AMC7834 [TI]

集成功率放大器监视和控制系统;
AMC7834
型号: AMC7834
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成功率放大器监视和控制系统

放大器 功率放大器
文件: 总97页 (文件大小:4755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
AMC7834 具有温度、电流和电压监控功能的 12 位集成功率放大器监视和  
控制系统  
1 特性  
该器件集成了一个多通道 12 位模数转换器 (ADC);八  
12 位数模转换器 (DAC);四个高侧电流感测放大  
器,可以选择设置它们作为四个独立闭环漏极电流控制  
器的一部分;一个精确的片上温度传感器和两个远程温  
度二极管驱动器;四个可配置的通用 I/O 端口  
1
8 个具有可编程范围的单调性 12 位数模转换器  
(DAC)  
4 个双极 DAC:  
–4V 1V–5V 0V 以及 0V 5V  
4 个单极 DAC:  
0V 5V 以及 2.5V 7.5V  
(GPIO);以及一个精确的内部基准。其高集成度极大  
地减少了组件数量,并且简化了 PA 偏置系统设计。  
高电流驱动能力:高达 ±10mA  
该器件具有功能集成和宽工作温度范围等诸多优势,因  
此适合用作多通道射频 (RF) 通信系统中 PA 的一体  
化、低成本偏置控制电路。凭借灵活的 DAC 输出范围  
和宽共模电压电流传感器,此器件可用作针对多种晶体  
管技术(例如 LDMOSGaA GaN)的偏置解决方  
案。AMC7834 功能集对通用监视器和控制系统而言同  
样有益。  
可选钳位电压  
多通道 12 位逐次逼近寄存器 (SAR) 模数转换器  
(ADC)  
4 个外部模拟输入:0V 2.5V 范围  
4 个用于双极 DAC 监视的内部输入  
可编程超范围警报  
4 个高侧电流感测放大器  
共模电压:4V 60V  
德州仪器 (TI) 提供 了一个完备的模拟监视和控制  
(AMC) 产品系列, 以满足各类应用不同的通道数、附  
加特性或者转换器解决方案需求。更多信息,敬请访问  
www.ti.com.cn/amc。  
可选闭环漏极电流控制器操作  
温度感测功能  
内部温度传感器  
2 个远程温度二极管驱动器  
器件信息(1)  
2.5V 内部基准电压  
器件型号  
AMC7834  
封装  
VQFN (56)  
封装尺寸(标称值)  
4 个通用 I/O 端口 (GPIO)  
低功耗 SPI 兼容串行接口  
8.00mm x 8.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 线模式,1.7V 3.6V 工作电压  
AMC7834  
工作温度范围:-40°C +125°C  
采用 56 引脚超薄型四方扁平无引线 (VQFN) 封装  
2.5-V Reference  
2 应用范围  
通信基础设施:  
ADC  
DAC  
蜂窝基站  
微波回程  
光纤网络  
Remote  
Sensor  
Driver  
DAC  
通用监视器和控制  
数据采集系统  
Temperature  
Sensor  
AUXDAC  
AUXDAC  
3 说明  
AMC7834 器件是一款针对功率放大器 (PA) 偏置的高  
度集成、低功耗、模拟监视和控制解决方案,能够对温  
度、电流和电压进行监控。  
GPIO Control  
4 GPIOs  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLAS972  
 
 
 
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 24  
7.2 Functional Block Diagram ....................................... 25  
7.3 Feature Description................................................. 26  
7.4 Device Functional Modes ....................................... 47  
7.5 Programming........................................................... 51  
7.6 Register Maps......................................................... 52  
Application and Implementation ........................ 77  
8.1 Application Information............................................ 77  
8.2 Typical Application ................................................. 78  
8.3 Initialization Set Up ................................................. 82  
Power Supply Recommendations...................... 82  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 8  
6.4 Thermal Information.................................................. 8  
6.5 Electrical Characteristics—DAC Specifications ........ 9  
8
9
10 Layout................................................................... 82  
10.1 Layout Guidelines ................................................. 82  
10.2 Layout Example .................................................... 83  
11 器件和文档支持 ..................................................... 85  
11.1 文档支持................................................................ 85  
11.2 社区资源................................................................ 85  
11.3 ....................................................................... 85  
11.4 静电放电警告......................................................... 85  
11.5 Glossary................................................................ 85  
12 机械、封装和可订购信息....................................... 85  
6.6 Electrical Characteristics—ADC, Current and  
Temperature Sensor Specifications......................... 11  
6.7 Electrical Characteristics—General Specifications . 12  
6.8 Serial Interface Timing Requirements..................... 13  
6.9 Switching Characteristics—DAC Specifications...... 14  
6.10 Switching Characteristics—ADC, Current and  
Temperature Sensor Specifications......................... 14  
6.11 Switching Characteristics—General  
Specifications........................................................... 15  
6.12 Typical Characteristics.......................................... 16  
7
Detailed Description ............................................ 24  
4 修订历史记录  
Changes from Revision A (April 2015) to Revision B  
Page  
deleted text from the Description of pin 1 in the Pin Functions table " If unused the pin requires a 10 kΩ pullup  
resistor to the IOVDD pin."....................................................................................................................................................... 5  
Added: Bipolar DACs in AVSS clamp mode To the Clamp Output Mode section of Electrical Characteristics—DAC  
Specifications ....................................................................................................................................................................... 10  
Deleted text from the Accuracy Test Conditions: "32 Samples Average" in Electrical Characteristics—ADC, Current  
and Temperature Sensor Specifications ............................................................................................................................. 11  
Added: AVDD alarm threshold to Electrical Characteristics—General Specifications .......................................................... 12  
Changed the IIOVDD (Power-Mode 10) TYP value From: 1 µA To 1.75 µA in Electrical Characteristics—General  
Specifications ....................................................................................................................................................................... 13  
Changed the IIOVDD (Power-Mode 00) TYP value From: 0.2 µA To 1.75 µA in Electrical Characteristics—General  
Specifications........................................................................................................................................................................ 13  
Added Figure 29 .................................................................................................................................................................. 19  
Changed Figure 45............................................................................................................................................................... 27  
Added text to the itemized list in DAC Clamp Operation: "If the output buffer is inactive the clamp voltage is fixed to  
AVSS.".................................................................................................................................................................................... 29  
Added text to the end of DAC Clamp Operation: "Additionally, in the unique case..."......................................................... 29  
Changed text in paragraph 1 of ADC Sequencing From: "The AMC7834 supports autonomous ADC conversion" To:  
The AMC7834 supports autonomous and direct-mode conversions..." ............................................................................... 31  
Change the paragraph: "Once the conversion cycle starts..." in ADC Sequencing ............................................................. 31  
Deleted text from paragraph 3 of ADC Sequencing: "The first conversion sequence is reserved for calibration and  
the corresponding ADC results should be ignored."............................................................................................................. 31  
Added text to the last paragraph of ADC Sequencing: "In direct-mode conversion the DAV/ADC_RDY pin ... for  
each channel group. "........................................................................................................................................................... 33  
Added text to paragraph 3 of Drain Switch Control: The PA_ON signal state is also triggered by the AVDD  
monitoring circuit................................................................................................................................................................... 39  
2
版权 © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
修订历史记录 (接下页)  
Changed text in two locations of paragraph 4 in Drain Switch Control: From: "AVSS" To: "AVDD and AVSS" ..................... 39  
Added text to the last paragraph of Drain Switch Control: "The AVDD detection circuit is set to trigger the PA_ON  
signal to the OFF state in response to an out of range event." ........................................................................................... 39  
Added section: AVDD Detection Alarm ................................................................................................................................. 42  
Changed text in the second paragraph of Open-Loop Mode From: "The current-sense amplifier outputs are  
converted continuously by the device ADC.." To: "The current-sense amplifier outputs are converted by the device  
ADC.." .................................................................................................................................................................................. 47  
Changed 0x06 Default value From: 0000 To: 0001 in Table 9 ........................................................................................... 52  
Changed R-00h To: R-01h in Bits 7:0 of Figure 69 ............................................................................................................. 54  
Changed the Reset value From: 0000h To: 0001h in Table 13 .......................................................................................... 54  
Changed Bit 12 of Table 15 From: Reserved To: CMODE ................................................................................................. 55  
Changed Bit 10 of Table 18 From: 000: Invalid To: 000: 1 ................................................................................................. 56  
Changed Bit 5-4 of Table 18 From: 00: Invalid To: 00: 1 .................................................................................................... 56  
Changed Bit 3-2 of Table 18 From: 00: Invalid To: 00: 1 .................................................................................................... 57  
Changed Bit 1-0 of Table 18 From: 00: Invalid To: 00: 1 .................................................................................................... 57  
Changed General Status Register (address = 0x1F) [reset = 0x0000]................................................................................ 67  
Added text to item 2 of Initialization Procedure: A 250 µs POR delay occurs..." ................................................................ 82  
Changes from Original (November 2014) to Revision A  
Page  
发布完整版量产数据数据表 .................................................................................................................................................... 1  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
5 Pin Configuration and Functions  
RTQ Package  
56-Pin VQFN With Exposed Thermal Pad  
Top View  
DAV/ADC_RDY  
ALARMOUT  
SLEEP1  
SLEEP2  
RESET  
1
2
3
4
5
6
7
8
9
42 REF_CMP  
41 PAVDD  
40 PA_ON  
39 SENSE1+  
38 SENSE1œ  
37 SENSE2+  
36 SENSE2œ  
35 AGND3  
DACTRIG  
SCLK  
Thermal  
Pad  
CS  
SDI  
34 SENSE3+  
33 SENSE3œ  
32 SENSE4+  
31 SENSE4œ  
30 VCLAMP1  
29 VCLAMP2  
SDO 10  
DGND 11  
IOVDD 12  
DVDD 13  
AVCC 14  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
ADC1  
NO.  
48  
47  
46  
45  
17  
22  
35  
43  
I
I
ADC2  
Analog inputs channels. These channels are used for general monitoring. The input range  
of these pins is 0 to Vref  
.
ADC3  
I
ADC4  
I
AGND1  
AGND2  
AGND3  
AGND4  
Analog ground. These pins are the ground reference point for all analog circuitry on the  
device. Connect the AGND1, AGND2, AGND3, and AGND4 pins to the same potential  
(AGND). Ideally, the analog and digital grounds should be at the same potential (GND) and  
must not differ by more than ±0.3 V.  
ALARMOUT is an open drain global alarm output. An external 10 kpullup resistor to a  
voltage no higher than AVDD is required. The ALARMOUT output polarity is defined through  
the ALARMOUT-POLARITY bit in register 0x1B. The default polarity is active low.  
ALARMOUT  
2
O
AUXDAC1  
AUXDAC2  
AUXDAC3  
AUXDAC4  
AVCC  
15  
16  
18  
19  
14  
26  
44  
O
O
Auxiliary DAC Outputs. The power-on-reset and clamp voltage for these DACs is always  
AGND.  
O
O
Positive analog power supply for the auxiliary DACs.  
AVDD1  
Analog supply voltage (4.5 V to 5.5 V). Connect the AVDD1 and AVDD2 pins to the same  
potential (AVDD). These pins must have the same value as the DVDD pin.  
AVDD2  
Lowest potential in the system. This pin is typically tied to a negative supply voltage. If all  
the bipolar DACs are set to operate in positive output ranges can be connected to the  
analog ground.  
AVSS  
25  
Active low serial data enable. This input is the frame synchronization signal for the serial  
data. When this signal goes low, it enables the serial interface input shift register.  
CS  
8
I
I
I
I
I
Remote temperature sensor D1. This pin is a positive input when D1 is enabled. This pin  
can be left unconnected if unused.  
D1+  
D1–  
D2+  
D2–  
52  
51  
50  
49  
Remote temperature sensor D1. This pin is a negative input when D1 is enabled. This pin  
can be left unconnected if unused. Pins D1– and D2– are internally shorted.  
Remote temperature sensor D2. This pin is a positive input when D2 is enabled. This pin  
can be left unconnected if unused.  
Remote temperature sensor D2. This pin is a negative input when D2 is enabled. This pin  
can be left unconnected if unused. Pins D1– and D2– are internally shorted.  
DAC1  
DAC2  
DAC3  
DAC4  
23  
24  
27  
28  
O
O
O
O
Bipolar DAC outputs 1 and 2. These DACs share the same range and clamp voltage.  
Bipolar DAC outputs 3 and 4. These DACs share the same range and clamp voltage.  
DAC trigger active low control input. When the DACTRIG pin is low, the contents of the  
DAC data registers are transferred to the DAC active registers. The DAC outputs update  
only after the DAC active registers have been loaded. This pin is only operational in open  
loop current sensing mode.  
DACTRIG  
6
I
The DAV/ADC_RDY pin is in high-impedance mode by default and must be enabled  
through the DAVPIN-EN bit in register 0x11 to access the DAV or ADC_RDY functionality.  
DAV is an active low ADC synchronization signal. A 20 µs pulse (active low) on this pin is  
used to indicate the end of a conversion sequence. Alternatively the pin can be set to  
operate as ADC_RDY through the DAVPIN-SEL bit in register 0x11. ADC_RDY is an active  
high synchronization signal used to indicate when the ADC is in the READY state.  
DAV/ADC_RDY  
DGND  
1
O
Digital ground. This pin is the ground reference point for all digital circuitry on the device.  
Ideally, the analog and digital grounds should be at the same potential (GND) and must not  
differ by more than ±0.3 V.  
11  
DVDD  
13  
56  
55  
54  
53  
Digital supply voltage (4.5 V to 5.5 V). This pin must be the same value as the AVDD pins.  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/Os. These pins are bidirectional open-drain, digital I/Os and  
requires an external 10 kΩ pullup resistor to a voltage no higher than AVDD. If unused, the  
GPIO pins should be connected to ground.  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
IOVDD  
PAVDD  
NO.  
12  
IO supply voltage (1.7 V to 3.6 V). This pin sets the I/O operating voltage and threshold  
levels.  
41  
Power supply for the PA_ON control signal (4 V to 20 V).  
PA_ON is a synchronization signal capable of driving an external PMOS switch and  
controlling the flow of drain current to a power amplifier (PA) transistor. The PA_ON pin has  
an internal 120 kΩ pull-up resistor to the PAVDD pin. The maximum output voltage is set by  
the PAVDD pin and limited to 20 V. For drain voltages higher than 20 V, tying the PAVDD pin  
to the AVDD pins and scaling the control signal externally is recommended. The PA_ON  
signal state can be set through a register write but it can also be configured to trigger  
automatically in the case of an ALARM event or when any of the SLEEP signals is  
activated.  
PA_ON  
40  
O
Reference compensation capacitor connection. Connect a 4.7 μF capacitor between this  
pin and the AGND4 pin for ADC reference compensation.  
REF_CMP  
REF_IN  
42  
20  
I/O  
I
Reference input to the device. This pin can be connected to the REF_OUT pin to use the  
device internal reference or alternatively to an external voltage reference source.  
Internal voltage reference output. Connect this pin directly to the REF_IN pin to operate the  
device in internal reference mode. An external buffer amplifier with a high impedance input  
is required to drive an external load. This pin can be left unconnected.  
REF_OUT  
21  
O
RESET  
SCLK  
5
7
I
I
Active low reset input. Logic low on this pin causes the device to perform a hardware reset.  
Serial interface clock.  
Serial interface data input. Data is clocked into the input shift register on each rising edge  
of the SCLK pin.  
SDI  
9
I
Serial interface data output. The SDO pin is in high impedance when the CS pin is high.  
Data is clocked out of the input shift register on each falling edge of the SCLK pin.  
SDO  
10  
O
SENSE1+  
SENSE1–  
SENSE2+  
SENSE2–  
SENSE3+  
SENSE3–  
SENSE4+  
SENSE4–  
39  
38  
37  
36  
34  
33  
32  
31  
I
I
I
I
I
I
I
I
Current sense 1 external sense resistor power connection  
Current sense 1 external sense resistor load connection  
Current sense 2 external sense resistor power connection  
Current sense 2 external sense resistor load connection  
Current sense 3 external sense resistor power connection  
Current sense 3 external sense resistor load connection  
Current sense 4 external sense resistor power connection  
Current sense 4 external sense resistor load connection  
Active high asynchronous power down digital input 1. The power down functions of this pin  
are register configurable.  
SLEEP1  
SLEEP2  
3
4
I
I
Active high asynchronous power down digital input 2. The power down functions of this pin  
are register configurable.  
Power-on reset and clamp voltage control input for bipolar DACs 1 and 2. The resulting  
power-on reset (POR) and clamp voltage value is given by Equation 1.  
VCLAMP1  
VCLAMP2  
30  
29  
I
CLAMP = –3 × VCLAMP[1:2]  
(1)  
Power-on reset and clamp voltage control input for bipolar DACs 3 and 4. The resulting  
POR and clamp voltage value is given by Equation 1.  
I
The thermal pad is located on the bottom-side of the device package. The thermal pad  
should be tied to the same potential as the AVSS pin for optimal thermal dissipation.  
Alternatively, the thermal pad can be left unconnected.  
Thermal Pad  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
AVDD to GND  
DVDD to GND  
IOVDD to GND  
6
6
–0.3  
–0.3  
6
Supply voltage  
AVCC to GND  
–0.3  
13  
V
AVSS to GND  
–6  
0.3  
PAVDD to AVSS  
–0.3  
26  
DGND to AGND  
–0.3  
0.3  
ADC analog input voltage to GND  
Current sense input voltage to GND  
Bipolar DAC outputs to GND  
Auxiliary DAC outputs to GND  
VCLAMP1, VCLAMP2 inputs to GND  
D1+, D1–, D2+ and D2– to GND  
REF_CMP, REF_IN to GND  
REF_OUT to GND  
–0.3  
AVDD + 0.3  
65  
–0.3  
AVSS – 0.3  
–0.3  
AVDD + 0.3  
AVCC + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
PAVDD + 0.3  
–0.3  
–0.3  
Pin voltage  
V
–0.3  
–0.3  
PA_ON to GND  
–0.3  
CS, SCLK, SDI, DACTRIG, RESET, SLEEP1,  
SLEEP2 and DAV/ADC_RDY to GND  
–0.3  
IOVDD + 0.3  
SDO to GND  
–0.3  
–0.3  
–10  
IOVDD + 0.3  
GPIOs, ALARMOUT to GND  
ADC analog input current  
REF_OUT output current  
GPIOs, ALARMOUT sinking current  
6
10  
Pin current  
–0.3  
0.3  
5
mA  
Operating temperature range  
Junction temperature range, TJ max  
Storage temperature, Tstg  
–40  
–40  
–40  
125  
150  
150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±750  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
1.7  
4.5  
–5.5  
4
NOM  
5
MAX  
5.5  
5.5  
3.6  
12.5  
0
UNIT  
(1)  
AVDD  
(1)  
DVDD  
5
IOVDD  
Supply voltage  
3.3  
5
V
AVCC  
(2)  
AVSS  
–5  
5
PAVDD  
Specified performance temperature  
Operating temperature  
20  
–40  
–40  
25  
25  
105  
125  
°C  
°C  
(1) The value of the DVDD pin must be equal to that of the AVDD pins.  
(2) The value of the AVSS pin is only equal to AGND when all bipolar DACs are set to operate in positive voltage ranges.  
6.4 Thermal Information  
RTQ (VQFN)  
THERMAL METRIC(1)(2)  
UNIT  
56 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
24.7  
7.9  
2.7  
0.2  
2.7  
0.3  
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) TI strongly recommends to solder the device thermal pad to a board plane connected to the AVSS pin.  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
6.5 Electrical Characteristics—DAC Specifications  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 3.3 V, PAVDD = 5 V, AGND = DGND = 0 V,  
external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to +105°C  
PARAMETER  
BIPOLAR DAC DC ACCURACY  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
12  
Bits  
Measured by line passing through codes 040h and  
FC0h. 0 to 5 V range  
±0.3  
±0.3  
±1  
±1  
±1  
±1  
INL  
Relative accuracy  
LSB  
Measured by line passing through codes 040h and  
FC0h. –4 to 1 V and –5 to 0 V ranges  
Specified monotonic. Measured by line passing through  
codes 040h and FC0h. 0 to 5 V range  
±0.05  
±0.05  
DNL Differential nonlinearity  
TUE Total unadjusted error  
LSB  
mV  
Specified monotonic. Measured by line passing through  
codes 040h and FC0h. –4 to 1 V and –5 to 0 V ranges  
TA = 25°C, 0 to 5 V range  
±1  
±2  
±15  
±15  
TA = 25°C, –4 to 1 V and –5 to 0 V ranges  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. 0 to 5 V range  
Offset error  
±0.2  
±2  
±10  
±10  
mV  
mV  
TA = 25°C. Code 000h. –4 to 1 V and –5 to 0 V ranges.  
AVSS = –5.5 V  
Zero-code error  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. 0 to 5 V range  
±0.02  
±0.2  
±0.2  
Gain error  
%FSR  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. –4 to 1 V and –5 to 0 V ranges  
±0.02  
±1  
Offset temperature drift  
0 to 5 V range  
ppm/°C  
ppm/°C  
ppm/°C  
Zero-code temperature  
drift  
–4 to 1 V and –5 to 0 V ranges. AVSS = –5.5 V  
All output ranges  
±1.5  
±1  
Gain temperature drift  
AUXILIARY DAC DC ACCURACY  
Resolution  
12  
Bits  
Measured by line passing through codes 040h and  
FC0h. 0 to 5 V range  
±0.5  
±0.5  
±1.25  
±1.25  
±1  
INL  
Integral nonlinearity  
LSB  
Measured by line passing through codes 040h and  
FC0h. 2.5 to 7.5 V range. AVCC = 12 V  
Specified monotonic. Measured by line passing through  
codes 040h and FC0h. 0 to 5 V range  
±0.05  
±0.05  
DNL Differential nonlinearity  
TUE Total unadjusted error  
Offset error  
LSB  
mV  
mV  
Specified monotonic. Measured by line passing through  
codes 040h and FC0h. 2.5 to 7.5 V range. AVCC = 12 V  
±1  
TA = 25°C. 0 to 5 V range  
±2  
±2  
±15  
±15  
TA = 25°C. 2.5 to 7.5 V range. AVCC = 12 V  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. 0 to 5 V range  
±0.3  
±1  
±10  
±10  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. 2.5 to 7.5 V range. AVCC = 12 V  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. 0 to 5 V range  
±0.03  
±0.03  
±0.2  
±0.2  
Gain error  
%FSR  
TA = 25°C. Measured by line passing through codes  
040h and FC0h. 2.5 to 7.5 V range. AVCC = 12 V  
Offset temperature drift  
Gain temperature drift  
All output ranges  
All output ranges  
±1  
±1  
ppm/°C  
ppm/°C  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Electrical Characteristics—DAC Specifications (continued)  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 3.3 V, PAVDD = 5 V, AGND = DGND = 0 V,  
external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to +105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC OUTPUT CHARACTERISTICS  
DACn_range set to 00  
–4  
–5  
–5  
0
1
0
DACn_range set to 01  
DACn_range set to 10  
DACn_range set to 11  
AUXDACn_range set to 0  
AUXDACn_range set to 1  
Bipolar DAC range(1)  
V
0
5
0
5
Auxiliary DAC range(2)  
Short-circuit current  
V
2.5  
7.5  
Bipolar DACs: Full-scale current shorted to AVSS or  
AVDD  
Auxiliary DACs: Full-scale current shorted to AGND or  
AVCC  
45  
mA  
Bipolar DACs: Source or sink with 300 mV headroom  
from AVDD or AVSS, voltage drop < 25 mV  
Auxiliary DACs: Source or sink with 300 mV headroom  
from AVCC or AGND, voltage drop < 25 mV  
Load current(3)  
±10  
0
mA  
Maximum capacitive  
load(4)  
All DAC outputs. RL = ∞  
10  
nF  
Ω
DC output impedance  
All DAC outputs. Code set to 800h, ±10 mA  
1
1
All DAC outputs. Transition: Code 7FFh to 800h; 800h to  
7FFh  
Glitch energy  
nV-s  
Auxiliary DACs. 1 kHz, code 800h  
Bipolar DACs. 1 kHz, code 800h  
200  
100  
nV/Hz  
Auxiliary DACs. Integrated noise from 0.1 Hz to 10 Hz,  
code 800h  
Output noise  
20  
10  
µVPP  
Bipolar DACs. Integrated noise from 0.1 Hz to 10 Hz,  
code 800h  
CLAMP OUTPUT MODE  
VCLAMP [1:2] voltage  
range  
0
–AVSS / 3  
V
VCLAMP [1:2] input  
current  
±0.5  
0
µA  
Bipolar DACs. Clamp voltage = –3 × VCLAMP[1:2]  
Auxiliary DACs  
AVSS  
±10  
Clamp output voltage  
Clamp output current  
V
AGND  
Bipolar DACs. Source, sink, or both with 300-mV  
headroom from AVSS, voltage drop < 25 mV  
mA  
kΩ  
Ω
Auxiliary DACs. Measured to AGND  
9
Clamp pull-down  
resistance  
Bipolar DACs. VCLAMP buffers inactive (AVSS clamp  
mode). Measured to AVSS  
550  
(1) The output voltage must not be greater than AVDD or lower than AVSS. A minimum of 100 mV headroom from AVDD is required.  
(2) The output voltage must not be greater than AVCC or lower than AGND. A minimum of 100 mV headroom from AVCC is required.  
(3) If all channels are simultaneously loaded, care must be taken to ensure the thermal conditions for the device are not exceeded.  
(4) To be sampled during initial release to ensure compliance; not subject to production testing.  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
6.6 Electrical Characteristics—ADC, Current and Temperature Sensor Specifications  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 1.8 to 3.3 V, PAVDD = 5 V, AGND = DGND =  
0 V, external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to +105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL ANALOG INPUTS (ADC1, ADC2, ADC3 and ADC4)  
Resolution  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
V
INL  
Integral nonlinearity  
Differential nonlinearity  
Offset error  
±0.5  
±0.5  
±0.3  
±1  
±1  
±1  
DNL  
Specified monotonic  
±4.5  
Offset error match  
Gain error  
±0.3  
±1  
±4  
Vref  
±2  
Gain error match  
Full-scale input range(1)  
Input capacitance  
DC-input leakage current  
0
48  
pF  
Unselected ADC input  
µA  
INTERNAL MONITORING INPUTS (BIPOLAR DAC-OUTPUT MONITORING)  
Full scale input range(1)  
–5  
2.5  
V
Resolution  
LSB size  
1.83  
mV  
CURRENT-SENSE INPUTS  
Common mode voltage  
Full scale sense voltage(1) SENSEn+ – SENSEn-  
4
0
60  
V
200  
mV  
kΩ  
Input resistance  
Gain accuracy  
Per current sense input terminal  
192  
±0.1%  
±1%  
CS-FILTER[2:0] = 100  
Common mode voltage = 4 V  
Input offset error  
±50  
±500  
µV  
CMRR  
CS-FILTER[2:0] = 100  
LSB size  
80  
dB  
µV  
Resolution  
48.83  
TEMPERATURE SENSOR: INTERNAL  
Operating range(1)(2)  
Specified monotonic over entire range.  
TJ = –40°C to 125°C  
–55  
–55  
125  
±3  
°C  
°C  
Accuracy(2)  
LSB size  
TJ = –40°C to 125°C  
Resolution  
0.25  
0.25  
°C  
TEMPERATURE SENSOR: EXTERNAL (USING 2N3906 EXTERNAL TRANSISTOR)  
Operating range(1)(2)  
150  
±3  
°C  
°C  
RT-SET[2:0] = 011, CS-FILTER[2:0] = 100  
Accuracy(2)  
TA = –40°C to 125°C, T(DIODE) = –40°C to 150°C  
LSB size  
Resolution  
°C  
TA = –40°C to 125°C, T(DIODE) = –40°C to 150°C  
(1) Input range for all monitoring inputs must be met for accuracy specifications to apply.  
(2) Not tested during production. Specified by design and characterization.  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
6.7 Electrical Characteristics—General Specifications  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 1.8 to 3.3 V, PAVDD = 5 V, AGND = DGND =  
0 V, external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL REFERENCE INPUT  
VREF_IN  
Input voltage range  
REF_IN pin  
2.5  
1
V
Input current  
VREF_IN = 2.5 V  
TA = 25°C  
100  
±5  
µA  
mV  
mV  
DAC reference buffer offset  
ADC reference buffer offset  
TA = 25°C  
±5  
INTERNAL REFERENCE  
Output voltage  
TA = 25°C, REF_OUT pin  
2.4925  
AGND  
2.5  
10  
2.5075  
35  
V
Reference temperature  
coefficient  
ppm/°C  
1 kHz  
260  
13  
nV/Hz  
Output voltage noise  
Integrated noise from 0.1 Hz to 10 Hz  
µVPP  
PA_ON OUTPUT  
PA_ON output voltage  
SUPPLY ALARMS(1)  
PAVDD 20 V  
PAVDD  
V
AVSS alarm threshold  
AVDD alarm threshold  
–4.4  
3.4  
–4.1  
3.9  
–3.8  
4.4  
V
V
DIGITAL LOGIC(1)  
0.7 ×  
IOVDD  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Hysteresis voltage  
IOVDD = 1.7 V to 3.6 V  
IOVDD = 1.7 V to 3.6 V  
IOVDD = 1.7 V to 3.6 V  
V
V
V
V
0.3 ×  
IOVDD  
0.1 ×  
IOVDD  
Vhys  
SDO and DAV/ADC_RDY. IOVDD = 1.7 V,  
I(LOAD) = 1 mA  
IOVDD  
VOH  
VOL  
High-level output voltage  
0.4  
Low-level output voltage  
High impedance leakage  
IOVDD = 1.7 V to 3.6 V, I(LOAD) = –1 mA  
0.4  
V
±0.5  
µA  
High impedance output  
capacitance  
10  
pF  
(1) Not tested during production. Specified by design and characterization.  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Electrical Characteristics—General Specifications (continued)  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 1.8 to 3.3 V, PAVDD = 5 V, AGND = DGND =  
0 V, external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER REQUIREMENTS  
IAVDD  
IAVCC  
IAVSS  
IDVDD  
IIOVDD  
IPAVDD  
AVDD supply current  
AVCC supply current  
AVSS supply current  
DVDD supply current  
IOVDD supply current  
PAVDD supply current  
Power consumption  
AVDD supply current  
AVCC supply current  
AVSS supply current  
DVDD supply current  
IOVDD supply current  
PAVDD supply current  
Power consumption  
10  
1.5  
–2.5  
2.5  
1.75  
170  
95  
12.5  
2
mA  
mA  
mA  
mA  
µA  
POWER-MODE = 10.  
AVDD = DVDD = 5.5 V, AVCC = 5.5 V  
PAVDD = 20 V, AVSS = –5.5 V, IOVDD = 3.6 V  
All monitoring channels enabled  
Bipolar DACs in –5 to 0 V range  
Auxiliary DACs in 0 to 5 V range  
–3.5  
3
2.5  
250  
µA  
All DACs at 800h code. PA_ON in "ON" state  
120.5  
mW  
mA  
mA  
mA  
mA  
µA  
IAVDD  
IAVCC  
IAVSS  
IDVDD  
IIOVDD  
IPAVDD  
3.5  
0.2  
–2  
POWER-MODE = 00.  
AVDD = DVDD = 5.5 V, AVCC = 5.5 V  
PAVDD = 20 V, AVSS = –5.5 V, IOVDD = 3.6 V  
All DACs in clamp mode at 0 V  
PA_ON in "OFF" state  
2.5  
1.75  
12  
µA  
45  
mW  
6.8 Serial Interface Timing Requirements(1)(2)  
AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, PAVDD = 5 V, AGND = DGND = 0 V, external 2.5 V reference, DAC output  
range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common mode at 48 V, TA = –40°C to +105°C  
(unless otherwise noted)  
IOVDD = 1.7 TO 2.7 V IOVDD = 2.7 TO 3.6 V  
UNIT  
MIN  
0.2  
100  
40  
40  
10  
10  
0
MAX  
MIN  
0.2  
66.67  
26  
26  
10  
10  
0
MAX  
fSCLK  
tp  
SCLK frequency  
SCLK period  
10  
15  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPH  
SCLK pulse width high  
SCLK pulse width low  
SDI setup  
tPL  
See Figure 1 and Figure 2.  
tsu  
th  
SDI hold  
t(ODZ)  
t(OZD)  
t(OD)  
tsu(CS)  
th(CS)  
t(IAG)  
SDO driven to tri-state  
SDO tri-state to driven  
SDO output delay  
CS setup  
15  
20  
20  
10  
15  
15  
See Figure 2.  
0
0
0
0
5
5
CS hold  
See Figure 1 and Figure 2  
20  
15  
20  
15  
Inter-access gap  
(1) Specified by design and characterization. Not tested during production.  
(2) SDO loaded with 10 pF load capacitance for SDO timing specifications.  
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
6.9 Switching Characteristics—DAC Specifications  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 3.3 V, PAVDD = 5 V, AGND = DGND = 0 V,  
external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to +105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC OUTPUT CHARACTERISTICS  
Transition: Code 400h to C00h to within ½ LSB.  
RL= 2 kΩ, CL = 200 pF. All DAC outputs. All output  
ranges  
Output voltage settling  
time  
10  
µs  
Transition: Code 400h to C00h, 10% to 90%.  
RL= 2 kΩ, CL = 200 pF. All DAC outputs. All output  
ranges  
Slew rate  
1.25  
V/µs  
CLAMP OUTPUT MODE  
Clamp shutdown delay(1)  
All DAC outputs. RL = , CL = 200 pF, clamp from 3.5 V  
output, within 10% accuracy of active DAC output,  
measured from SLEEP 0 to 1 transition  
5
5
µs  
µs  
All DAC outputs. RL = , CL = 200 pF, wake-up to 3.5 V  
output, within 10% accuracy of active DAC output,  
measured from SLEEP 1 to 0 transition  
Wake-up from clamp  
delay(1)  
(1) Not tested during production. Specified by design and characterization.  
6.10 Switching Characteristics—ADC, Current and Temperature Sensor Specifications  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 1.8 to 3.3 V, PAVDD = 5 V, AGND = DGND =  
0 V, external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to +105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC INTERNAL OSCILLATOR  
Internal oscillator frequency  
3.7  
4
4.3  
MHz  
EXTERNAL ANALOG INPUTS (ADC1, ADC2, ADC3 and ADC4)  
All four external inputs enabled  
Update time  
1
1
ms  
ms  
Internal monitoring inputs disabled  
INTERNAL MONITORING INPUTS (BIPOLAR DAC-OUTPUT MONITORING)  
All four internal monitoring inputs enabled  
Update time  
External analog inputs disabled  
CURRENT-SENSE INPUTS  
All four current sense inputs enabled  
CS-FILTER[2:0] = 000  
Update time  
200  
2
µs  
TEMPERATURE SENSOR: INTERNAL  
Update time  
Remote temperature sensors disabled  
ms  
TEMPERATURE SENSOR: EXTERNAL (USING 2N3906 EXTERNAL TRANSISTOR)  
Single external temperature sensor  
Update time  
Internal temperature sensor disabled  
RT-SET[2:0] = 000  
8
ms  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
6.11 Switching Characteristics—General Specifications  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 5 V, AVCC = 5 V, AVSS = –5 V, IOVDD = 1.8 to 3.3 V, PAVDD = 5 V, AGND = DGND =  
0 V, external 2.5 V reference, DAC output range = 0 to 5 V for all DACs, no load on the DACs, current sense inputs common  
mode at 48 V, TA = –40°C to 105°C  
PARAMETER  
PA_ON OUTPUT(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured from AVSS alarm event, CL = 1 nF  
1
1
ms  
ms  
PA_ON OFF state enable  
Measured from SLEEP 0 to 1 transition, CL = 1  
nF  
Measured from SLEEP 1 to 0 transition, CL = 1  
nF  
PA_ON ON state enable  
0.5  
ms  
RESET REQUIREMENTS(1)  
Delay to normal operation from hardware reset  
Delay to normal operation from software reset  
100  
250  
10  
µs  
µs  
ns  
Reset delay  
Reset pulse width  
20  
(1) Not tested during production. Specified by design and characterization.  
t(IAG)  
th(CS)  
tsu(CS)  
CS  
tp  
tPL  
SCLK  
tPH  
SDI  
Bit 23  
Bit 1  
Bit 0  
th  
tsu  
Figure 1. Serial Interface Write Timing Diagram  
t(ODZ)  
t(IAG)  
th(CS)  
tsu(CS)  
CS  
tP  
tPL  
SCLK  
SDI  
tPH  
Bit 23  
Bit 8  
th  
tsu  
SDO  
Bit 7  
Bit 0  
t(OZD)  
t(OD)  
Figure 2. Serial Interface Read Timing Diagram  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
6.12 Typical Characteristics  
6.12.1 Typical Characteristics: DAC  
1.0  
0.8  
1.0  
0.8  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C002  
DAC range = 0 to 5 V, AVDD = 5.5 V  
DAC range = 0 to 5 V, AVDD = 5.5 V  
Figure 3. Bipolar DAC Integral Non-Linearity  
Figure 4. Bipolar DAC Differential Non-Linearity  
1.0  
0.8  
1.0  
0.8  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C003  
C004  
DAC range = –5 to 0 V, AVSS = –5.5 V  
DAC range = –5 to 0 V, AVSS = –5.5 V  
Figure 5. Bipolar DAC Integral Non-Linearity  
Figure 6. Bipolar DAC Differential Non-Linearity  
1.0  
0.8  
1.0  
0.8  
AUXDAC 1  
AUXDAC 2  
AUXDAC 3  
AUXDAC 4  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
AUXDAC 1  
AUXDAC 2  
AUXDAC 3  
AUXDAC 4  
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C005  
C006  
DAC range = 0 to 5 V, AVCC = 5.5 V  
DAC range = 0 to 5 V, AVCC = 5.5 V  
Figure 7. Auxiliary DAC Integral Non-Linearity  
Figure 8. Auxiliary DAC Differential Non-Linearity  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Typical Characteristics: DAC (continued)  
1.0  
0.8  
1.0  
AUXDAC 1  
AUXDAC 2  
AUXDAC 3  
AUXDAC 4  
AUXDAC 1  
0.8  
0.6  
AUXDAC 2  
AUXDAC 3  
AUXDAC 4  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C008  
C007  
DAC range = 2.5 to 7.5 V, AVCC = 12 V  
DAC range = 2.5 to 7.5 V, AVCC = 12 V  
Figure 10. Auxiliary DAC Differential Non-Linearity  
Figure 9. Auxiliary DAC Integral Non-Linearity  
1.0  
0.8  
1.0  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C009  
C010  
DAC range = 0 to 5 V, AVDD = 5.5 V  
DAC range = 0 to 5 V, AVDD = 5.5 V  
Figure 11. Bipolar DAC INL vs Temperature  
Figure 12. Bipolar DAC DNL vs Temperature  
1.0  
0.8  
1.0  
INL MAX  
DNL MAX  
0.8  
0.6  
INL MIN  
DNL MIN  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
TA (°C)  
C011  
TA (°C)  
C012  
DAC range = –5 to 0 V, AVSS = –5.5 V  
DAC range = –5 to 0 V, AVSS = –5.5 V  
Figure 14. Bipolar DAC DNL vs Temperature  
Figure 13. Bipolar DAC INL vs Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: DAC (continued)  
1.0  
1.0  
0.8  
INL MAX  
DNL MAX  
DNL MIN  
0.8  
0.6  
INL MIN  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C013  
C014  
DAC range = 0 to 5 V, AVCC = 5.5 V  
DAC range = 0 to 5 V, AVCC = 5.5 V  
Figure 15. Auxiliary DAC INL vs Temperature  
Figure 16. Auxiliary DAC DNL vs Temperature  
1.0  
0.8  
1.0  
0.8  
DNL MAX  
DNL MIN  
INL MAX  
INL MIN  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C015  
C016  
DAC range = 2.5 to 7.5 V, AVCC = 12 V  
DAC range = 2.5 to 7.5 V, AVCC = 12 V  
Figure 17. Auxiliary DAC INL vs Temperature  
Figure 18. Auxiliary DAC DNL vs Temperature  
10  
8
10  
8
-5 to 0 V  
-4 to 1 V  
6
6
4
4
2
2
0
0
œ2  
œ4  
œ6  
œ8  
œ10  
œ2  
œ4  
œ6  
œ8  
œ10  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
TA (°C)  
C018  
TA (°C)  
C017  
AVSS = –5.5 V  
DAC range = 0 to 5 V  
Figure 20. Bipolar DAC Zero Code Error vs Temperature  
Figure 19. Bipolar DAC Offset Error vs Temperature  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Typical Characteristics: DAC (continued)  
0.20  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0 to 5 V  
0.16  
0.12  
-5 to 0 V  
-4 to 1 V  
0.08  
0.04  
0.00  
-0.04  
-0.08  
-0.12  
-0.16  
-0.20  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
0
10 20 30 40 50 60  
œ60 œ50 œ40 œ30 œ20 œ10  
TA (°C)  
Loading Current (mA)  
C019  
C020  
AVDD = 5.5 V, AVSS = –5.5 V  
Figure 21. Bipolar DAC Gain Error vs Temperature  
DAC range = 0 to 5 V, Code 0x800  
Figure 22. DAC Output Voltage vs Load Current  
5.000  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
4.950  
4.900  
4.850  
4.800  
4.750  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
œ15œ14œ13œ12œ11œ10 œ9 œ8 œ7 œ6 œ5 œ4 œ3 œ2 œ1  
Load Current (mA)  
Load Current (mA)  
C021  
C022  
DAC range = 0 to 5 V, Code 0xFFF  
DAC range = 0 to 5 V, Code 0x000, AVSS = 0 V  
Figure 23. DAC Source Current  
Figure 24. DAC Sink Current  
50  
40  
10  
100pF  
200pF  
1nF  
8
6
30  
10nF  
20  
4
10  
2
0
0
-10  
-20  
-30  
-40  
-50  
œ2  
œ4  
œ6  
œ8  
œ10  
AUXDAC  
DAC  
0
5
10  
15  
20  
25  
30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Time (s)  
Time (s)  
C023  
C024  
Code 0x000 to 0xFFF to within 0.5% of final value  
Code 0x800  
Figure 25. DAC Settling Time  
Figure 26. DAC Output Noise, 0.1 Hz to 10 Hz  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: DAC (continued)  
1000  
10.0  
7.5  
800  
600  
400  
200  
0
5.0  
2.5  
0.0  
-2.5  
-5.0  
-7.5  
-10.0  
PA_ON  
DAC OUT  
AVSS  
1
10  
100  
1k  
10k  
100k  
1M  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Frequency (Hz)  
Time (ms)  
C025  
C039  
Bipolar DAC, Code 0x800  
Figure 27. DAC Noise Voltage vs Frequency  
DAC range: –5 to 0 V, Code 0x800  
Figure 28. PA_ON Response to AVSS Supply Collapse  
10.0  
7.5  
15  
AVDD  
PA_ON  
AVSS  
DAC OUT  
10  
5
5.0  
2.5  
0.0  
0
œ2.5  
œ5.0  
œ7.5  
œ10.0  
œ5  
œ10  
œ15  
AVDD  
AVCC  
PA_ON  
AVSS  
IOVDD  
DAC OUT  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
œ0.2  
œ0.1  
Time (ms)  
Time (ms)  
C041  
C040  
DAC range: –4 to 1 V, Code 0x800  
Figure 29. Response to AVDD Supply Collapse  
DAC range: –4 to 1 V, VCLAMP[1:2] = 4/3 V  
Figure 30. DAC Power On  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
6.12.2 Typical Characteristics: ADC  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C027  
C026  
Figure 32. ADC DNL  
Figure 31. ADC INL  
1.0  
0.8  
1.0  
0.8  
MAX INL  
MIN INL  
MAX DNL  
MIN DNL  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C028  
C029  
Figure 33. ADC INL vs Temperature  
Figure 34. ADC DNL vs Temperature  
2.0  
1.6  
1.0  
0.8  
1.2  
0.6  
0.8  
0.4  
0.4  
0.2  
0.0  
0.0  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C030  
C031  
Figure 35. ADC Offset Error vs Temperature  
Figure 36. ADC Gain Error vs Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
21  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
6.12.3 Typical Characteristics: Current Sense  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C032  
C033  
VCM = 28 V, VSENSE = 0 V, CS-FILTER[2:0] = 100  
VCM = 28 V  
Figure 37. Current Sense Offset Voltage vs Temperature  
Figure 38. Current Sense Gain Error vs Temperature  
0
1.0  
0.8  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
10  
100  
1k  
10k  
100k  
1M  
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60  
Frequency (Hz)  
Common Mode (V)  
C035  
C034  
CS-FILTER[2:0] = 100  
Figure 40. Current Sense CMRR vs Frequency  
Figure 39. Current Sense Gain Error vs Common-Mode  
Voltage  
22  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
6.12.4 Typical Characteristics: Temperature Sensor  
3.0  
2.5  
3.0  
2.5  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5  
œ3.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5  
œ3.0  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
TA (°C)  
TA (°C)  
C036  
C037  
10 units  
10 units, T(DIODE) = 25°C, RT-SET[2:0] = 011  
Figure 41. Local Temperature Sensor Error vs  
Temperature  
Figure 42. Remote Temperature Sensor Error vs  
Temperature  
6.12.5 Typical Characteristics: Reference  
2.5075  
2.5050  
2.5025  
2.5000  
2.4975  
2.4950  
2.4925  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
TA (°C)  
C038  
10 units  
Figure 43. Reference Output Voltage vs Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
23  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AMC7834 is a highly-integrated analog-monitoring and control solution for power-amplifier (PA) biasing  
capable of current, temperature, and voltage supervision. The AMC7834 integrates the following features:  
Eight, 12-bit digital-to-analog converters (DACs) with programmable output ranges  
Four bipolar DACs with selectable output ranges: –4 to 1 V, –5 to 0 V, and 0 to 5 V  
The clamp and power-on-reset (POR) voltage for these DACs is pin-configurable.  
Four auxiliary DACs with selectable output ranges: 0 to 5 V and 2.5 to 7.5 V  
The clamp and POR voltage for these DACs is fixed to AGND.  
The DACs can be configured to clamp automatically upon detection of an alarm event.  
A multi-channel, 12-bit analog-to-digital converter (ADC) for voltage, temperature, and current sensing  
Four external analog inputs: 0 to 2.5 V  
Four internal inputs for monitoring the bipolar DAC outputs  
Programmable threshold detectors  
Four high-side current-sense amplifiers  
Common mode voltages from 4 V up to 60 V  
The current sensors can optionally be set to operate as part of four independent closed-loop drain-current  
controllers  
Temperature sensing capabilities  
On-chip temperature sensor  
Two remote temperature sensor diode drivers  
Four general-purpose I/O (GPIO) ports  
Internal 2.5 V precision reference  
The device can operate from an internal reference. Alternatively an external reference can be used.  
Four-wire SPI-compatible interface supporting 1.7 to 3.6 V operation  
The AMC7834 device is characterized for operation over the temperature range of –40ºC to 125ºC which makes  
the device suitable for harsh-condition applications. The device is available in an 8-mm × 8-mm 56-pin VQFN  
PowerPAD package.  
The AMC7834 high-integration makes it an ideal all-in-one, low-cost, bias-control circuit for the PAs found in  
multi-channel RF communication systems. The flexible DAC output ranges allow the device to be used as a  
biasing solution for a large variety of transistor technologies such as LDMOS, GaAs, and GaN. The AMC7834  
feature set is similarly beneficial in general-purpose monitor and control systems.  
24  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.2 Functional Block Diagram  
REF_CMP  
ADC1  
ADC2  
ADC3  
ADC4  
Reference  
REF_OUT  
(2.5 V)  
REF_IN  
ADCINT1  
Bipolar DAC  
Outputs  
Conditioning and  
Sensing  
ADCINT2  
ADCINT3  
ADCINT4  
ADC  
Trigger  
DAC  
Trigger  
DAC-1  
12-b  
DAC1  
DAC2  
DAC3  
DAC4  
SENSE1+  
SENSE1œ  
SENSE2+  
SENSE2œ  
SENSE3+  
SENSE3œ  
SENSE4+  
SENSE4œ  
CS1  
CS2  
CS3  
DAC-2  
12-b  
DAC-3  
12-b  
ADC  
12-b  
DAC-4  
12-b  
CS4  
LT  
VCLAMP1  
VCLAMP2  
SLEEP1  
Temperature  
Sensor  
DAC  
Shutdown  
SLEEP2  
D1+  
RT1  
RT2  
AUXDAC1  
12-b  
AUXDAC1  
AUXDAC2  
AUXDAC3  
AUXDAC4  
D1œ  
Remote  
temperature  
driver  
D2+  
AUXDAC2  
12-b  
D2œ  
AUXDAC3  
12-b  
Out-of-Limits  
Alarm  
Control, Limits, Status  
Registers  
AUXDAC4  
12-b  
ALARMOUT  
Serial Interface  
Register and Control  
(SPI)  
Synchronization  
Logic  
GPIO Control  
DV  
DD  
DD  
IOV  
Copyright © 2014–2016, Texas Instruments Incorporated  
25  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Digital-to-Analog Converters (DACs)  
The AMC7834 device features an analog-control system centered on eight, 12-bit DACs that can operate from  
an external reference or the device internal reference. Each DAC core consists of a string DAC and an output-  
voltage buffer.  
The resistor-string structure consists of a series of resistors, each with a value of R. The code loaded to the DAC  
determines at which node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string to the amplifier (see Figure 44). The resistor string  
architecture has inherent monotonicity, voltage output, and low glitch. The resistor string architecture is also  
linear because all the resistors are of equal value.  
R
R
To Output  
Amplifier  
R
R
R
Figure 44. DAC Resistor String  
26  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Feature Description (continued)  
7.3.1.1 DAC Configuration  
The eight DACs are split into bipolar and auxiliary outputs based on their output range and clamping capabilities  
as listed in Table 1. After power-on or a reset event the DAC outputs are directed automatically to the  
corresponding clamp value and all DAC buffer and active registers are set to the default values.  
Table 1. DAC Group Configuration  
CLOSED LOOP  
OPERATION  
CAPABLE?  
POWER SUPPLY  
DAC  
TYPE  
OUTPUT RANGES  
CLAMP VOLTAGE  
RANGE  
–3 × VCLAMP1 or  
AVSS  
DAC1 and DAC2  
DAC3 and DAC4  
0 to 5 V  
–4 to 1 V  
–5 to 0 V  
Bipolar  
AVSS to AVDD  
Yes  
No  
–3 × VCLAMP2 or  
AVSS  
AUXDAC1  
AUXDAC2  
AUXDAC3  
AUXDAC4  
0 to 5 V  
2.5 to 7.5 V  
Auxiliary  
AGND  
AGND to AVCC  
7.3.1.1.1 Bipolar DACs (DAC1, DAC2, DAC3, and DAC4)  
The bipolar DACs are configured as DAC pairs (DAC1-DAC2 and DAC3-DAC4). The output range for each  
bipolar DAC pair can be configured through the DAC Range register (address 0x16) to one of the following: 0 to  
5 V, –5 to 0 V, or –4 to 1 V. The POR and clamp value of each DAC pair is set by the pins VCLAMP1 (for the  
DAC1-DAC2 pair) and VCLAMP2 (for the DAC3-DAC4 pair) to any voltage between AVSS and 0 V during normal  
operation. If AVDD falls outside the device specified operating range the bipolar DACs enter the special AVSS  
clamp mode and their outputs are set to AVSS. The full-scale output range of the bipolar DACs is limited by the  
power supplies, AVDD and AVSS  
.
The bipolar DACs operate as standalone DACs when the AMC7834 is set in open-loop mode (LOOP-EN bit set  
to 0 in register 0x10). Figure 45 shows a high level block diagram of each bipolar DAC when operating in open-  
loop mode.  
AVDD  
Serial Interface  
DAC Data Register  
WRITE  
READ  
DAC  
Buffer Register  
DAC  
Active Register  
0
1
DAC  
Output  
Resistor String  
VOUT  
DAC output  
Configuration  
0x000  
DAC Trigger  
(synchronous mode)  
CLAMP MODE  
(asynchronous mode)  
AVSS CLAMP MODE  
VCLAMP[1,2]  
AVSS  
Figure 45. Bipolar DAC Block Diagram — Open Loop Operation  
Copyright © 2014–2016, Texas Instruments Incorporated  
27  
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Alternatively, with the AMC7834 set in closed-loop mode (LOOP-EN bit set to 1 in register 0x10) each bipolar  
DAC output updates automatically in response to one of the four current sensors in the device (see the Closed-  
Loop Mode section). In closed-loop mode the AMC7834 bipolar DACs operate as four autonomous closed-loop  
current controllers.  
The DAC upper threshold registers (address 0x4E through 0x4F) sets an upper output limit other than full-scale  
for the bipolar DACs when operating in closed-loop mode. The upper threshold feature can be used to limit the  
maximum output voltage for each bipolar DAC. When a closed-loop controller attempts to set its bipolar DAC to a  
value exceeding the corresponding DAC upper threshold register, the DAC is updated with the threshold code  
instead.  
7.3.1.1.2 Auxiliary DACs (AUXDAC1, AUXDAC2, AUXDAC3, and AUXDAC4)  
The output range for each auxiliary DAC can be independently set through the DAC Range register (address  
0x16) to either 0 to 5 V or 2.5 to 7.5 V. The POR and clamp value of each of the auxiliary DACs is fixed to  
AGND. The maximum and minimum outputs from these DACs cannot exceed AVCC or be lower than AGND,  
respectively. Figure 46 shows a high level block diagram of each auxiliary DAC.  
AVCC  
Serial Interface DAC Data Register  
WRITE  
READ  
DAC  
Buffer  
Register  
DAC  
Active  
Register  
DAC  
Output  
Range  
0
DAC  
output  
Resistor String  
VO  
Configuration  
DAC Trigger  
(synchronous  
mode)  
0x000  
1
CLAMP MODE  
CLAMP MODE  
(asynchronous mode)  
AGND  
Figure 46. Auxiliary DAC Block Diagram  
7.3.1.2 DAC Register Structure  
The input data of the DACs is written to the individual DAC data registers (address 0x30 through 0x37) in straight  
binary format for all output ranges (see Table 2).  
Table 2. DAC Data Format  
DAC OUTPUT VOLTAGE (V)  
DIGITAL CODE  
0 TO 5 V RANGE  
2.5 TO 7.5 V RANGE  
–4 TO 1 V RANGE  
–4  
–5 TO 0 V RANGE  
–5  
0000 0000 0000  
0000 0000 0001  
1000 0000 0000  
1111 1111 1110  
1111 1111 1111  
0
2.5  
0.00122  
2.5  
2.50122  
5
–3.99878  
–1.5  
–4.99878  
–2.5  
4.99756  
4.99878  
7.49756  
7.49878  
0.99756  
0.99878  
–0.00244  
–0.00122  
28  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Data written to the DAC data registers is initially stored in the DAC buffer registers. The transfer of data from the  
DAC buffer registers to the active registers can be set to occur immediately (asynchronous mode) or initiated by  
a DAC trigger signal (synchronous mode). When the active registers are updated, the DAC outputs change to the  
new values. When the host reads from a DAC data register, the value held in the DAC active register is returned  
(not the value held in the buffer register).  
The update mode of the DACs is determined by the DAC sync register (address 0x15). In asynchronous mode, a  
write to a DAC data register results in an immediate update of the DAC active register and the corresponding  
output. In synchronous mode, writing to a DAC data register does not automatically update the DAC output.  
Instead, the update occurs only after a DAC trigger event. A DAC trigger is generated either through the DAC-  
TRIG bit in the DAC and ADC trigger register (address 0x1C) or by the DACTRIG pin. By setting the  
synchronization properly, several DACs can be updated simultaneously.  
7.3.1.3 DAC Clamp Operation  
Each DAC can be set to a clamp mode using either hardware or software. When a DAC goes to clamp mode,  
the DAC output is immediately set to the corresponding clamp voltage. However, clamping does not clear the  
DAC buffer or active registers making it possible to return to the same voltage being output before the clamp  
event was issued. The DAC data registers can be updated while the DACs are in clamp mode allowing the DACs  
to output new values upon return to normal operation. When the DACs exit clamp mode, the DACs are  
immediately loaded with the data in the DAC active registers and the output is set back to the corresponding  
level to restore operation regardless of the DAC synchronization setting.  
The clamp voltage is dependent on the DAC output:  
DAC1 and DAC2: Clamp voltage is set by the voltage at pin VCLAMP1 and is equal to –3 × VCLAMP1 during  
normal operation. In the special AVSS clamp mode the clamp voltage for DAC1 and DAC2 is fixed to AVSS  
DAC3 and DAC4: Clamp voltage is set by the voltage at pin VCLAMP2 and is equal to –3 × VCLAMP2 during  
.
normal operation. In the special AVSS clamp mode the clamp voltage for DAC3 and DAC4 is fixed to AVSS  
.
AUXDAC1 through AUXDAC4: The clamp voltage for each of the auxiliary DACs is fixed to AGND.  
The clamp register (address 0x17) allows clamping of the DACs through software. The DAC1-DAC2 pair, DAC3-  
DAC4 pair, and each auxiliary DAC has a corresponding DAC clamp bit. Setting this bit to 1 forces the  
corresponding DAC pair or individual auxiliary DAC to enter clamp mode. Clearing the bit to 0 restores normal  
operation.  
Additionally, in the unique case of the AVDD supply falling outside its specified operating range the bipolar DACs  
enter the alternative AVSS clamp mode. With the AVDD supply outside of the valid operating range the bipolar  
DAC output buffers become inactive thus creating the potential for unexpected output voltages. The AVSS clamp  
mode prevents this condition by setting all bipolar DAC outputs to AVSS through a resistive path.  
NOTE  
If the DAC or DAC pair is forced to clamp by one of the SLEEP pins, write commands to  
the corresponding DAC clamp bit are ignored.  
The DACs can also be forced to clamp through the SLEEP1 and SLEEP2 pins. When either pin goes high, the  
corresponding DAC pair and auxiliary DAC associated with each pin are forced into clamp mode. The SLEEP1  
register (address 0x18) determines which DACs are forced to clamp when the SLEEP1 pin goes high. The  
register contains one bit for each DAC pair (DAC1-DAC2 and DAC3-DAC4) and each auxiliary DAC. Likewise,  
the SLEEP2 register (address 0x19) determines which DACs go into clamp when the SLEEP2 pin goes high. In  
addition to forcing the DACs into clamp mode, the SLEEP1 and SLEEP2 pin and registers allow control of the  
PA_ON pin.  
Although a high state on the SLEEP pins force the associated DACs to clamp immediately, returning to a low  
state does not necessarily force the DAC to return to normal operation. If the end application requires the DACs  
to exit clamp mode in a particular sequence, this sequence can be controlled by the SNOOZE bits in the  
SLEEP1 and SLEEP2 registers. When a SNOOZE bit is set to 1, bringing a DAC back to normal operation  
requires the SLEEP pin to return to a low state first, followed by a write to the DAC clamp register (address 0x17)  
to clear the clamp condition. If the SNOOZE bit is cleared to 0, setting the SLEEP pin to a low state immediately  
clears the clamp condition and returns the DAC to normal operation without the need for any register writes.  
Copyright © 2014–2016, Texas Instruments Incorporated  
29  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
The DACs can be forced to enter clamp mode by the alarm events controlling the ALARMOUT pin. The  
ALARMOUT clamp register (address 0x1A) selects the DAC or DAC pairs that enter clamp mode when the  
ALARMOUT pin goes active. Restoring the ALARMOUT pin does not automatically return the DAC or DAC pairs  
back to normal operation.  
7.3.2 Analog-to-Digital Converter (ADC)  
The AMC7834 device features a monitoring system centered on a 12-bit successive approximation register  
(SAR) ADC fronted by a 15-channel multiplexer and an on-chip track-and-hold circuit. The monitoring system is  
capable of sensing up to 4 external inputs (0 to 2.5 V range), 4 internal inputs (bipolar DAC monitoring), 4  
current-sense amplifier inputs, 2 remote temperature sensors, and an internal analog-temperature sensor.  
The ADC can operate from either an external 2.5 V reference or the device internal reference (Vref). The ADC  
input range is 0 V to Vref. All ADC inputs are internally mapped to this range. The ADC timing signals are derived  
from an on-chip temperature-compensated oscillator. The conversion results can be accessed through the device  
serial interface.  
7.3.2.1 External Analog Inputs  
The AMC7834 has 4 analog inputs for external voltage sensing (ADC1 through ADC4). Figure 47 shows the  
equivalent circuit for each external analog input pin. The two diodes, D1 and D2, provide electrostatic discharge  
(ESD) protection for the individual analog pins. Diode D1 turns on when any of the inputs is greater than AVDD  
+
0.3 V. Similarly diode D2 turns on when any of the inputs is less than AGND – 0.3 V. The switch is open while  
the ADC is in the READY state.  
AVDD  
S(W)  
C(SAMPLE)  
D1  
D2  
RS  
ADCx  
S(W) is closed during acquisition.  
S(W) is open during conversion.  
Figure 47. ADC External Inputs Equivalent Circuit  
The analog input range for inputs ADC1 through ADC4 is 0 V to Vref and the LSB (least-significant bit) size is  
given by Vref / 4096. The analog input conversion values are stored in straight binary format in the ADC-External  
Data registers (address 0x24 through 0x27). The input voltage is calculated using Equation 2.  
CODE ì V  
ref  
V
=
IN  
4096  
(2)  
To achieve specified performance it is recommended to drive each analog input pin with a low impedance  
source. In applications where the signal source has high impedance, analog input must be buffered.  
7.3.2.2 Internal Bipolar DAC Monitoring Inputs  
The AMC7834 has 4 internal inputs used for monitoring the bipolar DAC outputs (ADCINT1 through ADCINT4).  
The internal monitoring inputs are particularly useful when the AMC7834 operates in closed-loop mode as the  
bipolar DAC outputs are autonomously updated by the closed-loop controllers. Continuous monitoring of the  
bipolar DAC outputs helps in detecting closed-loop controller issues.  
The input range for the internal monitoring channels is -2 × Vref to Vref and the LSB size is given by 3 × Vref/4096.  
The monitored signals are scaled through a resistor divider so that they map to the native input range of the ADC  
(0 to 2 × Vref).  
The internal monitoring inputs conversion values are stored in straight binary format in the ADC-Internal Data  
registers (address 0x20 through 0x23). The monitored bipolar DAC output voltage is calcualted by Equation 3.  
V
ì CODE  
4096  
ref  
VADCINT = V + 3  
- V  
ref ÷  
ref  
«
(3)  
30  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.3.2.3 ADC Sequencing  
The AMC7834 supports autonomous and direct-mode ADC conversions. The conversion method is selected in  
the AMC configuration 0 register (address 0x10). The default conversion method is autonomous conversion. In  
both conversion methods, the channel or group of channels to be converted by the ADC must be first configured  
in the ADC MUX register (address 0x12). The input channels to the ADC include 4 external inputs, 4 DAC  
monitoring internal inputs, 4 current-sense inputs, 2 remote temperature sensor inputs, and the internal  
temperature sensor.  
The ADC must be in the READY state before a conversion cycle is started. The ADC enters the READY state  
once powered-up and at least one input channel is enabled in the ADC MUX register. The ADC READY status  
can be determined either through software (ADC-READY bit in the General Status register, 0x1F) or hardware  
(DAV/ADC_RDY pin). To use the DAV/ADC_RDY pin as a READY status indicator, the pin must first be enabled  
through the DAVPIN-EN bit in register 0x11. Furthermore the ADC_RDY functionality must be selected by setting  
the DAVPIN-SEL bit in register 0x11 to '1'.  
The conversion cycle is initiated by setting the ADC-TRIG bit to 1 in the DAC and ADC Trigger register (address  
0x1C) which issues an ADC trigger signal. If the trigger signal is issued while the ADC is not in the READY state  
it is ignored.  
Once the conversion cycle starts the ADC leaves the READY state. In direct-mode conversion upon completion  
of the first conversion sequence the ADC returns to the READY state and waits for a new trigger signal.  
Alternatively, in autonomous conversion upon completion of the first conversion another sequence is  
automatically started. Conversion of the selected channels occurs repeatedly until the conversion is stopped by  
issuing another trigger signal, at which point the ADC returns to the READY state.  
The following ADC registers should only be updated while the ADC is not in a conversion cycle:  
Device configuration register (address 0x02)  
AMC configuration 0 register (address 0x10)  
AMC configuration 1 register (address 0x11)  
ADC MUX register (address 0x12)  
ALARMOUT configuration register (0x1B)  
Threshold registers (0x40 – 0x4D)  
Hysteresis registers (0x50 – 0x56)  
After updating any of the configuration registers listed above, either a minimum 2 µs wait time or READY state  
must be ensured before issuing an ADC trigger signal.  
Since the ADC is used for voltage, current, and temperature sensor conversions, all of which have significantly  
different update times, an interleaved conversion sequence is followed. The interleaved sequence ensures the  
wait time between measurement updates is minimized. Figure 48 illustrates the ADC conversion sequence with  
all input channels enabled and set to their fastest update time (CS-FILTER[2:0] = 000 and RT-SET[2:0] = 000 in  
the AMC Configuration register - 0x10).  
Copyright © 2014–2016, Texas Instruments Incorporated  
31  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
TEMPERATURE  
SLOT  
VOLTAGE  
SLOT  
CURRENT  
SLOT  
24 µs  
16 µs  
160 µs  
200 µs  
CAL  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS-FILTER = 000  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ADCEXT1  
ADCEXT2  
ADCEXT3  
ADCEXT4  
CAL  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
1 ms  
1 ms  
LT  
ADCINT1  
ADCINT2  
ADCINT3  
ADCINT4  
CAL  
ADCEXT1  
ADCEXT2  
.
.
.
.
.
.
.
.
.
.
RT1  
14  
to  
47  
8 ms  
RT-SET = 000  
ADCINT2  
ADCINT3  
ADCINT4  
CAL  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
48  
49  
50  
51  
52  
53  
ADCEXT1  
ADCEXT2  
.
.
.
.
.
.
.
.
.
.
54  
to  
87  
RT2  
8 ms  
RT-SET = 000  
ADCINT2  
ADCINT3  
ADCINT4  
CS[1-4]  
CS[1-4]  
CS[1-4]  
CS-FILTER = 000  
CS-FILTER = 000  
CS-FILTER = 000  
88  
89  
90  
Figure 48. ADC General Interleaved Sequence  
Each ADC interleave step takes 200 µs and is segmented intro three sensing slots: temperature, voltage and  
current. The temperature slot is 24 µs long and allocates the temperature sensing channel conversions (internal  
temperature sensor and two remote temperature sensors) following the order LT RT1 RT2 LT ... If  
one of the temperature channels is not selected for conversion it is skipped. For example, if RT1 is not selected  
for conversion, the temperature slot conversion sequence is LT RT2 LT ... Figure 48 illustrates the  
conversion sequence for the lowest remote temperature sensor update time, which is configured by setting RT-  
SET[2:0] = 000 in register 0x10. If a longer temperature sensor is selected to improve measurement accuracy a  
higher number of interleave steps is allocated for the remote temperature sensors.  
32  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
The voltage slot takes 16 µs and allocates the four external inputs and four DAC monitoring internal inputs  
conversions. The external inputs, if enabled, are converted first. If none of the channels in a group (external or  
internal) are selected, no time is allocated for conversion of that group. However if at least one of the input  
channels in a group is enabled, five interleave steps (1 ms) are allocated regardless of the total number of input  
channels.  
The current slot allocates the four current sensing channel conversions. The current slot is 160 µs long  
independent of how many current sense channels are enabled. The current sensors are updated on each  
interleave step (200 µs) when the CS-FILTER[2:0] set to 000 in register 0x10. If a longer current sense update  
time is selected to improve measurement accuracy a higher number of interleave steps is allocated for the  
current sense conversions.  
The update time for all monitoring inputs is determined by the interleave sequence followed. Direct-mode  
conversions require an additional 40 µs of update time. In order to simplify synchronization, the AMC7834  
provides a data-available signal through the DAV/ADC_RDY pin. The DAV/ADC_RDY pin must first be enabled  
through the DAVPIN-EN bit in register 0x11. Furthermore the DAV functionality must be selected by clearing the  
DAVPIN-SEL bit in register 0x11 to '0'.  
In direct-mode conversion the DAV/ADC_RDY pin goes low after the conversion sequence has been completed.  
Additionally, in direct-mode conversion the data available flags in the General status register (address 0x1F) can  
be used to determine when new data is available for each data-available channel group. In autonomous  
conversion the DAV/ADC_RDY pin indicates when new data is available for each data-available channel group  
by issuing a 20 µs pulse (active low).  
In both conversion methods the data-available function identifies six channel groups:  
1. Current sense inputs: CS1 through CS4  
2. External analog inputs: ADC1 through ADC4  
3. Internal monitoring inputs: ADCINT1 through ADCINT4  
4. Internal temperature sensor: LT  
5. Remote temperature sensor 1: RT1  
6. Remote temperature sensor 2: RT2  
Copyright © 2014–2016, Texas Instruments Incorporated  
33  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.3.3 Temperature Sensors  
The AMC7834 device includes one on-chip and two remote temperature sensors. The temperature sensors  
monitor the three temperature inputs. The on-chip integrated temperature sensor measures the device  
temperature and two remote diode-sensor inputs measure two external temperature points. All three  
temperature-sensor results are converted by the device ADC and stored in two’s complement format. If any  
sensor is not used, it can be disabled in the register configuration. When any of the temperature sensors is  
disabled it is not converted by the ADC.  
7.3.3.1 Internal Temperature Sensor  
The AMC7834 device has an on-chip temperature sensor that measures the device die temperature. The  
temperature-sensor results are converted by the device ADC (see the Analog-to-Digital Converter (ADC) section  
for more information). If internal temperature sensor conversion is not needed, it can be disabled in the ADC  
MUX register (address 0x12). When disabled the temperature sensor output is not converted by the ADC.  
The temperature sensor provides 0.25°C resolution over the device operating temperature range. Additionally,  
the AMC7834 internal temperature sensor is specified monotonic down to –55°C. The temperature value is  
stored in 12-bit two’s complement format in the LT-data register (address 0x2D).  
Table 3. Temperature Sensor Data Format  
TEMPERATURE (°C)  
DIGITAL CODE  
1111 0010 0100  
1111 0110 0000  
1111 1001 1100  
1111 1101 1000  
1111 1111 1111  
0000 0000 0000  
0000 0000 0001  
0000 0010 1000  
0000 0110 0100  
0000 1100 1000  
0001 0010 1100  
0001 1001 0000  
0001 1010 0100  
0001 1111 0100  
–55  
–40  
–25  
–10  
–0.25  
0
0.25  
10  
25  
50  
75  
100  
105  
125  
Use Equation 4 and Equation 5 to calculate the positive or negative temperature according to the polarity of the  
temperature data MSB (0 = positive, 1 = negative).  
Code  
Positive Temperature (èC) =  
4
(4)  
(5)  
4096 - Code  
Negative Temperature (èC) =  
4
34  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.3.3.2 Remote Temperature Sensors  
The AMC7834 device includes two remote junction-temperature sensors. The remote sensing transistors can be  
a discrete, small-signal type transistor or a substrate transistor built within the power amplifier. These transistors  
are typically low-cost NPN- or PNP-type transistors such as the 2N3904 and 2N3906. Figure 49 shows the  
recommended connection for NPN and PNP transistors in diode configuration.  
The AMC7834 device also allows PNP transistor configuration as shown in Figure 50. PNP transistor  
configuration for both remote temperature sensors is enabled by setting the RMT-GND-COLL bit to 1 in register  
0x11.  
NOTE  
Pins D1– and D2– are internally shorted. Total parasitic capacitance to AGND on these  
pins must be less than 800 pF.  
AMC7834  
AMC7834  
D+  
D+  
2N3904  
NPN  
2N3906  
PNP  
Dœ  
Dœ  
D+  
D+  
2N3906  
PNP  
2N3906  
PNP  
Dœ  
Dœ  
Figure 49. NPN and PNP Diode Configuration  
Figure 50. PNP Transistor Configuration  
Errors in remote temperature sensor readings are typically the consequence of misalignment in the ideality factor  
and current excitation used by the AMC7834 versus the manufacturer-specified operating current for a given  
transistor. Some manufacturers specify a low-level (ILOW) and high-level (IHIGH) current for the temperature-  
sensing substrate transistors. The AMC7834 uses an ILOW of 7 µA and IHIGH of 112 µA and is designed to work  
with discrete transistors, such as the 2N3904 and SN3906. If an alternative transistor is used, the following  
conditions should be met:  
1. Base-emitter voltage (VBE) > 0.25 V at 7 µA for the highest sensed temperature  
2. Base-emitter voltage (VBE) < 1.20 V at 112 µA for the lowest sensed temperature  
3. Base resistance < 100 Ω  
4. Tight control of VBE characteristics indicated by small variations in hFE (50 to 150)  
The ideality factor (η) is a measured characteristic of a remote temperature sensor diode as compared to an  
ideal one. The AMC7834 is trimmed for η = 1.008. If the selected remote sensing transistor's ideality factor is  
different, the effective η-factor should be adjusted at the system level.  
Remote junction-temperature sensors are usually implemented in a noisy environment. Noise is most often  
created by fast digital signals and can corrupt measurements. A bypass capacitor placed differentially across the  
inputs of the remote temperature sensors can make the application more robust against unwanted coupled  
signals. If filtering is required, its time constant, including any routing resistance, should be limited to 5 µs or less.  
The combined series resistance on the remote temperature sensor pins must be less than 1 kΩ.  
Copyright © 2014–2016, Texas Instruments Incorporated  
35  
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
The two remote temperature sensor results are converted by the device ADC (see the Analog-to-Digital  
Converter (ADC) section for more information). The two remote temperature sensors can be disabled in the ADC  
MUX register (address 0x12). When disabled, the remote temperature sensor outputs are not converted by the  
ADC. The remote temperature values are stored in 12-bit two’s complement format in the RT-data registers  
(address 0x2E and 0x2F) using the same data format as the internal temperature sensor (see Table 3).  
The AMC7834 device enables optimization of the remote temperature measurements by increasing the update  
time. The remote temperature-sensor update time is selected by the RT-SET[2:0] setting in register 0x10.  
Table 4 lists the total update time for the two remote temperature sensors with respect to the RT-SET[2:0]  
setting.  
Table 4. Two Remote Temperature Sensors Update  
Time  
RT-SET[2:0]  
000  
TOTAL UPDATE TIME (ms)  
16  
16  
001  
010  
18  
011  
26  
100  
50  
101  
98  
All others  
Not valid  
Optimal remote temperature sensor accuracy is achieved with the current-sense inputs disabled. In applications  
requiring simultaneous current-sensor and remote temperature sensor conversions it is recommended to  
implement external remote temperature conversion averaging to attain best accuracy results.  
36  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.3.4 Current Sensors  
The AMC7834 device integrates four unidirectional high-side current-sense amplifiers that amplify a small  
differential voltage developed across a current-sense resistor in the presence of high-input common-mode  
voltages. The AMC7834 current-sense amplifiers accept input signals with a common-mode voltage range from 4  
V to 60 V. Each amplifier can operate with differential voltages up to 200 mV.  
As shown in Figure 51, current flowing through RSENSE develops a voltage drop, VSENSE. The voltage across the  
sense resistor, VSENSE, is applied to one of the AMC7834 current-sense amplifier inputs. The current sense  
inputs should be connected as closely as possible to the shunt resistor to minimize any resistance in series with  
the shunt resistance.  
I
SENSE  
4 V to 60 V  
To Load  
R
SENSE  
AMC7834  
SENSEœ  
ADC  
12-b  
V
SENSE  
SENSE+  
Figure 51. AMC7834 Current-Sense Amplifier  
The accuracy of the current measurement depends heavily on the accuracy of the shunt resistor, R(SENSE). The  
use of a Kelvin sense resistor is highly recommended (see Figure 52).  
Sense Resistor  
Current Flow  
from Supply  
Current Flow  
to Load  
SENSE+  
SENSEœ  
AMC7834  
Figure 52. Kelvin Connection to the Sense Resistor  
The sense-resistor value is application dependent and is typically a compromise between small-signal accuracy,  
maximum permissible voltage drop, and allowable power dissipation in the current measurement circuit. For best  
results, the value of the resistor is calculated from the maximum-expected load current, ILmax, and the maximum  
differential voltage supported by the current-sense amplifier (200 mV). High values of R(SENSE) provide better  
accuracy at lower currents by minimizing the effects of the current-sense amplifier offset. Low values of R(SENSE)  
minimize load voltage loss, but at the expense of low current accuracy. In general, a compromise between low  
current accuracy and load circuit losses must be made.  
Copyright © 2014–2016, Texas Instruments Incorporated  
37  
 
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
The maximum differential voltage, VSENSE, supported by the AMC7834 current-sense amplifiers is 200 mV. Use  
Equation 6 to calculate the R(SENSE) value.  
R(SENSE) = VSENSE / ILmax  
(6)  
The maximum power dissipation of the sense resistor should not be exceeded. Use Equation 7 to calculate the  
maximum sense resistor power dissipation.  
PR(SENSE) = VSENSE × ILmax  
(7)  
The current sensors operate as four standalone current-sense amplifiers when the AMC7834 is set in open-loop  
mode (LOOP-EN bit set to 0 in register 0x10). In open-loop mode the current-sense amplifier outputs are  
converted by the device ADC and the results are stored in straight binary format in the CS-Data registers  
(address 0x29 through 0x2B). Use Equation 8 to calculate the differential voltage, VSENSE  
.
CODE ì 0.2  
VSENSE  
=
4096  
(8)  
Alternatively, with the AMC7834 set in closed-loop mode (LOOP-EN bit set to 1 in register 0x10) the current  
sensors operate as part of four independent closed-loop current controllers. In closed-loop operation, four  
autonomous closed-loop current controllers are implemented by continuously adjusting the bipolar DAC outputs  
in response to the current-sense amplifier outputs (see the Closed-Loop Mode section).  
The AMC7834 device enables digital filtering of the current sense measurements to improve their accuracy at the  
cost of a longer update time. The current sense digital filter is enabled by the CS-FILTER[2:0] setting in register  
0x10 and its corresponding transfer function is given by Equation 9.  
1
H z =  
( )  
1- K -1 z-1  
(
)
(9)  
Table 5 lists the K value associated with each of the allowable CS-FILTER[2:0] settings as well as the  
corresponding update time.  
Table 5. Current Sense Digital Filter Configuration  
UPDATE TIME  
CS-FILTER[2:0]  
K
(ms)  
000  
001  
1
2
0.2  
3.4  
010  
4
6.6  
011  
8
13  
100  
16  
25.6  
All others  
Not valid  
38  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.3.5 Drain Switch Control  
The AMC7834 device includes an output-control voltage (PA_ON pin) capable of driving an external PMOS  
switch that turns on and off the drain current to a PA FET. The use of this control signal in conjunction with the  
DAC clamp option allows control of the sequence in which the PA FET is powered up and powered down.  
The OFF and ON states of the PA_ON signal are equal to the PAVDD and AGND pins, respectively. The default  
state of the PA_ON signal is off (PMOS switch off).  
V(DRAIN)  
PMOS Switch  
PA_ON  
PA_ON  
Control  
PAV  
DD  
RF Out  
V(BIAS)  
DAC  
HPA  
PA Controller  
RF In  
Figure 53. PA_ON Operation  
The maximum output voltage is determined by the PAVDD pin and limited to a maximum of 20 V. For PA FETs  
with drain voltages higher than 20 V, tying the PAVDD pin to one of the other supply devices (preferably AVDD  
and scaling the control signal externally is recommended.  
)
The PA_ON signal state can be set through a register write, but it can also be configured to be triggered  
automatically by the ALARMOUT pin, any of the SLEEP signals or by the special AVSS and AVDD monitoring  
circuits.  
For FETs requiring a negative bias voltage, such as GaN, ensuring that the bias voltage remains within an  
acceptable range is crucial otherwise significant and irreversible damage to the FET can occur. The AMC7834  
bipolar DAC operation and clamping mechanism rely on the AVDD and AVSS voltages for proper operation. For  
this reason, when either the AVDD or AVSS voltage falls outside its acceptable range, turning off the drain current  
to the FET is desirable.  
The AVDD detection circuit is set to trigger the PA_ON signal to the OFF state in response to an out of range  
event. Additionally, the AVSS detection alarm can be set to trigger the PA_ON signal to the OFF state by setting  
the PAON_AVSS bit to 1 in the AMC configuration 1 register (address 0x11). The AVSS alarm is set by default to  
prevent the PA_ON output from entering the ON state (PMOS switch on). In this case writing to the PA_ON  
register bit to enable the ON state is ignored. If this additional protection is not needed it can be disabled by  
clearing the PAON_AVSS bit.  
Copyright © 2014–2016, Texas Instruments Incorporated  
39  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.3.6 Programmable Out-of-Range Alarms  
The AMC7834 device is capable of continuously analyzing the four internal ADC monitoring inputs (bipolar DAC-  
output monitoring), current sensors, temperature sensors, and negative supply for normal operation.  
Normal operation is established through the lower and upper threshold registers (address 0x40 through 0x4D).  
When any of the monitored inputs is out of the specified range, an alarm event is issued and the global alarm bit,  
GALARM in the General Status register (address 0x1F), is set (see Figure 54). The alarm status register  
(address 0x1E) indicates the source of the alarm event.  
DAC4 High Alarm  
DAC3 High Alarm  
DAC2 High Alarm  
DAC1 High Alarm  
RESERVED  
15  
14  
13  
12  
11  
10  
9
AV  
Alarm  
SS  
RT2 High Alarm  
RT2 Low Alarm  
8
ALARM STATUS  
0x1E  
GALARM  
RT1 High Alarm  
RT1 Low Alarm  
7
6
5
4
3
2
1
0
LT High Alarm  
LT Low Alarm  
ADCINT4/CS4 Alarm  
ADCINT3/CS3 Alarm  
ADCINT2/CS2 Alarm  
ADCINT1/CS1 Alarm  
Figure 54. AMC7834 Alarm Status Register  
The ALARM-LATCH-DIS bit in the ALARMOUT configuration register (address 0x1B) sets the latching behavior  
for all alarms. When the ALARM-LATCH-DIS bit is cleared to 0 the alarm bits in the alarm status register are  
latched. The alarm bits are referred to as being latched because the bits remain set until read by software. This  
design ensures that out-of-limit events cannot be missed if the software is periodically polling the device. All bits  
are cleared when reading the alarm status register, and all bits are reasserted if the out-of limit condition still  
exists on the next monitoring cycle, unless otherwise noted. When the ALARM-LATCH-DIS bit is set to 1, the  
alarm bits are not latched. The alarm bits in the alarm status register are set to 0 when the error condition  
subsides, regardless of whether the bit is read or not.  
All of the alarms can be set to activate the ALARMOUT pin. The ALARMOUT pin is an open-drain pin and  
therefore an external pullup resistor to a voltage no higher than that of the AVDD pin is required. The ALARMOUT  
output polarity is defined through the ALARMOUT-POLARITY bit in the ALARMOUT configuration register  
(address 0x1B). The default polarity is active low (ALARMOUT-POLARITY = 0). The polarity can be changed to  
active high by setting the ALARMOUT-POLARITY bit to 1. The ALARMOUT pin works as an interrupt to the host  
so that it can query the alarm status register to determine the alarm source. Any alarm event can activate the pin  
as long as the alarm is not masked in the ALARMOUT configuration register. When an alarm event is masked,  
the occurrence of the event sets the corresponding status bit in the alarm status register, but does not activate  
the ALARMOUT pin.  
40  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
The ALARMOUT status can be configured to automatically clamp specific DACs or set the PA_ON signal to the  
OFF state. The ALARMOUT clamp register selects the DAC or DAC pairs that enter the clamp mode as well as  
the PA_ON behavior when the ALARMOUT pin is active. Clearing the alarm events does not automatically bring  
the DAC or DAC pairs back to normal operation or return the PA_ON to the ON state.  
7.3.6.1 ADC Internal Monitoring Input Out-of-Range Alarm  
The AMC7834 device can provide out-of-range detection for the four internal ADC inputs monitoring the bipolar  
DAC outputs when operating in closed-loop mode. The ADCINT/CS-SELECT bit in register 0x1B must be  
cleared to 0 to enable out-of-range detection on the internal ADC inputs.  
Figure 55 shows the out-of-range detection block. When the measurement is out-of-range, the corresponding  
alarm bit in the alarm status register is set to 1 to flag the out-of-range condition. The values in the  
ADCINTn/CSn upper and lower threshold registers (address 0x40 through 0x47) define the upper- and lower-  
bound thresholds for these inputs when the ADCINT/CS-SELECT bit in the ALARMOUT configuration register  
(address 0x1B) is cleared to 0.  
ADCINTn-Upper-  
Threshold Value  
(upper bound)  
œ
+
DACn Monitoring  
Input  
(n = 1 to 4)  
ADCINTn-  
ALARM  
œ
ADCINTn-Lower-  
Threshold Value  
(lower bound)  
+
Figure 55. ADC Monitoring Out-of-Range Alarm  
7.3.6.2 Current-Sense Out-of-Range Alarm  
The AMC7834 device is capable of providing out-of-range detection for the four current-sense inputs when  
operating in open-loop mode. The current-sense out-of-range detection is only active if the ADCINT/CS-SELECT  
bit in register 0x1B is set to 1.  
Figure 56 shows the current sense detection block. When the measurement is out-of-range, the corresponding  
alarm bit in the alarm status register is set to 1 to flag the out-of-range condition. The values in the  
ADCINTx/CSx upper and lower threshold registers (address 0x40 through 0x47) define the upper- and lower-  
bound thresholds for these inputs when the ADCINT/CS-SELECT bit in the ALARMOUT configuration register  
(address 0x1B) is set to 1.  
CSn-Upper-Threshold  
Value  
œ
(upper bound)  
+
Current Sense  
Input CSn  
(n = 1 to 4)  
ADCINTn-  
ALARM  
œ
CSn-Lower-Threshold  
Value  
+
(lower bound)  
Figure 56. Current-Sense Out-of-Range Alarm  
Copyright © 2014–2016, Texas Instruments Incorporated  
41  
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.3.6.3 Temperature Sensors Out-of-Range Alarm  
The AMC7834 device also includes high-limit or low-limit detection for the temperature sensors. Figure 57 shows  
the temperature detection block. The values in the temperature sensors upper and lower threshold registers  
(address 0x48 through 0x4D) set the limits for the temperature sensors. The temperature sensors can issue  
either a high alarm (HIGH-ALARM bit) or a low alarm (LOW-ALARM bit) in the alarm status register (address  
0x1E) depending on whether the high or low thresholds were exceeded. To implement single, upper-bound  
threshold detection for the temperature sensors, the host processor can set the upper-bound threshold to the  
desired value and the lower-bound threshold to the default value. For lower-bound threshold detection, the host  
processor can set the lower-bound threshold to the desired value and the upper-bound threshold to the default  
value.  
(RT1, RT2, LT)  
High Threshold  
(upper bound)  
œ
HIGH-ALARM Bit  
+
Temperature  
Data  
(RT1, RT2, LT)  
œ
LOW-ALARM Bit  
(RT1, RT2, LT)  
Low Threshold  
(lower bound)  
+
Figure 57. Temperature Out-of-Range Alarm  
7.3.6.4 Bipolar DACs High Alarm  
The AMC7834 device includes configurable upper-limit detection for the bipolar DACs in closed-loop mode.  
Figure 58 shows the alarm detection block. The values in the bipolar DAC upper threshold registers (address  
0x4E through 0x4F) set a limit other than full-scale limit for the bipolar DACs. When a closed-loop controller  
attempts to set its bipolar DAC to a value exceeding the corresponding upper-threshold register, the DAC is  
instead updated with the threshold value and a DAC high-alarm is issued in the alarm status register.  
DACn Upper Threshold  
(n = 1 to 4)  
œ
DACn-HIGH-ALARM  
+
DACn Data Register  
(n = 1 to 4)  
Figure 58. Bipolar DAC High Alarm  
7.3.6.5 AVSS Detection Alarm  
The device continuously monitors the AVSS supply to ensure it is within the required operating threshold. By  
setting the PAON_AVSS bit to 1 in the AMC configuration 1 register (address 0x11) the AVSS alarm can be set to  
automatically set the PA_ON pin to the OFF state and prevent it from getting configured back to the ON state  
unless the AVSS alarm has been cleared.  
7.3.6.6 AVDD Detection Alarm  
The device continuously monitors the AVDD supply to ensure it is within the required operating threshold. An  
AVDD alarm initiates a POR event which sets the PA_ON pin to the OFF state, bipolar DACs to the AVSS clamp  
mode and auxiliary DACs to clamp mode.  
42  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.3.6.7 Hysteresis  
If a monitored signal is out of range and the alarm is enabled, the corresponding alarm bit is set to 1. However,  
the alarm condition is cleared only when the conversion result returns either a value lower than the high  
threshold register setting or higher than the low threshold register setting by the number of codes specified in the  
hysteresis setting (Figure 59). The hysteresis registers (address 0x50 through 0x56) store the hysteresis value  
for the programmable alarms. The hysteresis is a programmable value between 0 LSB to 127 LSB for the  
internal ADC monitoring and current-sense alarms and 0°C to 31°C for the temperature-sensor alarms.  
High Threshold  
Hysteresis  
Hysteresis  
Low Threshold  
Over High Alarm  
Below Low Alarm  
Figure 59. Device Hysteresis  
7.3.6.8 False-Alarm Protection  
To prevent false alarms, an alarm event is only registered when the monitored signal is out of range for an N  
number of consecutive conversions. If the monitored signal returns to the normal range before N consecutive  
conversions, an alarm event is not issued. The false alarm factor, N, can be configured in the AMC configuration  
1 register (address 0x11).  
Copyright © 2014–2016, Texas Instruments Incorporated  
43  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.3.7 Reference Specifications  
The AMC7834 device includes a high-performance 2.5 V reference. Operation from an external reference is also  
supported.  
7.3.7.1 Internal Reference Operation  
The AMC7834 device includes a 2.5 V bipolar transistor-based, precision bandgap reference. The internal  
reference is externally available at the REF_OUT pin and can be used to drive the ADC and eight DACs by  
connecting the REF_OUT pin to the REF_IN pin (see Figure 60). A 10-nF capacitor is recommended between  
REF_OUT and AGND for noise filtering. An external buffer amplifier with a high-impedance input must be used to  
drive any external load. A compensation capacitor (4.7 μF, typical) should be connected between the REF_CMP  
pin and the AGND4 pin.  
10 nF  
(Minimize  
inductance to pin)  
Internal  
Reference  
(2.5 V)  
REF_OUT  
REF_IN  
C > 4.7 µF  
(Minimize  
inductance to pin)  
REF_CMP  
DAC Reference  
DAC1  
12-b  
ADC1  
ADC2  
DAC2  
12-b  
ADC  
12-b  
ADC4  
AUXDAC4  
12-b  
Figure 60. Internal Reference Operation  
44  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.3.7.2 External Reference Operation  
The AMC7834 device can also operate from an external reference. The external reference can be applied to the  
REF_IN pin and is used to drive both the ADC and the eight DACs through separate buffers (see Figure 61). As  
with the internal-reference case a compensation capacitor (4.7 μF, typical) should be connected between the  
REF_CMP pin and the AGND4 pin. The REF_OUT pin can be left floating if unused.  
REF_OUT  
Internal  
Reference  
(2.5 V)  
External  
Reference  
(2.5 V)  
REF_IN  
C > 4.7 µF  
(Minimize  
inductance to pin)  
REF_CMP  
DAC Reference  
DAC1  
12-b  
ADC1  
ADC2  
DAC2  
12-b  
ADC  
12-b  
ADC4  
AUXDAC4  
12-b  
Figure 61. External Reference Operation  
Copyright © 2014–2016, Texas Instruments Incorporated  
45  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.3.8 General Purpose I/Os  
The AMC7834 device includes four GPIO pins. The GPIO pins can receive an input or produce an output (see  
Figure Figure 62). When the GPIOn pin acts as an output, it has an open-drain, and the status of this pin is  
determined by the corresponding GPIO bit in the GPIO register (address 0x58). The output state is high  
impedance when the GPIOn bit is set to 1, and is logic low when the GPIOn bit is cleared to 0.  
NOTE  
A 10-kΩ pullup resistor is required when using a GPIO pin as an output. The pullup  
voltage must not exceed the AVDD supply.  
To use a GPIO pin as an input, the corresponding GPIO bit in the GPIO register must be set to 1. When a GPIO  
pin acts as input, the digital value on the pin is acquired by reading the corresponding GPIO bit. After a power-on  
reset or any forced reset, all GPIO bits are set to 1, and the GPIO pins enter a high impedance state.  
AVDD  
GPIOn  
ENABLE  
GPIOn Bit  
(when writing)  
GPIOn Bit  
(when reading)  
Figure 62. AMC7834 GPIO Pin  
46  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.4 Device Functional Modes  
The AMC7834 four high-side current-sense amplifiers and bipolar DACs operate in one of the following modes  
as selected by the LOOP-EN bit in register 0x10:  
Open-Loop Mode  
Closed-Loop Mode  
7.4.1 Open-Loop Mode  
The AMC7834 is set by default in open-loop mode. In open-loop mode, the current-sense amplifiers and bipolar  
DACs operate independently.  
The AMC7834 four current sensors can operate with differential voltages up to 200 mV and accept common-  
mode voltages from 4 V to 60 V. The current-sense amplifier outputs are converted by the device ADC and the  
results are stored in straight binary format in the CS-Data registers (address 0x29 through 0x2B) to be accessed  
by a digital control device for further processing.  
The AMC7834 four bipolar DACs are configured as DAC pairs (DAC1-DAC2 and DAC3-DAC4). The output  
range for each bipolar DAC pair can be configured through the DAC Range register to one of the following: 0 to 5  
V, -5 to 0V, or -4 to 1 V. The POR and clamp value for each DAC pair is set by the pins VCLAMP1 (for the  
DAC1-DAC2 pair) and VCLAMP2 (for the DAC3-DAC4 pair) to any voltage between AVSS and 0 V. The full-scale  
output range of the bipolar DACs is limited by the power supplies, AVDD and AVSS. In open-loop mode the DAC  
output voltage is set by by a digital controller by writing the corresponding code in straight binary format to the  
DAC data registers (address 0x30 through 0x33).  
Table 6 lists the typical register configurations for open-loop mode.  
Table 6. Open-Loop Mode Register Configuration  
REGISTER SETTING  
LOOP-EN  
REGISTER ADDRESS  
0x10  
COMMENT  
Set to 0  
CS-FILTER[2:0]  
0x10  
Configurable  
Set to 0  
ADCINTn  
0x12  
LOOPn-SET[3:0]  
DACn-SYNC  
0x14  
Unused  
0x15  
Configurable  
Set to 1  
ADCINT/CS-SELECT  
DACnnLOOP-ALARMEN  
DACn-HIGH-ALARM  
ADCINTn-DATA[11:0]  
CSn-DATA[11:0]  
0x1B  
0x1B  
Set to 0  
0x1E  
Unused  
0x20 to 0x23  
0x28 to 0x2B  
0x30 to 0x33  
0x38 to 0x3B  
0x4E to 0x4F  
Unused  
Readable  
Configurable  
Unused  
DACn-DATA[11:0]  
CLOSEDLOOPn[11:0]  
DACnn-UP-THRES[11:0]  
Unused  
Copyright © 2014–2016, Texas Instruments Incorporated  
47  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.4.2 Closed-Loop Mode  
In closed-loop mode the current sensors and bipolar DACs operate as four independent closed-loop current  
controllers. In closed-loop operation, four autonomous closed-loop current controllers are implemented by  
continuously adjusting the bipolar DAC outputs in response to the current-sense amplifier outputs.  
Table 7 lists the typical register configurations for closed-loop mode.  
Table 7. Closed-Loop Mode Register Configuration  
REGISTER SETTING  
LOOP-EN  
REGISTER ADDRESS  
0x10  
COMMENT  
Set to 1  
CS-FILTER[2:0]  
0x10  
Configurable  
Set to 1  
ADCINTn  
0x12  
LOOPn-SET[3:0]  
DACn-SYNC  
0x14  
Configurable  
Unused  
0x15  
ADCINT/CS-SELECT  
DACnnLOOP-ALARMEN  
DACn-HIGH-ALARM  
ADCINTn-DATA[11:0]  
CSn-DATA[11:0]  
0x1B  
Set to 0  
0x1B  
Configurable  
Used  
0x1E  
0x20 to 0x23  
0x28 to 0x2B  
0x30 to 0x33  
0x38 to 0x3B  
0x4E to 0x4F  
Readable  
Unused  
DACn-DATA[11:0]  
CLOSEDLOOPn[11:0]  
DACnn-UP-THRES[11:0]  
Unused  
Configurable  
Configurable  
Figure 63 shows a typical analog implementation of a closed-loop current controller.  
V(DRAIN)  
Current Sense  
Amplifier  
R(SENSE)  
DAC  
+
PA FET  
Gate Drive  
Amplifier  
Figure 63. Analog Closed-Loop Current Controller  
Although the analog current controller is capable of setting and maintaining a given drain current (and therefore,  
gain) through a PA FET it lacks the flexibility to scale easily to a large variety of FETs. The AMC7834  
implements four closed-loop current controllers as a digital system thus giving it higher flexibility while satisfying  
or improving on the specifications given by a typical analog closed-loop current controller.  
48  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
VDRAIN  
Current-Sense  
Amplifier  
Serial Interface  
SENSE+  
Closed Loop Settling  
Time Register  
Closed Loop Register  
I(DRAIN)  
ADC  
R(SENSE)  
SENSE-  
RC  
Filter  
Closed Loop  
Register  
Slew-Rate  
Control  
Integrator  
Bipolar DAC  
PA FET  
+
Figure 64. AMC7834 Closed-Loop Current Controller  
Each of the four digital control loops consists of a digital integrator and a bipolar DAC in the forward path to drive  
the gate of a PA FET. A high-side current-sense amplifier in the feedback path senses the drain bias current and  
its output is converted by the device ADC.  
As with the DACs in open-loop operation, the closed-loop current controllers can be set to clamp mode. When a  
current-controller goes into clamp mode the bipolar DAC output is immediately set to its corresponding clamp  
voltage and current-sense conversions are stopped. Note that with the exception of the current-sense inputs all  
other monitoring inputs continue to be converted by the device ADC while in clamp mode. Clamping does not  
clear the closed-loop state making it possible to return to the same voltage being output before the clamp event  
was issued.  
Since the drain current does not immediately update in response to the out-of-clamp gate voltage, it is  
recommended to stop the ADC conversion prior to leaving the clamp state and re-starting conversion only after  
the drain current has stabilized. The stabilization time is dependent on the filtering at the bipolar DAC output and  
the PA FET characteristics.  
The target drain current is set by the Closed Loop registers (address 0x38 to 0x3B) and is given by Equation 10.  
CLOSEDLOOPn 11: 0 ì V  
[
]
ref  
I(DRAIN)  
=
R
(
SENSE
)
ì 51200  
where  
I(DRAIN) is the PA drain current (in Amperes)  
CLOSEDLOOPn[11:0] is the 12-bit digital code that is input to the control loop to set I(DRAIN)  
Vref is the device reference voltage  
R(SENSE) is the sense resistor resistance (in Ohms)  
(10)  
The control loop sets the target drain current by continuously maintaining a constant voltage across the shunt  
resistor (V(SENSE) = I(DRAIN) × R(SENSE)). The control loop continuously attempts to zero-out the error at the input of  
the integrator by adjusting the DAC output voltage and consequently keeping the drain current constant.  
Assuming negligible drift in the sense resistor, any variation in the drain current due to changes in the PA FET  
characteristics over time and temperature are automatically tracked and corrected.  
Copyright © 2014–2016, Texas Instruments Incorporated  
49  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Based on the target drain current and required PA gain ramp rate, the Closed Loop input code step can be  
divided by the slew-rate control block into smaller steps that are applied to the control loop every 200 μs. The  
slew-rate for each control loop is set by the Closed Loop Settling Time register (address 0x14). Issuing multiple,  
smaller code steps over time instead of one large code step helps achieve a more linear PA-gain ramp rate.  
Table 8 shows the control-loop settling time as a function of the slew-rate control setting.  
Table 8. Closed-Loop Settling Time  
LOOPn-SET[3:0]  
0000  
SETTLING TIME (ms)  
0.8  
1.6  
0001  
0010  
2.4  
0011  
3.2  
0100  
4.8  
0101  
6.4  
0110  
9.6  
0111  
12.8  
19.2  
25.6  
28.8  
Not valid  
1000  
1001  
1010  
All others  
Under normal conditions the code output by the slew-rate control block equals the ADC output in steady state.  
When the loop is disturbed as a result of a change on the target drain current or PA characteristics, the error  
between the slew-rate controller and ADC outputs is accumulated every 200 μs by the digital integrator. An  
optional external RC filter at the DAC output helps to smooth out the DAC steps at the input of the PA FET gate.  
The external filter time constant must be less than 50 µs.  
The gain from the DAC output to the ADC input is given by Equation 11.  
gm(PA_FET) × R(SENSE)  
where  
gm(PA_FET) is the transconductance for the PA FET  
(11)  
This value should be less than 0.8 to ensure stability of the control loop.  
50  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.5 Programming  
The AMC7834 device is controlled through a flexible four-wire serial interface that is compatible with SPI-type  
interfaces used on many microcontrollers and DSP controllers. The interface provides read and write (R/W)  
access to all registers of the AMC7834 device.  
Each serial-interface access cycle is exactly 24 bits long. A frame is initiated by asserting the CS pin low. The  
frame ends when the CS pin is deasserted high. The first bit transferred is the R/W bit. The next 7 bits are the  
register address (128 addressable registers), and the remaining 16 bits are data. For all writes, data is clocked in  
on the rising edge of SCLK. If the write access is not equal to 24 clocks, the data bits are not committed. On a  
read access, data is clocked out on the falling edge of the serial interface clock, SCLK, on the SDO pin.  
Figure 65 and Figure 66 show the access protocol used by the interface. Data is accepted as MSB first.  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCLK  
SDI  
R/W A6 A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
Figure 65. Serial Interface Write Bus Cycle  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCLK  
SDI  
R/W  
A6 A5 A4 A3 A2 A1 A0  
SDO  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 66. Serial Interface Read Bus Cycle  
Copyright © 2014–2016, Texas Instruments Incorporated  
51  
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6 Register Maps  
Table 9. Memory Map  
ADDRESS  
0x00 to 0x01  
0x02  
TYPE  
DEFAULT  
REGISTER NAME  
ADDRESS  
0x30  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
REGISTER NAME  
Reserved  
Power Mode  
DAC1-Data  
DAC2-Data  
R/W  
0000  
0x31  
0x03  
Reserved  
0x32  
DAC3-Data  
0x04  
R
0C34  
Device ID  
0x33  
DAC4-Data  
0x05  
Reserved  
0x34  
AUXDAC1-Data  
0x06  
R
0001  
Version ID  
0x35  
AUXDAC2-Data  
0x07 to 0x0B  
0x0C  
0x0D – 0x0F  
0x10  
Reserved  
0x36  
AUXDAC3-Data  
R
0451  
Vendor ID  
0x37  
AUXDAC4-Data  
Reserved  
0x38  
ClosedLoop1  
R/W  
R/W  
R/W  
0300  
036A  
0000  
AMC Configuration 0  
AMC Configuration 1  
ADC MUX  
0x39  
ClosedLoop2  
0x11  
0x3A  
ClosedLoop3  
0x12  
0x3B  
ClosedLoop4  
0x13  
Reserved  
0x3C to 0x3F  
0x40  
Reserved  
0x14  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
2222  
0000  
0000  
003F  
FF00  
FF00  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
Closed Loop Settling Time  
DAC Sync  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0FFF  
0000  
0FFF  
0000  
0FFF  
0000  
0FFF  
0000  
07FF  
0800  
07FF  
0800  
07FF  
0800  
0FFF  
0FFF  
0008  
0008  
0008  
0008  
0008  
0008  
0008  
ADCINT1/CS1-Upper-Thresh  
ADCINT1/CS1-Lower-Thresh  
ADCINT2/CS2-Upper-Thresh  
ADCINT2/CS2-Lower-Thresh  
ADCINT3/CS3-Upper-Thresh  
ADCINT3/CS3-Lower-Thresh  
ADCINT4/CS4-Upper-Thresh  
ADCINT4/CS4-Lower-Thresh  
LT-Upper-Thresh  
LT-Lower-Thresh  
RT1-Upper-Thresh  
RT1-Lower-Thresh  
RT2-Upper-Thresh  
RT2-Lower-Thresh  
DAC12-Upper-Thresh  
DAC34-Upper-Thresh  
ADCINT1/CS1-Hysteresis  
ADCINT2/CS2-Hysteresis  
ADCINT3/CS3-Hysteresis  
ADCINT4/CS4-Hysteresis  
LT-Hysteresis  
0x15  
0x41  
0x16  
DAC Range  
0x42  
0x17  
CLAMP Configuration  
SLEEP1 Configuration  
SLEEP2 Configuration  
ALARMOUT Clamp  
ALARMOUT Configuration  
DAC/ADC Trigger  
Software Reset  
Alarm Status  
0x43  
0x18  
0x44  
0x19  
0x45  
0x1A  
0x46  
0x1B  
0x47  
0x1C  
0x1D  
0x1E  
0x48  
W
0x49  
R
0x4A  
0x1F  
R
AMC Status  
0x4B  
0x20  
R
ADC1-Internal-Data  
ADC2-Internal-Data  
ADC3-Internal-Data  
ADC4-Internal-Data  
ADC1-External-Data  
ADC2-External-Data  
ADC3-External-Data  
ADC4-External-Data  
CS1-Data  
0x4C  
0x21  
R
0x4D  
0x22  
R
0x4E  
0x23  
R
0x4F  
0x24  
R
0x50  
0x25  
R
0x51  
0x26  
R
0x52  
0x27  
R
0x53  
0x28  
R
0x54  
0x29  
R
CS2-Data  
0x55  
RT1-Hysteresis  
0x2A  
R
CS3-Data  
0x56  
RT2-Hysteresis  
0x2B  
R
CS4-Data  
0x57  
Reserved  
0x2C  
0x2D  
0x2E  
Reserved  
0x58  
R/W  
000F  
GPIO  
R
0000  
0000  
0000  
LT-Data  
0x59 to 0x5F  
0x60 to 0x6F  
0x70 to 0x7F  
Reserved  
R
RT1-Data  
Reserved  
0x2F  
R
RT2-Data  
Reserved  
52  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Register Maps (continued)  
7.6.1 Power Mode: Address 0x02  
7.6.1.1 Power Mode Register (address = 0x02) [reset = 0x000]  
Figure 67. Power Mode Register (R/W)  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
Reserved  
R/W-00h  
5
4
3
2
Reserved  
R/W-00h  
POWER-MODE  
R/W-00  
Table 10. Power Mode Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
All zeros  
00  
Description  
15-2  
1–0  
Reserved  
Reserved for factory use.  
POWER-MODE  
Power down mode for the AMC7834 device.  
See Table 11.  
Table 11. POWER-MODE Configuration  
ADC  
Reference  
Buffer  
DAC  
Reference  
Buffer  
POWER  
MODE  
Current  
Sensors  
Auxiliary  
DACs  
Bipolar  
DACs  
Value  
Reference  
ADC  
Power-Down  
Mode  
0x  
10  
11  
ON  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
Active Mode  
Reserved  
Mode  
Not valid. Reserved for factory use.  
7.6.2 Device Identification: Address 0x04 through 0x0C  
7.6.2.1 Device ID Register (address = 0x04) [reset = 0x0C34]  
Figure 68. Device ID Register (R)  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICEID  
R-0Ch  
4
3
DEVICEID  
R-34h  
Table 12. Device ID Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
DEVICEID  
R
0C34h  
Device ID.  
Copyright © 2014–2016, Texas Instruments Incorporated  
53  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.2.2 Version ID Register (address = 0x06) [reset = 0x0001]  
Figure 69. Version ID Register (R)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
VERSIONID  
R-00h  
VERSIONID  
R-01h  
Table 13. Version ID Register Field Descriptions  
Bit  
15-0  
Field  
VERSIONID  
Type  
Reset  
Description  
AMC7834 version ID. Subject to change.  
R
0001h  
7.6.2.3 Vendor ID Register (address = 0x0C) [reset = 0x0451]  
Figure 70. Vendor ID Register (R)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
VENDORID  
R-04h  
VENDORID  
R-51h  
Table 14. Vendor ID Register Field Descriptions  
Bit  
15-0  
Field  
VENDORID  
Type  
Reset  
Description  
R
0451h  
Vendor ID.  
54  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.3 General Device Configuration: Address 0x10 through 0x16  
7.6.3.1 AMC Configuration 0 Register (address = 0x10) [reset = 0x0300]  
Figure 71. AMC Configuration 0 Register (R/W)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
R/W-000  
CMODE  
R/W-0  
Reserved  
R/W-0  
CS-FILTER[2:0]  
R/W-011  
7
6
5
4
3
2
1
0
Reserved  
R/W-0  
RT-SET[2:0]  
R/W-000  
Reserved  
R/W-000  
LOOP-EN  
R/W-0  
Table 15. AMC Configuration 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
Reserved  
CMODE  
R/W  
000  
Reserved for factory use.  
12  
R/W  
0
0: Autonomous ADC conversion  
1: Direct-mode ADC conversion  
11  
Reserved  
R/W  
R/W  
0
Reserved for factory use.  
10-8  
CS-FILTER[2:0]  
011  
Current sense filter setting. Improves noise of current sensors  
measurements by trading off the update time. The digital filter  
has the transfer function:  
1
H z =  
( )  
1- K -1 z-1  
(
)
(12)  
See Table 16 for its configuration.  
7
Reserved  
R/W  
R/W  
0
Reserved for factory use.  
6-4  
RT-SET[2:0]  
000  
Improves noise of the remote temperature sensors  
measurements by trading off the update time. See Table 17 for  
its configuration.  
3-1  
0
Reserved  
LOOP-EN  
R/W  
R/W  
000  
0
Reserved for factory use.  
When set to 1 enables closed-loop mode operation.  
Table 16. CS-FILTER Configuration  
CS-FILTER[2:0]  
K
Approximate Update Time (ms)  
000  
001  
1
0.2  
3.4  
6.6  
13  
2
010  
4
8 (default)  
16  
011  
100  
25.6  
All others  
Not valid  
Table 17. RT-SET Configuration  
RT-SET[2:0]  
Two Remote Sensors Update Time (ms)  
000  
001  
16  
16  
010  
18  
011  
26  
100  
50  
101  
98  
All others  
Not valid  
Copyright © 2014–2016, Texas Instruments Incorporated  
55  
 
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.3.2 AMC Configuration 1 Register (address = 0x11) [reset = 0x036A]  
Figure 72. AMC Configuration 1 Register (R/W)  
15  
14  
13  
5
12  
11  
3
10  
2
9
8
0
DAVPIN-EN  
R/W-0  
DAVPIN-SEL  
R/W-0  
Reserved  
R/W-000  
CH-FALR[2:0]  
R/W-011  
7
6
4
1
RMT-GND-  
COLL  
PAON_AVSS  
LT-FALR[1:0]  
R/W-10  
RT2-FALR[1:0]  
R/W-10  
RT1-FALR[1:0]  
R/W-10  
R/W-0  
R/W-1  
Table 18. AMC Config1 Field Descriptions  
Bit  
Field  
DAVPIN-EN  
Type  
Reset  
Description  
15  
R/W  
0
When set to 1 it enables the DAV/ADC_RDY pin output function.  
When cleared to 0 the DAV/ADC_RDY pin is in high impedance  
mode.  
14  
DAVPIN-SEL  
R/W  
0
When cleared to  
DAV/ADC_RDY pin operates as a DAV pin.  
0
and if DAVPIN-EN is equal to  
1
the  
the  
When set to and if DAVPIN-EN is equal to 1  
1
DAV/ADC_RDY pin operates as an ADC_RDY pin.  
13-11  
10  
Reserved  
R/W  
R/W  
000  
011  
Reserved for factory use.  
CH-FALR[2:0]  
False alarm protection for ADC channels. Use the following  
configurations for the consecutive samples before the alarm is  
set:  
000: 1  
001: 4  
010: 8  
011: 16 (default)  
100: 32  
101: 64  
110: 128  
111: 256  
7
6
RMT-GND-COLL  
PAON_AVSS  
R/W  
R/W  
0
1
When set to 1 enables PNP transistor configuration on both  
remote temperature sensors.  
When PAON_AVSS = 1 an AVSS alarm event automatically  
switches the PA_ON pin to the OFF state.  
The AVSS alarm must be cleared before the PA_ON pin can be  
switch back to the ON state.  
When PAON_AVSS = 0 the PA_ON pin is unaffected by an  
AVSS alarm event.  
5-4  
LT-FALR[1:0]  
R/W  
10  
False alarm protection for local temperature sensor. Use the  
following configurations for the consecutive samples before the  
alarm is set:  
00: 1  
01: 2  
10: 4 (default)  
11: 8  
56  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Table 18. AMC Config1 Field Descriptions (continued)  
Bit  
Field  
RT2-FALR[1:0]  
Type  
Reset  
Description  
3-2  
R/W  
10  
False alarm protection for remote temperature sensor 2 (D2+,  
D2–). Use the following configurations for the consecutive  
samples before the alarm is set:  
00: 1  
01: 2  
10: 4 (default)  
11: 8  
1–0  
RT1-FALR[1:0]  
R/W  
10  
False alarm protection for remote temperature sensor 1 (D1+,  
D1–). Use the following configurations for the consecutive  
samples before the alarm is set:  
00: 1  
01: 2  
10: 4 (default)  
11: 8  
7.6.3.3 ADC MUX Register (address = 0x12) [reset = 0x0000]  
Figure 73. ADC MUX Register (R/W)  
15  
14  
LT  
13  
12  
RT1  
11  
CS4  
10  
9
8
Reserved  
R/W-0  
RT2  
CS3  
CS2  
CS1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7
6
5
4
3
2
1
0
ADCEXT4  
R/W-0  
ADCEXT3  
R/W-0  
ADCEXT2  
R/W-0  
ADCEXT1  
R/W-0  
ADCINT4  
R/W-0  
ADCINT3  
R/W-0  
ADCINT2  
R/W-0  
ADCINT1  
R/W-0  
Table 19. ADC MUX Register Field Descriptions  
Bit  
15  
14  
13  
12  
11  
10  
9
Field  
Reserved  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
When set to 1 the corresponding analog input channel to the  
ADC mux is accessed during an ADC conversion cycle.  
LT  
When cleared to 0 the corresponding input channel to the ADC  
mux is ignored during an ADC conversion cycle.  
RT2  
RT1  
CS4  
CS3  
CS2  
8
CS1  
7
ADCEXT4  
ADCEXT3  
ADCEXT2  
ADCEXT1  
ADCINT4  
ADCINT3  
ADCINT2  
ADCINT1  
6
5
4
3
2
1
0
Copyright © 2014–2016, Texas Instruments Incorporated  
57  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.3.4 Closed Loop Settling Time Register (address = 0x14) [reset = 0x2222]  
Figure 74. Closed Loop Settling Time Register (R/W)  
15  
7
14  
LOOP4-SET[3:0]  
R/W-0010  
13  
12  
4
11  
3
10  
LOOP3-SET[3:0]  
R/W-0010  
9
8
0
6
5
2
1
LOOP2-SET[3:0]  
R/W-0010  
LOOP1-SET[3:0]  
R/W-0010  
Table 20. Closed Loop Settling Time Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0010  
0010  
0010  
0010  
Description  
15-12  
11–8  
7-4  
LOOP4-SET[3:0]  
LOOP3-SET[3:0]  
LOOP2-SET[3:0]  
LOOP1-SET[3:0]  
Slew rate controller. Sets the maximum voltage transition rate of  
each closed-loop current controller. See Table 21 for its  
configuration.  
3-0  
Table 21. Closed-Loop Settling Time Configuration  
LOOPn-SET[3:0]  
Settling Time (ms)  
0000  
0001  
0.8  
1.6  
0010  
2.4  
0011  
3.2  
0100  
4.8  
0101  
6.4  
0110  
9.6  
0111  
12.8  
19.2  
25.6  
28.8  
Not valid  
1000  
1001  
1010  
All others  
58  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.3.5 DAC Sync Register (address = 0x15) [reset = 0x0000]  
Figure 75. DAC Sync Register (R/W)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
R/W-00h  
7
6
5
4
3
2
1
0
AUXDAC4-  
SYNC  
AUXDAC3-  
SYNC  
AUXDAC2-  
SYNC  
AUXDAC1-  
SYNC  
DAC4-SYNC  
DAC3-SYNC  
DAC2-SYNC  
DAC1-SYNC  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 22. DAC Sync Register Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
15-8  
R/W  
0x00  
Reserved for factory use.  
7
6
5
4
3
2
1
0
AUXDAC4-SYNC  
AUXDAC3-SYNC  
AUXDAC2-SYNC  
AUXDAC1-SYNC  
DAC4-SYNC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
When set to  
synchronous-mode.  
1 the corresponding DAC output is set to  
When cleared to 0 the corresponding DAC output is set to  
asynchronous-mode.  
In closed-loop mode DAC1, DAC2, DAC3 and DAC4 are always  
in asynchronous-mode.  
DAC3-SYNC  
DAC2-SYNC  
DAC1-SYNC  
7.6.3.6 DAC Range Register (address = 0x16) [reset = 0x0000]  
Figure 76. DAC Range Register (R/W)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Reserved  
R/W-00h  
7
6
5
4
3
2
AUXDAC4-  
RANGE  
AUXDAC3-  
RANGE  
AUXDAC2-  
RANGE  
AUXDAC1-  
RANGE  
DAC34-RANGE[1:0]  
R/W-00  
DAC12-RANGE[1:0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-00  
Table 23. DAC Range Register Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
15-8  
R/W  
0x00  
Reserved for factory use.  
7
6
AUXDAC4-RANGE  
AUXDAC3-RANGE  
AUXDAC2-RANGE  
AUXDAC1-RANGE  
DAC34-RANGE[1:0]  
DAC12-RANGE[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
When cleared to 0 the corresponding AUXDAC output range is 0  
to 5 V.  
0
When set to 1 the corresponding AUXDAC output range is 2.5 to  
7.5 V.  
5
0
4
0
3-2  
1–0  
00  
00  
Sets the bipolar DAC output range. Use the following  
configurations for the DAC output range:  
00: –4 to 1 V  
01: –5 to 0 V  
10: –5 to 0 V  
11: 0 to 5 V  
Copyright © 2014–2016, Texas Instruments Incorporated  
59  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.4 Clamp and Alarm Configuration: Address 0x17 through 0x1B  
7.6.4.1 CLAMP Configuration Register (address = 0x17) [reset = 0x003F]  
Figure 77. CLAMP Configuration Register (R/W)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Reserved  
R/W-00h  
7
6
5
4
3
2
Reserved  
PAON  
AUXDAC4-  
CLAMP  
AUXDAC3-  
CLAMP  
AUXDAC2-  
CLAMP  
AUXDAC1-  
CLAMP  
DAC34-CLAMP DAC12-CLAMP  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1 R/W-1  
Table 24. CLAMP Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-7  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
Direct control of the PA_ON pin.  
6
PAON  
R/W  
0
When cleared to 0 the PA_ON pin is in the OFF state (PAVDD).  
When set to 1 the PA_ON pin is in the ON state (AGND).  
When read, the value of this bit reflects the state of the PA_ON  
pin.  
5
4
3
2
1
0
AUXDAC4-CLAMP  
AUXDAC3-CLAMP  
AUXDAC2-CLAMP  
AUXDAC1-CLAMP  
DAC34-CLAMP  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
This register uses software to force the corresponding DAC into  
clamp.  
If 1, the corresponding DAC or DAC pair is forced into  
clamp.  
If 0, the corresponding DAC or DAC pair is restored to  
normal operation.  
DAC12-CLAMP  
If a DAC or DAC pair is in clamp mode through a SLEEP pin the  
corresponding clamp bit is automatically set to 1.  
60  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.4.2 SLEEP1 Configuration Register (address = 0x18) [reset = 0xFF00]  
Figure 78. SLEEP1 Configuration Register (R/W)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
PAON-  
SNOOZE1  
AUXDAC4-  
SNOOZE1  
AUXDAC3-  
SNOOZE1  
AUXDAC2-  
SNOOZE1  
AUXDAC1-  
SNOOZE1  
DAC34-  
SNOOZE1  
DAC12-  
SNOOZE1  
R/W-1  
R/W-1  
R/W-1  
5
R/W-1  
4
R/W-1  
3
R/W-1  
2
R/W-1  
1
R/W-1  
0
7
6
Reserved  
PAON-SLEEP1  
AUXDAC4-  
SLEEP1  
AUXDAC3-  
SLEEP1  
AUXDAC2-  
SLEEP1  
AUXDAC1-  
SLEEP1  
DAC34-  
SLEEP1  
DAC12-  
SLEEP1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 25. SLEEP1 Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
1
Reserved for factory use.  
14  
PAON-SNOOZE1  
R/W  
1
Setting this bit to 1 imposes an additional write to the PA_ON  
register to set the PA_ON pin to the ON state after clearing the  
SLEEP1 pin.  
Setting this bit to 0 enables the SLEEP1 pin to set the PA_ON  
pin to the ON state directly.  
13  
12  
11  
10  
9
AUXDAC4-SNOOZE1  
AUXDAC3-SNOOZE1  
AUXDAC2-SNOOZE1  
AUXDAC1-SNOOZE1  
DAC34-SNOOZE1  
DAC12-SNOOZE1  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
0
Setting any of these bits to 1 imposes an additional write to the  
CLAMP Configuration register to wake-up the corresponding  
DAC or DAC pair from clamp after clearing the SLEEP1 pin.  
Clearing any of these bits to 0 enables the SLEEP1 pin to wake-  
up the DAC or DAC pairs directly.  
8
7
Reserved for factory use  
6
PAON-SLEEP1  
R/W  
0
Setting this bit to 1 allows control of the PA_ON pin through the  
SLEEP1 pin. When SLEEP1 pin goes high the PA_ON pin  
enters the OFF state.  
Bringing the SLEEP1 pin low is required but not necessarily  
sufficient to return the PA_ON pin to the ON state as determined  
by the SNOOZE bits.  
Setting this bit to 0 causes the PA_ON pin to be unaffected by  
the SLEEP1 pin.  
5
4
3
2
1
0
AUXDAC4-SLEEP1  
AUXDAC3-SLEEP1  
AUXDAC2-SLEEP1  
AUXDAC1-SLEEP1  
DAC34-SLEEP1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
Setting any of these bits to 1 allows control of the corresponding  
DAC or DAC pair through the SLEEP1 pin. When SLEEP1 pin  
goes high the DAC or DAC pair goes into clamp mode.  
Bringing the SLEEP1 pin low is required but not necessarily  
sufficient to return the DAC or DAC pairs to normal operation as  
determined by the SNOOZE bits.  
Clearing any of these bits to 0 causes the corresponding DAC or  
DAC pair to be unaffected by the SLEEP1 pin.  
DAC12-SLEEP1  
Copyright © 2014–2016, Texas Instruments Incorporated  
61  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.4.3 SLEEP2 Configuration Register (address = 0x19) [reset = 0xFF00]  
Figure 79. SLEEP2 Configuration Register (R/W)  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
PAON-  
SNOOZE2  
AUXDAC4-  
SNOOZE2  
AUXDAC3-  
SNOOZE2  
AUXDAC2-  
SNOOZE2  
AUXDAC1-  
SNOOZE2  
DAC34-  
SNOOZE2  
DAC12-  
SNOOZE2  
R/W-1  
R/W-1  
R/W-1  
5
R/W-1  
4
R/W-1  
3
R/W-1  
2
R/W-1  
1
R/W-1  
0
7
6
Reserved  
PAON-SLEEP2  
AUXDAC4-  
SLEEP2  
AUXDAC3-  
SLEEP2  
AUXDAC2-  
SLEEP2  
AUXDAC1-  
SLEEP2  
DAC34-  
SLEEP2  
DAC12-  
SLEEP2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 26. SLEEP2 Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
1
Reserved for factory use  
14  
PAON-SNOOZE2  
R/W  
1
Setting this bit to 1 imposes an additional write to the PA_ON  
register to set the PA_ON pin to the ON state after clearing the  
SLEEP2 pin.  
Setting this bit to 0 enables the SLEEP2 pin to set the PA_ON  
pin to the ON state directly.  
13  
12  
11  
10  
9
AUXDAC4-SNOOZE2  
AUXDAC3-SNOOZE2  
AUXDAC2-SNOOZE2  
AUXDAC1-SNOOZE2  
DAC34-SNOOZE2  
DAC12-SNOOZE2  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
0
Setting any of these bits to 1 imposes an additional write to the  
CLAMP Configuration register to wake-up the corresponding  
DAC or DAC pair from clamp after clearing the SLEEP2 pin.  
Clearing any of these bits to 0 enables the SLEEP2 pin to wake-  
up the DAC or DAC pairs directly.  
8
7
Reserved for factory use  
6
PAON-SLEEP2  
R/W  
0
Setting this bit to 1 allows control of the PA_ON pin through the  
SLEEP2 pin. When SLEEP2 pin goes high the PA_ON pin  
enters the OFF state.  
Bringing the SLEEP2 pin low is required but not necessarily  
sufficient to return the PA_ON pin to the ON state as determined  
by the SNOOZE bits.  
Setting this bit to 0 causes the PA_ON pin to be unaffected by  
the SLEEP2 pin.  
5
4
3
2
1
0
AUXDAC4-SLEEP2  
AUXDAC3-SLEEP2  
AUXDAC2-SLEEP2  
AUXDAC1-SLEEP2  
DAC34-SLEEP2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
Setting any of these bits to 1 allows control of the corresponding  
DAC or DAC pair through the SLEEP2 pin. When SLEEP2 pin  
goes high the DAC or DAC pair goes into clamp mode.  
Bringing the SLEEP2 pin low is required but not necessarily  
sufficient to return the DAC or DAC pairs to normal operation as  
determined by the SNOOZE bits.  
Clearing any of these bits to 0 causes the corresponding DAC or  
DAC pair to be unaffected by the SLEEP2 pin.  
DAC12-SLEEP2  
62  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.4.4 ALARMOUT Clamp Register (address = 0x1A) [reset = 0x0000]  
Figure 80. ALARMOUT Clamp Register (R/W)  
15  
14  
13  
12  
11  
10  
9
1
8
0
Reserved  
R/W-00h  
7
6
5
4
3
2
Reserved  
PAON-  
ALARMOUT  
AUXDAC4-  
ALARMOUT  
AUXDAC3-  
ALARMOUT  
AUXDAC2-  
ALARMOUT  
AUXDAC1-  
ALARMOUT  
DAC34-  
ALARMOUT  
DAC12-  
ALARMOUT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 27. ALARMOUT Clamp Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-7  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
6
PAON-ALARMOUT  
R/W  
0
PAON-ALARMOUT = 1 allows control of the PA_ON pin through  
ALARMOUT. When ALARMOUT is active the PA_ON pin goes  
into the OFF state.  
Clearing the alarms does not return PA_ON to the ON state.  
PAON-ALARMOUT = 0 causes the PA_ON pin to be unaffected  
by ALARMOUT.  
5
4
3
2
1
0
AUXDAC4-ALARMOUT  
AUXDAC3-ALARMOUT  
AUXDAC2-ALARMOUT  
AUXDAC1-ALARMOUT  
DAC34-ALARMOUT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
Setting any of these bits to 1 allows control of the corresponding  
DAC or DAC pair clamp through ALARMOUT. When  
ALARMOUT is active the DAC or DAC pair goes into clamp  
mode.  
Clearing the alarms does not return the DAC or DAC pairs to  
normal operation.  
Clearing any of these bits to 0 causes the corresponding DAC or  
DAC pair to be unaffected by ALARMOUT.  
DAC12-ALARMOUT  
Copyright © 2014–2016, Texas Instruments Incorporated  
63  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.4.5 ALARMOUT Configuration Register (address = 0x1B) [reset = 0x0000]  
Figure 81. ALARMOUT Configuration Register (R/W)  
15  
14  
13  
12  
11  
10  
9
8
ALARM-  
LATCH-DIS  
ALARMOUT-  
POLARITY  
ADCINT/CS-  
SELECT  
DAC34LOOP-  
ALARMEN  
DAC12LOOP-  
ALARMEN  
AVSS-  
ALARMEN  
RT2-HIGH-  
ALARMEN  
RT2-LOW-  
ALARMEN  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
RT1-HIGH-  
ALARMEN  
RT1-LOW-  
ALARMEN  
LT-HIGH-  
ALARMEN  
LT-LOW-  
ALARMEN  
ADCINT4/CS4- ADCINT3/CS3- ADCINT2/CS2- ADCINT1/CS1-  
ALARMEN  
ALARMEN  
ALARMEN  
ALARMEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 28. ALARMOUT Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ALARM-LATCH-DIS  
R/W  
0
Alarm latch disable bit.  
When cleared to 0 the alarm bits are latched. When an alarm  
occurs, the corresponding alarm bit is set to 1. The alarm bit  
remains until the error condition subsides and the alarm register  
is read. Before reading, the alarm bit is not cleared even if the  
alarm condition disappears.  
When set to 1 the alarm bits are not latched. When the alarm  
condition subsides, the alarm bits are cleared regardless of  
whether the alarm bits have been read or not.  
14  
13  
ALARMOUT-POLARITY  
ADCINT/CS-SELECT  
R/W  
R/W  
0
0
ALARMOUT polarity bit.  
When cleared to 0 the ALARMOUT pin is active low.  
When set to 1 the ALARMOUT pin is active high.  
When cleared to 0 the threshold values in registers 0x40 to 0x47  
apply to ADC inputs ADCINT[1–4]. This setting should be used  
for closed-loop mode operation.  
When set to 1 the threshold values in registers 0x40 to 0x47  
apply to current sense measurements CS[1–4]. This setting  
should be used for open-loop mode operation.  
12  
11  
10  
9
DAC34LOOP-ALARMEN  
DAC12LOOP-ALARMEN  
AVSS-ALARMEN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
These bits select the alarm events that trigger the ALARMOUT  
pin.  
When set to 1 an alarm event associated with the corresponding  
bit will trigger the ALARMOUT pin.  
RT2-HIGH-ALARMEN  
RT2-LOW-ALARMEN  
RT1-HIGH-ALARMEN  
RT1-LOW-ALARMEN  
LT-HIGH-ALARMEN  
When cleared to  
0 an alarm event associated with the  
8
corresponding bit does not affect the ALARMOUT pin.  
7
6
5
4
LT-LOW-ALARMEN  
3
ADCINT4/CS4-ALARMEN  
ADCINT3/CS3-ALARMEN  
ADCINT2/CS2-ALARMEN  
ADCINT1/CS1-ALARMEN  
2
1
0
64  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.5 Conversion Trigger: Address 0x1C  
7.6.5.1 DAC and ADC Trigger Register (address = 0x1C) [reset = 0x0000]  
Figure 82. DAC and ADC Trigger Register (W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
Reserved  
W-00h  
1
0
Reserved  
W-00h  
DAC-TRIG  
W-0  
ADC-TRIG  
W-0  
Table 29. DAC/ADC Trigger Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-2  
1
Reserved  
W
All zeros  
Reserved for factory use.  
Internal DAC conversion trigger.  
DAC-TRIG  
W
0
Set this bit to 1 to synchronously load those DACs who have  
been set in synchronous mode in the DAC Sync register. This  
bit is automatically cleared to 0 after the DAC Data registers are  
updated.  
0
ADC-TRIG  
W
0
Internal ADC conversion bit.  
Set this bit to 1 to start the ADC conversion. The bit is  
automatically cleared to 0 after the ADC conversion starts. If the  
bit is set to 1 while the ADC is not in READY mode the  
conversion command is ignored.  
7.6.6 Reset: Address 0x1D  
7.6.6.1 Software Reset Register (address = 0x1D) [reset = 0x0000]  
Figure 83. Software Reset Register (W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
W-00h  
2
Reserved  
W-0000  
SOFT-RESET[3:0]  
W-0000  
Table 30. Software Reset Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-4  
3-0  
Reserved  
W
All zeros  
Reserved for factory use.  
SOFT-RESET[3:0]  
W
0000  
When set to reserved code 1100 resets the device to its default  
state. Auto clears with execution.  
Copyright © 2014–2016, Texas Instruments Incorporated  
65  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.7 Device Status: Address 0x1E and 0x1F  
7.6.7.1 Alarm Status Register (address = 0x1E) [reset = 0x0000]  
Figure 84. Alarm Status Register (R)  
15  
14  
13  
12  
11  
10  
9
8
DAC4-HIGH-  
ALARM  
DAC3-HIGH-  
ALARM  
DAC2-HIGH-  
ALARM  
DAC1-HIGH-  
ALARM  
Reserved  
AVSS-ALARM  
RT2-HIGH-  
ALARM  
RT2-LOW-  
ALARM  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
RT1-HIGH-  
ALARM  
RT1-LOW-  
ALARM  
LT-HIGH-  
ALARM  
LT-LOW-  
ALARM  
ADCINT4/CS4- ADCINT3/CS3- ADCINT2/CS2- ADCINT1/CS1-  
ALARM  
ALARM  
ALARM  
ALARM  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 31. Alarm Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
DAC4-HIGH-ALARM  
DAC3-HIGH-ALARM  
DAC2-HIGH-ALARM  
DAC1-HIGH-ALARM  
R
0
DAC4-HIGH-ALARM = 1 when DAC4 has exceeded the upper  
output limit set by DAC34-UP-THRESH[11:0].  
14  
13  
12  
R
R
R
0
0
0
DAC3-HIGH-ALARM = 1 when DAC3 has exceeded the upper  
output limit set by DAC34-UP-THRESH[11:0].  
DAC2-HIGH-ALARM = 1 when DAC2 has exceeded the upper  
output limit set by DAC12–UP-THRESH[11:0].  
DAC1-HIGH-ALARM = 1 when DAC1 has exceeded the upper  
output limit set by DAC12–UP-THRESH[11:0].  
11  
10  
9
Reserved  
R
R
R
0
0
0
Reserved for factory use.  
AVSS-ALARM  
RT2-HIGH-ALARM  
AVSS_ALARM = 1 when AVSS is out of range.  
RT2-HIGH-ALARM = 1 when remote temperature sensor 2 is  
out of the range defined by the upper threshold.  
Always zero when the remote sensor is disabled.  
8
7
6
5
4
3
RT2-LOW-ALARM  
RT1-HIGH-ALARM  
RT1-LOW-ALARM  
LT-HIGH-ALARM  
LT-LOW-ALARM  
R
R
R
R
R
R
0
0
0
0
0
0
RT2-LOW-ALARM = 1 when remote temperature sensor 2 is out  
of the range defined by the lower threshold.  
Always zero when the remote sensor is disabled.  
RT1-HIGH-ALARM = 1 when remote temperature sensor 1 is  
out of the range defined by the upper threshold.  
Always zero when the remote sensor is disabled.  
RT1-LOW-ALARM = 1 when remote temperature sensor 1 is out  
of the range defined by the lower threshold.  
Always zero when the remote sensor is disabled.  
LT-HIGH-ALARM = 1 when the local temperature sensor is out  
of the range defined by the upper threshold.  
Always zero when the on-chip sensor is disabled.  
LT-LOW-ALARM = 1 when the local temperature sensor is out  
of the range defined by the lower threshold.  
Always zero when the on-chip sensor is disabled.  
ADCINT4/CS4-ALARM  
ADCINT4/CS4-ALARM = 1 when the ADC reading of internal  
channel 4 (closed-loop) or the measurement of current sense 4  
(open-loop) is out of range defined by the alarm threshold  
registers.  
2
ADCINT3/CS3-ALARM  
R
0
ADCINT3/CS3-ALARM = 1 when the ADC reading of internal  
channel 3 (closed-loop) or the measurement of current sense 3  
(open-loop) is out of range defined by the alarm threshold  
registers.  
66  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
Table 31. Alarm Status Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
ADCINT2/CS2-ALARM  
R
0
ADCINT2/CS2-ALARM = 1 when the ADC reading of internal  
channel 2 (closed-loop) or the measurement of current sense 2  
(open-loop) is out of range defined by the alarm threshold  
registers.  
0
ADCINT1/CS1-ALARM  
R
0
ADCINT1/CS1-ALARM = 1 when the ADC reading of internal  
channel 1 (closed-loop) or the measurement of current sense 1  
(open-loop) is out of range defined by the alarm threshold  
registers.  
7.6.7.2 General Status Register (address = 0x1F) [reset = 0x0000]  
Figure 85. General Status Register (R)  
15  
GDAV  
R-0  
14  
ADC-READY  
R-0  
13  
LT-DAV  
R-0  
12  
RT2-DAV  
R-0  
11  
RT1-DAV  
R-0  
10  
ADCINT-DAV  
R-0  
9
8
ADCEXT-DAV  
R-0  
CS-DAV  
R-0  
7
6
5
4
3
2
1
0
Reserved  
R-0000  
SLEEP2-  
STATUS  
SLEEP1-  
STATUS  
PAON-STATUS  
GALARM  
R-0  
R-0  
R-0  
R-0  
Table 32. General Status Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
Description  
15  
14  
GDAV  
0
0
Global data available flag.  
ADC-READY  
R
ADC is ready (waiting) to be triggered. At power-up, will remain  
not ready (0) until the ADC is powered up and at least one  
channel is selected. If there is any write that would stop the ADC  
including AMC Configuration 0, ADC MUX, or ADC alarm  
threshold register writes, this bit also returns to not ready until  
the device completes processing of these changes/updates,  
after which time the ADC is ready to trigger again.  
Goes to 0 when the ADC is triggered and is running. This bit  
returns to 1 once the ADC is stopped.  
13  
12  
11  
LT-DAV  
R
R
R
0
0
0
Local temperature sensor data available flag for direct-mode  
conversion.  
RT2-DAV  
RT1-DAV  
Remote temperature sensor 2 data available flag for direct-mode  
conversion.  
Remote temperature sensor 1 data available flag for direct-mode  
conversion.  
10  
9
ADCINT-DAV  
ADCEXT-DAV  
CS-DAV  
R
R
R
R
0
ADCINT data available flag for direct-mode conversion.  
ADCEXT data available flag for direct-mode conversion.  
Current sense data available flags for direct-mode conversion.  
0
8
0
7-4  
Reserved  
0000  
Reserved for factory use  
Status of SLEEP2 pin.  
Status of SLEEP1 pin.  
Status of PA_ON pin.  
3
2
1
SLEEP2-STATUS  
SLEEP1-STATUS  
PAON-STATUS  
R
R
R
0
0
0
If equal to 0 the PA_ON pin is in the OFF state (PAVDD). If  
equal to 1 the PA_ON pin is in the ON state (AGND).  
0
GALARM  
R
0
Global alarm bit.  
This bit is the OR function or all individual alarm bits of the  
status register. This bit is set to 1 when any alarm condition  
occurs and remains set until the status register is read. This bit  
is cleared after reading the Alarm Status register.  
Copyright © 2014–2016, Texas Instruments Incorporated  
67  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.8 ADC Data: Address 0x20 through 0x2F  
7.6.8.1 ADCn-Internal-Data Register (address = 0x20 to 0x23) [reset = 0x0000]  
This register description applies to the internal monitoring inputs ADCINT1 through ADCINT4.  
Figure 86. ADCn-Internal-Data Register (R)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
0
Reserved  
R-0h  
ADCINTn-DATA[11:8]  
R-0h  
2
1
ADCINTn-DATA[7:0]  
R-00h  
Table 33. ADCn-Internal-Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R
0000  
Reserved for factory use.  
11–0  
ADCINTn-DATA[11:0]  
R
0x000  
Stores the 12–bit ADCINTn conversion results in straight binary  
format. The corresponding voltage is given by:  
V
ì DATA[11: 0]  
ref  
V
+ 3  
- V  
ref  
«
ref ÷  
4096  
(13)  
7.6.8.2 ADCn-External-Data Register (address = 0x24 to 0x27) [reset = 0x0000]  
This register description applies to the external inputs ADC1 through ADC4.  
Figure 87. ADCn-External-Data Register (R)  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
0
Reserved  
R-0h  
ADCEXTn-DATA[11:8]  
R-0h  
4
3
2
1
ADCEXTn-DATA[7:0]  
R-00h  
Table 34. ADCn-External-Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R
0000  
Reserved for factory use.  
11–0  
ADCEXTn-DATA[11:0]  
R
0x000  
Stores the 12–bit ADCn conversion results in straight binary  
format.  
68  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.8.3 CSn-Data Register (address = 0x28 to 0x2B) [reset = 0x0000]  
This register description applies to the current sense inputs CS1 through CS4.  
Figure 88. CSn-Data Register (R)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
CSn-DATA[11:8]  
R-0h  
9
8
0
Reserved  
R-0h  
2
1
CSn-DATA[7:0]  
R-00h  
Table 35. CSn-Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R
0000  
Reserved for factory use.  
11–0  
CSn-DATA[11:0]  
R
0x000  
Stores the 12–bit current-sense n conversion results in straight  
binary format (open-loop mode only).  
7.6.8.4 LT-Data Register (address = 0x2D) [reset = 0x0000]  
Figure 89. LT-Data Register (R)  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
Reserved  
R-0h  
LT-DATA[11:8]  
R-0h  
7
6
5
4
3
LT-DATA[7:0]  
R-00h  
Table 36. LT-Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R
0000  
Reserved for factory use.  
11–0  
LT-DATA[11:0]  
R
0x000  
Stores the local temperature sensor reading in twos complement  
format.  
7.6.8.5 RTn–Data Register (address = 0x2E to 0x2F) [reset = 0x0000]  
This register description applies to the remote temperature sense inputs RT1 and RT2.  
Figure 90. RTn-Data Register (R)  
15  
7
14  
6
13  
5
12  
11  
10  
RTn-DATA[11:8]  
R-0h  
9
8
0
Reserved  
R-0h  
4
3
2
1
RTn-DATA[7:0]  
R-00h  
Table 37. RTn–Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R
0000  
Reserved for factory use.  
11–0  
RTn-DATA[11:0]  
R
0x000  
Stores the remote temperature sensor n (Dn+, Dn–) reading in  
twos complement format.  
Copyright © 2014–2016, Texas Instruments Incorporated  
69  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.9 DAC Data: Address 0x30 through 0x37  
7.6.9.1 DACn-Data Register (address = 0x30 to 0x33) [reset = 0x0000]  
This register description applies to the bipolar DAC outputs DAC1 through DAC4.  
Figure 91. DACn-Data Register (R/W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
DACn-DATA[11:8]  
R/W-0h  
9
8
0
Reserved  
R/W-0h  
2
1
DACn-DATA[7:0]  
R/W-00h  
Table 38. DACn-Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
DACn-DATA[11:0]  
R/W  
0x000  
Stores the 12–bit data to be loaded to DACn in straight binary  
format. The straight binary format is used for all DAC ranges.  
Only active in open-loop mode.  
7.6.9.2 AUXDACn-Data Register (address = 0x34 to 0x37) [reset = 0x0000]  
This register description applies to the auxiliary DAC outputs AUXDAC1 through AUXDAC4.  
Figure 92. AUXDACn-Data Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
0
Reserved  
R/W-0h  
AUXDACn-DATA[11:8]  
R/W-0h  
4
3
2
1
AUXDACn-DATA[7:0]  
R/W-00h  
Table 39. AUXDACn-Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
AUXDACn-DATA[11:0]  
R/W  
0x000  
Stores the 12–bit data to be loaded to AUXDACn in straight  
binary format. The straight binary format is used for all DAC  
ranges.  
70  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.10 Closed-Loop Control: Address 0x38 through 0x3B  
7.6.10.1 ClosedLoopn Register (address = 0x38 to 0x3B) [reset = 0x0000]  
This register description applies to the ClosedLoop1 through ClosedLoop4 registers.  
Figure 93. ClosedLoopn Register (R/W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
0
Reserved  
R/W-0h  
CLOSEDLOOPn[11:8]  
R/W-0h  
2
1
CLOSEDLOOPn[7:0]  
R/W-00h  
Table 40. ClosedLoopn Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
CLOSEDLOOPn[11:0]  
R/W  
0x000  
Sets the target current for closed loop controller n through the  
following equation:  
CLOSEDLOOPn 11: 0 ì V  
[
]
ref  
I(DRAIN)  
=
R
(
SENSE
)
ì 51200  
(14)  
Copyright © 2014–2016, Texas Instruments Incorporated  
71  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.11 Alarm Threshold Configuration: Address 0x40 through 0x4F  
7.6.11.1 ADCINTn/CSn-Upper-Threshold Register (address = 0x40, 0x42, 0x44 and 0x46) [reset = 0x0FFF]  
This register description applies to the upper threshold alarm registers for ADCINT1/CS1 through ADCINT4/CS4.  
Figure 94. ADCINTn/CSn-Upper-Threshold Register (R/W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
0
Reserved  
R/W-0h  
ADCINT-CSn-UP-THRESH[11:8]  
R/W-Fh  
2
1
ADCINT-CSn-UP-THRESH[7:0]  
R/W-FFh  
Table 41. ADCINTn/CSn-Upper-Threshold Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
ADCINT-CSn-UP-THRESH[11:0]  
R/W  
0xFFF  
Sets the 12-bit upper threshold value for the internal ADC n  
(closed-loop mode) or current sense n (open-loop mode) alarm  
in straight binary format as determined by the ADCINT/CS-  
SELECT bit in register 0x1B.  
7.6.11.2 ADCINTn/CSn-Lower-Threshold Register (address = 0x41, 0x43, 0x45 and 0x47) [reset = 0x0000]  
This register description applies to the lower threshold alarm registers for ADCINT1/CS1 through ADCINT4/CS4.  
Figure 95. ADCINTn/CSn-Lower-Threshold Register (R/W)  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
0
Reserved  
R/W-0h  
ADCINT-CSn-LOW-THRESH[11:8]  
R/W-0h  
4
3
2
1
ADCINT-CSn-LOW-THRESH[7:0]  
R/W-00h  
Table 42. ADCINTn/CSn-Lower-Threshold Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
ADCINT-CSn-LOW-THRESH[11:0] R/W  
0x000  
Sets the 12-bit lower threshold value for the internal ADC n  
(closed-loop mode) or current sense n (open-loop mode) alarm  
in straight binary format.  
72  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.11.3 TS-Upper-Threshold Register (address = 0x48, 0x4A and 0x4C) [reset = 0x07FF]  
This register description applies to the upper threshold alarm registers for the device temperature sensors: LT,  
RT1 and RT2.  
Figure 96. TS-Upper-Threshold Register (R/W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
0
Reserved  
R/W-0h  
TS-UP-THRESH[11:8]  
R/W-7h  
2
1
TS-UP-THRESH[7:0]  
R/W-FFh  
Table 43. TS-Upper-Threshold Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
TS-UP-THRESH[11:0]  
R/W  
0x7FF  
Sets the 12-bit upper threshold value for the corresponding  
temperature sensor (LT, RT1 or RT2) alarm in two's complement  
format.  
7.6.11.4 TS-Lower-Threshold Register (address = 0x49, 0x4B and 0x4D) [reset = 0x0800]  
This register description applies to the lower threshold alarm registers for the device temperature sensors: LT,  
RT1 and RT2.  
Figure 97. TS-Lower-Threshold Register (R/W)  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
0
Reserved  
R/W-0h  
TS-LOW-THRESH[11:8]  
R/W-8h  
4
3
2
1
TS-LOW-THRESH[7:0]  
R/W-00h  
Table 44. TS-Lower-Threshold Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use.  
11–0  
TS-LOW-THRESH[11:0]  
R/W  
0x800  
Sets the 12-bit lower threshold value for the corresponding  
temperature sensor (LT, RT1 or RT2) alarm in two's complement  
format.  
Copyright © 2014–2016, Texas Instruments Incorporated  
73  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.11.5 DACnn-Upper-Threshold Register (address = 0x4E and 0x4F) [reset = 0x0FFF]  
This register description applies to the upper threshold alarm registers for the bipolar DAC pairs DAC1/DAC2 and  
DAC3/DAC4.  
Figure 98. DACnn-Upper-Threshold Register (R/W)  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
0
Reserved  
R/W-0h  
DACnn-UP-THRESH[11:8]  
R/W-Fh  
2
1
DACnn-UP-THRESH[7:0]  
R/W-FFh  
Table 45. DACnn-Upper-Threshold Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Reserved  
R/W  
0000  
Reserved for factory use  
11–0  
DACnn-UP-THRESH[11:0]  
R/W  
0xFFF  
Sets an upper output limit othen than full-scale for the bipolar  
DAC pairs (DAC1/DAC2 or DAC3/DAC4). When either of the  
DACs in a given pair is loaded with a value exceeding the limit,  
its output is updated with the DACnn-UP-THRESH[11:0] value  
instead.  
74  
Copyright © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
7.6.12 Alarm Hysteresis Configuration: Address 0x50 and 0x56  
7.6.12.1 ADCINTn/CSn-Hysteresis Register (address = 0x50 to 0x53) [reset = 0x0008]  
This register description applies to the hysteresis registers for ADCINT1/CS1 through ADCINT4/CS4.  
Figure 99. ADCINTn/CSn-Hysteresis Register (R/W)  
15  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
Reserved  
R/W-00h  
7
Reserved  
R/W-0  
ADCINT-CSn-HYSTER[6:0]  
R/W-08h  
Table 46. ADCINTn/CSn-Hysteresis Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15–7  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
6–0  
ADCINT-CSn-HYSTER[6:0]  
R/W  
0x08  
Hysteresis of internal ADC n (closed-loop mode) or current  
sense n (open-loop mode), 1 LSB per step.  
7.6.12.2 LT-Hysteresis Register (address = 0x54) [reset = 0x0008]  
Figure 100. LT-Hysteresis Register (R/W)  
15  
7
14  
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
R/W-00h  
6
2
Reserved  
R/W-0h  
LT -HYSTER[4:0]  
R/W-08h  
Table 47. LT-Hysteresis Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15–5  
4–0  
Reserved  
R/W  
All zeros  
Reserved for factory use  
LT -HYSTER[4:0]  
R/W  
0x08  
Hysteresis of local temperature sensor, 1°C per step.  
7.6.12.3 RTn–Hysteresis Register (address = 0x55 to 0x56) [reset = 0x0008]  
This register description applies to the hysteresis registers for RT1 and RT2.  
Figure 101. RTn–Hysteresis Register (R/W)  
15  
7
14  
13  
5
12  
4
11  
3
10  
9
1
8
0
Reserved  
R/W-00h  
6
2
Reserved  
R/W-0h  
RTn-HYSTER[4:0]  
R/W-08h  
Table 48. RTn–Hysteresis Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15–5  
4–0  
Reserved  
R/W  
All zeros  
Reserved for factory use  
RTn-HYSTER[4:0]  
R/W  
0x08  
Hysteresis of remote temperature sensor n (Dn+, Dn–), 1°C per  
step.  
Copyright © 2014–2016, Texas Instruments Incorporated  
75  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
7.6.13 GPIO: Address 0x58  
7.6.13.1 GPIO Register (address = 0x58) [reset = 0x000F]  
Figure 102. GPIO Register (R/W)  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
Reserved  
R/W-00h  
3
2
1
0
Reserved  
R/W-0h  
GPIO4  
R/W-1  
GPIO3  
R/W-1  
GPIO2  
R/W-1  
GPIO1  
R/W-1  
Table 49. GPIO Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-4  
Reserved  
R/W  
All zeros  
Reserved for factory use  
3
2
1
0
GPIO4  
GPIO3  
GPIO2  
GPIO1  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
For write operations the GPIO pin operates as an output. Writing  
a 1 to the GPIOn bit sets the GPIOn pin to high impedance.  
Writing a 0 sets the GPIOn pin to logic low. An external pullup  
resistor is required when using the GPIO as an output.  
For read operations the GPIO pin operates as an input. Read  
the GPIOn bit to receive the status of the GPIOn pin.  
After power-on reset, or any forced hardware or software reset,  
the GPIOn pin is in a high-impedance state.  
76  
版权 © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The AMC7834 device is a highly integrated, low-power, analog monitoring and control solution that includes one  
multi-channel 12-bit ADC, eight 12-bit DACs, four high-side current-sense amplifiers and temperature sensing  
capabilities. The AMC7834 typical application is power amplifier biasing in wireless base stations, however its  
high level integration make it a good solution for many different systems ranging from industrial control sytems to  
test-and-measurement units.  
The power amplifiers (PAs) used in wireless infrastructure include transistor technologies that are extremely  
temperature sensitive, and require DC biasing circuits to optimize RF performance, power efficiency, and  
stability. The AMC7834 device provides eight DAC channels that can be used to bias the inputs of the power  
amplifiers. The device also includes two remote temperature sensing interfaces, one internal local temperature  
sensor, four high-side current-sensing channels, and four ADC channels for general-purpose monitoring.  
Current sensing and temperature sensing are the two main monitoring schemes for PA bias compensation. The  
PA drain current is monitored by measuring the differential voltage drop accross a shunt resistor. The AMC7834  
internal local-temperature sensor and two remote-sensor driver inputs can be used to detect temperature  
variations during PA operation. 103 shows the circuit diagram of this system.  
Analog Inputs  
AMC7834  
GPIO  
CS  
PA Drain Voltage  
Current Sense  
SENSE1+  
ADC  
R
VSENSE Current Sensing  
(SENSE)  
CS  
SENSE1œ  
Local  
Temperature  
RF Out  
D1+  
Remote  
Temperature  
Temperature Sensing  
D1œ  
Bipolar  
Analog Outputs  
Drain  
Gate  
DAC  
Source  
Unipolar  
Analog Outputs  
AUX  
DAC  
Power Amplifier  
RF In  
103. AMC7834 Example PA Bias System  
版权 © 2014–2016, Texas Instruments Incorporated  
77  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
8.2 Typical Application  
External Temperature  
Diodes  
ADC BLOCK  
AVSS  
AVDD  
IOVDD  
0.1 µF  
4.7 µF  
IOVDD  
GPIO  
1
42  
DAV/ADC_RDY  
ALARMOUT  
SLEEP1  
DAV/ADC_RDY  
ALARMOUT  
SLEEP1  
REF_CMP  
2
3
41  
40  
PAV  
DD  
AMC7834  
PA ON  
PA_ON  
SENSE  
Resistor 1  
4
5
6
7
39  
38  
37  
36  
SLEEP2  
RESET  
SENSE1+  
SLEEP2  
RESET  
SENSE1œ  
SENSE  
Resistor 2  
DACTRIG  
SCLK  
SENSE2+  
SENSE2œ  
AGND3  
DACTRIG  
SCLK  
Thermal Pad  
8
9
35  
34  
33  
32  
31  
CS  
CS  
SDI  
SENSE  
Resistor 3  
SDI  
SENSE3+  
SENSE3œ  
SENSE4+  
SENSE4œ  
VCLAMP1  
VCLAMP2  
10  
11  
12  
SDO  
DGND  
SDO  
SENSE  
Resistor 4  
IOVDD  
IOV  
DD  
DVDD  
0.1 µF  
13  
14  
30  
29  
DV  
DD  
CC  
AVCC  
0.1 µF  
AV  
VCLAMP  
Settings  
0.1 µF  
GND  
R1  
R2  
R3  
R4  
PAVDD  
AVDD  
Connect Analog  
and Digital GNDs  
10 nF  
0.1 µF  
SENSE 1+  
SENSE  
resistor 1  
SENSE 1œ  
AVSS  
0.1 µF  
Vg1  
DAC Outputs  
Example connection using DAC output  
Vg5  
Vg6 Vg7  
Vg8 Vg1  
Vg2  
Vg3  
Vg4  
(Vg1) and the SENSE1ê connection  
Range 1  
Range 2  
104. AMC7834 Example Schematic  
8.2.1 Design Requirements  
The AMC7834 example schematic uses the majority of the design parameters listed in 50.  
50. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
AVCC  
IOVDD  
DVDD  
AVDD  
AVSS  
5 V  
3.3 V  
5 V  
5 V  
–5 V  
4 External unipolar inputs  
4 High-Side Current Sense  
4 bipolar DAC outputs  
ADC[1-4]: 0 to 2.5 V range  
Differential input of 0 to 200 mV  
–4 to 1 V, –5 to 0 V, and 0 to 5 V  
0 to 5 V, 2.5 to 7.5 V  
4 unipolar DAC outputs  
Remote temperature sensing  
Two remote temperature diode drivers  
78  
版权 © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
8.2.2 Detailed Design Procedure  
Use the following parameters to facilitate the design process:  
AVCC and AVSS voltage values  
ADC and high-side current-sense input voltage range  
DAC output voltage ranges  
Remote temperature applications  
8.2.2.1 ADC Input Conditioning  
The AMC7834 monitoring system is centered on a single ADC core that features a multichannel input stage to a  
successive approximation register (SAR) ADC. The analog inputs include four external analog inputs, four  
internal inputs for bipolar DAC monitoring, four high-side current-sense amplifiers for PA current monitoring, two  
remote temperature sensors, and an internal analog temperature sensor.  
The external analog inputs (ADC1 through ADC4) feature a range of 0 to Vref (Vref corresponds to either an  
external 2.5 V reference or the device internal reference), while the internal inputs accept a full-scale range of –5  
to 2.5 V. The current-sense inputs feature a 4 to 60 V common-mode voltage range, and accept a differential  
input range of 0 to 200 mV. A 4.7 µF capacitor is recommended between the REF_CMP pin and the AGND4 pin.  
The value of this capacitor must exceed 470 nF to ensure reference stability. A high-quality ceramic capacitor,  
type NP0 or X7R, is recommended because of the optimal performance of the capacitor across temperature and  
very-low dissipation factor.  
It is recommended that all external analog inputs are driven with a low impedance source to ensure correct  
functionality. In applications where the signal-source impedance is high, the analog inputs can be conditioned  
through a buffer amplifier, such as a voltage follower.  
8.2.2.2 DAC Output Range Selection  
The AMC7834 device has four bipolar and four unipolar DACs with programmable output ranges. The bipolar  
DACs feature the ranges –4 to 1 V, –5 to 0 V, and 0 to 5 V. The unipolar DACs feature the ranges 0 to 5 V and  
2.5 to 7.5 V. The DAC ranges are configurable by setting the DAC range register (see the DAC Range Register  
(address = 0x16) [reset = 0x0000] section).  
The maximum source and sink capability of the DAC internal amplifiers are listed as part of the DAC output  
characteristics in the Electrical Characteristics—DAC Specifications table.  
The graph in the Application Performance Curve section show the relationship of both stability and settling time  
with different capacitive and resistive loading structures.  
版权 © 2014–2016, Texas Instruments Incorporated  
79  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
8.2.2.3 Temperature Sensing Applications  
The AMC7834 has one local temperature and two temperature diode drivers, as well as four external analog  
inputs that are easily configurable to remote temperature sensor circuits. The integrated temperature sensor,  
remote temperature sensor, and analog input registers automatically update with every conversion. 105 shows  
a typical setup for the two temperature diode-driver inputs. Additional noise filtering can be achieved by placing a  
bypass capacitor across the inputs of the remote temperature sensors. A high-quality ceramic capacitor, type  
NP0 or X7R, is recommended because of the optimal performance of the capacitor across temperature. See the  
Remote Temperature Sensors section for a details.  
PNP  
D+  
100 pF  
Dœ  
Temperature diodes  
on PA board  
D+  
100 pF  
Dœ  
NPN  
105. Remote Temperature Sensors (PNP and NPN)  
Additionally, the ADC inputs can be used to accept voltage from other temperature-sensing IC circuits as shown  
in 106. The temperature sensor use for analog input conditioning in this example is the LM50 device which is  
a high precision integrated-circuit temperature sensor that can sense a –40°C to +125°C temperature range  
using a single positive supply. The full-scale output of the temperature sensor ranges from 100 mV to 1.75 V for  
a –40°C to +125°C temperature range. In an extremely noisy environment, adding some filtering to minimize  
noise pickup may be necessary. A typical recommended value for the bypass capacitor is 0.1 µF from the V+ pin  
to ground. A high-quality ceramic capacitor, type NP0 or X7R, is recommended because of the optimal  
performance of the capacitor across temperature and very-low dissipation factor.  
DV  
DD  
4
LM50  
3
1
V+  
ADC4  
VO  
NC  
GND  
5
0.1 µF  
2
106. Temperature Sense Application With LM50  
80  
版权 © 2014–2016, Texas Instruments Incorporated  
 
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
8.2.2.4 Current Sensing Applications  
The AMC7834 device also features four high-side current-sense amplifiers that support common-mode voltages  
from 4 to 60 V and a full-scale sense voltage of 0 to 200 mV. In applications that require current sensing across  
a power amplifier, the SENSE± differential inputs connect across a resistor to sense small differential voltage that  
is proportional to current across the PA as shown in 107. The current-sense conversion results are stored in  
the Current sense data registers. The current sensors are also configurable as closed-loop drain current  
controllers. See the Current Sensors section for details.  
107 shows a method of separating the drain voltage from the power amplifier with a series PMOS transistor.  
The activation of the PMOS connects the PAVDD voltage supply to the drain pin of the power amplifier. The  
PMOS is driven with a voltage divider that swings from PAVDD to PAVDD(R2 / [R1 + R2]). The NMOS shown in 图  
107 is connected to the PA_ON output which controls the state of the PMOS transistor.  
PA Drain Voltage  
SENSE1+  
R
(SENSE)  
R1  
ûV = I ì R(SENSE)  
DS  
SENSE1œ  
PMOS  
R2  
I
DS  
NMOS  
PA ON  
Drain  
Gate  
DAC Voltage  
Source  
Power Amplifier  
107. Current Sense (SENSE) Connections With PMOS ON and OFF  
8.2.3 Application Performance Curve  
50  
40  
100pF  
200pF  
1nF  
30  
10nF  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
0
5
10  
15  
20  
25  
30  
Time (s)  
C023  
Code 0x000 to 0xFFF to within 0.5% of final value  
108. DAC Settling Time  
版权 © 2014–2016, Texas Instruments Incorporated  
81  
 
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
8.3 Initialization Set Up  
8.3.1 Initialization Procedure  
1. Supply all voltages (PAVDD, AVDD, DVDD, IOVDD, AVCC, AVSS) and clamp inputs (VCLAMP1 and VCLAMP2).  
The AMC7834 does not require a specific supply sequencing.  
2. A 250 µs POR delay occurs after a minimum AVDD supply of 4.5 V has been applied. Do not attempt serial  
communication during this time.  
3. It is recommended to issue a hardware or software-reset.  
4. Wait for completion of the reset operation (at least 250 µs for a hardware reset or at least 10 µs for a  
software reset).  
5. After reset, the following conditions are met:  
The device is in open-loop mode and all DAC data registers are set to all zeros.  
All DAC outputs are set to the clamp value regardless of the SLEEP1 and SLEEP2 pin levels.  
The PA_ON signal is set to the OFF state.  
6. If not already done so, it is recommended to tie the SLEEP1 and SLEEP2 pins low.  
7. Configure the AMC7834 without the DACs leaving clamp mode.  
8. If the PA_ON control signal is enabled, switch the PA_ON signal to the ON state. By default, the AVSS supply  
must be present to enable the PA_ON signal to enter the ON state.  
9. Release the DACs out of clamp mode.  
10. Verify that the ADC has entered the READY state.  
11. Issue an ADC trigger signal to initiate conversion of the monitoring inputs.  
After initialization the AMC7834 allows switching between open-loop and closed-loop operation. However, before  
switching between operating modes, it is strongly recommended to clamp the bipolar DAC outputs, stop the ADC  
conversion cycle, and if applicable, switch the PA_ON signal to the OFF state. To resume operation follow steps  
7 through 11 of the Initialization Procedure.  
9 Power Supply Recommendations  
The AMC7834 supply voltage ranges are specified in the Recommended Operating Conditions table.  
10 Layout  
10.1 Layout Guidelines  
All power supply pins should be bypassed to ground with a low-ESR ceramic bypass capacitor. The typical  
recommended bypass capacitance has a value of 0.1 µF and is ceramic with a X7R or NP0 dielectric.  
A 4.7 µF capacitor is recommended between the REF_CMP pin and the AGND4 pin. A minimum capacitor  
value of 470 nF is required to ensure stability.  
A high-quality ceramic capacitor, type NP0 or X7R, is recommended because of the optimal performance of  
the capacitor across temperature and very-low dissipation factor.  
The digital and analog sections should have proper placement with respect to the digital pins and analog pins  
of the AMC7834 device (see 110). The separation of analog and digital blocks allows for better design and  
practice as it ensures less coupling into neighboring blocks and minimizes the interaction between analog and  
digital return currents.  
82  
版权 © 2014–2016, Texas Instruments Incorporated  
 
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
10.2 Layout Example  
AGND4  
4.7 µF  
REF_CMP  
DAV/ADC_RDY  
ALARMOUT  
SLEEP1  
SLEEP2  
RESET  
1
2
3
4
5
6
7
8
9
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PAV tied to AV  
DD  
DD  
PAV  
DD  
internal plane  
PA_ON  
SENSE1+  
SENSE1œ  
SENSE2+  
SENSE2œ  
AGND3  
DACTRIG  
SCLK  
AMC7834  
CS  
SDI  
SENSE3+  
SENSE3œ  
SENSE4+  
SENSE4œ  
VCLAMP1  
VCLAMP2  
SDO 10  
DGND  
11  
12  
13  
14  
0.1 µF  
IOV  
DV  
AV  
DD  
DD  
CC  
0.1 µF  
0.1 µF  
109. AMC7834 Layout Example  
版权 © 2014–2016, Texas Instruments Incorporated  
83  
AMC7834  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
www.ti.com.cn  
Layout Example (接下页)  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
2
3
4
5
6
7
AMC7834  
8
9
10  
11  
12  
13  
14  
110. AMC7834 Example Board Layout — Component Placement  
84  
版权 © 2014–2016, Texas Instruments Incorporated  
AMC7834  
www.ti.com.cn  
ZHCSDL7B NOVEMBER 2014REVISED MARCH 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档请参见以下部分:  
LM50/LM50-Q1 SOT-23 单电源摄氏温度传感器》SNIS118  
LMP848x 具有电压输出的高精度 76V 高侧电流感测放大器》SNVS829  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2016, Texas Instruments Incorporated  
85  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC7834IRTQR  
AMC7834IRTQT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTQ  
RTQ  
56  
56  
2000 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AMC7834  
AMC7834  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC7834IRTQR  
AMC7834IRTQR  
AMC7834IRTQR  
AMC7834IRTQT  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
2000  
2000  
2000  
250  
330.0  
330.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
1.1  
2.25  
1.1  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
1.1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AMC7834IRTQR  
AMC7834IRTQR  
AMC7834IRTQR  
AMC7834IRTQT  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
2000  
2000  
2000  
250  
338.0  
350.0  
367.0  
210.0  
355.0  
350.0  
367.0  
185.0  
50.0  
43.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
RTQ0056E  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
8.15  
7.85  
A
B
PIN 1 INDEX AREA  
8.15  
7.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 6.5  
5.7 0.1  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
28  
15  
14  
29  
SYMM  
57  
2X 6.5  
5.7 0.1  
1
42  
52X 0.5  
PIN 1 ID  
0.30  
0.18  
56  
43  
56X  
0.5  
0.3  
0.1  
C A B  
56X  
0.05  
4224191/A 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTQ0056E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(5.7)  
(2.6) TYP  
SEE SOLDER MASK  
DETAIL  
43  
(1.35) TYP  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(2.6) TYP  
(R0.05) TYP  
(1.35) TYP  
57  
SYMM  
(7.8)  
(5.7)  
(
0.2) TYP  
VIA  
14  
29  
28  
15  
SYMM  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224191/A 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTQ0056E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675) TYP  
(1.35) TYP  
43  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(1.35) TYP  
(R0.05) TYP  
57  
(0.675) TYP  
(7.8)  
SYMM  
16X (1.15)  
14  
29  
15  
28  
SYMM  
16X (1.15)  
(7.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
65% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224191/A 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RTQ0056C  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
8.15  
7.85  
A
B
PIN 1 INDEX AREA  
8.15  
7.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 6.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
28  
15  
14  
29  
SYMM  
57  
2X 6.5  
6.6 0.1  
1
42  
52X 0.5  
PIN 1 ID  
0.30  
0.18  
56  
43  
56X  
0.5  
0.3  
0.1  
C A B  
56X  
0.05  
4224872/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTQ0056C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.05) TYP  
SEE SOLDER MASK  
DETAIL  
(0.62) TYP  
(1.24)  
TYP  
56X (0.6)  
56X (0.24)  
56  
43  
1
42  
52X (0.5)  
(3.05) TYP  
(1.24) TYP  
(R0.05) TYP  
57  
SYMM  
(7.8)  
(0.62) TYP  
(
6.6)  
0.2) TYP  
VIA  
14  
29  
28  
15  
SYMM  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224872/A 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTQ0056C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.24) TYP  
43  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(R0.05) TYP  
(1.24) TYP  
(7.8)  
57  
SYMM  
25X ( 1.04)  
14  
29  
15  
28  
SYMM  
(7.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
62% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224872/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY