AMC3306M05DWER [TI]

具有集成直流/直流的 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWE | 16 | -40 to 125;
AMC3306M05DWER
型号: AMC3306M05DWER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成直流/直流的 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWE | 16 | -40 to 125

文件: 总41页 (文件大小:2405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
AMC3306M05 具有集成直流/直流转换器的高精度、±50mV 输入  
增强型隔离Δ-Σ 调制器  
1 特性  
3 说明  
3.3V 5V 单电源具有集成直流/直流转换器  
±50mV 输入电压范围针对使用分流电阻器测量电  
流进行了优化  
AMC3306M05 是一款精密的隔离式 Δ-Σ 调制器针  
对基于分流器的电流测量进行了优化。这款完全集成的  
隔离式直流/直流转换器可实现器件低侧的单电源运  
使该器件成为空间受限应用的独特解决方案。增强  
型电容式隔离栅已通过 VDE V 0884-11 UL1577 认  
并支持高1.2kVRMS 的工作电压。  
• 低直流误差:  
– 失调电压误差±50µV最大值)  
– 温漂±0.4µV/°C最大值)  
– 增益误差±0.2%最大值)  
– 增益漂移±35ppm/°C最大值)  
CMTI75kV/µs最小值)  
• 系统级诊断功能  
该隔离栅可将系统中以不同共模电压电平运行的各器件  
隔开并保护电压较低的器件免受高电压冲击。  
AMC3306M05 的输入针对直接连接低阻抗分流电阻器  
或其他具有低信号电平的低阻抗电压源的情况进行了优  
化。出色的直流精度和低温漂移支持在 –40°C 至  
+125°C 的扩展工业温度范围内进行精确的电流测量。  
EMICISPR-11 CISPR-25 标准  
• 安全相关认证:  
– 符DIN VDE V 0884-11 标准6000VPEAK 增  
强型隔离  
– 符UL1577 标准且长1 分钟4250VRMS  
隔离  
通过使用数字滤波器例如 sinc3 滤波器来抽取位  
该器件可在 78kSPS 数据速率下实现 16 位分辨率  
85dB 的动态范围。  
• 可在工业级工作温度范围内正常工作40°C 至  
器件信息(1)  
+125°C  
封装尺寸标称值)  
器件型号  
封装  
SOIC (16)  
2 应用  
AMC3306M05  
10.30mm x 7.50mm  
• 基于分流器的紧凑型隔离式电流感应用于:  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
保护继电器  
电机驱动器  
电源  
光电逆变器  
Low-side supply  
(3.3 V or 5 V)  
DCDC_OUT  
DCDC_IN  
DCDC_HGND  
DCDC_GND  
Isolated  
Isolated  
Power  
Power  
HLDO_IN  
NC  
DIAG  
I
LDO_OUT  
VDD  
HLDO_OUT  
INP  
MCU  
CLKIN  
DOUT  
GND  
+50 mV  
0 V  
Isolated  
û-ADC  
INN  
œ 50 mV  
HGND  
AMC3306M05  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASA82  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................20  
7.4 Device Functional Modes..........................................24  
8 Application and Implementation..................................25  
8.1 Application Information............................................. 25  
8.2 Typical Application.................................................... 26  
9 Power Supply Recommendations................................29  
10 Layout...........................................................................30  
10.1 Layout Guidelines................................................... 30  
10.2 Layout Example...................................................... 30  
11 Device and Documentation Support..........................31  
11.1 Device Support........................................................31  
11.2 Documentation Support.......................................... 31  
11.3 接收文档更新通知................................................... 31  
11.4 支持资源..................................................................31  
11.5 Trademarks............................................................. 31  
11.6 静电放电警告...........................................................31  
11.7 术语表..................................................................... 31  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Power Ratings ............................................................5  
6.6 Insulation Specifications ............................................ 6  
6.7 Safety-Related Certifications ..................................... 7  
6.8 Safety Limiting Values ................................................7  
6.9 Electrical Characteristics ............................................8  
6.10 Switching Characteristics .......................................10  
6.11 Timing Diagrams..................................................... 10  
6.12 Insulation Characteristics Curves............................11  
6.13 Typical Characteristics............................................12  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (January 2021)  
Page  
• 更改了典型应..............................................................................................................................................1  
Added discussion to pin 13 description regarding the output of the LDO...........................................................3  
Changed Absolute Maximum Ratings: changed max for DIAG pin from 5.5 V to 6.5 V.....................................4  
Changed Operating common-mode input voltage (min) from -0.16 V to -0.032 V..............................................4  
Changed overvoltage category for rated mains voltage 600 V from I-IV to I-III and for rated mains voltage  
1000 V from I-III to I-II .................................................................................................................................... 6  
Changed Typical Characteristics section: deleted histograms..........................................................................12  
Changed the Isolated DC/DC Converter section: clarified that the low-side LDO is not intended for driving  
external loads................................................................................................................................................... 23  
Changed Differential Input Filter figure.............................................................................................................27  
Changed What To Do and What Not To Do section......................................................................................... 28  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DCDC_IN  
DCDC_GND  
DIAG  
LDO_OUT  
VDD  
HLDO_OUT  
INP  
CLKIN  
INN  
DOUT  
HGND  
GND  
Not to scale  
5-1. DWE Package, 16-Pin SOIC, Top View  
5-1. Pin Functions  
PIN  
NAME  
DCDC_OUT  
TYPE  
DESCRIPTION  
NO.  
1
Power  
High-side output of the DC/DC converter; connect this pin to the HLDO_IN pin.(1)  
2
3
DCDC_HGND High-side power ground High-side ground reference for the DC/DC converter; connect this pin to the HGND pin.  
HLDO_IN  
NC  
Power  
Input of the high-side LDO; connect this pin to the DCDC_OUT pin.(1)  
No internal connection. Connect this pin to the high-side ground or leave unconnected  
(floating).  
4
5
6
HLDO_OUT  
INP  
Power  
Output of the high-side LDO.(1)  
Noninverting analog input. Either INP or INN must have a DC current path to HGND to  
define the common-mode input voltage.(2)  
Analog input  
Inverting analog input. Either INP or INN must have a DC current path to HGND to define  
the common-mode input voltage.(2)  
7
INN  
Analog input  
8
HGND  
GND  
High-side signal ground High-side analog signal ground; connect this pin to the DCDC_HGND pin.  
Low-side signal ground Low-side analog signal ground; connect this pin to the DCDC_GND pin.  
9
10  
11  
12  
DOUT  
CLKIN  
VDD  
Digital output  
Digital input  
Modulator data output.  
Modulator clock input with internal pulldown resistor (typical value: 1.5 MΩ).  
Low-side power supply.(1)  
Low-side power  
Output of the low-side LDO; connect this pin to the DCDC_IN pin. The output of the LDO  
must not be loaded by external circuitry.(1)  
13  
14  
LDO_OUT  
DIAG  
Power  
Active-low, open-drain status indicator output; connect this pin to the pullup supply (for  
example, VDD) using a resistor or leave this pin floating if not used.  
Digital output  
15  
16  
DCDC_GND  
DCDC_IN  
Low-side power ground Low-side ground reference for the DC/DC converter; connect this pin to the GND pin.  
Power  
Low-side input of the DC/DC converter; connect this pin to the LDO_OUT pin.(1)  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
(2) See the Layout section for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see (1)  
MIN  
0.3  
MAX  
UNIT  
Power-supply voltage  
Analog input voltage  
Digital input voltage  
VDD to GND  
6.5  
V
V
V
INP, INN  
VHLDO_OUT + 0.5  
HGND 6  
GND 0.5  
GND 0.5  
GND 0.5  
10  
CLKIN  
VDD + 0.5  
VDD + 0.5  
6.5  
DOUT  
Digital output voltage  
Input current  
V
DIAG  
Continuous, any pin except power-supply pins  
10  
mA  
°C  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
3.3  
MAX  
UNIT  
POWER SUPPLY  
VDD  
Low-side power supply  
VDD to GND  
3
5.5  
V
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
±64  
mV  
mV  
V
VIN = VINP VINN  
VFSR  
Specified linear differential full-scale voltage  
Absolute common-mode input voltage (1)  
Operating common-mode input voltage  
50  
VHLDO_OUT  
0.9  
VIN = VINP VINN  
50  
2  
(VINP + VINN) / 2 to HGND  
(VINP + VINN) / 2 to HGND  
VCM  
DIGITAL I/O  
V
0.032  
VIO  
Digital input / output voltage  
0
5
VDD  
21  
V
fCLKIN  
Input clock frequency  
Input clock duty cycle  
20  
MHz  
40%  
50%  
60%  
5 MHz fCLKIN 21 MHz  
TEMPERATURE RANGE  
TA Specified ambient temperature  
125  
°C  
40  
(1) Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal  
operation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
 
 
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.4 Thermal Information  
AMC3306M05  
THERMAL METRIC(1)  
DWE (SOIC)  
16 PINS  
73.5  
UNIT  
Rθ JA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Rθ JC(top) Junction-to-case (top) thermal resistance  
31  
Rθ JB  
ψJT  
Junction-to-board thermal resistance  
44  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
16.7  
42.8  
ψJB  
Rθ JC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VDD = 5.5 V  
VALUE  
231  
UNIT  
PD  
Maximum power dissipation  
mW  
VDD = 3.6 V  
151  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
mm  
mm  
8  
8  
21  
120  
600  
I
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance - capacitive signal isolation)  
Minimum internal gap (internal clearance - transformer power isolation)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
DTI  
CTI  
Distance through the insulation  
µm  
V
Comparative tracking index  
Material group  
According to IEC 60664-1  
I-III  
Rated mains voltage 600 VRMS  
Overvoltage category  
per IEC 60664-1  
I-II  
Rated mains voltage 1000 VRMS  
DIN VDE V 0884-11 (VDE V 0884-11): 2017-01(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
At AC voltage (bipolar)  
1700  
VPK  
At AC voltage (sine wave)  
1200  
1700  
6000  
7200  
VRMS  
VDC  
VPK  
Maximum-rated isolation  
working voltage  
VIOWM  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
VIOTM  
isolation voltage  
VPK  
Maximum surge  
VIOSM  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK (qualification)  
6250  
5  
5  
VPK  
isolation voltage(3)  
Method a, after input/output safety test subgroup 2 / 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and preconditioning (type  
test),  
5  
Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM, tm = 1 s  
Barrier capacitance,  
input to output(5)  
CIO  
VIO = 0.5 VPP at 1 MHz  
~3.5  
pF  
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(5)  
RIO  
VIO = 500 V at 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL1577  
VTEST = VISO = 4250 VRMS or 6000 VDC, t = 60 s (qualification),  
VTEST = 1.2 × VISO, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
4250  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings must be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11): 2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and  
DIN EN 60065 (VDE 0860): 2005-11  
Recognized under 1577 component recognition and  
CSA component acceptance NO 5 programs  
Reinforced insulation  
Single protection  
Certificate number: 40040142  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to over-  
heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 73.5°C/W, VDD = 5.5 V,  
309  
TJ = 150°C, TA = 25°C  
θJA = 73.5°C/W, VDD = 3.6 V,  
TJ = 150°C, TA = 25°C  
θJA = 73.5°C/W, TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current  
mA  
R
472  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1700  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum low-side voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.9 Electrical Characteristics  
all minimum and maximum specifications are at TA = 40°C to +125°C, VDD = 3.0 V to 5.5 V, INP = 50 mV to +50 mV,  
INN = 0 V, and sinc3 filter with OSR = 256 (unless otherwise noted); typical values are at TA = 25°C, CLKIN = 20 MHz, VDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
RIN  
Single-ended input resistance  
Differential input resistance  
INN = HGND  
4.75  
4.9  
kΩ  
kΩ  
RIND  
INP = INN = HGND;  
IIB = (IIBP + IIBN) / 2  
IIB  
Input bias current  
48  
36  
28  
μA  
IIO  
Input offset current(1)  
±10  
4
nA  
pF  
pF  
IIO = IIBP IIBN; INP = INN = HGND  
INN = HGND, fIN = 310 kHz  
fIN = 310 kHz  
CIN  
Single-ended input capacitance  
Differential input capacitance  
CIND  
2
ACCURACY  
EO  
Offset error(1)  
INN = INP = HGND, TA = 25°C  
INN = INP = HGND  
TA = 25°C  
±10  
50  
0.4  
µV  
50  
0.4  
0.2%  
35  
0.99  
4  
TCEO  
EG  
Offset error thermal drift(4)  
Gain error  
µV/°C  
±0.005%  
0.2%  
35  
TCEG  
DNL  
Gain error drift(5)  
ppm/°C  
LSB  
LSB  
dB  
Differential nonlinearity  
Integral nonlinearity  
Signal-to-noise ratio  
Signal-to-noise + distortion  
Total harmonic distortion(3)  
Spurious-free dynamic range  
Resolution: 16 bits  
0.99  
4
INL  
Resolution: 16 bits  
±1  
81  
SNR  
SINAD  
THD  
SFDR  
fIN = 1 kHz  
77  
fIN = 1 kHz  
77  
81  
dB  
dB  
5 MHz fCLKIN 21 MHz, fIN = 1 kHz  
fIN = 1 kHz  
93  
94  
86  
87  
dB  
fIN = 0 Hz, VCM min VIN VCM max  
100  
CMRR  
PSRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
dB  
dB  
fIN = 10 kHz, VCM min VIN VCM max  
VINP = VINN = 100 mVPP  
,
100  
120  
120  
VDD from 3.0 V to 5.5 V, at DC  
INP = INN = HGND, VDD from 3.0 V to  
5.5 V, 10 kHz, 100 mV ripple  
DIGITAL I/O  
IIN  
Input leakage current  
Input capacitance  
0
7
GND VIN VDD  
μA  
pF  
V
CIN  
VIH  
4
High-level input voltage  
Low-level input voltage  
Output load capacitance  
0.7 × VDD  
VDD + 0.3  
0.3 × VDD  
30  
VIL  
V
0.3  
CLOAD  
15  
pF  
IOH = 20 µA  
IOH = 4 mA  
IOL = 20 µA  
IOL = 4 mA  
VDD 0.1  
VDD 0.4  
VOH  
High-level output voltage  
V
0.1  
0.4  
VOL  
Low-level output voltage  
V
CMTI  
Common-mode transient immunity  
75  
135  
kV/μs  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
all minimum and maximum specifications are at TA = 40°C to +125°C, VDD = 3.0 V to 5.5 V, INP = 50 mV to +50 mV,  
INN = 0 V, and sinc3 filter with OSR = 256 (unless otherwise noted); typical values are at TA = 25°C, CLKIN = 20 MHz, VDD =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
no external load on HLDO  
26  
28  
40  
42  
IDD  
Low-side supply current  
mA  
1 mA external load on HLDO  
DCDC_OUT to HGND  
VDCDC_OUT  
VDCDCUV  
VHLDO_OUT  
VHLDOUV  
DC/DC output voltage  
3.1  
2.1  
3.5  
4.65  
V
V
DC/DC output undervoltage detection  
threshold voltage  
VDCDC_OUT falling  
2.25  
3.2  
HLDO_OUT to HGND, up to 1 mA  
external load(2)  
High-side LDO output voltage  
3
3.4  
V
V
High-side LDO output undervoltage  
detection threshold voltage  
VHLDO_OUT falling  
2.4  
2.6  
Load connected from HLDO_OUT to  
HGND; non-switching; -40TA ≤  
85(2)  
High-side supply current for auxiliary  
circuitry  
IH  
1
mA  
ms  
tSTART  
Device startup time  
VDD step to 3.0 V to bitstream valid  
0.9  
1.4  
(1) The typical value includes one sigma statistical variation at nominal operating conditions.  
(2) High-side LDO supports external loads only up to TA = 85. See the Isolated DC/DC Converter section for more details.  
(3) THD is the ratio of the rms sum of the amplitues of first five higher harmonics to the amplitude of the fundamental.  
(4) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCEO = (ValueMAX - ValueMIN) / TempRange  
(5) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = (ValueMAX - ValueMIN) / (Value(T=25) x TempRange) x 106  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC3306M05  
 
 
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.10 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tH  
tD  
DOUT hold time after rising edge of CLKIN CLOAD = 15 pF  
3.5  
Rising edge of CLKIN to DOUT valid delay CLOAD = 15 pF; CLKIN 50% to DOUT 10% / 90%  
15  
6
ns  
2.5  
3.2  
2.2  
2.9  
10% to 90%, 3.0 V VDD 3.6 V, CLOAD = 15 pF  
DOUT rise time  
tr  
tf  
ns  
ns  
6
10% to 90%, 4.5 V VDD 5.5 V, CLOAD = 15 pF  
6
10% to 90%, 3.0 V VDD 3.6 V, CLOAD = 15 pF  
DOUT fall time  
6
10% to 90%, 4.5 V VDD 5.5 V,CLOAD = 15 pF  
6.11 Timing Diagrams  
tCLKIN  
tHIGH  
CLKIN  
50%  
tLOW  
tH  
tD  
tr / tf  
90%  
10%  
DOUT  
6-1. Digital Interface Timing  
VDD  
CLKIN  
DOUT  
tSTART  
Bitstream not valid (analog settling)  
Valid bitstream  
6-2. Device Startup Timing  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.12 Insulation Characteristics Curves  
500  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 3.6 V  
VDD = 5.5 V  
400  
300  
200  
100  
0
600  
400  
200  
0
0
25  
50  
75  
TA (°C)  
100  
125  
150  
0
25  
50  
75  
TA (°C)  
100  
125  
150  
D070  
D069  
6-4. Thermal Derating Curve for Safety-Limiting Power Per  
6-3. Thermal Derating Curve for Safety-Limiting Current Per  
VDE  
VDE  
1.E+11  
87.5%  
1.E+10  
143 Yrs  
76 Yrs  
1.E+09  
1.E+08  
1.E+07  
TDDB Line (< 1 ppm Fail Rate)  
1.E+06  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
Operating Zone  
VDE Safety Margin Zone  
20 %  
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
6500  
Applied Voltage (VRMS  
)
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1200 VRMS, operating lifetime = 76 years  
6-5. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC3306M05  
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-30  
-31  
-32  
-33  
-34  
-35  
-36  
-37  
-38  
-39  
-40  
-0.5  
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
3
3.5  
4
4.5  
5
5.5  
VCM (V)  
VDD (V)  
D003  
D004  
6-6. Input Bias Current vs Common-Mode Input Voltage  
6-7. Input Bias Current vs Supply Voltage  
-30  
-31  
-32  
-33  
-34  
-35  
-36  
-37  
-38  
-39  
-40  
30  
20  
10  
0
-10  
-20  
-30  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
D005  
D025  
6-8. Input Bias Current vs Temperature  
6-9. Offset Error vs Input Clock Frequency  
30  
20  
30  
20  
10  
10  
0
0
-10  
-20  
-30  
-10  
-20  
-30  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D027  
D026  
6-10. Offset Error vs Supply Voltage  
6-11. Offset Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D022  
D020  
6-12. Gain Error vs Input Clock Frequency  
6-13. Gain Error vs Supply Voltage  
0.3  
0.2  
0.1  
0
2
1.5  
1
0.5  
0
-0.5  
-1  
-0.1  
-0.2  
-0.3  
Device 1  
Device 2  
Device 3  
-1.5  
-2  
-50 -40 -30 -20 -10  
0
VIN (mV)  
10  
20  
30  
40  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D028  
D021  
6-15. Integral Nonlinearity vs Input Voltage  
6-14. Gain Error vs Temperature  
2
1.5  
1
2
1.5  
1
Device 1  
Device 2  
Device 3  
0.5  
0
0.5  
0
Device 1  
Device 2  
Device 3  
3
3.5  
4
4.5  
5
5.5  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
VDD (V)  
D029  
D031  
6-17. Integral Nonlinearity vs  
6-16. Integral Nonlinearity vs  
Supply Voltage  
Input Clock Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC3306M05  
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
2
1.5  
1
100  
90  
80  
70  
60  
50  
40  
0.5  
Device 1  
Device 2  
Device 3  
SNR  
SINAD  
0
0
10  
20  
30  
40  
50  
VIN (VPP  
60  
70  
80  
90 100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
)
D032  
D0203410  
6-19. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
6-18. Integral Nonlinearity vs Temperature  
vs Input Signal Amplitude  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
85  
SNR  
SINAD  
SNR  
SINAD  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
0.01  
0.1  
1
10  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
fIN (kHz)  
D033  
D036  
6-20. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
6-21. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs Input Signal Frequency  
vs Input Clock Frequency  
85  
85  
SNR  
SINAD  
SNR  
SINAD  
84  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
83  
82  
81  
80  
79  
78  
77  
76  
75  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D034  
D035  
6-22. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
6-23. Signal-to-Noise Ratio and Signal-to-Noise + Distortion  
vs Supply Voltage  
vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
Device 1  
Device 2  
Device 3  
0
10  
20  
30  
40  
50  
VIN (VPP  
60  
70  
80  
90 100  
0.01  
0.1  
1
10  
)
fIN (kHz)  
D049  
D052  
6-24. Total Harmonic Distortion vs  
6-25. Total Harmonic Distortion vs  
Input Signal Amplitude  
Input Signal Frequency  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
D062  
D056  
6-26. Total Harmonic Distortion vs  
6-27. Total Harmonic Distortion vs  
Input Clock Frequency  
Supply Voltage  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
120  
110  
100  
90  
Device 1  
Device 2  
Device 3  
80  
70  
60  
Device 1  
Device 2  
Device 3  
50  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
10  
20  
30  
40  
50  
VIN (VPP  
60  
70  
80  
90 100  
)
D059  
D051  
6-28. Total Harmonic Distortion vs Temperature  
6-29. Spurious-Free Dynamic Range vs Input Signal  
Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC3306M05  
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
120  
115  
110  
105  
100  
95  
120  
115  
110  
105  
100  
95  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
90  
90  
85  
85  
80  
80  
0.01  
0.1  
1
10  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
fIN (kHz)  
D054  
D064  
6-30. Spurious-Free Dynamic Range vs Input Signal  
6-31. Spurious-Free Dynamic Range vs Input Clock  
Frequency  
Frequency  
120  
120  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
115  
110  
105  
100  
95  
115  
110  
105  
100  
95  
90  
90  
85  
85  
80  
80  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D058  
D061  
6-32. Spurious-Free Dynamic Range vs Supply Voltage  
6-33. Spurious-Free Dynamic Range vs Temperature  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-220  
-240  
-100  
-120  
-140  
-160  
-180  
-200  
-220  
-240  
0
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
0
5
10  
15  
Frequency (kHz)  
20  
25  
30  
35  
40  
D014  
D015  
6-34. Output Frequency Spectrum With a 1-kHz Input Signal 6-35. Output Frequency Spectrum With a 10-kHz Input Signal  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
0
-20  
0
-20  
OSR = 8  
OSR = 256  
OSR = 8  
OSR = 256  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
fCM (kHz)  
fRipple (kHz)  
D038  
D041  
6-36. Common-Mode Rejection Ratio vs  
6-37. Power-Supply Rejection Ratio vs Ripple Frequency  
Input Signal Frequency  
30  
28  
26  
24  
22  
30  
28  
26  
24  
22  
20  
20  
3
3.5  
4
4.5  
5
5.5  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
fCLKIN (MHz)  
VDD (V)  
D043  
D045  
6-38. Supply Current vs Supply Voltage  
6-39. Supply Current vs  
Input Clock Frequency  
30  
28  
26  
24  
22  
20  
3.4  
3.35  
3.3  
3.25  
3.2  
3.15  
3.1  
3.05  
3
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD (V)  
D046  
D044  
6-41. High-Side LDO Output Voltage vs Supply Voltage  
6-40. Supply Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC3306M05  
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD = 3.3 V, INP = 50 mV to +50 mV, INN = HGND, fCLKIN = 20 MHz, and sinc3 filter with OSR = 256, 16-bit resolution  
(unless otherwise noted)  
1.25  
1
0.75  
0.5  
0.25  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (èC)  
D00458  
6-42. IH Derating vs Ambient Temperature  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AMC3306M05 is a fully differential, precision, isolated modulator with an integrated DC/DC converter that  
can supply the high-side of the device from a single 3.3-V or 5-V voltage supply on the low side. The analog  
input pins INP and INN are connected to a fully differential amplifier that feeds the switched-capacitor input of a  
second-order, delta-sigma (ΔΣ) modulator. The modulator converts the analog input signal into a digital  
bitstream that is transferred across the isolation barrier and separates the high-side from the low-side. The  
isolated data output DOUT of the converter provides a stream of digital ones and zeros that is synchronous to  
the externally-provided clock source at the CLKIN pin. The time average of this serial bitstream output is  
proportional to the analog input voltage. The external clock input simplifies the synchronization of multiple  
current-sensing channels on the system level.  
The signal path is isolated by a double capacitive silicon dioxide (SiO2) insuation barrier, whereas power  
isolation uses an on-chip transformer separated by a thin-film polymer as the insulating material.  
7.2 Functional Block Diagram  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
Resonator  
And  
Driver  
Rectifier  
Diagnostics  
LDO_OUT  
VDD  
LDO  
AMC3306M05  
LDO  
HLDO_OUT  
INP  
CLKIN  
Digital  
Interface  
ûModulator  
INN  
DOUT  
GND1  
GND2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Input  
The differential amplifier input stage of the AMC3306M05 feeds a second-order, switched-capacitor, feed-  
forward ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors with a  
differential input impedance of RIND. The modulator converts the analog input signal into a bitstream that is  
transferred across the isolation barrier, as described in the Isolation Channel Signal Transmission section.  
For reduced offset and offset drift, the differential amplifier is chopper-stabilized with the switching frequency set  
at fCLKIN / 32. As shown in 7-1, the switching frequency generates a spur at 625 kHz.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0.1  
1
10 100  
Frequency (kHz)  
1000  
10000  
D016  
sinc3 filter, OSR = 2, fCLKIN = 20 MHz, fIN = 1 kHz  
7-1. Quantization Noise Shaping  
There are two restrictions on the analog input signals INP and INN. First, if the input voltages VINP or VINN  
exceed the range specified in the Absolute Maximum Ratings table, the input currents must be limited to the  
absolute maximum value, because the electrostatic discharge (ESD) protection turns on. In addition, the linearity  
and parametric performance of the device are ensured only when the analog input voltage remains within the  
linear full-scale range (VFSR) and within the common-mode input voltage range (VCM) as specified in the  
Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
7.3.2 Modulator  
The second-order, switched-capacitor, feed-forward ΔΣ modulator conceptualized in 7-2 is implemented in  
the AMC3306M05 . The analog input voltage VIN and the output V5 of the 1-bit digital-to-analog converter (DAC)  
are differentiated, providing an analog voltage V1 at the input of the first integrator stage. The output of the first  
integrator feeds the input of the second integrator stage, resulting in output voltage V3 that is differentiated with  
the input signal VIN and the output of the first integrator V2. Depending on the polarity of the resulting voltage V4,  
the output of the comparator is changed. In this case, the 1-bit DAC responds on the next clock pulse by  
changing the associated analog output voltage V5, causing the integrators to progress in the opposite direction  
and forcing the value of the integrator output to track the average value of the input.  
fCLKIN  
V1  
V2  
V3  
V4  
VIN  
Integrator 1  
Integrator 2  
+
G
G
DOUT  
0 V  
œ
V5  
DAC  
7-2. Block Diagram of a Second-Order Modulator  
The modulator shifts the quantization noise to high frequencies, as shown in 7-1. Therefore, use a low-pass  
digital filter at the output of the device to increase the overall performance. This filter is also used to convert the  
1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). TI's C2000™  
and Sitara™ microcontroller families offer a suitable programmable, hardwired filter structure termed a sigma-  
delta filter module (SDFM) optimized for usage with the AMC3306M05. Alternatively, a field-programmable gate  
array (FPGA) or complex programmable logic device (CPLD) can be used to implement the filter.  
7.3.3 Isolation Channel Signal Transmission  
The AMC3306M05 uses an on-off keying (OOK) modulation scheme, as shown in 7-3, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally generated, high-frequency carrier across the isolation barrier to  
represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC3306M05 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and produces  
the output. The AMC3306M05 transmission channel is optimized to achieve the highest level of common-mode  
transient immunity (CMTI) and lowest level of radiated emissions caused by the high-frequency carrier and  
RX/TX buffer switching.  
Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-3. OOK-Based Modulation Scheme  
7.3.4 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time. A  
differential input of 50 mV produces a stream of ones and zeros that are high 89.06% of the time. With 16 bits of  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
resolution, that percentage ideally corresponds to code 58368. A differential input of 50 mV produces a stream  
of ones and zeros that are high 10.94% of the time and ideally results in code 7168 with 16-bit resolution. These  
input voltages are also the specified linear range of the AMC3306M05. If the input voltage value exceeds this  
range, the output of the modulator shows nonlinear behavior as the quantization noise increases. The output of  
the modulator clips with a constant stream of zeros with an input less than or equal to 64 mV or with a  
constant stream of ones with an input greater than or equal to 64 mV. In this case, however, the AMC3306M05  
generates a single 1 (if the input is at negative full-scale) or 0 (if the input is at positive full-scale) every 128 clock  
cycles to indicate proper device function (see the Output Behavior in Case of a Full-Scale Input section for more  
details). 7-4 shows the input voltage versus the output modulator signal.  
+ FS (Analog Input)  
Modulator Output  
œ FS (Analog Input)  
Analog Input  
7-4. AMC3306M05 Modulator Output vs Analog Input  
The density of ones in the output bitstream can be calculated using 方程式 1 for any input voltage value with the  
exception of a full-scale input signal, as described in Output Behavior in Case of a Full-Scale Input:  
VIN + VClipping  
2ì VClipping  
(1)  
7.3.4.1 Output Behavior in Case of a Full-Scale Input  
If a full-scale input signal is applied to the AMC3306M05 (that is, |VIN| VClipping), the device generates a single  
one or zero every 128 bits at DOUT, as shown in 7-5, depending on the actual polarity of the signal being  
sensed. In this way, differentiating between a missing high-side supply and a full-scale input signal is possible on  
the system level.  
CLKIN  
DOUT  
DOUT  
VIN ≤ œ64 mV  
VIN 64 mV  
127 CLKIN cycles  
127 CLKIN cycles  
7-5. Full-Scale Output of the AMC3306M05  
7.3.4.2 Output Behavior in Case of a High-Side Supply Failure  
The AMC3306M05 provides a failsafe output that ensures that the output DOUT of the device is a constant  
bitstream of logic 0's in case the integrated DC/DC converter output voltage is below the undervoltage detection  
threshold. See the Diagnostic Output section for more information.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
7.3.5 Isolated DC/DC Converter  
The AMC3306M05 offers a fully integrated isolated DC/DC converter that includes the following components  
illustrated in the Functional Block Diagram section:  
Low-dropout regulator (LDO) on the low-side to stabilize the supply voltage VDD that drives the low-side of  
the converter. This circuit does not output a constant voltage and is not intended for driving any external load.  
Low-side full-bridge inverter and drivers  
Laminate-based, air-core transformer for high immunity to magnetic fields  
High-side full-bridge rectifier  
High-side LDO to stabilize the output voltage of the DC/DC converter for high analog performance of the  
signal path. The high-side LDO outputs a constant voltage and can provide a limited amount of current to  
power external circuitry.  
The DC/DC converter uses a spread-spectrum clock generation technique to reduce the spectral density of the  
electromagnetic radiation. The resonator frequency is synchronized to the operation of the ΔΣ modulator to  
minimize interference with data transmission and support the high analog performance of the device.  
The architecture of the DC/DC converter is optimized to drive the high-side circuitry of the AMC3306M05 and  
can source up to IH of additional DC current for an optional auxiliary circuit such as an active filter, preamplifier,  
or comparator. As shown in 7-6, IH is specified up to an ambient temperature of 85°C and derates linearly at  
higher temperatures.  
1.25  
1
0.75  
0.5  
0.25  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (èC)  
D00458  
7-6. Derating of IH at Ambient Temperatures >85°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC3306M05  
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
7.3.6 Diagnostic Output  
As shown in 7-7, the open-drain DIAG pin can be monitored to confirm the device is operational, and the  
output data are valid. During power-up, the DIAG pin is actively held low until the high-side supply is in regulation  
and the modulator starts outputting data. The DIAG pin is actively pulled low if:  
The low-side does not receive data from the high-side (for example, because of a loss of power on the high-  
side). The modulator itself outputs a constant bitstream of logic 0's in this case, that is, the DOUT pin is  
permanently low.  
The high-side DC/DC output voltage (DCDC_OUT) or the high-side LDO output voltage (HLDO_OUT) drop  
below their respective undervoltage detection thresholds (brown-out). In this case, the low-side may still  
receive data from the high-side but the data may not be valid. However, the modulator itself outputs a  
constant bitstream of logic 0's in this case, meaning that the DOUT pin is permanently low.  
CLKIN  
DOUT  
Normal  
Operation  
Normal  
Operation  
DIAG  
Power-up  
High-side supply undervoltage  
7-7. DIAG and Output Under Different Operating Conditions  
7.4 Device Functional Modes  
The AMC3306M05 is operational when VDD is applied, as specified in the Recommended Operating Conditions  
table.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The low analog input voltage range, excellent accuracy, and low temperature drift make the AMC3306M05 a  
high performance solution for industrial applications where shunt-based current sensing in the presence of high  
common-mode voltage levels is required.  
8.1.1 Digital Filter Usage  
The modulator generates a bitstream that must be processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). A very simple filter, as shown in 方程式 2,  
built with minimal effort and hardware, is a sinc3-type filter:  
3
-OSR  
1- z  
H z =  
( )  
÷
÷
1- z-1  
«
(2)  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All characterization in this document is done with a sinc3 filter with an oversampling ratio (OSR)  
of 256 and an output word width of 16 bits, unless specified otherwise. The measured effective number of bits  
(ENOB) as a function of the OSR is illustrated in 8-3 of the Typical Application section.  
A delta sigma modulator filter calculator is available for download at www.ti.com that aids in the filter design and  
selecting the right OSR and filter-order to achieve the desired output resolution and filter response time.  
An example code for implementing a sinc3 filter in an FPGA is discussed in the Combining the ADS1202 with an  
FPGA Digital Filter for Current Measurement in Motor Control Applications application note, available for  
download at www.ti.com.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
8.2 Typical Application  
8.2.1 Solar Inverter Application  
The AMC3306M05 is ideally suited for shunt-based current sensing applications where accurate current  
monitoring is required in the presence of high common-mode voltages. The AMC3306M05 integrates an isolated  
power supply for the high-voltage side and therefore makes the device particularly easy to use in applications  
that do not have a high-side supply readily available or where a high-side supply is referenced to a different  
ground potential than the signal to be measured.  
8-1 shows a simplified schematic of the AMC3306M05 in a solar inverter where the phase current is  
measured on the grid-side of an LCL filter. Although the system offers a supply for the high-side gate driver,  
there is a large common-mode voltage between the gate driver supply ground reference and the shunt resistor  
on the other side of the LCL filter. Therefore, the gate driver supply is not suitable for powering the high-side of  
an isolated modulator that measures the voltage across the shunt. The integrated isolated power supply of the  
AMC3306M05 solves that problem and enables current sensing at locations that is optimal for the system.  
DC+  
HS Gate  
Driver  
Supply  
IPHASE  
to grid  
RSHUNT  
GND  
LS Gate  
Driver  
Supply  
DC-  
GND  
AMC3306M05  
1 µF 1 nF  
100 nF  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
47 k  
to uC (optional)  
100 nF  
LDO_OUT  
VDD  
100 nF 1 nF  
1 nF 1 µF  
HLDO_OUT  
INP  
3.3 V / 5 V supply  
from uC  
10  
10  
10 nF  
CLKIN  
INN  
DOUT  
to uC  
HGND  
GND  
GND  
8-1. The AMC3306M05 in a Solar Inverter Application  
8.2.1.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
VALUE  
Low-side supply voltage  
3.3 V or 5 V  
Voltage drop across RSHUNT for a linear response  
±50 mV (maximum)  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
The AMC3306M05 requires a single 3.3-V or 5-V supply on its low-side. The high-side supply is internally  
generated by an integrated DC/DC converter as explained in the Isolated DC/DC Converter section.  
The ground reference (HGND) is derived from the terminal of the shunt resistor that is connected to the negative  
input (INN) of the AMC3306M05. If a four-pin shunt is used, the inputs of the device are connected to the inner  
leads and HGND is connected to one of the outer leads. To minimize offset and improve accuracy, set the  
ground connection to a separate trace that connects directly to the shunt resistor rather than shorting HGND to  
INN directly at the input to the device. See the Layout section for more details.  
8.2.1.2.1 Shunt Resistor Sizing  
Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measured  
current: VSHUNT = I × RSHUNT.  
Consider the following two restrictions to choose the proper value of the shunt resistor, RSHUNT:  
The voltage drop caused by the nominal current range must not exceed the recommended differential input  
voltage range for linear response: |VSHUNT| VFSR  
The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes  
a clipping output: |VSHUNT| |VClipping  
|
8.2.1.2.2 Input Filter Design  
TI recommends placing a RC filter in front of a ΔΣ modulator to improve signal-to-noise performance of the  
signal path. Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency of the  
ΔΣmodulator (fCLKIN  
)
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
The impedances measured from the analog inputs are equal  
For most applications the structure shown in 8-2 achieves excellent performance.  
AMC3306M05  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
LDO_OUT  
VDD  
HLDO_OUT  
INP  
10  
10  
10 nF  
CLKIN  
INN  
DOUT  
HGND  
GND  
8-2. Differential Input Filter  
8.2.1.2.3 Bitstream Filtering  
For modulator output bitstream filtering, a device from TI's C2000or Sitaramicrocontroller families is  
recommended. These families support up to eight channels of dedicated hardwired filter structures that  
significantly simplify system level design by offering two filtering paths per channel: one providing high-accuracy  
results for the control loop and one fast-response path for overcurrent detection.  
A delta sigma modulator filter calculator is available for download at www.ti.com that aids in the filter design and  
selecting the right OSR and filter-order to achieve the desired output resolution and filter response time.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC3306M05  
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
8.2.1.3 Application Curve  
The effective number of bits (ENOB) is often used to compare the performance of ADCs and ΔΣ modulators.  
8-3 shows the ENOB of the AMC3306M05 with different oversampling ratios. By using 方程式 3, this number  
can also be calculated from the SINAD:  
SINAD = 1.76 dB + 6.02 dB x ENOB  
(3)  
16  
14  
12  
10  
8
6
4
sinc3  
sinc2  
sinc1  
2
0
1
10  
100  
1000  
OSR  
D013  
8-3. Measured Effective Number of Bits vs Oversampling Ratio  
8.2.2 What To Do and What Not To Do  
Do not leave the inputs of the AMC3306M05 unconnected (floating) when the device is powered up. If the device  
inputs are left floating, the input bias current may drive the inputs to a positive value that exceeds the operating  
common-mode input voltage and the output of the device is undetermined.  
Connect the negative input (INN) to the high-side ground (HGND), either by a hard short or through a resistive  
path. A DC current path between INN and HGND is required to define the input common-mode voltage. Take  
care not to exceed the input common-mode range as specified in the Recommended Operating Conditions  
table. For best accuracy, route the ground connection as a separate trace that connects directly to the shunt  
resistor rather than shorting AGND to INN directly at the input to the device. See the Layout section for more  
details.  
The high-side LDO can source a limited amount of current (IH) to power external circuitry. Take care not to  
overload the high-side LDO and be aware of derating IH at high temperatures as explained in the Isolated  
DC/DC Converter section.  
The low-side LDO does not output a constant voltage and is not intended for powering any external circuitry. Do  
not connect any external load to the HLDO_OUT pin.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The AMC3306M05 is powered from the low-side power supply (VDD) with a nominal value of 3.3 V or 5 V. TI  
recommends a low-ESR decoupling capacitor of 1 nF (C8 in 9-1) placed as close as possible to the VDD pin,  
followed by a 1-µF capacitor (C9) to filter this power-supply path.  
The low-side of the DC/DC converter is decoupled with a low-ESR, 100-nF capacitor (C4) positioned close to the  
device between the DCDC_IN and DCDC_GND pins. Use a 1-µF capacitor (C2) to decouple the high-side in  
addition to a low-ESR, 1-nF capacitor (C3) placed as close as possible to the device and connected to the  
DCDC_OUT and DCDC_HGND pins.  
For the high-side LDO, use low-ESR capacitors of 1-nF (C6), placed as close as possible to the AMC3306M05,  
followed by a 100-nF decoupling capacitor (C5).  
The ground reference for the high-side (HGND) is derived from the terminal of the shunt resistor that is  
connected to the negative input (INN) of the device. For best DC accuracy, use a separate trace to make this  
connection instead of shorting HGND to INN directly at the device input. The high-side DC/DC ground terminal  
(DCDC_HGND) is shorted to HGND directly at the device pins.  
C2 C3  
1 µF 1 nF  
C4  
100 nF  
AMC3306M05  
DCDC_OUT  
DCDC_HGND  
HLDO_IN  
NC  
DCDC_IN  
DCDC_GND  
DIAG  
R1  
47 k  
C1 100 nF  
C6  
to uC (optional)  
I
LDO_OUT  
VDD  
C5  
C8 C9  
1 nF 1 µF  
100 nF 1 nF  
HLDO_OUT  
INP  
3.3 V / 5 V supply  
from uC  
R2  
10  
C10  
10 nF  
CLKIN  
INN  
DOUT  
to uC  
R4 10  
HGND  
GND  
9-1. Decoupling the AMC3306M05  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. MLCC capacitors typically exhibit only a fraction of their nominal capacitance  
under real-world conditions and this factor must be taken into consideration when selecting these capacitors.  
This problem is especially acute in low-profile capacitors, in which the dielectric field strength is higher than in  
taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves that greatly  
simplify component selection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AMC3306M05  
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
9-1 lists components suitable for use with the AMC3306M05. This list is not exhaustive. Other components  
may exist that are equally suitable (or better), however these listed components have been validated during the  
development of the AMC3306M05.  
9-1. Recommended External Components  
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
SIZE (EIA, L x W)  
VDD  
C8  
1 nF ± 10%, X7R, 50 V  
1 µF ± 10%, X7R, 25 V  
12065C102KAT2A  
12063C105KAT2A  
AVX  
AVX  
1206, 3.2 mm x 1.6 mm  
1206, 3.2 mm x 1.6 mm  
C9  
DC/DC CONVERTER  
C4  
100 nF ± 10%, X7R, 50 V  
C0603C104K5RACAUTO  
C0603C102K5RACTU  
Kemet  
Kemet  
TDK  
0603, 1.6 mm x 0.8 mm  
0603, 1.6 mm x 0.8 mm  
0603, 1.6 mm x 0.8 mm  
C3  
1 nF ± 10%, X7R, 50 V  
1 µF ± 10%, X7R, 25 V  
C2  
CGA3E1X7R1E105K080AC  
HLDO  
C1  
100 nF ± 10%, X7R, 50 V  
100 nF ± 5%, NP0, 50 V  
1 nF ± 10%, X7R, 50 V  
C0603C104K5RACAUTO  
C3216NP01H104J160AA  
12065C102KAT2A  
Kemet  
TDK  
0603, 1.6 mm x 0.8 mm  
1206, 3.2 mm x 1.6 mm  
1206, 3.2 mm x 1.6 mm  
C5  
C6  
AVX  
10 Layout  
10.1 Layout Guidelines  
10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC3306M05 supply pins) and placement of the other components required by the device. For  
best performance, place the shunt resistor close to the INP and INN inputs of the AMC3306M05 and keep the  
layout of both connections symmetrical.  
This layout is used on the AMC3306M05 EVM and supports CISPR-11 compliant electromagnetic radiation  
levels.  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
DIAG To MCU I/O (optional)  
AMC3306M05  
VDD 3.3-V or 5-V supply  
INP  
R2  
CLKIN From Clock Source (MCU)  
DOUT To Digital Filter (MCU)  
R4  
INN  
GND  
HGND  
Top Metal  
Inner or Bottom Layer Metal  
Via  
10-1. Recommended Layout of the AMC3306M05  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AMC3306M05  
 
 
 
 
 
AMC3306M05  
ZHCSM48A DECEMBER 2020 REVISED APRIL 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
11.1.1.1 Isolation Glossary  
See the Isolation Glossary  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, Delta Sigma Modulator Filter Calculator design tool  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
C2000, Sitara, and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AMC3306M05  
 
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC3306M05DWE  
AMC3306M05DWER  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWE  
DWE  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AMC3306M05  
AMC3306M05  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC3306M05DWER  
SOIC  
DWE  
16  
2000  
330.0  
16.4  
10.75 10.7  
2.7  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWE 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AMC3306M05DWER  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DWE SO-MOD  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC3306M05DWE  
16  
40  
506.98  
12.7  
4826  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWE0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4223098/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
9
9
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223098/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
8
9
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4223098/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC3306M25

具有集成直流/直流的 ±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC3306M25DWE

具有集成直流/直流的 ±250mV 输入、精密电流检测增强型隔离式调制器 | DWE | 16 | -40 to 125
TI

AMC3306M25DWER

具有集成直流/直流的 ±250mV 输入、精密电流检测增强型隔离式调制器 | DWE | 16 | -40 to 125
TI

AMC332J50BCK

Film Capacitor, Polyester, 50V, 5% +Tol, 5% -Tol, 0.0033uF, Through Hole Mount
KEMET

AMC332K50ACK

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.0033uF, Through Hole Mount
KEMET

AMC3330

AMC3330 Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
TI

AMC3330-Q1

AMC3330 Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
TI

AMC3330-Q1_V01

AMC3330-Q1 Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
TI

AMC3330DWE

AMC3330 Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
TI

AMC3330DWER

AMC3330 Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
TI

AMC3330QDWERQ1

AMC3330-Q1 Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
TI

AMC3336

具有集成直流/直流的 ±1V 输入、精密电压检测增强型隔离式调制器
TI