AM6442BSFGHAALV [TI]

双核 64 位 Arm® Cortex®-A53,四核 Cortex-R5F,具有 PCIe、USB 3.0 和安全性 | ALV | 441 | -40 to 105;
AM6442BSFGHAALV
型号: AM6442BSFGHAALV
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双核 64 位 Arm® Cortex®-A53,四核 Cortex-R5F,具有 PCIe、USB 3.0 和安全性 | ALV | 441 | -40 to 105

PC
文件: 总237页 (文件大小:5006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
AM64x Sitara™ Processors  
Two 64-bit Industrial Ethernet Peripherals  
(IEPs) for time stamping and other time  
synchronization functions  
1 Features  
Processor cores:  
18× Sigma-Delta filters  
– Short circuit logic  
1× Dual 64-bit Arm® Cortex®-A53 microprocessor  
subsystem at up to 1.0 GHz  
– Over-current logic  
– Dual-core Cortex-A53 cluster with 256KB L2  
shared cache with SECDED ECC  
– Each A53 Core has 32KB L1 DCache with  
SECDED ECC and 32KB L1 ICache with Parity  
protection  
2× Dual-core Arm® Cortex®-R5F MCU subsystems  
at at up to 800 MHz, integrated for real-time  
processing  
6× Multi-protocol position encoder interfaces  
One Enhanced Capture Module (ECAP)  
16550-compatible UART with a dedicated  
192-MHz clock to support 12-Mbps  
PROFIBUS  
Memory subsystem:  
– Dual-core Arm® Cortex®-R5F supports dual-  
Up to 2MB of On-chip RAM (OCSRAM) with  
SECDED ECC:  
core and single-core modes  
– Can be divided into smaller banks in  
increments of 256KB for as many as 8 separate  
memory banks  
– Each memory bank can be allocated to a single  
core to facilitate software task partitioning  
DDR Subsystem (DDRSS)  
– 32KB ICache, 32KB DCache and 64KB TCM  
per each R5F core for a total of 256KB TCM  
with SECDED ECC on all memories  
1× Single-core Arm® Cortex®-M4F MCU at up to  
400 MHz  
– 256KB SRAM with SECDED ECC  
– Supports LPDDR4, DDR4 memory types  
– 16-Bit data bus with inline ECC  
Industrial subsystem:  
2× gigabit Industrial Communication Subsystems  
(PRU_ICSSG)  
– Supports Profinet IRT, Profinet RT, EtherNet/IP,  
EtherCAT, Time-Sensitive Networking (TSN),  
and more  
– Supports speeds up to 1600 MT/s  
1× General-Purpose Memory Controller (GPMC)  
– 16-Bit parallel bus with 133 MHz clock or  
– 32-Bit parallel bus with 100 MHz clock  
– Error Location Module (ELM) support  
– Backward compatibility with 10/100Mb  
PRU_ICSS  
System on Chip (SoC) Services:  
– Each PRU_ICSSG contains:  
Device Management Security Controller (DMSC-L)  
– Centralized SoC system controller  
– Manages system services including initial boot,  
security, and clock/reset/power management  
– Communication with various processing units  
over message manager  
2× 10/100/1000 Ethernet ports  
6 PRU RISC cores per PRU_ICSSG each  
core having:  
– Instruction RAM with ECC  
– Broadside RAM  
– Multiplier with optional accumulator  
(MAC)  
– Simplified interface for optimizing unused  
peripherals  
– CRC16/32 hardware accelerator  
– Byte swap for Big/Little Endian  
conversion  
– SUM32 hardware accelerator for UDP  
checksum  
Task Manager for preemption support  
Three Data RAMs with ECC  
8 banks of 30 × 32-bit register scratchpad  
memory  
Data Movement Subsystem (DMSS)  
– Block Copy DMA (BCDMA)  
– Packet DMA (PKTDMA)  
– Secure Proxy (SEC_PROXY)  
– Ring Accelerator (RINGACC)  
Security:  
Secure boot supported  
– Hardware-enforced Root-of-Trust (RoT)  
– Support to switch RoT via backup key  
Interrupt controller and task manager  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
– Support for takeover protection, IP protection,  
and anti-roll back protection  
Cryptographic acceleration supported  
– Session-aware cryptographic engine with ability  
to auto-switch key-material based on incoming  
data stream  
9× configurable Universal Asynchronous Recieve/  
Transmit (UART) modules  
1× Flash Subsystem (FSS) that can be configured  
as Octal SPI (OSPI) flash interfaces or one Quad  
SPI (QSPI)  
1× 12-Bit Analog-to-Digital Converters (ADC)  
– Up to 4 MSPS  
– Supports cryptographic cores  
AES – 128/192/256 Bits key sizes  
3DES – 56/112/168 Bits key sizes  
MD5, SHA1  
– 8× multiplexed analog inputs  
7× Multichannel Serial Peripheral Interfaces  
(MCSPI) controllers  
6× Fast Serial Interface Receiver (FSI_RX) cores  
2× Fast Serial Interface Transmitter (FSI_TX)  
cores  
SHA2 – 224/256/384/512  
DRBG with true random number generator  
PKA (Public Key Accelerator) to Assist in  
RSA/ECC processing  
3× General-Purpose I/O (GPIO) modules  
– DMA support  
Debugging security  
– Secure software controlled debug access  
– Security aware debugging  
Trusted Execution Environment (TEE) supported  
– Arm TrustZone® based TEE  
– Extensive firewall support for isolation  
– Secure watchdog/timer/IPC  
Secure storage support  
On-the-Fly encryption and authentication support  
for OSPI interface in XIP mode  
Networking security support for data (Payload)  
encryption/authentication via packet based  
hardware cryptographic engine  
Control interfaces:  
9x Enhanced Pulse-Width Modulator (EPWM)  
modules  
3× Enhanced Capture (ECAP) modules  
3× Enhanced Quadrature Encoder Pulse (EQEP)  
modules  
2× Modular Controller Area Network (MCAN)  
modules with or without full CAN-FD support  
Media and data storage:  
2× Multi-Media Card/Secure Digital (MMC/SD/  
SDIO) interfaces  
– One 4-bit for SD/SDIO;  
– One 8-bit for eMMC  
Security co-processor (DMSC-L) for key and  
security management, with dedicated device level  
interconnect for security  
– Integrated analog switch for voltage switching  
between 3.3V to 1.8V for high-speed cards  
Power management:  
High-speed interfaces:  
Simplified power sequence  
Integrated SDIO LDO for handling automatic  
voltage transition for SD interface  
1× Integrated Ethernet switch supporting  
– Up to 2 RGMII (10/100/1000)  
– IEEE 1588 (2008 Annex D, Annex E, Annex F)  
with 802.1AS PTP  
– Clause 45 MDIO PHY management  
– Energy efficient Ethernet (802.3az)  
1× PCI-Express® Gen2 controller (PCIE)  
– Supports Gen2 operation  
Integrated voltage supervisor for safety monitoring  
of over-under voltage conditions  
Integrated power supply glitch detector for  
detecting fast supply transients  
– Supports Single Lane operation  
1× USB 3.1-Gen1 Dual-Role Device (DRD)  
Subsystem (USBSS)  
– One enhanced SuperSpeed Gen1 port  
– Port configurable as USB host, USB peripheral,  
or USB Dual-Role Device  
– Integrated USB VBUS detection  
General connectivity:  
6× Inter-Integrated Circuit (I2C) ports  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Functional Safety:  
SoC architecture:  
Functional Safety-Compliant targeted  
– Developed for functional safety applications  
– Documentation will be available to aid IEC  
61508 functional safety system design  
– Systematic capability up to SIL 3  
– Hardware integrity up to SIL 2 targeted for MCU  
domain  
Supports primary boot from UART, I2C, OSPI/  
QSPI Flash, SPI Flash, parallel NOR Flash,  
parallel NAND Flash, SD, eMMC, USB 2.0, PCIe,  
and Ethernet interfaces  
16-nm FinFET technology  
17.2 mm × 17.2 mm, 0.8-mm pitch, 441-pin BGA  
package  
– Quality-Managed Main Domain  
– Safety-related certification  
IEC 61508 certification planned  
– ECC or parity on calculation-critical memories  
– ECC and parity on select internal bus  
interconnect  
– Built-In Self-Test (BIST) for CPU and on-chip  
RAM  
– Error Signaling Module (ESM) with error pin  
– Runtime safety diagnostics, voltage,  
temperature, and clock monitoring, windowed  
watchdog timers, CRC engine for memory  
integrity checks  
– Dedicated MCU domain memory, interfaces,  
and M4F core capable of being isolated from  
the larger SoC with Freedom From Interference  
(FFI) features  
Separate interconnect  
Firewalls and timeout gaskets  
Dedicated PLL  
Dedicated I/O supply  
Separate reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
2 Applications  
Programmable Logic Controller (PLC)  
Motor Drives  
Remote I/O  
Industrial Robots  
3 Description  
AM64x is an extension of Sitara’s industrial-grade family of heterogeneous Arm processors. AM64x is built for  
industrial applications, such as motor drives and Programmable Logic Controllers (PLCs), which require a  
unique combination of real-time processing and communications with applications processing. AM64x combines  
two instances of Sitara’s gigabit TSN-enabled PRU-ICSSG with up to two Arm Cortex-A53 cores, up to four  
Cortex-R5F MCUs, and a Cortex-M4F MCU.  
AM64x is architected to provide best-in-class real-time performance through the high-performance R5Fs, Tightly-  
Coupled Memory banks, configurable SRAM partitioning, and dedicated low-latency paths to and from  
peripherals for rapid data movement in and out of the SoC. This deterministic architecture allows for AM64x to  
handle the tight control loops found in servo drives while the peripherals like FSI, GPMC, PWMs, sigma delta  
decimation filters, and absolute encoder interfaces help enable a number of different architectures found in these  
systems.  
The Cortex-A53s provide the powerful computing elements necessary for Linux applications. Linux, and Real-  
time (RT) Linux, is provided through TI’s Processor SDK Linux which stays updated to the latest Long Term  
Support (LTS) Linux kernel, bootloader and Yocto file system on an annual basis. AM64x helps bridge the Linux  
world with the real-time world by enabling isolation between Linux applications and real-time streams through  
configurable memory partitioning. The Cortex-A53s can be assigned to work strictly out of DDR for Linux, and  
the internal SRAM can be broken up into various sizes for the Cortex-R5Fs to use together or independently.  
The PRU-ICSSG in AM64x provides the flexible industrial communications capability necessary to run gigabit  
TSN, EtherCAT, PROFINET, EtherNet/IP, and various other protocols. In addition, the PRU-ICSSG also enables  
additional interfaces in the SoC including sigma delta decimation filters and absolute encoder interfaces.  
Functional safety features can be enabled through the integrated Cortex-M4F along with its dedicated  
peripherals which can all be isolated from the rest of the SoC. AM64x also supports secure boot.  
Device Information  
PART NUMBER  
AM6442...ALV  
PACKAGE(1)  
BODY SIZE  
(441-Pin) FCBGA  
(441-Pin) FCBGA  
(441-Pin) FCBGA  
(441-Pin) FCBGA  
(441-Pin) FCBGA  
17.2 mm × 17.2 mm  
17.2 mm × 17.2 mm  
17.2 mm × 17.2 mm  
17.2 mm × 17.2 mm  
17.2 mm × 17.2 mm  
AM6441...ALV  
AM6421...ALV  
AM6412...ALV  
AM6411...ALV  
(1) For more information, see Section 11, Mechanical, Packaging, and Orderable Information.  
3.1 Functional Block Diagram  
Figure 3-1 is functional block diagram for the device.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
A. Isolation of peripherals and M4F core is an optional feature. MCU domain resources are shared across SoC when in non-isolated  
configuration.  
Note  
One port is internally connected only; not connected to any pins.  
Note  
USB3.1 and PCIe share a common SerDes lanes.  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................4  
3 Description.......................................................................4  
3.1 Functional Block Diagram...........................................4  
4 Revision History.............................................................. 6  
5 Device Comparison.........................................................7  
5.1 Related Products........................................................ 9  
6 Terminal Configuration and Functions........................10  
6.1 Pin Diagram.............................................................. 10  
6.2 Pin Attributes.............................................................11  
6.3 Signal Descriptions................................................... 56  
6.4 Pin Multiplexing.........................................................92  
6.5 Connections for Unused Pins................................. 103  
7 Specifications.............................................................. 106  
7.1 Absolute Maximum Ratings.................................... 106  
7.2 ESD Ratings........................................................... 107  
7.3 Power-On Hours (POH)..........................................107  
7.4 Recommended Operating Conditions.....................109  
7.5 Operating Performance Points................................110  
7.6 Power Consumption Summary............................... 110  
7.7 Electrical Characteristics.........................................110  
7.8 VPP Specifications for One-Time Programmable  
7.9 Thermal Resistance Characteristics....................... 119  
7.10 Timing and Switching Characteristics................... 120  
8 Detailed Description....................................................208  
8.1 Overview.................................................................208  
8.2 Processor Subsystems........................................... 209  
8.3 Accelerators and Coprocessors..............................211  
8.4 Other Subsystems...................................................211  
9 Applications, Implementation, and Layout............... 220  
9.1 Power Supply Mapping...........................................220  
9.2 Device Connection and Layout Fundamentals....... 220  
9.3 Peripheral- and Interface-Specific Design  
Information................................................................ 221  
10 Device and Documentation Support........................227  
10.1 Device Nomenclature............................................227  
10.2 Tools and Software............................................... 229  
10.3 Documentation Support........................................ 230  
10.4 Support Resources............................................... 230  
10.5 Trademarks...........................................................230  
10.6 Electrostatic Discharge Caution............................230  
10.7 Glossary................................................................230  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 231  
11.1 Packaging Information.......................................... 231  
(OTP) eFuses............................................................117  
4 Revision History  
DATE  
REVISION  
NOTES  
January 2021  
*
Initial external release.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
5 Device Comparison  
Table 5-1 shows a comparison between devices, highlighting the differences.  
Table 5-1. Device Comparison  
REFERENCE  
NAME  
FEATURES(1)  
Features  
AM6442  
AM6441  
AM6421  
AM6412  
AM6411  
CTRLMMR_WKUP_JTAG_DEVICE_ID[31:13  
] DEVICE_ID register bit field value(3)  
C: 0x19403  
C: 0x19203  
D: 0x19464  
E: 0x19465  
F: 0x19466  
D: 0x19264  
E: 0x19265  
F: 0x19266  
D: 0x19224  
E: 0x19225  
F: 0x19226  
PROCESSORS AND ACCELERATORS  
Speed Grades  
See Table 7-1  
Dual Core  
See Table 7-1  
Single Core  
See Table 7-1  
Single Core  
See Table 7-1  
Dual Core  
See Table 7-1  
Single Core  
Arm Cortex-A53  
Arm A53  
Microprocessor Subsystem  
Arm Cortex-R5F  
Arm Cortex-M4F  
Arm R5F  
Arm M4F  
2 × Dual Core  
Single Core  
Yes  
2 × Dual Core  
Single Core  
Yes  
1 × Dual Core  
Single Core  
Yes  
Single Core  
Single Core  
Yes  
Single Core  
Single Core  
Yes  
Device Management Security DMSC-L  
Controller  
Cryto Accelerators  
Security  
Safety  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
MCU domain with Arm  
Cortex-M4F  
PROGRAM AND DATA STORAGE  
On-Chip Shared Memory  
(RAM) in MAIN Domain  
OCSRAM  
2MB  
2MB  
2MB  
2MB  
2MB  
R5F Tightly Coupled Memory TCM  
(TCM)  
256KB  
256KB  
256KB  
256KB  
256KB  
256KB  
128KB  
256KB  
128KB  
256KB  
On-Chip Shared Memory  
(RAM) in M4F Domain  
MCU_MSRA  
M
DDR4/LPDDR4 DDR  
Subsystem  
DDRSS  
Up to 2GB (16-  
bit data) with  
inline ECC  
Up to 2GB (16-  
bit data) with  
inline ECC  
Up to 2GB (16-  
bit data) with  
inline ECC  
Up to 2GB (16-  
bit data) with  
inline ECC  
Up to 2GB (16-  
bit data) with  
inline ECC  
General-Purpose Memory  
Controller  
GPMC  
MCAN  
Up to 1GB with  
ECC  
Up to 1GB with  
ECC  
Up to 1GB with  
ECC  
Up to 1GB with  
ECC  
Up to 1GB with  
ECC  
PERIPHERALS  
Modular Controller Area  
Network Interface  
2
2
2
2
2
Full CAN-FD Support  
General-Purpose I/O  
MCAN  
GPIO  
I2C  
Optional  
Up to 198  
4
Optional  
Up to 198  
4
Optional  
Up to 198  
4
No  
Up to 198  
4
No  
Up to 198  
4
Inter-Integrated Circuit  
Interface  
Analog-to-Digital Converter  
ADC  
1
7
1
7
1
7
1
7
1
7
Multichannel Serial Peripheral MCSPI  
Interface  
Multi-Media Card/ Secure  
Digital Interface  
MMCSD0  
eMMC (8-bits)  
eMMC (8-bits)  
eMMC (8-bits)  
eMMC (8-bits)  
eMMC (8-bits)  
MMCSD1  
FSI_TX  
SD/SDIO (4-bits) SD/SDIO (4-bits) SD/SDIO (4-bits) SD/SDIO (4-bits) SD/SDIO (4-bits)  
Fast Serial Interface  
2
2
2
2
6
2
6
FSI_RX  
6
6
6
Flash Subsystem (FSS)  
OSPI0/QSPI0  
PCIE0  
Yes(2)  
Yes(2)  
Yes(2)  
Yes(2)  
Yes(2)  
PCI Express Port with  
Integrated PHY  
Single Lane  
Single Lane  
Single Lane  
Single Lane  
Single Lane  
Programmable Real-Time Unit PRU_ICSSG  
Subsystem  
2
2
2
2
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 5-1. Device Comparison (continued)  
REFERENCE  
NAME  
FEATURES(1)  
AM6442  
AM6441  
AM6421  
AM6412  
AM6411  
Industrial Communication  
Subsystem Support  
PRU_ICSSG  
Optional  
Optional  
Optional  
No  
No  
Gigabit Ethernet Interface  
General-Purpose Timers  
CPSW3G  
TIMER  
Yes  
Yes  
Yes  
Yes  
Yes  
16 (4 in MCU  
Channel)  
16 (4 in MCU  
Channel)  
16 (4 in MCU  
Channel)  
16 (4 in MCU  
Channel)  
16 (4 in MCU  
Channel)  
Enhanced Pulse-Width  
Modulator Module  
EPWM  
9
9
9
9
9
Enhanced Capture Module  
ECAP  
EQEP  
3
3
3
3
3
3
3
3
3
3
Enhanced Quadrature  
Encoder Pulse Module  
Universal Asynchronous  
Receiver and Transmitter  
UART  
9
9
9
9
9
Universal Serial Bus (USB3.1 USB0  
Gen1) SuperSpeed Dual-  
Role-Device (DRD) Ports with  
SS PHY  
Yes  
Yes  
Yes  
Yes  
Yes  
(1) Features noted as “not supported”, must not be used. Their functionality is not supported by TI for this family of devices. These  
features are subject to removal without notice on future device revisions. Any information regarding the unsupported features has been  
retained in the documentation solely for the purpose of clarifying signal names or for consistency with previous feature descriptions.  
(2) One simultaneous flash interfaces configured as OSPI0 or QSPI0.  
(3) For more details about the CTRLMMR_WKUP_JTAG_DEVICE_ID register and DEVICE_ID bit field, see the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
5.1 Related Products  
Sitara™ processors Broad family of scalable processors based on Arm® Cortex®-A cores with flexible  
accelerators, peripherals, connectivity and unified software support – perfect for sensors to servers. Sitara  
processors have the reliability needed for use in industrial applications.  
AM64x Sitara™ processors AM6x processors enable gigabit industrial Ethernet networks, robust operation  
with extensive ECC on memories, and enhanced security features. Additional features such as an integrated  
lockstep MCU subsystem and diagnostic libraries help enable functional safety systems.  
Sitara™ processors - Applications Sitara™ processors provide scalable solutions for a wide range of  
applications from HMIs and gateways to more complex equipment such as drives and substation automation  
equipment. Sitara processors also offer multi-protocol support for industrial communication protocols such as  
EtherCAT®, Ethernet/IP, and Profinet.  
Sitara™ processors - Reference designs TI provides many reference designs containing ‘building block’  
solutions to enable customers to rapidly develop their own unique products and solutions.  
Companion Products for AM64x Review products that are frequently purchased or used in conjunction with  
this product to complete your design.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6 Terminal Configuration and Functions  
6.1 Pin Diagram  
Note  
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt  
is made to use "ball" only when referring to the physical package.  
Figure 6-1 shows the ball locations for the 441-ball flip chip ball grid array (FCBGA) package that are used in  
conjunction with Table 6-1 through Table 6-79 (Pin Attributes table through Reserved Balls table) to locate signal  
names and ball grid numbers.  
Figure 6-1. ALV FCBGA-N441 Pin Diagram (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.2 Pin Attributes  
Table 6-1. Pin Attributes (ALV Package)  
BALL  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
RESET  
REL.  
STATE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
MUXMODE  
G20  
F20  
E21  
D20  
G21  
F21  
F19  
E20  
ADC0_AIN0  
ADC0_AIN1  
ADC0_AIN2  
ADC0_AIN3  
ADC0_AIN4  
ADC0_AIN5  
ADC0_AIN6  
ADC0_AIN7  
ADC0_AIN0  
0
0
0
0
0
0
0
0
A
A
A
A
A
A
A
A
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDA_AD Yes  
C0  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC0_AIN1  
ADC0_AIN2  
ADC0_AIN3  
ADC0_AIN4  
ADC0_AIN5  
ADC0_AIN6  
ADC0_AIN7  
VDDA_AD Yes  
C0  
VDDA_AD Yes  
C0  
VDDA_AD Yes  
C0  
VDDA_AD Yes  
C0  
VDDA_AD Yes  
C0  
VDDA_AD Yes  
C0  
VDDA_AD Yes  
C0  
H12  
T7  
CAP_VDDS0  
CAP_VDDS0  
CAP  
CAP  
CAP  
CAP  
CAP  
CAP  
CAP  
CAP  
O
CAP_VDDS1  
CAP_VDDS1  
R11  
N14  
M16  
L13  
K15  
H10  
H2  
CAP_VDDS2  
CAP_VDDS2  
CAP_VDDS3  
CAP_VDDS3  
CAP_VDDS4  
CAP_VDDS4  
CAP_VDDS5  
CAP_VDDS5  
CAP_VDDSHV_MMC1  
CAP_VDDS_MCU  
DDR0_ACT_n  
CAP_VDDSHV_MMC1  
CAP_VDDS_MCU  
DDR0_ACT_n  
1.1 V/1.2 V VDDS_DD  
DDR  
DDR  
DDR  
DDR  
DDR  
R,  
VDDS_DD  
R_C  
H1  
J5  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
IO  
O
O
O
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
K5  
F6  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
DDR0_RAS_n  
DDR0_RAS_n  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
H4  
DDR0_WE_n  
DDR0_WE_n  
O
O
O
O
O
O
O
O
O
O
O
O
O
1.1 V/1.2 V VDDS_DD  
DDR  
R,  
VDDS_DD  
R_C  
D2  
C5  
E2  
D4  
D3  
F2  
J2  
DDR0_A0  
DDR0_A1  
DDR0_A2  
DDR0_A3  
DDR0_A4  
DDR0_A5  
DDR0_A6  
DDR0_A7  
DDR0_A8  
DDR0_A9  
DDR0_A10  
DDR0_A11  
DDR0_A0  
DDR0_A1  
DDR0_A2  
DDR0_A3  
DDR0_A4  
DDR0_A5  
DDR0_A6  
DDR0_A7  
DDR0_A8  
DDR0_A9  
DDR0_A10  
DDR0_A11  
1.1 V/1.2 V VDDS_DD  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
L5  
J3  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
J4  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
K3  
J1  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
M5  
DDR0_A12  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
O
O
O
O
O
O
A
1.1 V/1.2 V VDDS_DD  
DDR  
R,  
VDDS_DD  
R_C  
K4  
G4  
G5  
G2  
H3  
H5  
F1  
E1  
F4  
F3  
E3  
E4  
DDR0_A13  
1.1 V/1.2 V VDDS_DD  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
R,  
VDDS_DD  
R_C  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
DDR0_CAL0  
DDR0_CK0  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
O
O
O
O
O
O
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
B2  
DDR0_DM0  
DDR0_DM0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V/1.2 V VDDS_DD  
DDR  
R,  
VDDS_DD  
R_C  
M2  
A3  
A2  
B5  
A4  
B3  
C4  
C2  
B4  
N5  
L4  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
1.1 V/1.2 V VDDS_DD  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
L2  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
M3  
DDR0_DQ11  
DDR0_DQ11  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
1.1 V/1.2 V VDDS_DD  
DDR  
R,  
VDDS_DD  
R_C  
N4  
N3  
M4  
N2  
C1  
B1  
N1  
M1  
E5  
F5  
D5  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
DDR0_ODT1  
DDR0_RESET0_n  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
DDR0_ODT1  
DDR0_RESET0_n  
1.1 V/1.2 V VDDS_DD  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
O
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
O
1.1 V/1.2 V VDDS_DD  
R,  
VDDS_DD  
R_C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
D18  
ECAP0_IN_APWM_OUT  
ECAP0_IN_APWM_OUT  
SYNC0_OUT  
0
1
2
5
6
7
0
IO  
O
I
0
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1/1  
CPTS0_RFT_CLK  
CP_GEMAC_CPTS0_RFT_CLK  
SPI4_CS3  
0
0
1
I
IO  
IO  
IO  
GPIO1_68  
pad  
D10  
E10  
EMU0  
EMU1  
EMU0  
OFF  
OFF  
0
0
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
EMU1  
0
15  
0
7
0
1
2
5
7
0
1
2
3
6
7
9
0
1
2
3
4
6
7
9
0
3
7
8
9
IO  
O
I
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
1/1  
1/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
MCU_OBSCLK0  
EXTINTn  
C19  
A19  
EXTINTn  
1
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
I2C OD FS  
LVCMOS  
GPIO1_70  
IO  
I
pad  
0
EXT_REFCLK1  
EXT_REFCLK1  
SYNC1_OUT  
SPI2_CS3  
PU/PD  
PU/PD  
O
IO  
O
IO  
O
I
1
CLKOUT0  
GPIO1_69  
pad  
P16  
GPMC0_ADVn_ALE  
GPMC0_ADVn_ALE  
FSI_RX5_CLK  
UART5_RXD  
EHRPWM_TZn_IN3  
TRC_DATA15  
GPIO0_32  
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
0
1
0
I
I
O
IO  
I
pad  
0
PRG0_PWM3_TZ_IN  
GPMC0_CLK  
FSI_RX4_CLK  
UART4_RTSn  
EHRPWM3_SYNCO  
GPMC0_FCLK_MUX  
TRC_DATA14  
GPIO0_31  
R17  
GPMC0_CLK  
O
I
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
0
O
O
O
O
IO  
O
O
I
pad  
PRG0_PWM3_TZ_OUT  
GPMC0_DIR  
N17  
GPMC0_DIR  
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
EQEP0_B  
0
GPIO0_40  
IO  
IO  
IO  
pad  
0
EHRPWM6_B  
PRG1_PWM2_B0  
1
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
R18  
GPMC0_OEn_REn  
GPMC0_OEn_REn  
0
1
2
3
6
7
9
0
1
2
3
6
7
9
0
1
3
4
6
7
8
9
0
1
2
3
6
7
O
I
OFF  
7
7
7
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
FSI_RX5_D0  
UART5_TXD  
EHRPWM4_A  
TRC_DATA16  
GPIO0_33  
0
0
O
IO  
O
IO  
IO  
O
I
pad  
0
PRG0_PWM3_A1  
GPMC0_WEn  
FSI_RX5_D1  
UART5_RTSn  
EHRPWM4_B  
TRC_DATA17  
GPIO0_34  
T21  
GPMC0_WEn  
OFF  
PU/PD  
0
0
O
IO  
O
IO  
IO  
O
O
I
pad  
1
PRG0_PWM3_B1  
GPMC0_WPn  
FSI_TX1_CLK  
EQEP0_A  
N16  
GPMC0_WPn  
OFF  
PU/PD  
0
GPMC0_A22  
TRC_DATA22  
GPIO0_39  
OZ  
O
IO  
IO  
IO  
IO  
I
pad  
0
EHRPWM6_A  
PRG1_PWM2_A0  
GPMC0_AD0  
FSI_RX2_CLK  
UART2_RXD  
EHRPWM0_SYNCI  
TRC_CLK  
0
T20  
GPMC0_AD0  
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
0
I
1
I
0
O
IO  
I
GPIO0_15  
pad  
BOOTMODE00  
GPMC0_AD1  
FSI_RX2_D0  
UART2_TXD  
EHRPWM0_SYNCO  
TRC_CTL  
Bootstrap  
U21  
GPMC0_AD1  
0
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1
2
O
O
O
IO  
O
I
3
6
GPIO0_16  
7
pad  
PRG0_PWM2_TZ_OUT  
BOOTMODE01  
9
Bootstrap  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
T18  
GPMC0_AD2  
GPMC0_AD2  
0
1
2
3
6
7
9
IO  
I
0
0
OFF  
7
7
7
7
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
FSI_RX2_D1  
UART2_RTSn  
EHRPWM_TZn_IN0  
TRC_DATA0  
O
I
0
O
IO  
I
GPIO0_17  
pad  
0
PRG0_PWM2_TZ_IN  
BOOTMODE02  
GPMC0_AD3  
FSI_RX3_CLK  
UART3_RXD  
EHRPWM0_A  
TRC_DATA1  
Bootstrap  
I
U20  
U18  
U19  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
0
IO  
I
0
0
1
0
OFF  
OFF  
OFF  
PU/PD  
PU/PD  
PU/PD  
1
2
I
3
IO  
O
IO  
IO  
I
6
GPIO0_18  
7
pad  
0
PRG0_PWM2_A0  
BOOTMODE03  
GPMC0_AD4  
FSI_RX3_D0  
UART3_TXD  
EHRPWM0_B  
TRC_DATA2  
9
Bootstrap  
0
IO  
I
0
0
1
2
O
IO  
O
IO  
IO  
I
3
0
6
GPIO0_82  
7
pad  
1
PRG0_PWM2_B0  
BOOTMODE04  
GPMC0_AD5  
FSI_RX3_D1  
UART3_RTSn  
EHRPWM1_A  
TRC_DATA3  
9
Bootstrap  
0
IO  
I
0
0
1
2
O
IO  
O
IO  
IO  
I
3
0
6
GPIO0_83  
7
pad  
0
PRG0_PWM2_A1  
BOOTMODE05  
9
Bootstrap  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
V20  
GPMC0_AD6  
GPMC0_AD6  
0
1
2
3
6
7
9
IO  
I
0
0
1
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
FSI_RX4_D0  
UART4_RXD  
EHRPWM1_B  
TRC_DATA4  
I
IO  
O
IO  
IO  
I
GPIO0_21  
pad  
1
PRG0_PWM2_B1  
BOOTMODE06  
GPMC0_AD7  
FSI_RX4_D1  
UART4_TXD  
EHRPWM_TZn_IN1  
EHRPWM8_A  
TRC_DATA5  
Bootstrap  
V21  
GPMC0_AD7  
0
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1
2
O
I
3
0
0
4
IO  
O
IO  
IO  
I
6
GPIO0_22  
7
pad  
0
PRG1_PWM2_A2  
BOOTMODE07  
GPMC0_AD8  
FSI_RX0_CLK  
UART2_CTSn  
EHRPWM2_A  
TRC_DATA6  
9
Bootstrap  
V19  
GPMC0_AD8  
0
IO  
I
0
0
1
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1
2
I
3
IO  
O
IO  
IO  
I
6
GPIO0_23  
7
pad  
0
PRG0_PWM2_A2  
BOOTMODE08  
GPMC0_AD9  
FSI_RX0_D0  
UART3_CTSn  
EHRPWM2_B  
TRC_DATA7  
9
Bootstrap  
T17  
GPMC0_AD9  
0
IO  
I
0
0
1
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1
2
I
3
IO  
O
IO  
IO  
I
6
GPIO0_24  
7
pad  
1
PRG0_PWM2_B2  
BOOTMODE09  
9
Bootstrap  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
R16  
GPMC0_AD10  
GPMC0_AD10  
0
1
2
3
4
6
7
9
IO  
I
0
0
1
0
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
FSI_RX0_D1  
UART4_CTSn  
EHRPWM_TZn_IN2  
EHRPWM8_B  
TRC_DATA8  
GPIO0_25  
I
I
IO  
O
IO  
IO  
I
pad  
1
PRG1_PWM2_B2  
BOOTMODE10  
GPMC0_AD11  
FSI_RX1_CLK  
UART5_CTSn  
EQEP1_A  
Bootstrap  
W20  
W21  
V18  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
0
IO  
I
0
0
1
0
OFF  
OFF  
OFF  
7
7
7
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
1
2
I
3
I
TRC_DATA9  
GPIO0_26  
6
O
IO  
IO  
I
7
pad  
0
EHRPWM7_A  
BOOTMODE11  
GPMC0_AD12  
FSI_RX1_D0  
UART6_CTSn  
EQEP1_B  
8
Bootstrap  
0
IO  
I
0
0
1
0
1
2
I
3
I
TRC_DATA10  
GPIO0_27  
6
O
IO  
IO  
I
7
pad  
0
EHRPWM7_B  
BOOTMODE12  
GPMC0_AD13  
FSI_RX1_D1  
EHRPWM3_A  
TRC_DATA11  
GPIO0_28  
8
Bootstrap  
0
IO  
I
0
0
0
1
3
IO  
O
IO  
IO  
I
6
7
pad  
0
PRG0_PWM3_A0  
BOOTMODE13  
9
Bootstrap  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
Y21  
GPMC0_AD14  
GPMC0_AD14  
0
1
2
3
6
7
9
IO  
O
I
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
FSI_TX0_D0  
UART6_RXD  
EHRPWM3_B  
TRC_DATA12  
GPIO0_29  
1
0
IO  
O
IO  
IO  
I
pad  
1
PRG0_PWM3_B0  
BOOTMODE14  
GPMC0_AD15  
FSI_TX0_D1  
Bootstrap  
Y20  
GPMC0_AD15  
0
IO  
O
O
I
0
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
1
UART6_TXD  
2
EHRPWM3_SYNCI  
TRC_DATA13  
GPIO0_30  
3
0
6
O
IO  
I
7
pad  
BOOTMODE15  
GPMC0_BE0n_CLE  
FSI_TX1_D0  
Bootstrap  
P17  
GPMC0_BE0n_CLE  
0
1
2
3
5
6
7
9
0
1
3
6
7
9
0
3
6
7
8
O
O
O
I
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
UART6_RTSn  
EHRPWM_TZn_IN4  
EHRPWM7_A  
TRC_DATA18  
GPIO0_35  
0
0
IO  
O
IO  
IO  
O
O
IO  
O
IO  
IO  
O
IO  
O
IO  
I
pad  
0
PRG1_PWM2_A1  
GPMC0_BE1n  
FSI_TX0_CLK  
EHRPWM5_A  
TRC_DATA19  
GPIO0_36  
T19  
GPMC0_BE1n  
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
0
pad  
0
PRG0_PWM3_A2  
GPMC0_CSn0  
EQEP0_S  
R19  
GPMC0_CSn0  
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
0
TRC_DATA23  
GPIO0_41  
pad  
0
EHRPWM6_SYNCI  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
R20  
GPMC0_CSn1  
GPMC0_CSn1  
0
3
5
7
8
9
0
1
2
3
5
7
9
0
1
2
3
4
5
7
0
3
6
7
9
0
1
3
4
5
6
7
9
0
4
7
O
IO  
I
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1/0  
1/0  
1/0  
EQEP0_I  
0
0
EHRPWM_TZn_IN2  
GPIO0_42  
IO  
O
O
O
pad  
EHRPWM6_SYNCO  
PRG1_PWM2_TZ_OUT  
GPMC0_CSn2  
I2C2_SCL  
P19  
GPMC0_CSn2  
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
IOD  
IO  
IO  
I
1
TIMER_IO8  
0
EQEP1_S  
0
EHRPWM_TZn_IN4  
GPIO0_43  
0
IO  
I
pad  
0
PRG1_PWM2_TZ_IN  
GPMC0_CSn3  
I2C2_SDA  
R21  
GPMC0_CSn3  
O
OFF  
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
PU/PD  
IOD  
IO  
IO  
OZ  
I
1
0
0
TIMER_IO9  
EQEP1_I  
GPMC0_A20  
EHRPWM_TZn_IN5  
GPIO0_44  
0
IO  
I
pad  
1
W19  
GPMC0_WAIT0  
GPMC0_WAIT1  
GPMC0_WAIT0  
EHRPWM5_B  
TRC_DATA20  
GPIO0_37  
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV3 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
O
0
IO  
IO  
I
pad  
1
PRG0_PWM3_B2  
GPMC0_WAIT1  
FSI_TX1_D1  
Y18  
1
1.8 V/3.3 V VDDSHV3 Yes  
O
EHRPWM_TZn_IN5  
GPMC0_A21  
EHRPWM7_B  
TRC_DATA21  
GPIO0_38  
I
0
0
OZ  
IO  
O
IO  
IO  
IOD  
I
pad  
1
PRG1_PWM2_B1  
I2C0_SCL  
A18  
I2C0_SCL  
1
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
I2C OD FS  
UART6_CTSn  
GPIO1_64  
1
IO  
pad  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
B18  
I2C0_SDA  
I2C0_SDA  
0
4
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
6
7
8
9
0
1
2
3
6
7
8
9
IOD  
1
OFF  
7
7
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
I2C OD FS  
1/0  
1/0  
1/0  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
UART6_RTSn  
GPIO1_65  
O
IO  
IOD  
I
pad  
1
C18  
B19  
B17  
I2C1_SCL  
I2C1_SDA  
MCAN0_RX  
I2C1_SCL  
OFF  
OFF  
OFF  
LVCMOS  
PU/PD  
CPTS0_HW1TSPUSH  
TIMER_IO0  
SPI2_CS1  
0
IO  
IO  
IO  
IOD  
I
0
1
GPIO1_66  
pad  
1
I2C1_SDA  
7
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
CPTS0_HW2TSPUSH  
TIMER_IO1  
SPI2_CS2  
0
IO  
IO  
IO  
I
0
1
GPIO1_67  
pad  
1
MCAN0_RX  
UART4_TXD  
TIMER_IO3  
SYNC3_OUT  
SPI4_CS2  
1.8 V/3.3 V VDDSHV0 Yes  
O
IO  
O
0
IO  
IO  
IO  
I
1
GPIO1_61  
pad  
0
EQEP2_S  
UART0_RIn  
MCAN0_TX  
UART4_RXD  
TIMER_IO2  
SYNC2_OUT  
SPI4_CS1  
1
A17  
MCAN0_TX  
O
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
I
1
0
IO  
O
IO  
IO  
IO  
O
1
GPIO1_60  
pad  
0
EQEP2_I  
UART0_DTRn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
D17  
MCAN1_RX  
MCAN1_RX  
0
1
2
3
4
5
6
7
8
9
15  
0
1
2
3
4
5
6
7
8
9
0
7
0
7
0
7
0
7
I
1
1
0
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1/0  
1/0  
1/0  
1/0  
0/1  
0/1  
0/1  
0/1  
I2C3_SDA  
IOD  
IO  
O
ECAP2_IN_APWM_OUT  
OBSCLK0  
TIMER_IO5  
IO  
O
0
UART5_TXD  
EHRPWM_SOCB  
GPIO1_63  
O
IO  
I
pad  
0
EQEP2_B  
UART0_DSRn  
OBSCLK0  
I
1
O
C17  
MCAN1_TX  
MCAN1_TX  
O
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
I2C3_SCL  
IOD  
IO  
O
1
0
ECAP1_IN_APWM_OUT  
SYSCLKOUT0  
TIMER_IO4  
IO  
I
0
1
UART5_RXD  
EHRPWM_SOCA  
GPIO1_62  
O
IO  
I
pad  
0
EQEP2_A  
UART0_DCDn  
MCU_I2C0_SCL  
MCU_GPIO0_18  
MCU_I2C0_SDA  
MCU_GPIO0_19  
MCU_I2C1_SCL  
MCU_GPIO0_20  
MCU_I2C1_SDA  
MCU_GPIO0_21  
MCU_OSC0_XI  
I
1
E9  
MCU_I2C0_SCL  
MCU_I2C0_SDA  
MCU_I2C1_SCL  
MCU_I2C1_SDA  
IOD  
IO  
IOD  
IO  
IOD  
IO  
IOD  
IO  
I
1
OFF  
OFF  
OFF  
OFF  
7
7
7
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
I2C OD FS  
I2C OD FS  
LVCMOS  
LVCMOS  
pad  
1
A10  
A11  
B10  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
pad  
1
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
PU/PD  
PU/PD  
pad  
1
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
pad  
C21  
B20  
B21  
B13  
MCU_OSC0_XI  
MCU_OSC0_XO  
MCU_PORz  
1.8 V  
1.8 V  
1.8 V  
VDDS_OS Yes  
C
HFOSC  
MCU_OSC0_XO  
MCU_PORz  
O
I
VDDS_OS Yes  
C
HFOSC  
0
0
0
VDDS_OS Yes  
C
FS RESET  
LVCMOS  
MCU_RESETSTATz  
MCU_RESETSTATz  
MCU_GPIO0_22  
MCU_RESETz  
0
7
0
O
IO  
I
PD  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
PU/PD  
PU/PD  
0/0  
0/0  
1/1  
pad  
B12  
MCU_RESETz  
OFF  
0
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
A20  
E6  
MCU_SAFETY_ERRORn  
MCU_SPI0_CLK  
MCU_SAFETY_ERRORn  
0
IO  
OFF  
0
1.8 V  
VDDS_OS Yes  
C
LVCMOS  
LVCMOS  
PU/PD  
1/0  
MCU_SPI0_CLK  
MCU_GPIO0_11  
MCU_SPI1_CLK  
MCU_GPIO0_7  
MCU_SPI0_CS0  
MCU_GPIO0_13  
MCU_SPI0_CS1  
MCU_OBSCLK0  
MCU_SYSCLKOUT0  
MCU_GPIO0_12  
MCU_SPI0_D0  
0
7
0
7
0
7
0
1
2
7
0
7
0
7
0
7
0
1
7
0
7
0
7
0
1
2
7
0
1
2
7
0
7
0
7
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
0
OFF  
OFF  
OFF  
OFF  
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
pad  
0
D7  
D6  
C6  
MCU_SPI1_CLK  
MCU_SPI0_CS0  
MCU_SPI0_CS1  
7
7
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
LVCMOS  
pad  
1
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
pad  
1
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
pad  
0
E7  
B6  
A7  
B7  
MCU_SPI0_D0  
MCU_SPI0_D1  
MCU_SPI1_CS0  
MCU_SPI1_CS1  
OFF  
OFF  
OFF  
OFF  
7
7
7
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
MCU_GPIO0_10  
MCU_SPI0_D1  
pad  
0
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
MCU_GPIO0_4  
MCU_SPI1_CS0  
MCU_GPIO0_5  
MCU_SPI1_CS1  
MCU_EXT_REFCLK0  
MCU_GPIO0_6  
MCU_SPI1_D0  
pad  
1
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
pad  
1
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
0
IO  
IO  
IO  
IO  
IO  
I
pad  
0
C7  
C8  
D8  
MCU_SPI1_D0  
OFF  
OFF  
OFF  
7
7
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
MCU_GPIO0_8  
MCU_SPI1_D1  
pad  
0
MCU_SPI1_D1  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
MCU_GPIO0_9  
MCU_UART0_CTSn  
MCU_TIMER_IO0  
MCU_SPI0_CS2  
MCU_GPIO0_1  
MCU_UART0_RTSn  
MCU_TIMER_IO1  
MCU_SPI1_CS2  
MCU_GPIO0_0  
MCU_UART0_RXD  
MCU_GPIO0_3  
MCU_UART0_TXD  
MCU_GPIO0_2  
pad  
1
MCU_UART0_CTSn  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
IO  
IO  
IO  
O
0
1
pad  
E8  
MCU_UART0_RTSn  
OFF  
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
PU/PD  
IO  
IO  
IO  
I
0
1
pad  
1
A9  
A8  
MCU_UART0_RXD  
MCU_UART0_TXD  
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
O
pad  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
IO  
pad  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
B8  
MCU_UART1_CTSn  
MCU_UART1_CTSn  
0
1
2
7
0
1
2
7
0
7
0
7
I
1
0
1
OFF  
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
MCU_TIMER_IO2  
MCU_SPI0_CS3  
MCU_GPIO0_16  
MCU_UART1_RTSn  
MCU_TIMER_IO3  
MCU_SPI1_CS3  
MCU_GPIO0_17  
MCU_UART1_RXD  
MCU_GPIO0_14  
MCU_UART1_TXD  
MCU_GPIO0_15  
MMC0_CALPAD  
IO  
IO  
IO  
O
pad  
B9  
MCU_UART1_RTSn  
OFF  
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
PU/PD  
IO  
IO  
IO  
I
0
1
pad  
1
C9  
MCU_UART1_RXD  
MCU_UART1_TXD  
MMC0_CALPAD  
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
O
pad  
D9  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
IO  
A
pad  
F18  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
G18  
J21  
G19  
L20  
MMC0_CLK  
MMC0_CMD  
MMC0_DS  
MMC0_CLK  
MMC0_CMD  
MMC0_DS  
IO  
IO  
IO  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
1
1
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
MMC1_CLK  
MMC1_CLK  
UART2_CTSn  
TIMER_IO4  
UART4_RXD  
GPIO1_75  
0
1
2
3
7
IO  
I
OFF  
7
1.8 V/3.3 V VDDSHV5 Yes  
SDIO  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
1
IO  
I
0
1
IO  
pad  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
J19  
MMC1_CMD  
MMC1_CMD  
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
IO  
O
IO  
O
IO  
I
1
0
OFF  
7
7
7
1.8 V/3.3 V VDDSHV5 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
SDIO  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
UART2_RTSn  
TIMER_IO5  
UART4_TXD  
GPIO1_76  
pad  
1
D19  
C20  
MMC1_SDCD  
MMC1_SDWP  
MMC1_SDCD  
UART3_CTSn  
TIMER_IO6  
UART5_RXD  
GPIO1_77  
OFF  
OFF  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
I
1
IO  
I
0
1
IO  
I
pad  
1
MMC1_SDWP  
UART3_RTSn  
TIMER_IO7  
UART5_TXD  
GPIO1_78  
O
IO  
O
IO  
IO  
0
pad  
1
K20  
J20  
J18  
J17  
H17  
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
MMC0_DAT0  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
IO  
IO  
IO  
IO  
1
1
1
1
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
H19  
MMC0_DAT5  
MMC0_DAT5  
IO  
IO  
IO  
1
1
1
1.8 V  
1.8 V  
1.8 V  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
eMMCPHY PU/PD  
H18  
G17  
K21  
MMC0_DAT6  
MMC0_DAT7  
MMC1_DAT0  
MMC0_DAT6  
MMC0_DAT7  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
VDDS_MM  
C0,  
VDD_MMC  
0,  
VDD_DLL_  
MMC0  
MMC1_DAT0  
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
7
0
7
IO  
I
1
0
0
OFF  
7
7
7
7
1.8 V/3.3 V VDDSHV5 Yes  
1.8 V/3.3 V VDDSHV5 Yes  
1.8 V/3.3 V VDDSHV5 Yes  
1.8 V/3.3 V VDDSHV5 Yes  
SDIO  
SDIO  
SDIO  
SDIO  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
CP_GEMAC_CPTS0_HW2TSPUSH  
TIMER_IO3  
IO  
O
IO  
IO  
I
UART3_TXD  
GPIO1_74  
pad  
1
L21  
K19  
K18  
MMC1_DAT1  
MMC1_DAT2  
MMC1_DAT3  
MMC1_DAT1  
OFF  
OFF  
OFF  
CP_GEMAC_CPTS0_HW1TSPUSH  
TIMER_IO2  
0
IO  
I
0
UART3_RXD  
1
GPIO1_73  
IO  
IO  
O
IO  
O
IO  
IO  
O
IO  
I
pad  
1
MMC1_DAT2  
CP_GEMAC_CPTS0_TS_SYNC  
TIMER_IO1  
0
UART2_TXD  
GPIO1_72  
pad  
1
MMC1_DAT3  
CP_GEMAC_CPTS0_TS_COMP  
TIMER_IO0  
0
UART2_RXD  
1
GPIO1_71  
IO  
O
IO  
I
pad  
N20  
N19  
OSPI0_CLK  
OSPI0_DQS  
OSPI0_CLK  
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
GPIO0_0  
pad  
0
OSPI0_DQS  
GPIO0_2  
IO  
pad  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
N21  
L19  
L18  
K17  
OSPI0_LBCLKO  
OSPI0_LBCLKO  
0
7
0
7
0
7
0
2
7
0
1
2
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
0
7
9
0
7
9
IO  
IO  
O
0
OFF  
7
7
7
7
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
1/1  
1/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/0  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
GPIO0_1  
pad  
pad  
pad  
OSPI0_CSn0  
OSPI0_CSn1  
OSPI0_CSn2  
OSPI0_CSn0  
GPIO0_11  
OFF  
OFF  
OFF  
PU/PD  
PU/PD  
PU/PD  
IO  
O
OSPI0_CSn1  
GPIO0_12  
IO  
O
OSPI0_CSn2  
OSPI0_RESET_OUT1  
GPIO0_13  
O
IO  
O
pad  
L17  
OSPI0_CSn3  
OSPI0_CSn3  
OSPI0_RESET_OUT0  
OSPI0_ECC_FAIL  
GPIO0_14  
OFF  
7
1.8 V/3.3 V VDDSHV4 Yes  
LVCMOS  
PU/PD  
O
I
1
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
pad  
0
M19  
M18  
M20  
M21  
P21  
P20  
N18  
M17  
OSPI0_D0  
OSPI0_D1  
OSPI0_D2  
OSPI0_D3  
OSPI0_D4  
OSPI0_D5  
OSPI0_D6  
OSPI0_D7  
OSPI0_D0  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
7
7
7
7
7
7
7
7
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
1.8 V/3.3 V VDDSHV4 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
GPIO0_3  
pad  
0
OSPI0_D1  
GPIO0_4  
pad  
0
OSPI0_D2  
GPIO0_5  
pad  
0
OSPI0_D3  
GPIO0_6  
pad  
0
OSPI0_D4  
GPIO0_7  
pad  
0
OSPI0_D5  
GPIO0_8  
pad  
0
OSPI0_D6  
GPIO0_9  
pad  
0
OSPI0_D7  
GPIO0_10  
pad  
E17  
P3  
PORz_OUT  
PORz_OUT  
PRG0_MDIO0_MDC  
GPIO1_41  
PD  
0
7
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PRG0_MDIO0_MDC  
O
OFF  
IO  
pad  
GPMC0_A13  
PRG0_MDIO0_MDIO  
GPIO1_40  
OZ  
IO  
P2  
PRG0_MDIO0_MDIO  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
IO  
pad  
GPMC0_A12  
OZ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
Y1  
PRG0_PRU0_GPO0  
PRG0_PRU0_GPO0  
0
IO  
I
0
0
0
0
OFF  
7
7
7
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU0_GPI0  
PRG0_RGMII1_RD0  
PRG0_PWM3_A0  
GPIO1_0  
1
2
I
3
IO  
IO  
I
7
pad  
1
UART2_CTSn  
10  
0
R4  
PRG0_PRU0_GPO1  
PRG0_PRU0_GPO1  
PRG0_PRU0_GPI1  
PRG0_RGMII1_RD1  
PRG0_PWM3_B0  
GPIO1_1  
IO  
I
0
OFF  
PU/PD  
1
0
2
I
0
3
IO  
IO  
O
IO  
I
1
7
pad  
UART2_TXD  
10  
0
U2  
PRG0_PRU0_GPO2  
PRG0_PRU0_GPO2  
PRG0_PRU0_GPI2  
PRG0_RGMII1_RD2  
PRG0_PWM2_A0  
GPIO1_2  
0
OFF  
PU/PD  
1
0
2
I
0
3
IO  
IO  
0
7
pad  
GPMC0_A0  
9
OZ  
O
IO  
I
UART2_RTSn  
10  
0
V2  
PRG0_PRU0_GPO3  
PRG0_PRU0_GPO3  
PRG0_PRU0_GPI3  
PRG0_RGMII1_RD3  
PRG0_PWM3_A2  
GPIO1_3  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
I
0
3
IO  
IO  
I
0
7
pad  
1
UART3_CTSn  
10  
0
AA2  
PRG0_PRU0_GPO4  
PRG0_PRU0_GPO4  
PRG0_PRU0_GPI4  
PRG0_RGMII1_RX_CTL  
PRG0_PWM2_B0  
GPIO1_4  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
I
0
3
IO  
IO  
OZ  
O
IO  
I
1
7
pad  
GPMC0_A1  
9
UART3_TXD  
10  
0
R3  
PRG0_PRU0_GPO5  
PRG0_PRU0_GPO5  
PRG0_PRU0_GPI5  
PRG0_PWM3_B2  
GPIO1_5  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
3
IO  
IO  
O
1
7
pad  
UART3_RTSn  
10  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
T3  
PRG0_PRU0_GPO6  
PRG0_PRU0_GPO6  
0
IO  
I
0
0
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU0_GPI6  
PRG0_RGMII1_RXC  
PRG0_PWM3_A1  
GPIO1_6  
1
2
I
3
IO  
IO  
I
7
pad  
1
UART4_CTSn  
10  
0
T1  
PRG0_PRU0_GPO7  
PRG0_PRU0_GPO7  
PRG0_PRU0_GPI7  
PRG0_IEP0_EDC_LATCH_IN1  
PRG0_PWM3_B1  
CPTS0_HW2TSPUSH  
CP_GEMAC_CPTS0_HW2TSPUSH  
TIMER_IO6  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
I
0
3
IO  
I
1
4
0
5
I
0
6
IO  
IO  
O
IO  
I
0
GPIO1_7  
7
pad  
UART4_TXD  
10  
0
T2  
PRG0_PRU0_GPO8  
PRG0_PRU0_GPO8  
PRG0_PRU0_GPI8  
PRG0_PWM2_A1  
GPIO1_8  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
3
IO  
IO  
0
7
pad  
GPMC0_A2  
9
OZ  
UART4_RTSn  
10  
0
O
IO  
I
W6  
PRG0_PRU0_GPO9  
PRG0_PRU0_GPO9  
PRG0_PRU0_GPI9  
PRG0_UART0_CTSn  
PRG0_PWM3_TZ_IN  
RGMII1_RX_CTL  
RMII1_RX_ER  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
I
1
3
I
0
4
I
0
5
I
0
PRG0_IEP0_EDIO_DATA_IN_OUT28  
GPIO1_9  
6
IO  
IO  
I
0
7
pad  
1
UART2_RXD  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
AA5  
PRG0_PRU0_GPO10  
PRG0_PRU0_GPO10  
0
1
2
3
4
5
6
7
10  
0
1
2
3
7
10  
0
1
2
3
7
9
0
1
2
3
6
7
9
0
1
2
3
6
7
9
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU0_GPI10  
PRG0_UART0_RTSn  
PRG0_PWM2_B1  
RGMII1_RXC  
O
IO  
I
1
0
0
0
RMII_REF_CLK  
PRG0_IEP0_EDIO_DATA_IN_OUT29  
GPIO1_10  
I
IO  
IO  
I
pad  
1
UART3_RXD  
Y3  
PRG0_PRU0_GPO11  
PRG0_PRU0_GPO12  
PRG0_PRU0_GPO13  
PRG0_PRU0_GPO11  
PRG0_PRU0_GPI11  
PRG0_RGMII1_TD0  
PRG0_PWM3_TZ_OUT  
GPIO1_11  
IO  
I
0
OFF  
OFF  
OFF  
7
7
7
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
0
O
O
IO  
I
pad  
1
UART4_RXD  
AA3  
PRG0_PRU0_GPO12  
PRG0_PRU0_GPI12  
PRG0_RGMII1_TD1  
PRG0_PWM0_A0  
GPIO1_12  
IO  
I
0
0
O
IO  
IO  
0
pad  
GPMC0_A14  
OZ  
IO  
I
R6  
PRG0_PRU0_GPO13  
PRG0_PRU0_GPI13  
PRG0_RGMII1_TD2  
PRG0_PWM0_B0  
SPI3_D0  
0
0
O
IO  
IO  
IO  
OZ  
IO  
I
1
0
GPIO1_13  
pad  
GPMC0_A15  
V4  
PRG0_PRU0_GPO14  
PRG0_PRU0_GPO14  
PRG0_PRU0_GPI14  
PRG0_RGMII1_TD3  
PRG0_PWM0_A1  
SPI3_D1  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
O
IO  
IO  
IO  
OZ  
0
0
GPIO1_14  
pad  
GPMC0_A3  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
T5  
PRG0_PRU0_GPO15  
PRG0_PRU0_GPO15  
0
1
2
3
6
7
9
0
1
2
3
6
7
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10  
IO  
I
0
0
OFF  
7
7
7
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU0_GPI15  
PRG0_RGMII1_TX_CTL  
PRG0_PWM0_B1  
SPI3_CS1  
O
IO  
IO  
IO  
1
1
GPIO1_15  
pad  
GPMC0_A16  
OZ  
IO  
I
U4  
PRG0_PRU0_GPO16  
PRG0_PRU0_GPO16  
PRG0_PRU0_GPI16  
PRG0_RGMII1_TXC  
PRG0_PWM0_A2  
SPI3_CLK  
0
OFF  
PU/PD  
0
IO  
IO  
IO  
IO  
OZ  
IO  
I
0
0
0
GPIO1_16  
pad  
GPMC0_A4  
U1  
PRG0_PRU0_GPO17  
PRG0_PRU0_GPO17  
PRG0_PRU0_GPI17  
PRG0_IEP0_EDC_SYNC_OUT1  
PRG0_PWM0_B2  
CPTS0_TS_SYNC  
CP_GEMAC_CPTS0_TS_SYNC  
SPI3_CS0  
0
0
OFF  
PU/PD  
O
IO  
O
O
IO  
IO  
IO  
OZ  
IO  
I
1
1
GPIO1_17  
pad  
0
TIMER_IO11  
GPMC0_A17  
V1  
PRG0_PRU0_GPO18  
PRG0_PRU0_GPO18  
PRG0_PRU0_GPI18  
PRG0_IEP0_EDC_LATCH_IN0  
PRG0_PWM0_TZ_IN  
CPTS0_HW1TSPUSH  
CP_GEMAC_CPTS0_HW1TSPUSH  
EHRPWM8_A  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0
I
0
I
0
I
0
I
0
IO  
IO  
I
0
GPIO1_18  
pad  
1
UART4_CTSn  
GPMC0_A5  
OZ  
I
UART2_RXD  
1
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
W1  
PRG0_PRU0_GPO19  
PRG0_PRU0_GPO19  
0
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU0_GPI19  
PRG0_IEP0_EDC_SYNC_OUT0  
PRG0_PWM0_TZ_OUT  
CPTS0_TS_COMP  
CP_GEMAC_CPTS0_TS_COMP  
EHRPWM8_B  
1
2
O
O
O
O
IO  
IO  
O
3
4
5
6
0
GPIO1_19  
7
pad  
UART4_RTSn  
8
GPMC0_A6  
9
OZ  
I
UART3_RXD  
10  
0
1
Y2  
W2  
V3  
PRG0_PRU1_GPO0  
PRG0_PRU1_GPO1  
PRG0_PRU1_GPO2  
PRG0_PRU1_GPO0  
PRG0_PRU1_GPI0  
PRG0_RGMII2_RD0  
GPIO1_20  
IO  
I
0
OFF  
OFF  
OFF  
7
7
7
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
1
0
2
I
0
7
IO  
I
pad  
0
EQEP0_A  
8
UART5_CTSn  
10  
0
I
1
PRG0_PRU1_GPO1  
PRG0_PRU1_GPI1  
PRG0_RGMII2_RD1  
GPIO1_21  
IO  
I
0
1
0
2
I
0
7
IO  
I
pad  
0
EQEP0_B  
8
UART5_TXD  
10  
0
O
IO  
I
PRG0_PRU1_GPO2  
PRG0_PRU1_GPI2  
PRG0_RGMII2_RD2  
PRG0_PWM2_A2  
GPIO1_22  
0
1
0
2
I
0
3
IO  
IO  
IO  
O
IO  
I
0
7
pad  
0
EQEP0_S  
8
UART5_RTSn  
10  
0
T4  
PRG0_PRU1_GPO3  
PRG0_PRU1_GPO3  
PRG0_PRU1_GPI3  
PRG0_RGMII2_RD3  
GPIO1_23  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
I
0
7
IO  
I
pad  
0
EQEP1_A  
8
GPMC0_A18  
9
OZ  
I
UART6_CTSn  
10  
1
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
W3  
PRG0_PRU1_GPO4  
PRG0_PRU1_GPO4  
0
IO  
I
0
0
0
1
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU1_GPI4  
PRG0_RGMII2_RX_CTL  
PRG0_PWM2_B2  
GPIO1_24  
1
2
I
3
IO  
IO  
I
7
pad  
0
EQEP1_B  
8
UART6_TXD  
10  
0
O
IO  
I
P4  
R5  
PRG0_PRU1_GPO5  
PRG0_PRU1_GPO6  
PRG0_PRU1_GPO5  
PRG0_PRU1_GPI5  
GPIO1_25  
0
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
0
7
IO  
IO  
O
IO  
I
pad  
0
EQEP1_S  
8
UART6_RTSn  
10  
0
PRG0_PRU1_GPO6  
PRG0_PRU1_GPI6  
PRG0_RGMII2_RXC  
GPIO1_26  
0
1.8 V/3.3 V VDDSHV1 Yes  
1
0
2
I
0
7
IO  
I
pad  
0
EQEP2_A  
8
GPMC0_A19  
9
OZ  
I
UART4_CTSn  
10  
0
1
W5  
PRG0_PRU1_GPO7  
PRG0_PRU1_GPO7  
PRG0_PRU1_GPI7  
PRG0_IEP1_EDC_LATCH_IN1  
RGMII1_RD0  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
I
0
4
I
0
RMII1_RXD0  
5
I
0
GPIO1_27  
7
IO  
I
pad  
0
EQEP2_B  
8
UART4_TXD  
10  
0
O
IO  
I
R1  
PRG0_PRU1_GPO8  
PRG0_PRU1_GPO8  
PRG0_PRU1_GPI8  
PRG0_PWM2_TZ_OUT  
GPIO1_28  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
3
O
IO  
IO  
O
7
pad  
0
EQEP2_S  
8
UART4_RTSn  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
Y5  
PRG0_PRU1_GPO9  
PRG0_PRU1_GPO9  
0
IO  
I
0
0
1
0
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU1_GPI9  
PRG0_UART0_RXD  
RGMII1_RD1  
1
2
I
4
I
RMII1_RXD1  
5
I
PRG0_IEP0_EDIO_DATA_IN_OUT30  
GPIO1_29  
6
IO  
IO  
IO  
I
7
pad  
0
EQEP0_I  
8
UART5_RXD  
10  
0
1
V6  
PRG0_PRU1_GPO10  
PRG0_PRU1_GPO10  
PRG0_PRU1_GPI10  
PRG0_UART0_TXD  
PRG0_PWM2_TZ_IN  
RGMII1_RD2  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
O
I
3
0
0
4
I
RMII1_TXD0  
5
O
IO  
IO  
IO  
I
PRG0_IEP0_EDIO_DATA_IN_OUT31  
GPIO1_30  
6
0
7
pad  
0
EQEP1_I  
8
UART6_RXD  
10  
0
1
W4  
PRG0_PRU1_GPO11  
PRG0_PRU1_GPO11  
PRG0_PRU1_GPI11  
PRG0_RGMII2_TD0  
GPIO1_31  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
O
IO  
IO  
I
7
pad  
0
EQEP2_I  
8
UART4_RXD  
10  
0
1
Y4  
PRG0_PRU1_GPO12  
PRG0_PRU1_GPO12  
PRG0_PRU1_GPI12  
PRG0_RGMII2_TD1  
PRG0_PWM1_A0  
GPIO1_32  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
O
IO  
IO  
I
3
0
7
pad  
0
EQEP2_B  
8
GPMC0_A7  
9
OZ  
O
UART4_TXD  
10  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
T6  
PRG0_PRU1_GPO13  
PRG0_PRU1_GPO13  
0
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU1_GPI13  
PRG0_RGMII2_TD2  
PRG0_PWM1_B0  
GPIO1_33  
1
2
O
3
IO  
IO  
IO  
1
7
pad  
0
EQEP0_I  
8
GPMC0_A8  
9
OZ  
I
UART5_RXD  
10  
0
1
0
0
U6  
PRG0_PRU1_GPO14  
PRG0_PRU1_GPO14  
PRG0_PRU1_GPI14  
PRG0_RGMII2_TD3  
PRG0_PWM1_A1  
GPIO1_34  
IO  
I
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
2
O
3
IO  
IO  
IO  
OZ  
I
0
7
pad  
0
EQEP1_I  
8
GPMC0_A9  
9
UART6_RXD  
10  
0
1
0
0
U5  
PRG0_PRU1_GPO15  
PRG0_PRU1_GPO15  
PRG0_PRU1_GPI15  
PRG0_RGMII2_TX_CTL  
PRG0_PWM1_B1  
GPIO1_35  
IO  
I
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
2
O
3
IO  
IO  
OZ  
IO  
IO  
I
1
7
pad  
GPMC0_A10  
9
PRG0_ECAP0_IN_APWM_OUT  
PRG0_PRU1_GPO16  
PRG0_PRU1_GPI16  
PRG0_RGMII2_TXC  
PRG0_PWM1_A2  
GPIO1_36  
10  
0
0
AA4  
PRG0_PRU1_GPO16  
0
OFF  
7
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
PU/PD  
1
0
2
IO  
IO  
IO  
OZ  
O
0
3
0
7
pad  
GPMC0_A11  
9
PRG0_ECAP0_SYNC_OUT  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
V5  
PRG0_PRU1_GPO17  
PRG0_PRU1_GPO17  
0
1
2
3
4
5
7
8
10  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
4
7
0
4
7
IO  
I
0
0
OFF  
7
7
7
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
1.8 V/3.3 V VDDSHV1 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG0_PRU1_GPI17  
PRG0_IEP1_EDC_SYNC_OUT1  
PRG0_PWM1_B2  
RGMII1_RD3  
O
IO  
I
1
0
RMII1_TXD1  
O
IO  
O
I
GPIO1_37  
pad  
PRG0_ECAP0_SYNC_OUT  
PRG0_ECAP0_SYNC_IN  
PRG0_PRU1_GPO18  
PRG0_PRU1_GPI18  
PRG0_IEP1_EDC_LATCH_IN0  
PRG0_PWM1_TZ_IN  
MDIO0_MDIO  
0
0
0
0
0
0
P5  
PRG0_PRU1_GPO18  
IO  
I
OFF  
PU/PD  
I
I
IO  
O
IO  
IO  
I
RMII1_TX_EN  
EHRPWM7_A  
0
GPIO1_38  
pad  
0
PRG0_ECAP0_SYNC_IN  
PRG0_PRU1_GPO19  
PRG0_PRU1_GPI19  
PRG0_IEP1_EDC_SYNC_OUT0  
PRG0_PWM1_TZ_OUT  
MDIO0_MDC  
R2  
PRG0_PRU1_GPO19  
IO  
I
0
OFF  
PU/PD  
0
O
O
O
I
RMII1_CRS_DV  
0
EHRPWM7_B  
IO  
IO  
IO  
O
O
IO  
IO  
IO  
IO  
0
GPIO1_39  
pad  
0
PRG0_ECAP0_IN_APWM_OUT  
PRG1_MDIO0_MDC  
MDIO0_MDC  
Y6  
PRG1_MDIO0_MDC  
PRG1_MDIO0_MDIO  
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
GPIO0_86  
pad  
0
AA6  
PRG1_MDIO0_MDIO  
MDIO0_MDIO  
0
GPIO0_85  
pad  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
Y7  
PRG1_PRU0_GPO0  
PRG1_PRU0_GPO0  
0
1
2
3
7
8
0
1
2
3
7
8
0
1
2
3
7
8
0
1
2
3
7
8
0
1
2
3
7
8
0
1
3
4
7
8
IO  
I
0
0
0
0
OFF  
7
7
7
7
7
7
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU0_GPI0  
PRG1_RGMII1_RD0  
PRG1_PWM3_A0  
GPIO0_45  
I
IO  
IO  
IO  
IO  
I
pad  
0
GPMC0_AD16  
U8  
W8  
V8  
PRG1_PRU0_GPO1  
PRG1_PRU0_GPO2  
PRG1_PRU0_GPO3  
PRG1_PRU0_GPO4  
PRG1_PRU0_GPO5  
PRG1_PRU0_GPO1  
PRG1_PRU0_GPI1  
PRG1_RGMII1_RD1  
PRG1_PWM3_B0  
GPIO0_46  
0
OFF  
OFF  
OFF  
OFF  
OFF  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
0
I
0
IO  
IO  
IO  
IO  
I
1
pad  
0
GPMC0_AD17  
PRG1_PRU0_GPO2  
PRG1_PRU0_GPI2  
PRG1_RGMII1_RD2  
PRG1_PWM2_A0  
GPIO0_47  
0
0
I
0
IO  
IO  
IO  
IO  
I
0
pad  
0
GPMC0_AD18  
PRG1_PRU0_GPO3  
PRG1_PRU0_GPI3  
PRG1_RGMII1_RD3  
PRG1_PWM3_A2  
GPIO0_48  
0
0
I
0
IO  
IO  
IO  
IO  
I
0
pad  
0
GPMC0_AD19  
Y8  
PRG1_PRU0_GPO4  
PRG1_PRU0_GPI4  
PRG1_RGMII1_RX_CTL  
PRG1_PWM2_B0  
GPIO0_49  
0
0
I
0
IO  
IO  
IO  
IO  
I
1
pad  
0
GPMC0_AD20  
V13  
PRG1_PRU0_GPO5  
PRG1_PRU0_GPI5  
PRG1_PWM3_B2  
RGMII1_RX_CTL  
GPIO0_50  
0
0
IO  
I
1
0
IO  
IO  
pad  
0
GPMC0_AD21  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
AA7  
PRG1_PRU0_GPO6  
PRG1_PRU0_GPO6  
0
1
2
3
7
8
0
1
2
3
4
5
6
7
8
0
1
3
4
7
8
0
1
2
3
4
5
6
7
8
IO  
I
0
0
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU0_GPI6  
PRG1_RGMII1_RXC  
PRG1_PWM3_A1  
GPIO0_51  
I
IO  
IO  
IO  
IO  
I
pad  
0
GPMC0_AD22  
U13  
PRG1_PRU0_GPO7  
PRG1_PRU0_GPO7  
PRG1_PRU0_GPI7  
PRG1_IEP0_EDC_LATCH_IN1  
PRG1_PWM3_B1  
CPTS0_HW2TSPUSH  
CLKOUT0  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
I
0
IO  
I
1
0
O
IO  
IO  
IO  
IO  
I
TIMER_IO10  
0
GPIO0_52  
pad  
0
GPMC0_AD23  
W13  
PRG1_PRU0_GPO8  
PRG1_PRU0_GPO8  
PRG1_PRU0_GPI8  
PRG1_PWM2_A1  
RGMII1_RXC  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
IO  
I
0
0
GPIO0_53  
IO  
IO  
IO  
I
pad  
0
GPMC0_AD24  
U15  
PRG1_PRU0_GPO9  
PRG1_PRU0_GPO9  
PRG1_PRU0_GPI9  
PRG1_UART0_CTSn  
PRG1_PWM3_TZ_IN  
RGMII1_TX_CTL  
RMII1_RX_ER  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
I
1
I
0
O
I
0
PRG1_IEP0_EDIO_DATA_IN_OUT28  
GPIO0_54  
IO  
IO  
IO  
0
pad  
0
GPMC0_AD25  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
U14  
PRG1_PRU0_GPO10  
PRG1_PRU0_GPO10  
0
1
2
3
4
5
6
7
8
0
1
2
3
7
8
0
1
2
3
7
8
0
1
2
3
7
8
0
1
2
3
7
8
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU0_GPI10  
PRG1_UART0_RTSn  
PRG1_PWM2_B1  
RGMII1_TXC  
O
IO  
IO  
I
1
0
0
0
RMII_REF_CLK  
PRG1_IEP0_EDIO_DATA_IN_OUT29  
GPIO0_55  
IO  
IO  
IO  
IO  
I
pad  
0
GPMC0_AD26  
AA8  
PRG1_PRU0_GPO11  
PRG1_PRU0_GPO12  
PRG1_PRU0_GPO13  
PRG1_PRU0_GPO14  
PRG1_PRU0_GPO11  
PRG1_PRU0_GPI11  
PRG1_RGMII1_TD0  
PRG1_PWM3_TZ_OUT  
GPIO0_56  
0
OFF  
OFF  
OFF  
OFF  
7
7
7
7
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
0
O
O
IO  
IO  
IO  
I
pad  
0
GPMC0_AD27  
U9  
PRG1_PRU0_GPO12  
PRG1_PRU0_GPI12  
PRG1_RGMII1_TD1  
PRG1_PWM0_A0  
GPIO0_57  
0
0
O
IO  
IO  
IO  
IO  
I
0
pad  
0
GPMC0_AD28  
W9  
PRG1_PRU0_GPO13  
PRG1_PRU0_GPI13  
PRG1_RGMII1_TD2  
PRG1_PWM0_B0  
GPIO0_58  
0
0
O
IO  
IO  
IO  
IO  
I
1
pad  
0
GPMC0_AD29  
AA9  
PRG1_PRU0_GPO14  
PRG1_PRU0_GPI14  
PRG1_RGMII1_TD3  
PRG1_PWM0_A1  
GPIO0_59  
0
0
O
IO  
IO  
IO  
0
pad  
0
GPMC0_AD30  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
Y9  
PRG1_PRU0_GPO15  
PRG1_PRU0_GPO15  
0
1
2
3
7
8
0
1
2
3
7
8
0
1
2
3
4
6
7
8
0
1
2
3
4
6
7
8
0
1
2
3
4
6
7
8
IO  
I
0
0
OFF  
7
7
7
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU0_GPI15  
PRG1_RGMII1_TX_CTL  
PRG1_PWM0_B1  
GPIO0_60  
O
IO  
IO  
IO  
IO  
I
1
pad  
0
GPMC0_AD31  
V9  
PRG1_PRU0_GPO16  
PRG1_PRU0_GPO16  
PRG1_PRU0_GPI16  
PRG1_RGMII1_TXC  
PRG1_PWM0_A2  
GPIO0_61  
0
OFF  
PU/PD  
0
IO  
IO  
IO  
O
0
0
pad  
GPMC0_BE2n  
U7  
PRG1_PRU0_GPO17  
PRG1_PRU0_GPO17  
PRG1_PRU0_GPI17  
PRG1_IEP0_EDC_SYNC_OUT1  
PRG1_PWM0_B2  
CPTS0_TS_SYNC  
TIMER_IO7  
IO  
I
0
0
OFF  
PU/PD  
O
IO  
O
1
IO  
IO  
0
GPIO0_62  
pad  
GPMC0_A0  
OZ  
IO  
I
V7  
PRG1_PRU0_GPO18  
PRG1_PRU0_GPO18  
PRG1_PRU0_GPI18  
PRG1_IEP0_EDC_LATCH_IN0  
PRG1_PWM0_TZ_IN  
CPTS0_HW1TSPUSH  
TIMER_IO8  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
I
0
I
0
I
0
IO  
IO  
OZ  
IO  
I
0
GPIO0_63  
pad  
GPMC0_A1  
W7  
PRG1_PRU0_GPO19  
PRG1_PRU0_GPO19  
PRG1_PRU0_GPI19  
PRG1_IEP0_EDC_SYNC_OUT0  
PRG1_PWM0_TZ_OUT  
CPTS0_TS_COMP  
TIMER_IO9  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
O
O
IO  
IO  
OZ  
0
GPIO0_64  
pad  
GPMC0_A2  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
W11  
PRG1_PRU1_GPO0  
PRG1_PRU1_GPO0  
0
1
2
4
5
7
8
0
1
2
4
5
7
8
0
1
2
3
4
7
8
0
1
2
4
7
8
0
1
2
3
4
5
7
8
IO  
0
0
0
0
0
OFF  
7
7
7
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU1_GPI0  
PRG1_RGMII2_RD0  
RGMII2_RD0  
I
I
I
RMII2_RXD0  
I
GPIO0_65  
IO  
pad  
GPMC0_A3  
OZ  
IO  
I
V11  
PRG1_PRU1_GPO1  
PRG1_PRU1_GPO1  
PRG1_PRU1_GPI1  
PRG1_RGMII2_RD1  
RGMII2_RD1  
0
OFF  
PU/PD  
0
I
0
I
0
RMII2_RXD1  
I
0
GPIO0_66  
IO  
OZ  
IO  
I
pad  
GPMC0_A4  
AA12  
PRG1_PRU1_GPO2  
PRG1_PRU1_GPO2  
PRG1_PRU1_GPI2  
PRG1_RGMII2_RD2  
PRG1_PWM2_A2  
RGMII2_RD2  
0
OFF  
PU/PD  
0
I
0
IO  
I
0
0
GPIO0_67  
IO  
OZ  
IO  
I
pad  
GPMC0_A5  
Y12  
PRG1_PRU1_GPO3  
PRG1_PRU1_GPO3  
PRG1_PRU1_GPI3  
PRG1_RGMII2_RD3  
RGMII2_RD3  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
I
0
I
0
GPIO0_68  
IO  
OZ  
IO  
I
pad  
GPMC0_A6  
W12  
PRG1_PRU1_GPO4  
PRG1_PRU1_GPO4  
PRG1_PRU1_GPI4  
PRG1_RGMII2_RX_CTL  
PRG1_PWM2_B2  
RGMII2_RX_CTL  
RMII2_RX_ER  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
I
0
IO  
I
1
0
I
0
GPIO0_69  
IO  
OZ  
pad  
GPMC0_A7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
AA13  
PRG1_PRU1_GPO5  
PRG1_PRU1_GPO5  
0
1
4
7
8
0
1
2
4
7
8
0
1
2
4
5
6
7
8
0
1
3
4
7
8
0
1
2
4
5
6
7
8
IO  
I
0
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU1_GPI5  
RGMII1_RD0  
I
GPIO0_70  
IO  
pad  
GPMC0_A8  
OZ  
IO  
I
U11  
PRG1_PRU1_GPO6  
PRG1_PRU1_GPO6  
PRG1_PRU1_GPI6  
PRG1_RGMII2_RXC  
RGMII2_RXC  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
I
0
I
0
GPIO0_71  
IO  
OZ  
IO  
I
pad  
GPMC0_A9  
V15  
PRG1_PRU1_GPO7  
PRG1_PRU1_GPO7  
PRG1_PRU1_GPI7  
PRG1_IEP1_EDC_LATCH_IN1  
RGMII1_TD0  
0
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
I
O
I
RMII1_RXD0  
0
SPI3_CS3  
IO  
IO  
OZ  
IO  
I
1
GPIO0_72  
pad  
GPMC0_A10  
U12  
PRG1_PRU1_GPO8  
PRG1_PRU1_GPO8  
PRG1_PRU1_GPI8  
PRG1_PWM2_TZ_OUT  
RGMII1_RD1  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
I
0
GPIO0_73  
IO  
OZ  
IO  
I
pad  
GPMC0_A11  
V14  
PRG1_PRU1_GPO9  
PRG1_PRU1_GPO9  
PRG1_PRU1_GPI9  
PRG1_UART0_RXD  
RGMII1_TD1  
0
0
1
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
I
O
I
RMII1_RXD1  
0
PRG1_IEP0_EDIO_DATA_IN_OUT30  
GPIO0_74  
IO  
IO  
OZ  
0
pad  
GPMC0_A12  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
W14  
PRG1_PRU1_GPO10  
PRG1_PRU1_GPO10  
0
1
2
3
4
5
6
7
8
0
1
2
4
5
7
8
0
1
2
3
4
5
7
8
0
1
2
3
4
5
7
8
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU1_GPI10  
PRG1_UART0_TXD  
PRG1_PWM2_TZ_IN  
RGMII1_TD2  
O
I
0
O
O
IO  
IO  
RMII1_TXD0  
PRG1_IEP0_EDIO_DATA_IN_OUT31  
GPIO0_75  
0
pad  
GPMC0_A13  
OZ  
IO  
I
AA10  
PRG1_PRU1_GPO11  
PRG1_PRU1_GPO11  
PRG1_PRU1_GPI11  
PRG1_RGMII2_TD0  
RGMII2_TD0  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
O
RMII2_TXD0  
O
GPIO0_76  
IO  
OZ  
IO  
I
pad  
GPMC0_A14  
V10  
PRG1_PRU1_GPO12  
PRG1_PRU1_GPO12  
PRG1_PRU1_GPI12  
PRG1_RGMII2_TD1  
PRG1_PWM1_A0  
RGMII2_TD1  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
IO  
O
0
RMII2_TXD1  
O
GPIO0_77  
IO  
OZ  
IO  
I
pad  
GPMC0_A15  
U10  
PRG1_PRU1_GPO13  
PRG1_PRU1_GPO13  
PRG1_PRU1_GPI13  
PRG1_RGMII2_TD2  
PRG1_PWM1_B0  
RGMII2_TD2  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
IO  
O
1
RMII2_CRS_DV  
GPIO0_78  
I
0
IO  
OZ  
pad  
GPMC0_A16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
AA11  
PRG1_PRU1_GPO14  
PRG1_PRU1_GPO14  
0
1
2
3
4
7
8
0
1
2
3
4
5
7
8
0
1
2
3
4
7
8
0
1
2
3
4
5
7
8
9
IO  
I
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
PRG1_PRU1_GPI14  
PRG1_RGMII2_TD3  
PRG1_PWM1_A1  
RGMII2_TD3  
O
IO  
O
IO  
0
GPIO0_79  
pad  
GPMC0_A17  
OZ  
IO  
I
Y11  
PRG1_PRU1_GPO15  
PRG1_PRU1_GPO15  
PRG1_PRU1_GPI15  
PRG1_RGMII2_TX_CTL  
PRG1_PWM1_B1  
RGMII2_TX_CTL  
RMII2_TX_EN  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
IO  
O
1
O
GPIO0_80  
IO  
OZ  
IO  
I
pad  
GPMC0_A18  
Y10  
PRG1_PRU1_GPO16  
PRG1_PRU1_GPO16  
PRG1_PRU1_GPI16  
PRG1_RGMII2_TXC  
PRG1_PWM1_A2  
RGMII2_TXC  
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
IO  
IO  
IO  
IO  
OZ  
IO  
I
0
0
0
GPIO0_81  
pad  
GPMC0_A19  
AA14  
PRG1_PRU1_GPO17  
PRG1_PRU1_GPO17  
PRG1_PRU1_GPI17  
PRG1_IEP1_EDC_SYNC_OUT1  
PRG1_PWM1_B2  
RGMII1_TD3  
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
O
IO  
O
1
RMII1_TXD1  
O
GPIO0_19  
IO  
O
pad  
GPMC0_BE3n  
PRG1_ECAP0_SYNC_OUT  
O
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
Y13  
PRG1_PRU1_GPO18  
PRG1_PRU1_GPO18  
0
1
2
3
4
5
7
8
9
0
1
2
3
4
5
6
7
8
9
0
0
IO  
I
0
0
0
0
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/0  
1/1  
PRG1_PRU1_GPI18  
PRG1_IEP1_EDC_LATCH_IN0  
PRG1_PWM1_TZ_IN  
RGMII1_RD2  
I
I
I
RMII1_TX_EN  
O
IO  
I
GPIO0_20  
pad  
1
UART5_CTSn  
PRG1_ECAP0_SYNC_IN  
PRG1_PRU1_GPO19  
PRG1_PRU1_GPI19  
PRG1_IEP1_EDC_SYNC_OUT0  
PRG1_PWM1_TZ_OUT  
RGMII1_RD3  
I
0
V12  
PRG1_PRU1_GPO19  
IO  
I
0
OFF  
7
1.8 V/3.3 V VDDSHV2 Yes  
LVCMOS  
PU/PD  
0
O
O
I
0
RMII1_CRS_DV  
I
0
SPI3_CS2  
IO  
IO  
O
IO  
O
I
1
GPIO0_84  
pad  
UART5_RTSn  
PRG1_ECAP0_IN_APWM_OUT  
RESETSTATz  
0
F16  
E18  
T13  
RESETSTATz  
PD  
0
0
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
SERDES  
PU/PD  
PU/PD  
RESET_REQz  
SERDES0_REXT  
RESET_REQz  
OFF  
SERDES0_REXT  
A
1.8 V  
VDDA_1P8  
_SERDES0  
,
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
W16  
SERDES0_REFCLK0N  
SERDES0_REFCLK0N  
IO  
1.8 V  
VDDA_1P8  
_SERDES0  
,
SERDES  
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
W17  
SERDES0_REFCLK0P  
SERDES0_REFCLK0P  
IO  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDA_1P8  
_SERDES0  
,
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
SERDES  
SERDES  
SERDES  
SERDES  
SERDES  
Y15  
SERDES0_RX0_N  
SERDES0_RX0_P  
SERDES0_TX0_N  
SERDES0_TX0_P  
SERDES0_RX0_N  
SERDES0_RX0_P  
SERDES0_TX0_N  
SERDES0_TX0_P  
I
VDDA_1P8  
_SERDES0  
,
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
Y16  
I
VDDA_1P8  
_SERDES0  
,
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
AA16  
O
VDDA_1P8  
_SERDES0  
,
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
AA17  
O
VDDA_1P8  
_SERDES0  
,
VDDA_0P8  
5_SERDES  
0,  
VDDA_0P8  
5_SERDES  
0_C  
D13  
C14  
SPI0_CLK  
SPI1_CLK  
SPI0_CLK  
0
7
0
3
7
0
7
IO  
IO  
IO  
I
0
OFF  
7
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
GPIO1_44  
pad  
0
SPI1_CLK  
OFF  
OFF  
1.8 V/3.3 V VDDSHV0 Yes  
PU/PD  
PU/PD  
EHRPWM6_SYNCI  
GPIO1_49  
0
IO  
IO  
IO  
pad  
1
D12  
SPI0_CS0  
SPI0_CS0  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
GPIO1_42  
pad  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
C13  
SPI0_CS1  
SPI0_CS1  
0
1
2
3
4
5
6
7
0
7
0
7
0
3
7
0
1
2
4
5
6
7
8
0
3
7
0
3
7
0
IO  
O
1
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1/1  
CPTS0_TS_COMP  
I2C2_SCL  
IOD  
IO  
O
1
0
TIMER_IO10  
PRG0_IEP0_EDIO_OUTVALID  
UART6_RXD  
ADC_EXT_TRIGGER0  
GPIO1_43  
I
1
0
I
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
pad  
0
A13  
A14  
B14  
SPI0_D0  
SPI0_D1  
SPI1_CS0  
SPI0_D0  
OFF  
OFF  
OFF  
7
7
7
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
GPIO1_45  
pad  
0
SPI0_D1  
GPIO1_46  
pad  
1
SPI1_CS0  
EHRPWM6_A  
GPIO1_47  
0
pad  
1
D14  
SPI1_CS1  
SPI1_CS1  
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
CPTS0_TS_SYNC  
I2C2_SDA  
IOD  
O
1
PRG1_IEP0_EDIO_OUTVALID  
UART6_TXD  
ADC_EXT_TRIGGER1  
GPIO1_48  
O
I
0
IO  
IO  
IO  
O
pad  
0
TIMER_IO11  
SPI1_D0  
B15  
A15  
SPI1_D0  
SPI1_D1  
0
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
EHRPWM6_SYNCO  
GPIO1_50  
IO  
IO  
IO  
IO  
I
pad  
0
SPI1_D1  
EHRPWM6_B  
GPIO1_51  
0
pad  
B11  
C11  
A12  
C12  
D11  
TCK  
TDI  
TCK  
0
0
0
0
0
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
TDI  
0
0
0
0
I
OFF  
OFF  
OFF  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
1/1  
0/0  
1/1  
1/1  
TDO  
TMS  
TRSTn  
TDO  
TMS  
TRSTn  
OZ  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
I
I
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
1.8 V/3.3 V VDDSHV_ Yes  
MCU  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
B16  
UART0_CTSn  
UART0_CTSn  
0
1
2
3
4
6
7
8
9
0
1
3
4
6
7
8
0
2
7
8
0
2
7
8
0
1
2
3
4
5
6
7
8
I
1
1
0
1
0
0
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
SPI0_CS2  
IO  
I
ADC_EXT_TRIGGER0  
UART2_RXD  
TIMER_IO6  
I
IO  
IO  
IO  
IO  
O
O
IO  
O
IO  
IO  
IO  
IO  
I
SPI4_CLK  
GPIO1_54  
pad  
0
EQEP0_S  
CP_GEMAC_CPTS0_TS_SYNC  
UART0_RTSn  
SPI0_CS3  
A16  
UART0_RTSn  
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
1
UART2_TXD  
TIMER_IO7  
0
SPI4_D0  
0
GPIO1_55  
pad  
0
EQEP0_I  
D15  
C16  
D16  
UART0_RXD  
UART0_TXD  
UART1_CTSn  
UART0_RXD  
SPI2_D0  
1
OFF  
OFF  
OFF  
7
7
7
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
IO  
IO  
I
0
GPIO1_52  
pad  
0
EQEP0_A  
UART0_TXD  
SPI2_D1  
O
IO  
IO  
I
0
GPIO1_53  
pad  
0
EQEP0_B  
UART1_CTSn  
SPI1_CS2  
I
1
IO  
I
1
ADC_EXT_TRIGGER1  
PCIE0_CLKREQn  
UART3_RXD  
CP_GEMAC_CPTS0_TS_SYNC  
SPI4_D1  
0
IO  
I
0
1
O
IO  
IO  
IO  
0
GPIO1_58  
pad  
0
EQEP1_S  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
E16  
UART1_RTSn  
UART1_RTSn  
0
1
4
5
6
7
8
0
2
5
7
8
0
2
5
7
8
O
IO  
O
I
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
SPI1_CS3  
1
UART3_TXD  
CP_GEMAC_CPTS0_HW2TSPUSH  
SPI4_CS0  
0
1
IO  
IO  
IO  
I
GPIO1_59  
pad  
0
EQEP1_I  
E15  
E14  
UART1_RXD  
UART1_TXD  
UART1_RXD  
1
OFF  
OFF  
7
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
SPI2_CS0  
IO  
O
IO  
I
1
CP_GEMAC_CPTS0_TS_COMP  
GPIO1_56  
pad  
0
EQEP1_A  
UART1_TXD  
O
IO  
I
1.8 V/3.3 V VDDSHV0 Yes  
SPI2_CLK  
0
CP_GEMAC_CPTS0_HW1TSPUSH  
GPIO1_57  
0
IO  
I
pad  
0
EQEP1_B  
AA20  
AA19  
USB0_DM  
USB0_DP  
USB0_DM  
IO  
1.8 V/3.3 V VDDA_3P3  
_USB0,  
USB2PHY  
USB2PHY  
VDDA_1P8  
_USB0,  
VDDA_0P8  
5_USB0  
USB0_DP  
IO  
1.8 V/3.3 V VDDA_3P3  
_USB0,  
VDDA_1P8  
_USB0,  
VDDA_0P8  
5_USB0  
E19  
U16  
USB0_DRVVBUS  
USB0_ID  
USB0_DRVVBUS  
GPIO1_79  
0
7
O
IO  
A
OFF  
7
1.8 V/3.3 V VDDSHV0 Yes  
LVCMOS  
PU/PD  
0/1  
0/1  
pad  
USB0_ID  
1.8 V/3.3 V VDDA_3P3  
_USB0,  
USB2PHY  
VDDA_1P8  
_USB0,  
VDDA_0P8  
5_USB0  
U17  
USB0_RCALIB  
USB0_RCALIB  
IO  
1.8 V/3.3 V VDDA_3P3  
_USB0,  
USB2PHY  
VDDA_1P8  
_USB0,  
VDDA_0P8  
5_USB0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
PULL UP/  
DOWN  
TYPE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
T14  
USB0_VBUS  
USB0_VBUS  
A
1.8 V/3.3 V VDDA_3P3  
_USB0,  
USB2PHY  
VDDA_1P8  
_USB0,  
VDDA_0P8  
5_USB0  
P12, P13  
P11  
VDDA_0P85_SERDES0  
VDDA_0P85_SERDES0_C  
VDDA_0P85_USB0  
VDDA_1P8_SERDES0  
VDDA_1P8_USB0  
VDDA_3P3_SDIO  
VDDA_3P3_USB0  
VDDA_ADC  
VDDA_0P85_SERDES0  
VDDA_0P85_SERDES0_C  
VDDA_0P85_USB0  
VDDA_1P8_SERDES0  
VDDA_1P8_USB0  
VDDA_3P3_SDIO  
VDDA_3P3_USB0  
VDDA_ADC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
T12  
R14  
R15  
H15  
R13  
J13  
K12  
VDDA_MCU  
VDDA_MCU  
N12  
VDDA_PLL0  
VDDA_PLL0  
H9  
VDDA_PLL1  
VDDA_PLL1  
J11  
VDDA_PLL2  
VDDA_PLL2  
G11  
VDDA_TEMP0  
VDDA_TEMP1  
VDDR_CORE  
VDDSHV0  
VDDA_TEMP0  
VDDA_TEMP1  
VDDR_CORE  
VDDSHV0  
L11  
L10, M13  
F11, G12, G14  
M7, N6, P7  
R10, R8, T9  
P14, P15  
M14, M15  
L14, L15  
F9, G10, G8  
VDDSHV1  
VDDSHV1  
VDDSHV2  
VDDSHV2  
VDDSHV3  
VDDSHV3  
VDDSHV4  
VDDSHV4  
VDDSHV5  
VDDSHV5  
VDDSHV_MCU  
VDDS_DDR  
VDDSHV_MCU  
VDDS_DDR  
F7, G6, H7, J6,  
K7, L6  
J8  
VDDS_DDR_C  
VDDS_MMC0  
VDDS_OSC  
VDDS_DDR_C  
VDDS_MMC0  
VDDS_OSC  
VDD_CORE  
PWR  
PWR  
PWR  
PWR  
J15, K14  
H13  
J10, J12, K11, K9, VDD_CORE  
L12, L8, M11, M9,  
N10, N8, P9  
H14  
K13  
K16  
E12  
F13  
VDD_DLL_MMC0  
VDD_DLL_MMC0  
VDD_MMC0  
PWR  
PWR  
PWR  
PWR  
PWR  
VDD_MMC0  
VMON_1P8_MCU  
VMON_1P8_SOC  
VMON_3P3_MCU  
VMON_1P8_MCU  
VMON_1P8_SOC  
VMON_3P3_MCU  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (ALV Package) (continued)  
BALL  
RESET  
REL.  
BALL  
RESET  
REL.  
RXACTIVE  
PULL UP/  
DOWN  
TYPE  
BALL  
RESET  
STATE  
I/O  
VOLTAGE  
VALUE  
MUX  
MODE  
BUFFER  
TYPE  
/
TXDISABL  
E
BALL NUMBER  
BALL NAME  
SIGNAL NAME  
TYPE  
DSIS  
POWER  
HYS  
STATE  
MUXMODE  
F14  
K10  
G15  
VMON_3P3_SOC  
VMON_3P3_SOC  
PWR  
VMON_VSYS  
VPP  
VMON_VSYS  
VPP  
PWR  
PWR  
PWR  
A1, A21, A5, A6,  
AA1, AA15, AA18,  
AA21, C10, C15,  
C3, D1, E11, E13,  
F10, F15, F8, G1,  
G16, G3, G7, G9,  
H11, H20, H21,  
H6, H8, J14, J16,  
J7, J9, K6, K8, L1,  
L16, L3, L7, L9,  
M10, M12, M6,  
M8, N11, N13,  
VSS  
VSS  
N15, N7, N9, P1,  
P10, P18, P6, P8,  
R12, R7, R9, T10,  
T11, T15, T16,  
T8, U3, V17,  
W10, W18, Y14,  
Y17, Y19  
The following list describes the table column headers:  
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
2. BALL NAME: Mechanical name from package device (name is taken from muxmode 0).  
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).  
Note  
Table 6-1, Pin Attributes, does not take into account the subsystem multiplexing signals. Subsystem multiplexing signals are described in  
Section 6.3, Signal Descriptions.  
4. MUXMODE: Multiplexing mode number:  
a. MUXMODE 0 is the primary muxmode. The primary muxmode is not necessarily the default muxmode.  
Note  
The default muxmode is the mode at the release of the reset; also see the BALL RESET REL. MUXMODE column.  
b. MUXMODE 1 through 7 are possible muxmodes for alternate functions. On each pin, some muxmodes are effectively used for alternate functions,  
while some muxmodes are not used. Only MUXMODE values which correspond to defined functions should be used.  
c. Bootstrap are Special Configuration Pins, latched on rising edge of MCU_PORz. These are not programable MUXMODE.  
d. An empty box means Not Applicable.  
5. TYPE: Signal type and direction:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
I = Input  
O = Output  
IO = Input or Output  
IOD = Open drain terminal - Input or Output  
IOZ = Input, Output or Three-state terminal  
OZ = Output or Three-state terminal  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor.  
6. BALL RESET STATE: The state of the terminal at power-on reset:  
DRIVE 0 (OFF): The buffer drives VOL (pulldown or pullup resistor not activated).  
DRIVE 1 (OFF): The buffer drives VOH (pulldown or pullup resistor not activated).  
OFF: High-impedance  
PD: High-impedance with an active pulldown resistor  
PU: High-impedance with an active pullup resistor  
An empty box means Not Applicable.  
7. BALL RESET REL. MUXMODE: This muxmode is automatically configured at the release of the MCU_RESETSTATz signal.  
An empty box means Not Applicable.  
8. I/O VOLTAGE VALUE: This column describes the IO voltage value (the corresponding power supply).  
An empty box means Not Applicable.  
9. POWER: The voltage supply that powers the terminal IO buffers.  
An empty box means Not Applicable.  
10.HYS: Indicates if the input buffer has hysteresis:  
Yes: With hysteresis  
No: Without hysteresis  
An empty box means No.  
For more information, see the hysteresis values in Section 7.7, Electrical Characteristics.  
11.BUFFER TYPE: This column describes the associated output buffer type  
An empty box means Not Applicable.  
For drive strength of the associated output buffer, refer to Section 7.7, Electrical Characteristics.  
12.PULL UP/DOWN TYPE: Indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled  
via software.  
PU: Internal pullup  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PD: Internal pulldown  
PU/PD: Internal pullup and pulldown  
An empty box means No pull.  
13.DSIS: The deselected input state (DSIS) indicates the state driven on the peripheral input (logic "0", logic "1", or "pad" level) when the peripheral pin  
function is not selected by any of the PINCNTLx registers.  
0: Logic 0 driven on the input signal port of the peripheral.  
1: Logic 1 driven on the input signal port of the peripheral.  
pad: Logic state of the pad is driven on the input signal port of the peripheral.  
An empty box means Not Applicable.  
14.RXACTIVE / TXDISABLE: This column indicates the default value of the RXACTIVE / TXDISABLE bits in the PADCONFIG register.  
RXACTIVE: 0 = receiver disabled, 1 = receiver enabled.  
TXDISABLE: 0 = driver enabled, 1 = driver disabled.  
An empty box means Not Applicable.  
Note  
Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the  
proper software configuration (HiZ mode is not an input signal).  
Note  
When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s behavior is undefined. This should be  
avoided.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3 Signal Descriptions  
Many signals are available on multiple pins, according to the software configuration of the pin multiplexing  
options.  
The following list describes the column headers:  
1. SIGNAL NAME: The name of the signal passing through the pin.  
Note  
Signal names provided in each Signal Descriptions table, represent the pin layer multiplexed signal  
function which is selected via the PADCONFIG registers. Device subsystems may provide an  
additional layer of signal multiplexing, which means the signal names described in these tables  
may have additional signal functions. For more information, see the respective peripheral chapter  
of the device TRM.  
2. DESCRIPTION: Description of the signal  
3. PIN TYPE: Signal direction and type:  
I = Input  
O = Output  
IO = Input or Output  
IOD = Open drain terminal - Input or Output  
IOZ = Input, Output or Three-state terminal  
OZ = Output or Three-state terminal  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor  
4. BALL: Associated balls bottom  
For more information on the I/O cell configurations, see the Pad Configuration Registers section in Device  
Configuration chapter of the device TRM.  
6.3.1 ADC  
Note  
The ADC can be configured to operate as eight general-purpose digital inputs. For more information,  
see Analog-to-Digital Converter (ADC) section in Peripherals chapter in the device TRM.  
6.3.1.1 MAIN Domain  
Table 6-2. ADC0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
G20  
ADC0_AIN0  
ADC0_AIN1  
ADC0_AIN2  
ADC0_AIN3  
ADC0_AIN4  
ADC0_AIN5  
ADC0_AIN6  
ADC0_AIN7  
A
A
A
A
A
A
A
A
I
ADC Analog Input 0  
ADC Analog Input 1  
ADC Analog Input 2  
ADC Analog Input 3  
ADC Analog Input 4  
ADC Analog Input 5  
ADC Analog Input 6  
ADC Analog Input 7  
ADC Trigger Input  
ADC Trigger Input  
F20  
E21  
D20  
G21  
F21  
F19  
E20  
ADC_EXT_TRIGGER0  
ADC_EXT_TRIGGER1  
B16, C13  
D14, D16  
I
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.2 DDRSS  
6.3.2.1 MAIN Domain  
Table 6-3. DDRSS0 Signal Descriptions  
SIGNAL NAME  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
PIN TYPE  
DESCRIPTION  
ALV  
H2  
H1  
J5  
O
DDRSS Activation Command  
IO  
O
DDRSS Alert  
DDRSS Column Address Strobe  
DDRSS Command and Address Parity  
DDRSS Row Address Strobe  
DDRSS Write Enable  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Bank Address  
DDRSS Bank Address  
DDRSS Bank Group  
DDRSS Bank Group  
IO Pad Calibration Resistor  
DDRSS Clock  
O
K5  
F6  
H4  
D2  
C5  
E2  
D4  
D3  
F2  
J2  
O
O
O
DDR0_A1  
O
DDR0_A2  
O
DDR0_A3  
O
DDR0_A4  
O
DDR0_A5  
O
DDR0_A6  
O
DDR0_A7  
O
L5  
DDR0_A8  
O
J3  
DDR0_A9  
O
J4  
DDR0_A10  
DDR0_A11  
O
K3  
J1  
O
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0(1)  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
O
M5  
K4  
G4  
G5  
G2  
H3  
H5  
F1  
E1  
F4  
F3  
E3  
E4  
B2  
M2  
A3  
A2  
B5  
A4  
B3  
C4  
C2  
B4  
N5  
L4  
O
O
O
O
O
A
O
O
DDRSS Negative Clock  
DDRSS Clock Enable  
DDRSS Clock Enable  
DDRSS Chip Select 0  
DDRSS Chip Select 1  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
O
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-3. DDRSS0 Signal Descriptions (continued)  
SIGNAL NAME  
DDR0_DQ10  
PIN TYPE  
DESCRIPTION  
ALV  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
L2  
M3  
N4  
N3  
M4  
N2  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
Data strobe 0 input/output for byte 0 of the 16-bit data  
bus. This signal is output to the DDRSS memory when  
writing and input when reading.  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
IO  
IO  
IO  
C1  
B1  
N1  
Data strobe 0 invert  
Data strobe 1 input/output for byte 2 of the 16-bit data  
bus. This signal is output to the DDRSS memory when  
writing and input when reading.  
DDR0_DQS1_n  
DDR0_ODT0  
IO  
O
O
O
Data strobe 1 invert  
M1  
E5  
F5  
D5  
DDRSS On-Die Termination for Chip Select 0  
DDRSS On-Die Termination for Chip Select 1  
DDRSS Reset  
DDR0_ODT1  
DDR0_RESET0_n  
(1) An external 240 Ω ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6.3.3 GPIO  
6.3.3.1 MAIN Domain  
Table 6-4. GPIO0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
N20  
N21  
N19  
M19  
M18  
M20  
M21  
P21  
P20  
N18  
M17  
L19  
GPIO0_0  
GPIO0_1  
GPIO0_2  
GPIO0_3  
GPIO0_4  
GPIO0_5  
GPIO0_6  
GPIO0_7  
GPIO0_8  
GPIO0_9  
GPIO0_10  
GPIO0_11  
GPIO0_12  
GPIO0_13  
GPIO0_14  
GPIO0_15  
GPIO0_16  
GPIO0_17  
GPIO0_18  
GPIO0_19  
GPIO0_20  
GPIO0_21  
GPIO0_22  
GPIO0_23  
IO  
General Purpose Input/Output  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
L18  
IO  
K17  
L17  
IO  
IO  
T20  
U21  
T18  
U20  
AA14  
Y13  
V20  
V21  
V19  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-4. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DESCRIPTION  
ALV  
T17  
R16  
W20  
W21  
V18  
Y21  
Y20  
R17  
P16  
R18  
T21  
P17  
T19  
W19  
Y18  
N16  
N17  
R19  
R20  
P19  
R21  
Y7  
GPIO0_24  
GPIO0_25  
GPIO0_26  
GPIO0_27  
GPIO0_28  
GPIO0_29  
GPIO0_30  
GPIO0_31  
GPIO0_32  
GPIO0_33  
GPIO0_34  
GPIO0_35  
GPIO0_36  
GPIO0_37  
GPIO0_38  
GPIO0_39  
GPIO0_40  
GPIO0_41  
GPIO0_42  
GPIO0_43  
GPIO0_44  
GPIO0_45  
GPIO0_46  
GPIO0_47  
GPIO0_48  
GPIO0_49  
GPIO0_50  
GPIO0_51  
GPIO0_52  
GPIO0_53  
GPIO0_54  
GPIO0_55  
GPIO0_56  
GPIO0_57  
GPIO0_58  
GPIO0_59  
GPIO0_60  
GPIO0_61  
GPIO0_62  
GPIO0_63  
GPIO0_64  
GPIO0_65  
GPIO0_66  
GPIO0_67  
GPIO0_68  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
U8  
W8  
V8  
Y8  
V13  
AA7  
U13  
W13  
U15  
U14  
AA8  
U9  
W9  
AA9  
Y9  
V9  
U7  
V7  
W7  
W11  
V11  
AA12  
Y12  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-4. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME  
GPIO0_69  
GPIO0_70  
GPIO0_71  
GPIO0_72  
GPIO0_73  
GPIO0_74  
GPIO0_75  
GPIO0_76  
GPIO0_77  
GPIO0_78  
GPIO0_79  
GPIO0_80  
GPIO0_81  
GPIO0_82  
GPIO0_83  
GPIO0_84  
GPIO0_85  
GPIO0_86  
PIN TYPE  
DESCRIPTION  
ALV  
IO  
General Purpose Input/Output  
W12  
AA13  
U11  
V15  
U12  
V14  
W14  
AA10  
V10  
U10  
AA11  
Y11  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Y10  
U18  
U19  
V12  
AA6  
Y6  
IO  
IO  
IO  
IO  
IO  
Table 6-5. GPIO1 Signal Descriptions  
SIGNAL NAME  
GPIO1_0  
PIN TYPE  
DESCRIPTION  
ALV  
Y1  
IO  
General Purpose Input/Output  
GPIO1_1  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
R4  
U2  
V2  
GPIO1_2  
IO  
GPIO1_3  
IO  
GPIO1_4  
IO  
AA2  
R3  
T3  
GPIO1_5  
IO  
GPIO1_6  
IO  
GPIO1_7  
IO  
T1  
GPIO1_8  
IO  
T2  
GPIO1_9  
IO  
W6  
AA5  
Y3  
GPIO1_10  
GPIO1_11  
GPIO1_12  
GPIO1_13  
GPIO1_14  
GPIO1_15  
GPIO1_16  
GPIO1_17  
GPIO1_18  
GPIO1_19  
GPIO1_20  
GPIO1_21  
GPIO1_22  
GPIO1_23  
GPIO1_24  
IO  
IO  
IO  
AA3  
R6  
V4  
IO  
IO  
IO  
T5  
IO  
U4  
U1  
V1  
IO  
IO  
IO  
W1  
Y2  
IO  
IO  
W2  
V3  
IO  
IO  
T4  
IO  
W3  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-5. GPIO1 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DESCRIPTION  
ALV  
P4  
GPIO1_25  
GPIO1_26  
GPIO1_27  
GPIO1_28  
GPIO1_29  
GPIO1_30  
GPIO1_31  
GPIO1_32  
GPIO1_33  
GPIO1_34  
GPIO1_35  
GPIO1_36  
GPIO1_37  
GPIO1_38  
GPIO1_39  
GPIO1_40  
GPIO1_41  
GPIO1_42  
GPIO1_43  
GPIO1_44  
GPIO1_45  
GPIO1_46  
GPIO1_47  
GPIO1_48  
GPIO1_49  
GPIO1_50  
GPIO1_51  
GPIO1_52  
GPIO1_53  
GPIO1_54  
GPIO1_55  
GPIO1_56  
GPIO1_57  
GPIO1_58  
GPIO1_59  
GPIO1_60  
GPIO1_61  
GPIO1_62  
GPIO1_63  
GPIO1_64  
GPIO1_65  
GPIO1_66  
GPIO1_67  
GPIO1_68  
GPIO1_69  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
R5  
W5  
R1  
Y5  
V6  
W4  
Y4  
T6  
U6  
U5  
AA4  
V5  
P5  
R2  
P2  
P3  
D12  
C13  
D13  
A13  
A14  
B14  
D14  
C14  
B15  
A15  
D15  
C16  
B16  
A16  
E15  
E14  
D16  
E16  
A17  
B17  
C17  
D17  
A18  
B18  
C18  
B19  
D18  
A19  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-5. GPIO1 Signal Descriptions (continued)  
SIGNAL NAME  
GPIO1_70  
PIN TYPE  
DESCRIPTION  
ALV  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
C19  
K18  
K19  
L21  
K21  
L20  
J19  
D19  
C20  
E19  
GPIO1_71  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
GPIO1_72  
GPIO1_73  
GPIO1_74  
GPIO1_75  
GPIO1_76  
GPIO1_77  
GPIO1_78  
GPIO1_79  
6.3.3.2 MCU Domain  
Table 6-6. MCU_GPIO0 Signal Descriptions  
SIGNAL NAME  
MCU_GPIO0_0  
MCU_GPIO0_1  
MCU_GPIO0_2  
MCU_GPIO0_3  
MCU_GPIO0_4  
MCU_GPIO0_5  
MCU_GPIO0_6  
MCU_GPIO0_7  
MCU_GPIO0_8  
MCU_GPIO0_9  
MCU_GPIO0_10  
MCU_GPIO0_11  
MCU_GPIO0_12  
MCU_GPIO0_13  
MCU_GPIO0_14  
MCU_GPIO0_15  
MCU_GPIO0_16  
MCU_GPIO0_17  
MCU_GPIO0_18  
MCU_GPIO0_19  
MCU_GPIO0_20  
MCU_GPIO0_21  
MCU_GPIO0_22  
PIN TYPE  
DESCRIPTION  
ALV  
E8  
IO  
General Purpose Input/Output  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
D8  
A8  
IO  
IO  
A9  
IO  
B6  
IO  
A7  
IO  
B7  
IO  
D7  
C7  
C8  
E7  
IO  
IO  
IO  
IO  
E6  
IO  
C6  
D6  
C9  
D9  
B8  
IO  
IO  
IO  
IO  
IO  
B9  
IO  
E9  
IO  
A10  
A11  
B10  
B13  
IO  
IO  
IO  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.4 I2C  
6.3.4.1 MAIN Domain  
Table 6-7. I2C0 Signal Descriptions  
SIGNAL NAME  
I2C0_SCL  
PIN TYPE  
DESCRIPTION  
ALV  
A18  
B18  
IOD  
I2C Clock  
I2C Data  
I2C0_SDA  
IOD  
Table 6-8. I2C1 Signal Descriptions  
SIGNAL NAME  
I2C1_SCL  
PIN TYPE  
DESCRIPTION  
ALV  
C18  
B19  
IOD  
I2C Clock  
I2C Data  
I2C1_SDA  
IOD  
Table 6-9. I2C2 Signal Descriptions  
SIGNAL NAME  
I2C2_SCL  
PIN TYPE  
DESCRIPTION  
ALV  
IOD  
I2C Clock  
I2C Data  
C13, P19  
D14, R21  
I2C2_SDA  
IOD  
Table 6-10. I2C3 Signal Descriptions  
SIGNAL NAME  
I2C3_SCL  
PIN TYPE  
DESCRIPTION  
ALV  
C17  
D17  
IOD  
I2C Clock  
I2C Data  
I2C3_SDA  
IOD  
6.3.4.2 MCU Domain  
Table 6-11. MCU_I2C0 Signal Descriptions  
SIGNAL NAME  
MCU_I2C0_SCL  
PIN TYPE  
DESCRIPTION  
ALV  
E9  
IOD  
I2C Clock  
I2C Data  
MCU_I2C0_SDA  
IOD  
A10  
Table 6-12. MCU_I2C1 Signal Descriptions  
SIGNAL NAME  
MCU_I2C1_SCL  
PIN TYPE  
DESCRIPTION  
ALV  
A11  
B10  
IOD  
I2C Clock  
I2C Data  
MCU_I2C1_SDA  
IOD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.5 MCAN  
6.3.5.1 MAIN Domain  
Table 6-13. MCAN0 Signal Descriptions  
SIGNAL NAME  
MCAN0_RX  
PIN TYPE  
DESCRIPTION  
ALV  
I
MCAN Receive Data  
MCAN Transmit Data  
B17  
A17  
MCAN0_TX  
O
Table 6-14. MCAN1 Signal Descriptions  
SIGNAL NAME  
MCAN1_RX  
PIN TYPE  
DESCRIPTION  
ALV  
D17  
C17  
I
MCAN Receive Data  
MCAN Transmit Data  
MCAN1_TX  
O
6.3.6 MCSPI  
6.3.6.1 MAIN Domain  
Table 6-15. MCSPI0 Signal Descriptions  
SIGNAL NAME  
SPI0_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
D13  
D12  
C13  
B16  
A16  
A13  
A14  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI0_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI0_CS1  
SPI0_CS2  
SPI0_CS3  
SPI0_D0  
SPI0_D1  
SPI Data 1  
Table 6-16. MCSPI1 Signal Descriptions  
SIGNAL NAME  
SPI1_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
C14  
B14  
D14  
D16  
E16  
B15  
A15  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI1_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI1_CS1  
SPI1_CS2  
SPI1_CS3  
SPI1_D0  
SPI1_D1  
SPI Data 1  
Table 6-17. MCSPI2 Signal Descriptions  
SIGNAL NAME  
SPI2_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
E14  
E15  
C18  
B19  
A19  
D15  
C16  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI2_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI2_CS1  
SPI2_CS2  
SPI2_CS3  
SPI2_D0  
SPI2_D1  
SPI Data 1  
Table 6-18. MCSPI3 Signal Descriptions  
SIGNAL NAME  
SPI3_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
U4  
IO  
IO  
IO  
SPI Clock  
SPI3_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
U1  
SPI3_CS1  
T5  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-18. MCSPI3 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
V12  
V15  
R6  
SPI3_CS2  
SPI3_CS3  
SPI3_D0  
SPI3_D1  
IO  
IO  
IO  
IO  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI Data 1  
V4  
Table 6-19. MCSPI4 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
B16  
E16  
A17  
B17  
D18  
A16  
D16  
SPI4_CLK  
SPI4_CS0  
SPI4_CS1  
SPI4_CS2  
SPI4_CS3  
SPI4_D0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 0  
SPI Chip Select 2  
SPI Data 0  
SPI4_D1  
SPI Data 1  
6.3.6.2 MCU Domain  
Table 6-20. MCU_MCSPI0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
E6  
D6  
C6  
D8  
B8  
E7  
B6  
MCU_SPI0_CLK  
MCU_SPI0_CS0  
MCU_SPI0_CS1  
MCU_SPI0_CS2  
MCU_SPI0_CS3  
MCU_SPI0_D0  
MCU_SPI0_D1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI Data 1  
Table 6-21. MCU_MCSPI1 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
D7  
A7  
B7  
E8  
B9  
C7  
C8  
MCU_SPI1_CLK  
MCU_SPI1_CS0  
MCU_SPI1_CS1  
MCU_SPI1_CS2  
MCU_SPI1_CS3  
MCU_SPI1_D0  
MCU_SPI1_D1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI Data 1  
6.3.7 UART  
6.3.7.1 MAIN Domain  
Table 6-22. UART0 Signal Descriptions  
SIGNAL NAME  
UART0_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Data Carrier Detect (active low)  
UART Data Set Ready (active low)  
UART Data Terminal Ready (active low)  
UART Ring Indicator  
ALV  
B16  
C17  
D17  
A17  
B17  
A16  
I
I
UART0_DCDn  
UART0_DSRn  
I
UART0_DTRn  
O
I
UART0_RIn  
UART0_RTSn  
O
UART Request to Send (active low)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-22. UART0 Signal Descriptions (continued)  
SIGNAL NAME  
UART0_RXD  
PIN TYPE  
DESCRIPTION  
ALV  
I
UART Receive Data  
UART Transmit Data  
D15  
C16  
UART0_TXD  
O
Table 6-23. UART1 Signal Descriptions  
SIGNAL NAME  
UART1_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALV  
D16  
E16  
E15  
E14  
I
UART1_RTSn  
O
I
UART1_RXD  
UART1_TXD  
O
UART Transmit Data  
Table 6-24. UART2 Signal Descriptions  
SIGNAL NAME  
UART2_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALV  
I
L20, V19, Y1  
J19, T18, U2  
UART2_RTSn  
O
B16, K18, T20, V1,  
W6  
UART2_RXD  
UART2_TXD  
I
UART Receive Data  
UART Transmit Data  
O
A16, K19, R4, U21  
Table 6-25. UART3 Signal Descriptions  
SIGNAL NAME  
UART3_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALV  
I
D19, T17, V2  
C20, R3, U19  
UART3_RTSn  
O
AA5, D16, L21, U20,  
W1  
UART3_RXD  
UART3_TXD  
I
UART Receive Data  
UART Transmit Data  
O
AA2, E16, K21, U18  
Table 6-26. UART4 Signal Descriptions  
SIGNAL NAME  
UART4_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALV  
I
R16, R5, T3, V1  
R1, R17, T2, W1  
UART4_RTSn  
O
A17, L20, V20, W4,  
Y3  
UART4_RXD  
UART4_TXD  
I
UART Receive Data  
UART Transmit Data  
B17, J19, T1, V21,  
W5, Y4  
O
Table 6-27. UART5 Signal Descriptions  
SIGNAL NAME  
UART5_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
ALV  
I
W20, Y13, Y2  
T21, V12, V3  
UART5_RTSn  
O
C17, D19, P16, T6,  
Y5  
UART5_RXD  
UART5_TXD  
I
UART Receive Data  
UART Transmit Data  
O
C20, D17, R18, W2  
Table 6-28. UART6 Signal Descriptions  
SIGNAL NAME  
UART6_CTSn  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALV  
I
A18, T4, W21  
B18, P17, P4  
C13, U6, V6, Y21  
D14, W3, Y20  
UART6_RTSn  
O
I
UART6_RXD  
UART6_TXD  
O
UART Transmit Data  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.7.2 MCU Domain  
Table 6-29. MCU_UART0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALV  
D8  
E8  
MCU_UART0_CTSn  
MCU_UART0_RTSn  
MCU_UART0_RXD  
MCU_UART0_TXD  
I
O
I
A9  
O
UART Transmit Data  
A8  
Table 6-30. MCU_UART1 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALV  
B8  
MCU_UART1_CTSn  
MCU_UART1_RTSn  
MCU_UART1_RXD  
MCU_UART1_TXD  
I
O
I
B9  
C9  
D9  
O
UART Transmit Data  
6.3.8 MDIO  
6.3.8.1 MAIN Domain  
Table 6-31. MDIO0 Signal Descriptions  
SIGNAL NAME  
MDIO0_MDC  
PIN TYPE  
DESCRIPTION  
ALV  
O
MDIO Clock  
MDIO Data  
R2, Y6  
AA6, P5  
MDIO0_MDIO  
IO  
6.3.9 CPSW3G  
6.3.9.1 MAIN Domain  
Table 6-32. CPSW3G0 Signal Descriptions  
SIGNAL NAME  
RGMII1_RXC  
RGMII1_RX_CTL  
RGMII1_TXC  
PIN TYPE  
DESCRIPTION  
ALV  
AA5, W13  
V13, W6  
U14  
I
I
RGMII Receive Clock  
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Clock  
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
IO  
O
I
RGMII1_TX_CTL  
RGMII2_RXC  
RGMII2_RX_CTL  
RGMII2_TXC  
U15  
U11  
I
W12  
IO  
O
I
Y10  
RGMII2_TX_CTL  
RGMII1_RD0  
Y11  
AA13, W5  
U12, Y5  
V6, Y13  
V12, V5  
V15  
RGMII1_RD1  
I
RGMII1_RD2  
I
RGMII1_RD3  
I
RGMII1_TD0  
O
O
O
O
I
RGMII1_TD1  
V14  
RGMII1_TD2  
W14  
RGMII1_TD3  
AA14  
W11  
RGMII2_RD0  
RGMII2_RD1  
I
V11  
RGMII2_RD2  
I
AA12  
Y12  
RGMII2_RD3  
I
RGMII2_TD0  
O
AA10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-32. CPSW3G0 Signal Descriptions (continued)  
SIGNAL NAME  
RGMII2_TD1  
PIN TYPE  
DESCRIPTION  
ALV  
O
O
O
I
RGMII Transmit Data 1  
V10  
U10  
RGMII2_TD2  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
RMII Carrier Sense / Data Valid  
RMII Receive Data Error  
RMII Transmit Enable  
RMII Carrier Sense / Data Valid  
RMII Receive Data Error  
RMII Transmit Enable  
RMII Receive Data 0  
RGMII2_TD3  
AA11  
RMII1_CRS_DV  
RMII1_RX_ER  
RMII1_TX_EN  
RMII2_CRS_DV  
RMII2_RX_ER  
RMII2_TX_EN  
RMII1_RXD0  
R2, V12  
U15, W6  
P5, Y13  
U10  
I
O
I
I
W12  
O
I
Y11  
V15, W5  
V14, Y5  
V6, W14  
AA14, V5  
W11  
RMII1_RXD1  
I
RMII Receive Data 1  
RMII1_TXD0  
O
O
I
RMII Transmit Data 0  
RMII Transmit Data 1  
RMII Receive Data 0  
RMII1_TXD1  
RMII2_RXD0  
RMII2_RXD1  
I
RMII Receive Data 1  
V11  
RMII2_TXD0  
O
O
I
RMII Transmit Data 0  
RMII Transmit Data 1  
RMII Reference Clock  
AA10  
RMII2_TXD1  
V10  
RMII_REF_CLK  
AA5, U14  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.10 ECAP  
6.3.10.1 MAIN Domain  
Table 6-33. ECAP0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
ECAP0_IN_APWM_OUT  
IO  
D18  
Table 6-34. ECAP1 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
ECAP1_IN_APWM_OUT  
IO  
C17  
Table 6-35. ECAP2 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
ECAP2_IN_APWM_OUT  
IO  
D17  
6.3.11 EQEP  
6.3.11.1 MAIN Domain  
Table 6-36. EQEP0 Signal Descriptions  
SIGNAL NAME  
EQEP0_A  
PIN TYPE  
DESCRIPTION  
ALV  
I
EQEP Quadrature Input A  
D15, N16, Y2  
C16, N17, W2  
A16, R20, T6, Y5  
B16, R19, V3  
EQEP0_B  
I
EQEP Quadrature Input B  
EQEP Index  
EQEP0_I  
IO  
IO  
EQEP0_S  
EQEP Strobe  
Table 6-37. EQEP1 Signal Descriptions  
SIGNAL NAME  
EQEP1_A  
PIN TYPE  
DESCRIPTION  
ALV  
I
EQEP Quadrature Input A  
E15, T4, W20  
E14, W21, W3  
E16, R21, U6, V6  
D16, P19, P4  
EQEP1_B  
I
EQEP Quadrature Input B  
EQEP Index  
EQEP1_I  
IO  
IO  
EQEP1_S  
EQEP Strobe  
Table 6-38. EQEP2 Signal Descriptions  
SIGNAL NAME  
EQEP2_A  
PIN TYPE  
DESCRIPTION  
ALV  
C17, R5  
I
EQEP Quadrature Input A  
EQEP2_B  
I
EQEP Quadrature Input B  
EQEP Index  
D17, W5, Y4  
A17, W4  
B17, R1  
EQEP2_I  
IO  
IO  
EQEP2_S  
EQEP Strobe  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.12 EPWM  
6.3.12.1 MAIN Domain  
Table 6-39. EPWM Signal Descriptions  
SIGNAL NAME  
EHRPWM_SOCA  
PIN TYPE  
DESCRIPTION  
EHRPWM Start of Conversion A  
EHRPWM Start of Conversion B  
ALV  
O
O
C17  
D17  
EHRPWM_SOCB  
Table 6-40. EPWM0 Signal Descriptions  
SIGNAL NAME  
EHRPWM0_A  
PIN TYPE  
DESCRIPTION  
ALV  
U20  
U18  
T20  
U21  
T18  
IO  
IO  
I
EHRPWM Output A  
EHRPWM Output B  
EHRPWM0_B  
EHRPWM0_SYNCI  
EHRPWM0_SYNCO  
EHRPWM_TZn_IN0  
Sync Input to EHRPWM module from an external pin  
Sync Output to EHRPWM module to an external pin  
EHRPWM Trip Zone Input 0 (active low)  
O
I
Table 6-41. EPWM1 Signal Descriptions  
SIGNAL NAME  
EHRPWM1_A  
PIN TYPE  
DESCRIPTION  
ALV  
U19  
V20  
V21  
IO  
IO  
I
EHRPWM Output A  
EHRPWM Output B  
EHRPWM1_B  
EHRPWM_TZn_IN1  
EHRPWM Trip Zone Input 1 (active low)  
Table 6-42. EPWM2 Signal Descriptions  
SIGNAL NAME  
EHRPWM2_A  
PIN TYPE  
DESCRIPTION  
ALV  
V19  
IO  
IO  
I
EHRPWM Output A  
EHRPWM Output B  
EHRPWM2_B  
T17  
EHRPWM_TZn_IN2  
EHRPWM Trip Zone Input 2 (active low)  
R16, R20  
Table 6-43. EPWM3 Signal Descriptions  
SIGNAL NAME  
EHRPWM3_A  
PIN TYPE  
DESCRIPTION  
ALV  
V18  
Y21  
Y20  
R17  
P16  
IO  
IO  
I
EHRPWM Output A  
EHRPWM Output B  
EHRPWM3_B  
EHRPWM3_SYNCI  
EHRPWM3_SYNCO  
EHRPWM_TZn_IN3  
Sync Input to EHRPWM module from an external pin  
Sync Output to EHRPWM module to an external pin  
EHRPWM Trip Zone Input 3 (active low)  
O
I
Table 6-44. EPWM4 Signal Descriptions  
SIGNAL NAME  
EHRPWM4_A  
PIN TYPE  
DESCRIPTION  
ALV  
R18  
IO  
IO  
I
EHRPWM Output A  
EHRPWM Output B  
EHRPWM4_B  
T21  
EHRPWM_TZn_IN4  
EHRPWM Trip Zone Input 4 (active low)  
P17, P19  
Table 6-45. EPWM5 Signal Descriptions  
SIGNAL NAME  
EHRPWM5_A  
PIN TYPE  
DESCRIPTION  
ALV  
T19  
IO  
IO  
I
EHRPWM Output A  
EHRPWM Output B  
EHRPWM5_B  
W19  
EHRPWM_TZn_IN5  
EHRPWM Trip Zone Input 5 (active low)  
R21, Y18  
Table 6-46. EPWM6 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
EHRPWM6_A  
IO  
EHRPWM Output A  
B14, N16  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-46. EPWM6 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
EHRPWM6_B  
IO  
I
EHRPWM Output B  
A15, N17  
EHRPWM6_SYNCI  
EHRPWM6_SYNCO  
Sync Input to EHRPWM module from an external pin  
Sync Output to EHRPWM module to an external pin  
C14, R19  
B15, R20  
O
Table 6-47. EPWM7 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
EHRPWM7_A  
EHRPWM7_B  
IO  
IO  
EHRPWM Output A  
EHRPWM Output B  
P17, P5, W20  
R2, W21, Y18  
Table 6-48. EPWM8 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
EHRPWM8_A  
EHRPWM8_B  
IO  
IO  
EHRPWM Output A  
EHRPWM Output B  
V1, V21  
R16, W1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.13 SERDES  
6.3.13.1 MAIN Domain  
Table 6-49. SERDES0 Signal Descriptions  
SIGNAL NAME(1)  
PCIE0_CLKREQn  
PIN TYPE  
DESCRIPTION  
ALV  
IO  
A
PCIE Clock Request Signal  
D16  
T13  
SERDES0_REXT(2)  
SERDES0_REFCLK0N  
SERDES0_REFCLK0P  
SERDES0_RX0_N  
External Calibration Resistor  
IO  
IO  
I
Serdes Reference Clock Input/Output (negative)  
Serdes Reference Clock Input/Output (positive)  
SERDES Differential Receive Data (negative)  
SERDES Differential Receive Data (positive)  
SERDES Differential Transmit Data (negative)  
SERDES Differential Transmit Data (positive)  
W16  
W17  
Y15  
SERDES0_RX0_P  
I
Y16  
SERDES0_TX0_N  
O
O
AA16  
AA17  
SERDES0_TX0_P  
(1) The functionality of these pins is controlled by SERDES0_LN0_CTRL LANE_FUNC_SEL.  
(2) An external 3.01 kΩ ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6.3.14 USB  
6.3.14.1 MAIN Domain  
Table 6-50. USB0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
USB 2.0 Differential Data (negative)  
USB 2.0 Differential Data (positive)  
USB VBUS control output (active high)  
USB 2.0 Dual-Role Device Role Select  
Pin to connect to calibration resistor  
USB Level-shifted VBUS Input  
ALV  
AA20  
AA19  
E19  
USB0_DM  
USB0_DP  
IO  
IO  
O
USB0_DRVVBUS  
USB0_ID  
A
U16  
USB0_RCALIB(1)  
USB0_VBUS(2)  
IO  
A
U17  
T14  
(1) An external 500 Ω ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
(2) An external resistor divider is required to limit the voltage applied to the device pin. For more information, see Section 9.3.3, USB  
Design Guidelines.  
6.3.15 OSPI  
6.3.15.1 MAIN Domain  
Table 6-51. OSPI0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
N20  
N19  
L17  
N21  
L19  
L18  
K17  
L17  
M19  
M18  
M20  
M21  
P21  
P20  
OSPI0_CLK  
OSPI0_DQS  
O
I
OSPI Clock  
OSPI Data Strobe (DQS) or Loopback Clock Input  
OSPI ECC Status  
OSPI0_ECC_FAIL  
OSPI0_LBCLKO  
OSPI0_CSn0  
OSPI0_CSn1  
OSPI0_CSn2  
OSPI0_CSn3  
OSPI0_D0  
I
IO  
O
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
OSPI Loopback Clock Output  
OSPI Chip Select 0 (active low)  
OSPI Chip Select 1 (active low)  
OSPI Chip Select 2 (active low)  
OSPI Chip Select 3 (active low)  
OSPI Data 0  
OSPI0_D1  
OSPI Data 1  
OSPI0_D2  
OSPI Data 2  
OSPI0_D3  
OSPI Data 3  
OSPI0_D4  
OSPI Data 2  
OSPI0_D5  
OSPI Data 2  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-51. OSPI0 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
N18  
M17  
L17  
K17  
OSPI0_D6  
OSPI0_D7  
IO  
IO  
O
OSPI Data 2  
OSPI Data 2  
OSPI Reset  
OSPI Reset  
OSPI0_RESET_OUT0  
OSPI0_RESET_OUT1  
O
6.3.16 GPMC  
6.3.16.1 MAIN Domain  
Table 6-52. GPMC0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
GPMC Address Valid (active low) or Address Latch  
Enable  
GPMC0_ADVn_ALE  
O
P16  
GPMC0_CLK  
GPMC0_DIR  
O
O
GPMC clock  
R17  
N17  
GPMC Data Bus Signal Direction Control  
GPMC Output Enable (active low) or Read Enable  
(active low)  
GPMC0_OEn_REn  
O
R18  
GPMC0_WEn  
GPMC0_WPn  
O
O
GPMC Write Enable (active low)  
T21  
N16  
GPMC Flash Write Protect (active low)  
GPMC Address 0 Output. Only used to effectively  
address 8-bit data non-multiplexed memories  
GPMC0_A0  
GPMC0_A1  
GPMC0_A2  
GPMC0_A3  
GPMC0_A4  
GPMC0_A5  
GPMC0_A6  
GPMC0_A7  
GPMC0_A8  
GPMC0_A9  
GPMC0_A10  
GPMC0_A11  
GPMC0_A12  
GPMC0_A13  
GPMC0_A14  
GPMC0_A15  
GPMC0_A16  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
U2, U7  
GPMC address 1 Output in A/D non-multiplexed mode  
and Address 17 in A/D multiplexed mode  
AA2, V7  
T2, W7  
GPMC address 2 Output in A/D non-multiplexed mode  
and Address 18 in A/D multiplexed mode  
GPMC address 3 Output in A/D non-multiplexed mode  
and Address 19 in A/D multiplexed mode  
V4, W11  
U4, V11  
AA12, V1  
W1, Y12  
W12, Y4  
AA13, T6  
U11, U6  
U5, V15  
AA4, U12  
P2, V14  
P3, W14  
AA10, AA3  
R6, V10  
T5, U10  
GPMC address 4 Output in A/D non-multiplexed mode  
and Address 20 in A/D multiplexed mode  
GPMC address 5 Output in A/D non-multiplexed mode  
and Address 21 in A/D multiplexed mode  
GPMC address 6 Output in A/D non-multiplexed mode  
and Address 22 in A/D multiplexed mode  
GPMC address 7 Output in A/D non-multiplexed mode  
and Address 23 in A/D multiplexed mode  
GPMC address 8 Output in A/D non-multiplexed mode  
and Address 24 in A/D multiplexed mode  
GPMC address 9 Output in A/D non-multiplexed mode  
and Address 25 in A/D multiplexed mode  
GPMC address 10 Output in A/D non-multiplexed mode  
and Address 26 in A/D multiplexed mode  
GPMC address 11 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 12 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 13 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 14 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 15 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 16 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-52. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
GPMC address 17 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC0_A17  
OZ  
AA11, U1  
T4, Y11  
R5, Y10  
R21  
GPMC address 18 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC0_A18  
GPMC0_A19  
GPMC0_A20  
GPMC0_A21  
GPMC0_A22  
OZ  
OZ  
OZ  
OZ  
OZ  
GPMC address 19 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 20 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
GPMC address 21 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
Y18  
GPMC address 22 Output in A/D non-multiplexed mode  
and unused in A/D multiplexed mode  
N16  
GPMC Data 0 Input/Output in A/D non-multiplexed mode  
and additionally Address 1 Output in A/D multiplexed  
mode  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
GPMC0_AD9  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC0_AD14  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
T20  
U21  
T18  
U20  
U18  
U19  
V20  
V21  
V19  
T17  
R16  
W20  
W21  
V18  
Y21  
GPMC Data 1 Input/Output in A/D non-multiplexed mode  
and additionally Address 2 Output in A/D multiplexed  
mode  
GPMC Data 2 Input/Output in A/D non-multiplexed mode  
and additionally Address 3 Output in A/D multiplexed  
mode  
GPMC Data 3 Input/Output in A/D non-multiplexed mode  
and additionally Address 4 Output in A/D multiplexed  
mode  
GPMC Data 4 Input/Output in A/D non-multiplexed mode  
and additionally Address 5 Output in A/D multiplexed  
mode  
GPMC Data 5 Input/Output in A/D non-multiplexed mode  
and additionally Address 6 Output in A/D multiplexed  
mode  
GPMC Data 6 Input/Output in A/D non-multiplexed mode  
and additionally Address 7 Output in A/D multiplexed  
mode  
GPMC Data 7 Input/Output in A/D non-multiplexed mode  
and additionally Address 8 Output in A/D multiplexed  
mode  
GPMC Data 8 Input/Output in A/D non-multiplexed mode  
and additionally Address 9 Output in A/D multiplexed  
mode  
GPMC Data 9 Input/Output in A/D non-multiplexed mode  
and additionally Address 10 Output in A/D multiplexed  
mode  
GPMC Data 10 Input/Output in A/D non-multiplexed  
mode and additionally Address 11 Output in A/D  
multiplexed mode  
GPMC Data 11 Input/Output in A/D non-multiplexed  
mode and additionally Address 12 Output in A/D  
multiplexed mode  
GPMC Data 12 Input/Output in A/D non-multiplexed  
mode and additionally Address 13 Output in A/D  
multiplexed mode  
GPMC Data 13 Input/Output in A/D non-multiplexed  
mode and additionally Address 14 Output in A/D  
multiplexed mode  
GPMC Data 14 Input/Output in A/D non-multiplexed  
mode and additionally Address 15 Output in A/D  
multiplexed mode  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-52. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
GPMC Data 15 Input/Output in A/D non-multiplexed  
mode and additionally Address 16 Output in A/D  
multiplexed mode  
GPMC0_AD15  
GPMC0_AD16  
GPMC0_AD17  
GPMC0_AD18  
GPMC0_AD19  
GPMC0_AD20  
GPMC0_AD21  
GPMC0_AD22  
GPMC0_AD23  
GPMC0_AD24  
GPMC0_AD25  
GPMC0_AD26  
GPMC0_AD27  
GPMC0_AD28  
GPMC0_AD29  
GPMC0_AD30  
GPMC0_AD31  
IO  
Y20  
GPMC Data 16 Input/Output in A/D non-multiplexed  
mode and additionally Address 17 Output in A/D  
multiplexed mode  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Y7  
U8  
GPMC Data 17 Input/Output in A/D non-multiplexed  
mode and additionally Address 18 Output in A/D  
multiplexed mode  
GPMC Data 18 Input/Output in A/D non-multiplexed  
mode and additionally Address 19 Output in A/D  
multiplexed mode  
W8  
V8  
GPMC Data 19 Input/Output in A/D non-multiplexed  
mode and additionally Address 20 Output in A/D  
multiplexed mode  
GPMC Data 20 Input/Output in A/D non-multiplexed  
mode and additionally Address 21 Output in A/D  
multiplexed mode  
Y8  
GPMC Data 21 Input/Output in A/D non-multiplexed  
mode and additionally Address 22 Output in A/D  
multiplexed mode  
V13  
AA7  
U13  
W13  
U15  
U14  
AA8  
U9  
GPMC Data 22 Input/Output in A/D non-multiplexed  
mode and additionally Address 23 Output in A/D  
multiplexed mode  
GPMC Data 23 Input/Output in A/D non-multiplexed  
mode and additionally Address 24 Output in A/D  
multiplexed mode  
GPMC Data 24 Input/Output in A/D non-multiplexed  
mode and additionally Address 25 Output in A/D  
multiplexed mode  
GPMC Data 25 Input/Output in A/D non-multiplexed  
mode and additionally Address 26 Output in A/D  
multiplexed mode  
GPMC Data 26 Input/Output in A/D non-multiplexed  
mode and additionally Address 27 Output in A/D  
multiplexed mode  
GPMC Data 27 Input/Output in A/D non-multiplexed  
mode and additionally Address 28 Output in A/D  
multiplexed mode  
GPMC Data 28 Input/Output in A/D non-multiplexed  
mode and additionally Address 29 Output in A/D  
multiplexed mode  
GPMC Data 29 Input/Output in A/D non-multiplexed  
mode and additionally Address 30 Output in A/D  
multiplexed mode  
W9  
AA9  
Y9  
GPMC Data 30 Input/Output in A/D non-multiplexed  
mode and additionally Address 31 Output in A/D  
multiplexed mode  
GPMC Data 31 Input/Output in A/D non-multiplexed  
mode and additionally Address 0 Output in A/D  
multiplexed mode  
IO  
O
GPMC Lower-Byte Enable (active low) or Command  
Latch Enable  
GPMC0_BE0n_CLE  
P17  
GPMC0_BE1n  
GPMC0_BE2n  
GPMC0_BE3n  
O
O
O
GPMC Upper-Byte Enable (active low)  
GPMC Upper-Byte Enable (active low)  
GPMC Upper-Byte Enable (active low)  
T19  
V9  
AA14  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-52. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME  
GPMC0_CSn0  
PIN TYPE  
DESCRIPTION  
GPMC Chip Select 0 (active low)  
GPMC Chip Select 1 (active low)  
GPMC Chip Select 2 (active low)  
GPMC Chip Select 3 (active low)  
GPMC External Indication of Wait  
GPMC External Indication of Wait  
ALV  
O
O
O
O
I
R19  
R20  
P19  
R21  
W19  
Y18  
GPMC0_CSn1  
GPMC0_CSn2  
GPMC0_CSn3  
GPMC0_WAIT0  
GPMC0_WAIT1  
I
6.3.17 MMC  
6.3.17.1 MAIN Domain  
Table 6-53. MMC0 Signal Descriptions  
SIGNAL NAME  
MMC0_CALPAD  
MMC0_CLK  
PIN TYPE  
DESCRIPTION  
MMC/SD/SDIO Calibration Resistor  
MMC/SD/SDIO Clock  
MMC/SD/SDIO Command  
MMC Data Strobe  
ALV  
F18  
G18  
J21  
G19  
K20  
J20  
J18  
J17  
H17  
H19  
H18  
G17  
A
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MMC0_CMD  
MMC0_DS  
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
MMC0_DAT5  
MMC0_DAT6  
MMC0_DAT7  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
Table 6-54. MMC1 Signal Descriptions  
SIGNAL NAME  
MMC1_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
L20  
J19  
D19  
C20  
K21  
L21  
K19  
K18  
IO  
IO  
I
MMC/SD/SDIO Clock  
MMC1_CMD  
MMC/SD/SDIO Command  
SD Card Detect  
MMC1_SDCD  
MMC1_SDWP  
MMC1_DAT0  
I
SD Write Protect  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC1_DAT1  
MMC1_DAT2  
MMC1_DAT3  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.18 FSI  
6.3.18.1 MAIN Domain  
Table 6-55. FSI0 RX Signal Descriptions  
SIGNAL NAME  
FSI_RX0_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
V19  
T17  
R16  
I
I
I
FSI Clock  
FSI Data  
FSI Data  
FSI_RX0_D0  
FSI_RX0_D1  
Table 6-56. FSI0 TX Signal Descriptions  
SIGNAL NAME  
FSI_TX0_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
T19  
Y21  
Y20  
O
O
O
FSI Clock  
FSI Data  
FSI Data  
FSI_TX0_D0  
FSI_TX0_D1  
Table 6-57. FSI1 RX Signal Descriptions  
SIGNAL NAME  
FSI_RX1_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
W20  
W21  
V18  
I
I
I
FSI Clock  
FSI Data  
FSI Data  
FSI_RX1_D0  
FSI_RX1_D1  
Table 6-58. FSI1 TX Signal Descriptions  
SIGNAL NAME  
FSI_TX1_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
N16  
P17  
Y18  
O
O
O
FSI Clock  
FSI Data  
FSI Data  
FSI_TX1_D0  
FSI_TX1_D1  
Table 6-59. FSI2 RX Signal Descriptions  
SIGNAL NAME  
FSI_RX2_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
T20  
U21  
T18  
I
I
I
FSI Clock  
FSI Data  
FSI Data  
FSI_RX2_D0  
FSI_RX2_D1  
Table 6-60. FSI3 RX Signal Descriptions  
SIGNAL NAME  
FSI_RX3_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
U20  
U18  
U19  
I
I
I
FSI Clock  
FSI Data  
FSI Data  
FSI_RX3_D0  
FSI_RX3_D1  
Table 6-61. FSI4 RX Signal Descriptions  
SIGNAL NAME  
FSI_RX4_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
R17  
V20  
V21  
I
I
I
FSI Clock  
FSI Data  
FSI Data  
FSI_RX4_D0  
FSI_RX4_D1  
Table 6-62. FSI5 RX Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
FSI_RX5_CLK  
I
FSI Clock  
P16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-62. FSI5 RX Signal Descriptions (continued)  
SIGNAL NAME  
FSI_RX5_D0  
PIN TYPE  
DESCRIPTION  
ALV  
I
I
FSI Data  
FSI Data  
R18  
T21  
FSI_RX5_D1  
6.3.19 CPTS  
6.3.19.1 MAIN Domain  
Table 6-63. CP GEMAC CPTS0 Signal Descriptions  
SIGNAL NAME  
CP_GEMAC_CPTS0_RFT_CLK  
CP_GEMAC_CPTS0_TS_COMP  
CP_GEMAC_CPTS0_TS_SYNC  
CP_GEMAC_CPTS0_HW1TSPUSH  
CP_GEMAC_CPTS0_HW2TSPUSH  
PIN TYPE  
DESCRIPTION  
ALV  
D18  
I
O
O
I
CPTS Reference Clock  
CPTS Time Stamp Counter Compare  
CPTS Time Stamp Counter Bit  
E15, K18, W1  
B16, D16, K19, U1  
E14, L21, V1  
E16, K21, T1  
CPTS Hardware Time Stamp Push 1  
CPTS Hardware Time Stamp Push 2  
I
Table 6-64. CPTS0 Signal Descriptions  
SIGNAL NAME  
CPTS0_RFT_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
I
O
O
I
CPTS Reference Clock  
D18  
CPTS0_TS_COMP  
CPTS Time Stamp Counter Compare  
CPTS Time Stamp Counter Bit  
C13, W1, W7  
D14, U1, U7  
C18, V1, V7  
B19, T1, U13  
CPTS0_TS_SYNC  
CPTS0_HW1TSPUSH  
CPTS0_HW2TSPUSH  
CPTS Hardware Time Stamp Push 1  
CPTS Hardware Time Stamp Push 2  
I
6.3.20 PRU_ICSSG  
Note  
The PRU_ICSSG contains a second layer of multiplexing to enable additional functionality on the PRU  
GPO and GPI signals. This internal wrapper multiplexing is described in the PRU_ICSSG chapter in  
the device TRM.  
6.3.20.1 MAIN Domain  
Table 6-65. PRU_ICSSG0 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
PRU-ICSSG Enhanced Capture (ECAP) Input or  
Auxiliary PWM (APWM) Ouput  
PRG0_ECAP0_IN_APWM_OUT  
IO  
R2, U5  
PRG0_ECAP0_SYNC_IN  
I
PRU-ICSSG ECAP Sync Input  
P5, V5  
AA4, V5  
C13  
PRG0_ECAP0_SYNC_OUT  
PRG0_IEP0_EDIO_OUTVALID  
O
O
PRU-ICSSG ECAP Sync Output  
PRU_ICSSG Industrial Ethernet Digital I/O Outvalid  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
PRG0_IEP0_EDC_LATCH_IN0  
PRG0_IEP0_EDC_LATCH_IN1  
PRG0_IEP0_EDC_SYNC_OUT0  
PRG0_IEP0_EDC_SYNC_OUT1  
PRG0_IEP0_EDIO_DATA_IN_OUT28  
PRG0_IEP0_EDIO_DATA_IN_OUT29  
I
V1  
T1  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
I
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
O
O
IO  
IO  
W1  
U1  
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
W6  
AA5  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-65. PRU_ICSSG0 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
PRG0_IEP0_EDIO_DATA_IN_OUT30  
PRG0_IEP0_EDIO_DATA_IN_OUT31  
PRG0_IEP1_EDC_LATCH_IN0  
PRG0_IEP1_EDC_LATCH_IN1  
PRG0_IEP1_EDC_SYNC_OUT0  
PRG0_IEP1_EDC_SYNC_OUT1  
IO  
Y5  
V6  
P5  
W5  
R2  
V5  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
IO  
I
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
I
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
O
O
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
PRG0_MDIO0_MDC  
PRG0_MDIO0_MDIO  
PRG0_PRU0_GPI0  
PRG0_PRU0_GPI1  
PRG0_PRU0_GPI2  
PRG0_PRU0_GPI3  
PRG0_PRU0_GPI4  
PRG0_PRU0_GPI5  
PRG0_PRU0_GPI6  
PRG0_PRU0_GPI7  
PRG0_PRU0_GPI8  
PRG0_PRU0_GPI9  
PRG0_PRU0_GPI10  
PRG0_PRU0_GPI11  
PRG0_PRU0_GPI12  
PRG0_PRU0_GPI13  
PRG0_PRU0_GPI14  
PRG0_PRU0_GPI15  
PRG0_PRU0_GPI16  
PRG0_PRU0_GPI17  
PRG0_PRU0_GPI18  
PRG0_PRU0_GPI19  
PRG0_PRU0_GPO0  
PRG0_PRU0_GPO1  
PRG0_PRU0_GPO2  
PRG0_PRU0_GPO3  
PRG0_PRU0_GPO4  
PRG0_PRU0_GPO5  
PRG0_PRU0_GPO6  
PRG0_PRU0_GPO7  
PRG0_PRU0_GPO8  
PRG0_PRU0_GPO9  
PRG0_PRU0_GPO10  
PRG0_PRU0_GPO11  
PRG0_PRU0_GPO12  
O
IO  
I
PRU-ICSSG MDIO Clock  
P3  
P2  
PRU-ICSSG MDIO Data  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
Y1  
I
R4  
U2  
V2  
I
I
I
AA2  
R3  
T3  
I
I
I
T1  
I
T2  
I
W6  
AA5  
Y3  
I
I
I
AA3  
R6  
V4  
I
I
I
T5  
I
U4  
U1  
V1  
I
I
I
W1  
Y1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
R4  
U2  
V2  
AA2  
R3  
T3  
T1  
T2  
W6  
AA5  
Y3  
AA3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-65. PRU_ICSSG0 Signal Descriptions (continued)  
SIGNAL NAME  
PRG0_PRU0_GPO13  
PRG0_PRU0_GPO14  
PRG0_PRU0_GPO15  
PRG0_PRU0_GPO16  
PRG0_PRU0_GPO17  
PRG0_PRU0_GPO18  
PRG0_PRU0_GPO19  
PRG0_PRU1_GPI0  
PRG0_PRU1_GPI1  
PRG0_PRU1_GPI2  
PRG0_PRU1_GPI3  
PRG0_PRU1_GPI4  
PRG0_PRU1_GPI5  
PRG0_PRU1_GPI6  
PRG0_PRU1_GPI7  
PRG0_PRU1_GPI8  
PRG0_PRU1_GPI9  
PRG0_PRU1_GPI10  
PRG0_PRU1_GPI11  
PRG0_PRU1_GPI12  
PRG0_PRU1_GPI13  
PRG0_PRU1_GPI14  
PRG0_PRU1_GPI15  
PRG0_PRU1_GPI16  
PRG0_PRU1_GPI17  
PRG0_PRU1_GPI18  
PRG0_PRU1_GPI19  
PRG0_PRU1_GPO0  
PRG0_PRU1_GPO1  
PRG0_PRU1_GPO2  
PRG0_PRU1_GPO3  
PRG0_PRU1_GPO4  
PRG0_PRU1_GPO5  
PRG0_PRU1_GPO6  
PRG0_PRU1_GPO7  
PRG0_PRU1_GPO8  
PRG0_PRU1_GPO9  
PRG0_PRU1_GPO10  
PRG0_PRU1_GPO11  
PRG0_PRU1_GPO12  
PRG0_PRU1_GPO13  
PRG0_PRU1_GPO14  
PRG0_PRU1_GPO15  
PRG0_PRU1_GPO16  
PRG0_PRU1_GPO17  
PIN TYPE  
DESCRIPTION  
ALV  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
PRU-ICSSG PRU Data Output  
R6  
V4  
T5  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
U4  
U1  
V1  
W1  
Y2  
W2  
V3  
T4  
I
I
I
I
W3  
P4  
R5  
W5  
R1  
Y5  
V6  
W4  
Y4  
T6  
I
I
I
I
I
I
I
I
I
I
U6  
U5  
AA4  
V5  
P5  
R2  
Y2  
W2  
V3  
T4  
I
I
I
I
I
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
W3  
P4  
R5  
W5  
R1  
Y5  
V6  
W4  
Y4  
T6  
U6  
U5  
AA4  
V5  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-65. PRU_ICSSG0 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
P5  
PRG0_PRU1_GPO18  
PRG0_PRU1_GPO19  
PRG0_PWM0_TZ_IN  
PRG0_PWM0_TZ_OUT  
PRG0_PWM1_TZ_IN  
PRG0_PWM1_TZ_OUT  
PRG0_PWM2_TZ_IN  
PRG0_PWM2_TZ_OUT  
PRG0_PWM3_TZ_IN  
PRG0_PWM3_TZ_OUT  
PRG0_PWM0_A0  
IO  
IO  
I
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Output A  
R2  
V1  
O
I
W1  
P5  
O
I
R2  
T18, V6  
R1, U21  
P16, W6  
R17, Y3  
AA3  
O
I
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
PRG0_PWM0_A1  
PRU_ICSSG PWM Output A  
V4  
PRG0_PWM0_A2  
PRU_ICSSG PWM Output A  
U4  
PRG0_PWM0_B0  
PRU_ICSSG PWM Output B  
R6  
PRG0_PWM0_B1  
PRU_ICSSG PWM Output B  
T5  
PRG0_PWM0_B2  
PRU_ICSSG PWM Output B  
U1  
PRG0_PWM1_A0  
PRU_ICSSG PWM Output A  
Y4  
PRG0_PWM1_A1  
PRU_ICSSG PWM Output A  
U6  
PRG0_PWM1_A2  
PRU_ICSSG PWM Output A  
AA4  
PRG0_PWM1_B0  
PRU_ICSSG PWM Output B  
T6  
PRG0_PWM1_B1  
PRU_ICSSG PWM Output B  
U5  
PRG0_PWM1_B2  
PRU_ICSSG PWM Output B  
V5  
PRG0_PWM2_A0  
PRU_ICSSG PWM Output A  
U2, U20  
T2, U19  
V19, V3  
AA2, U18  
AA5, V20  
T17, W3  
V18, Y1  
R18, T3  
T19, V2  
R4, Y21  
T1, T21  
R3, W19  
T3  
PRG0_PWM2_A1  
PRU_ICSSG PWM Output A  
PRG0_PWM2_A2  
PRU_ICSSG PWM Output A  
PRG0_PWM2_B0  
PRU_ICSSG PWM Output B  
PRG0_PWM2_B1  
PRU_ICSSG PWM Output B  
PRG0_PWM2_B2  
PRU_ICSSG PWM Output B  
PRG0_PWM3_A0  
PRU_ICSSG PWM Output A  
PRG0_PWM3_A1  
PRU_ICSSG PWM Output A  
PRG0_PWM3_A2  
PRU_ICSSG PWM Output A  
PRG0_PWM3_B0  
PRU_ICSSG PWM Output B  
PRG0_PWM3_B1  
PRU_ICSSG PWM Output B  
PRG0_PWM3_B2  
PRU_ICSSG PWM Output B  
PRG0_RGMII1_RXC  
PRG0_RGMII1_RX_CTL  
PRG0_RGMII1_TXC  
PRG0_RGMII1_TX_CTL  
PRG0_RGMII2_RXC  
PRG0_RGMII2_RX_CTL  
PRG0_RGMII2_TXC  
PRG0_RGMII2_TX_CTL  
PRG0_RGMII1_RD0  
PRG0_RGMII1_RD1  
PRG0_RGMII1_RD2  
PRU_ICSSG RGMII Receive Clock  
PRU_ICSSG RGMII Receive Control  
PRU_ICSSG RGMII Transmit Clock  
PRU_ICSSG RGMII Transmit Control  
PRU_ICSSG RGMII Receive Clock  
PRU_ICSSG RGMII Receive Control  
PRU_ICSSG RGMII Transmit Clock  
PRU_ICSSG RGMII Transmit Control  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
I
AA2  
IO  
O
I
U4  
T5  
R5  
I
W3  
IO  
O
I
AA4  
U5  
Y1  
I
R4  
I
U2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-65. PRU_ICSSG0 Signal Descriptions (continued)  
SIGNAL NAME  
PRG0_RGMII1_RD3  
PRG0_RGMII1_TD0  
PRG0_RGMII1_TD1  
PRG0_RGMII1_TD2  
PRG0_RGMII1_TD3  
PRG0_RGMII2_RD0  
PRG0_RGMII2_RD1  
PRG0_RGMII2_RD2  
PRG0_RGMII2_RD3  
PRG0_RGMII2_TD0  
PRG0_RGMII2_TD1  
PRG0_RGMII2_TD2  
PRG0_RGMII2_TD3  
PRG0_UART0_CTSn  
PRG0_UART0_RTSn  
PRG0_UART0_RXD  
PRG0_UART0_TXD  
PIN TYPE  
DESCRIPTION  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU-ICSSG UART Clear to Send (active low)  
PRU-ICSSG UART Request to Send (active low)  
PRU-ICSSG UART Receive Data  
PRU-ICSSG UART Transmit Data  
ALV  
I
V2  
Y3  
O
O
O
O
I
AA3  
R6  
V4  
Y2  
I
W2  
V3  
I
I
T4  
O
O
O
O
I
W4  
Y4  
T6  
U6  
W6  
AA5  
Y5  
O
I
O
V6  
Table 6-66. PRU_ICSSG1 Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
PRU-ICSSG Enhanced Capture (ECAP) Input or  
Auxiliary PWM (APWM) Ouput  
PRG1_ECAP0_IN_APWM_OUT  
IO  
V12  
PRG1_ECAP0_SYNC_IN  
I
PRU-ICSSG ECAP Sync Input  
Y13  
AA14  
D14  
PRG1_ECAP0_SYNC_OUT  
PRG1_IEP0_EDIO_OUTVALID  
O
O
PRU-ICSSG ECAP Sync Output  
PRU_ICSSG Industrial Ethernet Digital I/O Outvalid  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
PRG1_IEP0_EDC_LATCH_IN0  
PRG1_IEP0_EDC_LATCH_IN1  
PRG1_IEP0_EDC_SYNC_OUT0  
PRG1_IEP0_EDC_SYNC_OUT1  
PRG1_IEP0_EDIO_DATA_IN_OUT28  
PRG1_IEP0_EDIO_DATA_IN_OUT29  
PRG1_IEP0_EDIO_DATA_IN_OUT30  
PRG1_IEP0_EDIO_DATA_IN_OUT31  
PRG1_IEP1_EDC_LATCH_IN0  
PRG1_IEP1_EDC_LATCH_IN1  
PRG1_IEP1_EDC_SYNC_OUT0  
I
I
V7  
U13  
W7  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
O
O
IO  
IO  
IO  
IO  
I
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
U7  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
U15  
U14  
V14  
W14  
Y13  
V15  
V12  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/  
Output  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
PRU_ICSSG Industrial Ethernet Distributed Clock Latch  
Input  
I
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
O
PRU_ICSSG Industrial Ethernet Distributed Clock Sync  
Output  
PRG1_IEP1_EDC_SYNC_OUT1  
PRG1_MDIO0_MDC  
O
O
AA14  
Y6  
PRU-ICSSG MDIO Clock  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-66. PRU_ICSSG1 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
AA6  
Y7  
PRG1_MDIO0_MDIO  
PRG1_PRU0_GPI0  
PRG1_PRU0_GPI1  
PRG1_PRU0_GPI2  
PRG1_PRU0_GPI3  
PRG1_PRU0_GPI4  
PRG1_PRU0_GPI5  
PRG1_PRU0_GPI6  
PRG1_PRU0_GPI7  
PRG1_PRU0_GPI8  
PRG1_PRU0_GPI9  
PRG1_PRU0_GPI10  
PRG1_PRU0_GPI11  
PRG1_PRU0_GPI12  
PRG1_PRU0_GPI13  
PRG1_PRU0_GPI14  
PRG1_PRU0_GPI15  
PRG1_PRU0_GPI16  
PRG1_PRU0_GPI17  
PRG1_PRU0_GPI18  
PRG1_PRU0_GPI19  
PRG1_PRU0_GPO0  
PRG1_PRU0_GPO1  
PRG1_PRU0_GPO2  
PRG1_PRU0_GPO3  
PRG1_PRU0_GPO4  
PRG1_PRU0_GPO5  
PRG1_PRU0_GPO6  
PRG1_PRU0_GPO7  
PRG1_PRU0_GPO8  
PRG1_PRU0_GPO9  
PRG1_PRU0_GPO10  
PRG1_PRU0_GPO11  
PRG1_PRU0_GPO12  
PRG1_PRU0_GPO13  
PRG1_PRU0_GPO14  
PRG1_PRU0_GPO15  
PRG1_PRU0_GPO16  
PRG1_PRU0_GPO17  
PRG1_PRU0_GPO18  
PRG1_PRU0_GPO19  
PRG1_PRU1_GPI0  
PRG1_PRU1_GPI1  
PRG1_PRU1_GPI2  
PRG1_PRU1_GPI3  
IO  
I
PRU-ICSSG MDIO Data  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
I
U8  
I
W8  
V8  
I
I
Y8  
I
V13  
AA7  
U13  
W13  
U15  
U14  
AA8  
U9  
I
I
I
I
I
I
I
I
W9  
AA9  
Y9  
I
I
I
V9  
I
U7  
I
V7  
I
W7  
Y7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
U8  
W8  
V8  
Y8  
V13  
AA7  
U13  
W13  
U15  
U14  
AA8  
U9  
W9  
AA9  
Y9  
V9  
U7  
V7  
W7  
W11  
V11  
AA12  
Y12  
I
I
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-66. PRU_ICSSG1 Signal Descriptions (continued)  
SIGNAL NAME  
PRG1_PRU1_GPI4  
PRG1_PRU1_GPI5  
PRG1_PRU1_GPI6  
PRG1_PRU1_GPI7  
PRG1_PRU1_GPI8  
PRG1_PRU1_GPI9  
PRG1_PRU1_GPI10  
PRG1_PRU1_GPI11  
PRG1_PRU1_GPI12  
PRG1_PRU1_GPI13  
PRG1_PRU1_GPI14  
PRG1_PRU1_GPI15  
PRG1_PRU1_GPI16  
PRG1_PRU1_GPI17  
PRG1_PRU1_GPI18  
PRG1_PRU1_GPI19  
PRG1_PRU1_GPO0  
PRG1_PRU1_GPO1  
PRG1_PRU1_GPO2  
PRG1_PRU1_GPO3  
PRG1_PRU1_GPO4  
PRG1_PRU1_GPO5  
PRG1_PRU1_GPO6  
PRG1_PRU1_GPO7  
PRG1_PRU1_GPO8  
PRG1_PRU1_GPO9  
PRG1_PRU1_GPO10  
PRG1_PRU1_GPO11  
PRG1_PRU1_GPO12  
PRG1_PRU1_GPO13  
PRG1_PRU1_GPO14  
PRG1_PRU1_GPO15  
PRG1_PRU1_GPO16  
PRG1_PRU1_GPO17  
PRG1_PRU1_GPO18  
PRG1_PRU1_GPO19  
PRG1_PWM0_TZ_IN  
PRG1_PWM0_TZ_OUT  
PRG1_PWM1_TZ_IN  
PRG1_PWM1_TZ_OUT  
PRG1_PWM2_TZ_IN  
PRG1_PWM2_TZ_OUT  
PRG1_PWM3_TZ_IN  
PRG1_PWM3_TZ_OUT  
PRG1_PWM0_A0  
PIN TYPE  
DESCRIPTION  
ALV  
I
I
PRU-ICSSG PRU Data Input  
W12  
AA13  
U11  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Input  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU-ICSSG PRU Data Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Trip Zone Input  
PRU_ICSSG PWM Trip Zone Output  
PRU_ICSSG PWM Output A  
I
I
V15  
I
U12  
I
V14  
I
W14  
AA10  
V10  
I
I
I
U10  
I
AA11  
Y11  
I
I
Y10  
I
AA14  
Y13  
I
I
V12  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
W11  
V11  
AA12  
Y12  
W12  
AA13  
U11  
V15  
U12  
V14  
W14  
AA10  
V10  
U10  
AA11  
Y11  
Y10  
AA14  
Y13  
V12  
V7  
O
I
W7  
Y13  
O
I
V12  
P19, W14  
R20, U12  
U15  
O
I
O
IO  
AA8  
U9  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-66. PRU_ICSSG1 Signal Descriptions (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
AA9  
V9  
PRG1_PWM0_A1  
PRG1_PWM0_A2  
PRG1_PWM0_B0  
PRG1_PWM0_B1  
PRG1_PWM0_B2  
PRG1_PWM1_A0  
PRG1_PWM1_A1  
PRG1_PWM1_A2  
PRG1_PWM1_B0  
PRG1_PWM1_B1  
PRG1_PWM1_B2  
PRG1_PWM2_A0  
PRG1_PWM2_A1  
PRG1_PWM2_A2  
PRG1_PWM2_B0  
PRG1_PWM2_B1  
PRG1_PWM2_B2  
PRG1_PWM3_A0  
PRG1_PWM3_A1  
PRG1_PWM3_A2  
PRG1_PWM3_B0  
PRG1_PWM3_B1  
PRG1_PWM3_B2  
PRG1_RGMII1_RXC  
PRG1_RGMII1_RX_CTL  
PRG1_RGMII1_TXC  
PRG1_RGMII1_TX_CTL  
PRG1_RGMII2_RXC  
PRG1_RGMII2_RX_CTL  
PRG1_RGMII2_TXC  
PRG1_RGMII2_TX_CTL  
PRG1_RGMII1_RD0  
PRG1_RGMII1_RD1  
PRG1_RGMII1_RD2  
PRG1_RGMII1_RD3  
PRG1_RGMII1_TD0  
PRG1_RGMII1_TD1  
PRG1_RGMII1_TD2  
PRG1_RGMII1_TD3  
PRG1_RGMII2_RD0  
PRG1_RGMII2_RD1  
PRG1_RGMII2_RD2  
PRG1_RGMII2_RD3  
PRG1_RGMII2_TD0  
PRG1_RGMII2_TD1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output B  
W9  
PRU_ICSSG PWM Output B  
Y9  
PRU_ICSSG PWM Output B  
U7  
PRU_ICSSG PWM Output A  
V10  
PRU_ICSSG PWM Output A  
AA11  
Y10  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output B  
U10  
PRU_ICSSG PWM Output B  
Y11  
PRU_ICSSG PWM Output B  
AA14  
N16, W8  
P17, W13  
AA12, V21  
N17, Y8  
U14, Y18  
R16, W12  
Y7  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output B  
PRU_ICSSG PWM Output B  
PRU_ICSSG PWM Output B  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output A  
AA7  
V8  
PRU_ICSSG PWM Output A  
PRU_ICSSG PWM Output B  
U8  
PRU_ICSSG PWM Output B  
U13  
PRU_ICSSG PWM Output B  
V13  
PRU_ICSSG RGMII Receive Clock  
PRU_ICSSG RGMII Receive Control  
PRU_ICSSG RGMII Transmit Clock  
PRU_ICSSG RGMII Transmit Control  
PRU_ICSSG RGMII Receive Clock  
PRU_ICSSG RGMII Receive Control  
PRU_ICSSG RGMII Transmit Clock  
PRU_ICSSG RGMII Transmit Control  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Receive Data  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
AA7  
Y8  
I
IO  
O
I
V9  
Y9  
U11  
I
W12  
Y10  
IO  
O
I
Y11  
Y7  
I
U8  
I
W8  
I
V8  
O
O
O
O
I
AA8  
U9  
W9  
AA9  
W11  
V11  
I
I
AA12  
Y12  
I
O
O
AA10  
V10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-66. PRU_ICSSG1 Signal Descriptions (continued)  
SIGNAL NAME  
PRG1_RGMII2_TD2  
PRG1_RGMII2_TD3  
PRG1_UART0_CTSn  
PRG1_UART0_RTSn  
PRG1_UART0_RXD  
PRG1_UART0_TXD  
PIN TYPE  
DESCRIPTION  
PRU_ICSSG RGMII Transmit Data  
PRU_ICSSG RGMII Transmit Data  
PRU-ICSSG UART Clear to Send (active low)  
PRU-ICSSG UART Request to Send (active low)  
PRU-ICSSG UART Receive Data  
ALV  
O
O
I
U10  
AA11  
U15  
U14  
V14  
O
I
O
PRU-ICSSG UART Transmit Data  
W14  
6.3.21 DMTIMER  
6.3.21.1 MAIN Domain  
Table 6-67. DMTIMER Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
Timer Inputs and Outputs (not tied to single timer  
instance)  
TIMER_IO0  
IO  
C18, K18  
Timer Inputs and Outputs (not tied to single timer  
instance)  
TIMER_IO1  
TIMER_IO2  
TIMER_IO3  
TIMER_IO4  
TIMER_IO5  
TIMER_IO6  
TIMER_IO7  
TIMER_IO8  
TIMER_IO9  
TIMER_IO10  
TIMER_IO11  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
B19, K19  
A17, L21  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
B17, K21  
C17, L20  
D17, J19  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
B16, D19, T1  
A16, C20, U7  
P19, V7  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
R21, W7  
Timer Inputs and Outputs (not tied to single timer  
instance)  
C13, U13  
D14, U1  
Timer Inputs and Outputs (not tied to single timer  
instance)  
6.3.21.2 MCU Domain  
Table 6-68. MCU_DMTIMER Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
Timer Inputs and Outputs (not tied to single timer  
instance)  
MCU_TIMER_IO0  
IO  
D8  
Timer Inputs and Outputs (not tied to single timer  
instance)  
MCU_TIMER_IO1  
MCU_TIMER_IO2  
MCU_TIMER_IO3  
IO  
IO  
IO  
E8  
B8  
B9  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.22 Emulation and Debug  
6.3.22.1 MAIN Domain  
Table 6-69. Trace Signal Descriptions  
SIGNAL NAME  
TRC_CLK  
PIN TYPE  
DESCRIPTION  
ALV  
T20  
U21  
T18  
U20  
U18  
U19  
V20  
V21  
V19  
T17  
R16  
W20  
W21  
V18  
Y21  
Y20  
R17  
P16  
R18  
T21  
P17  
T19  
W19  
Y18  
N16  
R19  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Trace Clock  
TRC_CTL  
Trace Control  
Trace Data 0  
Trace Data 1  
Trace Data 2  
Trace Data 3  
Trace Data 4  
Trace Data 5  
Trace Data 6  
Trace Data 7  
Trace Data 8  
Trace Data 9  
Trace Data 10  
Trace Data 11  
Trace Data 12  
Trace Data 13  
Trace Data 14  
Trace Data 15  
Trace Data 16  
Trace Data 17  
Trace Data 18  
Trace Data 19  
Trace Data 20  
Trace Data 21  
Trace Data 22  
Trace Data 23  
TRC_DATA0  
TRC_DATA1  
TRC_DATA2  
TRC_DATA3  
TRC_DATA4  
TRC_DATA5  
TRC_DATA6  
TRC_DATA7  
TRC_DATA8  
TRC_DATA9  
TRC_DATA10  
TRC_DATA11  
TRC_DATA12  
TRC_DATA13  
TRC_DATA14  
TRC_DATA15  
TRC_DATA16  
TRC_DATA17  
TRC_DATA18  
TRC_DATA19  
TRC_DATA20  
TRC_DATA21  
TRC_DATA22  
TRC_DATA23  
6.3.22.2 MCU Domain  
Table 6-70. JTAG Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
D10  
E10  
B11  
C11  
A12  
C12  
D11  
EMU0  
EMU1  
TCK  
IO  
Emulation Control 0  
Emulation Control 1  
IO  
I
JTAG Test Clock Input  
JTAG Test Data Input  
JTAG Test Data Output  
JTAG Test Mode Select Input  
JTAG Reset  
TDI  
I
TDO  
OZ  
TMS  
I
I
TRSTn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.23 System and Miscellaneous  
6.3.23.1 Boot Mode Configuration  
6.3.23.1.1 MAIN Domain  
Table 6-71. Sysboot Signal Descriptions  
SIGNAL NAME  
BOOTMODE00  
BOOTMODE01  
BOOTMODE02  
BOOTMODE03  
BOOTMODE04  
BOOTMODE05  
BOOTMODE06  
BOOTMODE07  
BOOTMODE08  
BOOTMODE09  
BOOTMODE10  
BOOTMODE11  
BOOTMODE12  
BOOTMODE13  
BOOTMODE14  
BOOTMODE15  
PIN TYPE  
DESCRIPTION  
ALV  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Bootmode pin 0  
Bootmode pin 1  
Bootmode pin 2  
Bootmode pin 3  
Bootmode pin 4  
Bootmode pin 5  
Bootmode pin 6  
Bootmode pin 7  
Bootmode pin 8  
Bootmode pin 9  
Bootmode pin 10  
Bootmode pin 11  
Bootmode pin 12  
Bootmode pin 13  
Bootmode pin 14  
Bootmode pin 15  
T20  
U21  
T18  
U20  
U18  
U19  
V20  
V21  
V19  
T17  
R16  
W20  
W21  
V18  
Y21  
Y20  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.3.23.2 Clock  
6.3.23.2.1 MCU Domain  
Table 6-72. MCU Clock Signal Descriptions  
SIGNAL NAME  
MCU_OSC0_XI  
PIN TYPE  
DESCRIPTION  
High frequency oscillator input  
High frequency oscillator output  
ALV  
C21  
B20  
I
MCU_OSC0_XO  
O
6.3.23.3 System  
6.3.23.3.1 MAIN Domain  
Table 6-73. System Signal Descriptions  
SIGNAL NAME  
CLKOUT0  
PIN TYPE  
DESCRIPTION  
ALV  
RMII Clock Output (50 MHz). This pin is used for clock  
source to the external PHY and must be routed back to  
the RMII_REF_CLK pin for proper device operation.  
O
I
A19, U13  
C19  
EXTINTn  
External Interrupt  
External clock input to Main Domain, routed to Timer  
clock muxes as one of the selectable input clock sources  
for Timer/WDT modules, or as reference clock to  
MAIN_PLL2 (PER1 PLL)  
EXT_REFCLK1  
I
A19  
GPMC functional clock output selected through a mux  
logic  
GPMC0_FCLK_MUX  
OBSCLK0  
O
O
R17  
D17  
Observation clock output for test and debug purposes  
only  
PORz_OUT  
O
O
I
Main Domain POR status output  
E17  
F16  
E18  
D18  
A19  
A17  
B17  
RESETSTATz  
RESET_REQz  
SYNC0_OUT  
SYNC1_OUT  
SYNC2_OUT  
SYNC3_OUT  
Main Domain warm reset status output  
Main Domain external warm reset request input  
CPTS Time Stamp Generator Bit 0  
CPTS Time Stamp Generator Bit 1  
CPTS Time Stamp Generator Bit 2  
CPTS Time Stamp Generator Bit 3  
O
O
O
O
SYSCLK0 output from Main PLL controller (divided by 6)  
for test and debug purposes only  
SYSCLKOUT0  
O
C17  
6.3.23.3.2 MCU Domain  
Table 6-74. MCU System Signal Descriptions  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
MCU_EXT_REFCLK0  
I
External system clock input  
B7  
Observation clock output for test and debug purposes  
only  
MCU_OBSCLK0  
O
C6, E10  
MCU_PORz  
I
O
I
MCU Domain cold reset  
B21  
B13  
B12  
A20  
MCU_RESETSTATz  
MCU_RESETz  
MCU Domain warm reset status output  
MCU Domain warm reset  
MCU_SAFETY_ERRORn  
IO  
Error signal output from MCU Domain ESM  
MCU Domain system clock output for test and debug  
purposes only  
MCU_SYSCLKOUT0  
O
C6  
6.3.23.4 VMON  
Table 6-75. VMON Signal Description  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
VMON_1P8_MCU  
PWR  
Voltage monitor for 1.8 V MCU power supply  
K16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-75. VMON Signal Description (continued)  
SIGNAL NAME  
VMON_1P8_SOC  
PIN TYPE  
DESCRIPTION  
ALV  
PWR  
Voltage monitor for 1.8 V SoC power supply  
Voltage monitor for 3.3 V MCU power supply  
Voltage monitor for 3.3 V SoC power supply  
E12  
F13  
F14  
VMON_3P3_MCU  
PWR  
VMON_3P3_SOC  
PWR  
Voltage Monitor, fixed 0.45 V (+/-3%) threshold. Use with  
external precision voltage divider to monitor a higher  
voltage rail such as the PMIC input supply.  
VMON_VSYS  
PWR  
K10  
6.3.24 Power Supply  
Table 6-76. Power Supply Signal Description  
SIGNAL NAME  
CAP_VDDS0(1)  
CAP_VDDS1(1)  
CAP_VDDS2(1)  
CAP_VDDS3(1)  
CAP_VDDS4(1)  
CAP_VDDS5(1)  
CAP_VDDSHV_MMC1(2)  
CAP_VDDS_MCU(1)  
VDDA_0P85_SERDES0  
VDDA_0P85_SERDES0_C  
VDDA_0P85_USB0  
VDDA_1P8_SERDES0  
VDDA_1P8_USB0  
VDDA_3P3_SDIO  
VDDA_3P3_USB0  
VDDA_ADC  
PIN TYPE  
DESCRIPTION  
External capacitor connection for IO group 0  
External capacitor connection for IO group 1  
External capacitor connection for IO group 2  
External capacitor connection for IO group 3  
External capacitor connection for IO group 4  
External capacitor connection for IO group 5  
External capacitor connection for MMC1  
External capacitor connection for IO MCU  
SERDES0 0.85 V analog supply  
SERDES0 clock 0.85 V analog supply  
USB0 0.85 V analog supply  
ALV  
H12  
CAP  
CAP  
T7  
CAP  
R11  
CAP  
N14  
CAP  
M16  
CAP  
L13  
CAP  
K15  
CAP  
H10  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
P12, P13  
P11  
T12  
SERDES0 1.8 V analog supply  
USB0 1.8 V analog supply  
R14  
R15  
SDIO 3.3 V analog supply  
H15  
USB0 3.3 V analog supply  
R13  
ADC0 analog supply  
J13  
VDDA_MCU  
POR and MCU PLL analog supply  
Main, PER1, and R5F PLL analog supply  
ARM and DDR PLL analog supply  
PER0 PLL analog supply  
K12  
VDDA_PLL0  
N12  
VDDA_PLL1  
H9  
VDDA_PLL2  
J11  
VDDA_TEMP0  
VDDA_TEMP1  
VDDR_CORE  
TEMP0 analog supply  
G11  
TEMP1 analog supply  
L11  
RAM supply  
L10, M13  
F11, G12, G14  
M7, N6, P7  
R10, R8, T9  
P14, P15  
M14, M15  
L14, L15  
F9, G10, G8  
VDDSHV0  
IO supply for IO group 0  
VDDSHV1  
IO supply for IO group 1  
VDDSHV2  
IO supply for IO group 2  
VDDSHV3  
IO supply for IO group 3  
VDDSHV4  
IO supply for IO group 4  
VDDSHV5  
IO supply for IO group 5  
VDDSHV_MCU  
IO supply for IO MCU  
F7, G6, H7, J6, K7,  
L6  
VDDS_DDR  
PWR  
DDR PHY IO supply  
VDDS_DDR_C  
VDDS_MMC0  
VDDS_OSC  
PWR  
PWR  
PWR  
DDR clock IO supply  
MMC0 PHY IO supply  
MCU_OSC0 supply  
J8  
J15, K14  
H13  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-76. Power Supply Signal Description (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
ALV  
J10, J12, K11, K9,  
L12, L8, M11, M9,  
N10, N8, P9  
VDD_CORE  
PWR  
Core supply  
VDD_DLL_MMC0  
VDD_MMC0  
VPP  
PWR  
PWR  
PWR  
MMC0 PLL analog supply  
MMC0 PHY core supply  
H14  
K13  
G15  
eFuse ROM programming supply  
A1, A21, A5, A6, AA1,  
AA15, AA18, AA21,  
C10, C15, C3, D1,  
E11, E13, F10, F15,  
F8, G1, G16, G3, G7,  
G9, H11, H20, H21,  
H6, H8, J14, J16, J7,  
J9, K6, K8, L1, L16,  
L3, L7, L9, M10, M12,  
M6, M8, N11, N13,  
N15, N7, N9, P1,  
VSS  
PWR  
Ground  
P10, P18, P6, P8,  
R12, R7, R9, T10,  
T11, T15, T16, T8,  
U3, V17, W10, W18,  
Y14, Y17, Y19  
(1) This pin must always be connected via a 1-μF capacitor to VSS.  
(2) This pin must always be connected via a 3.3-μF ±20% capacitor to VSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.4 Pin Multiplexing  
Note  
Many device pins support multiple signal functions. Some signal functions are selected via a single layer of multiplexers associated with pins.  
Other signal functions are selected via two or more layers of multiplexers, where one layer is associated with the pins and other layers are  
associated with peripheral logic functions.  
Pin Multiplexing only describes signal multiplexing at the pins. For more information, related to signal multiplexing at the pins, see Pad  
Configuration Registers section in Device Configuration chapter in the device TRM. Refer to the respective peripheral chapter in the device  
TRM for information associated with peripheral signal multiplexing.  
Note  
When a pad is set into a pin multiplexing mode which is not defined, that pad’s behavior is undefined. This should be avoided.  
Note  
Pin Multiplexing does not include SerDes signal functions. For more information, refer to the Serializer/Deserializer (SerDes) chapter in the  
device TRM.  
Note  
The PRU_ICSSG contains a second layer of multiplexing to enable additional functionality on the PRU GPO and GPI signals. This internal  
wrapper multiplexing is described in the PRU_ICSSG chapter in the device TRM.  
For more information on the I/O cell configurations, see Pad Configuration Registers section in Device Configuration chapter in the device TRM.  
Table 6-77. Pin Multiplexing (ALV Package)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
NAME  
BALL  
NUMBER  
ADDRESS  
0x000F4000  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
PADCONFIG N20  
_0  
OSPI0_CLK  
GPIO0_0  
0x000F4004  
0x000F4008  
0x000F400C  
0x000F4010  
0x000F4014  
0x000F4018  
PADCONFIG N21  
_1  
OSPI0_LBCL  
KO  
GPIO0_1  
GPIO0_2  
GPIO0_3  
GPIO0_4  
GPIO0_5  
GPIO0_6  
PADCONFIG N19  
_2  
OSPI0_DQS  
OSPI0_D0  
OSPI0_D1  
OSPI0_D2  
OSPI0_D3  
PADCONFIG M19  
_3  
PADCONFIG M18  
_4  
PADCONFIG M20  
_5  
PADCONFIG M21  
_6  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
NAME  
BALL  
NUMBER  
ADDRESS  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F401C  
PADCONFIG P21  
_7  
OSPI0_D4  
GPIO0_7  
0x000F4020  
0x000F4024  
0x000F4028  
0x000F402C  
0x000F4030  
0x000F4034  
0x000F4038  
0x000F403C  
0x000F4040  
0x000F4044  
0x000F4048  
0x000F404C  
0x000F4050  
0x000F4054  
0x000F4058  
0x000F405C  
0x000F4060  
0x000F4064  
0x000F4068  
0x000F406C  
0x000F4070  
0x000F4074  
0x000F4078  
PADCONFIG P20  
_8  
OSPI0_D5  
GPIO0_8  
PADCONFIG N18  
_9  
OSPI0_D6  
GPIO0_9  
PADCONFIG M17  
_10  
OSPI0_D7  
GPIO0_10  
GPIO0_11  
GPIO0_12  
GPIO0_13  
GPIO0_14  
GPIO0_15  
GPIO0_16  
PADCONFIG L19  
_11  
OSPI0_CSn0  
OSPI0_CSn1  
OSPI0_CSn2  
PADCONFIG L18  
_12  
PADCONFIG K17  
_13  
OSPI0_RES  
ET_OUT1  
PADCONFIG L17  
_14  
OSPI0_CSn3 OSPI0_RES OSPI0_ECC  
ET_OUT0 _FAIL  
PADCONFIG T20  
_15  
GPMC0_AD0 FSI_RX2_CL UART2_RXD EHRPWM0_  
SYNCI  
TRC_CLK  
TRC_CTL  
BOOTMODE  
00  
K
PADCONFIG U21  
_16  
GPMC0_AD1 FSI_RX2_D0 UART2_TXD EHRPWM0_  
SYNCO  
PRG0_PWM  
2_TZ_OUT  
BOOTMODE  
01  
PADCONFIG T18  
_17  
GPMC0_AD2 FSI_RX2_D1 UART2_RTS EHRPWM_T  
TRC_DATA0 GPIO0_17  
TRC_DATA1 GPIO0_18  
TRC_DATA2 GPIO0_82  
TRC_DATA3 GPIO0_83  
TRC_DATA4 GPIO0_21  
TRC_DATA5 GPIO0_22  
TRC_DATA6 GPIO0_23  
TRC_DATA7 GPIO0_24  
TRC_DATA8 GPIO0_25  
TRC_DATA9 GPIO0_26  
PRG0_PWM  
2_TZ_IN  
BOOTMODE  
02  
n
Zn_IN0  
PADCONFIG U20  
_18  
GPMC0_AD3 FSI_RX3_CL UART3_RXD EHRPWM0_  
PRG0_PWM  
2_A0  
BOOTMODE  
03  
K
A
PADCONFIG U18  
_19  
GPMC0_AD4 FSI_RX3_D0 UART3_TXD EHRPWM0_  
B
PRG0_PWM  
2_B0  
BOOTMODE  
04  
PADCONFIG U19  
_20  
GPMC0_AD5 FSI_RX3_D1 UART3_RTS EHRPWM1_  
PRG0_PWM  
2_A1  
BOOTMODE  
05  
n
A
PADCONFIG V20  
_21  
GPMC0_AD6 FSI_RX4_D0 UART4_RXD EHRPWM1_  
B
PRG0_PWM  
2_B1  
BOOTMODE  
06  
PADCONFIG V21  
_22  
GPMC0_AD7 FSI_RX4_D1 UART4_TXD EHRPWM_T EHRPWM8_  
PRG1_PWM  
2_A2  
BOOTMODE  
07  
Zn_IN1  
A
PADCONFIG V19  
_23  
GPMC0_AD8 FSI_RX0_CL UART2_CTS EHRPWM2_  
PRG0_PWM  
2_A2  
BOOTMODE  
08  
K
n
A
PADCONFIG T17  
_24  
GPMC0_AD9 FSI_RX0_D0 UART3_CTS EHRPWM2_  
PRG0_PWM  
2_B2  
BOOTMODE  
09  
n
B
PADCONFIG R16  
_25  
GPMC0_AD1 FSI_RX0_D1 UART4_CTS EHRPWM_T EHRPWM8_  
Zn_IN2  
PRG1_PWM  
2_B2  
BOOTMODE  
10  
0
n
B
PADCONFIG W20  
_26  
GPMC0_AD1 FSI_RX1_CL UART5_CTS EQEP1_A  
1
EHRPWM7_  
A
BOOTMODE  
11  
K
n
PADCONFIG W21  
_27  
GPMC0_AD1 FSI_RX1_D0 UART6_CTS EQEP1_B  
2
TRC_DATA1 GPIO0_27  
0
EHRPWM7_  
B
BOOTMODE  
12  
n
PADCONFIG V18  
_28  
GPMC0_AD1 FSI_RX1_D1  
3
EHRPWM3_  
A
TRC_DATA1 GPIO0_28  
1
PRG0_PWM  
3_A0  
BOOTMODE  
13  
PADCONFIG Y21  
_29  
GPMC0_AD1 FSI_TX0_D0 UART6_RXD EHRPWM3_  
4
TRC_DATA1 GPIO0_29  
2
PRG0_PWM  
3_B0  
BOOTMODE  
14  
B
PADCONFIG Y20  
_30  
GPMC0_AD1 FSI_TX0_D1 UART6_TXD EHRPWM3_  
SYNCI  
TRC_DATA1 GPIO0_30  
3
BOOTMODE  
15  
5
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
ADDRESS  
BALL  
NUMBER  
NAME  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F407C  
0x000F4084  
0x000F4088  
0x000F408C  
0x000F4090  
0x000F4094  
0x000F4098  
0x000F409C  
0x000F40A0  
0x000F40A4  
0x000F40A8  
0x000F40AC  
0x000F40B0  
0x000F40B4  
0x000F40B8  
0x000F40BC  
0x000F40C0  
0x000F40C4  
0x000F40C8  
0x000F40CC  
0x000F40D0  
0x000F40D4  
PADCONFIG R17  
_31  
GPMC0_CLK FSI_RX4_CL UART4_RTS EHRPWM3_ GPMC0_FCL  
SYNCO K_MUX  
TRC_DATA1 GPIO0_31  
4
PRG0_PWM  
3_TZ_OUT  
K
n
PADCONFIG P16  
_33  
GPMC0_AD FSI_RX5_CL UART5_RXD EHRPWM_T  
Vn_ALE Zn_IN3  
TRC_DATA1 GPIO0_32  
5
PRG0_PWM  
3_TZ_IN  
K
PADCONFIG R18  
_34  
GPMC0_OEn FSI_RX5_D0 UART5_TXD EHRPWM4_  
_REn  
TRC_DATA1 GPIO0_33  
6
PRG0_PWM  
3_A1  
A
PADCONFIG T21  
_35  
GPMC0_WE FSI_RX5_D1 UART5_RTS EHRPWM4_  
TRC_DATA1 GPIO0_34  
7
PRG0_PWM  
3_B1  
n
n
B
PADCONFIG P17  
_36  
GPMC0_BE0 FSI_TX1_D0 UART6_RTS EHRPWM_T  
EHRPWM7_ TRC_DATA1 GPIO0_35  
PRG1_PWM  
2_A1  
n_CLE  
n
Zn_IN4  
A
8
PADCONFIG T19  
_37  
GPMC0_BE1 FSI_TX0_CL  
EHRPWM5_  
A
TRC_DATA1 GPIO0_36  
9
PRG0_PWM  
3_A2  
n
K
PADCONFIG W19  
_38  
GPMC0_WAI  
T0  
EHRPWM5_  
B
TRC_DATA2 GPIO0_37  
0
PRG0_PWM  
3_B2  
PADCONFIG Y18  
_39  
GPMC0_WAI FSI_TX1_D1  
T1  
EHRPWM_T GPMC0_A21 EHRPWM7_ TRC_DATA2 GPIO0_38  
Zn_IN5  
PRG1_PWM  
2_B1  
B
1
PADCONFIG N16  
_40  
GPMC0_WP FSI_TX1_CL  
EQEP0_A  
GPMC0_A22  
TRC_DATA2 GPIO0_39  
2
EHRPWM6_ PRG1_PWM  
A 2_A0  
n
K
PADCONFIG N17  
_41  
GPMC0_DIR  
EQEP0_B  
EQEP0_S  
EQEP0_I  
EQEP1_S  
EQEP1_I  
GPIO0_40  
EHRPWM6_ PRG1_PWM  
B
2_B0  
PADCONFIG R19  
_42  
GPMC0_CSn  
0
TRC_DATA2 GPIO0_41  
3
EHRPWM6_  
SYNCI  
PADCONFIG R20  
_43  
GPMC0_CSn  
1
EHRPWM_T  
Zn_IN2  
GPIO0_42  
EHRPWM6_ PRG1_PWM  
SYNCO  
2_TZ_OUT  
PADCONFIG P19  
_44  
GPMC0_CSn I2C2_SCL  
2
TIMER_IO8  
TIMER_IO9  
EHRPWM_T  
Zn_IN4  
GPIO0_43  
PRG1_PWM  
2_TZ_IN  
PADCONFIG R21  
_45  
GPMC0_CSn I2C2_SDA  
3
GPMC0_A20 EHRPWM_T  
Zn_IN5  
GPIO0_44  
PADCONFIG Y7  
_46  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO0 _GPI0 I1_RD0 3_A0  
GPIO0_45  
GPMC0_AD1  
6
PADCONFIG U8  
_47  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO1 _GPI1 I1_RD1 3_B0  
GPIO0_46  
GPMC0_AD1  
7
PADCONFIG W8  
_48  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO2 _GPI2 I1_RD2 2_A0  
GPIO0_47  
GPMC0_AD1  
8
PADCONFIG V8  
_49  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO3 _GPI3 I1_RD3 3_A2  
GPIO0_48  
GPMC0_AD1  
9
PADCONFIG Y8  
_50  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO4 _GPI4 I1_RX_CTL 2_B0  
GPIO0_49  
GPMC0_AD2  
0
PADCONFIG V13  
_51  
PRG1_PRU0 PRG1_PRU0  
PRG1_PWM RGMII1_RX_  
GPIO0_50  
GPMC0_AD2  
1
_GPO5 _GPI5 3_B2 CTL  
PADCONFIG AA7  
_52  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO6 _GPI6 I1_RXC 3_A1  
GPIO0_51  
GPMC0_AD2  
2
PADCONFIG U13  
_53  
PRG1_PRU0 PRG1_PRU0 PRG1_IEP0_ PRG1_PWM CPTS0_HW2 CLKOUT0  
TIMER_IO10 GPIO0_52  
GPMC0_AD2  
3
_GPO7  
_GPI7  
EDC_LATCH 3_B1  
_IN1  
TSPUSH  
0x000F40D8  
PADCONFIG W13  
_54  
PRG1_PRU0 PRG1_PRU0  
_GPO8 _GPI8  
PRG1_PWM RGMII1_RXC  
2_A1  
GPIO0_53  
GPMC0_AD2  
4
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
NAME  
BALL  
NUMBER  
ADDRESS  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F40DC  
PADCONFIG U15  
_55  
PRG1_PRU0 PRG1_PRU0 PRG1_UART PRG1_PWM RGMII1_TX_ RMII1_RX_E PRG1_IEP0_ GPIO0_54  
GPMC0_AD2  
5
_GPO9  
_GPI9  
0_CTSn  
3_TZ_IN  
CTL  
R
EDIO_DATA_  
IN_OUT28  
0x000F40E0  
PADCONFIG U14  
_56  
PRG1_PRU0 PRG1_PRU0 PRG1_UART PRG1_PWM RGMII1_TXC RMII_REF_C PRG1_IEP0_ GPIO0_55  
GPMC0_AD2  
6
_GPO10  
_GPI10  
0_RTSn  
2_B1  
LK  
EDIO_DATA_  
IN_OUT29  
0x000F40E4  
0x000F40E8  
0x000F40EC  
0x000F40F0  
0x000F40F4  
0x000F40F8  
0x000F40FC  
PADCONFIG AA8  
_57  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO11 _GPI11 I1_TD0 3_TZ_OUT  
GPIO0_56  
GPIO0_57  
GPIO0_58  
GPIO0_59  
GPIO0_60  
GPIO0_61  
GPIO0_62  
GPMC0_AD2  
7
PADCONFIG U9  
_58  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO12 _GPI12 I1_TD1 0_A0  
GPMC0_AD2  
8
PADCONFIG W9  
_59  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO13 _GPI13 I1_TD2 0_B0  
GPMC0_AD2  
9
PADCONFIG AA9  
_60  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO14 _GPI14 I1_TD3 0_A1  
GPMC0_AD3  
0
PADCONFIG Y9  
_61  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO15 _GPI15 I1_TX_CTL 0_B1  
GPMC0_AD3  
1
PADCONFIG V9  
_62  
PRG1_PRU0 PRG1_PRU0 PRG1_RGMI PRG1_PWM  
_GPO16 _GPI16 I1_TXC 0_A2  
GPMC0_BE2  
n
PADCONFIG U7  
_63  
PRG1_PRU0 PRG1_PRU0 PRG1_IEP0_ PRG1_PWM CPTS0_TS_  
TIMER_IO7  
TIMER_IO8  
TIMER_IO9  
GPMC0_A0  
GPMC0_A1  
GPMC0_A2  
_GPO17  
_GPI17  
EDC_SYNC_ 0_B2  
OUT1  
SYNC  
0x000F4100  
0x000F4104  
PADCONFIG V7  
_64  
PRG1_PRU0 PRG1_PRU0 PRG1_IEP0_ PRG1_PWM CPTS0_HW1  
GPIO0_63  
GPIO0_64  
_GPO18  
_GPI18  
EDC_LATCH 0_TZ_IN  
_IN0  
TSPUSH  
PADCONFIG W7  
_65  
PRG1_PRU0 PRG1_PRU0 PRG1_IEP0_ PRG1_PWM CPTS0_TS_  
_GPO19  
_GPI19  
EDC_SYNC_ 0_TZ_OUT  
OUT0  
COMP  
0x000F4108  
0x000F410C  
0x000F4110  
0x000F4114  
0x000F4118  
0x000F411C  
0x000F4120  
0x000F4124  
PADCONFIG W11  
_66  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI  
_GPO0 _GPI0 I2_RD0  
RGMII2_RD0 RMII2_RXD0  
RGMII2_RD1 RMII2_RXD1  
GPIO0_65  
GPIO0_66  
GPIO0_67  
GPIO0_68  
GPIO0_69  
GPIO0_70  
GPIO0_71  
GPIO0_72  
GPMC0_A3  
GPMC0_A4  
GPMC0_A5  
GPMC0_A6  
GPMC0_A7  
GPMC0_A8  
GPMC0_A9  
GPMC0_A10  
PADCONFIG V11  
_67  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI  
_GPO1 _GPI1 I2_RD1  
PADCONFIG AA12  
_68  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_RD2  
_GPO2 _GPI2 I2_RD2 2_A2  
PADCONFIG Y12  
_69  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI  
_GPO3 _GPI3 I2_RD3  
RGMII2_RD3  
PADCONFIG W12  
_70  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_RX_ RMII2_RX_E  
_GPO4  
_GPI4  
I2_RX_CTL  
2_B2  
CTL  
R
PADCONFIG AA13  
_71  
PRG1_PRU1 PRG1_PRU1  
_GPO5 _GPI5  
RGMII1_RD0  
PADCONFIG U11  
_72  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI  
_GPO6 _GPI6 I2_RXC  
RGMII2_RXC  
PADCONFIG V15  
_73  
PRG1_PRU1 PRG1_PRU1 PRG1_IEP1_  
RGMII1_TD0 RMII1_RXD0 SPI3_CS3  
_GPO7  
_GPI7  
EDC_LATCH  
_IN1  
0x000F4128  
0x000F412C  
PADCONFIG U12  
_74  
PRG1_PRU1 PRG1_PRU1  
_GPO8 _GPI8  
PRG1_PWM RGMII1_RD1  
2_TZ_OUT  
GPIO0_73  
GPMC0_A11  
GPMC0_A12  
PADCONFIG V14  
_75  
PRG1_PRU1 PRG1_PRU1 PRG1_UART  
_GPO9 _GPI9 0_RXD  
RGMII1_TD1 RMII1_RXD1 PRG1_IEP0_ GPIO0_74  
EDIO_DATA_  
IN_OUT30  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
ADDRESS  
BALL  
NUMBER  
NAME  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F4130  
PADCONFIG W14  
PRG1_PRU1 PRG1_PRU1 PRG1_UART PRG1_PWM RGMII1_TD2 RMII1_TXD0 PRG1_IEP0_ GPIO0_75  
GPMC0_A13  
_76  
_GPO10  
_GPI10  
0_TXD  
2_TZ_IN  
EDIO_DATA_  
IN_OUT31  
0x000F4134  
0x000F4138  
0x000F413C  
0x000F4140  
0x000F4144  
0x000F4148  
0x000F414C  
PADCONFIG AA10  
_77  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI  
_GPO11 _GPI11 I2_TD0  
RGMII2_TD0 RMII2_TXD0  
GPIO0_76  
GPIO0_77  
GPIO0_78  
GPIO0_79  
GPIO0_80  
GPIO0_81  
GPIO0_19  
GPMC0_A14  
GPMC0_A15  
GPMC0_A16  
GPMC0_A17  
GPMC0_A18  
GPMC0_A19  
PADCONFIG V10  
_78  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_TD1 RMII2_TXD1  
_GPO12 _GPI12 I2_TD1 1_A0  
PADCONFIG U10  
_79  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_TD2 RMII2_CRS_  
_GPO13 _GPI13 I2_TD2 1_B0 DV  
PADCONFIG AA11  
_80  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_TD3  
_GPO14 _GPI14 I2_TD3 1_A1  
PADCONFIG Y11  
_81  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_TX_ RMII2_TX_E  
_GPO15 _GPI15 I2_TX_CTL 1_B1 CTL  
N
PADCONFIG Y10  
_82  
PRG1_PRU1 PRG1_PRU1 PRG1_RGMI PRG1_PWM RGMII2_TXC  
_GPO16 _GPI16 I2_TXC 1_A2  
PADCONFIG AA14  
_83  
PRG1_PRU1 PRG1_PRU1 PRG1_IEP1_ PRG1_PWM RGMII1_TD3 RMII1_TXD1  
GPMC0_BE3 PRG1_ECAP  
n
_GPO17  
_GPI17  
EDC_SYNC_ 1_B2  
OUT1  
0_SYNC_OU  
T
0x000F4150  
0x000F4154  
PADCONFIG Y13  
_84  
PRG1_PRU1 PRG1_PRU1 PRG1_IEP1_ PRG1_PWM RGMII1_RD2 RMII1_TX_E  
GPIO0_20  
GPIO0_84  
UART5_CTS PRG1_ECAP  
n 0_SYNC_IN  
_GPO18  
_GPI18  
EDC_LATCH 1_TZ_IN  
_IN0  
N
PADCONFIG V12  
_85  
PRG1_PRU1 PRG1_PRU1 PRG1_IEP1_ PRG1_PWM RGMII1_RD3 RMII1_CRS_ SPI3_CS2  
UART5_RTS PRG1_ECAP  
_GPO19  
_GPI19  
EDC_SYNC_ 1_TZ_OUT  
OUT0  
DV  
n
0_IN_APWM  
_OUT  
0x000F4158  
0x000F415C  
0x000F4160  
0x000F4164  
0x000F4168  
0x000F416C  
0x000F4170  
0x000F4174  
0x000F4178  
0x000F417C  
PADCONFIG AA6  
_86  
PRG1_MDIO  
0_MDIO  
MDIO0_MDI  
O
GPIO0_85  
GPIO0_86  
GPIO1_0  
GPIO1_1  
GPIO1_2  
GPIO1_3  
GPIO1_4  
GPIO1_5  
GPIO1_6  
GPIO1_7  
PADCONFIG Y6  
_87  
PRG1_MDIO  
0_MDC  
MDIO0_MDC  
PADCONFIG Y1  
_88  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO0 _GPI0 I1_RD0 3_A0  
UART2_CTS  
n
PADCONFIG R4  
_89  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO1 _GPI1 I1_RD1 3_B0  
UART2_TXD  
PADCONFIG U2  
_90  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO2 _GPI2 I1_RD2 2_A0  
GPMC0_A0  
GPMC0_A1  
UART2_RTS  
n
PADCONFIG V2  
_91  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO3 _GPI3 I1_RD3 3_A2  
UART3_CTS  
n
PADCONFIG AA2  
_92  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO4  
UART3_TXD  
_GPI4  
I1_RX_CTL  
2_B0  
PADCONFIG R3  
_93  
PRG0_PRU0 PRG0_PRU0  
_GPO5 _GPI5  
PRG0_PWM  
3_B2  
UART3_RTS  
n
PADCONFIG T3  
_94  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO6 _GPI6 I1_RXC 3_A1  
UART4_CTS  
n
PADCONFIG T1  
_95  
PRG0_PRU0 PRG0_PRU0 PRG0_IEP0_ PRG0_PWM CPTS0_HW2 CP_GEMAC TIMER_IO6  
_GPO7  
UART4_TXD  
_GPI7  
EDC_LATCH 3_B1  
_IN1  
TSPUSH  
_CPTS0_HW  
2TSPUSH  
0x000F4180  
PADCONFIG T2  
_96  
PRG0_PRU0 PRG0_PRU0  
_GPO8 _GPI8  
PRG0_PWM  
2_A1  
GPIO1_8  
GPMC0_A2  
UART4_RTS  
n
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
NAME  
BALL  
NUMBER  
ADDRESS  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F4184  
PADCONFIG W6  
_97  
PRG0_PRU0 PRG0_PRU0 PRG0_UART PRG0_PWM RGMII1_RX_ RMII1_RX_E PRG0_IEP0_ GPIO1_9  
UART2_RXD  
_GPO9  
_GPI9  
0_CTSn  
3_TZ_IN  
CTL  
R
EDIO_DATA_  
IN_OUT28  
0x000F4188  
PADCONFIG AA5  
_98  
PRG0_PRU0 PRG0_PRU0 PRG0_UART PRG0_PWM RGMII1_RXC RMII_REF_C PRG0_IEP0_ GPIO1_10  
UART3_RXD  
UART4_RXD  
_GPO10  
_GPI10  
0_RTSn  
2_B1  
LK  
EDIO_DATA_  
IN_OUT29  
0x000F418C  
0x000F4190  
0x000F4194  
0x000F4198  
0x000F419C  
0x000F41A0  
0x000F41A4  
PADCONFIG Y3  
_99  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO11 _GPI11 I1_TD0 3_TZ_OUT  
GPIO1_11  
GPIO1_12  
GPIO1_13  
GPIO1_14  
GPIO1_15  
GPIO1_16  
GPIO1_17  
PADCONFIG AA3  
_100  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO12 _GPI12 I1_TD1 0_A0  
GPMC0_A14  
GPMC0_A15  
GPMC0_A3  
GPMC0_A16  
GPMC0_A4  
PADCONFIG R6  
_101  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO13 _GPI13 I1_TD2 0_B0  
SPI3_D0  
SPI3_D1  
SPI3_CS1  
SPI3_CLK  
PADCONFIG V4  
_102  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO14 _GPI14 I1_TD3 0_A1  
PADCONFIG T5  
_103  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO15 _GPI15 I1_TX_CTL 0_B1  
PADCONFIG U4  
_104  
PRG0_PRU0 PRG0_PRU0 PRG0_RGMI PRG0_PWM  
_GPO16 _GPI16 I1_TXC 0_A2  
PADCONFIG U1  
_105  
PRG0_PRU0 PRG0_PRU0 PRG0_IEP0_ PRG0_PWM CPTS0_TS_ CP_GEMAC SPI3_CS0  
TIMER_IO11 GPMC0_A17  
_GPO17  
_GPI17  
EDC_SYNC_ 0_B2  
OUT1  
SYNC  
_CPTS0_TS  
_SYNC  
0x000F41A8  
0x000F41AC  
PADCONFIG V1  
_106  
PRG0_PRU0 PRG0_PRU0 PRG0_IEP0_ PRG0_PWM CPTS0_HW1 CP_GEMAC EHRPWM8_ GPIO1_18  
UART4_CTS GPMC0_A5  
n
UART2_RXD  
UART3_RXD  
_GPO18  
_GPI18  
EDC_LATCH 0_TZ_IN  
_IN0  
TSPUSH  
_CPTS0_HW  
1TSPUSH  
A
PADCONFIG W1  
_107  
PRG0_PRU0 PRG0_PRU0 PRG0_IEP0_ PRG0_PWM CPTS0_TS_ CP_GEMAC EHRPWM8_ GPIO1_19  
UART4_RTS GPMC0_A6  
n
_GPO19  
_GPI19  
EDC_SYNC_ 0_TZ_OUT  
OUT0  
COMP  
_CPTS0_TS  
_COMP  
B
0x000F41B0  
0x000F41B4  
0x000F41B8  
0x000F41BC  
0x000F41C0  
0x000F41C4  
0x000F41C8  
0x000F41CC  
PADCONFIG Y2  
_108  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI  
_GPO0 _GPI0 I2_RD0  
GPIO1_20  
GPIO1_21  
GPIO1_22  
GPIO1_23  
GPIO1_24  
GPIO1_25  
GPIO1_26  
GPIO1_27  
EQEP0_A  
EQEP0_B  
EQEP0_S  
UART5_CTS  
n
PADCONFIG W2  
_109  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI  
_GPO1 _GPI1 I2_RD1  
UART5_TXD  
PADCONFIG V3  
_110  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
_GPO2 _GPI2 I2_RD2 2_A2  
UART5_RTS  
n
PADCONFIG T4  
_111  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI  
_GPO3 _GPI3 I2_RD3  
EQEP1_A  
EQEP1_B  
EQEP1_S  
EQEP2_A  
EQEP2_B  
GPMC0_A18 UART6_CTS  
n
PADCONFIG W3  
_112  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
UART6_TXD  
_GPO4  
_GPI4  
I2_RX_CTL  
2_B2  
PADCONFIG P4  
_113  
PRG0_PRU1 PRG0_PRU1  
_GPO5 _GPI5  
UART6_RTS  
n
PADCONFIG R5  
_114  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI  
_GPO6 _GPI6 I2_RXC  
GPMC0_A19 UART4_CTS  
n
PADCONFIG W5  
_115  
PRG0_PRU1 PRG0_PRU1 PRG0_IEP1_  
RGMII1_RD0 RMII1_RXD0  
UART4_TXD  
_GPO7  
_GPI7  
EDC_LATCH  
_IN1  
0x000F41D0  
0x000F41D4  
PADCONFIG R1  
_116  
PRG0_PRU1 PRG0_PRU1  
_GPO8 _GPI8  
PRG0_PWM  
2_TZ_OUT  
GPIO1_28  
EQEP2_S  
EQEP0_I  
UART4_RTS  
n
PADCONFIG Y5  
_117  
PRG0_PRU1 PRG0_PRU1 PRG0_UART  
_GPO9 _GPI9 0_RXD  
RGMII1_RD1 RMII1_RXD1 PRG0_IEP0_ GPIO1_29  
UART5_RXD  
EDIO_DATA_  
IN_OUT30  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
ADDRESS  
BALL  
NUMBER  
NAME  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F41D8  
PADCONFIG V6  
PRG0_PRU1 PRG0_PRU1 PRG0_UART PRG0_PWM RGMII1_RD2 RMII1_TXD0 PRG0_IEP0_ GPIO1_30  
EQEP1_I  
UART6_RXD  
_118  
_GPO10  
_GPI10  
0_TXD  
2_TZ_IN  
EDIO_DATA_  
IN_OUT31  
0x000F41DC  
0x000F41E0  
0x000F41E4  
0x000F41E8  
0x000F41EC  
PADCONFIG W4  
_119  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI  
_GPO11 _GPI11 I2_TD0  
GPIO1_31  
GPIO1_32  
GPIO1_33  
GPIO1_34  
GPIO1_35  
EQEP2_I  
EQEP2_B  
EQEP0_I  
EQEP1_I  
UART4_RXD  
UART4_TXD  
UART5_RXD  
UART6_RXD  
PADCONFIG Y4  
_120  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
_GPO12 _GPI12 I2_TD1 1_A0  
GPMC0_A7  
GPMC0_A8  
GPMC0_A9  
PADCONFIG T6  
_121  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
_GPO13 _GPI13 I2_TD2 1_B0  
PADCONFIG U6  
_122  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
_GPO14 _GPI14 I2_TD3 1_A1  
PADCONFIG U5  
_123  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
_GPO15 _GPI15 I2_TX_CTL 1_B1  
GPMC0_A10 PRG0_ECAP  
0_IN_APWM  
_OUT  
0x000F41F0  
0x000F41F4  
0x000F41F8  
0x000F41FC  
PADCONFIG AA4  
_124  
PRG0_PRU1 PRG0_PRU1 PRG0_RGMI PRG0_PWM  
_GPO16 _GPI16 I2_TXC 1_A2  
GPIO1_36  
GPIO1_37  
GPMC0_A11 PRG0_ECAP  
0_SYNC_OU  
T
PADCONFIG V5  
_125  
PRG0_PRU1 PRG0_PRU1 PRG0_IEP1_ PRG0_PWM RGMII1_RD3 RMII1_TXD1  
PRG0_ECAP  
0_SYNC_OU  
T
PRG0_ECAP  
0_SYNC_IN  
_GPO17  
_GPI17  
EDC_SYNC_ 1_B2  
OUT1  
PADCONFIG P5  
_126  
PRG0_PRU1 PRG0_PRU1 PRG0_IEP1_ PRG0_PWM MDIO0_MDI RMII1_TX_E EHRPWM7_ GPIO1_38  
PRG0_ECAP  
0_SYNC_IN  
_GPO18  
_GPI18  
EDC_LATCH 1_TZ_IN  
_IN0  
O
N
A
PADCONFIG R2  
_127  
PRG0_PRU1 PRG0_PRU1 PRG0_IEP1_ PRG0_PWM MDIO0_MDC RMII1_CRS_ EHRPWM7_ GPIO1_39  
PRG0_ECAP  
0_IN_APWM  
_OUT  
_GPO19  
_GPI19  
EDC_SYNC_ 1_TZ_OUT  
OUT0  
DV  
B
0x000F4200  
0x000F4204  
0x000F4208  
0x000F420C  
PADCONFIG P2  
_128  
PRG0_MDIO  
0_MDIO  
GPIO1_40  
GPIO1_41  
GPIO1_42  
GPMC0_A12  
GPMC0_A13  
PADCONFIG P3  
_129  
PRG0_MDIO  
0_MDC  
PADCONFIG D12  
_130  
SPI0_CS0  
PADCONFIG C13  
_131  
SPI0_CS1  
CPTS0_TS_ I2C2_SCL  
COMP  
TIMER_IO10 PRG0_IEP0_ UART6_RXD ADC_EXT_T GPIO1_43  
EDIO_OUTV  
ALID  
RIGGER0  
0x000F4210  
0x000F4214  
0x000F4218  
0x000F421C  
0x000F4220  
PADCONFIG D13  
_132  
SPI0_CLK  
SPI0_D0  
SPI0_D1  
SPI1_CS0  
SPI1_CS1  
GPIO1_44  
GPIO1_45  
GPIO1_46  
GPIO1_47  
PADCONFIG A13  
_133  
PADCONFIG A14  
_134  
PADCONFIG B14  
_135  
EHRPWM6_  
A
PADCONFIG D14  
_136  
CPTS0_TS_ I2C2_SDA  
SYNC  
PRG1_IEP0_ UART6_TXD ADC_EXT_T GPIO1_48  
TIMER_IO11  
EDIO_OUTV  
ALID  
RIGGER1  
0x000F4224  
PADCONFIG C14  
_137  
SPI1_CLK  
EHRPWM6_  
SYNCI  
GPIO1_49  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
NAME  
BALL  
NUMBER  
ADDRESS  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F4228  
PADCONFIG B15  
_138  
SPI1_D0  
EHRPWM6_  
SYNCO  
GPIO1_50  
0x000F422C  
0x000F4230  
0x000F4234  
0x000F4238  
PADCONFIG A15  
_139  
SPI1_D1  
EHRPWM6_  
B
GPIO1_51  
GPIO1_52  
GPIO1_53  
GPIO1_54  
PADCONFIG D15  
_140  
UART0_RXD  
UART0_TXD  
SPI2_D0  
SPI2_D1  
EQEP0_A  
EQEP0_B  
EQEP0_S  
PADCONFIG C16  
_141  
PADCONFIG B16  
_142  
UART0_CTS SPI0_CS2  
n
ADC_EXT_T UART2_RXD TIMER_IO6  
RIGGER0  
SPI4_CLK  
SPI4_D0  
CP_GEMAC  
_CPTS0_TS  
_SYNC  
0x000F423C  
0x000F4240  
PADCONFIG A16  
_143  
UART0_RTS SPI0_CS3  
n
UART2_TXD TIMER_IO7  
SPI2_CS0  
GPIO1_55  
GPIO1_56  
EQEP0_I  
EQEP1_A  
PADCONFIG E15  
_144  
UART1_RXD  
CP_GEMAC  
_CPTS0_TS  
_COMP  
0x000F4244  
0x000F4248  
0x000F424C  
PADCONFIG E14  
_145  
UART1_TXD  
SPI2_CLK  
CP_GEMAC  
_CPTS0_HW  
1TSPUSH  
GPIO1_57  
GPIO1_58  
GPIO1_59  
EQEP1_B  
EQEP1_S  
EQEP1_I  
PADCONFIG D16  
_146  
UART1_CTS SPI1_CS2  
n
ADC_EXT_T PCIE0_CLKR UART3_RXD CP_GEMAC SPI4_D1  
RIGGER1  
EQn  
_CPTS0_TS  
_SYNC  
PADCONFIG E16  
_147  
UART1_RTS SPI1_CS3  
n
UART3_TXD CP_GEMAC SPI4_CS0  
_CPTS0_HW  
2TSPUSH  
0x000F4250  
0x000F4254  
0x000F4258  
0x000F425C  
0x000F4260  
0x000F4264  
0x000F4268  
0x000F426C  
0x000F4270  
PADCONFIG A17  
_148  
MCAN0_TX  
UART4_RXD TIMER_IO2  
SYNC2_OUT  
SYNC3_OUT  
SPI4_CS1  
SPI4_CS2  
GPIO1_60  
GPIO1_61  
EQEP2_I  
EQEP2_S  
EQEP2_A  
EQEP2_B  
UART0_DTR  
n
PADCONFIG B17  
_149  
MCAN0_RX UART4_TXD TIMER_IO3  
UART0_RIn  
PADCONFIG C17  
_150  
MCAN1_TX  
I2C3_SCL  
ECAP1_IN_A SYSCLKOUT TIMER_IO4  
PWM_OUT  
UART5_RXD EHRPWM_S GPIO1_62  
OCA  
UART0_DCD  
n
0
PADCONFIG D17  
_151  
MCAN1_RX I2C3_SDA  
I2C0_SCL  
ECAP2_IN_A OBSCLK0  
PWM_OUT  
TIMER_IO5  
UART5_TXD EHRPWM_S GPIO1_63  
OCB  
UART0_DSR  
n
OBSCLK0  
PADCONFIG A18  
_152  
UART6_CTS  
n
GPIO1_64  
GPIO1_65  
GPIO1_66  
GPIO1_67  
PADCONFIG B18  
_153  
I2C0_SDA  
UART6_RTS  
n
PADCONFIG C18  
_154  
I2C1_SCL  
I2C1_SDA  
CPTS0_HW1 TIMER_IO0  
TSPUSH  
SPI2_CS1  
PADCONFIG B19  
_155  
CPTS0_HW2 TIMER_IO1  
TSPUSH  
SPI2_CS2  
PADCONFIG D18  
_156  
ECAP0_IN_A SYNC0_OUT CPTS0_RFT  
PWM_OUT _CLK  
CP_GEMAC SPI4_CS3  
_CPTS0_RF  
GPIO1_68  
T_CLK  
0x000F4274  
0x000F4278  
PADCONFIG A19  
_157  
EXT_REFCL SYNC1_OUT SPI2_CS3  
K1  
CLKOUT0  
GPIO1_69  
GPIO1_70  
PADCONFIG C19  
_158  
EXTINTn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
ADDRESS  
BALL  
NUMBER  
NAME  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x000F427C  
0x000F4280  
0x000F4284  
0x000F4288  
PADCONFIG K18  
_159  
MMC1_DAT3 CP_GEMAC TIMER_IO0  
UART2_RXD  
GPIO1_71  
_CPTS0_TS  
_COMP  
PADCONFIG K19  
_160  
MMC1_DAT2 CP_GEMAC TIMER_IO1  
UART2_TXD  
UART3_RXD  
UART3_TXD  
GPIO1_72  
GPIO1_73  
GPIO1_74  
_CPTS0_TS  
_SYNC  
PADCONFIG L21  
_161  
MMC1_DAT1 CP_GEMAC TIMER_IO2  
_CPTS0_HW  
1TSPUSH  
PADCONFIG K21  
_162  
MMC1_DAT0 CP_GEMAC TIMER_IO3  
_CPTS0_HW  
2TSPUSH  
0x000F428C  
0x000F4294  
0x000F4298  
0x000F429C  
0x000F42A0  
0x000F42A4  
0x000F42A8  
0x000F42AC  
0x000F42B0  
0x000F42B4  
0x000F42B8  
0x000F42BC  
0x000F42C0  
0x000F42C4  
0x000F42C8  
0x000F42CC  
0x04084000  
0x04084004  
PADCONFIG L20  
_163  
MMC1_CLK UART2_CTS TIMER_IO4  
n
UART4_RXD  
UART4_TXD  
UART5_RXD  
UART5_TXD  
GPIO1_75  
GPIO1_76  
GPIO1_77  
GPIO1_78  
PADCONFIG J19  
_165  
MMC1_CMD UART2_RTS TIMER_IO5  
n
PADCONFIG D19  
_166  
MMC1_SDC UART3_CTS TIMER_IO6  
D
n
PADCONFIG C20  
_167  
MMC1_SDW UART3_RTS TIMER_IO7  
P
n
PADCONFIG E18  
_168  
RESET_REQ  
z
PADCONFIG F16  
_169  
RESETSTAT  
z
PADCONFIG E19  
_170  
USB0_DRVV  
BUS  
GPIO1_79  
PADCONFIG E17  
_171  
PORz_OUT  
ADC0_AIN0  
ADC0_AIN1  
ADC0_AIN2  
ADC0_AIN3  
ADC0_AIN4  
ADC0_AIN5  
ADC0_AIN6  
ADC0_AIN7  
PADCONFIG G20  
_172  
PADCONFIG F20  
_173  
PADCONFIG E21  
_174  
PADCONFIG D20  
_175  
PADCONFIG G21  
_176  
PADCONFIG F21  
_177  
PADCONFIG F19  
_178  
PADCONFIG E20  
_179  
MCU_PADC D6  
ONFIG_0  
MCU_SPI0_  
CS0  
MCU_GPIO0  
_13  
MCU_PADC C6  
ONFIG_1  
MCU_SPI0_ MCU_OBSC MCU_SYSCL  
CS1 LK0 KOUT0  
MCU_GPIO0  
_12  
Copyright © 2021 Texas Instruments Incorporated  
100  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
NAME  
BALL  
NUMBER  
ADDRESS  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x04084008  
MCU_PADC E6  
ONFIG_2  
MCU_SPI0_  
CLK  
MCU_GPIO0  
_11  
0x0408400C  
0x04084010  
0x04084014  
0x04084018  
0x0408401C  
0x04084020  
0x04084024  
0x04084028  
0x0408402C  
0x04084030  
0x04084034  
0x04084038  
0x0408403C  
0x04084040  
0x04084044  
0x04084048  
0x0408404C  
0x04084050  
0x04084054  
0x04084058  
0x0408405C  
0x04084060  
0x04084064  
MCU_PADC E7  
ONFIG_3  
MCU_SPI0_  
D0  
MCU_GPIO0  
_10  
MCU_PADC B6  
ONFIG_4  
MCU_SPI0_  
D1  
MCU_GPIO0  
_4  
MCU_PADC A7  
ONFIG_5  
MCU_SPI1_  
CS0  
MCU_GPIO0  
_5  
MCU_PADC B7  
ONFIG_6  
MCU_SPI1_ MCU_EXT_R  
CS1  
MCU_GPIO0  
_6  
EFCLK0  
MCU_PADC D7  
ONFIG_7  
MCU_SPI1_  
CLK  
MCU_GPIO0  
_7  
MCU_PADC C7  
ONFIG_8  
MCU_SPI1_  
D0  
MCU_GPIO0  
_8  
MCU_PADC C8  
ONFIG_9  
MCU_SPI1_  
D1  
MCU_GPIO0  
_9  
MCU_PADC A9  
ONFIG_10  
MCU_UART0  
_RXD  
MCU_GPIO0  
_3  
MCU_PADC A8  
ONFIG_11  
MCU_UART0  
_TXD  
MCU_GPIO0  
_2  
MCU_PADC D8  
ONFIG_12  
MCU_UART0 MCU_TIMER MCU_SPI0_  
_CTSn _IO0 CS2  
MCU_GPIO0  
_1  
MCU_PADC E8  
ONFIG_13  
MCU_UART0 MCU_TIMER MCU_SPI1_  
_RTSn  
MCU_GPIO0  
_0  
_IO1  
CS2  
MCU_PADC C9  
ONFIG_14  
MCU_UART1  
_RXD  
MCU_GPIO0  
_14  
MCU_PADC D9  
ONFIG_15  
MCU_UART1  
_TXD  
MCU_GPIO0  
_15  
MCU_PADC B8  
ONFIG_16  
MCU_UART1 MCU_TIMER MCU_SPI0_  
_CTSn _IO2 CS3  
MCU_GPIO0  
_16  
MCU_PADC B9  
ONFIG_17  
MCU_UART1 MCU_TIMER MCU_SPI1_  
_RTSn  
MCU_GPIO0  
_17  
_IO3  
CS3  
MCU_PADC E9  
ONFIG_18  
MCU_I2C0_  
SCL  
MCU_GPIO0  
_18  
MCU_PADC A10  
ONFIG_19  
MCU_I2C0_  
SDA  
MCU_GPIO0  
_19  
MCU_PADC A11  
ONFIG_20  
MCU_I2C1_  
SCL  
MCU_GPIO0  
_20  
MCU_PADC B10  
ONFIG_21  
MCU_I2C1_  
SDA  
MCU_GPIO0  
_21  
MCU_PADC B12  
ONFIG_22  
MCU_RESE  
Tz  
MCU_PADC B21  
ONFIG_23  
MCU_PORz  
MCU_PADC B13  
ONFIG_24  
MCU_RESE  
TSTATz  
MCU_GPIO0  
_22  
MCU_PADC A20  
ONFIG_25  
MCU_SAFET  
Y_ERRORn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
101  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-77. Pin Multiplexing (ALV Package) (continued)  
MUXMODE[Bootstrap:0] SETTINGS  
REGISTER  
ADDRESS  
BALL  
NUMBER  
NAME  
0
1
2
3
4
5
6
7
8
9
10  
15  
Bootstrap  
0x04084068  
0x0408406C  
0x04084070  
0x04084074  
0x04084078  
0x0408407C  
0x04084080  
MCU_PADC B11  
ONFIG_26  
TCK  
MCU_PADC D11  
ONFIG_27  
TRSTn  
TDI  
MCU_PADC C11  
ONFIG_28  
MCU_PADC A12  
ONFIG_29  
TDO  
MCU_PADC C12  
ONFIG_30  
TMS  
MCU_PADC D10  
ONFIG_31  
EMU0  
EMU1  
MCU_PADC E10  
ONFIG_32  
MCU_OBSC  
LK0  
Copyright © 2021 Texas Instruments Incorporated  
102  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
6.5 Connections for Unused Pins  
This section describes the Unused/Reserved balls connection requirements.  
Note  
All power balls must be supplied with the voltages specified in Section 7.4, Recommended Operating  
Conditions, unless otherwise specified in Section 6.3, Signal Descriptions.  
Table 6-78. Unused Balls Specific Connection Requirements  
BALL NUMBER  
BALL NAME  
CONNECTION REQUIREMENTS  
Each of these balls must be connected to VSS through a separate  
external pull resistor to ensure these balls are held to a valid logic  
low level if unused.  
TBD  
TBD  
TBD  
Each of these balls must be connected to the corresponding power  
supply through a separate external pull resistor to ensure these balls  
are held to a valid logic high level, if unused.(1)  
F7  
G6  
H7  
J6,  
K7  
L6  
J8  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR_C  
If DDRSS is not used, each of these balls must be connected directly  
to VSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-78. Unused Balls Specific Connection Requirements (continued)  
BALL NUMBER  
BALL NAME  
CONNECTION REQUIREMENTS  
H2  
H1  
J5  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
DDR0_A1  
DDR0_A2  
DDR0_A3  
DDR0_A4  
K5  
F6  
H4  
D2  
C5  
E2  
D4  
D3  
F2  
J2  
DDR0_A5  
DDR0_A6  
L5  
DDR0_A7  
J3  
DDR0_A8  
J4  
DDR0_A9  
K3  
J1  
DDR0_A10  
DDR0_A11  
M5  
K4  
G4  
G5  
G2  
H3  
H5  
F1  
E1  
F4  
F3  
E3  
E4  
B2  
M2  
A3  
A2  
B5  
A4  
B3  
C4  
C2  
B4  
N5  
L4  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_ODT0  
DDR0_ODT1  
DDR0_RESET0_n  
Leave unconnected.  
Note: The DDR0 pins in this list can only be left unconnected when  
VDDS_DDR and VDDS_DDR_C are connected to VSS. The DDR0  
pins must be connected as defined in the AM64x DDR Board Design  
and Layout Guidelines, when VDDS_DDR and VDDS_DDR_C are  
connected to a power source.  
L2  
M3  
N4  
N3  
M4  
N2  
C1  
B1  
N1  
M1  
E5  
F5  
D5  
P12  
P13  
P11  
R14  
VDDA_0P85_SERDES0  
VDDA_0P85_SERDES0  
VDDA_0P85_SERDES0_C  
VDDA_1P8_SERDES0  
If SERDES0 is not used, each of these balls must be connected  
directly to VSS.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 6-78. Unused Balls Specific Connection Requirements (continued)  
BALL NUMBER  
BALL NAME  
CONNECTION REQUIREMENTS  
T13  
SERDES0_REXT  
Leave unconnected.  
W16  
W17  
Y15  
Y16  
AA16  
AA17  
SERDES0_REFCLK0N  
SERDES0_REFCLK0P  
SERDES0_RX0_N  
SERDES0_RX0_P  
SERDES0_TX0_N  
SERDES0_TX0_P  
Note: The SERDES0_REXT pin can only be left unconnected when  
VDDA_0P85_SERDES0, VDDA_0P85_SERDES0_C, and  
VDDA_1P8_SERDES0 are connected to VSS. The  
SERDES0_REXT pin must be connected to VSS through the  
appropriate external resistor when VDDA_0P85_SERDES0,  
VDDA_0P85_SERDES0_C, and VDDA_1P8_SERDES0 are  
connected to a power source.  
(1) To determine which power supply is associated with any IO refer to Section 6.2, Pin Attributes.  
Table 6-79. Reserved Balls Specific Connection Requirements  
BALL NUMBER  
CONNECTION REQUIREMENTS  
D21, F12, F17, G13, H16, K1, K2, V16, W15  
These balls must be left unconnected.  
Note  
All other unused signal balls with a Pad Configuration Register can be left unconnected with their  
multiplexing mode set to GPIO input and internal pulldown resistor enabled.  
Unused balls are defined as those which only connect to a PCB solder pad. This is the only use case  
where internal pull resistors are allowed as the only source/sink to hold a valid logic level.  
Any balls connected to a via, test point, or PCB trace are considered used and must not depend on  
the internal pull resistor to hold a valid logic level.  
Internal pull resistors are weak and may not source enough current to maintain a valid logic level for  
some operating conditions. This may be the case when connected to components with leakage to the  
opposite logic level, or when external noise sources couple to signal traces attached to balls which are  
only pulled to a valid logic level by the internal resistor. Therefore, external pull resistors may be  
required to hold a valid logic level on balls with external connections.  
If balls are allowed to float between valid logic levels, the input buffer may enter a high-current state  
which could damage the IO cell.  
Note  
All other unused signal balls without a Pad Configuration Register can be left unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7 Specifications  
Note  
All specifications listed are preliminary and may change during device characterization.  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
PARAMETER  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX UNIT  
VDD_CORE  
Core supply  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
TBD  
TBD  
2.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDDR_CORE  
VDD_MMC0  
RAM supply  
MMC0 PHY core supply  
MMC0 PLL analog supply  
SERDES0 0.85 V analog supply  
SERDES0 clock 0.85 V analog supply  
USB0 0.85 V analog supply  
DDR PHY IO supply  
VDD_DLL_MMC0  
VDDA_0P85_SERDES0  
VDDA_0P85_SERDES0_C  
VDDA_0P85_USB0  
VDDS_DDR  
VDDS_DDR_C  
VDDS_MMC0  
VDDS_OSC  
DDR clock IO supply  
MMC0 PHY IO supply  
MCU_OSC0 supply  
2.2  
VDDA_MCU  
POR and MCU PLL analog supply  
ADC0 analog supply  
2.2  
VDDA_ADC0  
VDDA_PLL0  
2.2  
Main, PER1, and R5F PLL analog supply  
ARM and DDR PLL analog supply  
PER0 PLL analog supply  
SERDES0 1.8 V analog supply  
USB0 1.8 V analog supply  
TEMP0 analog supply  
2.2  
VDDA_PLL1  
2.2  
VDDA_PLL2  
2.2  
VDDA_1P8_SERDES0  
VDDA_1P8_USB0  
VDDA_TEMP0  
VDDA_TEMP1  
VPP  
2.2  
2.2  
2.2  
TEMP1 analog supply  
2.2  
eFuse ROM programming supply  
IO supply for IO MCU  
TBD  
3.8  
VDDSHV_MCU  
VDDSHV0  
IO supply for IO group 0  
IO supply for IO group 1  
IO supply for IO group 2  
IO supply for IO group 3  
IO supply for IO group 4  
IO supply for IO group 5  
USB0 3.3 V analog supply  
SDIO 3.3 V analog supply  
3.8  
VDDSHV1  
3.8  
VDDSHV2  
3.8  
VDDSHV3  
3.8  
VDDSHV4  
3.8  
VDDSHV5  
3.8  
VDDA_3P3_USB0  
VDDA_3P3_SDIO  
3.8  
TBD  
TBD  
Steady-state max voltage at all fail-safe IO pins  
MCU_I2C0_SCL, MCU_I2C0_SDA,  
I2C0_SCL, I2C0_SDA, EXTINTn,  
MCU_PORz  
VMON_1P8_MCU, VMON_1P8_SOC  
VMON_3P3_MCU, VMON_3P3_SOC  
VMON_VSYS(4)  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
2.2  
3.8  
2.2  
3.6  
V
V
V
V
V
Steady-state max voltage at all other IO pins(3)  
USB0_VBUS(6)  
All other IO pins  
IO supply  
voltage + 0.3  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
PARAMETER  
MIN  
MAX UNIT  
Transient overshoot and undershoot at IO pin  
20% of IO supply voltage for up to 20%  
0.2 × VDD(5)  
V
of the signal period (see Figure 7-1, IO  
Transient Voltage Ranges)  
Latch-up performance  
TBD  
-55  
TBD  
mA  
°C  
TSTG  
Storage temperature  
+150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4, Recommended  
Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This parameter applies to all IO pins which are not fail-safe and the requirement applies to all values of IO supply voltage. For  
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be –  
0.3 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources used  
to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range,  
including power supply ramp-up and ramp-down sequences.  
(4) The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.3.4, System Power  
Supply Monitor Design Guidelines.  
(5) VDD is the voltage on the corresponding power-supply pin(s) for the IO.  
(6) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.3.3, USB  
Design Guidelines.  
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power supply  
voltage. This allows external voltage sources to be connected to these IO terminals when the respective IO  
power supplies are turned off. The MCU_I2C0_SCL, MCU_I2C0_SDA,  
I2C0_SCL, I2C0_SDA,  
EXTINTn, VMON_1P8_MCU, VMON_1P8_SOC, VMON_3P3_MCU, VMON_3P3_SOC, and MCU_PORz are  
the only fail-safe IO terminals. All other IO terminals are not fail-safe and the voltage applied to them should be  
limited to the value defined by the Steady State Max. Voltage at all IO pins parameter in Section 7.1.  
Overshoot = 20% of nominal  
IO supply voltage  
Tovershoot  
Tperiod  
Tundershoot  
Undershoot = 20% of nominal  
IO supply voltage  
A. Tovershoot + Tundershoot < 20% of Tperiod  
Figure 7-1. IO Transient Voltage Ranges  
7.2 ESD Ratings  
VALUE  
TBD  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
TBD  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Power-On Hours (POH)  
COMMERCIAL JUNCTION TEMPERATURE RANGE(1) (2) (3)  
EXTENDED JUNCTION TEMPERATURE RANGE  
JUNCTION TEMP (Tj)  
LIFETIME (POH)  
JUNCTION TEMP (Tj)  
LIFETIME (POH)  
TBD  
0°C to 90°C  
TBD  
-40°C to 105°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
(2) Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted  
temperatures.  
(3) POH is a function of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN  
0.715  
NOM  
0.75  
MAX  
0.79  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD_CORE  
Core supply  
0.75-V operation  
0.85-V operation  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
1.06  
1.14  
1.06  
1.14  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
3.135  
3.135  
3.135  
3.135  
0
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
1.1  
0.895  
0.895  
0.895  
0.895  
0.895  
0.895  
0.895  
1.17  
VDDR_CORE  
RAM supply  
VDD_MMC0  
MMC0 PHY core supply  
MMC0 PLL analog supply  
VDD_DLL_MMC0  
VDDA_0P85_SERDES0  
SERDES0 0.85 V analog supply  
VDDA_0P85_SERDES0_C SERDES0 clock 0.85 V analog supply  
VDDA_0P85_USB0  
VDDS_DDR  
USB0 0.85 V analog supply  
DDR PHY IO supply  
1.1-V operation  
1.2-V operation  
1.1-V operation  
1.2-V operation  
1.2  
1.26  
VDDS_DDR_C  
DDR clock IO supply  
1.1  
1.17  
1.2  
1.26  
VDDS_MMC0  
VDDS_OSC  
MMC0 PHY IO supply  
1.8  
1.89  
MCU_OSC0 supply  
1.8  
1.89  
VDDA_MCU  
POR and MCU PLL analog supply  
ADC0 analog supply  
1.8  
1.89  
VDDA_ADC0  
1.8  
1.89  
VDDA_PLL0  
Main, PER and R5F PLL analog supply  
ARM and DDR PLL analog supply  
PER0 PLL analog supply  
1.8  
1.89  
VDDA_PLL1  
1.8  
1.89  
VDDA_PLL2  
1.8  
1.89  
VDDA_1P8_SERDES0  
VDDA_1P8_USB0  
VDDA_TEMP0  
VDDA_TEMP1  
VPP  
SERDES0 1.8 V analog supply  
USB0 1.8 V analog supply  
1.8  
1.89  
1.8  
1.89  
TEMP0 analog supply  
1.8  
1.89  
TEMP1 analog supply  
1.8  
1.89  
eFuse ROM programming supply  
Voltage monitor for 1.8 V MCU power supply  
Voltage monitor for 1.8 V SoC power supply  
USB0 3.3 V analog supply  
1.8  
1.89  
VMON_1P8_MCU  
VMON_1P8_SOC  
VDDA_3P3_USB0  
VDDA_3P3_SDIO  
VMON_3P3_MCU  
VMON_3P3_SOC  
VMON_VSYS  
USB0_VBUS  
1.8  
1.89  
1.8  
1.89  
3.3  
3.465  
3.465  
3.465  
3.465  
1
SDIO 3.3 V analog supply  
3.3  
Voltage monitor for 3.3 V MCU power supply  
Voltage monitor for 3.3 V SoC power supply  
Voltage monitor pin  
3.3  
3.3  
see(1)  
see(2)  
1.8  
USB Level-shifted VBUS Input  
Dual-voltage IO supply  
0
3.465  
1.89  
VDDSHV_MCU  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
3.3  
3.465  
1.89  
VDDSHV0  
VDDSHV1  
VDDSHV2  
VDDSHV3  
VDDSHV4  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
1.8  
3.3  
3.465  
1.89  
1.8  
3.3  
3.465  
1.89  
1.8  
3.3  
3.465  
1.89  
1.8  
3.3  
3.465  
1.89  
1.8  
3.3  
3.465  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
www.ti.com  
UNIT  
SPRSP56 – JANUARY 2021  
over operating free-air temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN  
1.71  
NOM  
1.8  
3.3  
MAX  
1.89  
3.465  
VDDSHV5  
Dual-voltage IO supply  
1.8-V operation  
3.3-V operation  
Extended  
V
V
3.135  
-40  
0
TJ  
Operating junction temperature range  
105  
90  
°C  
Commercial  
(1) The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.3.4, System Power  
Supply Monitor Design Guidelines.  
(2) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.3.3, USB  
Design Guidelines.  
7.5 Operating Performance Points  
This section describes the operating conditions of the device. This section also contains the description of each  
Operating Performance Point (OPP) for processor clocks and device core clocks.  
Table 7-1 describes the maximum supported frequency per speed grade for the device.  
Table 7-1. Speed Grade Maximum Frequency  
MAXIMUM FREQUENCY (MHz)  
DEVICE  
SPEED  
GRADE  
A53SS  
R5FSS  
M4FSS CBASS0  
ICSSG  
DMSC-L  
DDR4  
LPDDR4  
AM64x  
AM64x  
S
K
1000  
800  
800  
400  
400  
400  
250  
250  
333  
250  
TBD  
TBD  
800 (DDR-1600)(1)  
800 (DDR-1600)(1)  
TBD(1)  
TBD(1)  
(1) Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation.  
7.6 Power Consumption Summary  
For information on the device power consumption contact your TI Representative.  
7.7 Electrical Characteristics  
Note  
The interfaces or signals described in Section 7.7.1 through correspond to the interfaces or signals  
available in multiplexing mode 0 (Primary Function).  
All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical  
characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC  
electrical characteristics are specified for the different multiplexing modes (Functions).  
7.7.1 I2C, Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BALL NAMES in Mode 0: MCU_I2C0_SCL / MCU_I2C0_SDA / I2C0_SCL / I2C0_SDA / EXTINTn  
BALL NUMBERS: E9, A10, A18, B18, C19  
1.8 V MODE  
VIL  
Input Low Voltage  
0.3 × VDD(1)  
0.3 × VDD(1)  
TBD  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.7 × VDD(1)  
0.7 × VDD(1)  
0.1 × VDD(1)  
V
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Output Low Voltage  
V
mV  
µA  
V
VI = 1.8 V or 0 V  
VOL(MAX)  
±10  
0.2 × VDD(1)  
VOL  
IOL  
Low Level Output Current  
20  
mA  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SRI  
Input Slew Rate  
TBD  
V/s  
3.3 V MODE (2)  
VIL  
Input Low Voltage  
0.3 × VDD(1)  
0.25 × VDD(1)  
TBD  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.7 × VDD(1)  
0.7 × VDD(1)  
0.05 × VDD(1)  
V
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Output Low Voltage  
V
mV  
µA  
V
VI = 3.3 V or 0 V  
VOL(MAX)  
±10  
0.4  
VOL  
IOL  
Low Level Output Current  
Input Slew Rate  
20  
mA  
V/s  
SRI  
TBD  
8E + 7  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table  
6-1, Pin Attributes, POWER column.  
(2) I2C HS-mode is not supported when operating the IO in 3.3 V mode.  
7.7.2 Fail-Safe Reset (FS RESET) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BALL NAMES in Mode 0: MCU_PORz  
BALL NUMBERS: B21  
VIL  
Input Low Voltage  
0.3 ×  
V
VDDS_OSC  
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
TBD  
V
V
0.7 ×  
VDDS_OSC  
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Input Slew Rate  
TBD  
200  
V
mV  
µA  
V/s  
VI = 1.8 V or 0 V  
±10  
SRI  
TBD  
7.7.3 High-Frequency Oscillator (HFOSC) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BALL NAMES in Mode 0: MCU_OSC0_XI  
BALL NUMBERS: C21  
VIL  
Input Low Voltage  
0.35 ×  
VDDS_OSC  
V
V
VIH  
Input High Voltage  
0.65 ×  
VDDS_OSC  
VHYS  
IIN  
Input Hysteresis Voltage  
Input Leakage Current.  
49  
mV  
µA  
VI = 1.8 V or 0 V  
±TBD  
7.7.4 eMMCPHY Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BALL NAMES in Mode 0: MMC0_DAT[7:0] / MMC0_CLK / MMC0_CMD / MMC0_DS  
BALL NUMBERS: G17, H18, H19, H17, J17, J18, J20, K20, G18, J21, G19  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIL  
Input Low Voltage  
-0.3  
0.35 ×  
VDDS_MMC  
0
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
TBD  
V
V
0.65 ×  
VDDS_MMC  
0
VDDS_MMC  
0 + 0.3  
VIHSS  
IIN  
Input High Voltage Steady State  
Input Leakage Current.  
Tri-state Output Leakage Current.  
Pull-up Resistor  
TBD  
V
VI = 1.8 V or 0 V  
VO = 1.8 V or 0 V  
±10  
±10  
50  
±10  
±10  
59  
pA  
pA  
kΩ  
kΩ  
V
IOZ  
RPU  
RPD  
VOL  
42  
42  
Pull-down Resistor  
50  
59  
Output Low Voltage  
0.15 ×  
VDDS_MMC  
0
VOH  
Output High Voltage  
0.85 ×  
VDDS_MMC  
0
V
IOL  
Low Level Output Current  
High Level Output Current  
Input Slew Rate  
VOL(MAX)  
VOH(MIN)  
TBD  
TBD  
TBD  
mA  
mA  
V/s  
IOH  
SRI  
7.7.5 SDIO Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BALL NAMES in Mode 0: MMC1_DAT[3:0] / MMC1_CLK / MMC1_CMD  
BALL NUMBERS: K18, K19, L21, K21, L20, J19  
1.8 V MODE  
VIL  
Input Low Voltage  
0.58  
0.58  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
1.27  
1.7  
V
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Pull-up Resistor  
V
150  
mV  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
±10  
60  
RPU  
RPD  
VOL  
VOH  
40  
40  
50  
50  
Pull-down Resistor  
60  
Output Low Voltage  
0.45  
Output High Voltage  
VDDSHV5 -  
0.45  
V
IOL  
Low Level Output Current  
High Level Output Current  
Input Slew Rate  
VOL(MAX)  
VOH(MIN)  
4
4
mA  
mA  
V/s  
IOH  
SRI  
TBD  
3.3 V MODE  
VIL  
Input Low Voltage  
0.25 ×  
VDDSHV5  
V
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.15 ×  
VDDSHV5  
0.625 ×  
VDDSHV5  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIHSS  
Input High Voltage Steady State  
0.625 ×  
V
VDDSHV5  
VHYS  
IIN  
Input Hysteresis Voltage  
Input Leakage Current.  
Pull-up Resistor  
150  
mV  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
±10  
60  
RPU  
RPD  
VOL  
40  
40  
50  
50  
Pull-down Resistor  
Output Low Voltage  
60  
0.125 ×  
VDDSHV5  
VOH  
Output High Voltage  
0.75 ×  
V
VDDSHV5  
IOL  
Low Level Output Current  
High Level Output Current  
Input Slew Rate  
VOL(MAX)  
VOH(MIN)  
6
10  
mA  
mA  
V/s  
IOH  
SRI  
TBD  
7.7.6 LVCMOS Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BALL NAMES: ALL other IOs  
BALL NUMBERS: ALL other IOs  
1.8-V MODE  
VIL  
Input Low Voltage  
0.35 × VDD(1)  
0.3 × VDD(1)  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.65 × VDD(1)  
0.85 × VDD  
150  
V
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Pull-up Resistor  
V
mV  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
±10  
30  
RPU  
RPD  
VOL  
VOH  
IOL  
15  
15  
22  
22  
Pull-down Resistor  
30  
Output Low Voltage  
0.45  
Output High Voltage  
VDD(1) - 0.45  
V
Low Level Output Current  
High Level Output Current  
Input Slew Rate  
VOL(MAX)  
VOH(MIN)  
3
3
mA  
mA  
V/s  
IOH  
SRI  
TBD  
3.3-V MODE  
VIL  
Input Low Voltage  
0.8  
0.6  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
2.0  
2.0  
V
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Pull-down Resistor  
V
150  
mV  
µA  
kΩ  
V
VI = 3.3 V or 0 V  
±10  
30  
RPD  
VOL  
VOH  
IOL  
15  
22  
Output Low Voltage  
0.4  
Output High Voltage  
2.4  
5
V
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MIN)  
mA  
mA  
IOH  
9
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SRI  
Input Slew Rate  
TBD  
V/s  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table  
6-1, Pin Attributes, POWER column.  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.7.7 ADC12B Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
BALL NAMES in Mode 0: ADC0_AIN[7:0]  
BALL NUMBERS: TBD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VADC_AIN[7:0]  
DNL  
Full-scale Input Range  
VSS  
-1  
VDDA_ADC0  
V
Differential Non-Linearity  
Integral Non-Linearity  
Gain Error  
0.5  
±1  
±2  
±2  
5.5  
70  
2
LSB  
LSB  
LSB  
LSB  
pF  
INL  
±3  
LSBGAIN-ERROR  
LSBOFFSET-ERROR  
CIN  
Offset Error  
Input Sampling Capacitance  
Signal-to-Noise Ratio  
SNR  
Input Signal: 200 kHz sine wave  
at -0.5 dB Full Scale  
dB  
THD  
Total Harmonic Distortion  
Input Signal: 200 kHz sine wave  
at -0.5 dB Full Scale  
75  
80  
69  
dB  
dB  
dB  
Ω
SFDR  
Spurious Free Dynamic Range  
Signal-to-Noise Plus Distortion  
Input Signal: 200 kHz sine wave  
at -0.5 dB Full Scale  
SNR(PLUS)  
RADC_AIN[0:7]  
IIN  
Input Signal: 200 kHz sine wave  
at -0.5 dB Full Scale  
Input Impedance of  
ADC0_AIN[7:0]  
f = input frequency  
[1/((65.97 × 10–-12) ×  
fSMPL_CLK)]  
Input Leakage  
ADC0_AIN[7:0] = VSS  
4
μA  
μA  
ADC0_AIN[7:0] = VDDA_ADC0  
10  
Sampling Dynamics  
FSMPL_CLK  
tC  
SMPL_CLK Frequency  
Conversion Time  
60  
13  
MHz  
ADC0 SMPL_CLK  
Cycles  
tACQ  
Acquisition time  
2
257 ADC0 SMPL_CLK  
Cycles  
TR  
Sampling Rate  
ADC0 SMPL_CLK = 60 MHz  
4
MSPS  
dB  
CCISO  
Channel to Channel Isolation  
100  
General Purpose Input Mode (1)  
VIL  
Input Low Voltage  
0.35 × VDDA_ADC0  
0.35 × VDDA_ADC0  
V
V
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.65 × VDDA_ADC0  
0.65 × VDDA_ADC0  
VIHSS  
Input High Voltage Steady State  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VHYS  
II  
Input Hysteresis Voltage  
Input Leakage Current  
200  
mV  
μA  
ADC0_AIN[7:0] = VDDA_ADC0  
or VSS  
2
(1) ADC0 can be configured to operate in General Purpose Input mode, where all ADC0_AIN[7:0] inputs are globally enabled to operate as digital inputs via the ADC0_CTRL register  
(gpi_mode_en = 1).  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.7.8 USB2PHY Electrical Characteristics  
Note  
USB0 interface is compliant with Universal Serial Bus Revision 2.0 Specification dated April 27, 2000  
including ECNs and Errata as applicable.  
7.7.9 SERDES Electrical Characteristics  
Note  
The PCIe interface is compliant with the electrical parameters specified in PCI Express® Base  
Specification Revision 4.0, February 19, 2014.  
Note  
USB0 instance is compliant with the USB3.1 SuperSpeed Transmitter and Receiver Normative  
Electrical Parameters as defined in the Universal Serial Bus 3.1 Specification, Revision 1.0 , July 26,  
2013.  
7.7.10 DDR Electrical Characteristics  
Note  
The DDR interface is compatible with DDR4 and LPDDR4 devices  
7.8 VPP Specifications for One-Time Programmable (OTP) eFuses  
This section specifies the operating conditions required for programming the OTP eFuses .  
7.8.1 Recommended Operating Conditions for OTP eFuse Programming  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
VDD_CORE  
Supply voltage range for the core domain during OTP  
operation; OPP NOM (BOOT)  
See Section 7.4  
V
VPP  
Supply voltage range for the eFuse ROM domain during  
normal operation without hardware support to program  
eFuse ROM  
NC  
0
V
V
V
Supply voltage range for the eFuse ROM domain during  
normal operation with hardware support to program eFuse  
ROM  
Supply voltage range for the eFuse ROM domain during  
OTP programming(1)  
1.71  
1.8  
1.89  
I(VPP)  
SR(VPP)  
Tj  
VPP current  
TBD  
6E + 4  
85  
mA  
V/s  
°C  
VPP Slew Rate  
Temperature (ambient)  
0
25  
(1) Supply voltage range includes DC errors and peak-to-peak noise. TI power management solutions TLV70718 from the TLV707x family  
is a example device that meets the supply voltage range needed for VPP.  
7.8.2 Hardware Requirements  
The following hardware requirements must be met when programming keys in the OTP eFuses:  
The VPP power supply must be disabled when not programming OTP registers.  
The VPP power supply must be ramped up after the proper device power-up sequence (for more details, see  
Section 7.10.2, Power Supply Sequencing).  
7.8.3 Programming Sequence  
Programming sequence for OTP eFuses:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Power on the board per the power-up sequencing. No voltage should be applied on the VPP terminal during  
power up and normal operation.  
Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP  
software package).  
Apply the voltage on the VPP terminal according to the specification in Section 7.8.1.  
Run the software that programs the OTP registers.  
After validating the content of the OTP registers, remove the voltage from the VPP terminal.  
7.8.4 Impact to Your Hardware Warranty  
You accept that e-Fusing the TI Devices with security keys permanently alters them. You acknowledge that the  
e-Fuse can fail, for example, due to incorrect or aborted program sequence or if you omit a sequence step.  
Further the TI Device may fail to secure boot if the error code correction check fails for the Production Keys or if  
the image is not signed and optionally encrypted with the current active Production Keys. These types of  
situations will render the TI Device inoperable and TI will be unable to confirm whether the TI Devices conformed  
to their specifications prior to the attempted e-Fuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY  
(WARRANTY OR OTHERWISE) FOR ANY TI DEVICES THAT HAVE BEEN e-FUSED WITH SECURITY KEYS.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.9 Thermal Resistance Characteristics  
This section provides the thermal resistance characteristics used on this device.  
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below  
the TJ value identified in Section 7.4, Recommended Operating Conditions.  
7.9.1 Thermal Resistance Characteristics for ALV Package  
It is recommended to perform thermal simulations at the system level with the worst case device power consumption.  
ALV PACKAGE  
NO.  
PARAMETER  
DESCRIPTION  
AIR FLOW  
(m/s)(2)  
°C/W(1) (3)  
T1  
JC  
Junction-to-case  
Junction-to-board  
Junction-to-free air  
0.98  
3.87  
12.8  
TBD  
TBD  
TBD  
0.53  
TBD  
TBD  
TBD  
3.74  
TBD  
TBD  
TBD  
N/A  
N/A  
0
T2  
JB  
T3  
T4  
1
JA  
T5  
Junction-to-moving air  
2
T6  
3
T7  
0
T8  
1
ΨJT  
Junction-to-package top  
T9  
2
T10  
T11  
T12  
T13  
T14  
3
0
1
ΨJB  
Junction-to-board  
2
3
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Packages  
(2) m/s = meters per second.  
(3) °C/W = degrees Celsius per watt.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10 Timing and Switching Characteristics  
Note  
The Timing Requirements and Switching Characteristics values may change following the silicon  
characterization result.  
Note  
The default SLEWRATE settings in each pad configuration register must be used to ensure timings,  
unless specific instructions are given otherwise.  
7.10.1 Timing Parameters and Information  
The timing parameter symbols used in Section 7.10 are created in accordance with JEDEC Standard 100. To  
shorten the symbols, some pin names and other related terminologies have been abbreviated in Table 7-2:  
Table 7-2. Timing Parameters Subscripts  
SYMBOL  
PARAMETER  
Cycle time (period)  
Delay time  
c
d
dis  
en  
h
Disable time  
Enable time  
Hold time  
su  
START  
t
Setup time  
Start bit  
Transition time  
Valid time  
v
w
Pulse duration (width)  
Unknown, changing, or don't care level  
Fall time  
X
F
H
High  
L
Low  
R
Rise time  
V
Valid  
IV  
AE  
FE  
LE  
Z
Invalid  
Active Edge  
First Edge  
Last Edge  
High impedance  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.2 Power Supply Sequencing  
This section describes power supply sequencing required to ensure proper device operation. The power supply  
names described in this section comprise a superset of a family of compatible devices. Some members of this  
family will not include a subset of these power supplies and their associated device modules.  
Note  
All power sequence timing shown is preliminary and under evaluation. Updates will be provided as  
details become known during validation testing.  
7.10.2.1 Power Supply Slew Rate Requirement  
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the  
maximum slew rate of supplies to be less than 18 mV/µs. For instance, as shown in Figure 7-2, TI recommends  
having the supply ramp slew for a 1.8-V supply of more than 100 µs.  
Figure 7-2 describes the Power Supply Slew Rate Requirement in the device.  
Supply value  
t
slew rate < 18 mV/μs  
slew > (supply value) / (18 mV/μs)  
or  
supply value × 55.6 μs/V  
SPRT740_ELCH_06  
Figure 7-2. Power Supply Slew and Slew Rate  
7.10.2.2 Power-Up Sequencing  
Figure 7-3 describes the device power-up sequencing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
VSYS  
Note 1  
Note 2  
VSYS, VMON_VSYS  
VMON_VSYS  
(3)  
(3)  
(3)  
(3)  
VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(3)  
,
(3)  
(3)  
VDDSHV4 , VDDSHV5 , VDDA_3P3_SDIO, VDDA_USB0,  
(4)  
VMON_3P3_SOC , VMON_3P3_MCU  
(4)  
(5)  
(5)  
(5)  
(5)  
VDDS_OSC, VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(5)  
,
(5)  
(5)  
VDDSHV4 , VDDSHV5 , VDDA_MCU, VDDA_ADC0, VDDA_PLL0, VDDA_PLL1,  
(6)  
VDDA_PLL2, VDDA_1P8_SERDES0, VDDA_1P8_USB0, VMON_1P8_MCU  
(6)  
VMON_1P8_SOC , VDDA_TEMP0, VDDA_TEMP1, VDDS_MMC0  
,
(7)  
VDDS_DDR , VDDS_DDR_C  
(7)  
(8)  
VDD_CORE  
(9)(10)  
(10)  
VDD_CORE  
, VDDR_CORE , VDDA_0P85_SERDES0_C,  
VDDA_0P85_SERDES0, VDDA_0P85_USB0,  
VDD_DLL_MMC0, VDD_MCU0  
Hi-Z  
(11)  
VPP  
MCU_PORz  
MCU_OSC0_XI, MCU_OSC0_XO  
AM64x_ELCH_01  
Figure 7-3. Power-Up Sequencing  
1. VSYS represents the name of a supply which sources power to the entire system. This supply is expected to  
be a pre-regulated supply that sources power management devices which source all other supplies.  
2. VMON_VSYS input is used to monitor VSYS via an external resistor divider circuit. For more information, see  
Section 9.3.4, System Power Supply Monitor Design Guidelines.  
3. VDDSHV_MCU and VDDSHVx [x=0-5] are dual voltage IO supplies which can be operated at 1.8V or 3.3V  
depending on the application requirements. When any of the VDDSHV_MCU or VDDSHVx [x=0-5] IO  
supplies are operating at 3.3V, they shall be ramped up with other 3.3V supplies during the 3.3V ramp period  
defined by this waveform.  
4. The VMON_3P3_MCU and VMON_3P3_SOC inputs are used to monitor supply voltage and shall be  
connected to the respective 3.3V supply source.  
5. VDDSHV_MCU and VDDSHVx [x=0-5] are dual voltage IO supplies which can be operated at 1.8V or 3.3V  
depending on the application requirements. When any of the VDDSHV_MCU or VDDSHVx [x=0-5] IO  
supplies are operating at 1.8V, they shall be ramped up with other 1.8V supplies during the 1.8V ramp period  
defined by this waveform.  
6. The VMON_1P8_MCU and VMON_1P8_SOC inputs are used to monitor supply voltage and shall be  
connected to the respective 1.8V supply source.  
7. VDDS_DDR and VDDS_DDR_C are expected to be powered by the same source such that they ramp  
together.  
8. VDD_CORE can be operated at 0.75V or 0.85V. When VDD_CORE is operating at 0.75V, it shall be ramped  
up prior to all 0.85V supplies as shown in this waveform.  
9. VDD_CORE can be operated at 0.75V or 0.85V. When VDD_CORE is operating at 0.85V, it shall be ramped  
up with other 0.85V supplies during the 0.85V ramp period defined by this waveform.  
10.VDD_CORE and VDDR_CORE are expected to be powered by the same source such that they ramp  
together when VDD_CORE is operating at 0.85V.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
11.VPP is the 1.8V eFuse programming supply, which shall be left floating (HiZ) or grounded during power-up/  
down sequences and during normal device operation. This supply shall only be sourced while programming  
eFuse.  
7.10.2.3 Power-Down Sequencing  
Figure 7-4 describes the device power-down sequencing.  
VSYS  
VSYS, VMON_VSYS  
VMON_VSYS  
(1)  
(1)  
(1)  
(1)  
VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(1)  
,
(1)  
(1)  
VDDSHV4 , VDDSHV5 , VDDA_3P3_SDIO, VDDA_USB0,  
VMON_3P3_SOC, VMON_3P3_MCU  
(2)  
(2)  
(2)  
(2)  
VDDS_OSC, VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(2)  
,
(2)  
(2)  
VDDSHV4 , VDDSHV5 , VDDA_MCU, VDDA_ADC0, VDDA_PLL0, VDDA_PLL1,  
VDDA_PLL2, VDDA_1P8_SERDES0, VDDA_1P8_USB0, VMON_1P8_MCU,  
VMON_1P8_SOC, VDDA_TEMP0, VDDA_TEMP1, VDDS_MMC0  
VDDS_DDR, VDDS_DDR_C  
(3)  
VDD_CORE  
(4)  
VDD_CORE , VDDR_CORE, VDDA_0P85_SERDES0_C,  
VDDA_0P85_SERDES0, VDDA_0P85_USB0,  
VDD_DLL_MMC0, VDD_MCU0  
VPP  
Hi-Z  
MCU_PORz  
MCU_OSC0_XI, MCU_OSC0_XO  
AM64x_ELCH_02  
Figure 7-4. Power-Down Sequencing  
1. VDDSHV_MCU and VDDSHVx [x=0-5] when operating at 3.3V.  
2. VDDSHV_MCU and VDDSHVx [x=0-5] when operating at 1.8V.  
3. VDD_CORE when operating at 0.75V.  
4. VDD_CORE when operating at 0.85V.  
7.10.3 System Timing  
For more details about features and additional description information on the subsystem multiplexing signals,  
see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Table 7-3. System Timing Conditions  
PARAMETER  
MIN  
0.5  
3
MAX  
UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
2 V/ns  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30 pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.3.1 Reset Timing  
Tables and figures provided in this section define timing requirements and switching characteristics for reset  
related signals.  
Table 7-4. MCU_PORz Timing Requirements  
see Figure 7-5  
NO.  
MIN  
MAX UNIT  
Hold time, MCU_PORz active (low) at Power-up  
after supplies valid (using external crystal)  
RST1  
9500000  
ns  
th(SUPPLIES_VALID - MCU_PORz)  
Hold time, MCU_PORz active (low) at Power-up  
after supplies valid and external clock stable (using  
external LVCMOS oscillator)  
RST2  
1200  
1200  
ns  
ns  
Pulse Width minimum, MCU_PORz low after  
Power-up (without removal of Power or system  
reference clock MCU_OSC0_XI/XO)  
RST3 tw(MCU_PORzL)  
Figure 7-5. MCU_PORz Timing Requirements  
Table 7-5. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see Figure 7-6  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
MCU_RESETSTATz active (low)  
RST4 td(MCU_PORzL-MCU_RESETSTATzL)  
RST5 td(MCU_PORzH-MCU_RESETSTATzH)  
RST6 td(MCU_PORzL-RESETSTATzL)  
RST7 td(MCU_PORzH-RESETSTATzH)  
RST8 tw(MCU_RESETSTATzL)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
MCU_RESETSTATz inactive (high)  
6120*S(1)  
0
ns  
ns  
ns  
ns  
Delay time, MCU_PORz active (low) to  
RESETSTATz active (low)  
Delay time, MCU_PORz active (low) to  
RESETSTATz active (low)  
9195*S(1)  
4040*S(1)  
Pulse Width Minimum MCU_RESETSTATz low  
(SW_MCU_WARMRST)  
Pulse Width Minimum RESETSTATz low  
(SW_MCU_WARMRST, SW_MAIN_PORz, or  
SW_MAIN_WARMRST)  
RST9 tw(RESETSTATzL)  
301200  
ns  
(1) S = MCU_OSC0_XI/XO clock period  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Figure 7-6. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
Table 7-6. MCU_RESETz Timing Requirements  
see Figure 7-7  
NO.  
MIN  
MAX UNIT  
(1)  
RST10 tw(MCU_RESETzL)  
Pulse Width minimum, MCU_RESETz active (low)  
1200  
ns  
(1) This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
Table 7-7. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see Figure 7-7  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_RESETz active (low) to  
MCU_RESETSTATz active (low)  
RST11 td(MCU_RESETzL-MCU_RESETSTATzL)  
0
ns  
Delay time, MCU_RESETz inactive (high) to  
MCU_RESETSTATz inactive (high)  
RST12 td(MCU_RESETzH-MCU_RESETSTATzH)  
RST13 td(MCU_RESETzL-RESETSTATzL)  
966*S(1)  
0
ns  
ns  
ns  
Delay time, MCU_RESETz active (low) to  
RESETSTATz active (low)  
RST14 td(MCU_RESETzH-RESETSTATzH)  
Delay time, MCU_RESETz inactive (high) to  
RESETSTATz inactive (high)  
4040*S(1)  
(1) S = MCU_OSC0_XI/XO clock period  
Figure 7-7. MCU_RESETz, MCU_RESETSTATz, and RESETSTATz Timing Requirements and Switching  
Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-8. RESET_REQz Timing Requirements  
see Figure 7-8  
NO.  
MIN  
MAX UNIT  
(1)  
RST15 tw(RESET_REQzL)  
Pulse Width minimum, RESET_REQz active (low)  
1200  
ns  
(1) This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
Table 7-9. RESETSTATz Switching Characteristics  
see Figure 7-8  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, RESET_REQz active (low) to  
RESETSTATz active (low)  
RST16 td(RESET_REQzL-RESETSTATzL)  
T(1)  
ns  
Delay time, RESET_REQz inactive (high) to  
RESETSTATz inactive (high)  
RST17 td(RESET_REQzH-RESETSTATzH)  
W(2)  
ns  
(1) T = Reset Isolation Time (Software Dependent)  
(2) W = Max [300 μs (Typical) from RESETz_REQz inactive (high), Reset Isolation Time + 300 μs (TYP) from RESET_REQz active (low)]  
Figure 7-8. RESET_REQz and RESETSTATz Timing Requirements and Switching Characteristics  
Table 7-10. EMUx Timing Requirements  
see Figure 7-9  
NO.  
MIN  
MAX UNIT  
Setup time, EMU[1:0] before MCU_PORz inactive  
(high)  
RST18 tsu(EMUx-MCU_PORz)  
3*S(1)  
ns  
Hold time, EMU[1:0] after MCU_PORz inactive  
(high)  
RST19 th(MCU_PORz - EMUx)  
10  
ns  
(1) S = MCU_OSC0_XI/XO clock period  
Figure 7-9. EMUx Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-11. BOOTMODE Timing Requirements  
see Figure 7-10  
NO.  
MIN  
MAX UNIT  
Setup time, BOOTMODE[15:00] before  
PORz_OUT high (External MCU PORz event or  
Software SW_MAIN_PORz)  
RST23 tsu(BOOTMODE-PORz_OUT)  
3*S(1)  
ns  
Hold time, BOOTMODE[15:00] after PORz_OUT  
high (External MCU PORz event, Software  
SW_MAIN_PORz)  
RST24 th(PORz_OUT - BOOTMODE)  
0
ns  
(1) S = MCU_OSC0_XI/XO clock period  
Table 7-12. PORz_OUT Switching Characteristics  
see Figure 7-10  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
PORz_OUT active (low)  
RST25 td(MCU_PORzL-PORz_OUT)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
PORz_OUT inactive (high)  
RST26 td(MCU_PORzH-PORz_OUT)  
RST27 tw(PORz_OUTL)  
0
ns  
ns  
Pulse Width Minimum PORz_OUT low  
(MCU_PORz, SW_MAIN_PORz)  
1200  
Figure 7-10. BOOTMODE Timing Requirements and PORz_OUT Switching Characteristics  
7.10.3.2 Safety Signal Timing  
Tables and figures provided in this section define switching characteristics for MCU_SAFETY_ERRORn.  
Table 7-13. MCU_SAFETY_ERRORn Switching Characteristics  
see Figure 7-11  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Cycle time minimum, MCU_SAFETY_ERRORn  
(PWM mode enabled)  
SFTY1 tc(MCU_SAFETY_ERRORn)  
(P*H)+(P*L)(1) (3) (4)  
ns  
Pulse width minimum, MCU_SAFETY_ERRORn  
active (PWM mode disabled)(5)  
SFTY2 tw(MCU_SAFETY_ERRORn)  
P*R(1) (2)  
50*P(1)  
ns  
ns  
td (ERROR_CONDITION-  
Delay time, ERROR CONDITION to  
MCU_SAFETY_ERRORn active(5)  
SFTY3  
MCU_SAFETY_ERRORnL)  
(1) P = ESM functional clock  
(2) R = Error Pin Counter Pre-Load Register count value  
(3) H = Error Pin PWM High Pre-Load Register count value  
(4) L = Error Pin PWM Low Pre-Load Register count value  
(5) When PWM mode is enabled, MCU_SAFETY_ERRORn stops toggling after RST22 and will maintain its value (either high or low) until  
the error is cleared. When PWM mode is disabled, MCU_SAFETY_ERRORn is active low.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Figure 7-11. MCU_SAFETY_ERRORn Timing Requirements and Switching Characteristics  
7.10.3.3 Clock Timing  
Tables and figures provided in this section define timing requirements and switching characteristics for clock  
signals.  
Table 7-14. Clock Timng Requiements  
see Figure 7-12  
NO.  
MIN  
10  
MAX UNIT  
CLK1 tc(EXT_REFCLK1)  
CLK2 tw(EXT_REFCLK1H)  
CLK3 tw(EXT_REFCLK1L)  
Cycle time minimum, EXT_REFCLK1  
ns  
Pulse Duration minimum, EXT_REFCLK1 high  
Pulse Duration minimum, EXT_REFCLK1 low  
E*0.45(1)  
E*0.45(1)  
E*0.55(1)  
E*0.55(1)  
ns  
ns  
(1) E = EXT_REFCLK1 cycle time  
Figure 7-12. Clock Timing Requirements  
Table 7-15. Clock Switching Characteristics  
see Figure 7-13  
NO.  
PARAMETER  
MIN  
8
MAX UNIT  
CLK4 tc(SYSCLKOUT0)  
CLK5 tw(SYSCLKOUT0H)  
CLK6 tw(SYSCLKOUT0L)  
CLK7 tc(OBSCLK0)  
Cycle time minimum,SYSCLKOUT0  
Pulse Duration minimum, SYSCLKOUT0 high  
Pulse Duration minimum, SYSCLKOUT0 low  
Cycle time minimum, OBSCLK0  
ns  
A*0.4(1)  
A*0.4(1)  
5
A*0.6(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A*0.6(1)  
CLK8 tw(OBSCLK0H)  
CLK9 tw(OBSCLK0L)  
CLK10 tc(CLKOUT0)  
Pulse Duration minimum, OBSCLK0 high  
Pulse Duration minimum,OBSCLK0 low  
Cycle time minimum, CLKOUT0  
B*0.45(2)  
B*0.45(2)  
20  
B*0.55(2)  
B*0.55(2)  
CLK11 tw(CLKOUT0H)  
CLK12 tw(CLKOUT0L)  
Pulse Duration minimum, CLKOUT0 high  
Pulse Duration minimum,CLKOUT0 low  
C*0.4(3)  
C*0.4(3)  
C*0.6(3)  
C*0.6(3)  
(1) A = SYSCLKOUT0 cycle time  
(2) B = OBSCLK0 cycle time  
(3) C = CLKOUT0 cycle time  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Figure 7-13. Clock Switching Characteristics  
7.10.4 Clock Specifications  
7.10.4.1 Input Clocks / Oscillators  
Various external clock inputs/outputs are needed to drive the device. Summary of these input clock signals is as  
follows:  
MCU_OSC0_XO/MCU_OSC0_XI — Еxternal main crystal interface pins connected to internal oscillator  
which sources reference clock and provides reference clock to PLLs within MAIN domain.  
General purpose clock inputs  
– MCU_EXT_REFCLK0 — optional external. Provides system clock input (MCU domain).  
– EXT_REFCLK1 — optional external System clock input (MAIN domain). Optionally PLL2 (PER1) and  
MCASP can be sourced by EXT_REFCLK1 (sourced externally).  
– SERDES0_REFCLK0P/N — SerDes reference clock input for PCIe or Optional USB3.0 interfaces.  
External CPTS reference clock inputs  
– CP_GEMAC_CPTS0_RFT_CLK — CPTS reference clock inputs for CP_GEMAC_CPTS0_RFT_CLK.  
– CPTS_RFT_CLK — CPTS reference clock inputs for CPTS_RFT_CLK.  
Figure 7-14 shows the external input clock sources and the output clocks to peripherals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
DEVICE  
Reference clock output  
CLKOUT  
Selects Main PLL output divide-by-6  
Optional pins to provide reference clock input to the PLLs.  
SYSCLKOUT0  
MCU_SYSCLKOUT0  
MCU_OSC0_XI  
MCU_OSC0_XO  
External main crystal interface pins connected to internal oscillator  
which provides reference clock to PLLs within MCU domain  
and MAIN domain.  
JTAG Clock Input  
TCK  
MCU Warm Reset Input / Device Warm Reset Input  
MCU_RESETz  
MCU_PORz  
MCU Power ON Reset / Device Power ON Reset  
Boot Mode Configuration / devices select  
DDR Differential Clock outputs  
BOOTMODE[15:00]  
DDR0_CK0/DDR0_CK0_n  
SERDES0_REFCLK0P/N  
SerDes reference clock input for PCIe or Optional USB3.0 interfaces  
Observation clock outputs for MCU Domain clock / MAIN Domain clocks  
Optional external System clock inputs - (MCU domain) / (MAIN domain)  
MCU_OBSCLK0 / OBSCLK0  
MCU_EXT_REFCLK0 / EXT_REFCLK1  
CPTS reference clock input for  
CP_GEMAC_CPTS0_RFT_CLK / MCU_CPTS_RFT_CLK  
CP_GEMAC_CPTS0_RFT_CLK /  
CPTS0_RFT_CLK  
J7ES_CLOCK_01  
Figure 7-14. Input Clocks Interface  
For more information about Input clock interfaces, see Clocking section in Device Configuration chapter in the  
device TRM.  
7.10.4.1.1 MCU_OSC0 Internal Oscillator Clock Source  
Figure 7-15 shows the recommended crystal circuit. All discrete components used to implement the oscillator  
circuit should be placed as close as possible to the MCU_OSC0_XI and MCU_OSC0_XO pins.  
Device  
MCU_OSC0_XO  
MCU_OSC0_XI  
Crystal  
CL2  
CL1  
PCB Ground  
AM65x_MCU_OSC_INT_01  
Figure 7-15. MCU_OSC0 Crystal Implementation  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-16 summarizes the  
required electrical constraints.  
Table 7-16. MCU_OSC0 Crystal Circuit Requirements  
PARAMETER  
Fxtal  
MIN  
TYP  
25  
MAX UNIT  
MHz  
Crystal Parallel Resonance Frequency  
Crystal Frequency Stability and Tolerance  
Fxtal  
Ethernet RGMII and RMII  
not used  
±100  
ppm  
Ethernet RGMII and RMII  
using derived clock  
±50  
CL1+PCBXI  
CL2+PCBXO  
CL  
Capacitance of CL1 + CPCBXI  
Capacitance of CL2 + CPCBXO  
Crystal Load Capacitance  
12  
12  
6
24  
24  
12  
7
pF  
pF  
pF  
pF  
pF  
pF  
Ω
Cshunt  
Crystal Circuit Shunt Capacitance  
ESRxtal = 30 Ω  
25 MHz  
25 MHz  
25 MHz  
ESRxtal = 40 Ω  
ESRxtal = 50 Ω  
5
5
ESRxtal  
Crystal Effective Series Resistance  
100  
When selecting a crystal, the system design must consider temperature and aging characteristics of the crystal  
based on worst case environment and expected life expectancy of the system.  
Table 7-17 details the switching characteristics of the oscillator.  
Table 7-17. MCU_OSC0 Switching Characteristics - Crystal Mode  
PARAMETER  
MIN  
TYP  
MAX UNIT  
TBD  
CXI  
XI Capacitance  
pF  
pF  
pF  
ms  
CXO  
CXIXO  
ts  
XO Capacitance  
TBD  
XI to XO Mutual Capacitance  
Start-up Time  
TBD  
4
VDD_MCU (min.)  
VDD_MCU  
VSS  
VDDS_OSC0 (min.)  
VDDS_OSC0  
MCU_OSC0_XO  
tsX  
VSS  
Time  
AM65x_MCU_OSC_STARTUP_02  
Figure 7-16. MCU_OSC0 Start-up Time  
7.10.4.1.1.1 Load Capacitance  
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined  
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors CL1,  
CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to  
MCU_OSC0_XI and MCU_OSC0_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the PCB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
designer should be able to extract parasitic capacitance for each signal trace. The MCU_OSC0 circuits and  
device package have combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic  
capacitance values are defined in Table 7-17.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
MCU_OSC0_XI  
CL1  
CPCBXI  
CXI  
CL2  
CPCBXO  
CXO  
MCU_OSC0_XO  
AM65x_MCU_OSC_CC_05  
Figure 7-17. Load Capacitance  
Load capacitors, CL1 and CL2 in Figure 7-15, should be chosen such that the below equation is satisfied. CL in  
the equation is the load specified by the crystal manufacturer.  
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]  
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the  
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to  
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO = 0.5  
pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) -  
(CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF  
7.10.4.1.1.2 Shunt Capacitance  
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for  
MCU_OSC0 operating conditions defined in Table 7-16. Shunt capacitance, Cshunt, of the crystal circuit is a  
combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal  
circuit components to MCU_OSC0 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB  
designer should be able to extract mutual parasitic capacitance between these signal traces. The device  
package also has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined  
in Table 7-17.  
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is  
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can  
also be minimized by placing a ground trace between these signals when the layout requires them to be routed  
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as  
possible when selecting a crystal.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
MCU_OSC0_XI  
CPCBXIXO  
CXIXO  
CO  
MCU_OSC0_XO  
AM65x_MCU_OSC_SC_06  
Figure 7-18. Shunt Capacitance  
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt  
capacitance specified by the crystal manufacturer.  
Cshunt ≥ CO + CPCBXIXO + CXIXO  
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 Ω,  
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.  
7.10.4.1.2 MCU_OSC0 LVCMOS Digital Clock Source  
Figure 7-19 shows the recommended oscillator connections when MCU_OSC0_XI is connected to a 1.8-V  
LVCMOS square-wave digital clock source.  
Note  
A DC steady-state condition is not allowed on MCU_OSC0_XI when the oscillator is powered up. This  
is not allowed because MCU_OSC0_XI is internally AC coupled to a comparator that may enter a  
unknown state when DC is applied to the input. Therefore, application software should power down  
MCU_OSC0 any time MCU_OSC0_XI is not toggling between logic states.  
Device  
MCU_OSC0_XO  
MCU_OSC0_XI  
PCB Ground  
AM65x_MCU_OSC_EXT_CLK_03  
Figure 7-19. 1.8-V LVCMOS-Compatible Clock Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.4.2 Output Clocks  
The device provides several system clock outputs. Summary of these output clocks are as follows:  
MCU_SYSCLKOUT0  
– SYSCLK0 of from the MCU_PLL controller is divided by 6 and then sent out of the device as a LVCMOS  
clock signal (MCU_SYSCLKOUT0). This signal can be used to test if the MCU chip clock is functioning or  
not.  
MCU_OBSCLK0  
– On the clock output MCU_OBSCLK0, oscillators and PLLs clocks can be observed for tests and debug.  
SYSCLKOUT0  
– SYSCLK0 from the MAIN_PLL controller is divided by 6 and then sent out of the device as a LVCMOS  
clock signal (SYSCLKOUT0). This signal can be used to test if the MAIN chip clock is functioning or not.  
CLKOUT0  
– Reference clock output  
OBSCLK0  
– On the clock output OBSCLK0, oscillators and PLLs clocks can be observed for tests and debug.  
7.10.4.3 PLLs  
Power is supplied to the Phase-Locked Loop circuits (PLLs) by internal regulators that derive their power from  
off-chip power-sources.  
There is one PLL in the MCU domain:  
MCU0_PLL  
There are six PLLs in the MAIN domain:  
ARM0_PLL  
MAIN_PLL  
PER0_PLL  
PER1_PLL  
DDR PLL  
R5F PLL  
Note  
For more information, see:  
Device Configuration / Clocking / PLLs section in the device TRM.  
Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem - Gigabit  
(PRU_ICSSG) section in the device TRM.  
Note  
The input reference clock (MCU_OSC0_XI / MCU_OSC0_XO) is specified and the lock time is  
ensured by the PLL controller, as documented in the Device Configuration chapter in the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5 Peripherals  
7.10.5.1 CPSW3G  
For more details about features and additional description information on the device Gigabit Ethernet MAC, see  
the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
7.10.5.1.1 CPSW3G MDIO Timing  
Table 7-18, Table 7-19, Table 7-20, and Figure 7-20 present timing conditions, requirements, and switching  
characteristics for CPSW3G MDIO.  
Table 7-18. CPSW3G MDIO Timing Conditions  
PARAMETER  
MIN  
0.9  
10  
MAX  
3.6  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
470  
Table 7-19. CPSW3G MDIO Timing Requirements  
see Figure 7-20  
NO.  
PARAMETER  
MIN  
90  
0
MAX  
UNIT  
ns  
MDIO1 tsu(MDIO_MDC)  
MDIO2 th(MDC_MDIO)  
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high  
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high  
ns  
Table 7-20. CPWS3G MDIO Switching Characteristics  
see Figure 7-20  
NO.  
PARAMETER  
MIN  
400  
160  
160  
-150  
MAX  
UNIT  
ns  
MDIO3 tc(MDC)  
Cycle time, MDIO[x]_MDC  
MDIO4 tw(MDCH)  
MDIO5 tw(MDCL)  
MDIO7 td(MDC_MDIO)  
Pulse Duration, MDIO[x]_MDC high  
Pulse Duration, MDIO[x]_MDC low  
Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid  
ns  
ns  
150  
ns  
MDIO3  
MDIO4  
MDIO5  
MDIO[x]_MDC  
MDIO1  
MDIO2  
MDIO[x]_MDIO  
(input)  
MDIO7  
MDIO[x]_MDIO  
(output)  
CPSW2G_MDIO_TIMING_01  
Figure 7-20. CPSW3G MDIO Timing Requirements and Switching Characteristics  
7.10.5.1.2 CPSW3G RMII Timing  
Table 7-21, Table 7-22, Figure 7-21, Table 7-23, Figure 7-22 Table 7-24, and Figure 7-23 present timing  
conditions, requirements, and switching characteristics for CPSW3G RMII.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
MAX UNIT  
Table 7-21. CPSW3G RMII Timing Conditions  
PARAMETER  
MIN  
INPUT CONDITIONS  
VDDSHVx(1) = 1.8V  
VDDSHVx(1) = 3.3V  
0.18  
0.4  
0.54 V/ns  
1.2 V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL Output load capacitance  
3
25  
pF  
(1) x = 0 - 5, where x indicates the respective IO power rail. Refer to Section 6.2 for more information on IO power rail assinments.  
Table 7-22. RMII[x]_REF_CLK Timing Requirements – RMII Mode  
see Figure 7-21  
NO.  
PARAMETER  
tc(REF_CLK)  
tw(REF_CLKH)  
tw(REF_CLKL)  
DESCRIPTION  
Cycle time, RMII[x]_REF_CLK  
MIN  
MAX  
20.001  
13  
UNIT  
ns  
RMII1  
RMII2  
RMII3  
19.999  
Pulse Duration, RMII[x]_REF_CLK High  
Pulse Duration, RMII[x]_REF_CLK Low  
7
7
ns  
13  
ns  
RMII1  
RMII2  
RMII[x]_REF_CLK  
RMII3  
Figure 7-21. CPSW3G RMII[x]_REF_CLK Timing Requirements – RMII Mode  
Table 7-23. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements – RMII Mode  
see Figure 7-22  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
4
MAX  
UNIT  
ns  
RMII4  
tsu(RXD-REF_CLK)  
Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK  
Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK  
Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK  
Hold time RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK  
Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK  
Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
4
ns  
4
ns  
RMII5  
2
ns  
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
2
ns  
2
ns  
RMII4  
RMII5  
RMII[x]_REF_CLK  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RX_ER  
Figure 7-22. CPSW3G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements – RMII  
Mode  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-24. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode  
see Figure 7-23  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
RMII6 td(REF_CLK-TXD)  
Delay time, RMII[x]_REF_CLK High to RMII[x]_  
TXD[1:0] valid  
2
10  
ns  
td(REF_CLK-TX_EN)  
Delay time, RMII[x]_REF_CLK to RMII[x]_TX_EN  
valid  
2
10  
ns  
RMII6  
RMII[x]_REF_CLK  
RMII[x]_TXD[1:0], RMII[x]_TX_EN  
Figure 7-23. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode  
7.10.5.1.3 CPSW3G RGMII Timing  
Table 7-25, Table 7-26, Table 7-27, Figure 7-24, Table 7-28, Table 7-29, and Figure 7-25 present timing  
conditions, requirements, and switching characteristics for CPSW3G RGMII.  
Table 7-25. CPSW3G RGMII Timing Conditions  
PARAMETER  
MIN  
2.64  
2
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
5
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
20  
PCB CONNECTIVITY REQUIREMENTS  
RGMII[x]_RXC,  
RGMII[x]_RD[3:0],  
RGMII[x]_RX_CTL  
50  
50  
ps  
ps  
td(Trace Mismatch  
Propagation delay mismatch across all traces  
Delay)  
RGMII[x]_TXC,  
RGMII[x]_TD[3:0],  
RGMII[x]_TX_CTL  
Table 7-26. RGMII[x]_RXC Timing Requirements – RGMII Mode  
see Figure 7-24  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_RXC  
MODE  
10Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII1 tc(RXC)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
RGMII2 tw(RXCH)  
Pulse duration, RGMII[x]_RXC high  
Pulse duration, RGMII[x]_RXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
RGMII3 tw(RXCL)  
100Mbps  
1000Mbps  
3.6  
4.4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-27. RGMII[x]_RD[3:0], and RGMII[x]_RX_CTL Timing Requirements – RGMII Mode  
see Figure 7-24  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10Mbps  
MIN  
1
MAX UNIT  
RGMII4 tsu(RD-RXC)  
Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC  
high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
1
1
tsu(RX_CTL-RXC)  
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
10Mbps  
1
1
RGMII5 th(RXC-RD)  
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
10Mbps  
1
1
th(RXC-RX_CTL)  
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
1
1
RGMII1  
RGMII2  
RGMII3  
RGMII[x]_RXC(A)  
RGMII4  
RGMII5  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RX_CTL(B)  
1st Half-byte  
RXDV  
2nd Half-byte  
RXERR  
A. RGMII[x]_RXC must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of  
RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC.  
Figure 7-24. CPSW3G RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements - RGMII  
Mode  
Table 7-28. RGMII[x]_TXC Switching Characteristics – RGMII Mode  
see Figure 7-25  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_TXC  
MODE  
10Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII6 tc(TXC)  
RGMII7 tw(TXCH)  
RGMII8 tw(TXCL)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
Pulse duration, RGMII[x]_TXC high  
Pulse duration, RGMII[x]_TXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
100Mbps  
1000Mbps  
3.6  
4.4  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-29. RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL Switching Characteristics – RGMII Mode  
see Figure 7-25  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10Mbps  
MIN  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
MAX UNIT  
RGMII9 tosu(TD-TXC)  
Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC  
high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
tosu(TX_CTL-TXC)  
Output setup time, RGMII[x]_TX_CTL valid to RGMII[x]_TXC  
high/low  
100Mbps  
1000Mbps  
10Mbps  
RGMII10 toh(TXC-TD)  
Output hold time, RGMII[x]_TD[3:0] valid after RGMII[x]_TXC  
high/low  
100Mbps  
1000Mbps  
10Mbps  
toh(TXC-TX_CTL)  
Output hold time, RGMII[x]_TX_CTL valid after  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
RGMII6  
RGMII7  
RGMII8  
RGMII[x]_TXC(A)  
RGMII9  
RGMII[x]_TD[3:0](B)  
RGMII[x]_TX_CTL(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
RGMII10  
A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of  
RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC.  
Figure 7-25. CPSW3G RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics  
- RGMII Mode  
7.10.5.2 DDRSS  
For more details about features and additional description information on the device (LP)DDR4 Memory  
Interface, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed  
Description.  
Table 7-30 and Figure 7-26 present switching characteristics for DDRSS.  
Table 7-30. DDRSS Switching Characteristics  
see Figure 7-26  
NO.  
PARAMETER  
DDR TYPE  
LPDDR4  
DDR4  
MIN  
1.25  
1.25  
MAX UNIT  
20  
ns  
ns  
tc(DDR_CKP/  
1
Cycle time, DDR_CKP and DDR_CKN  
DDR_CKN)  
1.6  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
1
DDR0_CKP  
DDR0_CKN  
Figure 7-26. DDRSS Switching Characteristics  
For more information, see DDR Subsystem (DDRSS) section in Memory Controllers chapter in the device TRM.  
7.10.5.3 ECAP  
Table 7-31, Table 7-32, Figure 7-27, Table 7-33, and Figure 7-28 present timing conditions, requirements, and  
switching characteristics for ECAP.  
Table 7-31. ECAP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
Table 7-32. ECAP Timing Requirements  
see Figure 7-27  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, CAP (asynchronous)  
MIN  
2 + 2P(1)  
MAX  
UNIT  
CAP1 tw(CAP)  
ns  
(1) P = sysclk period in ns.  
CAP1  
CAP  
EPERIPHERALS_TIMNG_01  
Figure 7-27. ECAP Timings Requirements  
Table 7-33. ECAP Switching Characteristics  
see Figure 7-28  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
CAP2 tw(APWM)  
Pulse duration, APWMx high/low  
-2 + 2P(1)  
ns  
(1) P = sysclk period in ns.  
CAP2  
APWM  
EPERIPHERALS_TIMNG_02  
Figure 7-28. ECAP Switching Characteristics  
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.  
7.10.5.4 EPWM  
Table 7-34, Table 7-35, Figure 7-29, Table 7-36, Figure 7-30, Figure 7-31, and Figure 7-32 present timing  
conditions, requirements, and switching characteristics for EPWM.  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-34. EPWM Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
Table 7-35. EPWM Timing Requirements  
see Figure 7-29  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_SYNCI  
MIN  
2 + 2P(1)  
2 + 3P(1)  
MAX  
UNIT  
ns  
PWM6 tw(SYNCIN)  
PWM7 tw(TZ)  
Pulse duration, EHRPWM_TZn_IN low  
ns  
(1) P = sysclk period in ns.  
PWM6  
EHRPWM_SYNCI  
PWM7  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMNG_07  
Figure 7-29. EPWM Timing Requirements  
Table 7-36. EPWM Switching Characteristics  
see Figure 7-30, Figure 7-31, and Figure 7-32  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_A/B high/low  
Pulse duration, EHRPWM_SYNCO  
MIN  
P - 3(1)  
P - 3(1)  
MAX  
UNIT  
PWM1 tw(PWM)  
ns  
ns  
ns  
PWM2 tw(SYNCOUT)  
PWM3 td(TZ-PWM)  
Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B forced  
high/low  
11  
11  
PWM4 td(TZ-PWMZ)  
PWM5 tw(SOC)  
Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B Hi-Z  
Pulse duration, EHRPWM_SOCA/B output  
ns  
ns  
P - 3(1)  
(1) P = sysclk period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PWM1  
EHRPWM_A/B  
PWM1  
PWM2  
EHRPWM_SYNCO  
PWM5  
EHRPWM_SOCA/B  
EPERIPHERALS_TIMNG_04  
Figure 7-30. EHRPWM Switching Characteristics  
PWM3  
EHRPWM_A/B  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMING_05  
Figure 7-31. EHRPWM_TZn_IN to EHRPWM_A/B Forced Switching Characteristics  
PWM4  
EHRPWM_A/B  
EHRPWM_TZn_IN  
Figure 7-32. EHRPWM_TZn_IN to EHRPWM_A/B Hi-Z Switching Characteristics  
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in  
the device TRM.  
7.10.5.5 EQEP  
Table 7-37, Table 7-38, Figure 7-33, and Table 7-39 present timing conditions, requirements, and switching  
characteristics for EQEP.  
Table 7-37. EQEP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
Table 7-38. EQEP Timing Requirements  
see  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2 + 2P(1)  
2 + 2P(1)  
MAX  
UNIT  
ns  
QEP1  
QEP2  
tw(QEP)  
Pulse duration, QEP_A/B  
Pulse duration, QEP_I high  
tw(QEPIH)  
ns  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-38. EQEP Timing Requirements (continued)  
see  
NO.  
PARAMETER  
tw(QEPIL)  
tw(QEPSH)  
tw(QEPSL)  
DESCRIPTION  
Pulse duration, QEP_I low  
MIN  
2 + 2P(1)  
2 + 2P(1)  
2 + 2P(1)  
MAX  
UNIT  
ns  
QEP3  
QEP4  
QEP5  
Pulse duration, QEP_S high  
ns  
Pulse duration, QEP_S low  
ns  
(1) P = sysclk period in ns  
QEP1  
QEP_A/B  
QEP2  
QEP_I  
QEP3  
QEP4  
QEP_S  
QEP5  
EPERIPHERALS_TIMNG_03  
Figure 7-33. EQEP Timing Requirements  
Table 7-39. EQEP Switching Characteristics  
NO.  
PARAMETER  
td(QEP-CNTR)  
DESCRIPTION  
MIN  
MAX  
UNIT  
QEP6  
Delay time, external clock to counter increment  
24  
ns  
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter  
in the device TRM.  
7.10.5.6 FSI  
Table 7-40, Table 7-41, Figure 7-34, Table 7-42, Figure 7-35, Table 7-43, and Figure 7-36 present timing  
conditions, requirements, and switching characteristics for FSI.  
Table 7-40. FSI Timing Conditions  
PARAMETER  
MIN  
0.8  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
Table 7-41. FSI Timing Requirements  
see Figure 7-34  
NO.  
MIN  
MAX  
UNIT  
ns  
FSIR1 tc(RX_CLK)  
Cycle time, FSI_RXn_CLK  
20  
FSIR2 tw(RX_CLK)  
Pulse width, FSI_RXn_CLK low or FSI_RXn_CLK high  
Setup time, FSI_RXn_D[1:0] valid before FSI_RXn_CLK  
Hold time, FSI_RXn_D[1:0] valid after FSI_RXn_CLK  
0.5P - 1(1) 0.5P + 1(1)  
ns  
FSIR3 tsu(RX_D-RX_CLK)  
FSIR4 th(RX_CLK-RX_D)  
3
ns  
2.5  
ns  
(1) P = FSI_RXn_CLK period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
FSIR1  
FSIR2  
FSIR2  
FSI_RXn_CLK  
FSI_RXn_D0  
FSI_RXn_D1  
FSIR3  
FSIR4  
Figure 7-34. FSI Timing Requirements  
Table 7-42. FSI Switching Characteristics - FSI Mode  
see Figure 7-35  
NO.  
PARAMETER  
MODE  
MIN  
20  
0.5p + 1(1)  
0.25P - 2(1)  
MAX UNIT  
FSIT1 tc(TX_CLK)  
Cycle time, FSI_TXn_CLK  
FSI Mode  
FSI Mode  
FSI Mode  
ns  
FSIT2 tw(TX_CLK)  
FSIT3 td(TX_CLK-TX_D)  
Pulse width, FSI_TXn_CLK low or FSI_TXn_CLK high  
0.5P - 1(1)  
ns  
ns  
Delay time, FSI_TXn_D[1:0] valid after FSI_TXn_CLK  
high or FSI_TXn_CLK low  
0.25P +  
2.5(1)  
(1) P = FSI_TXn_CLK period in ns.  
FSIT1  
FSIT2  
FSIT2  
FSI_TXn_CLK  
FSI_TXn_D0  
FSI_TXn_D1  
FSIT3  
Figure 7-35. FSI Switching Characteristics - FSI Mode  
Table 7-43. FSI Switching Characteristics - SPI Mode  
see Figure 7-36  
NO.  
PARAMETER  
MODE  
MIN  
20  
0.5P + 1(1)  
MAX UNIT  
FSIT4 tc(TX_CLK)  
FSIT5 tw(TX_CLK)  
Cycle time, FSI_TXn_CLK  
SPI Mode  
SPI Mode  
SPI Mode  
SPI Mode  
SPI Mode  
ns  
Pulse width, FSI_TXn_CLK low or FSI_TXn_CLK high  
0.5P - 1(1)  
ns  
ns  
ns  
ns  
FSIT6 td(TX_CLKH-TX_D0) Delay time, FSI_TXn_CLK high to FSI_TXn_D0 valid  
3
FSIT7 td(TX_D1-TX_CLK)  
FSIT8 td(TX_CLK-TX_D1)  
Delay time, FSI_TXn_D1 low to FSI_TXn_CLK high  
Delay time, FSI_TXn_CLK low to FSI_TXn_D1 high  
P - 3(1)  
P - 2(1)  
(1) P = FSI_TXn_CLK period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
FSIT4  
FSIT5  
FSIT5  
FSI_TXn_CLK  
FSIT6  
FSI_TXn_D0  
FSI_TXn_D1  
FSIT8  
FSIT7  
Figure 7-36. FSI Switching Characteristics - SPI Mode  
For more information, see Fast Serial Interface section in Peripherals chapter in the device TRM.  
7.10.5.7 GPIO  
Table 7-44, Table 7-45, and Table 7-46 present timing conditions, requirements, and switching characteristics for  
GPIO.  
For more details about features and additional description information on the device GPIO, see the  
corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Note  
The device has multiple GPIO modules. GPIOn_x is generic name used to describe a GPIO signal,  
where n represents the specific GPIO module and x represents one of the input/output signals  
associated with the module.  
Table 7-44. GPIO Timing Conditions  
PARAMETER  
BUFFER TYPE  
MIN  
MAX UNIT  
INPUT CONDITIONS  
LVCMOS  
0.75  
TBD  
6.6 V/ns  
SRI  
Input slew rate  
I2C OD FS  
TBD V/ns  
OUTPUT CONDITIONS  
LVCMOS  
3
3
10  
pF  
pF  
CL  
Output load capacitance  
I2C OD FS  
100  
Table 7-45. GPIO Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
BUFFER TYPE  
MIN  
MAX UNIT  
LVCMOS  
2P + 2.6(1)  
2P + 2.6(1)  
ns  
ns  
GPIO1 tw(GPIO_IN)  
Pulse width, GPIOn_x  
I2C OD FS  
(1) P = functional clock period in ns.  
Table 7-46. GPIO Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
BUFFER TYPE  
MIN  
MAX UNIT  
-3.6 +  
LVCMOS  
ns  
ns  
0.975P(1)  
GPIO2 tw(GPIO_OUT)  
Pulse width, GPIOn_x  
I2C OD FS  
160  
(1) P = functional clock period in ns.  
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.8 GPMC  
For more details about features and additional description information on the device General-Purpose Memory  
Controller, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed  
Description.  
7.10.5.8.1 GPMC and NOR Flash — Synchronous Mode  
Section 7.10.5.8.1.1 and Section 7.10.5.8.1.2 assume testing over the recommended operating conditions and  
electrical characteristic conditions below (see Figure 7-37 through Figure 7-41).  
7.10.5.8.1.1 GPMC and NOR Flash Timing Requirements — Synchronous Mode  
MIN  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
Setup time, input data  
GPMC_AD[15:0] valid before output  
clock GPMC_CLK high  
MODE(2)  
UNIT  
100 MHz  
133 MHz  
F12 tsu(dV-clkH)  
F13 th(clkH-dV)  
F21 tsu(waitV-clkH)  
F22 th(clkH-waitV)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
1.81  
1.11  
ns  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
1.06  
1.78  
1.78  
1.81  
1.06  
1.78  
1.78  
3.50  
2.28  
1.78  
1.11  
3.50  
2.28  
1.78  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold time, input data  
GPMC_AD[15:0] valid after output  
clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Setup time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j] valid before output  
clock GPMC_CLK high(1)  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Hold time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j] valid after output  
clock GPMC_CLK high(1)  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
(1) In GPMC_WAIT[j], j is equal to 0 or 1.  
(2) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For not_div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 1h to 3h:  
GPMC_CLK frequency = GPMC_FCLK frequency / (2 to 4)  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.8.1.2 GPMC and NOR Flash Switching Characteristics – Synchronous Mode  
MIN  
100 MHz  
10.00  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(18)  
UNIT  
(2)  
133 MHz  
F0 1 / tc(clk)  
F1 tw(clkH)  
F1 tw(clkL)  
tdc(clk)  
Period, output clock GPMC_CLK(16)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
7.52  
ns  
Typical pulse duration, output clock  
GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-0.3+0.  
-0.3+0.  
ns  
ns  
475*P  
475*P  
(14)  
(14)  
Typical pulse duration, output clock  
GPMC_CLK low  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-0.3+0.  
-0.3+0.  
475*P  
475*P  
(14)  
(14)  
Duty cycle error, output clock  
GPMC_CLK  
div_by_1_mode;  
GPMC_FCLK_MUX;  
-500.00 500.00 -500.00 500.00 ps  
TIMEPARAGRANULARITY_X1  
tJ(clk)  
Jitter standard deviation, output clock  
GPMC_CLK(17)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
33.33  
2.00  
2.00  
2.00  
2.00  
33.33 ps  
2.00 ns  
2.00 ns  
2.00 ns  
2.00 ns  
tR(clk)  
Rise time, output clock GPMC_CLK  
Fall time, output clock GPMC_CLK  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
tF(clk)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
tR(do)  
Rise time, output data  
GPMC_AD[15:0]  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
tF(do)  
Fall time, output data  
GPMC_AD[15:0]  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
F2 td(clkH-csnV)  
Delay time, output clock GPMC_CLK  
rising edge to output chip select  
GPMC_CSn[i] transition(13)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.2+F 3.75+F -2.2+F 3.75+F ns  
(5)  
(5)  
F3 td(clkH-CSn[i]V) Delay time, output clock GPMC_CLK  
rising edge to output chip select  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.2+E 1.3089 -2.2+E 4.5+E ns  
(4)  
(4)  
027178  
0544+E  
GPMC_CSn[i] invalid(13)  
F4 td(aV-clk)  
Delay time, output address  
GPMC_A[27:1] valid to output clock  
GPMC_CLK first edge  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+B 4.5+B -2.3+B 4.5+B ns  
(2)  
(2)  
F5 td(clkH-aIV)  
Delay time, output clock GPMC_CLK  
rising edge to output address  
GPMC_A[27:1] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.30  
4.50  
-2.30  
4.50 ns  
F6 td(be[x]nV-clk)  
Delay time, output lower byte enable  
and command latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
-2.3+B 1.9+B -2.3+B 1.9+B ns  
(2)  
(2)  
GPMC_BE0n_CLE, output upper byte TIMEPARAGRANULARITY_X1  
enable GPMC_BE1n valid to output  
clock GPMC_CLK first edge  
F7 td(clkH-be[x]nIV) Delay time, output clock GPMC_CLK  
rising edge to output lower byte  
div_by_1_mode;  
GPMC_FCLK_MUX;  
-2.3+D 1.9+D -2.3+D 1.9+D ns  
(3)  
(3)  
enable and command latch enable  
TIMEPARAGRANULARITY_X1  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n invalid(10)  
F7 td(clkL-be[x]nIV) Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
invalid(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+D 1.9+D -2.3+D 1.9+D ns  
(3)  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
MIN  
MAX  
MIN  
MAX  
UNIT  
NO.  
PARAMETER  
DESCRIPTION  
MODE(18)  
(2)  
100 MHz  
133 MHz  
F7 td(clkL-be[x]nIV). Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
invalid(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+D 1.9+D -2.3+D 1.9+D ns  
(3)  
(3)  
F8 td(clkH-advn)  
F9 td(clkH-advnIV)  
F10 td(clkH-oen)  
F11 td(clkH-oenIV)  
F14 td(clkH-wen)  
Delay time, output clock GPMC_CLK  
rising edge to output address valid  
and address latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.3+G 4.5+G -2.3+G 4.5+G ns  
(6)  
(6)  
GPMC_ADVn_ALE transition  
Delay time, output clock GPMC_CLK  
rising edge to output address valid  
and address latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.3+D 4.5+D -2.3+D 4.5+D ns  
(3)  
(3)  
GPMC_ADVn_ALE invalid  
Delay time, output clock GPMC_CLK  
rising edge to output enable  
GPMC_OEn_REn transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.3H 3.5+H -2.3+H 3.5+H ns  
(7)  
(7)  
Delay time, output clock GPMC_CLK  
rising edge to output enable  
GPMC_OEn_REn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.3+E 3.5+E -2.3+E 3.5+E ns  
(7)  
(7)  
Delay time, output clock GPMC_CLK  
rising edge to output write enable  
GPMC_WEn transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
-2.3+I  
4.5+I -2.3+I  
4.5+I ns  
(8)  
(8)  
F15 td(clkH-do)  
F15 td(clkL-do)  
F15 td(clkL-do).  
F17 td(clkH-be[x]n)  
Delay time, output clock GPMC_CLK  
rising edge to output data  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+J  
2.7+J -2.3+J  
2.7+J ns  
2.7+J ns  
2.7+J ns  
1.9+J ns  
(9)  
(9)  
GPMC_AD[15:0] transition(10)  
Delay time, GPMC_CLK falling edge  
to GPMC_AD[15:0] data bus  
transition(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+J  
2.7+J -2.3+J  
(9)  
(9)  
Delay time, GPMC_CLK falling edge  
to GPMC_AD[15:0] data bus  
transition(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+J  
2.7+J -2.3+J  
(9)  
(9)  
Delay time, output clock GPMC_CLK  
rising edge to output lower byte  
enable and command latch enable  
GPMC_BE0n_CLE transition(10)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+J  
1.9+J -2.3+J  
(9)  
(9)  
F17 td(clkL-be[x]n)  
Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
transition(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+J  
1.9+J -2.3+J  
1.9+J ns  
1.9+J ns  
(9)  
(9)  
F17 td(clkL-be[x]n).  
Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
transition(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3+J  
1.9+J -2.3+J  
(9)  
(9)  
F18 tw(csnV)  
Pulse duration, output chip select  
GPMC_CSn[i] low(13)  
Read  
Write  
Read  
Write  
0+A  
0+A  
0+C  
0+C  
0+A  
0+A  
0+C  
0+C  
ns  
ns  
ns  
ns  
F19 tw(be[x]nV)  
Pulse duration, output lower byte  
enable and command latch enable  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n low  
F20 tw(advnV)  
Pulse duration, output address valid  
and address latch enable  
GPMC_ADVn_ALE low  
Read  
Write  
0+K  
0+K  
0+K  
0+K  
ns  
ns  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
With n being the page burst access number.  
(2) B = ClkActivationTime × GPMC_FCLK(15)  
(3) For single read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
For burst read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
(4) For single read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(15)  
(5) For csn falling edge (CS activated):  
Case GPMCFCLKDIVIDER = 0:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and  
CSOnTime are even)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(15) if ((CSOnTime - ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(15) if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)  
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(15) if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)  
(6) For ADV falling edge (ADV activated):  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if ((ADVOnTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(15) if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(15) if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)  
(7) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and  
OEOnTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if ((OEOnTime - ClkActivationTime) is a multiple of 3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and  
OEOffTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(15) if ((OEOffTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(15) if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(8) For WE falling edge (WE activated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(15)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and  
WEOnTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if ((WEOnTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK (15)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and  
WEOffTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(15) if ((WEOffTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(15) if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(9) J = GPMC_FCLK(15)  
(10) First transfer only for CLK DIV 1 mode.  
(11) Half cycle; for all data after initial transfer for CLK DIV 1 mode.  
(12) Half cycle of GPMC_CLKOUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLKOUT divide down from GPMC_FCLK.  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
(14) P = GPMC_CLK period in ns  
(15) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(16) Related to the GPMC_CLK output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_i configuration register bit field GPMCFCLKDIVIDER.  
(17) The jitter probability density can be approximated by a Gaussian function.  
(18) For div_by_1_mode:  
GPMC_CONFIG1_i register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
For no extra_delay:  
GPMC_CONFIG2_i Register: CSEXTRADELAY = 0h = CSn Timing control signal is not delayed  
GPMC_CONFIG4_i Register: WEEXTRADELAY = 0h = nWE timing control signal is not delayed  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_CONFIG4_i Register: OEEXTRADELAY = 0h = nOE timing control signal is not delayed  
GPMC_CONFIG3_i Register: ADVEXTRADELAY = 0h = nADV timing control signal is not delayed  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
F6  
GPMC_A[MSB:1]  
Valid Address  
F7  
F19  
F19  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F12  
D 0  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_01  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-37. GPMC and NOR Flash — Synchronous Single Read (GPMCFCLKDIVIDER = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
F1  
F0  
F1  
GPMC_CLK  
GPMC_CSn[i]  
GPMCA[MSB:1]  
F2  
F3  
F4  
F6  
Valid Address  
F7  
GPMC_BE0n_CLE  
GPMC_BE1n  
F7  
F9  
F6  
F8  
F8  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F13  
F12  
D 0  
F22  
F12  
D 3  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 1  
D 2  
F21  
GPMC_02  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-38. GPMC and NOR Flash — Synchronous Burst Read — 4x16–bit (GPMCFCLKDIVIDER = 0)  
F1  
F1  
F0  
GPMC_CLK  
GPMC_CSn[i]  
F2  
F3  
F4  
F6  
Valid Address  
GPMC_A[MSB:1]  
F17  
F17  
F17  
F17  
F17  
F17  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F9  
GPMC_ADVn_ALE  
GPMC_WEn  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 0  
D 3  
GPMC_03  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-39. GPMC and NOR Flash—Synchronous Burst Write (GPMCFCLKDIVIDER = 0)  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
GPMC_CSn[i]  
F6  
F6  
F4  
F7  
GMPC_BE0n_CLE  
Valid  
F7  
Valid  
GPMC_BE1n  
GPMC_A[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
GPMC_AD[15:0]  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
GPMC_ADVn_ALE  
F10  
F11  
GPMC_OEn_REn  
GPMC_WAIT[j]  
GPMC_04  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-40. GPMC and Multiplexed NOR Flash — Synchronous Burst Read  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
F1  
F1  
F0  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
F6  
F6  
GPMC_A[27:17]  
Address (MSB)  
F17  
F17  
F17  
F17  
F17  
F17  
GPMC_BE1n  
BPMC_BE0n_CLE  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
F14  
F14  
GPMC_WEn  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
Address (LSB)  
D 0  
D 3  
F22  
F21  
GPMC_WAIT[j]  
GPMC_05  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-41. GPMC and Multiplexed NOR Flash — Synchronous Burst Write  
7.10.5.8.2 GPMC and NOR Flash — Asynchronous Mode  
Section 7.10.5.8.2.1 and Section 7.10.5.8.2.2 assume testing over the recommended operating conditions and  
electrical characteristic conditions below (see Figure 7-42 through Figure 7-47).  
7.10.5.8.2.1 GPMC and NOR Flash Timing Requirements – Asynchronous Mode  
NO. PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
FA5(1) tacc(d)  
Data access time  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H(4) ns  
TIMEPARAGRANULARITY_X1  
FA2 tacc1-pgmode(d)  
0(2)  
Page mode successive data access time  
Page mode first data access time  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
P(3) ns  
FA2 tacc2-pgmode(d)  
1(1)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H(4) ns  
TIMEPARAGRANULARITY_X1  
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active  
functional clock edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 prameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional  
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(3) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5)  
(4) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5)  
(5) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.8.2.2 GPMC and NOR Flash Switching Characteristics – Asynchronous Mode  
MIN  
MAX  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
133 MHz  
tR(d)  
Rise time, output data GPMC_AD[15:0]  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2.00 ns  
2.00 ns  
tF(d)  
Fall time, output data GPMC_AD[15:0]  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
FA0 tw(be[x]nV)  
Pulse duration, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid time  
Read  
Write  
0+N (12) ns  
0+N (12)  
FA1 tw(csnV)  
Pulse duration, output chip select GPMC_CSn[i](13)  
low  
Read  
Write  
Read  
Write  
0+A (1) ns  
0+A (1)  
FA3 td(csnV-advnIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
-2+B (2)  
-2+B (2)  
2+B (2) ns  
2+B (2)  
FA4 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Single read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+C (3)  
-2+J (9)  
-2+J (9)  
2+C (3) ns  
2+J (9) ns  
2+J (9) ns  
FA9 td(aV-csnV)  
Delay time, output address GPMC_A[27:1] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
FA10 td(be[x]nV-csnV)  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid to output  
chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
FA12 td(csnV-advnV)  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+K (10) 2+K (10) ns  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+L (11) 2+L (11) ns  
Pulse duration output address GPMC_A[26:1]  
invalid between 2 successive read and write  
accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
0+G (7)  
-2+I (8)  
0+D (4)  
-2+E (5)  
-2+F (6)  
ns  
2+I (8) ns  
ns  
FA18 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Burst read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
FA20 tw(aV)  
Pulse duration, output address GPMC_A[27:1]  
valid - 2nd, 3rd, and 4th accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
FA25 td(csnV-wenV)  
FA27 td(csnV-wenIV)  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2+E (5) ns  
2+F (6) ns  
2.00 ns  
2+J (9) ns  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn valid  
to output data GPMC_AD[15:0] valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output data GPMC_AD[15:0] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
-2+J (9)  
TIMEPARAGRANULARITY_X1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
www.ti.com  
MAX  
SPRSP56 – JANUARY 2021  
MIN  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
133 MHz  
FA37 td(oenV-aIV)  
Delay time, output enable GPMC_OEn_REn valid  
to output address GPMC_AD[15:0] phase end  
div_by_1_mode;  
GPMC_FCLK_MUX;  
2.00 ns  
TIMEPARAGRANULARITY_X1  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
with n being the page burst access number  
(2) For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
(3) C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(4) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(6) F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(7) G = Cycle2CycleDelay × GPMC_FCLK(14)  
(8) I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay))  
× GPMC_FCLK(14)  
(9) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)  
(10) K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(11) L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(12) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(15) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
Valid Address  
FA0  
FA10  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA10  
FA3  
FA12  
GPMC_ADVn_ALE  
FA4  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data IN 0  
Data IN 0  
GPMC_WAIT[j]  
GPMC_06  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], jis equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-42. GPMC and NOR Flash — Asynchronous Read — Single Word  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA5  
FA1  
FA1  
GPMC_CSn[i]  
FA16  
FA9  
FA9  
Address 0  
FA0  
Address 1  
FA0  
GPMC_A[MSB:1]  
FA10  
FA10  
FA10  
Valid  
FA0  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
Valid  
FA10  
FA3  
FA3  
FA12  
FA12  
GPMC_ADCn_ALE  
FA4  
FA4  
FA13  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data Upper  
GPMC_WAIT[j]  
GPMC_07  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-43. GPMC and NOR Flash — Asynchronous Read — 32–Bit  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA20  
FA20  
Add1  
FA21  
FA20  
Add2  
FA1  
GPMC_CSn[i]  
FA9  
Add0  
Add3  
Add4  
GPMC_A[MSB:1]  
FA0  
FA10  
FA10  
GPMC_BE0n_CLE  
FA0  
GPMC_BE1n  
FA12  
GPMC_ADVn_ALE  
FA18  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
D3  
D0  
D1  
D2  
D3  
GPMC_WAIT[j]  
GPMC_08  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by  
active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC  
functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock  
edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input  
page data). FA20 value must be stored in PageBurstAccessTime register bits field.  
D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-44. GPMC and NOR Flash — Asynchronous Read — Page Mode 4x16–Bit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid Address  
FA0  
FA10  
FA10  
FA0  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
FA29  
Data OUT  
GPMC_09  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-45. GPMC and NOR Flash — Asynchronous Write — Single Word  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA1  
FA5  
GPMC_CSn[i]  
FA9  
Address (MSB)  
FA0  
GPMC_A[27:17]  
FA10  
FA10  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA0  
Valid  
FA3  
FA12  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_10  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-46. GPMC and Multiplexed NOR Flash — Asynchronous Read — Single Word  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
GPMC_A[27:17]  
FA9  
Address (MSB)  
FA0  
FA10  
FA10  
GPMC_BE0n_CLE  
GPMC_BE1n  
FA0  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
FA29  
FA28  
GPMC_AD[15:0]  
Valid Address (LSB)  
Data OUT  
GPMC_WAIT[j]  
GPMC_11  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-47. GPMC and Multiplexed NOR Flash — Asynchronous Write — Single Word  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.8.3 GPMC and NAND Flash — Asynchronous Mode  
Section 7.10.5.8.3.1 and Section 7.10.5.8.3.2 assume testing over the recommended operating conditions and  
electrical characteristic conditions below (see Figure 7-48 through Figure 7-51).  
For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the  
device TRM.  
7.10.5.8.3.1 GPMC and NAND Flash Timing Requirements – Asynchronous Mode  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(4)  
UNIT  
133 MHz  
GNF12(1) tacc(d)  
Access time, input data GPMC_AD[15:0](3)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
J(2) ns  
TIMEPARAGRANULARITY_X1  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
7.10.5.8.3.2 GPMC and NAND Flash Switching Characteristics – Asynchronous Mode  
NO.  
PARAMETER  
MODE(3)  
MIN  
MAX UNIT  
tR(d)  
Rise time, output data GPMC_AD[15:0]  
div_by_1_mode;  
GPMC_FCLK_MUX;  
2.00 ns  
TIMEPARAGRANULARITY_X1  
tF(d)  
Fall time, output data GPMC_AD[15:0]  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2.00 ns  
TBD ns  
2+B ns  
2+C ns  
2+D ns  
2+E ns  
2+F ns  
GNF0 tw(wenV)  
Pulse duration, output write enable GPMC_WEn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
0+A  
-2+B  
-2+C  
-2+D  
-2+E  
-2+F  
GNF1 td(csnV-wenV)  
GNF2 tw(cleH-wenV)  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
GNF5 tw(wenIV-cleIV)  
Delay time, output chip select GPMC_CSn[i](2)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE high to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output data GPMC_AD[15:0] valid to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn  
invalid to output data GPMC_AD[15:0] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn  
invalid to output lower-byte enable and command  
latch enable GPMC_BE0n_CLE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
NO.  
PARAMETER  
MODE(3)  
MIN  
MAX UNIT  
GNF6 tw(wenIV-CSn[i]V) Delay time, output write enable GPMC_WEn  
invalid to output chip select GPMC_CSn[i](2)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+G  
2+G ns  
GNF7 tw(aleH-wenV)  
GNF8 tw(wenIV-aleIV)  
GNF9 tc(wen)  
Delay time, output address valid and address latch  
enable GPMC_ADVn_ALE high to output write  
enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+C  
-2+F  
2+C ns  
2+F ns  
0+H ns  
2+I ns  
0+K ns  
ns  
Delay time, output write enable GPMC_WEn  
invalid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Cycle time, write  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF10 td(csnV-oenV)  
Delay time, output chip select GPMC_CSn[i](2)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+I  
GNF13 tw(oenV)  
Pulse duration, output enable GPMC_OEn_REn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF14 tc(oen)  
Cycle time, read  
div_by_1_mode;  
GPMC_FCLK_MUX;  
0+L  
TIMEPARAGRANULARITY_X1  
GNF15 tw(oenIV-CSn[i]V) Delay time, output enable GPMC_OEn_REn  
invalid to output chip select GPMC_CSn[i](2)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2+M  
2+M ns  
(1) A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK  
(2) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(3) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF2  
GNF6  
GNF5  
GPMC_BE0n_CLE  
GPMC_ADCn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF0  
GNF3  
GNF4  
GPMC_AD[15:0]  
Command  
GPMC_12  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Figure 7-48. GPMC and NAND Flash — Command Latch Cycle  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GNF1  
GNF7  
GNF6  
GNF8  
GPMC_CSn[i]  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF9  
GNF0  
GNF3  
GNF4  
Address  
GPMC_AD[15:0]  
GPMC_13  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Figure 7-49. GPMC and NAND Flash — Address Latch Cycle  
GPMC_FCLK  
GPMC_CSn[i]  
GNF12  
GNF10  
GNF15  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GNF14  
GNF13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
DATA  
GPMC_14  
A. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock  
edge. GNF12 value must be stored inside AccessTime register bits field.  
B. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-50. GPMC and NAND Flash — Data Read Cycle  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF6  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GNF9  
GNF0  
GPMC_WEn  
GNF3  
GNF4  
GPMC_AD[15:0]  
DATA  
GPMC_15  
A. `In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Figure 7-51. GPMC and NAND Flash — Data Write Cycle  
7.10.5.9 I2C  
For more details about features and additional description information on the device Inter-Integrated Circuit, see  
the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Section 7.10.5.9.1, Table 7-47 and Figure 7-52 assume testing over the recommended operating conditions and  
electrical characteristic conditions.  
7.10.5.9.1 Timing Requirements for I2C Input Timings  
NO.(1) (6) PARAMETER  
DESCRIPTION  
MODE  
Standard  
Fast  
MIN  
10000  
2500  
4700  
600  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
tc(SCL)  
Cycle time, SCL  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tw(SCLL)  
Setup time, SCL high before SDA low (for a repeated START  
condition)  
Standard  
Fast  
Hold time, SCL low after SDA low (for a START and a repeated Standard  
START condition)  
4000  
900  
Fast  
Pulse duration, SCL low  
Standard  
Fast  
4700  
1300  
4000  
600  
tw(SCLH)  
Pulse duration, SCL high  
Standard  
Fast  
tsu(SDAV-SCLH)  
th(SCLL-SDAV)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
Standard  
Fast  
250  
100 (2)  
0(3)  
Standard  
Fast  
3450(4)  
900 (4)  
0(3)  
Pulse duration, SDA high between STOP and START  
conditions  
Standard  
Fast  
4700  
1300  
tr(SDA)  
Rise time, SDA  
Standard  
Fast  
1000  
20*(Vdd/ 300 (3)(7)  
5.5V)(5)(7)  
I10  
tr(SCL)  
Rise time, SCL  
Standard  
Fast  
1000  
20*(Vdd/ 300 (3)(7)  
ns  
ns  
5.5V)(5)(7)  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
NO.(1) (6) PARAMETER  
DESCRIPTION  
MODE  
Standard  
Fast  
MIN  
MAX  
UNIT  
ns  
I11  
I12  
tf(SDA)  
Fall time, SDA  
300  
20*(Vdd/ 300 (3)(7)  
ns  
5.5V)(5)(7)  
tf(SCL)  
Fall time, SCL  
Standard  
Fast  
300  
ns  
ns  
20*(Vdd/  
5.5V)  
300  
I13  
I14  
I15  
I16  
tsu(SCLH-SDAH)  
Setup time, SCL high before SDA high (for STOP condition)  
Pulse duration, spike (must be supressed)  
Skew  
Standard  
Fast  
4000  
600  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
tw(SP)  
Standard  
Fast  
0
50  
3
tskew  
Standard  
Fast  
3
Cb  
Capacitive load for each bus line  
Standard  
Fast  
400  
400  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the devive is powered  
down.  
(2) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)≥ 250 ns must then be  
met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the  
low period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH)= 1000 + 250 = 1250 ns (according to  
the Standard-mode I2C-Bus Specification) before the SCL line is released.  
(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(4) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
(5) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed  
(6) Software must properly configure the I2C module registers to achieve the timings shown in this table. See the device TRM for details.  
(7) These timings apply only to I2C0 and MCU_I2C0. I2C[3:1] and MCU_I2C1 use standard LVCMOS buffers to emulate open-drain  
buffers and their rise/fall times should be referenced in the device IBIS model.  
Table 7-47. Timing Requirements for I2C HS–Mode  
NO.  
PARAMETER  
DESCRIPTION  
CAPACITANCE  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
100 pF Max  
400 pF Max  
MIN  
294  
588  
160  
160  
160  
160  
160  
320  
60  
MAX UNIT  
I1  
tc(SCL)  
Cycle time, SCL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
I2  
I3  
tsu(SCLH-SDAL)  
th(SDAL-SCLL)  
tw(SCLL)  
Setup time, SCL high before SDA low (for a  
repeated START condition)  
Hold time, SCL low after SDA low (for a START  
and a repeated START condition)  
I4  
Pulse duration, SCL low  
I5  
tw(SCLH)  
Pulse duration, SCL high  
120  
10  
I6  
tsu(SDAV-SCLH)  
th(SCLL-SDAV)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
10  
I7  
0
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
150  
I13  
I14  
I15  
Setup time, SCL high before SDA high (for  
STOP condition)  
160  
160 (2)  
0
tr(SDA)  
Pulse duration, spike (must be suppressed)  
10 (2)  
tskew  
Skew  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-47. Timing Requirements for I2C HS–Mode (continued)  
NO.  
PARAMETER  
DESCRIPTION  
CAPACITANCE  
MIN  
MAX UNIT  
I16  
Cb(1)  
Capacitive Load for SDA and SCL Lines  
100 pF Max  
100  
400  
pF  
pF  
400 pF Max  
(1) For bus line loads Cb between 100 pF and 400 pF the timing parameters must be linearly interpolated.  
(2) A device must internally provide a Data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH  
signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.  
I11  
I9  
I2C[i]_SDA  
I2C[i]_SCL  
I8  
I6  
I14  
I4  
I13  
I5  
I10  
I12  
I1  
I3  
I7  
I2  
I3  
Stop  
Start  
Repeated  
Start  
Stop  
A. i = 0 to 1 for MCU domain  
i = 0 to 3 for MAIN domain  
Figure 7-52. I2C Receive Timing  
7.10.5.10 MCAN  
Table 7-48 and Table 7-49 presents timing conditions and switching characteristics for MCAN.  
For more details about features and additional description information on the device Controller Area Network  
Interface, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed  
Description.  
Note  
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,  
where n represents the specific MCAN module.  
Table 7-48. MCAN Timing Conditions  
PARAMETER  
MIN  
2
MAX  
15  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
5
20  
Table 7-49. MCAN Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
Delay time, transmit shift register to MCANn_TX  
Delay time, MCANn_RX to receive shift register  
MIN  
MAX  
10  
UNIT  
ns  
MCAN1 td(MCAN_TX)  
MCAN2 td(MCAN_RX)  
10  
ns  
For more information, see Controller Area Network (MCAN) section in Peripherals chapter in the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.11 MCSPI  
For more details about features and additional description information on the device Serial Port Interface, see  
the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Table 7-50 presents timing conditions for MCSPI.  
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
Table 7-50. MCSPI Timing Conditions  
PARAMETER  
MIN  
2
MAX  
8.5  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
6
12  
7.10.5.11.1 MCSPI — Master Mode  
Table 7-51, Figure 7-53, Table 7-52, and Figure 7-54 present timing requirements and switching characteristics  
for SPI – Master Mode.  
Table 7-51. MCSPI Timing Requirements – Master Mode  
see Figure 7-53  
NO.  
SM4  
SM5  
PARAMETER  
tsu(MISO-SPICLK)  
th(SPICLK-MISO)  
DESCRIPTION  
MIN  
2.8  
3
MAX  
UNIT  
ns  
Setup time, SPIn_D[x] valid before SPIn_CLK active edge  
Hold time, SPIn_D[x] valid after SPIn_CLK active edge  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
POL=1  
SPI_SCLK (OUT)  
SM5  
SM5  
SM4  
SM4  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SM2  
SM1  
SM8  
SM3  
SM2  
SM9  
POL=0  
SPI_SCLK (OUT)  
SM1  
SM3  
POL=1  
SPI_SCLK (OUT)  
SM5  
SM4  
SM5  
SM4  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_02  
Figure 7-53. SPI Master Mode Receive Timing  
Table 7-52. MCSPI Switching Characteristics - Master Mode  
see Figure 7-54  
NO.  
PARAMETER  
MIN  
MAX UNIT  
SM1  
SM2  
SM3  
SM6  
SM7  
SM8  
tc(SPICLK)  
Cycle time, SPIn_CLK  
20  
0.5P - 1(1)  
0.5P - 1(1)  
ns  
ns  
ns  
tw(SPICLKL)  
tw(SPICLKH)  
td(SPICLK-SIMO)  
td(CS-SIMO)  
td(CS-SPICLK)  
Pulse duration, SPIn_CLK low  
Pulse duration, SPIn_CLK high  
Delay time, SPIn_CLK active edge to SPIn_D[x]  
Delay time, SPIn_CSi active edge to SPIn_D[x]  
Delay time, SPIn_CSi active to SPIn_CLK first edge  
-3  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
5
PHA = 0  
PHA = 1  
PHA = 0  
PHA = 1  
B - 4 (3)  
A - 4 (2)  
A - 4(2)  
B - 4(3)  
SM9  
td(SPICLK-CS)  
Delay time, SPIn_CLK last edge to SPIn_CSi inactive  
(1) P = SPI_CLK period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
(2) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8 ns, A =  
(TCS + 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.  
(3) B = (TCS + .5) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even >= 2.  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM7  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM1  
SM2  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM6  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
SM6  
Bit 1  
Bit0  
SPRSP08_TIMING_McSPI_01  
Figure 7-54. SPI Master Mode Transmit Timing  
7.10.5.11.2 MCSPI — Slave Mode  
Table 7-53, Figure 7-55, Table 7-54, and Figure 7-56 present timing requirements and switching characteristics  
for SPI – Slave Mode.  
Table 7-53. MCSPI Timing Requirements – Slave Mode  
see Figure 7-55  
NO.  
SS1  
SS2  
SS3  
SS4  
SS5  
SS8  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ns  
tc(SPICLK)  
Cycle time, SPIn_CLK  
20  
0.45P(1)  
0.45P(1)  
tw(SPICLKL)  
Pulse duration, SPIn_CLK low  
ns  
tw(SPICLKH)  
Pulse duration, SPIn_CLK high  
ns  
tsu(SIMO-SPICLK)  
th(SPICLK-SIMO)  
tsu(CS-SPICLK)  
Setup time, SPIn_D[x] valid before SPIn_CLK active edge  
Hold time, SPIn_D[x] valid after SPIn_CLK active edge  
Setup time, SPIn_CSi valid before SPIn_CLK first edge  
5
5
5
ns  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-53. MCSPI Timing Requirements – Slave Mode (continued)  
see Figure 7-55  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
SS9  
th(SPICLK-CS)  
Hold time, SPIn_CSi valid after SPIn_CLK last edge  
5
ns  
(1) P = SPIn_CLK period in ns.  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS2  
POL=1  
SPI_SCLK (IN)  
SS5  
SS4  
SS5  
Bit n-2  
SS4  
Bit n-1  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS3  
POL=1  
SPI_SCLK (IN)  
SS4  
SS5  
SS4  
SS5  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_04  
Figure 7-55. SPI Slave Mode Receive Timing  
Table 7-54. MCSPI Switching Characteristics – Slave Mode  
see Figure 7-56  
NO.  
SS6  
SS7  
PARAMETER  
td(SPICLK-SOMI)  
tsk(CS-SOMI)  
DESCRIPTION  
Delay time, SPIn_CLK active edge to SPIn_D[x]  
Delay time, SPIn_CSi active edge to SPIn_D[x]  
MIN  
2
MAX  
UNIT  
ns  
17.12  
20.95  
ns  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
POL=1  
SPI_SCLK (IN)  
SS1  
SS2  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS7  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
POL=1  
SS1  
SS3  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS6  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
SS6  
Bit 1  
Bit 0  
SPRSP08_TIMING_McSPI_03  
Figure 7-56. SPI Slave Mode Transmit Timing  
7.10.5.12 MMCSD  
The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC), Secure Digital (SD),  
and Secure Digital IO (SDIO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO protocol at  
transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking  
for syntactical correctness.  
For more details about MMCSD interfaces, see the corresponding MMC0 and MMC1 sections within Section 6.3,  
Signal Descriptions and Section 8, Detailed Description.  
Note  
Some operating modes require software configuration of the MMC DLL delay settings, as shown in  
Table 7-55 and Table 7-64.  
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in  
the device TRM.  
7.10.5.12.1 MMC0 - eMMC Interface  
MMC0 interface is compliant with the JEDEC eMMC electrical standard v5.1 (JESD84-B51) and it supports the  
following eMMC applications:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Legacy speed  
High speed SDR  
High speed DDR  
HS200  
Table 7-55 presents the required DLL software configuration settings for MMC0 timing modes.  
Table 7-55. MMC0 DLL Delay Mapping for All Timing Modes  
REGISTER NAME  
BIT FIELD  
MMCSD0_SS_PHY_CTRL_4_REG  
MMCSD0_SS_PHY_CTRL_5_REG  
[31:24]  
[20]  
[15:12]  
[8]  
[4:0]  
[17:16]  
[10:8]  
[2:0]  
SELDLYTXCLK  
SELDLYRXCLK  
BIT FIELD NAME  
STRBSEL  
OTAPDLYENA  
OTAPDLYSEL  
ITAPDLYENA  
ITAPDLYSEL  
FRQSEL  
CLKBUFSEL  
OUTPUT  
DELAY  
ENABLE  
OUTPUT  
DELAY  
VALUE  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DLL  
DELAY CHAIN  
SELECT  
DELAY  
BUFFER  
DURATION  
STROBE  
DELAY  
DLL REF  
FREQUENCY  
MODE DESCRIPTION  
8-bit PHY  
Legacy  
operating 1.8 V,  
SDR  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
NA  
NA  
0x1  
0x1  
0x1  
0x1  
0x10  
0xA  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
0x4  
0x0  
0x7  
0x7  
0x7  
0x7  
25 MHz  
High  
8-bit PHY  
Speed operating 1.8 V,  
SDR  
High  
50 MHz  
8-bit PHY  
Speed operating 1.8 V,  
0x6  
0x7  
0x3  
DDR  
50 MHz  
8-bit PHY  
HS200 operating 1.8 V,  
200 MHz  
Tuning  
Table 7-56 presents timing conditions for MMC0.  
Table 7-56. MMC0 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
Legacy SDR  
0.14  
0.3  
1.44 V/ns  
0.9 V/ns  
0.9 V/ns  
0.9 V/ns  
High Speed SDR  
SRI  
Input slew rate  
High Speed DDR (CMD)  
High Speed DDR (DAT[7:0])  
0.3  
0.45  
OUTPUT CONDITIONS  
Legacy SDR  
1
1
1
1
12  
12  
12  
6
pF  
pF  
pF  
pF  
High Speed SDR  
CL  
Output load capacitance  
High Speed DDR  
HS200  
PCB CONNECTIVITY REQUIREMENTS  
All modes  
td(Trace Delay)  
Propagation delay of each trace  
126  
756  
100  
8
ps  
ps  
ps  
Legacy SDR, High Speed SDR  
High Speed DDR, HS200  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
Delay)  
7.10.5.12.1.1 Legacy SDR Mode  
Table 7-57, Figure 7-57, Table 7-58, and Figure 7-58 present timing requirements and switching characteristics  
for MMC0 – Legacy SDR Mode.  
Table 7-57. MMC0 Timing Requirements – Legacy SDR Mode  
see Figure 7-57  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
9.69  
MAX  
UNIT  
ns  
SSDR5 tsu(cmdV-clkH)  
SSDR6 th(clkH-cmdV)  
SSDR7 tsu(dV-clkH)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
27.97  
9.69  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-57. MMC0 Timing Requirements – Legacy SDR Mode (continued)  
see Figure 7-57  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
SSDR8 th(clkH-dV)  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
27.97  
ns  
Figure 7-57. MMC0 – Legacy SDR – Receive Mode  
Table 7-58. MMC0 Switching Characteristics – Legacy SDR Mode  
see Figure 7-58  
NO.  
PARAMETER  
fop(clk)  
tc(clk)  
DESCRIPTION  
Operating frequency, MMC0_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
25  
SSDR1  
Cycle time, MMC0_CLK  
40  
18.7  
SSDR2H tw(clkH)  
SSDR2L tw(clkL)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
18.7  
ns  
SSDR3  
SSDR4  
td(clkL-cmdV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
-16.1  
-16.1  
16.1  
16.1  
ns  
td(clkL-dV)  
ns  
SSDR2L  
SSDR1  
SSDR2H  
MMC0_CLK  
MMC0_CMD  
SSDR3  
SSDR4  
MMC0_DAT[7:0]  
J7_MMC0_TIMING_02  
Figure 7-58. MMC0 – Legacy SDR – Transmit Mode  
7.10.5.12.1.2 High Speed SDR Mode  
Table 7-59, Figure 7-59, Table 7-60, and Figure 7-60 present timing requirements and switching characteristics  
for MMC0 – High Speed SDR Mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-59. MMC0 Timing Requirements – High Speed SDR Mode  
see Figure 7-59  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2.99  
2.67  
2.99  
2.67  
MAX  
UNIT  
ns  
HSSDR3 tsu(cmdV-clkH)  
HSSDR4 th(clkH-cmdV)  
HSSDR7 tsu(dV-clkH)  
HSSDR8 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
HSSDR1  
HSSDR2H  
HSSDR2L  
MMC0_CLK  
MMC0_CMD  
HSSDR3  
HSSDR4  
HSSDR7  
HSSDR8  
MMC0_DAT[7:0]  
J7_MMC0_TIMING_03  
Figure 7-59. MMC0 – High Speed SDR Mode – Receive Mode  
Table 7-60. MMC0 Switching Characteristics – High Speed SDR Mode  
see Figure 7-60  
NO.  
PARAMETER  
DESCRIPTION  
Operating frequency, MMC0_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
50  
HSSDR1 tc(clk)  
Cycle time, MMC0_CLK  
20  
9.2  
HSSDR2H tw(clkH)  
HSSDR2L tw(clkL)  
HSSDR5 td(clkL-cmdV)  
HSSDR6 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
9.2  
ns  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
-6.35  
-6.35  
6.35  
6.35  
ns  
ns  
HSSDR1  
HSSDR2H  
HSSDR2L  
MMC0_CLK  
HSSDR5  
HSSDR6  
MMC0_CMD  
MMC0_DAT[7:0]  
J7_MMC0_TIMING_04  
Figure 7-60. MMC0 – High Speed SDR Mode – Transmit Mode  
7.10.5.12.1.3 High Speed DDR Mode  
Table 7-61, Figure 7-61, Table 7-62, and Figure 7-62 present timing requirements and switching characteristics  
for MMC0 – High Speed DDR Mode.  
Table 7-61. MMC0 Timing Requirements – High Speed DDR Mode  
see Figure 7-61  
NO.  
PARAMETER  
tsu(cmdV-clk)  
th(clk-cmdV)  
tsu(dV-clk)  
DESCRIPTION  
MIN  
3.88  
2.67  
0.83  
MAX  
UNIT  
ns  
DDR3  
DDR4  
DDR7  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK transition  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-61. MMC0 Timing Requirements – High Speed DDR Mode (continued)  
see Figure 7-61  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
DDR8  
th(clk-dV)  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK transition  
1.76  
ns  
DDR1  
DDR2H  
DDR2L  
MMC0_CLK  
DDR3  
DDR4  
MMC0_CMD  
DDR8  
DDR8  
DDR8  
DDR8  
DDR7  
DDR7  
DDR7  
DDR7  
MMC0_DAT[7:0]  
J7_MMC0_TIMING_05  
Figure 7-61. MMC0 – High Speed DDR Mode – Receive Mode  
Table 7-62. MMC0 Switching Characteristics – High Speed DDR Mode  
see Figure 7-62  
NO.  
PARAMETER  
fop(clk)  
tc(clk)  
DESCRIPTION  
Operating frequency, MMC0_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
50  
DDR1  
Cycle time, MMC0_CLK  
20  
9.2  
DDR2H tw(clkH)  
DDR2L tw(clkL)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
9.2  
ns  
DDR5  
DDR6  
td(clk-cmdV)  
td(clk-dV)  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK transition to MMC0_DAT[7:0] transition  
3.31  
2.81  
16.19  
6.94  
ns  
ns  
DDR1  
DDR2  
DDR2  
MMC0_CLK  
DDR5  
DDR5  
DDR5  
DDR6  
DDR5  
MMC0_CMD  
DDR6  
DDR6  
DDR6  
DDR6  
DDR6  
MMC0_DAT[7:0]  
J7_MMC0_TIMING_06  
Figure 7-62. MMC0 – High Speed DDR Mode – Transmit Mode  
7.10.5.12.1.4 HS200 Mode  
Table 7-63 and Figure 7-63 present switching characteristics for MMC0 – HS200 Mode.  
Table 7-63. MMC0 Switching Characteristics – HS200 Mode  
see Figure 7-63  
NO.  
PARAMETER  
fop(clk)  
tc(clk)  
DESCRIPTION  
Operating frequency, MMC0_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
200  
HS2001  
Cycle time, MMC0_CLK  
5
HS2002H tw(clkH)  
Pulse duration, MMC0_CLK high  
2.08  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-63. MMC0 Switching Characteristics – HS200 Mode (continued)  
see Figure 7-63  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, MMC0_CLK low  
MIN  
2.08  
0.99  
0.99  
MAX  
UNIT  
ns  
HS2002L tw(clkL)  
HS2005  
HS2006  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[7:0] transition  
3.28  
3.28  
ns  
ns  
HS2001  
HS2002L  
HS2002H  
MMC0_CLK  
MMC0_CMD  
HS2005  
HS2006  
HS2005  
HS2006  
MMC0_DAT[7:0]  
J7_MMC0_TIMING_07  
Figure 7-63. MMC0 – HS200 Mode – Transmit Mode  
7.10.5.12.2 MMC1 - SD/SDIO Interface  
MMC1 interface is compliant with the SD Host Controller Standard Specification 4.10 and SD Physical Layer  
Specification v3.01 as well as SDIO Specification v3.00 and it supports the following SD Card applications:  
Default speed  
High speed  
UHS–I SDR12  
UHS–I SDR25  
UHS–I SDR50  
UHS–I SDR104  
UHS–I DDR50  
Table 7-64 presents the required DLL software configuration settings for MMC1 timing modes.  
Table 7-64. MMC1 DLL Delay Mapping for All Timing Modes  
REGISTER NAME  
BIT FIELD  
MMCSD1_SS_PHY_CTRL_4_REG  
[15:12] [8]  
OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL  
MMCSD1_SS_PHY_CTRL_5_REG  
[20]  
[4:0]  
[2:0]  
BIT FIELD NAME  
CLKBUFSEL  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DELAY  
BUFFER  
DURATION  
DELAY  
ENABLE  
DELAY  
VALUE  
MODE  
DESCRIPTION  
Default  
Speed  
4-bit PHY operating  
3.3 V, 25 MHz  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0xF  
0xF  
0xC  
0x9  
0x6  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
High  
Speed  
4-bit PHY operating  
3.3 V, 50 MHz  
UHS-I  
SDR12  
4-bit PHY operating  
1.8 V, 25 MHz  
0x0  
UHS-I  
SDR25  
4-bit PHY operating  
1.8 V, 50 MHz  
0x0  
UHS-I  
SDR50  
4-bit PHY operating  
1.8 V, 100 MHz  
Tuning  
Tuning  
Tuning  
UHS-I  
DR50  
4-bit PHY operating  
1.8 V, 50 MHz  
UHS-I  
SDR104  
4-bit PHY operating  
1.8, V 200 MHz  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-65 presents timing conditions for MMC1.  
Table 7-65. MMC1 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
Input Conditions  
Default Speed, High Speed  
UHS–I SDR12, UHS–I SDR25  
UHS–I DDR50  
0.69  
0.34  
1
2.06 V/ns  
1.34 V/ns  
SRI  
Input slew rate  
2
V/ns  
Output Conditions  
UHS–I DDR50  
All other modes  
3
1
10  
10  
pF  
pF  
CL  
Output load capacitance  
PCB Connectivity Requirements  
UHS–I DDR50  
240  
126  
1134  
1386  
20  
ps  
ps  
ps  
ps  
td(Trace Delay)  
Propagation delay of each trace  
All other modes  
UHS–I DDR50, UHS–I SDR104  
All other modes  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
Delay)  
100  
7.10.5.12.2.1 Default Speed Mode  
Table 7-66, Figure 7-64, Table 7-67, and Figure 7-65 present timing requirements and switching characteristics  
for MMC1 – Default Speed Mode.  
Table 7-66. Timing Requirements for MMC1 – Default Speed Mode  
see Figure 7-64  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2.55  
MAX  
UNIT  
ns  
DSSD5 tsu(cmdV-clkH)  
DSSD6 th(clkH-cmdV)  
DSSD7 tsu(dV-clkH)  
DSSD8 th(clkH-dV)  
Setup time, MMC1_CMD valid before MMCi_CLK rising edge  
Hold time, MMC1_CMD valid after MMC1_CLK rising edge  
Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge  
Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge  
19.67  
2.55  
ns  
ns  
19.67  
ns  
DSSD2  
DSSD1  
DSSD0  
MMCi_CLK  
MMCi_CMD  
DSSD6  
DSSD5  
DSSD8  
DSSD7  
MMCi_DAT[j:0]  
MMC1_01  
Figure 7-64. MMC1 – Default Speed – Receive Mode  
Table 7-67. Switching Characteristics for MMC1 – Default Speed Mode  
see Figure 7-65  
NO.  
PARAMETER  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
25  
DSSD0 tc(clk)  
Cycle time, MMC1_CLK  
40  
18.7  
DSSD1 tw(clkH)  
DSSD2 tw(clkL)  
DSSD3 td(clkL-cmdV)  
Pulse duration, MMC1_CLK high  
ns  
Pulse duration, MMC1_CLK low  
18.7  
ns  
Delay time, MMC1_CLK falling edge to MMC1_CMD transition  
- 14.1  
14.1  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-67. Switching Characteristics for MMC1 – Default Speed Mode (continued)  
see Figure 7-65  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
DSSD4 td(clkL-dV)  
Delay time, MMC1_CLK falling edge to MMC1_DAT[3:0] transition  
- 14.1  
14.1  
ns  
DSSD2  
DSSD1  
DSSD0  
MMCi_CLK  
DSSD3  
DSSD4  
MMCi_CMD  
MMCi_DAT[j:0]  
MMC1_02  
Figure 7-65. MMC1 – Default Speed – Transmit Mode  
7.10.5.12.2.2 High Speed Mode  
Table 7-68, Figure 7-66, Table 7-69, and Figure 7-67 present timing requirements and switching characteristics  
for MMC1 – High Speed Mode.  
Table 7-68. Timing Requirements for MMC1 – High Speed Mode  
see Figure 7-66  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2.55  
2.67  
2.55  
2.67  
MAX  
UNIT  
ns  
HSSD3 tsu(cmdV-clkH)  
HSSD4 th(clkH-cmdV)  
HSSD7 tsu(dV-clkH)  
HSSD8 th(clkH-dV)  
Setup time, MMC1_CMD valid before MMC1_CLK rising edge  
Hold time, MMC1_CMD valid after MMC1_CLK rising edge  
Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge  
Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge  
ns  
ns  
ns  
HSSD1  
HSSD2H  
HSSD2L  
MMCi_CLK  
MMCi_CMD  
HSSD4  
HSSD3  
HSSD7  
HSSD8  
MMCi_DAT[j:0]  
MMC1_03  
Figure 7-66. MMC1 – High Speed – Receive Mode  
Table 7-69. Switching Characteristics for MMC1 – High Speed Mode  
see Figure 7-67  
NO.  
PARAMETER  
fop(clk)  
tc(clk)  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
50  
HSSD1  
Cycle time. MMC1_CLK  
20  
9.2  
HSSD2H tw(clkH)  
HSSD2L tw(clkL)  
Pulse duration, MMC1_CLK high  
ns  
Pulse duration, MMC1_CLK low  
9.2  
ns  
HSSD5  
td(clkL-cmdV)  
Delay time, MMC1_CLK falling edge to MMC1_CMD transition  
-7.35  
3.35  
ns  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-69. Switching Characteristics for MMC1 – High Speed Mode (continued)  
see Figure 7-67  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
HSSD6  
td(clkL-dV)  
Delay time, MMC1_CLK falling edge to MMC1_DAT[3:0] transition  
-7.35  
3.35  
ns  
HSSD1  
HSSD2H  
HSSD5  
HSSD2L  
MMCi_CLK  
MMCi_CMD  
HSSD5  
HSSD6  
HSSD6  
MMCi_DAT[j:0]  
MMC1_04  
Figure 7-67. MMC1 – High Speed – Transmit Mode  
7.10.5.12.2.3 UHS–I SDR12 Mode  
Table 7-70, Figure 7-68, Table 7-71, and Figure 7-69 present timing requirements and switching characteristics  
for MMC1 – UHS-I SDR12 Mode.  
Table 7-70. Timing Requirements for MMC1 – UHS-I SDR12 Mode  
see Figure 7-68  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
21.65  
1.67  
MAX  
UNIT  
ns  
SDR125 tsu(cmdV-clkH)  
SDR126 th(clkH-cmdV)  
SDR127 tsu(dV-clkH)  
SDR128 th(clkH-dV)  
Setup time, MMC1_CMD valid before MMC1_CLK rising edge  
Hold time, MMC1_CMD valid after MMC1_CLK rising edge  
Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge  
Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge  
ns  
21.65  
1.67  
ns  
ns  
SDR122  
SDR121  
SDR120  
MMCi_CLK  
MMCi_CMD  
SDR126  
SDR125  
SDR128  
SDR127  
MMCi_DAT[j:0]  
MMC1_05  
Figure 7-68. MMC1 – UHS-I SDR12 – Receive Mode  
Table 7-71. Switching Characteristics for MMC1 – UHS-I SDR12 Mode  
see Figure 7-69  
NO.  
PARAMETER  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
25  
SDR120 tc(clk)  
Cycle time, MMC1_CLK  
40  
18.7  
SDR121 tw(clkH)  
SDR122 tw(clkL)  
SDR123 td(clkL-cmdV)  
SDR124 td(clkL-dV)  
Pulse duration, MMC1_CLK high  
ns  
Pulse duration, MMC1_CLK low  
18.7  
ns  
Delay time, MMC1_CLK falling edge to MMC1_CMD transition  
Delay time, MMC1_CLK falling edge to MMC1_DAT[3:0] transition  
-13.6  
-13.6  
13.6  
13.6  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
SDR122  
SDR121  
SDR120  
MMCi_CLK  
MMCi_CMD  
SDR123  
SDR124  
MMCi_DAT[j:0]  
MMC1_06  
Figure 7-69. MMC1 – UHS-I SDR12 – Transmit Mode  
7.10.5.12.2.4 UHS–I SDR25 Mode  
Table 7-72, Figure 7-70, Table 7-73, and Figure 7-71 present timing requirements and switching characteristics  
for MMC1 – UHS-I SDR25 Mode.  
Table 7-72. Timing Requirements for MMC1 – UHS-I SDR25 Mode  
see Figure 7-70  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2.15  
1.67  
2.15  
1.67  
MAX  
UNIT  
ns  
SDR253 tsu(cmdV-clkH)  
SDR254 th(clkH-cmdV)  
SDR257 tsu(dV-clkH)  
SDR258 th(clkH-dV)  
Setup time, MMC1_CMD valid before MMC1_CLK rising edge  
Hold time, MMC1_CMD valid after MMC1_CLK rising edge  
Setup time, MMC1_DAT[3:0] valid before MMC1_CLK rising edge  
Hold time, MMC1_DAT[3:0] valid after MMC1_CLK rising edge  
ns  
ns  
ns  
SDR251  
SDR252L  
SDR253  
SDR252H  
MMCi_CLK  
MMCi_CMD  
SDR254  
SDR258  
SDR257  
MMCi_DAT[j:0]  
MMC1_07  
Figure 7-70. MMC1 – UHS-I SDR25 – Receive Mode  
Table 7-73. Switching Characteristics for MMC1 – UHS-I SDR25 Mode  
see Figure 7-71  
NO.  
PARAMETER  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
50  
SDR251 tc(clk)  
Cycle time, MMC1_CLK  
20  
9.2  
SDR252H tw(clkH)  
SDR252L tw(clkL)  
SDR255 td(clkL-cmdV)  
SDR256 td(clkL-dV)  
Pulse duration, MMC1_CLK high  
ns  
Pulse duration, MMC1_CLK low  
9.2  
ns  
Delay time, MMC1_CLK falling edge to MMC1_CMD transition  
Delay time, MMC1_CLK falling edge to MMC1_DAT[3:0] transition  
-7.1  
-7.1  
3.1  
3.1  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
SDR251  
SDR252H  
SDR252L  
MMCi_CLK  
MMCi_CMD  
HSSDR255  
SDR255  
SDR256  
SDR256  
MMCi_DAT[j:0]  
MMC1_08  
Figure 7-71. MMC1 – UHS-I SDR25 – Transmit Mode  
7.10.5.12.2.5 UHS–I SDR50 Mode  
, Table 7-74, and Figure 7-72 presents switching characteristics for MMC1 – UHS-I SDR50 Mode.  
Table 7-74. Switching Characteristics for MMC1 – UHS-I SDR50 Mode  
see Figure 7-72  
NO.  
PARAMETER  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
100  
SDR501 tc(clk)  
Cycle time, MMC1_CLK  
10  
4.45  
4.45  
1.2  
SDR502H tw(clkH)  
SDR502L tw(clkL)  
SDR505 td(clkL-cmdV)  
SDR506 td(clkL-dV)  
Pulse duration, MMC1_CLK high  
ns  
Pulse duration, MMC1_CLK low  
ns  
Delay time, MMC1_CLK rising edge to MMC1_CMD transition  
Delay time, MMC1_CLK rising edge to MMC1_DAT[3:0] transition  
6.35  
6.35  
ns  
1.2  
ns  
SDR501  
SDR502H  
SDR505  
SDR502L  
MMCi_CLK  
SDR505  
MMCi_CMD  
SDR506  
SDR506  
MMCi_DAT[j:0]  
MMC1_10  
Figure 7-72. MMC1 – UHS-I SDR50 – Transmit Mode  
7.10.5.12.2.6 UHS–I DDR50 Mode  
Table 7-75, Figure 7-73, Table 7-76, and Figure 7-74 present timing requirements and switching characteristics  
for MMC1 – UHS-I DDR50 Mode.  
Table 7-75. Timing Requirements for MMC1 – UHS-I DDR50 Mode  
see Figure 7-73  
NO.  
PARAMETER  
tsu(cmdV-clk)  
th(clk-cmdV)  
tsu(dV-clk)  
DESCRIPTION  
MIN  
2.99  
1.91  
-0.06  
1.91  
MAX  
UNIT  
ns  
DDR505  
DDR506  
DDR507  
DDR508  
Setup time, MMC1_CMD valid before MMC1_CLK rising edge  
Hold time, MMC1_CMD valid after MMC1_CLK rising edge  
Setup time, MMC1_DAT[3:0] valid before MMC1_CLK transition  
Hold time, MMC1_DAT[3:0] valid after MMC1_CLK transition  
ns  
ns  
th(clk-dV)  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
DDR500  
DDR501  
DDR502  
MMCi_CLK  
MMCi_CMD  
DDR505  
DDR506  
DDR507  
DDR508  
DDR507  
DDR508  
MMCi_DAT[j:0]  
MMC1_13  
Figure 7-73. MMC1 – UHS-I DDR50 – Receive Mode  
Table 7-76. Switching Characteristics for MMC1 – UHS-I DDR50 Mode  
see Figure 7-74  
NO.  
PARAMETER  
fop(clk)  
tc(clk)  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
50  
DDR500  
DDR501  
DDR502  
DDR503  
DDR504  
Cycle time, MMC1_CLK  
20  
9.2  
9.2  
1.2  
1.2  
tw(clkH)  
Pulse duration, MMC1_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC1_CLK low  
ns  
td(clk-cmdV)  
td(clk-dV)  
Delay time, MMC1_CLK rising edge to MMC1_CMD transition  
Delay time, MMC1_CLK transition to MMC1_DAT[3:0] transition  
13.1  
6.35  
ns  
ns  
DDR500  
DDR501  
DDR502  
MMCi_CLK  
DDR503(max)  
DDR503(min)  
MMCi_CMD  
DDR504(max)  
DDR504(min)  
DDR504(max)  
DDR504(min)  
MMCi_DAT[j:0]  
MMC1_14  
Figure 7-74. MMC1 – UHS-I DDR50 – Transmit Mode  
7.10.5.12.2.7 UHS–I SDR104 Mode  
Table 7-77, and Figure 7-75 present switching characteristics for MMC1 – UHS-I SDR104 Mode.  
Table 7-77. Switching Characteristics for MMC1 – UHS-I SDR104 Mode  
see Figure 7-75  
NO.  
PARAMETER  
DESCRIPTION  
Operating frequency, MMC1_CLK  
MIN  
MAX  
UNIT  
fop(clk)  
200  
MHz  
ns  
SDR1041 tc(clk)  
Cycle time, MMC1_CLK  
5
2.08  
2.08  
1.12  
1.12  
SDR1042H tw(clkH)  
SDR1042L tw(clkL)  
SDR1045 td(clkL-cmdV)  
SDR1046 td(clkL-dV)  
Pulse duration, MMC1_CLK high  
ns  
Pulse duration, MMC1_CLK low  
ns  
Delay time, MMC1_CLK rising edge to MMC1_CMD transition  
Delay time, MMC1_CLK rising edge to MMC1_DAT[3:0] transition  
3.16  
3.16  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
SDR1041  
SDR1042H  
SDR1045  
SDR1042L  
MMCi_CLK  
MMCi_CMD  
SDR1045  
SDR1046  
SDR1046  
MMCi_DAT[j:0]  
MMC1_12  
Figure 7-75. MMC1 – UHS-I SDR104 – Transmit Mode  
7.10.5.13 CPTS  
Table 7-78, Table 7-79, Figure 7-76, Table 7-80, and Figure 7-77 present timing conditions, requirements, and  
switching characteristics for CPTS.  
Table 7-78. CPTS Timing Conditions  
PARAMETER  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
Table 7-79. CPTS Timing Requirements  
see Figure 7-76  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, CPTS_HWn_TS_PUSH high  
Pulse duration, CPTS_HWn_TS_PUSH low  
Cycle time, CPTS_RFT_CLK  
MIN  
2 + 12P(1)  
2 + 12P(1)  
5
MAX  
UNIT  
ns  
T1  
tw(HWTSPUSHH)  
tw(HWTSPUSHL)  
tc(RFT_CLK)  
T2  
ns  
T3  
8
ns  
T4  
tw(RFT_CLKH)  
Pulse duration, CPTS_RFT_CLK high  
0.45 ×  
ns  
tc(RFT_CLK)  
T5  
tw(RFT_CLKL)  
Pulse duration, CPTS_RFT_CLK low  
0.45 ×  
ns  
tc(RFT_CLK)  
(1) P = functional clock period in ns.  
T1  
T2  
CPTS_HWn_TS_PUSH  
T3  
T4  
T5  
CPTS_RFT_CLK  
Figure 7-76. CPTS Timing Requirements  
Table 7-80. CPTS Switching Characteristics  
see Figure 7-77  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, CPTS_TS_COMP high  
Pulse duration, CPTS_TS_COMP low  
Pulse duration, CPTS_TS_SYNC high  
Pulse duration, CPTS_TS_SYNC low  
MIN  
-2+36P(1)  
-2+36P(1)  
-2+36P(1)  
-2+36P(1)  
MAX  
UNIT  
ns  
T6  
tw(TS_COMPH)  
T7  
tw(TS_COMPL)  
tw(TS_SYNCH)  
tw(TS_SYNCL)  
ns  
T10  
T11  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-80. CPTS Switching Characteristics (continued)  
see Figure 7-77  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
T14  
tw(SYNC_OUTH)  
Pulse duration, CPTS_TS_SYNC sourcing  
CPTS_SYNCn_OUT high  
-2+36P(1)  
ns  
T15  
tw(SYNC_OUTL)  
Pulse duration, CPTS_TS_SYNC sourcing  
CPTS_SYNCn_OUT low  
-2+36P(1)  
ns  
T16  
T17  
tw(SYNC_OUTH)  
tw(SYNC_OUTL)  
Pulse duration, GENF sourcing CPTS_SYNCn_OUT high  
Pulse duration, GENF sourcing CPTS_SYNCn_OUT low  
-2+5P(1)  
-2+5P(1)  
ns  
ns  
(1) P = functional clock period in ns.  
T6  
T7  
CPTS_TS_COMP  
T8  
T9  
CPTS_TS_SYNC  
T10  
T11  
CPTS_SYNC_OUT  
Figure 7-77. CPTS Switching Characteristics  
For more information, see Navigator Subsystem (NAVSS) section in Data Movement Architecture (DMA) chapter  
in the device TRM.  
7.10.5.14 OSPI  
For more details about features and additional description information on the device Octal Serial Peripheral  
Interface, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed  
Description.  
7.10.5.14.1 OSPI With Data Training  
7.10.5.14.1.1 OSPI Switching Characteristics – Data Training  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
6.02  
7.52  
5.00  
7.52  
MAX  
UNIT  
ns  
tc(CLK)  
Cycle time, CLK  
Cycle time, CLK  
DDR, 1.8V  
DDR, 3.3V  
SDR, 1.8V  
SDR, 3.3V  
ns  
tc(CLK)  
ns  
ns  
7.10.5.14.2 OSPI Without Data Training  
Note  
The I/O Timings provided in this section are only applicable when data training is not implemented.  
Additionally, the I/O Timings are valid only for some OSPI usage modes when the corresponding DLL  
Delays are configured as described in Table 7-81 found in this section.  
Section 7.10.5.14.2.1, Section 7.10.5.14.2.2, Figure 7-78, and Figure 7-79 present switching characteristics for  
OSPI DDR and SDR Mode.  
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device  
TRM.  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.14.2.1 OSPI Switching Characteristics – DDR Mode  
NO.(1) PARAMETER  
DESCRIPTION  
MODE  
1.8V  
MIN  
19  
MAX  
UNIT  
ns  
O1 tc(CLK)  
Cycle time, CLK  
3.3V  
19  
ns  
O2 tw(CLKL)  
O3 tw(CLKH)  
O4 td(CLK-CSn)  
Pulse duration, CLK low  
Pulse duration, CLK high  
-0.3+0.475*P  
ns  
(2)  
-0.3+0.475*P  
ns  
ns  
(2)  
Delay time, CLK rising edge to CSn active edge 1.8V, OSPI0 DDR TX; -7.7-0.475 * P 0-0.475 * P –  
– 0.975 * N * 0.975 * N * R  
R (3) (4) (5)  
(3) (4) (5)  
3.3V, OSPI0 DDR TX; -8-0.475 * P – 0-0.475 * P –  
0.975 * N * R 0.975 * N * R  
ns  
ns  
ns  
(3) (4) (5)  
(3) (4) (5)  
O5 td(CLK-CSn)  
Delay time, CLK rising edge to CSn inactive  
edge  
1.8V, OSPI0 DDR TX; -7.7+0.475 * 0+0.475 * P +  
P + 0.975 * N 0.975 * N * R  
* R (3) (4) (5)  
(3) (4) (5)  
3.3V, OSPI0 DDR TX; -8+0.475 * P 0+0.475 * P +  
+ 0.975 * N * 0.975 * N * R  
R (3) (4) (5)  
(3) (4) (5)  
O6 td(CLK-D)  
Delay time, CLK active edge to D[i:0] transition  
1.8V, OSPI0 DDR TX;  
3.3V, OSPI0 DDR TX;  
-7.7  
-7.7  
-1.56  
-1.56  
ns  
ns  
(1) i in [i:0] = 7 for OSPI0  
(2) P = CLK cycle time  
(3) P = SCLK period  
(4) N = OSPI_DEV_DELAY_REG[7-0] D_INIT_FLD  
(5) R = refclk  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O1  
O6  
O6  
OSPI_D[i:0]  
OSPI_TIMING_01  
Figure 7-78. OSPI Switching Characteristics – DDR  
7.10.5.14.2.2 OSPI Switching Characteristics – SDR Mode  
NO.(1) PARAMETER  
DESCRIPTION  
MODE  
1.8V  
MIN  
7
MAX  
UNIT  
ns  
O7 tc(CLK)  
Cycle time, CLK  
3.3V  
7.52  
ns  
O8 tw(CLKL)  
O9 tw(CLKH)  
Pulse duration, CLK low  
Pulse duration, CLK high  
-0.3+0.475*P  
ns  
(2)  
-0.3+0.475*P  
ns  
(2)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
NO.(1) PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
O10 td(CLK-CSn)  
O11 td(CLK-CSn)  
O12 td(CLK-D)  
Delay time, CLK rising edge to CSn active edge  
1.8V  
-1-0.475 * P – 1-0.475 * P –  
0.975 * N * R 0.975 * N * R  
ns  
(3) (4) (5)  
(3) (4) (5)  
3.3V  
1.8V  
3.3V  
-1-0.475 * P – 1-0.475 * P –  
0.975 * N * R 0.975 * N * R  
ns  
ns  
ns  
(3) (4) (5)  
(3) (4) (5)  
Delay time, CLK rising edge to CSn inactive  
edge  
-1+0.475 * P 1+0.475 * P +  
+ 0.975 * N * 0.975 * N * R  
R (3) (4) (5)  
(3) (4) (5)  
-1+0.475 * P 1+0.475 * P +  
+ 0.975 * N * 0.975 * N * R  
R (3) (4) (5)  
(3) (4) (5)  
Delay time, CLK active edge to D[i:0] transition  
1.8V  
3.3V  
-1.15  
-1.33  
1.25  
1.51  
ns  
ns  
(1) i in [i:0] = 7 for OSPI0  
(2) P = CLK cycle time  
(3) P = SCLK period  
(4) N = OSPI_DEV_DELAY_REG[7-0] D_INIT_FLD  
(5) R = refclk  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
Figure 7-79. OSPI Switching Characteristics – SDR  
Section 7.10.5.14.2.3, Section 7.10.5.14.2.4, Figure 7-80, Figure 7-81, Figure 7-82, and Figure 7-83 presents  
timing requirements for OSPI DDR and SDR Mode.  
7.10.5.14.2.3 OSPI Timing Requirements – DDR Mode  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
(1)  
O13 tsu(D-CLK)  
O14 th(CLK-D)  
O15 tsu(D-LBCLK)  
Setup time, D[i:0] valid before active CLK edge  
1.8V, No Loopback Clock; 1.8V,  
Internal Pad Loopback Clock  
5.23  
ns  
3.3V, No Loopback Clock; 3.3V,  
Internal Pad Loopback Clock  
6.19  
1.84  
2.34  
0.52  
1.97  
ns  
ns  
ns  
ns  
ns  
Hold time, D[i:0] valid after active CLK edge  
1.8V, No Loopback Clock; 1.8V,  
Internal Pad Loopback Clock  
3.3V, No Loopback Clock; 3.3V,  
Internal Pad Loopback Clock  
Setup time, D[i:0] valid before active LBCLK (DQS) 1.8V, External Board Loopback  
edge  
Clock  
3.3V, External Board Loopback  
Clock  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
www.ti.com  
NO.  
SPRSP56 – JANUARY 2021  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
(1)  
O16 th(LBCLK-D)  
Hold time, D[i:0] valid after active LBCLK (DQS)  
edge  
1.8V, External Board Loopback 1.8 (2)  
Clock  
ns  
3.3V, External Board Loopback 2.2 (2)  
Clock  
ns  
O17 tsu(D-DQS)  
Setup time, DQS edge to D[i:0] transition  
Hold time, DQS edge to D[i:0] transition  
1.8V, OSPI0 DQS;  
3.3V, OSPI0 DQS;  
1.8V, OSPI0 DQS;  
3.3V, OSPI0 DQS;  
-0.46  
-0.66  
3.59  
7.92  
ns  
ns  
ns  
ns  
O18 th(DQS-D)  
(1) i in [i:0] = 7 for OSPI0  
(2) This Hold time requirement is larger than the Hold time provided by a typical flash device. Therefore, the trace length between the SoC  
and flash device must be sufficiently long enough to ensure that the Hold time is met at the SoC. The length of the SoC's external  
loopback clock (OSPI_LBCLKO to OSPI_DQS) may need to be shortened to compensate.  
OSPI_CLK  
O13 O14  
OSPI_D[i:0]  
OSPI_TIMING_03  
Figure 7-80. OSPI Timing Requirements – DDR, No Loopback Clock and Internal Pad Loopback Clock  
OSPI_DQS  
O15 O16  
OSPI_D[i:0]  
OSPI_TIMING_04  
Figure 7-81. OSPI Timing Requirements – DDR, External Loopback Clock and DQS  
7.10.5.14.2.4 OSPI Timing Requirements – SDR Mode  
NO. PARAMETE  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
(1)  
R
O19 tsu(D-CLK)  
Setup time, D[i:0] valid before active CLK  
edge  
1.8V, No Loopback Clock  
3.3V, No Loopback Clock  
-2.18  
-1.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
O20 th(CLK-D)  
Hold time, D[i:0] valid after active CLK edge  
1.8V, No Loopback Clock  
7.62  
8.1  
3.3V, No Loopback Clock  
O21 tsu(D-LBCLK)  
Setup time, D[i:0] valid before active LBCLK  
input (DQS) edge  
1.8V, External Board Loopback Clock  
3.3V, External Board Loopback Clock  
1.8V, External Board Loopback Clock  
3.3V, External Board Loopback Clock  
-3.24  
-2.72  
3.81  
4.33  
O22 th(LBCLK-D)  
Hold time, D[i:0] valid after active LBCLK  
input (DQS) edge  
(1) i in [i:0] = 7 for OSPI0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
OSPI_CLK  
OSPI_D[i:0]  
O19  
O20  
OSPI_TIMING_05  
Figure 7-82. OSPI Timing Requirements – SDR, No Loopback Clock and Internal Pad Loopback Clock  
OSPI_DQS  
O21  
O22  
OSPI_D[i:0]  
OSPI_TIMING_06  
Figure 7-83. OSPI Timing Requirements – SDR, External Loopback Clock  
Table 7-81. OSPI DLL Delay Mapping for Timing Modes  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
PHY_CONFIG_TX_DLL_DELAY_FLD  
PHY_CONFIG_TX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
DELAY VALUE  
1.8V, OSPI0 DDR TX  
3.3V, OSPI0 DDR TX  
1.8V, OSPI0 DQS  
3.3V, OSPI0 DQS  
All other modes  
0x45  
0x46  
0x14  
0x3A  
0x0  
PHY_CONFIG_TX_DLL_DELAY_FLD,  
PHY_CONFIG_RX_DLL_DELAY_FLD  
7.10.5.15 PCIe  
The PCI-Express Subsystem is compliant with the PCIe® Base Specification, Revision 4.0. Refer to the  
specification for timing details.  
For more details about features and additional description information on the device Peripheral Component  
Interconnect Express, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8,  
Detailed Description.  
For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals  
chapter in the device TRM.  
7.10.5.16 PRU_ICSSG  
The device has integrated two identical Programmable Real-Time Unit Subsystem and Industrial Communication  
Subsystems - Gigabit (PRU_ICSSG), PRU_ICSSG0 and PRU_ICSSG1. The programmable nature of the PRU  
cores, along with their access to pins, events and all device resources, provides flexibility in implementing fast  
real-time responses, specialized data handling operations, custom peripheral interfaces, and in offloading tasks  
from the other processor cores in the device.  
For more details about features and additional description information on the device PRU_ICSSG, see the  
corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Note  
The PRU_ICSSG0 and PRU_ICSSG1 support an internal wrapper multiplexing that expands the  
device top-level multiplexing.  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.16.1 PRU_ICSSG Programmable Real-Time Unit (PRU)  
Note  
The PRU_ICSSG PRU signals have different functionality depending on the mode of operation. The  
signal naming in this section matches the naming used in the PRU Module Interface section in the  
device TRM.  
Table 7-82. PRU_ICSSG PRU Timing Conditions  
PARAMETER  
MIN  
MAX  
3
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
1
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
30  
7.10.5.16.1.1 PRU_ICSSG PRU Direct Output Mode Timing  
Table 7-83. PRU_ICSSG PRU Switching Characteristics – Direct Output Mode  
see Figure 7-84  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
PRDO1 tsk(GPO-GPO)  
Skew, GPO to GPO  
3
ns  
GPO[n:0]  
PRDO1  
PRU_TIMING_02  
A. n in GPO[n:0] = 19.  
Figure 7-84. PRU_ICSSG PRU Direct Output Timing  
7.10.5.16.1.2 PRU_ICSSG PRU Parallel Capture Mode Timing  
Table 7-84. PRU_ICSSG PRU Timing Requirements – Parallel Capture Mode  
see Figure 7-85 and Figure 7-86  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
20  
10  
10  
4
MAX  
UNIT  
ns  
PRPC1 tc(CLOCK)  
Cycle time, CLOCKIN  
PRPC2 tw(CLOCKL)  
Pulse duration, CLOCKIN low  
ns  
PRPC3 tw(CLOCKH)  
PRPC4 tsu(DATAIN-CLOCK)  
PRPC5 th(CLOCK-DATAIN)  
Pulse duration, CLOCKIN high  
ns  
Setup time, DATAIN valid before CLOCKIN active edge  
Hold time, DATAIN valid after CLOCKIN active edge  
ns  
0
ns  
PRPC1  
PRPC3  
PRPC2  
CLOCKIN  
DATAIN  
PRPC5  
PRPC4  
PRU_TIMING_03  
Figure 7-85. PRU_ICSSG PRU Parallel Capture Timing Requirements – Rising Edge Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PRPC1  
PRPC3  
PRPC2  
CLOCKIN  
DATAIN  
PRPC5  
PRPC4  
PRU_TIMING_04  
Figure 7-86. PRU_ICSSG PRU Parallel Capture Timing Requirements – Falling Edge Mode  
7.10.5.16.1.3 PRU_ICSSG PRU Shift Mode Timing  
Table 7-85. PRU_ICSSG PRU Timing Requirements – Shift In Mode  
see Figure 7-87  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, DATAIN high  
Pulse duration, DATAIN low  
MIN  
2+2*P(1)  
2+2*P(1)  
MAX  
UNIT  
ns  
PRSI1 tw(DATAINH)  
PRSI2 tw(DATAINL)  
ns  
(1) P = Internal shift in clock period, defined by PRUn_GPI_DIV0 and PRUn_GPI_DIV1 bit fields in the ICSSG_GPCFGn_REG register.  
PRUn represents the respective PRU0 or PRU1 instance.  
PRSI1  
PRSI2  
DATAIN  
PRU_TIMING_05  
Figure 7-87. PRU_ICSSG PRU Shift In Timing  
Table 7-86. PRU_ICSSG PRU Switching Characteristics – Shift Out Mode  
see Figure 7-88  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ns  
PRSO1  
tc(CLOCKOUT)  
Cycle time, CLOCKOUT  
10  
PRSO2L tw(CLOCKOUTL)  
Pulse duration, CLOCKOUT low  
-0.3 +  
ns  
0.475*P*Z(1)(2)  
PRSO2H tw(CLOCKOUTH)  
Pulse duration, CLOCKOUT high  
-0.3 +  
ns  
ns  
0.475*P*Y(1)(3)  
PRSO3  
td(CLOCKOUT-DATAOUT) Delay time, CLOCKOUT to DATAOUT valid  
-1  
4
(1) P = Software programmable shift out clock period, defined by PRUn_GPO_DIV0 and PRUn_GPO_DIV1 bit fields in the  
ICSSG_GPCFGn_REG register, where PRUn represents the respective PRU0 or PRU1 instance.  
(2) The Z parameter is defined as follows, where PRUn represents the respective PRU0 or PRU1 instance.  
a. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are INTEGERS -or- if PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an  
EVEN INTEGER then, Z equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1).  
b. If PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an ODD INTEGER then, Z equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 + 0.5).  
c. If PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an ODD INTEGER then, Z equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 + 0.5).  
d. If PRUn_GPI_DIV0 is an INTEGER and PRUn_GPI_DIV1 is a NON-INTEGER then, Z equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 + 0.5 * PRUn_GPI_DIV0). If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are NON-INTEGERS then, Z equals  
(PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.25 * PRUn_GPI_DIV0).  
(3) The Y parameter is defined as follows, where PRUn represents the respective PRU0 or PRU1 instance.  
Copyright © 2021 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
a. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are INTEGERS -or- if PRUn_GPI_DIV0 is a NON-INTEGER and PRUn_GPI_DIV1 is an  
EVEN INTEGER then, Y equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1). If PRUn_GPI_DIV0 is a NON-INTEGER and  
PRUn_GPI_DIV1 is an ODD INTEGER then, Y equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 - 0.5).  
b. If PRUn_GPI_DIV0 is an INTEGER and PRUn_GPI_DIV1 is a NON-INTEGER then, Y equals (PRUn_GPI_DIV0 *  
PRUn_GPI_DIV1 - 0.5 * PRUn_GPI_DIV0).  
c. If PRUn_GPI_DIV0 and PRUn_GPI_DIV1 are NON-INTEGERS then, Y1 equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 - 0.25 *  
PRUn_GPI_DIV0) and Y2 equals (PRUn_GPI_DIV0 * PRUn_GPI_DIV1 + 0.25 * PRUn_GPI_DIV0), where Y1 is the first high  
pulse and Y2 is the second high pulse.  
PRSO1  
PRSO2H  
PRSO2L  
CLOCKOUT  
DATAOUT  
PRSO3  
PRU_TIMING_06  
Figure 7-88. PRU_ICSSG PRU Shift Out Timing  
7.10.5.16.1.4 PRU_ICSSG PRU Sigma Delta and Peripheral Interface  
Table 7-87. PRU_ICSSG PRU Sigma Delta and Peripheral InterfaceTiming Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
1
3
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
18  
7.10.5.16.1.4.1 PRU_ICSSG PRU Sigma Delta and Peripheral Interface Timing  
Table 7-88. PRU_ICSSG PRU Timing Requirements – Sigma Delta Mode  
see Figure 7-89 and Figure 7-90  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
40  
20  
20  
10  
5
MAX  
UNIT  
ns  
PRSD1  
tc(SD_CLK)  
Cycle time, SDx_CLK  
PRSD2L tw(SD_CLKL)  
PRSD2H tw(SD_CLKH)  
Pulse duration, SDx_CLK low  
ns  
Pulse duration, SDx_CLK high  
ns  
PRSD3  
PRSD4  
tsu(SD_D-SD_CLK)  
Setup time, SDx_D valid before SDx_CLK active edge  
Hold time, SDx_D valid before SDx_CLK active edge  
ns  
th(SD_CLK-SD_D)  
ns  
PRSD1  
PRSD2H  
SDx_CLK  
SDx_D  
PRSD2L  
PRSD4  
PRSD3  
PRU_TIMING_07  
Figure 7-89. PRU_ICSSG PRU SD_CLK Falling Active Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PRSD2L  
SDx_CLK  
SDx_D  
PRSD4  
PRSD3  
PRU_TIMING_08  
Figure 7-90. PRU_ICSSG PRU SD_CLK Rising Active Edge  
Table 7-89. PRU_ICSSG PRU Timing Requirements – Peripheral Interface Mode  
see Figure 7-91  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, PIF_DATA_IN high  
MIN  
MAX  
UNIT  
PRPIF1 tw(PIF_DATA_INH)  
2 +  
ns  
0.475*(4*P)(1)  
PRPIF2 tw(PIF_DATA_INL)  
Pulse duration, PIF_DATA_IN low  
2 +  
ns  
0.475*(4*P)(1)  
(1) P = 1x (or TX) clock period in ns, defined by PRUn_ED_TX_DIV_FACTOR and PRUn_ED_TX_DIV_FACTOR_FRAC in the  
ICSSG_PRUn_ED_TX_CFG_REG register. PRUn represents the respective PRU0 or PRU1 instance.  
PRPIF1  
PRPIF2  
PIF_DATA_IN  
PRUPIF_TIMING_01  
Figure 7-91. PRU_ICSSG PRU Peripheral Interface Timing Requirements  
Table 7-90. PRU_ICSSG PRU Switching Characteristics – Peripheral Interface Mode  
see Figure 7-92  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
30  
0.475*P(1)  
0.475*P(1)  
-5  
MAX  
UNIT  
ns  
PRPIF3 tc(PIF_CLK)  
PRPIF4 tw(PIF_CLKH)  
PRPIF5 tw(PIF_CLKL)  
Cycle time, PIF_CLK  
Pulse duration, PIF_CLK high  
ns  
Pulse duration, PIF_CLK low  
ns  
PRPIF6 td(PIF_CLK-  
Delay time, PIF_CLK fall to PIF_DATA_OUT  
5
5
ns  
PIF_DATA_OUT)  
PRPIF7 td(PIF_CLK-PIF_DATA_EN) Delay time, PIF_CLK fall to PIF_DATA_EN  
-5  
ns  
(1) P = 1x (or TX) clock period in ns, defined by PRUn_ED_TX_DIV_FACTOR and PRUn_ED_TX_DIV_FACTOR_FRAC in the  
ICSSG_PRUn_ED_TX_CFG_REG register. PRUn represents the respective PRU0 or PRU1 instance.  
Copyright © 2021 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PRPIF3  
PRPIF4 PRPIF5  
PIF_CLK  
PRPIF6  
PRPIF7  
PIF_DATA_OUT  
PIF_DATA_EN  
Figure 7-92. PRU_ICSSG PRU Peripheral Interface Switching Characteristics  
7.10.5.16.2 PRU_ICSSG Pulse Width Modulation (PWM)  
Table 7-91. PRU_ICSSG PWM Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
1
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.10.5.16.2.1 PRU_ICSSG PWM Timing  
Table 7-92. PRU_ICSSG PWM Switching Characteristics  
see Figure 7-93  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
PRPWM1 tsk(PWM_A-PWM_B)  
Skew, PWM_A to PWM_B  
5
ns  
PWM_A/B  
PRPWM1  
PRU_PWM_TIMING_01  
Figure 7-93. PRU_ICSSG PWM Timing  
7.10.5.16.3 PRU_ICSSG Industrial Ethernet Peripheral (IEP)  
Table 7-93. PRU_ICSSG IEP Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
1
3
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.10.5.16.3.1 PRU_ICSSG IEP Timing  
Table 7-94. PRU_ICSSG IEP Timing Requirements – Input Validated with SYNC  
see Figure 7-94  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
PRIEP1 tw(EDC_SYNC_OUTxL)  
Pulse duration, EDC_SYNC_OUTx low  
-2+20*P(1)  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-94. PRU_ICSSG IEP Timing Requirements – Input Validated with SYNC (continued)  
see Figure 7-94  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
-2+20*P(1)  
20  
MAX  
UNIT  
ns  
PRIEP2 tw(EDC_SYNC_OUTxH)  
Pulse duration, EDC_SYNC_OUTx high  
PRIEP3 tsu(EDIO_DATA_IN-  
Setup time, EDIO_DATA_IN valid before EDC_SYNC_OUTx active  
edge  
ns  
EDC_SYNC_OUTx)  
PRIEP4 th(EDC_SYNC_OUTx-  
Hold time, EDIO_DATA_IN valid after EDC_SYNC_OUTx active  
edge  
20  
ns  
EDIO_DATA_IN)  
(1) P = PRU_ICSSG IEP clock source period in ns.  
EDC_SYNC_OUTx  
PRIEP2  
PRIEP1  
PRIEP3  
PRIEP4  
EDIO_DATA_IN[7:0]  
PRU_IEP_TIMING_01  
Figure 7-94. PRU_ICSSG IEP SYNC Timing Requirements  
Table 7-95. PRU_ICSSG IEP Timing Requirements – Digital IOs  
see Figure 7-95  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EDIO_OUTVALID low  
MIN  
-2+14*P(1)  
-2+32*P(1)  
0
MAX  
UNIT  
ns  
IEPIO1 tw(EDIO_OUTVALIDL)  
IEPIO2 tw(EDIO_OUTVALIDH)  
Pulse duration, EDIO_OUTVALID high  
ns  
IEPIO3 td(EDIO_OUTVALID-  
Delay time, EDIO_OUTVALID to EDIO_DATA_OUT  
18*P(1)  
ns  
EDIO_DATA_OUT)  
IEPIO4 tsk(EDIO_DATA_OUT)  
EDIO_DATA_OUT skew  
5
ns  
(1) P = PRU_ICSSG IEP clock source period in ns.  
EDIO_DATA_OUT  
IEPIO4  
PRU_EDIO_DATA_OUT_TIMING_00  
Figure 7-95. PRU_ICSSG IEP Digital IOs Timing Requirements  
Table 7-96. PRU_ICSSG IEP Timing Requirements – LATCH_INx  
see Figure 7-96  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EDC_LATCH_INx low  
Pulse duration, EDC_LATCH_INx high  
MIN  
MAX  
UNIT  
ns  
PRLA1 tw(EDC_LATCH_INxL)  
PRLA2 tw(EDC_LATCH_INxH)  
2+3*P(1)  
2+3*P(1)  
ns  
(1) P = PRU_ICSSG IEP clock source period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PRLA1  
EDC_LATCH_INx  
PRLA2  
PRU_IEP_TIMING_02  
Figure 7-96. PRU_ICSSG IEP LATCH_INx Timing Requirements  
7.10.5.16.4 PRU_ICSSG Universal Asynchronous Receiver Transmitter (UART)  
Table 7-97. PRU_ICSSG UART Timing Conditions  
PARAMETER  
MIN  
MAX  
0.33  
30  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
0.01  
1
OUTPUT CONDITIONS  
CL  
Output load capacitance  
7.10.5.16.4.1 PRU_ICSSG UART Timing  
Table 7-98. PRU_ICSSG UART Timing Requirements  
see Figure 7-97  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, receive start, stop, data bit high  
Pulse duration, receive start, stop, data bit low  
MIN  
U(1)  
-2+U(1)  
MAX  
UNIT  
ns  
PRUR1H tw(RXH)  
PRUR1L tw(RXL)  
ns  
(1) U = UART baud time in ns = 1/programmed baud rate.  
Table 7-99. PRU_ICSSG UART Switching Characteristics  
see Figure 7-97  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Mbps  
ns  
f(baud)  
Programmed baud rate  
12  
PRUR3H tw(TXH)  
PRUR3L tw(TXL)  
Pulse duration, transmit start, stop, data bit high  
Pulse duration, transmit start, stop, data bit low  
U (1)  
-2+U (1)  
ns  
(1) U = UART baud time in ns = 1/programmed baud rate.  
PRUR1L  
PRUR1H  
Start  
Bit  
PRGi_UART0_RXD(1)  
Data Bits  
PRUR3L  
PRUR3H  
Start  
Bit  
PRGi_UART0_TXD(1)  
Data Bits  
PRU_UART_TIMING_01  
(1) i in PRGi_UART0_RXD and PRGi_UART0_TXD = 0, 1 or 2  
Figure 7-97. PRU_ICSSG UART Timing Requirements and Switching Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.16.5 PRU_ICSSG Enhanced Capture Peripheral (ECAP)  
Table 7-100. PRU_ICSSG ECAP Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
1
3
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.10.5.16.5.1 PRU_ICSSG ECAP Timing  
Table 7-101. PRU_ICSSG ECAP Timing Requirements  
see Figure 7-98  
NO.  
PARAMETER  
DESCRIPTION  
Pulse Duration, CAP (asynchronous)  
Pulse Duration, SYNCI (asynchronous)  
MIN  
2+2*P(1)  
2+2*P(1)  
MAX  
UNIT  
ns  
PREP1 tw(CAP)  
PREP2 tw(SYNCI)  
ns  
(1) P = CORE_CLK period in ns.  
PREP1  
PREP2  
CAP  
SYNCI  
Figure 7-98. PRU_ICSSG ECAP Timing  
Table 7-102. PRU_ICSSG ECAP Switching Characteristics  
see Figure 7-99  
NO.  
PARAMETER  
DESCRIPTION  
Pulse Duration, APWM high/low  
MIN  
2*P(1)  
P(1)  
MAX  
UNIT  
ns  
PREP3 tw(APWM)  
PREP4 tw(SYNCO)  
Pulse Duration, SYNCO (asynchronous)  
ns  
(1) P = CORE_CLK period in ns.  
PREP3  
PREP4  
APWM  
SYNCO  
Figure 7-99. PRU_ICSSG ECAP Switching Characteristics  
7.10.5.16.6 PRU_ICSSG RGMII, MII_RT, and Switch  
For more information, see Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem -  
Gigabit (PRU_ICSSG) section in Processors and Accelerators chapter in the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.5.16.6.1 PRU_ICSSG MDIO Timing  
Table 7-103, Table 7-104, Table 7-105, and Figure 7-100 present timing conditions, requirements, and switching  
characteristics for PRU_ICSSG MDIO.  
Table 7-103. PRU_ICSSG MDIO Timing Conditions  
PARAMETER  
MIN  
0.9  
10  
MAX  
3.6  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
470  
Table 7-104. PRU_ICSSG MDIO Timing Requirements  
see Figure 7-100  
NO.  
PARAMETER  
MIN  
90  
0
MAX  
UNIT  
ns  
MDIO1 tsu(MDIO_MDC)  
MDIO2 th(MDC_MDIO)  
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high  
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high  
ns  
Table 7-105. PRU_ICSSG MDIO Switching Characteristics  
see Figure 7-100  
NO.  
PARAMETER  
Cycle time, MDIO[x]_MDC  
MIN  
MAX  
UNIT  
ns  
MDIO3 tc(MDC)  
400  
160  
160  
-150  
MDIO4 tw(MDCH)  
MDIO5 tw(MDCL)  
MDIO7 td(MDC_MDIO)  
Pulse Duration, MDIO[x]_MDC high  
ns  
Pulse Duration, MDIO[x]_MDC low  
ns  
Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid  
150  
ns  
MDIO3  
MDIO4  
MDIO5  
MDIO[x]_MDC  
MDIO1  
MDIO2  
MDIO[x]_MDIO  
(input)  
MDIO7  
MDIO[x]_MDIO  
(output)  
CPSW2G_MDIO_TIMING_01  
Figure 7-100. PRU_ICSSG MDIO Timing Requirements and Switching Characteristics  
7.10.5.16.6.2 PRU_ICSSG MII Timing  
Note  
In order to ensure the MII_G_RT I/O timing values published in the device data sheet, the  
PRU_ICSSG ICSSGn_CORE_CLK (where n = 0 to 1) core clock must be configured for 200 MHz,  
225 MHz, or 250 MHz and the TX_CLK_DELAYn (where n = 0 or 1) bit field in the ICSSG_TXCFG0/1  
register must be set to 0h (default value).  
Table 7-106, Table 7-107, Figure 7-101, Table 7-108, Figure 7-102, Table 7-109, Figure 7-103, Table 7-110, and  
Figure 7-104 present timing conditions, requirements, and switching characteristics for PRU_ICSSG MII.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-106. PRU_ICSSG MII Timing Conditions  
PARAMETER  
MIN  
MAX  
3.6  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
0.9  
2
OUTPUT CONDITIONS  
CL  
Output load capacitance  
20  
Table 7-107. PRU_ICSSG MII Timing Requirements – MII[x]_RX_CLK  
see Figure 7-101  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, MII[x]_RX_CLK  
MODE  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
MAX UNIT  
399.96 400.04  
39.996 40.004  
ns  
ns  
ns  
ns  
ns  
ns  
PMIR1 tc(RX_CLK)  
PMIR2 tw(RX_CLKH)  
PMIR3 tw(RX_CLKL)  
140  
14  
260  
26  
Pulse Duration, MII[x]_RX_CLK High  
Pulse Duration, MII[x]_RX_CLK Low  
140  
14  
260  
26  
PMIR1  
PMIR2  
PMIR3  
MII_RX_CLK  
PRU_MII_RT_TIMING_04  
Figure 7-101. PRU_ICSSG MII[x]_RX_CLK Timing  
Table 7-108. PRU_ICSSG MII Timing Requirements – MII[x]_RXD[3:0], MII[x]_RX_DV, and MII[x]_RX_ER  
see Figure 7-102  
NO.  
PARAMETER  
tsu(RXD-RX_CLK)  
tsu(RX_DV-RX_CLK)  
tsu(RX_ER-RX_CLK)  
tsu(RXD-RX_CLK)  
tsu(RX_DV-RX_CLK)  
tsu(RX_ER-RX_CLK)  
th(RX_CLK-RXD)  
DESCRIPTION  
MODE  
MIN  
8
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, MII[x]_RXD[3:0] valid before MII[x]_RX_CLK  
Setup time, MII[x]_RX_DV valid before MII[x]_RX_CLK  
Setup time, MII[x]_RX_ER valid before MII[x]_RX_CLK  
Setup time, MII[x]_RXD[3:0] valid before MII[x]_RX_CLK  
Setup time, MII[x]_RX_DV valid before MII[x]_RX_CLK  
Setup time, MII[x]_RX_ER valid before MII[x]_RX_CLK  
Hold time, MII[x]_RXD[3:0] valid after MII[x]_ RX_CLK  
Hold time, MII[x]_RX_DV valid after MII[x]_RX_CLK  
Hold time, MII[x]_RX_ER valid after MII[x]_RX_CLK  
Hold time, MII[x]_RXD[3:0] valid after MII[x]_ RX_CLK  
Hold time, MII[x]_RX_DV valid after MII[x]_RX_CLK  
Hold time, MII[x]_RX_ER valid after MII[x]_RX_CLK  
10 Mbps  
8
8
PMIR4  
8
100  
Mbps  
8
8
8
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
th(RX_CLK-RXD)  
10 Mbps  
8
8
PMIR5  
8
100  
Mbps  
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
8
8
Copyright © 2021 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
PMIR4  
PMIR5  
MII_RX_CLK  
MII_RXD[3:0],  
MII_RX_DV, MII_RX_ER  
Figure 7-102. PRU_ICSSG MII[x]_RXD[3:0], MII[x]_RX_DV, and MII[x]_RX_ER Timing  
Table 7-109. PRU_ICSSG MII Timing Requirements – MII[x]_TX_CLK  
see Figure 7-103  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, MII[x]_TX_CLK  
MODE  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
MAX UNIT  
399.96 400.04  
39.996 40.004  
ns  
ns  
ns  
ns  
ns  
ns  
PMIT1 tc(TX_CLK)  
PMIT2 tw(TX_CLKH)  
PMIT3 tw(TX_CLKL)  
140  
14  
260  
26  
Pulse Duration, MII[x]_TX_CLK High  
Pulse Duration, MII[x]_TX_CLK Low  
140  
14  
260  
26  
PMIT1  
PMIT2  
PMIT3  
MII_TX_CLK  
Figure 7-103. PRU_ICSSG MII[x]_TX_CLK Timing  
Table 7-110. PRU_ICSSG MII Switching Characteristics – MII[x]_TXD[3:0] and MII[x]_TX_EN  
see Figure 7-104  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
0
MAX  
25  
UNIT  
ns  
td(TX_CLK-TXD)  
Delay time, MII[x]_TX_CLK High to MII[x]_TXD[3:0] valid  
Delay time, MII[x]_TX_CLK to MII[x]_TX_EN valid  
Delay time, MII[x]_TX_CLK High to MII[x]_TXD[3:0] valid  
Delay time, MII[x]_TX_CLK to MII[x]_TX_EN valid  
10 Mbps  
td(TX_CLK-TX_EN)  
td(TX_CLK-TXD)  
0
25  
ns  
PMIT4  
0
25  
ns  
100  
Mbps  
td(TX_CLK-TX_EN)  
0
25  
ns  
PMIT4  
MII_TX_CLK  
MII_TXD[3:0], MII_TX_EN  
Figure 7-104. PRU_ICSSG MII[x]_TXD[3:0], MII[x]_TX_EN Timing  
7.10.5.16.6.3 PRU_ICSSG RGMII Timing  
Table 7-111, Table 7-112, Table 7-113, Figure 7-105, Table 7-114, Table 7-115, and Figure 7-106 present timing  
conditions, requirements, and switching characteristics for PRU_ICSSG RGMII.  
Table 7-111. PRU_ICSSG RGMII Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
2.65  
5
V/ns  
OUTPUT CONDITIONS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-111. PRU_ICSSG RGMII Timing Conditions (continued)  
PARAMETER  
MIN  
MAX  
UNIT  
CL  
Output load capacitance  
2
20  
pF  
Table 7-112. PRU_ICSSG RGMII Timing Requirements – RGMII[x]_RXC  
see Figure 7-105  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_RXC  
MODE  
10 Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII1 tc(RXC)  
440  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100 Mbps  
1000 Mbps  
10 Mbps  
44  
8.8  
240  
24  
7.2  
160  
16  
RGMII2 tw(RXCH)  
Pulse duration, RGMII[x]_RXC high  
Pulse duration, RGMII[x]_RXC low  
100 Mbps  
1000 Mbps  
10 Mbps  
3.6  
160  
16  
4.4  
240  
24  
RGMII3 tw(RXCL)  
100 Mbps  
1000 Mbps  
3.6  
4.4  
Table 7-113. PRU_ICSSG RGMII Timing Requirements – RGMII[x]_RD[3:0] and RGMII[x]_RX_CTL  
see Figure 7-105  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10 Mbps  
MIN  
1
MAX UNIT  
RGMII4 tsu(RD-RXC)  
Setup time, RGMII[x]_RD[3:0] valid before RXC high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100 Mbps  
1000 Mbps  
10 Mbps  
1
1
tsu(RX_CTL-RXC)  
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC  
high/low  
1
100 Mbps  
1000 Mbps  
10 Mbps  
1
1
RGMII5 th(RXC-RD)  
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC  
high/low  
1
100 Mbps  
1000 Mbps  
10 Mbps  
1
1
th(RXC-RX_CTL)  
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC  
high/low  
1
100 Mbps  
1000 Mbps  
1
1
RGMII1  
RGMII2  
RGMII3  
RGMII[x]_RXC(A)  
RGMII4  
RGMII5  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RX_CTL(B)  
1st Half-byte  
RXDV  
2nd Half-byte  
RXERR  
A. RGMII[x]_RXC must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of  
RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC.  
Figure 7-105. PRU_ICSSG RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements -  
RGMII Mode  
Copyright © 2021 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-114. PRU_ICSSG RGMII Switching Characteristics – RGMII[x]_TXC  
see Figure 7-106  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_TXC  
MODE  
10 Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII6 tc(TXC)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100 Mbps  
1000 Mbps  
10 Mbps  
7.2  
160  
16  
8.8  
240  
24  
RGMII7 tw(TXCH)  
Pulse duration, RGMII[x]_TXC high  
Pulse duration, RGMII[x]_TXC low  
100 Mbps  
1000 Mbps  
10 Mbps  
3.6  
160  
16  
4.4  
240  
24  
RGMII8 tw(TXCL)  
100 Mbps  
1000 Mbps  
3.6  
4.4  
Table 7-115. PRU_ICSSG RGMII Switching Characteristics – RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL  
see Figure 7-106  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10 Mbps  
MIN  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
MAX UNIT  
RGMII9 tosu(TD-TXC)  
Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC  
high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100 Mbps  
1000 Mbps  
10 Mbps  
tosu(TX_CTL-TXC)  
Output setup time, RGMII[x]_TX_CTL valid to  
RGMII[x]_TXC high/low  
100 Mbps  
1000 Mbps  
10 Mbps  
RGMII10 toh(TXC-TD)  
Output setup time, RGMII[x]_TD[3:0] valid after  
RGMII[x]_TXC high/low  
100 Mbps  
1000 Mbps  
10 Mbps  
toh(TXC-TX_CTL)  
Output setup time, RGMII[x]_TX_CTL valid after  
RGMII[x]_TXC high/low  
100 Mbps  
1000 Mbps  
RGMII6  
RGMII7  
RGMII8  
RGMII[x]_TXC(A)  
RGMII9  
RGMII[x]_TD[3:0](B)  
RGMII[x]_TX_CTL(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
RGMII10  
A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of  
RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC.  
Figure 7-106. PRU_ICSSG RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching  
Characteristics - RGMII Mode  
7.10.5.17 Timers  
For more details about features and additional description information on the device Timers, see the  
corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-116. Timer Timing Conditions  
PARAMETER  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
Table 7-117. Timer Input Timing Requirements  
see Figure 7-107  
NO.  
PARAMETER  
tw(TINPH)  
tw(TINPL)  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
T1  
Pulse duration, high  
Pulse duration, low  
CAPTURE 2 + 4P(1)  
CAPTURE 2 + 4P(1)  
ns  
ns  
T2  
(1) P = functional clock period in ns.  
Table 7-118. Timer Output Switching Characteristics  
see Figure 7-107  
NO.  
PARAMETER  
tw(TOUTH)  
tw(TOUTL)  
DESCRIPTION  
MODE  
PWM  
PWM  
MIN  
-2 + 4P(1)  
-2 + 4P(1)  
MAX  
UNIT  
ns  
T3  
Pulse duration, high  
Pulse duration, low  
T4  
ns  
(1) P = functional clock period in ns.  
T1  
T2  
TIMER_IOx (inputs)  
T3  
T4  
TIMER_IOx (outputs)  
TIMER_01  
Figure 7-107. Timer Timing Requirements and Switching Characteristics  
For more information, see Timers section in Peripherals chapter in the device TRM.  
7.10.5.18 UART  
For more details about features and additional description information on the device Universal Asynchronous  
Receiver Transmitter, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8,  
Detailed Description.  
Table 7-119. UART Timing Conditions  
PARAMETER  
MIN  
0.5  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30  
Table 7-120. UART Timing Requirements  
see Figure 7-108  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
4
tw(RX)  
Pulse width, receive data bit, high or low  
0.95U(1)  
1.05U(1)  
ns  
Copyright © 2021 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-120. UART Timing Requirements (continued)  
see Figure 7-108  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
5
tw(CTS)  
Pulse width, receive start bit, high or low  
0.95U(1)  
ns  
(1) U = UART baud time in ns = 1/programmed baud rate.  
Table 7-121. UART Switching Characteristics  
see Figure 7-108  
NO.  
PARAMETER  
DESCRIPTION  
Programmable baud rate  
MODE  
15 pF  
30 pF  
MIN  
MAX UNIT  
TDB Mbps  
0.115 Mbps  
ns  
f(baud)  
1
2
3
td(CTS-TX)  
tw(TX)  
Delay time, CTS bit to transmit data  
30  
Pulse width, transmit data bit, high or low  
Pulse width, transmit start bit, high or low  
U - 2.2(1) U + 2.2(1)  
U - 2.2(1)  
ns  
ns  
tw(RTS)  
(1) U = UART baud time in ns = 1/programmed baud rate.  
Figure 7-108. UART Timing Requirements and Switching Characteristics  
For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter  
in the device TRM.  
7.10.5.19 USB  
The USB 2.0 subsystem is compliant with the Universal Serial Bus (USB) Specification, revision 2.0. Refer to the  
specification for timing details.  
The USB 3.1 GEN1 subsystem is compliant with the Universal Serial Bus (USB) 3.1 Specification, revision 1.0.  
Refer to the specification for timing details.  
For more details about features and additional description information on the device Universal Serial Bus  
Subsystem (USB), see the corresponding sections within Section 6.3, Signal Descriptions and Section 8,  
Detailed Description.  
7.10.6 Emulation and Debug  
For more details about features and additional description information on the device Trace and JTAG interfaces,  
see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
7.10.6.1 Trace  
Table 7-122. Trace Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
5
pF  
PCB CONNECTIVITY REQUIREMENTS  
VDDSHV3 = 1.8V  
VDDSHV3 =3.3V  
200  
100  
ps  
td(Trace Mismatch)  
Propagation delay mismatch across all traces  
ps  
Table 7-123. Trace Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1.8V Mode  
Cycle time, TRC_CLK  
DBTR1 tc(TRC_CLK)  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
6.50  
2.50  
2.50  
ns  
ns  
ns  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
tosu(TRC_DATAV-  
DBTR4  
Output setup time, TRC_DATA valid to TRC_CLK edge  
0.81  
ns  
TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI) Output hold time, TRC_CLK edge to TRC_DATA invalid  
DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge  
0.81  
0.81  
0.81  
ns  
ns  
ns  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
3.3V Mode  
DBTR1 tc(TRC_CLK)  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Cycle time, TRC_CLK  
8.67  
3.58  
3.58  
ns  
ns  
ns  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
tosu(TRC_DATAV-  
DBTR4  
Output setup time, TRC_DATA valid to TRC_CLK edge  
1.08  
ns  
TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI) Output hold time, TRC_CLK edge to TRC_DATA invalid  
DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge  
1.08  
1.08  
1.08  
ns  
ns  
ns  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
DBTR1  
DBTR2  
DBTR3  
TRC_CLK  
(Worst Case 1)  
(Ideal)  
(Worst Case 2)  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
TRC_DATA  
TRC_CTL  
SPRSP08_Debug_01  
Figure 7-109. Trace Switching Characteristics  
Table 7-124. JTAG Timing Conditions  
7.10.6.2 JTAG  
PARAMETER  
MIN  
MAX  
UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
0.5  
2.0  
V/ns  
OUTPUT CONDITIONS  
Copyright © 2021 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 7-124. JTAG Timing Conditions (continued)  
PARAMETER  
MIN  
MAX  
UNIT  
CL  
Output load capacitance  
5
15  
pF  
Table 7-125. JTAG Timing Requirements  
see Figure 7-110  
NO.  
MIN  
45.5  
18.2  
18.2  
4
MAX  
UNIT  
ns  
J1  
J2  
J3  
tc(TCK)  
Cycle time minimum, TCK  
tw(TCKH)  
Pulse width minimum, TCK high  
ns  
tw(TCKL)  
Pulse width minimum, TCK low  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
Input setup time minimum, TDI valid to TCK high  
Input setup time minimum, TMS valid to TCK high  
Input hold time minimum, TDI valid from TCK high  
Input hold time minimum, TMS valid from TCK high  
ns  
J4  
J5  
4
ns  
2
ns  
2
ns  
Table 7-126. JTAG Switching Characteristics  
see Figure 7-110  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
J6  
J7  
td(TCKL-TDOI)  
Delay time minimum, TCK low to TDO invalid  
Delay time maximum, TCK low to TDO valid  
0
td(TCKL-TDOV)  
14  
ns  
J1  
J2  
J3  
TCK  
TDI / TMS  
TDO  
J4  
J5  
J4  
J5  
J7  
J6  
Figure 7-110. JTAG Timing Requirements and Switching Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
AM64x is an extension of the Sitara’s industrial-grade family of heterogeneous Arm processors. AM64x is built  
for industrial applications, such as motor drives and programmable logic controllers (PLCs), which require a  
unique combination of real-time processing and communications with applications processing. AM64x combines  
two instances of Sitara’s gigabit TSN-enabled PRU-ICSSG, up to two Arm Cortex-A53 cores, up to four Cortex-  
R5F MCUs and a Cortex-M4F MCU.  
AM64x is architected to provide best-in-class real-time performance through the high-performance R5Fs, Tightly-  
Coupled Memory banks, configurable SRAM partitioning, and low-latency paths to and from peripherals for rapid  
data movement in and out of the SoC. This deterministic architecture allows for AM64x to handle the tight control  
loops found in servo drives, while the peripherals like FSI, GPMC, PWMs, sigma delta decimation filters, and  
absolute encoder interfaces help enable a number of different architectures found in these systems.  
The Cortex-A53s provide the powerful computing elements necessary for Linux applications. Linux, and Real-  
time (RT) Linux, is provided through TI’s Processor SDK Linux which stays updated to the latest Long Term  
Support (LTS) Linux kernel, bootloader and Yocto file system on an annual basis. AM64x helps bridge the Linux  
world with the real-time world by enabling isolation between Linux applications and real-time streams through  
configurable memory partitioning. The Cortex-A53s can be assigned to work strictly out of DDR for Linux, and  
the internal SRAM can be broken up into various sizes for the Cortex-R5Fs to use together or independently.  
The PRU-ICSSG in AM64x provides the flexible industrial communications capability necessary to run gigabit  
TSN, EtherCAT, PROFINET, EtherNet/IP, and various other protocols. In addition, the PRU-ICSSG also enables  
additional interfaces in the SoC including sigma delta decimation filters and absolute encoder interfaces.  
Functional safety features can be enabled through the integrated Cortex-M4F along with its dedicated  
peripherals which can all be isolated from the rest of the SoC. AM64x also supports secure boot.  
Note  
For more information on features, subsystems, and architecture of superset device System on Chip  
(SoC), see the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
8.2 Processor Subsystems  
8.2.1 Arm Cortex-A53 Subsystem  
The A53SS module supports the following features:  
Dual Core A53 Cluster  
– Full ARM v8-A Architecture Compliant  
AArch32 and AArch64 Execution States  
All exception levels EL0-3  
A32 Instruction Set (Previously ARM instruction set)  
T32 instruction set (previously Thumb instruction set)  
A64 Instruction Set  
– Advanced SIMD and Floating Point Extensions (NEON)  
– ARMv8 Cryptography Extensions  
– ARMv8 Cryptography Extensions  
– ARM GICv3 architecture  
– In-order pipeline with symmetric dual-issue of most instructions  
– Harvard L1 with system MMU  
32 KB Instruction Cache  
32 KB Data Cache  
– 256KB Shared L2 Cache  
– Generic Timer(s)  
– Debug  
128-Bit VBUSM Master Interfaces (for axi_r and axi_r channels)  
128-Bit VBUSM Slave Interface (for Accelerator Coherency Port)  
64-bit Grey-coded system input time  
48-bit Grey-coded debug input time  
32-bit VBUSP slave interface for Debug  
Integrated PBIST controller with BISOR  
For more information, see Dual-A53 MPU Subsystem section in Processors and Accelerators chapter in the  
device TRM.  
8.2.2 Arm Cortex-R5F  
The MCU_ARMSS is a dual-core implementation of the Arm® Cortex®-R5F processor configured for split/lock  
operation. It also includes accompanying memories (L1 caches and tightly-coupled memories), standard Arm®  
CoreSightdebug and trace architecture, integrated Vectored Interrupt Manager (VIM), ECC Aggregators, and  
various wrappers for protocol conversion and address translation for easy integration into the SoC.  
Note  
The Cortex®-R5F processor is a Cortex-R5 processor that includes the optional Floating Point Unit  
(FPU) extension.  
For more information, see Dual-R5F MCU Subsystem section in Processors and Accelerators chapter in the  
device TRM.  
8.2.3 Arm Cortex-M4F  
Note  
NOTE TO USERS:  
The content of this section is UNDER DEVELOPMENT!  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
The M4FSS module on AM64x acts as a safety channel (second channel - working in conjunction with an  
external microcontroller) -or- provides a general purpose MCU.  
The M4FSS module supports the following features:  
Cortex M4F With MPU  
ARMv7-M architecture  
Support for Nested Vectored Interrupt Controller (NVIC) with 64 inputs  
Ability to executed code from internal or external memories  
192 KB of SRAM (I-Code)  
64 KB of SRAM (D-Code)  
External access to internal memories if allowed  
Debug Support Including:  
– DAP based Debug to the CPU Core  
– Full Debug Features of CPU Core are enabled  
– Standard ITM trace  
– CTM Cross Trigger  
– ETM Trace Support  
Fault Detection and Correction  
– SECDED ECC protection on I-CODE  
– SECDED ECC protection on D-CODE  
– Fault Error Interrupt Output  
For more information, see Dual-A53 MPU Subsystem section in Processors and Accelerators chapter in the  
device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
8.3 Accelerators and Coprocessors  
8.3.1 PRU_ICSSG  
The ICSS_G module supports the following main features:  
2 ICSSG, each with 3 PRUs:  
2 Ethernet MII_G_RT configurable connection to PRUs  
– 2 ports RGMII/SGMII  
– 2 ports MII  
– RX Classifier  
2 Industrial Ethernet Peripheral (IEP) to manage and generate industrial Ethernet functions  
1 MDIO  
1 UART 16550, with a dedicated 192-MHz clock input to support 12-Mbps Profibus  
2 industrial Ethernet 64-bit timers, each with 10 capture and 16 compare events, along with slow and fast  
compensation.  
– Supports up to 4 sets of 3-phased motor control, with 12 primary and 12 complimentary programmable  
pwm outputs.  
– Up to 9 safety events with optional external trip I/O per PWM set with hardware glitch filter.  
1 Enhanced Capture Module (ECAP)  
1 interrupt controller (INTC)  
– 160 input events supported – 96 external, 64 internal  
Flexible power management support  
Integrated switched central resource with programmable priority  
All memories support ECC  
For more information, see Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem -  
Gigabit (PRU_ICSSG) section in Processors and Accelerators chapter in the device TRM.  
8.4 Other Subsystems  
8.4.1 PDMA Controller  
The Peripheral DMA is a simple DMA which has been architected to specifically meet the data transfer needs of  
peripherals, which perform data transfers using memory mapped registers accessed via a standard non-  
coherent bus fabric. The PDMA module is intended to be located close to one or more peripherals which require  
an external DMA for data movement and is architected to reduce cost by using VBUSP interfaces and  
supporting only statically configured Transfer Request (TR) operations.  
The PDMA is only responsible for performing the data movement transactions which interact with the peripherals  
themselves. Data which is read from a given peripheral is packed by a PDMA source channel into a PSI-L data  
stream which is then sent to a remote peer UDMA-P destination channel which then performs the movement of  
the data into memory. Likewise, a remote UDMA-P source channel fetches data from memory and transfers it to  
a peer PDMA destination channel over PSI-L which then performs the writes to the peripheral.  
The PDMA architecture is intentionally heterogeneous (UDMA-P + PDMA) to right size the data transfer  
complexity at each point in the system to match the requirements of whatever is being transferred to or from.  
Peripherals are typically FIFO based and do not require multi-dimensional transfers beyond their FIFO  
dimensioning requirements, so the PDMA transfer engines are kept simple with only a few dimensions (typically  
for sample size and FIFO depth), hardcoded address maps, and simple triggering capabilities.  
Multiple source and destination channels are provided within the PDMA which allow multiple simultaneous  
transfer operations to be ongoing. The DMA controller maintains state information for each of the channels and  
employs round-robin scheduling between channels in order to share the underlying DMA hardware.  
There are five PDMA modules in the device.  
For more information, see PDMA Controller section in DMA Controllers chapter in the device TRM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
8.4.2 Peripherals  
8.4.2.1 ADC  
The analog-to-digital converter (ADC) module is an eight-channel general purpose analog-to-digital converter,  
which supports 12-bit conversion samples from an analog front end (AFE).  
There are two ADC modules in the device.  
For more information, see Analog-to-Digital Converter (ADC) section in Peripherals chapter in the device TRM.  
8.4.2.2 ATL  
The ATL module supports the following features:  
One ATL module, containing four ATL instances, for HD Radio support and asynchronous sample rate  
conversion assistance  
Each instance tracks the time error between two syncs (local audio word select [AWS] and baseband word  
select [BWS])  
Each instance selects between 28 mux choices for BWS and 30 mux choices for AWS.  
Each instance generates modulated ATCLK clock signals with software-initiated pulse stealing. The intention  
is to use these clocks to derive audio output bit clock on MCASP  
Selection between ATL_VCLK clock or functional ATL_PCLK to run error counting timers and to derive  
modulated ATCLK clock outputs.  
Clock and reset management: Receives clock and reset signals from the device PSC module. The ATL  
module receives hardware reset.  
Power management: The ATL belongs to the PD0 power domain.  
Local software reset  
The ATL module not supports the following features:  
Smart ATL_CLK_STOP  
ATL_MOD_OUT[3:0] clock outputs  
For more information, see Audio Tracking Logic (ATL) section in Peripherals chapter in the device TRM.  
8.4.2.3 AASRC  
The AASRC module supports the following main features:  
High performance Asynchronous Sample Rate Converter with 140dB Signal-to-Noise (SNR)  
Up to 8 input and output stereo streams (16 audio channels)  
4 input and output clock zones  
Support for input and output audio sample rates from 8 kHz to 216 kHz  
Automatically sensing/detection of input sample frequencies  
Attenuation of sampling clock jitter  
16-, 18-, 20-, 24-bit data input/output  
Input/output sampling ratios from 16:1 to 1:16  
32-sample input and output FIFO for each channel with independently configurable thresholds  
Group mode, where multiple AASRC blocks use the same timing loop for input or output  
Linear phase FIR filter  
Controllable soft mute  
Separate DMA events for input and output, for each channel and group  
Interrupts for input, output, and error for channels and groups of channels  
Channels belonging in an input/output clock zone may be configured and managed as a group or as  
individual streams  
Independent clock generator for each input and output clock zone  
Independent rate and stamp generator for each input and output clock zone  
The AASRC module has the following main constraints:  
Copyright © 2021 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
The AASRC output rate divided by input rate must be between 1/16 and 16  
Sample rate must be between 8 kHz and 216 kHz  
For more information, see Audio Asynchronous Sample Rate Converter (AASRC) section in Peripherals chapter  
in the device TRM.  
8.4.2.4 DCC  
The Dual Clock Comparator (DCC) is used to determine the accuracy of a clock signal during the time execution  
of an application. Specifically, the DCC is designed to detect drifts from the expected clock frequency. The  
desired accuracy can be programed based on calculation for each application. The DCC measures the  
frequency of a selectable clock source using another input clock as a reference.  
The device has sixteen instances of DCC modules.  
For more information, see Dual Clock Comparator (DCC) section in Peripherals chapter in the device TRM.  
8.4.2.5 DDRSS  
Integrated in MAIN domain one instance of DDR Subsystem (DDRSS) is used as an interface to external  
SDRAM devices which can be utilized for storing program or data. DDRSS provides the following main features:  
• Support of DDR4 / LPDDR4 memory types  
• 16-bit memory bus interface with in-line ECC  
• Up to 2 GB memory address range  
• System bus interface: little endian only with 256-bit data width  
• Configuration bus Interface: little endian only with 32-bit data width  
• Support of dual rank configuration  
• Support of automatic idle power saving mode when no or low activity is detected  
• Class of Service (CoS) - three latency classes supported  
• Prioritized refresh scheduling  
• Statistical counters for performance management  
For more information, see DDR Subsystem (DDRSS) section in Peripherals chapter in the device TRM.  
8.4.2.6 ECAP  
This section describes the Enhanced Capture (ECAP) module for the device.  
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.  
8.4.2.7 EPWM  
An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU  
overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand  
and use. The EPWM unit described here addresses these requirements by allocating all needed timing and  
control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided;  
instead, the EPWM is built up from smaller single channel modules with separate resources and that can  
operate together as required to form a system. This modular approach results in an orthogonal architecture and  
provides a more transparent view of the peripheral structure, helping users to understand its operation quickly.  
In the further description the letter x within a signal or module name is used to indicate a generic EPWM instance  
on a device. For example, output signals EPWMxA and EPWMxB refer to the output signals from the EPWM_x  
instance. Thus, EPWM1A and EPWM1B belong to EPWM1, EPWM2A and EPWM2B belong to EPWM2, and so  
forth.  
Additionally, the EPWM integration allows this synchronization scheme to be extended to the capture peripheral  
modules (ECAP). The number of modules is device-dependent and based on target application needs. Modules  
can also operate stand-alone.  
The device has six instances of EPWM modules.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in  
the device TRM.  
8.4.2.8 ELM  
The Error Location Module (ELM) is used with the GPMC. Syndrome polynomials generated on-the-fly when  
reading a NAND flash page and stored in GPMC registers are passed to the ELM. A host processor can then  
correct the data block by flipping the bits to which the ELM error-location outputs point.  
When reading from NAND flash memories, some level of error-correction is required. In the case of NAND  
modules with no internal correction capability, sometimes referred to as bare NANDs, the correction process is  
delegated to the memory controller. ELM can be also used to support parallel NOR flash or NAND flash.  
The General-Purpose Memory Controller (GPMC) probes data read from an external NAND flash and uses this  
to compute checksum-like information, called syndrome polynomials, on a per-block basis. Each syndrome  
polynomial gives a status of the read operations for a full block, including 512 bytes of data, parity bits, and an  
optional spare-area data field, with a maximum block size of 1023 bytes. Computation is based on a Bose-  
Chaudhuri-Hocquenghem (BCH) algorithm. The ELM extracts error addresses from these syndrome  
polynomials.  
For more information, see Error Location Module (ELM) section in Peripherals chapter in the device TRM.  
8.4.2.9 ESM  
The Error Signaling Module (ESM) aggregates safety-related events and/or errors from throughout the device  
into one location. It can signal both low and high priority interrupts to a processor to deal with a safety event  
and/or manipulate an I/O error pin to signal an external hardware that an error has occurred. Therefore an  
external controller is able to reset the device or keep the system in safe, known state.  
For more information, see Error Signaling Module (ESM) section in Peripherals chapter in the device TRM.  
8.4.2.10 EQEP  
The Enhnanced Quadrature Encoder Pulse (EQEP) peripheral is used for direct interface with a linear or rotary  
incremental encoder to get position, direction and speed information from a rotating machine for use in high  
performance motion and position control system. The disk of an incremental encoder is patterned with a single  
track of slots patterns. These slots create an alternating pattern of dark and light lines. The disk count is defined  
as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second track is  
added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used to indicate  
an absolute position. Encoder manufacturers identify the index pulse using different terms such as index,  
marker, home position and zero reference.  
To derive direction information, the lines on the disk are read out by two different photo-elements that "look" at  
the disk pattern with a mechanical shift of 1/4 the pitch of a line pair between them. This shift is realized with a  
reticle or mask that restricts the view of the photo-element to the desired part of the disk lines. As the disk  
rotates, the two photo-elements generate signals that are shifted 90 degrees out of phase from each other.  
These are commonly called the quadrature QEPA and QEPB signals. The clockwise direction for most encoders  
is defined as the QEPA channel going positive before the QEPB channel and vise versa.  
The encoder wheel typically makes one revolution for every revolution of the motor or the wheel may be at a  
geared rotation ratio with respect to the motor. Therefore, the frequency of the digital signal coming from the  
QEPA and QEPB outputs varies proportionally with the velocity of the motor. For example, a 2000-line encoder  
directly coupled to a motor running at 5000 revolutions per minute (rpm) results in a frequency of 166.6 KHz, so  
by measuring the frequency of either the QEPA or QEPB output, the processor can determine the velocity of the  
motor.  
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter  
in the device TRM.  
8.4.2.11 GPIO  
The general-purpose input/output (GPIO) peripheral provides dedicated general-purpose pins that can be  
configured as either inputs or outputs. When configured as an output, user can write to an internal register to  
Copyright © 2021 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
control the state driven on the output pin. When configured as an input, user can obtain the state of the input by  
reading the state of an internal register.  
In addition, the GPIO peripheral can produce host CPU interrupts and DMA synchronization events in different  
interrupt/event generation modes.  
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.  
8.4.2.12 GPMC  
The GPMC module supports the following features:  
Data path to external memory device can be 32, 16 or 8 bits wide  
Support for the following memory types:  
– Asynchronous or synchronous 8-bit memory or device (non-burst device)  
– Asynchronous or synchronous 16-bit memory or device  
– Asynchronous or synchronous 32-bit memory or device  
– 16-bit non-multiplexed NOR Flash device  
– 16-bit address and 32-bit address and data multiplexed NOR Flash device  
– 8-bit and 16-bit NAND flash device  
– 16-bit and 32bit pSRAM device  
Supports Error Code detection using BCH code (t=4, 8 or 16) or Hamming code for 8-bit or 16-bit NAND-  
flash, organized with page size of 512 Byte, 1Kbytes, or more. • Supports 1 GByte maximum addressing  
capability, which can be divided into 8 independent chip-select with programmable bank size and base  
address on 16 MByte, 32 MByte, 64 MByte, or 128 MByte boundary.  
Fully-pipelined operation for optimal memory bandwidth usage  
Supports external device clock frequency of /1, /2, /3, and /4 divide of interface clock  
Supports programmable auto-clock gating when there is no access  
Supports MIdlereq/SIdleAck protocol  
Supports the following interface protocols when communicating with external memory or external devices:  
– Asynchronous read/write access  
– Asynchronous read page access (4-8-16 Word16), 4-8-16 Word32  
– Synchronous read/write access  
– Synchronous read burst access without wrap capability (4-8-16-32 Word16, 4-8-16 Word32)  
– Synchronous read burst access with wrap capability (4-8-16-32 Word16, 4-8-16 Word32)  
Address and data multiplexed access  
Each chip-select has independent and programmable control signal timing parameters for Setup and Hold  
time. Parameters are set according to the memory device timing parameters, with one interface clock cycle  
timing granularity.  
Flexible internal access time control (wait state) and flexible handshake mode using external WAIT pin  
Supports bus keeping  
Supports bus turn around  
Pre-fetch and write posting engine associated with system DMA, to get full performance from NAND device,  
and with minimum impact on NOR/SRAM concurrent access monitoring (up to 4 WAIT pins)  
For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the  
device TRM.  
8.4.2.13 I2C  
The Inter-IC Bus (I2C) interface is implemented using the mshsi2c module. This peripheral implements the multi-  
master I2C bus, which allows serial transfer of 8-bit data to and from other I2C master and slave devices,  
through a two-wire interface.  
The I2C module supports the following main features:  
Compliant with Philips I2C specification version 2.1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Supports OmniVision Serial Camera Control Bus Protocol (SCCB)  
Supports standard mode (up to 100K bits/s), fast mode (up to 400K bits/s), and high-speed mode (up to  
3.4Mb/s).  
Multi-master transmitter and slave receiver mode  
Multi-master receiver and slave transmitter mode  
Combined master transmit/receive and receive/transmit modes  
7-bit and 10-bit device addressing modes  
Built-in FIFO for buffered read or write  
– Parameterizable size of 8 to 64 bytes  
Programmable multi-slave channel (responds to 4 separates addresses)  
Programmable clock generation  
Support for asynchronous wake-up  
Two DMA channels, one interrupt line  
For more information, see Inter-Integrated Circuit (I2C) Interface section in Peripherals chapter in the device  
TRM.  
8.4.2.14 MCAN  
The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed  
real-time control with a high level of security. CAN has high immunity to electrical interference and the ability to  
self-diagnose and repair data errors. In a CAN network, many short messages are broadcast to the entire  
network, which provides for data consistency in every node of the system.  
The MCAN module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications. CAN  
FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD devices  
can coexist on the same network without any conflict.  
The device supports 2 MCAN modules  
For more information, see Modular Controller Area Network (MCAN) section in Peripherals chapter in the device  
TRM.  
8.4.2.15 MCRC Controller  
VBUSM CRC controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the  
integrity of a memory system. A signature representing the contents of the memory is obtained when the  
contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to calculate the  
signature for a set of data and then compare the calculated signature value against a pre-determined good  
signature value. MCRC controller provides four channels to perform CRC calculation on multiple memories in  
parallel and can be used on any memory system. Channel 1 can also be put into data trace mode, where MCRC  
controller compresses each data being read through CPU read data bus.  
For more information, see MCRC Controller section in Interprocessor Communication chapter in the device  
TRM.  
8.4.2.16 MCSPI  
The MCSPI module is a multichannel transmit/receive, master/slave synchronous serial bus.  
There are total of seven MCSPI modules in the device.  
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
8.4.2.17 MMCSD  
There are two Multi-Media Card/Secure Digital (MMCSD) modules inside the device - MMCSD0 and MMCSD1.  
Each MMCSD module includes one MMCSD Host Controller, where MMCSD0 is associated with MMC0 and  
MMCSD1 is associated with MMC1.  
The MMCSD Host Controller supports:  
Copyright © 2021 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
One controller with 8-bit wide data bus  
One controller with 4-bit wide data bus  
Support of eMMC5.1 Host Specification (JESD84-B51)  
Support of SD Host Controller Standard Specification - SDIO 3.00  
Integrated DMA controller supporting SD Advanced DMA - ADMA2 and ADMA3  
eMMC Electrical Standard 5.1 (JESD84-B51)  
Multi-Media card features:  
– Backward compatible with earlier eMMC standards  
– Legacy MMC SDR: 1.8 V, 8/4/1-bit bus width, 0-25 MHz, 25/12.5/3.125 MB/s  
– High Speed SDR: 1.8 V, 8/4/1-bit bus width, 0-50 MHz, 50/25/6.25 MB/s  
– High Speed DDR: 1.8 V, 8/4-bit bus width, 0-50 MHz, 100/50 MB/s  
– HS200 SDR: 1.8 V, 0-200 MHz, 8/4-bit bus width, 200/100 MB/s  
SD card support: SDIO, SDR12, SDR25, SDR50, DDR50  
System bus interface: CBA 4.0 VBUSM master port with 64-bit data width and 64-bit address, little endian  
only  
Configuration bus interface: CBA 4.0 VBUSM with 32-bit data width, 32-bit aligned accesses only, linear  
incrementing addressing mode, little endian only  
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in  
the device TRM.  
8.4.2.18 OSPI  
The Octal Serial Peripheral Interface (OSPI) module is a kind of Serial Peripheral Interface (SPI) module which  
allows single, dual, quad or octal read and write access to external flash devices. This module has a memory  
mapped register interface, which provides a direct memory interface for accessing data from external flash  
devices, simplifying software requirements.  
The OSPI module is used to transfer data, either in a memory mapped direct mode (for example a processor  
wishing to execute code directly from external flash memory), or in an indirect mode where the module is set-up  
to silently perform some requested operation, signalling its completion via interrupts or status registers. For  
indirect operations, data is transferred between system memory and external flash memory via an internal  
SRAM which is loaded for writes and unloaded for reads by a device master at low latency system speeds.  
Interrupts or status registers are used to identify the specific times at which this SRAM should be accessed using  
user programmable configuration registers.  
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device  
TRM.  
8.4.2.19 PCIE  
Each PCIe subsystem supports the following main features:  
Dual mode – root port (RP) or end point (EP) modes. Selectable through bootstrap pins.  
1-lane configuration with up to 5.0GT/lane.  
62.5/125 MHz operation on PIPE interface for Gen1/Gen2 respectively  
Constant 32-bit PIPE width for Gen1/Gen2 modes  
Maximum outbound payload size of 128 bytes  
Maximum inbound payload size of 128 bytes  
Maximum remote read request size of 4K bytes  
Maximum number of nonposted outstanding transactions: 8 on each VBUSM interface.  
Four virtual channels (4VC)  
Resizable BAR capability  
SRIS support  
Power management  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
– L1 Power management substates support  
– D1 support  
– L1 PM substate power shutoff support  
Legacy, MSI, and MSI-X interrupt support  
32 outbound address translation regions  
Precision time measurement (PTM)  
For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals  
chapter in the device TRM.  
8.4.2.20 SerDes  
Integrated in the MAIN domain is one instance of high-speed differential interface implemented with Serializer/  
Deserializer (SERDES) Multi-protocol Multi-link modules with the following main blocks:  
Quad lane PHY with common module for peripheral and Tx clocking handling  
Physical coding sub-block for data translation from/to the parallel interface, as well as data encoding/  
decoding and ymbol alignment  
MUX module for device interfaces multiplexing into a single SERDES lane (Tx and Rx)  
A wrapper for sending control and reporting status signals from the SerDes and muxes  
For more information, see Serializer/Deserializer (SerDes) section in Peripherals chapter in the device TRM.  
8.4.2.21 RTI  
This section describes the Real Time Interrupt (RTI) modules with Windowed Watchdog Timer (WWDT)  
functionality for the device.  
The Real Time Interrupt module provides timer functionality for operating systems and for benchmarking code.  
The module incorporates several counters, which define the timebases needed for scheduling in the operating  
system.  
This module is specifically designed to fulfill the requirements for OSEK (“Offene Systeme und deren  
Schnittstellen für die Elektronik im Kraftfahrzeug”; “Open Systems and the Corresponding Interfaces for  
Automotive Electronics”) as well as OSEK/Time compliant operating systems.  
The timers also provide the ability to benchmark certain areas of code by reading the counter contents at the  
beginning and the end of the desired code range and calculating the difference between the values.  
For more information, see Real Time Interrupt (RTI) Module section in Peripherals chapter in the device TRM.  
8.4.2.22 DMTIMER  
The DMTIMER module supports the following main features:  
Interrupts generated on overflow, compare and capture  
Free running 32-bit upward counter  
Supported modes:  
– Compare and capture modes  
– Auto-reload mode  
– Start-stop mode  
Programmable divider clock source (2n with n=[0:8])  
Dedicated input trigger for capture mode, and dedicated output trigger/PWM (pulse width modulation) signal  
On the fly read/write register (while counting)  
Generate 1-ms tick with 32768-Hz functional clock  
For more information, see Timers section in Peripherals chapter in the device TRM.  
8.4.2.23 UART  
The UART module supports the following main features:  
16C750 compatibility  
Copyright © 2021 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Baud rate from 300 bps up to 3.6864 Mbps (subject to functional clock frequency)  
Auto-baud between 1200 bps and 115.2 Kbps  
Synchronous mode (USART) support with either external clock or generated clock  
Software/hardware flow control  
– Programmable Xon/Xoff characters  
– Programmable Auto-RTS and Auto CTS  
Programmable serial interface characteristics  
– 5, 6, 7, or 8-bit characters  
– Even, odd, mark (always 1), space (always 0), or no parity (non-parity bit frame) bit generation and  
detection  
– 1-, 1.5-, or 2-stop bit generation  
Optional multi-drop transmission  
Configurable time-guard feature  
False start bit detection  
Line break generation and detection  
Modem control functions (CTS, RTS, DSR, DTR, RI, and DCD)  
Fully prioritized interrupt system controls  
Internal test and loopback capabilities  
ISO7816 Functions  
– Half duplex protocol using TX line in bidirectional mode  
– Support for T+0 and T=1 protocols  
RS-485 External transceiver auto flow control support  
For more information, see Universal Synchronous/Asynchronous Receiver/Transmitter (UART) section in  
Peripherals chapter in the device TRM.  
8.4.2.24 USB  
The USB module supports the following main features:  
USB interface:  
Compliant with USB 3.1 Gen1 specification  
Compliant with xHCI 1.1 specification  
Limited USB 2.0 on-the-go support  
SuperSpeed Gen1 (5 Gbps), high speed (480 Mbps), and full (12Mbps) Device  
SuperSpeed Gen1 (5 Gbps), high speed (480 Mbps), full (12Mbps), and low speed (1.5 Mbps) Host  
Single USB2.0 port  
Single USB3.1 port  
Dual mode operation:  
OTG 2.0 host negotiation protocol (HNP) support  
OTG 2.0 session request support (SRP) support  
Host mode:  
64 slots supported  
Up to 128 periodic endpoints supported simultaneously  
256 primary streams supported  
MSI support  
Root hub functionality  
For more information, see Universal Serial Bus (USB) Subsystem section in Peripherals chapter in the device  
TRM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Power Supply Mapping  
Note  
NOTE TO USERS:  
The content of this section is UNDER DEVELOPMENT!  
9.2 Device Connection and Layout Fundamentals  
9.2.1 Power Supply Decoupling and Bulk Capacitors  
9.2.1.1 Power Distribution Network Implementation Guidance  
The Sitara Processor Power Distribution Networks: Implementation and Analysis provides guidance for  
successful implementation of the power distribution network. This includes PCB stackup guidance as well as  
guidance for optimizing the selection and placement of the decoupling capacitors. TI supports only designs that  
follow the board design guidelines contained in the application report.  
9.2.2 External Oscillator  
For more information about External Oscillators, see Section 7.10.4, Clock Specifications  
9.2.3 JTAG and EMU  
Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various  
debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target  
Connection Guide.  
For more recommendations on EMU routing, see Emulation and Trace Headers Technical Reference Manual  
9.2.4 Reset  
Note  
NOTE TO USERS:  
The content of this section is UNDER DEVELOPMENT!  
9.2.5 Unused Pins  
For more information about Unused Pins, see Section 6.5, Connections for Unused Pins  
9.2.6 Hardware Design Guide  
Note  
NOTE TO USERS:  
The content of this section is UNDER DEVELOPMENT!  
Copyright © 2021 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
9.3 Peripheral- and Interface-Specific Design Information  
9.3.1 DDR Board Design and Layout Guidelines  
The goal of the AM64x DDR Board Design and Layout Guidelines is to make the DDR system implementation  
straightforward for all designers. Requirements have been distilled down to a set of layout and routing rules that  
allow designers to successfully implement a robust design for the topologies that TI supports. TI only supports  
board designs using DDR4 or LPDDR4 memories that follow the guidelines in this document.  
9.3.2 OSPI and QSPI Board Design and Layout Guidelines  
The following section details the routing guidelines that must be observed when routing the OSPI and QSPI  
interfaces.  
9.3.2.1 No Loopback and Internal Pad Loopback  
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device  
The signal propagation delay from the MCU_OSPI[x]_CLK signal to the flash device must be < 450 ps (~7cm  
as stripline or ~8cm as microstrip)  
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-1  
Propagation delays and matching:  
– A to B < 450 ps  
– Matching skew: < 60 ps  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
device clock input  
MCU_OSPI[x]_CLK  
MCU_OSPI[x]_D[y],  
MCU_OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
device IOy, CS#  
OSPI_Board_01  
* 0 Ω resistor (R1), located as close as possible to the MCU_OSPI[x]_CLK pin, is placeholder for fine tuning, if needed.  
Figure 9-1. OSPI Interface High Level Schematic  
9.3.2.2 External Board Loopback  
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device  
The MCU_OSPI[x]_LBCLKO output signal must be looped back into the MCU_OSPI[x]_DQS input  
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B)  
should be approximately equal to half of the signal propagation delay from the MCU_OPSI[x]_LBCLKO pin to  
the MCU_OSPI[x]_DQS pin ((C to D)/2). See the note below.  
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B) must  
be approximately equal to the signal propagation delay of the control and data signals between the flash  
device and the SoC device (E to F, or F to E)  
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-2  
Propagation delays and matching:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
– A to B = E to F = (C to D) / 2  
– Matching skew: < 60 ps  
Note  
The OSPI Board Loopback Hold time requirement (described in Section 7.10.5.14, OSPI) is larger  
than the Hold time provided by a typical flash device. Therefore, the length of MCU_OPSI[x]_LBCLKO  
pin to the MCU_OSPI[x]_DQS pin (C to D) can be shortened to compensate.  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
device clock input  
MCU_OSPI[x]_CLK  
C
R1  
0 Ω*  
MCU_OSPI[x]_LBCLKO  
D
MCU_OSPI[x]_DQS  
E
F
MCU_OSPI[x]_D[y],  
MCU_OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
device IOy, CS#  
OSPI_Board_02  
* 0 Ω resistor (R1), located as close as possible to the MCU_OSPI[x]_CLK and MCU_OSPI[x]_LBCLKO pins, is a placeholder for fine  
tuning, if needed.  
Figure 9-2. OSPI Interface High Level Schematic  
9.3.2.3 DQS (only available in Octal Flash devices)  
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device  
The DQS pin of the flash devices must be connected to MCU_OSPI[x]_DQS signal  
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B)  
should be approximately equal to the signal propagation delay from the MCU_OSPI[x]_DQS pin to the DQS  
output pin (C to D)  
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-3  
Propagation delays and matching:  
– A to B = C to D  
Copyright © 2021 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
– Matching skew: < 60 ps  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
device clock input  
MCU_OSPI[x]_CLK  
C
D
OSPI device DQS  
MCU_OSPI[x]_DQS  
E
F
MCU_OSPI[x]_D[y],  
MCU_OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
device IOy, CS#  
J7ES_OSPI_Board_03  
* 0 Ω resistor (R1), located as close as possible to the MCU_OSPI[x]_CLK pin, is a placeholder for fine tuning, if needed.  
Figure 9-3. OSPI Interface High Level Schematic  
9.3.3 USB Design Guidelines  
The USB 3.1 specification allows the VBUS voltage to be as high as 5.5 V for normal operation, and as high as  
20 V when the Power Delivery addendum is supported. Some automotive applications require a max voltage to  
be 30 V.  
The device requires the VBUS signal voltage be scaled down using an external resistor divider (as shown in the  
Figure 9-4), which limits the voltage applied to the actual device pin (USB0_VBUS). The tolerance of these  
external resistors should be equal to or less than 1%, and the leakage current of zener diode at 5 V should be  
less than 100 nA.  
(1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Device  
USBn_VBUS  
16.5 kΩ  
1%  
3.5 kΩ  
1%  
VBUS signal  
10 kΩ  
1%  
6.8V  
(BZX84C6V8 or equivalent)  
VSS  
VSS  
J7ES_USB_VBUS_01  
Figure 9-4. USB VBUS Detect Voltage Divider / Clamp Circuit  
The USB0_VBUS pin can be considered to be fail-safe because the external circuit in Figure 9-4 limits the input  
current to the actual device pin in a case where VBUS is applied while the device is powered off.  
9.3.4 System Power Supply Monitor Design Guidelines  
The VMON_VSYS pin provides a way to monitor a system power supply. This system power supply is typically a  
single pre-regulated power source for the entire system. This supply is monitored by comparing the output of an  
external voltage divider circuit sourced by this supply with an internal voltage reference, with a power fail event  
being triggered when the voltage applied to VMON_VSYS drops below the internal reference voltage. The actual  
system power supply voltage trip point is determined by the system designer when selecting component values  
used to implement the external resistor voltage divider circuit.  
When designing the resistor divider circuit it is important to understand various factors which contribute to  
variability in the system power supply monitor trip point. The first thing to consider is the initial accuracy of the  
VMON_VSYS input threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision 1%  
resistors with similar thermal coefficient are recommended for implementing the resistor voltage divider. This  
minimizes variability contributed by resistor value tolerances. Input leakage current associated with  
VMON_VSYS must also be considered since any current flowing into the pin creates a loading error on the  
voltage divider output. The VMON_VSYS input leakage current may be in the range of 10 nA to 2.5 µA when  
applying 0.45 V.  
Note  
The resistor voltage divider shall be designed such that its output voltage never exceeds the  
maximum value defined in Section 7.4, Recommended Operating Conditions, during normal operating  
conditions.  
Figure 9-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger  
threshold is 5 V - 10%, or 4.5 V.  
For this example, it is important to understand which variables effect the maximum trigger threshold when  
selecting resistor values. It is obvious a device which has a VMON_VSYS input threshold of 0.45 V + 3% needs  
to be considered when trying to design a voltage divider that doesn’t trip until the system supply drops 10%. The  
effect of resistor tolerance and input leakage also needs to be considered, but how these contributions effect the  
maximum trigger point may not be obvious. When selecting component values which produce a maximum  
trigger voltage, the system designer must consider a condition where the value of R1 is 1% low and the value of  
R2 is 1% high combined with a condition where input leakage current for the VMON_VSYS pin is 2.5 µA. When  
implementing a resistor divider where R1 = 4.81 KΩ and R2 = 40.2 KΩ, the result is a maximum trigger threshold  
of 4.523 V.  
Once component values have been selected to satisfy the maximum trigger voltage as described above, the  
system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an  
Copyright © 2021 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input  
leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result  
is a minimum trigger threshold of 4.008 V.  
This example demonstrates a system power supply voltage trip point that ranges from 4.008 V to 4.523 V.  
Approximately 250 mV of this range is introduced by VMON_VSYS input threshold accuracy of ±3%,  
approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV of this  
range is introduced by loading error when VMON_VSYS input leakage current is 2.5 µA.  
The resistor values selected in this example produces approximately 100 µA of bias current through the resistor  
divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above could be reduced to  
about 10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor  
divider bias current vs loading error is something the system designer needs to consider when selecting  
component values.  
The system designer should also consider implementing a noise filter on the voltage divider output since  
VMON_VSYS has minimum hysteresis and a high-bandwidth response to transients. This could be done by  
installing a capacitor across R1 as shown in Figure 9-5. However, the system designer must determine the  
response time of this filter based on system supply noise and expected response to transient events.  
Device  
VMON_VSYS  
R2  
VSYS  
40.2 kΩ 1%  
C1  
Value = Determined by system designer  
(System Power Supply)  
4.81 kΩ  
1%  
R1  
VSS  
SPRSP56_VMON_ER_MON_01  
Figure 9-5. System Supply Monitor Voltage Divider Circuit  
VMON_1P8_MCU and VMON_1P8_SOC pins provide a way to monitor external 1.8 V power supplies. An  
internal resistor divider with software control is implemented inside the SoC for each of these pins. Software can  
program each internal resistor divider to create appropriate under voltage and over voltage interrupts.  
VMON_3P3_MCU and VMON_3P3_SOC pins provide a way to monitor external 3.3 V power supplies. An  
internal resistor divider with software control is implemented inside the SoC for each of these pins. Software can  
program each internal resistor divider to create appropriate under voltage and over voltage interrupts.  
9.3.5 High Speed Differential Signal Routing Guidance  
The High Speed Interface Layout Guidelines provides guidance for successful routing of the high speed  
differential signals. This includes PCB stackup and materials guidance as well as routing skew, length and  
spacing limits. TI supports only designs that follow the board design guidelines contained in the application  
report.  
9.3.6 External Capacitors  
Note  
NOTE TO USERS:  
The content of this section is UNDER DEVELOPMENT!  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
9.3.7 Thermal Solution Guidance  
The Thermal Design Guide for DSP and ARM Application Processors provides guidance for successful  
implementation of a thermal solution for system designs containing this device. This document provides  
background information on common terms and methods related to thermal solutions. TI only supports designs  
that follow system design guidelines contained in the application report.  
Copyright © 2021 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
10 Device and Documentation Support  
10.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AM64x). Texas Instruments recommends two of three possible prefix designators for its support tools:  
TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
For orderable part numbers of AM64x devices in the ALV package type, see the Package Option Addendum of  
this document, the TI website (ti.com), or contact your TI sales representative.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
10.1.1 Standard Package Symbolization  
Note  
Some devices may have a cosmetic circular marking visible on the top of the device package which  
results from the production test process. In addition, some devices may also show a color variation in  
the package substrate which results from the substrate manufacturer. These differences are cosmetic  
only with no reliability impact.  
aBBBBBBrZfYytPPPQ1  
A1 (PIN ONE INDICATOR)  
XXXXXXX  
G1  
ZZZ  
YYY  
O
Figure 10-1. Printed Device Reference  
10.1.2 Device Naming Convention  
Table 10-1. Nomenclature Description  
FIELD PARAMETER FIELD DESCRIPTION  
VALUE  
DESCRIPTION  
a
Device evolution stage  
X
Prototype  
P
Preproduction (production test flow, no reliability data)  
Production  
BLANK  
BBBBBB  
Base production part  
number  
AM6442  
AM6441  
AM6421  
See Table 5-1, Device Comparison  
AM6412  
AM6411  
r
Z
f
Device revision  
A
S
K
C
D
E
F
SR 1.0  
Device Speed Grades  
See Table 7-1, Speed Grade Maximum Frequency  
Features  
(see Table 5-1)  
No Additional Features  
ICSS Enabled  
ICSS + EtherCAT HW Accelerator + CAN-FD Enabled  
ICSS + EtherCAT HW Accelerator + CAN-FD + Pre-integrated Stacks  
Enabled  
Copyright © 2021 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
Table 10-1. Nomenclature Description (continued)  
FIELD PARAMETER FIELD DESCRIPTION  
VALUE  
DESCRIPTION  
Y
y
t
Functional Safety  
G
F
Non-Functional Safety  
Functional Safety  
Non-Secure  
Security  
G
Other  
A
Secure  
Temperature (1)  
-40°C to 105°C - Extended Industrial (see Section 7.4, Recommended  
Operating Conditions)  
PPP  
Q1  
Package Designator  
ALV  
Q1  
ALV FCBGA-N441 (17.2 mm × 17.2 mm) Package  
Auto Qualified (Q100)  
Automotive Designator  
BLANK  
Standard  
XXXXXXX  
YYY  
ZZZ  
Lot Trace Code (LTC)  
Production Code; For TI use only  
Production Code; For TI use only  
Pin one designator  
O
G1  
ECAT—Green package designator  
(1) Applies to device max junction temperature.  
Note  
BLANK in the symbol or part number is collapsed so there are no gaps between characters.  
10.2 Tools and Software  
The following products support development for AM64x platforms:  
Development Tools  
Clock Tree Tool for Sitara, Automotive, Vision Analytics, and Digital Signal Processors The Clock Tree  
Tool (CTT) for Sitara™ Arm®, Automotive, and Digital Signal Processors is an interactive clock tree  
configuration software that provides information about the clocks and modules in these TI devices. It allows the  
user to:  
Visualize the device clock tree  
Interact with clock tree elements and view the effect on PRCM registers  
Interact with the PRCM registers and view the effect on the device clock tree  
View a trace of all the device registers affected by the user interaction with clock tree  
Code Composer StudioIntegrated Development Environment Code Composer Studio (CCS) Integrated  
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded  
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step  
of the application development flow. Familiar tools and interfaces allow users to get started faster than ever  
before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced  
embedded debug capabilities from TI resulting in a compelling feature-rich development environment for  
embedded developers.  
Pin mux tool The Pin MUX Utility is a software tool which provides a Graphical User Interface for configuring pin  
multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as  
C header/code files that can be imported into software development kits (SDKs) or used to configure customer's  
custom software. Version 4 of the Pin Mux utility adds the capability of automatically selecting a mux  
configuration that satisfies the entered requirements.  
Power Estimation Tool (PET) Power Estimation Tool (PET) provides users the ability to gain insight in to the  
power consumption of select TI processors. The tool includes the ability for the user to choose multiple  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
application scenarios and understand the power consumption as well as how advanced power saving  
techniques can be applied to further reduce overall power consumption.  
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments  
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized  
distributor.  
10.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The following documents describe the AM64x devices.  
Technical Reference Manual  
AM64x Processors Silicon Revision 1.0 Technical Reference Manual Details the integration, the  
environment, the functional description, and the programming models for each peripheral and subsystem in the  
AM64x family of devices.  
Errata  
AM64x Processors Silicon Revision 1.0 Silicon Errata Describes the known exceptions to the functional  
specifications for the device.  
10.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.5 Trademarks  
Sitarais a trademark of Texas Instruments Incorporated.  
CoreSightis a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
Code Composer Studiois a trademark of TI.  
TI E2Eis a trademark of Texas Instruments.  
Arm®, Cortex®, TrustZone® are registered trademarks of Arm Limited.  
PCI-Express® is a registered trademark of PCI-SIG.  
EtherCAT® is a registered trademark of Beckhoff Automation GmbH.  
All trademarks are the property of their respective owners.  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
 
 
 
AM6442, AM6441, AM6421  
AM6412, AM6411  
SPRSP56 – JANUARY 2021  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: AM6442 AM6441 AM6421 AM6412 AM6411  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM6411AKCGHAALV  
AM6412AKCGHAALV  
AM6421ASDGHAALV  
AM6441ASDGHAALV  
AM6442ASDGHAALV  
XAM6442ASFGGAALV  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
ACTIVE  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
ALV  
ALV  
ALV  
ALV  
ALV  
ALV  
441  
441  
441  
441  
441  
441  
84  
84  
84  
84  
84  
1
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
RoHS (In work)  
& Non-Green  
SFGGAALV  
XAM6442A  
709  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
ALV0441A  
FCBGA - 2.657 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
17.3  
17.1  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
17.3  
17.1  
(
12.8)  
0.1 C  
(
(
10.8)  
16.8)  
(1.45)  
2.652  
2.332  
0.2 C  
C
SEATING PLANE  
0.15 C  
(0.662)  
0.5  
TYP  
0.3  
16 TYP  
SYMM  
(0.6) TYP  
(0.6) TYP  
0.8 TYP  
AA  
Y
W
V
U
T
R
P
N
M
L
SYMM  
16  
K
J
TYP  
H
G
F
E
D
C
B
A
0.55  
0.45  
C A B  
441X  
0.25  
0.1  
1
2
3
4
5
6 7 8 9 10 12 14 16 18 20  
11 13 15 17 19 21  
C
0.8 TYP  
4225999/A 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALV0441A  
FCBGA - 2.657 mm max height  
BALL GRID ARRAY  
441X ( 0.4)  
(0.8) TYP  
1
2 3  
4
5
6
7
8
9
10 11 12 13 14 15 16  
20 21  
17 18 19  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
K
L
SYMM  
M
N
P
R
T
U
V
W
Y
AA  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
EXPOSED METAL  
(
0.4)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225999/A 06/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALV0441A  
FCBGA - 2.657 mm max height  
BALL GRID ARRAY  
441X 0.4  
(0.8) TYP  
1
2 3  
4
5
6
7
8
9
10 11 12 13 14 15 16  
20 21  
17 18 19  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
K
L
SYMM  
M
N
P
R
T
U
V
W
Y
AA  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4225999/A 06/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY