AMC3301DWER [TI]

具有集成直流/直流的 ±250mV 输入、精密电流检测增强型隔离式放大器 | DWE | 16 | -40 to 125;
AMC3301DWER
型号: AMC3301DWER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成直流/直流的 ±250mV 输入、精密电流检测增强型隔离式放大器 | DWE | 16 | -40 to 125

放大器
文件: 总38页 (文件大小:2357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC3301  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
AMC3301 具有集成直流/直流转换器密、±250mV 输入、增强型隔离放大  
1 特性  
3 说明  
3.3V 5V 单电源具有集成直流/直流转换器  
±250mV 输入电压范围针对使用分流电阻器测量  
电流进行了优化  
• 固定增益8.2  
• 低直流误差:  
– 失调电压±150μV最大值)  
– 温漂±1µV/°C最大值)  
– 增益误差±0.2%最大值)  
– 增益误差漂移±40ppm/°C最大值)  
– 非线性度±0.04%最大值)  
CMTI85kV/µs最小值)  
• 系统级诊断功能  
AMC3301 是一款精密的隔离放大器针对基于分流器  
的电流测量进行了优化。这款完全集成的隔离式直流/  
直流转换器可实现器件低侧的单电源运行使该器件成  
为空间受限应用的独特解决方案。增强型电容式隔离栅  
已通过 VDE V 0884-11 UL1577 认证并支持高达  
1.2kVRMS 的工作电压。  
该隔离栅可将系统中以不同共模电压电平运行的各器件  
隔开并保护电压较低的器件免受高电压冲击。  
AMC3301 的输入针对直接连接低阻抗分流电阻器或其  
他具有低信号电平的低阻抗电压源的情况进行了优化。  
出色的直流精度和低温漂支持在 –40°C +125°C 的  
工业级工作温度范围内进行精确的电流测量。  
• 符CISPR-11 CISPR-25 EMI 标准  
• 安全相关认证:  
AMC3301 的集成直流/直流转换器故障检测和诊断输出  
引脚可简化系统级设计和诊断。  
– 符DIN VDE V 0884-11 标准6000VPK 增强  
型隔离  
– 符UL1577 标准且长1 分钟4250VRMS  
隔离  
器件信息(1)  
封装尺寸标称值)  
器件型号  
AMC3301  
封装  
SOIC (16)  
10.30mm × 7.50mm  
• 可在工业级工作温度范围内正常工作40°C 至  
+125°C  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 基于分流器的隔离式电流检测用于:  
保护继电器  
电机驱动器  
电源  
光电逆变器  
Low-side supply  
(3.3 V or 5 V)  
DCDC_OUT  
DCDC_IN  
DCDC_HGND  
Isolated  
DCDC_GND  
Isolated  
Power  
Power  
HLDO_IN  
DIAG  
To MCU (optional)  
I
NC  
LDO_OUT  
VDD  
HLDO_OUT  
INP  
OUTP  
OUTN  
GND  
+250 mV  
0 V  
VCMout  
2.05 V  
ADC  
INN  
œ 250 mV  
HGND  
AMC3301  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS917  
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
Table of Contents  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 22  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 Documentation Support.......................................... 28  
11.3 Receiving Notification of Documentation Updates..28  
11.4 支持资源..................................................................28  
11.5 Trademarks............................................................. 28  
11.6 Electrostatic Discharge Caution..............................28  
11.7 Glossary..................................................................28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Power Ratings ............................................................5  
6.6 Insulation Specifications ............................................ 6  
6.7 Safety-Related Certifications ..................................... 7  
6.8 Safety Limiting Values ................................................7  
6.9 Electrical Characteristics ............................................8  
6.10 Switching Characteristics .......................................10  
6.11 Timing Diagram.......................................................10  
6.12 Insulation Characteristics Curves............................11  
6.13 Typical Characteristics............................................12  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (July 2020) to Revision B (May 2021)  
Page  
• 更改了“特性”部分更改了低直流误要点中的失调电子要点重新排列了各要点添加了最后  
一个要点............................................................................................................................................................. 1  
• 将部分的目标应用从隔离式电压检更改为基于分流器的隔离式电流检.............................................. 1  
Changed Pin Configuration and Functions section.............................................................................................3  
Changed Absolute Maximum Ratings: changed max for DIAG pin from 5.5 V to 6.5 V.....................................4  
Changed overvoltage category for rated mains voltage 600 V from I-IV to I-III and for rated mains voltage  
1000 V from I-III to I-II .................................................................................................................................... 6  
Changed output bandwidth (BW) (min) from 250 kHz to 290 kHz......................................................................8  
Changed Typical Characteristics section. Removed histograms, editorial changes.........................................12  
Changed Functional Block Diagram figure....................................................................................................... 18  
Changed Data Isolation Channel Signal Transmission section........................................................................ 19  
Changed Analog Output section.......................................................................................................................20  
Changed Diagnostic Output section: added DIAG Output Under Different Operating Conditions figure......... 21  
Changed Typical Application section................................................................................................................22  
Changed Input Filter Design section: changed Differential Input Filter figure...................................................23  
Added Differential to Single-Ended Output Conversion section....................................................................... 24  
Changed Step Response of the AMC3301 figure.............................................................................................24  
Changed Power Supply Recommendations section: changed nominal value in the first sentence from 3.3 V  
(or 5 V) ± 10 V to 3.3 V or 5 V, changed primary-side to low-side, secondary-side to high-side, and  
Decoupling the AMC3301 figure.......................................................................................................................26  
Changed Recommended Layout of the AMC3301 figure.................................................................................27  
Changes from Revision * (August 2019) to Revision A (July 2020)  
Page  
• 将文档状态从预告信息更改为量产数据...............................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC3301  
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
5 Pin Configuration and Functions  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DCDC_IN  
DCDC_GND  
DIAG  
LDO_OUT  
VDD  
HLDO_OUT  
INP  
OUTP  
INN  
OUTN  
HGND  
GND  
Not to scale  
5-1. DWE Package, 16-Pin SOIC, Top View  
5-1. Pin Functions  
PIN  
NAME  
DCDC_OUT  
TYPE  
DESCRIPTION  
NO.  
1
Power  
High-side output of the isolated DC/DC converter; connect this pin to the HLDO_IN pin.(1)  
High-side ground reference for the isolated DC/DC converter; connect this pin to the  
2
DCDC_HGND High-side power ground  
HGND pin.  
3
4
5
HLDO_IN  
NC  
Power  
Input of the high-side LDO; connect this pin to the DCDC_OUT pin.(1)  
No internal connection; connect this pin to HGND or leave this pin unconnected.  
Output of the high-side LDO.(1)  
HLDO_OUT  
Power  
Noninverting analog input. Either INP or INN must have a DC current path to HGND to  
define the common-mode input voltage.(2)  
6
7
INP  
INN  
Analog input  
Analog input  
Inverting analog input. Either INP or INN must have a DC current path to HGND to define  
the common-mode input voltage.(2)  
8
HGND  
GND  
High-side signal ground High-side analog ground; connect this pin to the DCDC_HGND pin.  
Low-side signal ground Low-side analog ground; connect this pin to the DCDC_GND pin.  
9
10  
11  
12  
OUTN  
OUTP  
VDD  
Analog output  
Analog output  
Low-side power  
Inverting analog output.  
Noninverting analog output.  
Low-side power supply.(1)  
Output of the low-side LDO; connect this pin to the DCDC_IN pin. The output of the LDO  
must not be loaded by external circuitry.(1)  
13  
14  
LDO_OUT  
DIAG  
Power  
Active-low, open-drain status indicator output; connect this pin to the pullup supply (for  
example, VDD) using a resistor or leave this pin floating if not used.  
Digital output  
Low-side ground reference for the isolated DC/DC converter; connect this pin to the GND  
pin.  
15  
16  
DCDC_GND  
DCDC_IN  
Low-side power ground  
Power  
Low-side input of the isolated DC/DC converter; connect this pin to the LDO_OUT pin.(1)  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
(2) See the Layout section for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC3301  
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
see (1)  
MIN  
0.3  
MAX  
UNIT  
V
Power-supply voltage  
Analog input voltage  
Analog output voltage  
Digital output voltage  
Input current  
VDD to GND  
6.5  
INP, INN  
VHLDO_OUT + 0.5  
V
HGND 6  
GND 0.5  
GND 0.5  
10  
OUTP, OUTN  
VDD + 0.5  
6.5  
V
DIAG  
V
Continuous, any pin except power-supply pins  
10  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)  
Charged device model (CDM), per JESD22-C101 (2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
3.3  
MAX  
UNIT  
POWER SUPPLY  
VDD  
Low-side power supply  
VDD to GND  
3
5.5  
V
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
±320  
mV  
mV  
V
VIN = VINP VINN  
VFSR  
Specified linear differential full-scale voltage  
Absolute common-mode input voltage (1)  
Operating common-mode input voltage  
250  
VHLDO_OUT  
1
VIN = VINP VINN  
250  
2  
(VINP + VINN) / 2 to HGND  
(VINP + VINN) / 2 to HGND  
VCM  
V
0.16  
TEMPERATURE RANGE  
TA Specified ambient temperature  
125  
°C  
40  
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal  
operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
 
 
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.4 Thermal Information  
AMC3301  
THERMAL METRIC(1)  
DWE (SOIC)  
16 PINS  
73.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
31  
RθJB  
ψJT  
Junction-to-board thermal resistance  
44  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
16.7  
42.8  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VDD = 5.5 V  
MIN  
TYP  
MAX  
231  
UNIT  
PD  
Maximum power dissipation  
mW  
VDD = 3.6 V  
151  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC3301  
 
 
 
AMC3301  
www.ti.com.cn  
UNIT  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance (1)  
External creepage (1)  
Shortest pin-to-pin distance through air  
mm  
mm  
8  
8  
21  
120  
600  
I
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance - capacitive signal isolation)  
Minimum internal gap (internal clearance - transformer power isolation)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
DTI  
CTI  
Distance through the insulation  
µm  
V
Comparative tracking index  
Material group  
According to IEC 60664-1  
I-III  
Rated mains voltage 600 VRMS  
Overvoltage category  
per IEC 60664-1  
I-II  
Rated mains voltage 1000 VRMS  
DIN VDE V 0884-11 (VDE V 0884-11): 2017-01(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
At AC voltage (bipolar)  
1700  
1200  
VPK  
At AC voltage (sine wave); time-dependent dielectric breakdown (TDDB)  
test  
VRMS  
Maximum-rated isolation  
working voltage  
VIOWM  
At DC voltage  
1700  
6000  
7200  
VDC  
VPK  
VPK  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
VIOTM  
isolation voltage  
Maximum surge  
VIOSM  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK (qualification)  
6250  
5  
5  
VPK  
isolation voltage(3)  
Method a, after input/output safety test subgroup 2 / 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and preconditioning (type  
test),  
5  
Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM, tm = 1 s  
Barrier capacitance,  
input to output(5)  
CIO  
VIO = 0.5 VPP at 1 MHz  
~3.5  
pF  
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(5)  
RIO  
VIO = 500 V at 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL1577  
VTEST = VISO = 4250 VRMS or 6000 VDC, t = 60 s (qualification),  
VTEST = 1.2 × VISO, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
4250  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings must be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11): 2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and  
DIN EN 60065 (VDE 0860): 2005-11  
Recognized under 1577 component recognition and  
CSA component acceptance NO 5 programs  
Reinforced insulation  
Single protection  
Certificate number: 40040142  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting (1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
ofthe I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 73.5°C/W, VDD = 5.5 V,  
309  
TJ = 150°C, TA = 25°C  
θJA = 73.5°C/W, VDD = 3.6 V,  
TJ = 150°C, TA = 25°C  
θJA = 73.5°C/W,  
TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current  
mA  
R
472  
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1700  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum low-side voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC3301  
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = 40°C to +125°C, VDD = 3.0 V to 5.5 V, INP = 250 mV to +250  
mV, INN = HGND = 0 V, and the external components listed in the Typical Application section; typical specifications are at TA  
= 25°C, and VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
RIN  
Single-ended input resistance  
Differential input resistance  
INN = HGND  
19  
22  
kΩ  
RIND  
INP = INN = HGND; IIB = (IIBP  
IIBN) / 2  
+
IIB  
Input bias current  
µA  
41  
30  
24  
TCIIB  
IIO  
Input bias current drift  
0.8  
1.4  
2
nA/°C  
nA  
Input offset current  
IIO = |IIBP IIBN  
|
CIN  
Single-ended input capacitance  
Differential input capacitance  
INN = HGND, fIN = 275 kHz  
fIN = 275 kHz  
pF  
CIND  
1
ANALOG OUTPUT  
Nominal gain  
8.2  
V/V  
V
VCMout  
Common-mode output voltage  
1.39  
1.44  
1.49  
-2.5  
VOUT = (VOUTP VOUTN);  
|VIN| = |VINP VINN| > VClipping  
VCLIPout  
Clipping differential output voltage  
±2.49  
V
VOUT = (VOUTP VOUTN);  
VFailsafe  
Failsafe differential output voltage  
V
V
V
DCDC_OUT VDCDCUV, or  
HLDO_OUT VHLDOUV  
2.57  
BW  
Output bandwidth  
Output resistance  
290  
85  
334  
0.2  
kHz  
ROUT  
On OUTP or OUTN  
Ω
On OUTP or OUTN, sourcing or  
sinking, INP = INN = HGND, outputs  
shorted to either GND or VDD  
Output short-circuit current  
14  
mA  
CMTI  
Common-mode transient immunity  
135  
kV/µs  
|HGND GND| = 2 kV  
ACCURACY  
VOS  
Input offset voltage(1) (2)  
Input offset drift(1) (2) (4)  
Gain error(1)  
TA = 25°C, INP = INN = HGND  
±0.02  
±0.15  
±0.04%  
±6  
0.15  
1
mV  
0.15  
1  
TCVOS  
EG  
uV/°C  
TA = 25°C  
0.2%  
40  
0.2%  
40  
TCEG  
Gain error drift(1) (5)  
Nonlinearity(1)  
ppm/°C  
ppm/°C  
±0.002%  
0.9  
0.04%  
0.04%  
Nonlinearity drift(1)  
VIN = 0.5 VPP, fIN = 1 kHz, BW = 10  
kHz, 10 kHz filter  
80  
67  
85  
71  
SNR  
THD  
Signal-to-noise ratio  
dB  
VIN = 0.5 VPP, fIN = 10 kHz,  
BW = 100 kHz, 1 MHz filter  
VIN = 0.5 Vpp, fIN = 10 kHz,  
BW = 100 kHz  
Total harmonic distortion(3)  
Output noise  
dB  
85  
INP = INN = HGND, fIN = 0 Hz,  
BW = 100 kHz  
300  
97  
98  
µVRMS  
fIN = 0 Hz, VCM min VCM VCM max  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
dB  
fIN = 10 kHz, VCM min VCM VCM  
max  
VDD from 3.0 V to 5.5 V, at dc, input  
referred  
109  
98  
INP = INN = HGND, VDD from 3.0 V  
to 5.5 V, 10 kHz / 100 mV ripple,  
input referred  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC3301  
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +125°C, VDD = 3.0 V to 5.5 V, INP = 250 mV to +250  
mV, INN = HGND = 0 V, and the external components listed in the Typical Application section; typical specifications are at TA  
= 25°C, and VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
no external load on HLDO  
1 mA external load on HLDO  
DCDC_OUT to HGND  
27.5  
29.5  
3.5  
40  
42  
IDD  
Low-side supply current  
mA  
VDCDC_OUT DCDC output voltage  
DCDC output undervoltage detection  
3.1  
2.1  
4.65  
V
V
VDCDCUV  
DCDC output falling  
2.25  
3.2  
threshold voltage  
HLDO to HGND, up to 1 mA external  
load  
VHLDO_OUT High-side LDO output voltage  
3
3.4  
V
V
High-side LDO output undervoltage  
VHLDOUV  
HLDO output falling  
2.4  
2.6  
detection threshold voltage  
High-side supply current for auxiliary Load connected from HLDO_OUT to  
IH  
1
mA  
ms  
circuitry  
HGND, non-switching  
VDD step to 3.0 V, to OUTP and  
OUTN valid, 0.1% settling  
tAS  
Analog settling time  
0.9  
1.4  
(1) The typical value includes one standard deviation ("sigma") at nominal operating conditions.  
(2) This parameter is input referred.  
(3) THD is the ratio of the rms sum of the amplitues of first five higher harmonics to the amplitude of the fundamental.  
(4) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (ValueMAX - ValueMIN) / TempRange  
(5) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = (ValueMAX - ValueMIN) / (Value(T=25) x TempRange) x 106  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC3301  
 
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.3  
1.3  
1
MAX  
UNIT  
µs  
tr  
tf  
Output signal rise time  
Output signal fall time  
µs  
Unfiltered output  
Unfiltered output  
Unfiltered output  
1.5  
2.1  
3
µs  
VINx to VOUTx signal delay (50% 10%)  
VINx to VOUTx signal delay (50% 50%)  
VINx to VOUTx signal delay (50% 90%)  
1.6  
2.5  
µs  
µs  
6.11 Timing Diagram  
250 mV  
INP - INN  
0
œ 250 mV  
tf  
tr  
OUTN  
OUTP  
VCMout  
50% - 10%  
50% - 50%  
50% - 90 %  
6-1. Rise, Fall, and Delay Time Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.12 Insulation Characteristics Curves  
500  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 3.6 V  
VDD = 5.5 V  
400  
300  
200  
100  
0
600  
400  
200  
0
0
25  
50  
75  
TA (°C)  
100  
125  
150  
0
25  
50  
75  
TA (°C)  
100  
125  
150  
D070  
D069  
6-3. Thermal Derating Curve for Safety-Limiting Power per  
6-2. Thermal Derating Curve for Safety-Limiting Current per  
VDE  
VDE  
1.E+11  
87.5%  
1.E+10  
143 Yrs  
76 Yrs  
1.E+09  
1.E+08  
1.E+07  
TDDB Line (< 1 ppm Fail Rate)  
1.E+06  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
Operating Zone  
VDE Safety Margin Zone  
20 %  
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
6500  
Applied Voltage (VRMS  
)
TA up to 150°C, stress-voltage frequency = 60 Hz,  
isolation working voltage = 1200 VRMS, operating lifetime = 76 years  
6-4. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC3301  
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.13 Typical Characteristics  
at VDD = 3.3 V, INP = 250 mV to +250 mV, INN = HGND = 0 V, and fIN = 10 kHz (unless otherwise noted)  
-10  
-15  
-20  
-25  
-30  
-35  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-0.5  
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
3
3.5  
4
4.5  
5
5.5  
VCM (V)  
VDD (V)  
D003  
D004  
6-5. Input Bias Current vs Common-Mode Input Voltage  
6-6. Input Bias Current vs Supply Voltage  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
5
VOUTN  
VOUTP  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-350  
-250  
-150  
-50  
50  
Differential Input Voltage (mV)  
150  
250  
350  
D005  
D022  
6-7. Input Bias Current vs Temperature  
6-8. Output Voltage vs Input Voltage  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.39  
1.39  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D009  
D010  
6-9. Output Common-Mode Voltage vs Supply Voltage  
6-10. Output Common-Mode Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 250 mV to +250 mV, INN = HGND = 0 V, and fIN = 10 kHz (unless otherwise noted)  
5
0
0°  
-45°  
-5  
-90°  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-135°  
-180°  
-225°  
-270°  
-315°  
-360°  
1
10  
100  
1000  
1
10  
100  
1000  
fIN (kHz)  
fIN (kHz)  
D007  
D008  
6-11. Normalized Gain vs Input Frequency  
6-12. Output Phase vs Input Frequency  
350  
340  
330  
320  
310  
300  
350  
340  
330  
320  
310  
300  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D011  
D012  
6-13. Output Bandwidth vs Supply Voltage  
6-14. Output Bandwidth vs Temperature  
100  
100  
75  
Device 1  
Device 2  
Device 3  
75  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-25  
-50  
-75  
-100  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D027  
D026  
6-15. Input Offset Voltage vs Supply Voltage  
6-16. Input Offset Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC3301  
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 250 mV to +250 mV, INN = HGND = 0 V, and fIN = 10 kHz (unless otherwise noted)  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D020  
D021  
6-17. Gain Error vs Supply Voltage  
6-18. Gain Error vs Temperature  
0.03  
0.02  
0.01  
0
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.01  
-0.02  
-0.03  
-250 -200 -150 -100 -50  
0
Differential Input Voltage (mV)  
50 100 150 200 250  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D002419  
D028  
6-19. Nonlinearity vs Input Voltage  
6-20. Nonlinearity vs Supply Voltage  
0.03  
0.02  
0.01  
0
80  
75  
70  
65  
60  
55  
50  
45  
40  
Device 1  
Device 2  
Device 3  
-0.01  
-0.02  
-0.03  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
50  
100  
150  
|VINP - VINN| (mV)  
200  
250  
300  
D030  
D032  
VIN = 0.5 Vpp, fIN = 10 kHz  
6-21. Nonlinearity vs Temperature  
6-22. Signal-to-Noise Ratio vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC3301  
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 250 mV to +250 mV, INN = HGND = 0 V, and fIN = 10 kHz (unless otherwise noted)  
80  
77.5  
75  
80  
77.5  
75  
72.5  
70  
72.5  
70  
67.5  
65  
67.5  
65  
Device 1  
Device 2  
Device 3  
62.5  
60  
62.5  
60  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D034  
D035  
VIN = 0.5 Vpp, fIN = 10 kHz  
VIN = 0.5 Vpp, fIN = 10 kHz  
6-24. Signal-to-Noise Ratio vs Temperature  
6-23. Signal-to-Noise Ratio vs Supply Voltage  
-70  
-70  
-75  
-80  
-75  
-80  
-85  
-85  
-90  
-90  
Device 1  
Device 2  
Device 3  
-95  
-95  
-100  
-100  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D056  
D059  
6-25. Total Harmonic Distortion vs Supply Voltage  
6-26. Total Harmonic Distortion vs Temperature  
10000  
0
-20  
-40  
1000  
100  
10  
-60  
-80  
-100  
-120  
0.01  
0.1  
1 10  
Frequency (kHz)  
100  
1000  
0.001  
0.01  
0.1  
1
fIN (kHz)  
10  
100  
1000  
D017  
D038  
6-27. Input-Referred Noise Density vs Frequency  
6-28. Common-Mode Rejection Ratio vs Input Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC3301  
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 250 mV to +250 mV, INN = HGND = 0 V, and fIN = 10 kHz (unless otherwise noted)  
-70  
-75  
0
-20  
-80  
-40  
-85  
-90  
-60  
-95  
-80  
-100  
-105  
-110  
-100  
-120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0.01  
0.1  
1
10  
Ripple Frequency (kHz)  
100  
1000  
D039  
D041  
6-29. Common-Mode Rejection Ratio vs Temperature  
6-30. Power-Supply Rejection Ratio vs Ripple Frequency  
32.5  
32.5  
30  
27.5  
25  
30  
27.5  
25  
22.5  
22.5  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D043  
D044  
6-31. Supply Current vs Supply Voltage  
6-32. Supply Current vs Temperature  
3.4  
3.35  
3.3  
4
3.5  
3
3.25  
3.2  
2.5  
2
3.15  
3.1  
1.5  
1
3.05  
3
0.5  
0
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
D046  
D065  
6-33. High-Side LDO Line Regulation  
6-34. Output Rise and Fall time vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC3301  
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 250 mV to +250 mV, INN = HGND = 0 V, and fIN = 10 kHz (unless otherwise noted)  
4
3.5  
3
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
2.6  
2.2  
1.8  
1.4  
1
2.5  
2
1.5  
1
0.5  
0
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D066  
D067  
6-35. Output Rise and Fall Time vs Temperature  
6-36. VIN to VOUT Signal Delay vs Supply Voltage  
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D068  
6-37. VIN to VOUT Signal Delay vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC3301  
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
7 Detailed Description  
7.1 Overview  
The AMC3301 is a fully differential, precision, isolated amplifier with a fully integrated DC/DC converter that can  
supply the device from a single 3.3-V or 5-V voltage supply on the low-side. The input stage of the device  
consists of a fully differential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator. The modulator  
uses an internal voltage reference and clock generator to convert the analog input signal to a digital bitstream.  
The drivers (termed TX in the Functional Block Diagram) transfer the output of the modulator across the isolation  
barrier that separates the high-side and low-side voltage domains. As shown in the Functional Block Diagram,  
the received bitstream and clock are synchronized and processed by a fourth-order analog filter on the low-side  
and presented as a differential output of the device  
The signal path is isolated by a double capacitive silicon dioxide (SiO2) insuation barrier, whereas power  
isolation uses an on-chip transformer separated by a thin-film polymer as the insulating material.  
7.2 Functional Block Diagram  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
Resonator  
And  
Driver  
Rectifier  
Diagnostics  
LDO_OUT  
VDD  
LDO  
AMC3301  
LDO  
HLDO_OUT  
INP  
Analog Filter  
OUTP  
ûModulator  
INN  
OUTN  
HGND  
GND  
7.3 Feature Description  
7.3.1 Analog Input  
The differential amplifier input stage of the AMC3301 feeds a second-order, switched-capacitor, feed-forward  
ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors with a differential input  
impedance of RIND. The modulator converts the analog signal into a bitstream that is transferred across the  
isolation barrier, as described in the Data Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signals (INP and INN). First, if the input voltages VINP or VINN  
exceed the range specified in the Absolute Maximum Ratings table, the input current must be limited to the  
absolute maximum value, because the device input electrostatic discharge (ESD) diodes turns on. In addition,  
the linearity and parametric performance of the device are ensured only when the analog input voltage remains  
within linear full-scale range (VFSR) and within the common-mode input voltage range (VCM) as specified in the  
Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
7.3.2 Data Isolation Channel Signal Transmission  
The AMC3301 uses an on-off keying (OOK) modulation scheme, as shown in 7-1, to transmit the modulator  
output bitstream across the capacitive SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally generated, high-frequency carrier across the isolation barrier to  
represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC3301 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and produces  
the output. The AMC3301 transmission channel is optimized to achieve the highest level of common-mode  
transient immunity (CMTI) and lowest level of radiated emissions caused by the high-frequency carrier and  
RX/TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-1. OOK-Based Modulation Scheme  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC3301  
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
7.3.3 Analog Output  
The AMC3301 offers a differential analog output comprised of the OUTP and OUTN pins. For differential input  
voltages (VINP VINN) in the range from 250 mV to +250 mV, the device provides a linear response with a  
nominal gain of 8.2. For example, for a differential input voltage of 250 mV, the differential output voltage (VOUTP  
VOUTN) is 2.05 V. At zero input (INP shorted to INN), both pins output the same common-mode output voltage  
VCMout, as specified in the Electrical Characteristics table. For absolute differential input voltages greater than  
250 mV but less than 320 mV, the differential output voltage continues to increase in magnitude but with reduced  
linearity performance. The outputs saturate at a differential output voltage of VCLIPout as shown in 7-2 if the  
differential input voltage exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VOUTN  
VCLIPout  
VOUTP  
VFAILSAFE  
VCMout  
œ 320 mV  
œ 250 mV  
320 mV  
0
250 mV  
Differential Input Voltage (VINP œ VINN  
)
7-2. Output Behavior of the AMC3301  
The AMC3301 provides a fail-safe output that simplifies diagnostics on system level. 7-2 shows the fail-safe  
mode, in which the AMC3301 outputs a negative differential output voltage that does not occur under normal  
operating conditions. The fail-safe output is active in two cases:  
The low-side does not receive data from the high-side (for example, because of a loss of power on the high  
side).  
The high-side DC/DC output voltage (DCDC_OUT) or the high-side LDO output voltage (HLDO_OUT) drop  
below their respective undervoltage detection thresholds (brown-out).  
Use the maximum VFAILSAFE voltage specified in the Electrical Characteristics table as a reference value for the  
fail-safe detection on the system level.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
7.3.4 Isolated DC/DC Converter  
The AMC3301 offers a fully integrated isolated DC/DC converter that includes the following components as  
illustrated in the Functional Block Diagram:  
Low-dropout regulator (LDO) on the low-side to stabilize the supply voltage VDD that drives the low-side of  
the converter. This circuit does not output a constant voltage and is not intended for driving any external load.  
Low-side full-bridge inverter and drivers  
Laminate-based, air-core transformer for high-immunity to magnetic fields  
High-side full-bridge rectifier  
High-side LDO to stabilize the output voltage of the DC/DC converter for high analog performance of the  
signal path. The high-side LDO outputs a constant voltage and can provide a limited amount of current to  
power external circuitry.  
The DC/DC converter uses a spread-spectrum clock generation technique to reduce the spectral density of the  
electromagnetic radiation. The resonator frequency is synchronized to the operation of the ΔΣ modulator to  
minimize the interference with data transmission and support the high analog performance of the device.  
The architecture of the DC/DC converter is optimized to drive the high-side circuitry of the AMC3301 and can  
source up to IH of additional DC current for an optional auxiliary circuit such as an active filter, preamplifier, or  
comparator. IH is specified in the Electrical Characteristics table as a DC, non-switching current.  
7.3.5 Diagnostic Output  
The open-drain DIAG pin can be monitored to confirm the device is operational and the output voltage is valid.  
As shown in 7-3, during power-up, the DIAG pin is actively held low until the high-side supply is in regulation  
and the device operates properly. During normal operation, the DIAG pin is in high-impedance (Hi-Z) state and is  
pulled high through an external pullup resistor. The DIAG pin is actively pulled low if:  
The low-side does not receive data from the high-side (for example, because of a loss of power on the high  
side). In this case, the amplifier outputs are driven to the VFAILSAFE value that is shown in 7-2.  
The high-side DC/DC output voltage (DCDC_OUT) or the high-side LDO output voltage (HLDO_OUT) drop  
below their respective undervoltage detection thresholds (brown-out). In this case, the low-side may still  
receive data from the high-side but the data may not be valid. The amplifier outputs are driven to the  
VFAILSAFE value that is shown in 7-2.  
Normal  
Operation  
Normal  
Operation  
DIAG  
Power-up  
High-side supply undervoltage  
7-3. DIAG Output Under Different Operating Conditions  
During normal operation, the DIAG pin is in a high-impedance state. Connect the DIAG pin to a pullup resistor or  
leave open if not used.  
7.4 Device Functional Modes  
The AMC3301 is operational when the power supply VDD is applied, as specified in the Recommended  
Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC3301  
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The low input voltage range, low nonlinearity, and low temperature drift make the AMC3301 a high-performance  
solution for industrial applications where shunt-based current sensing with high common-mode voltage levels is  
required.  
8.2 Typical Application  
The AMC3301 is ideally suited for shunt-based current sensing applications where accurate current monitoring is  
required in the presence of high common-mode voltages. The AMC3301 integrates an isolated power supply for  
the high-voltage side and therefore makes the device particularly easy to use in applications that do not have a  
high-side supply readily available or where a high-side supply is referenced to a different ground potential than  
the signal to be measured.  
8-1 shows a simplified schematic of the AMC3301 in a solar inverter where the phase current is measured on  
the grid-side of an LCL filter. Although the system offers a supply for the high-side gate driver, there is a large  
common-mode voltage between the gate driver supply ground reference and the shunt resistor on the other side  
of the LCL filter. Therefore, the gate driver supply is not suitable for powering the high-side of an isolated  
amplifier that measures the voltage across the shunt. The integrated isolated power supply of the AMC3301  
solves that problem and enables current sensing at locations that is optimal for the system.  
The diagram also shows the AMC3330 being used for sensing the AC output voltage.  
DC+  
SW  
HS Gate  
Driver  
Supply  
N
PGND  
IPHASE  
SW  
to grid (L1)  
RSHUNT  
PGND  
RL11  
LS Gate  
Driver  
Supply  
RL1SNS  
DC-  
PGND  
RL12  
N
AMC3301  
1 µF 1 nF  
100 nF  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
47 kΩ  
to uC (optional)  
100 nF  
LDO_OUT  
VDD  
1 nF 100 nF  
1 nF 1 µF  
HLDO_OUT  
INP  
3.3 V / 5 V supply  
10 Ω  
10 Ω  
10 nF  
OUTP  
ADS8363  
to MCU  
16-Bit ADC  
INN  
OUTN  
HGND  
GND  
GND  
AMC3330  
1 µF 1 nF  
100 nF  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
47 kΩ  
to uC (optional)  
100 nF  
LDO_OUT  
VDD  
1 nF 100 nF  
1 nF 1 µF  
HLDO_OUT  
INP  
3.3 V / 5 V supply  
OUTP  
ADS8363  
to MCU  
16-Bit ADC  
INN  
OUTN  
HGND  
GND  
GND  
8-1. The AMC3301 in a Solar Inverter Application  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
Supply voltage  
VALUE  
3.3 V or 5 V  
Voltage drop across the shunt for a linear response (VSHUNT  
)
±250 mV (maximum)  
8.2.2 Detailed Design Procedure  
The AMC3301 requires a single 3.3-V or 5-V supply on its low-side. The high-side supply is internally generated  
by an integrated DC/DC converter as explained in the Isolated DC/DC Converter section.  
The ground reference (HGND) is derived from the terminal of the shunt resistor that is connected to the negative  
input of the AMC3301 (INN). If a four-pin shunt is used, the inputs of the AMC3301 are connected to the inner  
leads and HGND is connected to one of the outer shunt leads. To minimize offset and improve accuracy, set the  
ground connection to a separate trace that connects directly to the shunt resistor rather than shorting HGND to  
INN directly at the input to the device. See the Layout section for more details.  
8.2.2.1 Shunt Resistor Sizing  
Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measured  
current: VSHUNT = I × RSHUNT  
Consider the following two restrictions to choose the proper value of the shunt resistor, RSHUNT  
The voltage drop caused by the nominal current range must not exceed the recommended differential input  
voltage range: |VSHUNT| |VFSR  
The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes  
.
:
|
a clipping output: |VSHUNT| |VClipping  
|
8.2.2.2 Input Filter Design  
TI recommends placing an RC filter in front of the isolated amplifier to improve signal-to-noise performance of  
the signal path. Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency  
(20 MHz) of the ΔΣmodulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
The impedances measured from the analog inputs are equal  
For most applications, the structure shown in 8-2 achieves excellent performance.  
AMC3301  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
LDO_OUT  
VDD  
HLDO_OUT  
INP  
10 Ω  
10 Ω  
10 nF  
OUTP  
INN  
OUTN  
HGND  
GND  
8-2. Differential Input Filter  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC3301  
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
8.2.2.3 Differential to Single-Ended Output Conversion  
8-3 shows an example of a TLV6001 based signal conversion and filter circuit for systems using single-  
ended-input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage  
equals (VOUTP VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩand C1 = C2 = 330 pF yields good performance.  
AMC3301  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
C1  
R2  
LDO_OUT  
VDD  
HLDO_OUT  
INP  
R1  
R3  
OUTP  
œ
ADC  
To MCU  
+
INN  
OUTN  
TLV6001  
GND  
HGND  
GND  
C2  
R4  
GND  
VREF  
GND  
8-3. Connecting the AMC3301 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of successive-  
approximation-register (SAR) ADCs, see the 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest  
Distortion and Noise reference guide and 18-Bit Data Acquisition Block (DAQ) Optimized for Lowest Power  
reference guide, available for download at www.ti.com.  
8.2.3 Application Curve  
In frequency inverter applications, the power switches must be protected in case of an overcurrent condition. To  
allow for fast powering off of the system, a low delay caused by the isolated amplifier is required. 8-4 shows  
the typical full-scale step response of the AMC3301. Consider the delay of the required window comparator and  
the MCU to calculate the overall response time of the system.  
VOUTN  
VOUTP  
VIN  
8-4. Step Response of the AMC3301  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
8.2.4 What To Do and What Not To Do  
Do not leave the analog inputs INP and INN of the AMC3301 unconnected (floating) when the device is powered  
up. If the device inputs are left floating, the input bias current may drive the inputs to a positive value that  
exceeds the operating common-mode input voltage and the output of the device is undetermined.  
Connect the negative input (INN) to the high-side ground (HGND), either by a hard short or through a resistive  
path. A DC current path between INN and HGND is required to define the input common-mode voltage. Take  
care not to exceed the input common-mode range as specified in the Recommended Operating Conditions  
table. For best accuracy, route the ground connection as a separate trace that connects directly to the shunt  
resistor rather than shorting AGND to INN directly at the input to the device. See the Layout section for more  
details.  
The high-side LDO can source a limited amount of current (IH) to power external circuitry. Take care not to  
overload the high-side LDO.  
The low-side LDO does not output a constant voltage and is not intended for powering any external circuitry. Do  
not connect any external load to the HLDO_OUT pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC3301  
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
9 Power Supply Recommendations  
The AMC3301 is powered from the low-side power supply (VDD) with a nominal value of 3.3 V or 5 V. TI  
recommends a low-ESR decoupling capacitor of 1 nF (C8 in 9-1) placed as close as possible to the VDD pin,  
followed by a 1-µF capacitor (C9) to filter this power-supply path.  
The low-side of the DC/DC converter is decoupled with a low-ESR 100-nF capacitor (C4) positioned close to the  
device between the DCDC_IN and DCDC_GND pins. Use a 1-µF capacitor (C2) to decouple the high side in  
addition to a low-ESR, 1-nF capacitor (C3) placed as close as possible to the device and connected to the  
DCDC_OUT and DCDC_HGND pins.  
For the high-side LDO, use low-ESR capacitors of 1-nF (C6), placed as close as possible to the AMC3301,  
followed by a 100-nF decoupling capacitor (C5).  
The ground reference for the high-side (HGND) is derived from the terminal of the shunt resistor which is  
connected to the negative input (INN) of the device. For best DC accuracy, use a separate trace to make this  
connection instead of shorting HGND to INN directly at the device input. The high-side DC/DC ground terminal  
(DCDC_HGND) is shorted to HGND directly at the device pins.  
C2 C3  
1 µF 1 nF  
C4  
100 nF  
AMC3301  
DCDC_OUT  
DCDC_IN  
DCDC_GND  
DIAG  
DCDC_HGND  
HLDO_IN  
NC  
R1  
47 kΩ  
C1 100 nF  
C6  
to uC (optional)  
I
LDO_OUT  
VDD  
C5  
C8 C9  
1 nF 1 µF  
100 nF 1 nF  
HLDO_OUT  
INP  
3.3 V / 5 V supply  
to RC filter / ADC  
to RC filter / ADC  
R2  
10 Ω  
C10  
10 nF  
OUTP  
INN  
OUTN  
R4 10 Ω  
HGND  
GND  
9-1. Decoupling the AMC3301  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
9-1 lists components suitable for use with the AMC3301. This list is not exhaustive. Other components may  
exist that are equally suitable (or better), however these listed components have been validated during the  
development of the AMC3301.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
9-1. Recommended External Components  
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
SIZE (EIA, L x W)  
VDD  
C8  
1 nF ± 10%, X7R, 50 V  
1 µF ± 10%, X7R, 25 V  
12065C102KAT2A  
12063C105KAT2A  
AVX  
AVX  
1206, 3.2 mm x 1.6 mm  
1206, 3.2 mm x 1.6 mm  
C9  
DC/DC CONVERTER  
C4  
100 nF ± 10%, X7R, 50 V  
C0603C104K5RACAUTO  
C0603C102K5RACTU  
Kemet  
Kemet  
TDK  
0603, 1.6 mm x 0.8 mm  
0603, 1.6 mm x 0.8 mm  
0603, 1.6 mm x 0.8 mm  
C3  
1 nF ± 10%, X7R, 50 V  
1 µF ± 10%, X7R, 25 V  
C2  
CGA3E1X7R1E105K080AC  
HLDO  
C1  
100 nF ± 10%, X7R, 50 V  
100 nF ± 5%, NP0, 50 V  
1 nF ± 10%, X7R, 50 V  
C0603C104K5RACAUTO  
C3216NP01H104J160AA  
12065C102KAT2A  
Kemet  
TDK  
0603, 1.6 mm x 0.8 mm  
1206, 3.2 mm x 1.6 mm  
1206, 3.2 mm x 1.6 mm  
C5  
C6  
AVX  
10 Layout  
10.1 Layout Guidelines  
10-1 shows a layout recommendation with the critical placement of the decoupling capacitors. The same  
component reference designators are used as in the Power Supply Recommendations section. Decoupling  
capacitors are placed as close as possible to the AMC3301 supply pins. For best performance, place the shunt  
resistor close to the INP and INN inputs of the AMC3301 and keep the layout of both connections symmetrical.  
To avoid causing errors in the measurement by the input bias currents of the AMC3301, connect the high-side  
ground pin (HGND) to the INN-side of the shunt resistor. Use a separate trace in the layout to make this  
connection to maintain equal currents in the INN and INP traces.  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
DIAG To MCU I/O (optional)  
AMC3301  
VDD 3.3-V or 5-V supply  
INP  
R2  
OUTP To analog filter / ADC / MCU  
OUTN To analog filter / ADC / MCU  
R4  
INN  
GND  
HGND  
Top Metal  
Inner or Bottom Layer Metal  
Via  
10-1. Recommended Layout of the AMC3301  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC3301  
 
 
 
 
 
AMC3301  
www.ti.com.cn  
ZHCSHK2B AUGUST 2019 REVISED MAY 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Texas Instruments, Isolation Glossary  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, AMC3330 Precision, ±1-V Input, Reinforced Isolated Amplifier data sheet  
Texas Instruments, TLV600x Low-Power, Rail-to-Rail In/Out, 1-MHz Operational Amplifier for Cost-Sensitive  
Systems data sheet  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC3301  
 
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC3301DWE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWE  
DWE  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AMC3301  
AMC3301  
AMC3301DWER  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC3301DWER  
SOIC  
DWE  
16  
2000  
330.0  
16.4  
10.75 10.7  
2.7  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWE 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AMC3301DWER  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DWE SO-MOD  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC3301DWE  
16  
40  
506.98  
12.7  
4826  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWE0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4223098/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
9
9
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223098/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
8
9
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4223098/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY