AMC1336DWVR [TI]

±1V 输入、精密电压检测增强型隔离式调制器

| DWV | 8 | -40 to 125;
AMC1336DWVR
型号: AMC1336DWVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

±1V 输入、精密电压检测增强型隔离式调制器

| DWV | 8 | -40 to 125

文件: 总41页 (文件大小:2007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
用于电压检测应用的 AMC1336 小型、高精度、增强型隔离式 Δ-Σ 调制器  
驱动器  
1 特性  
3 说明  
1
输入结构专为电压测量而优化:  
AMC1336 是一款精密 Δ-Σ 调制器,通过抗电磁干扰性  
能极强的电容式双隔离隔栅将输出与输入电路隔离开。  
该隔离层经过认证,可以按照 DIN VDE V 0884-11 和  
UL1577 标准提供高达 8000VPEAK 的增强型隔离。与  
隔离式电源结合使用时,该隔离式调制器可将以不同共  
模电压等级运行的系统的各器件隔开,并防止较低电压  
器件损坏。  
输入电压范围:±1V  
输入电阻:1.5GΩ(典型值)  
出色的直流性能:  
失调电压误差:±0.5mV(最大值)  
温漂:±4µV/°C(最大值)  
增益误差:±0.25%(最大值)  
增益漂移:±40ppm/°C(最大值)  
AMC1336 独有的双极 ±1V 宽输入电压范围及其高输  
入电阻支持与高电压应用中的电阻分压器 直接连接。  
与数字滤波器(例如集成到 TMS320F28004x、  
TMS320F2807x TMS320F2837x 微控制器系列中  
的数字滤波器)配合使用以抽取输出位流时,该器件可  
82kSPS 的数据速率下实现具有 87dB 动态范围的  
16 位分辨率。  
瞬态抗扰性:115kV/µs(典型值)  
高侧电源缺失检测  
安全相关认证:  
符合 DIN VDE V 0884-11: 2017-01 标准的  
8000VPEAK 增强型隔离  
符合 UL1577 标准且长达 1 分钟的 5700VRMS  
隔离  
在高侧,AMC1336 由  
IEC 62368-1 终端设备标准  
3.3V 5V 电源供电。隔离式数字接口由 3.0V3.3V  
5V 电源供电。  
2 应用  
以下器件的隔离式交流和直流电压测量:  
AMC1336 的额定扩展工业温度范围为 –40°C 至  
+125°C。  
不间断电源  
光电逆变器  
电机驱动器  
器件信息(1)  
器件型号  
AMC1336  
封装  
SOIC (8)  
封装尺寸(标称值)  
5.85mm × 7.50mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
Phase1  
3.3 V or 5.0 V  
3.0 V, 3.3 V, or 5.0 V  
AMC1336  
DVDD  
AVDD  
R1  
R2  
R3  
AVDD  
Diagnostics  
DGND  
DOUT  
CLKIN  
AGND  
AINP  
TMS320F28x  
SD-Dx  
SD-Cx  
PWMx  
AINN  
Phase2  
or N  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS951  
 
 
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Application .................................................. 25  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Power Ratings........................................................... 5  
6.6 Insulation Specifications............................................ 6  
6.7 Safety-Related Certifications..................................... 7  
6.8 Safety Limiting Values .............................................. 7  
6.9 Electrical Characteristics........................................... 7  
6.10 Switching Characteristics........................................ 9  
6.11 Insulation Characteristics Curves ......................... 10  
6.12 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
8
9
10 Layout................................................................... 30  
10.1 Layout Guidelines ................................................. 30  
10.2 Layout Example .................................................... 30  
11 器件和文档支持 ..................................................... 31  
11.1 器件支持................................................................ 31  
11.2 文档支持................................................................ 31  
11.3 接收文档更新通知 ................................................. 31  
11.4 社区资源................................................................ 31  
11.5 ....................................................................... 31  
11.6 静电放电警告......................................................... 31  
11.7 Glossary................................................................ 31  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2019) to Revision B  
Page  
Changed PD (AVDD = DVDD = 5.5 V) from 88 mW to 90.75 mW......................................................................................... 5  
Changed PD1 (AVDD = 5.5 V) from 55 mW to 57.75 mW...................................................................................................... 5  
Added UL certification file number.......................................................................................................................................... 7  
Changes from Original (August 2019) to Revision A  
Page  
已更改 将文档状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
5 Pin Configuration and Functions  
DWV Package  
8-Pin SOIC  
Top View  
AVDD  
AINP  
1
2
3
4
8
7
6
5
DVDD  
CLKIN  
DOUT  
DGND  
AINN  
AGND  
Not to scale  
Pin Functions  
PIN  
I/O  
NO.  
NAME  
DESCRIPTION  
Analog (high-side) power supply, 3.0 V to 5.5 V.  
1
AVDD  
See the Power Supply Recommendations section for decoupling recommendations.  
2
3
4
5
AINP  
AINN  
I
Noninverting analog input  
I
Inverting analog input  
AGND  
DGND  
Analog (high-side) ground reference  
Digital (controller-side) ground reference  
Modulator bitstream output, updated with the rising edge of the clock signal present on CLKIN. Use the rising  
edge of the clock to latch the modulator bitstream at the input of the digital filter device.  
6
7
8
DOUT  
CLKIN  
DVDD  
O
I
Modulator clock input with internal pulldown resistor (typical value: 1 MΩ). The clock signal must be applied  
continuously for proper device operation; see the Clock Input section for additional details.  
Digital (controller-side) power supply, 2.7 V to 5.5 V.  
See the Power Supply Recommendations section for decoupling recommendations.  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
–0.3  
MAX  
6.5  
UNIT  
AVDD to AGND  
Power-supply voltage  
V
DVDD to DGND  
–0.3  
6.5  
Analog input voltage  
Digital input voltage  
Digital output voltage  
Input current  
On the AINP and AINN pins  
On the CLKIN pin  
AGND – 5  
DGND – 0.5  
DGND – 0.5  
–10  
AVDD + 0.5  
DVDD + 0.5  
DVDD + 0.5  
10  
V
V
On the DOUT pin  
V
Continuous, any pin except power-supply pins  
Junction, TJ  
mA  
150  
Temperature  
°C  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
High-side supply voltage  
Controller-side  
AVDD to AGND  
DVDD to DGND  
3.0  
2.7  
5.0  
3.3  
5.5  
5.5  
V
V
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
VFSR  
VIN = VAINP – VAINN  
±1.25  
V
V
V
Specified linear differential full-scale voltage  
Absolute common-mode input voltage(1)  
VIN = VAINP – VAINN  
–1  
–2  
1
(VAINP + VAINN) / 2 to AGND  
AVDD  
(VAINP + VAINN) / 2 to AGND,  
3.0 V AVDD < 4 V,  
VAINP = VAINN  
–1.4  
–0.8  
–1.4  
–0.8  
AVDD – 1.4  
AVDD – 2.4  
2.7  
(VAINP + VAINN) / 2 to AGND,  
3.0 V AVDD < 4.5 V,  
|VAINP – VAINN| = 1.25 V  
VCM  
Operating common-mode input voltage(2)  
V
(VAINP + VAINN) / 2 to AGND,  
4 V AVDD 5.5 V,  
VAINP = VAINN  
(VAINP + VAINN) / 2 to AGND,  
4.5 V AVDD 5.5 V,  
|VAINP – VAINN| = 1.25 V  
2.1  
DIGITAL INPUT  
Input voltage  
TEMPERATURE RANGE  
TA Operating ambient temperature  
VCLKIN to DGND  
DGND  
–40  
DVDD  
125  
V
25  
°C  
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal  
operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.  
(2) See the Analog Input section for more details.  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
 
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
6.4 Thermal Information  
AMC1336  
THERMAL METRIC(1)  
DWV (SOIC)  
8 PINS  
94  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
36  
Junction-to-board thermal resistance  
46.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.5  
ψJB  
44.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
AVDD = DVDD = 5.5 V  
VALUE  
90.75  
50.4  
57.75  
32.4  
33  
UNIT  
PD  
Maximum power dissipation (both sides)  
mW  
AVDD = DVDD = 3.6 V  
AVDD = 5.5 V  
PD1  
PD2  
Maximum power dissipation (high-side supply)  
mW  
mW  
AVDD = 3.6 V  
DVDD = 5.5 V  
Maximum power dissipation (controller-side supply)  
DVDD = 3.6 V  
18  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Distance through insulation  
Comparative tracking index  
Material group  
Shortest pin-to-pin distance through air  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double insulation  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
8.5  
8.5  
0.021  
600  
I
mm  
mm  
mm  
V
CPG  
DTI  
CTI  
Rated mains voltage 600 VRMS  
I-IV  
Overvoltage category  
per IEC 60664-1  
Rated mains voltage 1000 VRMS  
I-III  
DIN VDE V 0884-11: 2017-01(2)  
Maximum repetitive peak  
isolation voltage  
VIORM  
At AC voltage  
2121  
VPK  
At AC voltage (sine wave); see 5  
At DC voltage  
1500  
2121  
8000  
9600  
VRMS  
VDC  
Maximum-rated isolation  
working voltage  
VIOWM  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
VIOTM  
VPK  
VPK  
isolation voltage  
Maximum surge  
VIOSM  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
8000  
5  
5  
5  
~1  
isolation voltage(3)  
Method a, after input/output safety test subgroups 2 & 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and preconditioning (type test),  
Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM, tm = 1 s  
Barrier capacitance,  
input to output(5)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
pF  
> 1012  
> 1011  
> 109  
VIO = 500 V at TA = 25°C  
Insulation resistance,  
input to output(5)  
VIO = 500 V at 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 5700 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5700  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed  
circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as  
inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
6
Copyright © 2019–2020, Texas Instruments Incorporated  
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11: 2017-01,  
DIN EN 62368-1: 2016-05, EN 62368-1: 2014,  
and IEC 62368-1: 2014  
Recognized under 1577 component recognition  
Reinforced insulation  
Single protection  
Certificate number: 40040142  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 94°C/W, TJ = 150°C, TA = 25°C,  
241  
AVDD = DVDD = 5.5 V, see 3  
θJA = 94°C/W, TJ = 150°C, TA = 25°C,  
AVDD = DVDD = 3.6 V, see 3  
θJA = 94°C/W, TJ = 150°C, TA = 25°C, see  
Safety input, output,  
or supply current  
IS  
mA  
R
369  
Safety input, output,  
or total power(1)  
R
4  
PS  
TS  
1329  
150  
mW  
°C  
Maximum safety temperature  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × AVDDmax + IS × DVDDmax, where AVDDmax is the maximum high-side voltage and DVDDmax is the maximum controller-side  
supply voltage.  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V,  
AINP = –1 V to +1 V, and AINN = AGND = 0 V; typical specifications are at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, and  
fCLKIN = 20 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
RIN  
Single-ended input resistance  
Differential input resistance  
Single-ended input capacitance  
Differential input capacitance  
Input bias current  
AINN = AGND  
0.1  
1.5  
1.5  
2
GΩ  
GΩ  
pF  
RIND  
CIN  
0.16  
AINN = AGND, fCLKIN = 20 MHz  
fCLKIN = 20 MHz  
CIND  
IIB  
2
pF  
AINP = AINN = AGND; IIB = (IAINP + IAINN) / 2  
AINP = AINN = AGND; IIB = (IAINP + IAINN) / 2  
IIO = IAINP – IAINN  
–10  
±3  
10  
5
nA  
TCIIB  
IIO  
Input bias current drift  
–14  
±1  
pA/°C  
nA  
Input offset current  
–5  
80  
CMTI  
Common-mode transient immunity  
|AGND – DGND| = 1 kV  
115  
kV/µs  
Copyright © 2019–2020, Texas Instruments Incorporated  
7
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, AVDD = 3.0 V to 5.5 V, DVDD = 2.7 V to 5.5 V,  
AINP = –1 V to +1 V, and AINN = AGND = 0 V; typical specifications are at TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, and  
fCLKIN = 20 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
Resolution  
Decimation filter output set to 16 bits  
Resolution: 16 bits  
16  
–4  
Bit  
LSB  
mV  
INL  
Integral nonlinearity(1)  
±1.6  
±0.03  
±0.6  
4
0.5  
4
EO  
Offset error  
Initial, at TA = 25°C, AINP = AINN = AGND  
–0.5  
–4  
TCEO  
Offset error drift(2)  
µV/°C  
Initial, at TA = 25°C,  
VAINP = 1 V or VAINN = –1 V, AINN = AGND  
EG  
Gain error(3)  
–0.25  
–40  
±0.02  
0.25  
40  
%
TCEG  
Gain error drift(4)  
±20  
–104  
–96  
ppm/°C  
AINP = AINN, fIN = 0 Hz, VCM min VCM VCM max  
AINP = AINN, fIN = 10 kHz, –0.5 V VIN 0.5 V  
PSRR vs AVDD, at DC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
dB  
–83  
PSRR vs AVDD, 100-mV and 10-kHz ripple  
–83  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
VIN = 2 VPP, fIN = 1 kHz  
VIN = 2 VPP, fIN = 1 kHz  
VIN = 2 VPP, fIN = 1 kHz  
VIN = 2 VPP, fIN = 1 kHz  
82  
79  
87  
85  
dB  
dB  
dB  
dB  
SINAD  
THD  
Signal-to-noise + distortion  
Total harmonic distortion  
Spurious-free dynamic range  
–91  
92  
–80  
7
SFDR  
80  
DIGITAL INPUT (CMOS Logic With Schmitt-Trigger)  
IIN  
Input current  
DGND VIN DVDD  
µA  
pF  
V
CIN  
VIH  
VIL  
Input capacitance  
High-level input voltage  
Low-level input voltage  
4
0.7 x DVDD  
–0.3  
DVDD + 0.3  
0.3 x DVDD  
V
DIGITAL OUTPUT (CMOS)  
CLOAD Output load capacitance  
fCLKIN = 21 MHz  
IOH = –20 µA  
IOH = –4 mA  
IOL = 20 µA  
15  
30  
pF  
V
DVDD – 0.1  
DVDD – 0.4  
VOH  
High-level output voltage  
Low-level output voltage  
0.1  
0.4  
VOL  
V
IOL = 4 mA  
POWER SUPPLY  
AVDDPOR AVDD power-on reset threshold voltage AVDD falling  
2.4  
2.6  
6.8  
7.8  
3.4  
3.7  
2.8  
9
V
3 V AVDD 3.6 V  
IAVDD  
High-side supply current  
mA  
4.5 V AVDD 5.5 V  
10.5  
5
2.7 V DVDD 3.6 V, CLOAD = 15 pF  
4.5 V DVDD 5.5 V, CLOAD = 15 pF  
IDVDD  
Controller-side supply current  
mA  
6
(1) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.  
(2) Offset error drift is calculated using the box method, as described by the following equation:  
TCEO = (valueMAX - valueMIN) / TempRange  
(3) The typical value includes one sigma statistical variation.  
(4) Gain error drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = ((valueMAX - valueMIN) / (value x TempRange)) X 106  
8
Copyright © 2019–2020, Texas Instruments Incorporated  
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
9
TYP  
20  
MAX  
21  
UNIT  
3.0 V AVDD 5.5 V  
4.5 V AVDD 5.5 V  
fCLKIN  
CLKIN clock frequency  
MHz  
5
20  
21  
CLKIN duty cycle  
40%  
3.5  
50%  
60%  
tH1  
tD1  
DOUT hold time after rising edge of CLKIN  
Rising edge of CLKIN to DOUT valid delay  
CLOAD = 15 pF  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
CLOAD = 15 pF  
15  
6
10% to 90%, 2.7 V DVDD 3.6 V, CLOAD = 15 pF  
10% to 90%, 4.5 V DVDD 5.5 V, CLOAD = 15 pF  
10% to 90%, 2.7 V DVDD 3.6 V, CLOAD = 15 pF  
10% to 90%, 4.5 V DVDD 5.5 V, CLOAD = 15 pF  
AVDD step to 3.0 V; 0.1%-settling, clock applied  
2.5  
3.2  
tr  
tf  
DOUT rise time  
DOUT fall time  
6
2.2  
6
2.9  
6
tASTART Analog start-up time  
0.25  
tCLKIN  
tHIGH  
CLKIN  
tLOW  
tH  
tD  
tr / tf  
DOUT  
1. Digital Interface Timing  
AVDD  
DVDD  
tASTART  
CLKIN  
DOUT  
...  
Bitstream not valid (analog settling)  
Valid bitstream  
2. Device Start-Up Timing  
版权 © 2019–2020, Texas Instruments Incorporated  
9
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
6.11 Insulation Characteristics Curves  
400  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
AVDD = DVDD = 3.6 V  
AVDD = DVDD = 5.5 V  
350  
300  
250  
200  
150  
100  
50  
0
0
25  
50  
75  
100  
TA (°C)  
125  
150  
175  
200  
0
25  
50  
75  
100  
TA (°C)  
125  
150  
175  
200  
D001  
D002  
3. Thermal Derating Curve for Safety-Limiting Current per  
4. Thermal Derating Curve for Safety-Limiting  
VDE  
Power per VDE  
1.E+11  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
87.5%  
20%  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
Stress Voltage (VRMS  
)
TA up to 150°C, stress-voltage frequency = 60 Hz,  
isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
5. Reinforced Isolation Capacitor Lifetime Projection  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
6.12 Typical Characteristics  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –1 V to 1 V, AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
4
3
10  
7.5  
5
2
1
2.5  
0
0
-1  
-2  
-3  
-4  
-2.5  
-5  
-7.5  
-10  
-0.65 -0.3  
0.05  
0.4  
0.75  
VCM (V)  
1.1  
1.45  
1.8  
2.15  
-1  
-0.75 -0.5 -0.25  
0
VIN (mV)  
0.25  
0.5  
0.75  
1
D003  
D004  
6. Input Bias Current vs  
Common-Mode Input Voltage  
7. Integral Nonlinearity vs  
Input Voltage  
4
3.5  
3
40  
35  
30  
25  
20  
15  
10  
5
2.5  
2
1.5  
1
0.5  
0
0
D038  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
EO (mV)  
D005  
9. Offset Error Histogram  
8. Integral Nonlinearity vs Temperature  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D006  
D007  
10. Offset Error vs High-Side Supply Voltage  
11. Offset Error vs Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –1 V to 1 V, AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
30  
25  
20  
15  
10  
5
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
D039  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
EG (%)  
D008  
fCLKIN < 9 MHz with AVDD 4.5 V only  
12. Offset Error vs Clock Frequency  
13. Gain Error Histogram  
0.25  
0.2  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D011  
D012  
14. Gain Error vs High-Side Supply Voltage  
15. Gain Error vs Temperature  
0
-20  
0.25  
0.2  
OSR = 8  
OSR = 256  
0.15  
0.1  
-40  
-60  
0.05  
0
-80  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-100  
-120  
-140  
-160  
5
7
9
11  
13  
fCLKIN (MHz)  
15  
17  
19  
21  
0.01  
0.1  
1
10  
100  
1000  
fIN (kHz)  
D013  
D009  
fCLKIN < 9 MHz with AVDD 4.5 V only  
16. Gain Error vs Clock Frequency  
17. Common-Mode Rejection Ratio vs  
Input Signal Frequency  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –1 V to 1 V, AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
0
91  
89  
87  
85  
83  
81  
79  
77  
SNR  
SINAD  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0.01  
0.1  
1
10  
100  
1000  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
fRIPPLE (kHz)  
D010  
D014  
18. Power-Supply Rejection Ratio vs  
19. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs High-Side Supply Voltage  
Ripple Frequency  
91  
89  
87  
85  
83  
81  
79  
77  
91  
89  
87  
85  
83  
81  
SNR  
SINAD  
79  
SNR  
SINAD  
77  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
5
7
9
11  
13  
fCLKIN (MHz)  
15  
17  
19 21  
D015  
D016  
fCLKIN < 9 MHz with AVDD 4.5 V only  
20. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
21. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs Temperature  
vs Clock Frequency  
100  
91  
89  
87  
85  
83  
81  
79  
77  
SNR  
SINAD  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR  
SINAD  
75  
73  
0.01  
0.1  
1
fIN (kHz)  
10  
100  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
VIN (Vpp)  
2
D017  
D018  
22. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
23. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs Input Signal Frequency  
vs Input Signal Amplitude  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –1 V to 1 V, AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
-76  
-76  
-80  
-80  
-84  
-84  
-88  
-88  
-92  
-92  
-96  
-96  
-100  
-104  
-100  
-104  
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D019  
D020  
24. Total Harmonic Distortion vs  
25. Total Harmonic Distortion vs Temperature  
High-Side Supply Voltage  
-76  
-80  
-76  
-80  
-84  
-84  
-88  
-88  
-92  
-92  
-96  
-96  
-100  
-104  
-100  
-104  
5
7
9
11  
13  
fCLKIN (MHz)  
15  
17  
19  
21  
0.01  
0.1  
1
10  
fIN (kHz)  
D021  
D022  
fCLKIN < 9 MHz with AVDD 4.5 V only  
26. Total Harmonic Distortion vs Clock Frequency  
27. Total Harmonic Distortion vs  
Input Signal Frequency  
-80  
-84  
112  
108  
104  
100  
96  
-88  
-92  
-96  
92  
-100  
-104  
-108  
88  
84  
80  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
VIN (Vpp)  
2
3
3.5  
4
4.5  
AVDD (V)  
5
5.5  
D023  
D024  
28. Total Harmonic Distortion vs  
29. Spurious-Free Dynamic Range vs  
Input Signal Amplitude  
High-Side Supply Voltage  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –1 V to 1 V, AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
112  
108  
104  
100  
96  
112  
108  
104  
100  
96  
92  
92  
88  
88  
84  
84  
80  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
5
0
0
7
9
11  
13  
fCLKIN (MHz)  
15  
17  
19  
21  
D025  
D026  
fCLKIN < 9 MHz with AVDD 4.5 V only  
30. Spurious-Free Dynamic Range vs Temperature  
31. Spurious-Free Dynamic Range vs  
Clock Frequency  
112  
108  
104  
100  
96  
109  
105  
101  
97  
93  
92  
89  
88  
85  
84  
81  
77  
0.01  
80  
0.1  
1
10  
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
VIN (Vpp)  
2
fIN (kHz)  
D027  
D028  
32. Spurious-Free Dynamic Range vs  
33. Spurious-Free Dynamic Range vs  
Input Signal Frequency  
Input Signal Amplitude  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
D029  
D030  
156,250-point DFT, VIN = 2 VPP  
34. Frequency Spectrum with 1-kHz Input Signal  
156,250-point DFT, VIN = 2 VPP  
35. Frequency Spectrum with 10-kHz Input Signal  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at AVDD = 5 V, DVDD = 3.3 V, AINP = –1 V to 1 V, AINN = AGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256 (unless  
otherwise noted)  
10.5  
9.5  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
10.5  
9.5  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
IAVDD  
IDVDD  
IAVDD vs AVDD  
IDVDD vs DVDD  
2.7  
3.1  
3.5  
3.9  
xVDD (V)  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D031  
D032  
36. Supply Current vs Supply Voltage  
37. Supply Current vs Temperature  
10.5  
IAVDD  
IDVDD  
9.5  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
5
7
9
11  
13  
fCLKIN (MHz)  
15  
17  
19  
21  
D033  
fCLKIN < 9 MHz with AVDD 4.5 V only  
38. Supply Current vs Clock Frequency  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
7 Detailed Description  
7.1 Overview  
The differential analog input (comprised of input signals AINP and AINN) of the AMC1336 is a chopper-stabilized  
instrumentation amplifier, followed by the switched-capacitor input of a second-order, delta-sigma (ΔΣ) modulator  
stage that digitizes the input signal into a 1-bit output stream. The data output DOUT of the converter provides a  
stream of digital ones and zeros that is synchronous to the externally provided clock source at the CLKIN pin  
with a frequency in the range of 5 MHz to 21 MHz. The time average of this serial bitstream output is proportional  
to the analog input voltage. The Functional Block Diagram section shows a detailed block diagram of the  
AMC1336. The 1.6-GΩ differential input resistance of the analog input stage supports low gain-error signal  
sensing in high-voltage applications using resistive dividers. The external clock input simplifies the  
synchronization of multiple current-sensing channels on the system level.  
The silicon-dioxide (SiO2)-based capacitive isolation barrier supports a high level of magnetic field immunity, as  
described in the ISO72x Digital Isolator Magnetic-Field Immunity application report, available for download at  
www.ti.com.  
7.2 Functional Block Diagram  
AVDD  
DVDD  
Reinforced  
Isolation  
Barrier  
AMC1336  
AINP  
AINN  
ûModulator  
DOUT  
Band-Gap  
Reference  
CLKIN  
Charge  
Pump  
AVDD  
Diagnostic  
AGND  
DGND  
7.3 Feature Description  
7.3.1 Analog Input  
The AMC1336 incorporates front-end circuitry that contains an instrumentation amplifier, followed by a ΔΣ  
modulator. To support a bipolar input range with a unipolar high-side supply AVDD, the device uses a charge  
pump to simplify the overall system design and minimize circuit cost. For reduced offset and offset drift, the input  
buffer is chopper-stabilized with the switching frequency set at fCLKIN / 32. 39 illustrates the spur created by the  
switching frequency.  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0.1  
1
10 100  
Frequency (kHz)  
1000  
10000  
D037  
sinc3 filter, OSR = 1, fCLKIN = 20 MHz, fIN = 1 kHz  
39. Quantization Noise Shaping  
The linearity and noise performance of the device are ensured only when the differential analog input voltage  
remains within the specified linear full-scale range (FSR), that is ±1 V, and within the specified input common-  
mode range.  
40 shows the specified common-mode input voltage that applies for the full-scale input voltage range as  
specified in this document.  
If smaller input signals are used, the operational common-mode input voltage range widens. 41 shows the  
common-mode input voltage that applies with no differential input signal; that is, when the voltage applied on  
AINP is equal to the voltage applied on AINN. The common-mode input voltage range scales with the actual  
differential input voltage between this range and the range in 40.  
4
3
2
1
0
4
3
2
1
0
Specified VCM  
Range  
Specified VCM  
Range  
-1  
-2  
-1  
-2  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
5
5.5  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
5
5.5  
VDD (V)  
VDD (V)  
40. Common-Mode Input Voltage Range With a  
41. Common-Mode Input Voltage Range With a  
Clipping Differential Input Signal of ±1.25 V  
Zero Differential Input Signal  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
Feature Description (接下页)  
There are two restrictions on the analog input signals (AINP and AINN). First, if the input voltage exceeds the  
range AGND – 5 V to AVDD + 0.5 V, the input current must be limited to 10 mA because the device input  
electrostatic discharge (ESD) diodes turn on. In addition, the linearity and noise performance of the device are  
ensured only when the differential analog input voltage remains within the specified linear full-scale range (FSR)  
and within the specified input common-mode range.  
7.3.2 Modulator  
The modulator implemented in the AMC1336, as conceptualized in 42, is a second-order, switched-capacitor,  
feed-forward ΔΣ modulator. The analog input voltage VIN and the output V5 of the 1-bit digital-to-analog converter  
(DAC) are subtracted, providing an analog voltage V1 at the input of the first integrator stage. The output of the  
first integrator feeds the input of the second integrator stage, resulting in an output voltage V3 that is  
differentiated with the input signal VIN and the output of the first integrator V2. Depending on the polarity of the  
resulting voltage V4, the output of the comparator is changed. In this case, the 1-bit DAC responds on the next  
clock pulse by changing the associated analog output voltage V5, causing the integrators to progress in the  
opposite direction and forcing the value of the integrator output to track the average value of the input.  
fCLKIN  
V1  
V2  
V3  
V4  
VIN  
Integrator 1  
Integrator 2  
CMP  
0 V  
V5  
DAC  
42. Block Diagram of a Second-Order Modulator  
As depicted in 39, the modulator shifts the quantization noise to high frequencies. Therefore, use a low-pass  
digital filter at the output of the device to increase the overall performance. This filter is also used to convert from  
the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). TI's  
microcontroller families TMS320F2807x and TMS320F2837x offer a suitable programmable, hardwired filter  
structure termed a sigma-delta filter module (SDFM) optimized for usage with the AMC1336. Furthermore, the  
SD24_B converters on the MSP430F677x microcontrollers offer a path to directly access the integrated sinc  
filters for a simple system-level solution for multichannel, isolated current sensing. An additional option is to use a  
suitable application-specific device, such as the AMC1210 (a four-channel digital sinc-filter). Alternatively, a field-  
programmable gate array (FPGA) can be used to implement the filter.  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Isolation Channel Signal Transmission  
The AMC1336 uses an on-off keying (OOK) modulation scheme to transmit the modulator output bitstream  
across the capacitive SiO2-based isolation barrier. The transmitter modulates the bitstream at TX IN in 43 with  
an internally-generated, 480-MHz carrier across the isolation barrier to represent a digital one and sends a no  
signal to represent the digital zero. The receiver demodulates the signal after advanced signal conditioning and  
produces the output. The symmetrical design of each isolation channel improves the common-mode transient  
immunity (CMTI) performance and reduces the radiated emissions caused by the high-frequency carrier. 43  
shows the block diagram of an isolation channel integrated in the AMC1336.  
Transmitter  
Receiver  
OOK  
Modulation  
SiO2-Based  
Capacitive  
Reinforced  
Isolation  
TX IN  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
RX OUT  
Barrier  
Oscillator  
43. Block Diagram of an Isolation Channel  
44 shows the concept of the on-off keying scheme.  
TX IN  
Carrier Signal Across  
the Isolation Barrier  
RX OUT  
44. OOK-Based Modulation Scheme  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
Feature Description (接下页)  
7.3.4 Clock Input  
The AMC1336 system clock is provided externally at the CLKIN pin. The clock signal must be applied  
continuously for proper device operation.  
To support the bipolar input voltage range with a unipolar high-side supply AVDD, the AMC1336 includes a  
charge pump. This charge pump stops operating if the clock signal is below the specified frequency range or if  
the signal is paused or missing. In that case, the input bias current increases beyond the specified range and  
significantly reduces the input resistance of the device. When the clock signal is paused or missing, the  
modulator stops the analog signal conversion and the digital output signal remains frozen in the last logic state.  
When the clock signal is applied again after a pause, the internal analog circuitry biasing must settle for proper  
device performance. In this case, consider the tASTART specification in the Switching Characteristics table.  
7.3.5 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time. A  
differential input of 1 V produces a stream of ones and zeros that are high 90% of the time. With 16 bits of  
resolution, that percentage ideally corresponds to code 58982 (an unsigned code). A differential input of –1 V  
produces a stream of ones and zeros that are high 10% of the time and ideally results in code 6553 with 16-bit  
resolution. These input voltages are also the specified linear range of the AMC1336 with performance as  
specified in this document. If the input voltage value exceeds this range, the output of the modulator shows  
nonlinear behavior when the quantization noise increases. The output of the modulator clips with a stream of only  
zeros with an input less than or equal to –1.25 V or with a stream of only ones with an input greater than or equal  
to 1.25 V. In this case, however, the AMC1336 generates a single 1 (if the input is at negative full-scale) or 0  
every 128 clock cycles to indicate proper device function (see the AVDD Diagnostics and Fail-Safe Output  
section for more details). 45 shows the input voltage versus the output modulator signal.  
Modulator Output  
+FS (Analog Input)  
-FS (Analog Input)  
Analog Input  
45. Analog Input versus the AMC1336 Modulator Output  
公式 1 calculates the density of ones in the output bitstream for any input voltage value (with the exception of a  
full-scale input signal, as described in the Output Behavior in Case of a Full-Scale Input section):  
VIN + VClipping  
2ì VClipping  
(1)  
The modulator bitstream on the DOUT pin changes with the rising edge of the clock signal applied on the CLKIN  
pin. Use the rising edge of the clock to latch the modulator bitstream at the input of the digital filter device.  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
 
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
The AMC1336 features a slew-rate-controlled output stage that reduces the over- and undershoots of the output  
amplitude and radiated emissions of the DOUT line in the system. 46 and 47 show examples of rising and  
falling edges of DOUT with different capacitive loads.  
1.2  
1
1.2  
1
CLOAD = 10 pF  
CLOAD = 15 pF  
CLOAD = 30 pF  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
CLOAD = 10 pF  
CLOAD = 15 pF  
CLOAD = 30 pF  
0
2
4
6
8
10  
t (ns)  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
t (ns)  
12  
14  
16  
18  
20  
D035  
D036  
46. DOUT Rising Edge With Different Capacitive Loads  
47. DOUT Falling Edge With Different Capacitive Loads  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
7.4 Device Functional Modes  
The AMC1336 is operational when the power supplies AVDD and DVDD, and the clock signal CLKIN are  
applied, as specified in the Recommended Operating Conditions and Switching Characteristics tables.  
7.4.1 Output Behavior in Case of a Full-Scale Input  
48 shows that if a full-scale input signal is applied to the AMC1336 (that is, VIN VClipping), the device  
generates a single one or zero every 128 bits at DOUT, depending on the actual polarity of the signal being  
sensed. This feature can be used for advanced system-level diagnostics to differentiate between system failures  
caused by missing high-side supply AVDD or input overvoltage events.  
CLKIN  
...  
...  
DOUT  
DOUT  
VIN ≤ -1.25 V  
...  
...  
...  
...  
VIN ≥ 1.25 V  
127 CLKIN cycles  
127 CLKIN cycles  
48. Out-of-Range Output of the AMC1336  
7.4.2 AVDD Diagnostics and Fail-Safe Output  
In the case of a missing high-side supply voltage AVDD, the output of a ΔΣ modulator is not defined and can  
cause a system malfunction. In systems with high safety requirements, this behavior is not acceptable. As shown  
in 49, the AMC1336 implements an AVDD diagnostics and fail-safe output function that ensures that the  
output DOUT of the device offers a steady-state bitstream of logic 0's in case of a missing AVDD. Sample at  
least 128 CLKIN cycles in order to distinguish a missing AVDD condition from an input underrange condition.  
tASTART  
CLKIN  
...  
AVDD  
AVDD good  
Missing AVDD  
AVDD good  
DOUT Valid bitstream  
0‘  
Bitstream not valid  
Valid bitstream  
49. Fail-Safe Output of the AMC1336  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
 
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Digital Filter Usage  
The modulator generates a bitstream that is processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). 公式 2 shows a sinc3-type filter, which is a  
very simple filter that is built with minimal effort and hardware:  
3
-OSR  
1- z  
H z =  
( )  
÷
÷
1- z-1  
«
(2)  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All the characterization in this document is also done with a sinc3 filter with an oversampling  
ratio (OSR) of 256 and an output word width of 16 bits.  
An example code for implementing a sinc3 filter in an FPGA is discussed in the Combining the ADS1202 with an  
FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for  
download at www.ti.com.  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
8.2 Typical Application  
Isolated ΔΣ modulators are widely used in frequency inverter designs because of their high AC and DC  
performance. Frequency inverters are critical parts of industrial motor drives, photovoltaic inverters (string and  
central inverters), uninterruptible power supplies (UPS), and other industrial applications.  
50 shows a simplified schematic of a frequency inverter application with the AMC1336 used for the DC-link  
and output phase voltage sensing. In this example, the ground reference point for the microcontroller is not  
connected by any means to the power stage. This configuration is usually the case in systems with the  
microcontroller located on a dedicated control card or PCB.  
Current feedback is performed with shunt resistors (RSHUNT) and TI's AMC1306M25 isolated modulators.  
Depending on the system design, either all three or only two motor phase currents are sensed.  
Depending on the overall digital processing power requirements and with a total of eight ΔΣ modulator bitstreams  
to be processed by the microcontroller (MCU), a derivate from either the low-cost single-core TMS320F2807x or  
the dual-core TMS320F2837x families can be used in this application.  
+VBUS  
Load  
IDC  
RSHUNT  
U
VBUS  
RDC1  
RDC2  
RSHUNT  
V
IAC  
RSHUNT  
W
RAC1  
RAC1  
RAC1  
3.3VISO7  
3.3 V  
AMC1306M25  
AVDD  
AINP  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
3.3 VISO6  
RAC2  
RAC2  
RAC2  
AINN  
CLKIN  
RDC3  
AGND DGND  
RAC3  
RAC3  
RAC3  
3.3 V  
AMC1336  
-VBUS  
AVDD  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
3.3 VISO5  
AINP  
TMS320F28x7x  
3.3 VISO3  
3.3 V  
SDFM1  
SD1_D1  
AMC1306M25  
CLKIN  
AINN  
AGND DGND  
AVDD  
AINP  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
3.3 VISO2  
SD1_D2  
SD1_D3  
SD1_D4  
SD1_C1  
SD1_C2  
SD1_C3  
SD1_C4  
3.3 V  
AMC1306M25  
AINN  
CLKIN  
AVDD  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
3.3 VISO4  
AGND DGND  
AINP  
3.3 V  
AMC1336  
AINN  
CLKIN  
AGND DGND  
AVDD  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
AINP  
SDFM2  
SD2_D1  
3.3 V  
AMC1336  
CLKIN  
AINN  
SD2_D2  
SD2_D3  
SD2_D4  
SD2_C1  
SD2_C2  
SD2_C3  
SD2_C4  
AVDD  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
AGND DGND  
AINP  
CLKIN  
AINN  
AGND DGND  
3.3 VISO1  
3.3 V  
AMC1336  
AVDD  
DVDD  
DOUT  
RFLT  
CFLT  
RFLT  
AINP  
CDCLVC1106  
CLKIN  
AINN  
PWMx  
Y0  
Y2  
Y4  
AGND DGND  
Y1  
Y2  
1G  
Y5  
3.3 V  
CLKIN  
50. The AMC1336 in a Frequency Inverter Application  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Application (接下页)  
51 shows an additional example of the AMC1336 used for input phase and DC-link voltage sensing. Also in  
this case, the microcontroller is located on a dedicated control card and the AMC1306M25 is used for shunt-  
based current sensing.  
+VBUS  
RDC1  
RDC2  
RDC3  
RSHUNT  
U
V
RSHUNT  
Rectifier  
Inverter  
LOAD  
RSHUNT  
W
N
-VBUS  
AMC1306M25  
RFLT  
RFLT  
3.3 VISO8 AVDD  
AINP  
AINN  
DVDD 3.3 V  
DOUT  
CLKIN  
CFLT  
AGND DGND  
AMC1336  
RFLT  
RFLT  
3.3 VISO7  
3.3 V  
AVDD  
AINP  
AINN  
DVDD  
DOUT  
CLKIN  
CFLT  
AGND DGND  
AMC1306M25  
RFLT  
RFLT  
3.3 VISO6  
3.3 V  
AVDD  
AINP  
AINN  
DVDD  
DOUT  
CLKIN  
CFLT  
CFLT  
CFLT  
AGND DGND  
TMS320F28x7x  
AMC1306M25  
SDFM1  
RFLT  
RFLT  
3.3 VISO5  
3.3 V  
AVDD  
AINP  
AINN  
DVDD  
DOUT  
CLKIN  
SD1_D1  
SD1_D2  
SD1_D3  
SD1_D4  
AGND DGND  
AMC1306M25  
SD1_C1  
SD1_C2  
SD1_C3  
SD1_C4  
RAC1  
RAC2  
RAC3  
RFLT  
RFLT  
3.3 VISO4 AVDD  
AINP  
AINN  
DVDD 3.3 V  
DOUT  
CLKIN  
AGND DGND  
AMC1336  
SDFM2  
RFLT  
RFLT  
3.3 VISO3 AVDD  
AINP  
AINN  
DVDD 3.3 V  
DOUT  
CLKIN  
CFLT  
CFLT  
CFLT  
RAC1  
RAC2  
RAC3  
SD2_D1  
SD2_D2  
SD2_D3  
SD2_D4  
AGND DGND  
N
AMC1336  
SD2_C1  
SD2_C2  
SD2_C3  
SD2_C4  
RFLT  
RFLT  
3.3 VISO2  
3.3 V  
AVDD  
AINP  
AINN  
DVDD  
DOUT  
CLKIN  
RAC1  
RAC2  
RAC3  
AGND DGND  
N
CDCLVC1106  
AMC1336  
Y0  
Y2  
Y4  
PWMx  
RFLT  
RFLT  
3.3 VISO1 AVDD  
AINP  
AINN  
DVDD 3.3 V  
DOUT  
CLKIN  
Y1  
Y2  
1G  
Y5  
AGND DGND  
3.3 V  
CLKIN  
N
51. Input Phase Voltage Sensing Application with AMC1336  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
Typical Application (接下页)  
8.2.1 Design Requirements  
1 lists the parameters for this typical application.  
1. Design Requirements  
PARAMETER  
VALUE  
3.3 V  
Supply voltage  
Voltage drop across the sensing resistor RDC1 for a linear response  
Voltage drop across the sensing resistors RACx for a linear response  
Current through the sensing resistors RACx  
1 V (maximum)  
±1 V (maximum)  
±100 µA (maximum)  
8.2.2 Detailed Design Procedure  
Use Ohm's Law to calculate the minimum total resistance of the resistive dividers to limit the cross current to the  
desired values:  
For the voltage sensing on the DC bus: RDC1 + RDC2 + RDC3 = VBUS / IDC  
For the voltage sensing on the output phases U, V, and W: RAC1 + RAC2 + RAC3 = VPHASE (max) / IAC  
Consider the following two restrictions to choose the proper value of the resistors RDC3 and RAC3  
:
The voltage drop caused by the nominal voltage range of the system must not exceed the recommended  
input voltage range of the AMC1336: VxC3 VFSR  
The voltage drop caused by the maximum allowed system overvoltage must not exceed the input voltage that  
causes a clipping output: VxC3 VClipping  
Use similar approach for calculation of the shunt resistor values RSHUNT and see the AMC1306M25 data sheet  
for further details.  
2 lists examples of nominal E96-series (1% accuracy) resistor values for systems using 600 V and 800 V on  
the DC bus.  
2. Resistor Value Examples for DC Bus Sensing  
PARAMETER  
600-V DC BUS  
3.01 MΩ  
3.01 MΩ  
10 kΩ  
800-V DC BUS  
4.22 MΩ  
4.22 MΩ  
10.5 kΩ  
Resistive divider resistor RDC1  
Resistive divider resistor RDC2  
Sense resistor RDC3  
Resulting current through resistive divider IDC  
Resulting voltage drop on sense resistor VRDC3  
99.5 µA  
94.7 µA  
0.995 V  
0.994 V  
3 lists examples of nominal E96-series (1% accuracy) resistor values for systems using 230 V and 690 V on  
the input or output phases.  
3. Resistor Value Examples for Phase Voltage Sensing  
PARAMETER  
±400-VAC PHASE  
2.0 MΩ  
±690-VAC PHASE  
3.48 MΩ  
Resistive divider resistor RAC1  
Resistive divider resistor RAC2  
2.0 MΩ  
3.48 MΩ  
Sense resistor RAC3  
10.0 kΩ  
10.0 kΩ  
Resulting current through resistive divider IAC  
Resulting voltage drop on sense resistor VRAC3  
99.8 µA  
99.0 µA  
±0.998 V  
±0.990 V  
版权 © 2019–2020, Texas Instruments Incorporated  
27  
 
 
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
Use a power supply with a nominal voltage of 3.3 V for DVDD to directly connect all modulators to the  
microcontroller.  
For modulator output bitstream filtering, a device from TI's TMS320F2807x family of low-cost microcontrollers  
(MCUs) or TMS320F2837x family of dual-core MCUs is recommended. These MCU families support up to eight  
channels of dedicated hardwired filter structures called sigma-delta filter modules (SDFMs) that significantly  
simplify system level design by offering two filtering paths per channel: one providing high accuracy results for  
the control loop and one that offers a fast response path for overcurrent detection. Use one of the pulse-width  
modulation (PWM) sources inside the MCU to generate the clock for the modulators and for easy  
synchronization of all feedback signals and the switching control of the gate drivers.  
The application examples in 50 and 51 use a clock buffer to distribute the clock reference signal generated  
on one of the PWMx outputs of the MCU to all modulators used in the circuit and as a reference for the digital  
filters in the MCU. In this example, TI's CDCLVC1106 is used for this purpose. Each CDCLVC1106 output can  
drive a load of 8 pF that is sufficient to drive up to two modulator and up to four SDFM clock inputs.  
8.2.3 Application Curve  
The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators. 图  
52 shows the ENOB of the AMC1336 with different oversampling ratios. In this document, this number is  
calculated from the SINAD by using following equation: SINAD = 1.76 dB + 6.02 × ENOB.  
16  
14  
12  
10  
8
6
4
sinc3  
sinc2  
sinc1  
2
0
1
10  
100  
OSR  
1000  
10000  
D034  
52. Measured Effective Number of Bits versus Oversampling Ratio  
8.2.4 What to Do and What Not to Do  
Do not leave the inputs of the AMC1336 unconnected (floating) when the device is powered up. If either  
modulator input is left floating, the input bias current can drive this input beyond the specified common-mode  
input voltage range. If both inputs are beyond that range, the gain of the front-end diminishes and the output  
bitstream is not valid.  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
9 Power Supply Recommendations  
In a typical frequency-inverter application, the high-side power supply (AVDD) for the AMC1336 is generated  
from the controller-side supply (DVDD) of the device by an isolated dc/dc converter circuit. 53 shows a low-  
cost solution based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage  
ratings. TI recommends using a low-ESR decoupling capacitor of 0.1 µF and an additional capacitor of minimum  
1 µF for both supplies of the AMC1336. Place these decoupling capacitors as close as possible to the device  
power-supply pins to minimize supply current loops and electromagnetic emissions.  
The AMC1336 does not require any specific power up sequencing. Consider the analog settling time tASTART as  
specified in the Switching Characteristics table after ramp up of the AVDD high-side supply.  
Connect the high-side ground pin AGND of the AMC1336 to one of the analog inputs AINx to avoid common-  
mode input voltage range violations.  
AMC1336  
AINP  
AINN  
DOUT  
CLKIN  
DVDD  
AVDD  
AVDD  
AGND  
DVDD  
DGND  
10 F 0.1 F  
0.1 F 2.2 F  
DGND  
AGND  
TLV70450  
OUT  
IN  
SN6501  
D1 VCC  
10 F  
1 F  
20 V  
GND  
0.1 F  
D2 GND  
AGND  
10 F  
20 V  
AGND  
DGND  
53. Decoupling the AMC1336  
版权 © 2019–2020, Texas Instruments Incorporated  
29  
 
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
54 shows an example layout that is used on the AMC1336 evaluation module. For best performance, place  
the smaller 0.1-µF decoupling capacitors (C7 and C9) as close as possible to the AMC1336 power-supply pins,  
followed by the additional C1 and C11 capacitors with a minimum value of 1 µF. The resistors and capacitors  
used for the analog input filter (R1, R2, C4, C5, and C8) are placed next to the decoupling capacitors. Use 1206-  
size, SMD-type, ceramic decoupling capacitors and route the traces to the AINx pins underneath. Connect the  
supply voltage sources in a way that allows the supply current to flow through the pads of the decoupling  
capacitors before powering the device.  
Consider use of RC filters on the digital clock and data lines to reduce reflections and slew rate that cause  
radiated emissions. The AMC1336 evaluation module offers placeholders for RC filters (termed R8 and C13 in 图  
54) for the CLKIN line, and R7 and C12 for the DOUT line.  
10.2 Layout Example  
Clearance area,  
to be kept free of any  
conductive materials  
54. Recommended Layout of the AMC1336  
30  
版权 © 2019–2020, Texas Instruments Incorporated  
 
AMC1336  
www.ti.com.cn  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
11.1.1.1 隔离相关术语  
请参阅《隔离相关术语》  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TMS320F28004x Piccolo™ 微控制器》 数据表  
德州仪器 (TI)TMS320F2807x Piccolo™ 微控制器》 数据表  
德州仪器 (TI)TMS320F2837xD 双核 Delfino™ 微控制器》 数据表  
德州仪器 (TI)ISO72x 数字隔离器磁场抗扰度》  
德州仪器 (TI)MSP430F677x 多相位仪表计量片上系统》 数据表  
德州仪器 (TI)《适用于二阶 Δ-Σ 调制器的 AMC1210 四路数字滤波器》 数据表  
德州仪器 (TI)《将 ADS1202 FPGA 数字滤波器结合,以便在电机控制应用中进行 电流测量》 应用报告  
德州仪器 (TI)《具有高 CMTI AMC1306x 小型、高精度、增强型隔离式 Δ-Σ 调制器》 数据表  
德州仪器 (TI)CDCLVC11xx 3.3V 2.5V LVCMOS 高性能时钟缓冲器系列》 数据表  
德州仪器 (TI)SN6501 用于隔离电源的变压器驱动器》 数据表  
德州仪器 (TI)AMC1303AMC1306 AMC1336 评估模块》 用户指南  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2019–2020, Texas Instruments Incorporated  
31  
AMC1336  
ZHCSK30B AUGUST 2019REVISED APRIL 2020  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2019–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1336DWV  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWV  
DWV  
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AMC1336  
AMC1336  
AMC1336DWVR  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1336DWVR  
SOIC  
DWV  
8
1000  
330.0  
16.4  
12.05 6.15  
3.3  
16.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWV  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AMC1336DWVR  
8
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DWV SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC1336DWV  
8
64  
505.46  
13.94  
4826  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY