AMC1302 [TI]

±50mV 输入、精密电流检测增强型隔离式放大器;
AMC1302
型号: AMC1302
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

±50mV 输入、精密电流检测增强型隔离式放大器

放大器
文件: 总35页 (文件大小:2291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
AMC1302 精密、±50mV 输入、增强型隔离放大器  
1 特性  
3 说明  
±50mV 输入电压范围针对基于分流器的电流测量  
进行了优化  
• 固定增益41  
• 低直流误差:  
AMC1302 是一款隔离式精密放大器此放大器的输出  
与输入电路由抗电磁干扰性能极强的隔离层隔开。该隔  
离栅经认证可提供高达 5kVRMS 的增强型电隔离符合  
VDE V 0884-11 UL1577 标准并且可支持最高  
1.5kVRMS 的工作电压。  
– 失调电压误差±50µV最大值)  
– 温漂±0.8µV/°C最大值)  
– 增益误差±0.2%最大值)  
– 增益漂移±35ppm/°C最大值)  
– 非线性度0.03%最大值)  
• 高侧和低侧3.3V 5V 电压运行  
• 失效防护输出  
CMTI100kV/µs最小值)  
EMICISPR-11 CISPR-25 标准  
• 安全相关认证:  
该隔离栅可将系统中以不同共模电压电平运行的各器件  
隔开并保护电压较低的器件免受高电压冲击。  
AMC1302 的输入针对直接连接低阻抗分流电阻器或其  
他具有低信号电平的低阻抗电压源的情况进行了优化。  
出色的直流精度和低温漂支持在 –40°C +125°C 的  
工业级工作温度范围内PFC 级、直流/直流转换  
器、交流电机和伺服驱动器中进行精确的电流控制。  
集成的无分流器和无高侧电源检测功能可简化系统级设  
计和诊断。  
7071-VPK 增强型隔离DIN VDE V  
0884-112017-01  
器件信息(1)  
– 符UL1577 标准且长1 分钟5000VRMS  
隔离  
封装尺寸标称值)  
器件型号  
AMC1302  
封装  
SOIC (8)  
5.85mm × 7.50mm  
• 可在工业级工作温度范围内正常工作40°C 至  
+125°C  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 可用于以下应用的隔离式电流感应:  
保护继电器  
电机驱动器  
电源  
光电逆变器  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
AMC1302  
VDD1  
INP  
VDD2  
OUTP  
I
+50 mV  
mV  
0 V  
VCMout  
±2.05 V  
ADC  
INN  
OUTN  
GND2  
GND1  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS812  
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
8.3 What to Do and What Not to Do............................... 22  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Example...................................................... 24  
11 Device and Documentation Support..........................25  
11.1 Documentation Support.......................................... 25  
11.2 Trademarks............................................................. 25  
11.3 Electrostatic Discharge Caution..............................25  
11.4 术语表..................................................................... 25  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Power Ratings ............................................................5  
6.6 Insulation Specification .............................................. 6  
6.7 Safety-Related Certifications ..................................... 7  
6.8 Safety Limiting Values ................................................7  
6.9 Electrical Characteristics ............................................8  
6.10 Switching Characteristics .........................................9  
6.11 Timing Diagram.........................................................9  
6.12 Insulation Characteristics Curves........................... 10  
6.13 Typical Characteristics............................................ 11  
7 Detailed Description......................................................17  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (October 2019) to Revision D (June 2021)  
Page  
更新了整个文档中的表格、图和交叉参考的编号格........................................................................................1  
Changed CIO from ~1 pF to ~1.5 pF...................................................................................................................6  
Changed VOS from 100 µV / ±10 µV / 100 µV to 50 µV / ±2.5 µV / 50 µV (min / typ / max ).......................8  
Changed EG from 0.3% / ±0.05% / 0.3% to 0.2% / ±0.04% / 0.2% (min / typ / max) ................................ 8  
Changed TCEG from 50 ppm// ±15 ppm// 50 ppm/to 35 ppm// ±3 ppm// 35 ppm/(min /  
typ / max) ...........................................................................................................................................................8  
Changed VFailsafe from 2.6 V / 2.5 V (typ / max) to 2.63 V / 2.57 V / 2.53 V (min / typ / max).......... 8  
Changed CMTI from 55 kV/µs / 80 kV/µs to 100 kV/µs / 150 kV/µs (min / typ) .................................................8  
Changed VDD1POR from 1.75 V / 2.15 V / 2.7 V to 2.4 V / 2.6 V / 2.8 V (min / typ / max)................................. 8  
Changed Rise, Fall, and Delay Time Waveforms image.................................................................................... 9  
Changes from Revision B (November 2018) to Revision C (October 2019)  
Page  
• 将安全相关认特性项目符号中VDE 认证从“DIN V VDE V 0884-11 (VDE V 0884-11)”更改DIN VDE  
V 0884-11 ...........................................................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1302  
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDD1  
INP  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
INN  
GND1  
Not to scale  
5-1. DWV Package, 8-Pin SOIC, Top View  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
2
VDD1  
INP  
High-side power  
Analog input  
High-side power supply.(1)  
Noninverting analog input. Either INP or INN must have a DC current path to GND1  
to define the common-mode input voltage.(2)  
Inverting analog input. Either INP or INN must have a DC current path to GND1 to  
define the common-mode input voltage.(2)  
3
INN  
Analog input  
4
5
6
7
8
GND1  
GND2  
OUTN  
OUTP  
VDD2  
High-side ground  
Low-side ground  
Analog output  
High-side analog ground.  
Low-side analog ground.  
Inverting analog output.  
Noninverting analog output.  
Low-side power supply.(1)  
Analog output  
Low-side power  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
(2) See the Layout section for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1302  
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
V
High-side VDD1 to GND1  
Power-supply voltage  
6.5  
6.5  
Low-side VDD2 to GND2  
V
0.3  
Analog input voltage  
Output voltage  
Input current  
INP, INN  
VDD1 + 0.5  
VDD2 + 0.5  
10  
V
GND1 6  
GND2 0.5  
10  
OUTP, OUTN  
V
Continuous, any pin except power-supply pins  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)  
Charged device model (CDM), per JESD22-C101 (2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
High-side power supply  
Low-side power supply  
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
VDD1 to GND1  
VDD2 to GND2  
3
3
5
5.5  
5.5  
V
V
3.3  
±64  
mV  
mV  
VIN = VINP VINN  
VIN = VINP VINN  
VFSR  
VCM  
Specified linear differential full-scale voltage  
Operating common-mode input voltage  
50  
50  
VDD1 –  
(VINP + VINN) / 2 to GND1  
V
0.032  
2.2  
TEMPERATURE RANGE  
TA Specified ambient temperature  
125  
°C  
55  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1302  
 
 
 
 
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.4 Thermal Information  
AMC1302  
THERMAL METRIC(1)  
DWV (SOIC)  
8 PINS  
85.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
26.8  
43.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.8  
ψJT  
41.2  
ψJB  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
99  
UNIT  
PD  
Maximum power dissipation (both sides) VDD1 = VDD2 = 5.5 V  
mW  
VDD1 = 3.6 V  
Maximum power dissipation (high-side)  
VDD1 = 5.5 V  
31  
PD1  
mW  
mW  
54  
VDD2 = 3.6 V  
Maximum power dissipation (low-side)  
VDD2 = 5.5 V  
26  
PD2  
45  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1302  
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
UNIT  
6.6 Insulation Specification  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
mm  
mm  
8.5  
8.5  
Shortest terminal-to-terminal distance across the package  
surface  
CPG  
External creepage(1)  
Minimum internal gap (internal clearance) of the double  
isolation (2 x 0.0105 mm)  
DTI  
CTI  
Distance through the insulation  
mm  
V
0.021  
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
600  
I
I -IV  
I-III  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category  
DIN V VDE 0884-11 (VDE V 0884-11): 2017-01(2)  
Maximum repetitive peak  
isolation voltage  
VIORM  
AC voltage  
2121  
VPK  
AC voltage (sine wave)  
1500  
2121  
7071  
8485  
VRMS  
VDC  
VPK  
Maximum isolation working  
voltage  
VIOWM  
DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = VIOTM, t = 1 s (100% production test)  
Maximum transient isolation  
voltage  
VIOTM  
VPK  
Maximum surge isolation  
voltage(1)  
Test method per IEC 60065, 1.2/50 µs waveform, VTEST = 1.6 ×  
VIOSM = 12800 VPK (qualification)  
VIOSM  
8000  
5  
5  
VPK  
Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini  
60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK, tm = 10 s  
=
Method a: After environmental tests subgroup 1, Vini = VIOTM  
,
qpd  
Apparent charge(3)  
tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394 VPK, tm = 10 s  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875  
× VIORM = 3977 VPK, tm = 1 s  
5  
Barrier capacitance, input to  
output(4)  
CIO  
RIO  
~1.5  
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance, input to  
output(4)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
55/125/21  
UL 1577  
VTEST = VISO = 5000 VRMS, t = 60 s (qualification), VTEST = 1.2  
× VISO = 6000 VRMS, t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care must be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed-circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(4) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1302  
 
 
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11): 2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and  
DIN EN 60065 (VDE 0860): 2005-11  
Recognized under 1577 component recognition and  
CSA component acceptance NO 5 programs  
Reinforced insulation  
Single protection  
Certificate number: 40040142  
Certificate number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to over-  
heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 85.4°C/W, VDDx = 5.5 V,  
IS  
IS  
Safety input, output, or supply current  
266  
mA  
TJ = 150°C, TA = 25°C  
θJA = 85.4°C/W, VDDx = 3.6 V,  
TJ = 150°C, TA = 25°C  
θJA = 85.4°C/W, TJ = 150°C, TA = 25°C  
R
Safety input, output, or supply current  
407  
mA  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1464  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1302  
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = 55°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V,  
INP = 50 mV to + 50 mV, and INN = GND1; typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT  
Common-mode overvoltage  
detection level  
VCMov  
(VINP + VINN) / 2 to GND1  
V
VDD1 2  
Hysteresis of common-mode  
overvoltage detection level  
60  
mV  
VOS  
Input offset voltage(1) (2)  
Input offset drift(1) (2) (3)  
TA = 25°C, VINP = VINN = GND1  
±2.5  
50  
µV  
50  
TCVOS  
±0.15  
0.8 µV/°C  
0.8  
fIN = 0 Hz, VCM min VCM VVCM max  
fIN = 10 kHz, VCM min VCM VCM max  
INN = GND1, fIN = 300 kHz  
fIN = 300 kHz  
100  
98  
4
CMRR  
Common-mode rejection ratio  
dB  
CIN  
Single-ended input capacitance  
Differential input capacitance  
Single-ended input resistance  
Differential input resistance  
Input bias current  
pF  
CIND  
RIN  
2
INN = GND1  
4.75  
4.9  
kΩ  
RIND  
IIB  
INP = INN = GND1; IIB = (IIBP + IIBN) / 2  
uA  
nA/°C  
nA  
48.5  
36  
±1.5  
±10  
28.5  
TCIIB  
IIO  
Input bias current drift  
Input offset current  
IIO = IIBP IIBN  
ANALOG OUTPUT  
Nominal gain  
41  
±0.04%  
±3  
EG  
Gain error(1)  
TA = 25°C  
0.2%  
0.2%  
35  
TCEG  
Gain error drift(1) (4)  
Nonlinearity(1)  
35 ppm/°C  
0.03%  
±0.01%  
1
0.03%  
Nonlinearity drift  
Total harmonic distortion  
ppm/°C  
dB  
THD  
SNR  
fIN = 10 kHz  
85  
INP = INN = GND1, fIN = 0 Hz,  
BW = 100 kHz brickwall filter  
Output noise  
260  
µVRMS  
dB  
fIN = 1 kHz, BW = 10 kHz  
fIN = 10 kHz, BW = 100 kHz  
PSRR vs VDD1, at DC  
80  
84  
70  
Signal-to-noise ratio  
113  
PSRR vs VDD1,  
100-mV and 10-kHz ripple  
108  
116  
87  
PSRR  
Power-supply rejection ratio(2)  
dB  
PSRR vs VDD2, at DC  
PSRR vs VDD2,  
100-mV and 10-kHz ripple  
VCMout  
Common-mode output voltage  
1.39  
1.44  
1.49  
2.52  
V
V
VOUT = (VOUTP VOUTN);  
|VIN| = |VINP VINN| > |VClipping  
VCLIPout  
Clipping differential output voltage  
±2.49  
2.52  
|
VFailsafe  
BW  
Failsafe differential output voltage  
Output bandwidth  
V
kHz  
Ω
V
CM VCMov, or VDD1 missing  
2.63  
2.57  
280  
2.53  
220  
ROUT  
Output resistance  
On OUTP or OUTN  
< 0.2  
On OUTP or OUTN, sourcing or sinking,  
INN = INP = GND1, outputs shorted to  
either GND2 or VDD2  
Output short-circuit current  
±14  
150  
mA  
CMTI  
Common-mode transient immunity  
100  
kV/µs  
|GND1 GND2| = 1 kV  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1302  
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 55°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V,  
INP = 50 mV to + 50 mV, and INN = GND1; typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VDD1 power-on-reset threshold  
voltage  
VDD1POR  
IDD1  
VDD1 falling  
2.4  
2.6  
2.8  
V
6.2  
7.2  
5.3  
5.9  
8.5  
9.8  
7.2  
8.1  
3.0 V VDD1 3.6 V  
4.5 V VDD1 5.5 V  
3.0 V VDD2 3.6 V  
4.5 V VDD2 5.5 V  
High-side supply current  
Low-side supply current  
mA  
IDD2  
(1) The typical value includes one standard deviation ("sigma") at nominal operating conditions.  
(2) This parameter is input referred.  
(3) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (ValueMAX - ValueMIN) / TempRange  
(4) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = (ValueMAX - ValueMIN) / (Value(T=25) x TempRange) x 106  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µs  
tr  
tf  
Output signal rise time  
1.5  
1.5  
1
Output signal fall time  
µs  
unfiltered output  
1.5  
2.1  
3
µs  
VINx to VOUTx signal delay (50% 10%)  
VINx to VOUTx signal delay (50% 50%)  
VINx to VOUTx signal delay (50% 90%)  
unfiltered output  
unfiltered output  
1.6  
2.5  
µs  
µs  
VDD1 step to 3.0 V with VDD2 3.0 V,  
to OUTP and OUTN valid, 0.1% settling  
tAS  
Analog settling time  
500  
µs  
6.11 Timing Diagram  
50 mV  
0
INP - INN  
– 50 mV  
tf  
tr  
OUTN  
OUTP  
VCMout  
50% - 10%  
50% - 50%  
50% - 90%  
6-1. Rise, Fall, and Delay Time Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1302  
 
 
 
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.12 Insulation Characteristics Curves  
450  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD1 = VDD2 = 3.6 V  
VDD1 = VDD2 = 5.5 V  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
25  
50  
75  
TA (°C)  
100  
125  
150  
0
25  
50  
75  
TA (°C)  
100  
125  
150  
D002  
D001  
6-3. Thermal Derating Curve for Safety-Limiting Power per  
6-2. Thermal Derating Curve for Safety-Limiting Current per  
VDE  
VDE  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
6-4. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1302  
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.13 Typical Characteristics  
at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, INP = 50 mV to 50 mV, INN = GND1, and fIN = 10 kHz (unless otherwise noted)  
3.8  
3.4  
3
3.3  
3.25  
3.2  
3.15  
3.1  
2.6  
2.2  
1.8  
1.4  
1
3.05  
3
2.95  
2.9  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD1 (V)  
5
5.25 5.5  
D004  
D003  
6-6. Common-Mode Overvoltage Detection Level vs  
6-5. Common-Mode Overvoltage Detection Level vs High-  
Temperature  
Side Supply Voltage  
100  
100  
vs VDD1  
vs VDD2  
Device 1  
Device 2  
Device 3  
75  
50  
75  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-25  
-50  
-75  
-100  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D007  
D009  
6-7. Input Offset Voltage vs Supply Voltage  
6-8. Input Offset Voltage vs Temperature  
0
-20  
-75  
-80  
-85  
-40  
-90  
-60  
-95  
-100  
-105  
-110  
-115  
-80  
-100  
-120  
0.001  
0.01  
0.1  
1
fIN (kHz)  
10  
100  
1000  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D012  
D013  
6-9. Common-Mode Rejection Ratio vs Input Frequency  
6-10. Common-Mode Rejection Ratio vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1302  
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, INP = 50 mV to 50 mV, INN = GND1, and fIN = 10 kHz (unless otherwise noted)  
60  
40  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-45  
20  
0
-20  
-40  
-60  
-80  
-0.5  
0
0.5  
1
1.5  
VCM (V)  
2
2.5  
3
3.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD1 (V)  
5
5.25 5.5  
D014  
D015  
6-11. Input Bias Current vs Common-Mode Input Voltage  
6-12. Input Bias Current vs High-Side Supply Voltage  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-45  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
vs VDD1  
vs VDD2  
-0.3  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5 5.25 5.5  
D016  
D019  
6-13. Input Bias Current vs Temperature  
6-14. Gain Error vs Supply Voltage  
0.3  
0.2  
0.1  
0
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-0.1  
-0.2  
-0.3  
Device 1  
Device 2  
Device 3  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0.01  
0.1  
1
10  
100  
1000  
fIN (kHz)  
D020  
D023  
6-15. Gain Error vs Temperature  
6-16. Normalized Gain vs Input Frequency  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1302  
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, INP = 50 mV to 50 mV, INN = GND1, and fIN = 10 kHz (unless otherwise noted)  
0°  
-45°  
5
4.5  
4
VOUTN  
VOUTP  
-90°  
3.5  
3
-135°  
-180°  
-225°  
-270°  
-315°  
-360°  
2.5  
2
1.5  
1
0.5  
0
0.01  
0.1  
1
10  
100  
1000  
-70 -60 -50 -40 -30 -20 -10  
0
Differential Input Voltage (mV)  
10 20 30 40 50 60 70  
fIN (kHz)  
D024  
D025  
6-17. Output Phase vs Input Frequency  
6-18. Output Voltage vs Input Voltage  
0.03  
0.02  
0.01  
0
0.03  
0.02  
0.01  
0
vs VDD1  
vs VDD2  
-0.01  
-0.02  
-0.03  
-0.01  
-0.02  
-0.03  
-50 -40 -30 -20 -10  
0
10  
Differential Input Voltage (mV)  
20  
30  
40  
50  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D026  
D027  
6-19. Nonlinearity vs Input Voltage  
6-20. Nonlinearity vs Supply Voltage  
0.03  
0.02  
0.01  
0
-70  
-75  
vs VDD1  
vs VDD2  
-80  
-85  
-0.01  
-0.02  
-0.03  
-90  
Device 1  
Device 2  
Device 3  
-95  
-100  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D028  
D029  
6-21. Nonlinearity vs Temperature  
6-22. Total Harmonic Distortion vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1302  
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, INP = 50 mV to 50 mV, INN = GND1, and fIN = 10 kHz (unless otherwise noted)  
-70  
10  
-75  
-80  
-85  
1
-90  
Device 1  
Device 2  
Device 3  
-95  
-100  
0.1  
0.1  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
1
10  
Frequency (kHz)  
100  
1000  
D030  
D031  
6-23. Total Harmonic Distortion vs Temperature  
6-24. Output Noise Density vs Frequency  
75  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
vs VDD1  
vs VDD2  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0
5
10 15 20 25 30 35 40 45 50 55  
|VINP - VINN| (mV)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D032  
D033  
6-25. Signal-to-Noise Ratio vs Input Voltage  
6-26. Signal-to-Noise Ratio vs Supply Voltage  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
20  
vs VDD2  
vs VDD1  
0
-20  
-40  
-60  
-80  
-100  
-120  
Device 1  
Device 2  
Device 3  
0.001  
0.01  
0.1  
1
10  
Ripple Frequency (kHz)  
100  
1000  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D035  
D034  
6-28. Power-Supply Rejection Ratio vs Ripple Frequency  
6-27. Signal-to-Noise Ratio vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1302  
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, INP = 50 mV to 50 mV, INN = GND1, and fIN = 10 kHz (unless otherwise noted)  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.39  
1.39  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D036  
D037  
6-29. Output Common-Mode Voltage vs Low-Side Supply  
6-30. Output Common-Mode Voltage vs Temperature  
Voltage  
320  
310  
300  
290  
280  
270  
260  
250  
240  
320  
310  
300  
290  
280  
270  
260  
250  
240  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D038  
D039  
6-31. Output Bandwidth vs Low-Side Supply Voltage  
6-32. Output Bandwidth vs Temperature  
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
IDD1 at VDD1 = 5 V  
IDD1 at VDD1 = 3.3 V  
IDD2 at VDD2 = 5 V  
IDD2 at VDD2 = 3.3 V  
4.5  
4.5  
4
IDD1 vs VDD1  
IDD2 vs VDD2  
4
3.5  
3.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D040  
D041  
6-33. Supply Current vs Supply Voltage  
6-34. Supply Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1302  
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, INP = 50 mV to 50 mV, INN = GND1, and fIN = 10 kHz (unless otherwise noted)  
3.8  
3.4  
3
3.8  
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
0.6  
0.2  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D042  
D043  
6-35. Output Rise and Fall Time vs Low-Side Supply Voltage  
6-36. Output Rise and Fall Time vs Temperature  
3.8  
3.8  
50% - 90%  
50% - 50%  
50% - 10%  
50% - 90%  
50% - 50%  
50% - 10%  
3.4  
3
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
0.6  
0.2  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D044  
D045  
6-37. VIN to VOUT Signal Delay vs Low-Side Supply Voltage  
6-38. VIN to VOUT Signal Delay vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1302  
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AMC1302 is a fully differential, precision, isolated amplifier. The input stage of the device consists of a fully  
differential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator. The modulator converts the analog  
input signal into a digital bitstream that is transferred across the isolation barrier that separates the high-side  
from the low-side. On the low-side, the received bitstream is processed by a fourth-order analog filter that  
outputs a differential signal at the OUTP and OUTN pins that is proportional to the input signal.  
The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described in the  
ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used in the AMC1302  
to transmit data across the isolation barrier, and the isolation barrier characteristics itself, result in high reliability  
and common-mode transient immunity.  
7.2 Functional Block Diagram  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
AMC1302  
Diagnostics  
Analog Filter  
INP  
ΔΣ Modulator  
INN  
GND1  
7.3 Feature Description  
7.3.1 Analog Input  
The differential amplifier input stage of the AMC1302 feeds a second-order, switched-capacitor, feed-forward  
ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors with a differential input  
impedance of RIND. The modulator converts the analog input signal into a bitstream that is transferred across the  
isolation barrier, as described in the Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signals INP and INN. First, if the input voltages VINP or VINN  
exceed the range specified in the Absolute Maximum Ratings table, the input currents must be limited to the  
absolute maximum value, because the electrostatic discharge (ESD) protection turns on. In addition, the linearity  
and parametric performance of the device are ensured only when the analog input voltage remains within the  
linear full-scale range (VFSR) and within the common-mode input voltage range (VCM) as specified in the  
Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1302  
 
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.3.2 Isolation Channel Signal Transmission  
The AMC1302 uses an on-off keying (OOK) modulation scheme, as shown in 7-1, to transmit the modulator  
output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the Functional Block  
Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier to represent a  
digital one and does not send a signal to represent a digital zero. The nominal frequency of the carrier used  
inside the AMC1302 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides the  
input to the 4th-order analog filter. The AMC1302 transmission channel is optimized to achieve the highest level  
of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the high-  
frequency carrier and RX/TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-1. OOK-Based Modulation Scheme  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1302  
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.3.3 Analog Output  
The AMC1302 offers a differential analog output comprised of the OUTP and OUTN pins. For differential input  
voltages (VINP VINN) in the range from 50 mV to 50 mV, the device provides a linear response with a  
nominal gain of 41. For example, for a differential input voltage of 50 mV, the differential output voltage (VOUTP  
VOUTN) is 2.05 V. At zero input (INP shorted to INN), both pins output the same common-mode output voltage  
VCMout, as specified in the Electrical Characteristics table. For absolute differential input voltages greater than 50  
mV but less than 64 mV, the differential output voltage continues to increase in magnitude but with reduced  
linearity performance. The outputs saturate at a differential output voltage of VCLIPout, as shown in 7-2, if the  
differential input voltage exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VOUTN  
VCLIPout  
VOUTP  
VFAILSAFE  
VCMout  
64 mV  
50 mV  
64 mV  
50 mV  
0
Differential Input Voltage (VINP – VINN  
)
7-2. Output Behavior of the AMC1302  
The AMC1302 offers a fail-safe feature that simplifies diagnostics on system level. 7-2 shows the fail-safe  
mode, in which the AMC1302 outputs a negative differential output voltage that does not occur under normal  
operating conditions. The fail-safe output is active in two cases:  
When the high-side supply is missing or below the VDD1UV threshold  
When the common-mode input voltage, that is VCM = (VINP + VINN) / 2, exceeds the common-mode  
overvoltage detection level VCMov  
Use the maximum VFAILSAFE voltage specified in the Electrical Characteristics table as a reference value for fail-  
safe detection on system level.  
7.4 Device Functional Modes  
The AMC1302 is operational when the power supplies VDD1 and VDD2 are applied, as specified in the  
Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1302  
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The low analog input voltage range, excellent accuracy, and low temperature drift make the a high-performance  
solution for industrial applications where shunt-based current sensing in the presence of high common-mode  
voltage levels is required.  
8.2 Typical Application  
The AMC1302 is ideally suited for shunt-based current sensing applications where accurate current monitoring is  
required in the presence of high common-mode voltages.  
8-1 shows the AMC1302 in a typical application. The load current flowing through an external shunt resistor  
RSHUNT produces a voltage drop that is sensed by the AMC1302. The AMC1302 digitizes the analog input  
signal on the high-side, transfers the data across the isolation barrier to the low-side, reconstructs the analog  
signal, and presents that signal as a differential voltage on the output pins.  
The differential input, differential output, and the high common-mode transient immunity (CMTI) of the AMC1302  
ensure reliable and accurate operation even in high-noise environments.  
Floating Gate  
Driver Supply  
+ DC Link  
Low-side supply  
(3.3 V or 5 V)  
1 uF 100 nF  
1 uF 100 nF  
AMC1302  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
10  
10  
10 nF  
INP  
RSHUNT  
ADC  
INN  
Load  
GND1  
– DC Link  
8-1. Using the AMC1302 for Current Sensing in a Typical Application  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1302  
 
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
High-side supply voltage  
VALUE  
3.3 V or 5 V  
Low-side supply voltage  
3.3 V or 5 V  
Voltage drop across RSHUNT for a linear response  
Signal delay (50% VIN to 90% OUTP, OUTN)  
±50 mV (maximum)  
3 µs (maximum)  
8.2.2 Detailed Design Procedure  
In 8-1, the high-side power supply (VDD1) for the AMC1302 is derived from the floating power supply of the  
upper gate driver.  
The floating ground reference (GND1) is derived from the end of the shunt resistor that is connected to the  
negative input of the AMC1302 (INN). If a four-pin shunt is used, the inputs of the AMC1302 are connected to  
the inner leads and GND1 is connected to the outer lead on the INN-side of the shunt. To minimize offset and  
improve accuracy, route the ground connection as a separate trace that connects directly to the shunt resistor  
rather than shorting GND1 to INN directly at the input to the device. See the Layout section for more details.  
8.2.2.1 Shunt Resistor Sizing  
Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measured  
current: VSHUNT = I × RSHUNT.  
Consider the following two restrictions when selecting the value of the shunt resistor, RSHUNT:  
The voltage drop caused by the nominal current range must not exceed the recommended differential input  
voltage range for a linear response: |VSHUNT| |VFSR  
|
The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes  
a clipping output: |VSHUNT| |VClipping  
|
8.2.2.2 Input Filter Design  
TI recommends placing an RC-filter in front of the isolated amplifier to improve signal-to-noise performance of  
the signal path. Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency  
(20 MHz) of the ΔΣmodulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
The impedances measured from the analog inputs are equal  
For most applications, the structure shown in 8-2 achieves excellent performance.  
AMC1302  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
10  
10  
10 nF  
INP  
INN  
GND1  
8-2. Differential Input Filter  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1302  
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.2.2.3 Differential to Single-Ended Output Conversion  
8-3 shows an example of a TLV6001-based signal conversion and filter circuit for systems using single-  
ended-input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage  
equals (VOUTP VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩand C1 = C2 = 330 pF yields good performance.  
C1  
AMC1302  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
R1  
R3  
INP  
+
ADC  
To MCU  
INN  
TLV6001  
GND1  
C2  
R4  
VREF  
8-3. Connecting the AMC1302 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see the  
18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com.  
8.2.3 Application Curve  
One important aspect of power-stage design is the effective detection of an overcurrent condition to protect the  
switching devices and passive components from damage. To power off the system quickly in the event of an  
overcurrent condition, a low delay caused by the isolated amplifier is required. 8-4 shows the typical full-scale  
step response of the AMC1302.  
VOUTN  
VIN  
VOUTP  
8-4. Step Response of the AMC1302  
8.3 What to Do and What Not to Do  
Do not leave the inputs of the AMC1302 unconnected (floating) when the device is powered up. If the device  
inputs are left floating, the input bias current may drive the inputs to a positive value that exceeds the operating  
common-mode input voltage and the device outputs the fail-safe voltage as described in the Analog Output  
section.  
Connect the high-side ground (GND1) to INN, either by a hard short or through a resistive path. A DC current  
path between INN and GND1 is required to define the input common-mode voltage. Do not exceed the input  
common-mode range as specified in the Recommended Operating Conditions table. For best accuracy, route  
the ground connection as a separate trace that connects directly to the shunt resistor rather than shorting GND1  
to INN directly at the input to the device. See the Layout section for more details.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1302  
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The AMC1302 does not require any specific power up sequencing. The high-side power-supply (VDD1) is  
decoupled with a low-ESR 100-nF capacitor (C1) parallel to a low-ESR 1-µF capacitor (C2). The low-side power  
supply (VDD2) is equally decoupled with a low-ESR 100-nF capacitor (C3) parallel to a low-ESR 1-µF capacitor  
(C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible.  
The ground reference for the high-side (GND1) is derived from the end of the shunt resistor, which is connected  
to the negative input (INN) of the device. For best DC accuracy, use a separate trace (as shown in 9-1) to  
make this connection instead of shorting GND1 to INN directly at the device input. If a four-terminal shunt is  
used, the device inputs are connected to the inner leads and GND1 is connected to the outer lead on the INN-  
side of the shunt.  
INP  
VDD1  
VDD2  
C2 1 µF  
C1 100 nF  
R2 10  
C4 1 µF  
AMC1302  
I
C3 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
to RC filter / ADC  
to RC filter / ADC  
C5  
10 nF  
R1 10  
INN  
GND1  
9-1. Decoupling of the AMC1302  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCCs) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1302  
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1302 supply pins) and placement of the other components required by the device. For best  
performance, place the shunt resistor close to the INP and INN inputs of the AMC1302 and keep the layout of  
both connections symmetrical.  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C2  
C1  
C4  
C3  
INP  
R2  
R1  
to RC filter / ADC  
to RC filter / ADC  
OUTP  
OUTN  
AMC1302  
INN  
GND2  
GND1  
Top Metal  
Inner or Bottom Layer Metal  
Via  
10-1. Recommended Layout of the AMC1302  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1302  
 
 
 
 
AMC1302  
ZHCSIF3D JUNE 2018 REVISED JUNE 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, TLV600x Low-Power, Rail-to-Rail In/Out, 1-MHz Operational Amplifier for Cost-Sensitive  
Systems data sheet  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool  
11.2 Trademarks  
所有商标均为其各自所有者的财产。  
11.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1302  
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1302DWV  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWV  
DWV  
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
AMC1302  
AMC1302  
AMC1302DWVR  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1302DWVR  
SOIC  
DWV  
8
1000  
330.0  
16.4  
12.05 6.15  
3.3  
16.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWV  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AMC1302DWVR  
8
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DWV SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC1302DWV  
8
64  
505.46  
13.94  
4826  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY