) TYP  
(0.6) TYP  
0.8 TYP  
AA  
Y
W
V
U
T
R
P
N
M
L
SYMM  
16  
K
J
TYP  
H
G
F
E
D
C
B
A
0.55  
0.45  
C A B  
441X  
0.25  
0.1  
1
2
3
4
5
6 7 8 9 10 12 14 16 18 20  
11 13 15 17 19 21  
C
0.8 TYP  
4228316/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
AMC0441A  
FCBGA - 2.57 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
441X ( 0.4)  
1
2 3  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
K
L
SYMM  
M
N
P
R
T
U
V
W
Y
AA  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
EXPOSED METAL  
(
0.4)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228316/A 12/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
AMC0441A  
FCBGA - 2.57 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
441X 0.4  
(0.8) TYP  
1
2 3  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
A
B
C
D
E
F
G
H
J
K
L
SYMM  
M
N
P
R
T
U
V
W
Y
AA  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4228316/A 12/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
ALW0425A  
FCCSP - 0.89 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC BALL GRID ARRAY  
13.1  
12.9  
B
A
BALL A1  
CORNER  
13.1  
12.9  
0.1 C  
0.89  
0.77  
0.2 C  
C
SEATING PLANE  
0.08 C  
0.284  
0.184  
12 TYP  
SYMM  
(0.5)  
(0.5)  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
SYMM  
12 TYP  
K
J
H
G
F
E
D
C
0.35  
425X  
0.25  
B
A
0.15  
C A B  
C
0.08  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
0.5 TYP  
0.5 TYP  
4227026/B 06/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALW0425A  
FCCSP - 0.89 mm max height  
PLASTIC BALL GRID ARRAY  
(0.5) TYP  
425X ( 0.25)  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
A
B
C
D
E
F
G
H
J
K
L
M
N
SYMM  
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.25)  
(
0.25)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4227026/B 06/2023  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALW0425A  
FCCSP - 0.89 mm max height  
PLASTIC BALL GRID ARRAY  
(0.5) TYP  
425X ( 0.25)  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
A
B
C
D
E
F
G
H
J
K
L
M
N
SYMM  
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
4227026/B 06/2023  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY