AMC7836 [TI]

高密度、12 位模拟监视和控制解决方案,双极 DAC;
AMC7836
型号: AMC7836
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高密度、12 位模拟监视和控制解决方案,双极 DAC

文件: 总90页 (文件大小:4285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
AMC7836 12 位高密度模拟监视和控制解决方案,具有多通道模数转换器  
(ADC)、双极数模转换器 (DAC)、温度传感器和通用输入输出 (GPIO) 端口  
1 特性  
3 说明  
1
16 个单调性 12 DAC  
AMC7836 是一款高度集成的低功耗、模拟监视和控制  
解决方案。该器件包含一个 21 通道 12 位模数转换器  
(ADC)16 个具有可编程输出范围的 12 位数模转换器  
(DAC)8 GPIO、一个内部基准电压以及一个本地  
温度传感器通道。该器件的高度集成特性显著减少组件  
数量,同时简化了闭环系统设计,因此非常适合 对电  
路板空间、 尺寸和低功耗严格要求的多通道应用。  
可选范围:–10V 0V–5V 0V0V 至  
5V0V 10V  
高电流驱动能力:高达 ±15mA  
自动范围检测器  
可选钳位电压  
12 位逐次逼近寄存器 (SAR) ADC  
21 个外部模拟输入  
该器件具有低功耗、超高集成度和宽工作温度范围等诸  
多优势,因此适合用作多通道射频 (RF) 通信系统中功  
率放大器 (PA) 的一体化、低成本偏置控制电路。凭借  
灵活的 DAC 输出范围,该器件可用作适用于多种晶体  
管技术(例如 LDMOSGaA GaN)的偏置解决方  
案。AMC7836 功能集对通用监视器和控制系统而言同  
样有益。  
16 个双极输入:-12.5V 12.5V  
5 个高精度输入:0V 5V  
可编程超限报警  
2.5V 内部电压基准  
内部温度传感器  
运行温度范围:–40°C +125°C  
±2.5°C 精度  
为满足 各类应用 对不同通道数、 附加特性、或转换器  
分辨率的需求,德州仪器 (TI) 提供了完备的模拟监视  
和控制 (AMC) 产品系列。更多信息,敬请访问  
www.ti.com.cn/amc。  
8 个通用 I/O 端口 (GPIO)  
兼容串行外设接口 (SPI) 的低功耗串行接口  
4 线制模式,运行电压为 1.8V 5.5V  
工作温度范围:-40°C +125°C  
器件信息(1)  
采用 64 引脚耐热增强型薄型四方扁平 (HTQFP) 封  
PowerPAD™IC 封装  
器件型号  
AMC7836  
封装  
封装尺寸(标称值)  
HTQFP (64)  
10.00mm x 10.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
通信基础设施:  
蜂窝基站  
微波回程  
光纤网络  
AMC7836  
2.5-V Reference  
通用监视器和控制  
数据采集系统  
ADC  
DAC-0  
Temperature  
Sensor  
DAC-15  
GPIO Control  
8 GPIOs  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLAS986  
 
 
 
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 24  
7.3 Feature Description................................................. 25  
7.4 Device Functional Modes........................................ 39  
7.5 Programming........................................................... 42  
7.6 Register Maps......................................................... 44  
Application and Implementation ........................ 71  
8.1 Application Information............................................ 71  
8.2 Typical Application ................................................. 74  
Power Supply Recommendations...................... 77  
9.1 Device Reset Options ............................................. 78  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics: DAC ................................ 8  
8
9
10 Layout................................................................... 78  
10.1 Layout Guidelines ................................................. 78  
10.2 Layout Example .................................................... 79  
11 器件和文档支持 ..................................................... 80  
11.1 文档支持................................................................ 80  
11.2 接收文档更新通知 ................................................. 80  
11.3 社区资源................................................................ 80  
11.4 ....................................................................... 80  
11.5 静电放电警告......................................................... 80  
11.6 Glossary................................................................ 80  
12 机械、封装和可订购信息....................................... 80  
6.6 Electrical Characteristics: ADC and Temperature  
Sensor...................................................................... 10  
6.7 Electrical Characteristics: General.......................... 11  
6.8 Timing Requirements.............................................. 12  
6.9 Typical Characteristics: DAC .................................. 14  
6.10 Typical Characteristics: ADC ................................ 20  
6.11 Typical Characteristics: Reference ....................... 22  
6.12 Typical Characteristics: Temperature Sensor....... 22  
Detailed Description ............................................ 23  
7.1 Overview ................................................................. 23  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (April 2016) to Revision D  
Page  
Changed 4.5 V to 4.7 V in AVDD description in Pin Functions .............................................................................................. 4  
Changed 4.5 V to 4.7 V in DVDD description in Pin Functions .............................................................................................. 5  
Changed Supply voltage, AVDD MIN value from 4.5 V to 4.7 V ............................................................................................ 7  
Changed Supply voltage, DVDD MIN value from 4.5 V to 4.7 V ............................................................................................ 7  
Changed Supply voltage, AVCC MIN value from 4.5 V to 4.7 V ............................................................................................ 7  
Changed AVDD = DVDD = 4.5 to 5.5 V to AVDD = DVDD = 4.7 to 5.5 V in Electrical Characteristics: DAC conditions............ 8  
Changed AVDD = DVDD = 4.5 to 5.5 V to AVDD = DVDD = 4.7 to 5.5 V in Electrical Characteristics: ADC and  
Temperature Sensor conditions .......................................................................................................................................... 10  
Changed AVDD = DVDD = 4.5 to 5.5 V to AVDD = DVDD = 4.7 to 5.5 V in Electrical Characteristics: General conditions .... 11  
Changed AVDD = DVDD = 4.5 to 5.5 V to AVDD = DVDD = 4.7 to 5.5 V in Timing Requirements conditions ........................ 12  
Added paragraph and Figure 59 to Internal Reference section ........................................................................................... 37  
Changed 4.5 V to 4.7 V in All-Negative DAC Range Mode section .................................................................................... 40  
已添加 paragraph to Power Supply Recommendations section .......................................................................................... 77  
已添加 paragraph to Power Supply Recommendations section .......................................................................................... 78  
Changes from Revision B (February 2015) to Revision C  
Page  
Changed Figure 117; corrected pins 63 and 64................................................................................................................... 74  
Changes from Revision A (November 2014) to Revision B  
Page  
器件状态产品预览量产数据” ............................................................................................................................................ 1  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
5 Pin Configuration and Functions  
PAP Package  
64-Pin HTQFP With Exposed Thermal Pad  
Top View  
IOVDD_  
RESET  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AGND2  
ADC_0  
2
SDO  
3
ADC_1  
SDI  
4
ADC_2  
SCLK  
5
ADC_3  
CS  
6
ADC_4  
GPIO0/ALARMIN  
GPIO0/ALARMOUT  
GPIO2/ADCTRIG  
GPIO3/DAV  
GPIO4  
7
ADC_5  
8
ADC_6  
9
ADC_7  
10  
11  
12  
13  
14  
15  
16  
LV_ADC16  
LV_ADC17  
LV_ADC18  
LV_ADC19  
LV_ADC20  
ADC_8  
GPIO5  
GPIO6  
GPIO7  
DAC_A0  
DAC_A1  
ADC_9  
Copyright © 2014–2018, Texas Instruments Incorporated  
3
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
47  
46  
45  
44  
43  
42  
41  
40  
34  
33  
32  
31  
30  
29  
28  
27  
21  
48  
56  
I/O  
ADC_0  
ADC_1  
ADC_2  
ADC_3  
ADC_4  
ADC_5  
ADC_6  
ADC_7  
ADC_8  
ADC_9  
ADC_10  
ADC_11  
ADC_12  
ADC_13  
ADC_14  
ADC_15  
AGND1  
AGND2  
AGND3  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Bipolar analog inputs. These pins are typically used to monitor the DAC group-C outputs. The  
input range of these channels is –12.5 to 12.5 V.  
Bipolar analog inputs. These pins are typically used to monitor the DAC group-D outputs. The  
input range of these channels is –12.5 to 12.5 V.  
Bipolar analog inputs. These pins are typically used to monitor the DAC group-B outputs. The  
input range of these channels is –12.5 to 12.5 V.  
Bipolar analog inputs. These pins are typically used to monitor the DAC group-A outputs. The  
input range of these channels is –12.5 to 12.5 V.  
Analog ground. These pins are the ground reference point for all analog circuitry on the device.  
Connect the AGND1, AGND2, and AGND3 pins to the same potential (AGND). Ideally, the  
analog and digital grounds should be at the same potential (GND) and must not differ by more  
than ±0.3 V.  
Positive analog power for DAC groups A and B. The AVCC_AB and AVCC_CD pins must be  
connected to the same potential (AVCC).  
AVCC_AB  
20  
I
Positive analog power for DAC groups C and D. The AVCC_AB and AVCC_CD pins must be  
connected to the same potential (AVCC).  
AVCC_CD  
AVDD  
57  
50  
I
I
Analog supply voltage (4.7 V to 5.5 V). This pin must have the same value as the DVDD pin.  
Lowest potential in the system. This pin is typically tied to a negative supply voltage but if all  
DACs are set in a positive output range, this pin can be connected to the analog ground. This  
pin also acts as the negative analog supply for DAC group A. This pin sets the power-on-reset  
and clamp voltage values for the DAC group A.  
AVEE  
17  
I
Negative analog supply for DAC group B. This pin sets the power-on-reset and clamp voltage  
values for the DAC group B. This pin is typically tied to the AVEE pin for the negative output  
ranges or AGND for the positive output ranges.  
AVSSB  
AVSSC  
24  
53  
I
I
Negative analog supply for DAC group C. This pin sets the power-on-reset and clamp voltage  
values for the DAC group C. This pin is typically tied to the AVEE pin for the negative output  
ranges or AGND for the positive output ranges.  
Negative analog supply for DAC group D. This pin sets the power-on-reset and clamp voltage  
values for the DAC group D. This pin is typically tied to the AVEE pin for the negative output  
ranges or AGND for the positive output ranges.  
AVSSD  
CS  
60  
6
I
I
Active-low serial-data enable. This input is the frame-synchronization signal for the serial data.  
When this signal goes low, it enables the serial interface input shift register.  
DAC_A0  
DAC_A1  
DAC_A2  
DAC_A3  
DAC_B4  
DAC_B5  
DAC_B6  
DAC_B7  
15  
16  
18  
19  
22  
23  
25  
26  
O
O
O
O
O
O
O
O
DAC group A. These DAC channels share the same range and clamp voltage. If any of the  
other DAC groups is in a negative voltage range, DAC group A should be in a negative  
voltage range as well.  
DAC group B. These DAC channels share the same range and clamp voltage.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Pin Functions (continued)  
PIN  
DESCRIPTION  
NAME  
NO.  
51  
52  
54  
55  
58  
59  
61  
62  
I/O  
O
O
O
O
O
O
O
O
DAC_C8  
DAC_C9  
DAC_C10  
DAC_C11  
DAC_D12  
DAC_D13  
DAC_D14  
DAC_D15  
DAC group C. These DAC channels share the same range and clamp voltage.  
DAC group D. These DAC channels share the same range and clamp voltage.  
Digital ground. This pin is the ground reference point for all digital circuitry on the device.  
Ideally, the analog and digital grounds should be at the same potential (GND) and must not  
differ by more than ±0.3 V.  
DGND  
DVDD  
64  
63  
I
I
Digital supply voltage (4.7 V to 5.5 V). This pin must have the same value as the AVDD pin.  
General-purpose digital I/O 0 (default). This pin is a bidirectional digital input/output (I/O) with  
an internal 48-kpullup resistor to the IOVDD pin. Alternatively the pin can be set to operate  
as the digital input ALARMIN which is an active-low alarm-control signal. If unused this pin can  
be left floating.  
GPIO0/ALARMIN  
7
8
9
I/O  
I/O  
I/O  
General purpose digital I/O 1 (default). This pin is a bidirectional digital I/O with an internal 48-  
kpullup resistor to the IOVDD pin. Alternatively the pin can be set to operate as ALARMOUT  
which is an open drain global alarm output. This pin goes low (active) when an alarm event is  
detected. If unused this pin can be left floating.  
GPIO0/ALARMOUT  
GPIO2/ADCTRIG  
General purpose digital I/O 2 (default). This pin is a bidirectional digital I/O with internal 48-kΩ  
pullup resistor to the IOVDD pin. Alternatively the pin can be set to operate as ADCTRIG which  
is an active-low external conversion trigger. The falling edge of this pin begins the sampling  
and conversion of the ADC. If unused this pin can be left floating.  
General purpose digital I/O 3 (default). This pin is a bidirectional digital I/O with internal 48-kΩ  
pullup resistor to the IOVDD pin. Alternatively the pin can be set to operate as DAV which is an  
active-low data-available indicator output. In direct mode, the DAV pin goes low (active) when  
the conversion ends. In auto mode, a 1-µs pulse (active low) appears on this pin when a  
conversion cycle finishes. The DAV pin remains high when deactivated. If unused this pin can  
be left floating.  
GPIO3/DAV  
10  
I/O  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
General purpose digital I/O. These pins are bidirectional digital I/Os with an internal 48-kΩ  
pullup resistor to the IOVDD pin. If unused these pins can be left floating.  
I/O supply voltage (1.8 V to 5.5 V). This pin sets the I/O operating voltage and threshold levels.  
The voltage on this pin must not be greater than the value of the DVDD pin.  
IOVDD  
1
I
LV_ADC16  
LV_ADC17  
LV_ADC18  
LV_ADC19  
LV_ADC20  
39  
38  
37  
36  
35  
I
I
I
I
I
General purpose analog inputs. These channels are used for general monitoring. The input  
range of these pins is 0 to 2 × Vref  
.
Internal-reference compensation-capacitor connection. Connect a 4.7-μF capacitor between  
this pin and the AGND2 pin.  
REF_CMP  
49  
O
RESET  
SCLK  
2
5
I
I
Active-low reset input. Logic low on this pin causes the device to perform a hardware reset.  
Serial interface clock.  
Serial-interface data input. Data is clocked into the input shift register on each rising edge of  
the SCLK pin.  
SDI  
4
3
I
O
I
Serial-interface data output. The SDO pin is in high impedance when the CS pin is high. Data  
is clocked out of the input shift register on each falling edge of the SCLK pin.  
SDO  
The thermal pad is located on the bottom-side of the device package. The thermal pad should  
be tied to the same potential as the AVEE pin or left disconnected.  
Thermal Pad  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
MAX  
UNIT  
AVDD to GND  
DVDD to GND  
IOVDD to GND  
AVCC to GND  
6
–0.3  
6
–0.3  
6
–0.3  
18  
0.3  
Supply Voltage  
AVEE to GND  
–13  
V
AVSSB, AVSSC, AVSSD to AVEE  
AVCC to AVSSB, AVSSC, or AVSSD  
AVCC to AVEE  
–0.3  
13  
–0.3  
26  
–0.3  
26  
DGND to AGND  
–0.3  
0.3  
ADC_[0-15] analog input voltage to GND  
LV_ADC[16-20] analog input voltage to GND  
DAC_A[0-3] outputs to GND  
DAC_B[4-7] outputs to GND  
DAC_C[8-11] outputs to GND  
DAC_D[12-15] outputs to GND  
REF_CMP to GND  
–13  
13  
–0.3  
AVDD + 0.3  
AVCC + 0.3  
AVCC + 0.3  
AVCC + 0.3  
AVCC + 0.3  
AVDD + 0.3  
IOVDD + 0.3  
IOVDD + 0.3  
IOVDD + 0.3  
10  
AVEE – 0.3  
AVSSB – 0.3  
AVSSC – 0.3  
AVSSD – 0.3  
–0.3  
Pin Voltage  
V
CS, SCLK, SDI and RESET to GND  
SDO to GND  
–0.3  
–0.3  
GPIO[0-7] to GND  
–0.3  
ADC_[0:15] analog input current  
LV_ADC[16:20] analog input current  
GPIO[0:7] sinking current  
–10  
Pin Current  
–10  
10  
mA  
5
Operating temperature  
–40  
–40  
–40  
125  
°C  
°C  
°C  
Junction temperature, TJmax  
Storage temperature, Tstg  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.7  
NOM  
MAX  
5.5  
5.5  
5.5  
12.5  
0
UNIT  
AVDD  
5
5
(1)  
DVDD  
4.7  
(2)  
IOVDD  
1.8  
Supply voltage  
AVCC  
V
4.7  
12  
AVEE  
AVSSB, AVSSC, AVSSD  
–12.5  
AVEE  
–40  
–40  
–12  
0
Specified operating temperature  
Operating temperature  
25  
25  
105  
125  
°C  
°C  
(1) The value of the DVDD pin must be equal to that of the AVDD pin.  
(2) The value of the IOVDD pin must be less than or equal to that of the DVDD pin.  
6.4 Thermal Information  
AMC7836  
THERMAL METRIC(1)  
PAP (HTQFP)  
UNIT  
64 PINS  
26.2  
7.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
9.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9
RθJC(bot)  
0.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.5 Electrical Characteristics: DAC  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 4.7 to 5.5 V, AVCC = 12 V, IOVDD = 1.8 to 5.5 V, AGND = DGND = 0 V, AVEE  
=
AVSSB = AVSSC = AVSSD = –12 V (for DAC groups in negative range) or 0 V (for DAC groups in positive ranges), DAC output  
range = 0 to 10 V for all groups, no load on the DACs, TA = –40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC DC ACCURACY  
Resolution  
12  
Bits  
Measured by line passing through codes 020h and  
FFFh. 0 to 10 V and –10 to 0 V ranges  
±0.3  
±0.5  
±1  
±1.5  
±1  
INL  
Relative accuracy  
LSB  
Measured by line passing through codes 040h and  
FFFh. 0 to 5 V and –5 to 0 V ranges  
Specified monotonic. Measured by line passing  
through codes 020h and FFFh. 0 to 10 V and –10 to  
0 V ranges  
±0.03  
DNL  
Differential nonlinearity  
Total unadjusted error(1)  
LSB  
Specified monotonic. Measured by line passing  
through codes 020h and FFFh. 0 to 5 V and –5 to 0  
V ranges  
±0.06  
±1  
TA = 25°C, 0 to 10 V range  
TA = 25°C, –10 to 0 V range  
TA = 25°C, 0 to 5 V range  
TA = 25°C, –5 to 0 V range  
±2.5  
±2.5  
±20  
±20  
±15  
±15  
±5  
TUE  
mV  
±1.5  
±1.5  
TA = 25°C, Measured by line passing through codes  
020h and FFFh. 0 to 10 V range  
±0.25  
Offset error  
mV  
mV  
TA = 25°C, Measured by line passing through codes  
040h and FFFh. 0 to 5 V range  
±0.25  
±5  
TA = 25°C, Code 000h, –10 to 0 V range  
TA = 25°C, Code 000h, –5 to 0 V range  
±1  
±1  
±25  
±25  
Zero-code error  
TA = 25°C, Measured by line passing through codes  
020h and FFFh, 0 to 10 V range  
±0.01  
±0.2  
TA = 25°C, Measured by line passing through codes  
020h and FFFh, –10 to 0 V range  
±0.01  
±0.01  
±0.01  
±0.2  
±0.2  
±0.2  
Gain error(1)  
%FSR  
TA = 25°C, Measured by line passing through codes  
040h and FFFh, 0 to 5 V range  
TA = 25°C, Measured by line passing through codes  
040h and FFFh, –5 to 0 V range  
0 to 10 V range  
0 to 5 V range  
–10 to 0 V range  
–5 to 0 V range  
0 to 10 V range  
–10 to 0 V range  
0 to 5 V range  
–5 to 0 V range  
±1  
±1  
Offset temperature coefficient  
ppm/°C  
ppm/°C  
±2  
Zero-code temperature coefficient  
±2  
±2.5  
±2.5  
±2.5  
±2.5  
Gain temperature coefficient(1)  
ppm/°C  
(1) The internal reference contribution not included.  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Electrical Characteristics: DAC (continued)  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 4.7 to 5.5 V, AVCC = 12 V, IOVDD = 1.8 to 5.5 V, AGND = DGND = 0 V, AVEE  
=
AVSSB = AVSSC = AVSSD = –12 V (for DAC groups in negative range) or 0 V (for DAC groups in positive ranges), DAC output  
range = 0 to 10 V for all groups, no load on the DACs, TA = –40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC OUTPUT CHARACTERISTICS  
Set at power-up or reset through auto-range  
–10  
0
detection. The output range can be modified after  
power-up or reset through the DAC range registers  
(address 0x1E through 0x1F). DAC-RANGE = 100b  
The output range can be modified after power-up or  
reset through the DAC range registers (address 0x1E  
through 0x1F). DAC-RANGE = 101b  
–5  
0
0
5
Full-scale output voltage range(2)  
V
Set at power-up or reset through auto-range  
detection. The output range can be modified after  
power-up or reset through the DAC range registers  
(address 0x1E through 0x1F). DAC-RANGE = 111b  
The output range can be modified after power-up or  
reset through the DAC range registers (address 0x1E  
through 0x1F). DAC-RANGE = 110b  
0
10  
Transition: Code 400h to C00h to within ½ LSB, RL  
2 kΩ, CL = 200 pF. 0 to 10 V and –10 to 0 V ranges  
=
10  
10  
Output voltage settling time  
µs  
Transition: Code 400h to C00h to within ½ LSB, RL  
=
2 kΩ, CL = 200 pF. 0 to 5 V and –5 to 0 V ranges  
Transition: Code 400h to C00h, 10% to 90%, RL = 2  
kΩ, CL = 200 pF. 0 to 10 V and –10 to 0 V ranges  
1.25  
1.25  
±45  
Slew rate  
V/µs  
mA  
Transition: Code 400h to C00h, 10% to 90%, RL = 2  
kΩ, CL = 200 pF. 0 to 5 V and –5 to 0 V ranges  
Full-scale current shorted to the DAC group AVSS or  
AVCC voltage  
Short circuit current  
Load current(3)  
Source or sink with 1-V headroom from the DAC  
group AVCC or AVSS voltage, voltage drop < 25 mV  
±15  
±10  
0
mA  
Source or sink with 300-mV headroom from the DAC  
group AVCC or AVSS voltage, voltage drop < 25 mV  
Maximum capacitive load(4)  
DC output impedance  
RL =  
10  
nF  
Code set to 800h, ±15mA  
1
Ω
AVEE = AVSSB = AVSSC = AVSSD = AGND, AVCC = 0  
to 12 V, 2-ms ramp  
10  
Power-on overshoot  
Glitch energy  
mV  
nV-s  
Transition: Code 7FFh to 800h; 800h to 7FFh  
1
TA = 25°C, 1 kHz, code 800h, includes internal  
reference noise  
520  
nV/Hz  
Output noise  
TA = 25°C, integrated noise from 0.1 Hz to 10 Hz,  
code 800h, includes internal reference noise  
20  
µVPP  
CLAMP OUTPUTS  
DAC output range: 0 to 10 V, AVSS = AGND  
DAC output range: 0 to 5 V, AVSS = AGND  
DAC output range: –10 to 0 V, AVSS = –12 V  
DAC output range: –5 to 0 V, AVSS = –6 V  
0
0
Clamp output voltage(5)  
V
AVSS + 2  
AVSS + 1  
8
Clamp output impedance  
kΩ  
(2) The output voltage of each DAC group must not be greater than that of the corresponding AVCC pin (AVCC_AB or AVCC_CD) or lower than  
that of the corresponding AVSS pin (AVEE, AVSSB, AVSSC or AVSSD). See the DAC Output Range and Clamp Configuration section for  
more details.  
(3) If all channels are simultaneously loaded, care must be taken to ensure the thermal conditions for the device are not exceeded.  
(4) To be sampled during initial release to ensure compliance; not subject to production testing.  
(5) No DAC load to the DAC group AVSS pin.  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.6 Electrical Characteristics: ADC and Temperature Sensor  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 4.7 to 5.5 V, AVCC = 12 V, IOVDD = 1.8 to 5.5 V, AGND = DGND = 0 V, AVEE  
=
AVSSB = AVSSC = AVSSD = –12 V (for DAC groups in negative range) or 0 V (for DAC groups in positive ranges), DAC output  
range = 0 to 10 V for all groups, no load on the DACs, TA = –40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
12  
Bits  
Unipolar input channels  
±0.5  
±0.5  
±0.5  
±1  
±1.5  
±1  
Integral nonlinearity  
LSB  
LSB  
Bipolar input channels  
Differential nonlinearity  
Specified monotonic. All input channels  
UNIPOLAR ANALOG INPUTS: LV_ADC16 to LV_ADC20  
Absolute input voltage range  
AGND – 0.2  
0
AVDD + 0.2  
2 × Vref  
V
Full scale input range  
Input capacitance  
DC input leakage current  
Offset error  
Vref measured at REF_CMP pin  
V
34  
pF  
Unselected ADC input  
±10  
±5  
µA  
±1  
±0.5  
±0.5  
±1  
LSB  
LSB  
LSB  
LSB  
µs  
Offset error match  
Gain error(1)  
±5  
Gain error match  
Update time  
Single unipolar input, temperature sensor disabled  
11.5  
BIPOLAR ANALOG INPUTS: ADC_0 to ADC_15  
Absolute input voltage range  
Full scale input range  
Input resistance  
–13  
13  
V
V
–12.5  
12.5  
175  
±0.25  
±0.5  
kΩ  
LSB  
LSB  
µs  
Offset error  
Gain error(1)  
±5  
±5  
Update time  
Single bipolar input, temperature sensor disabled  
34.5  
TEMPERATURE SENSOR  
Operating range  
Accuracy  
–40  
3.7  
125  
°C  
°C  
°C  
µs  
TA = –40°C to 125°C, AVDD = 5 V  
LSB size  
±1.25  
0.25  
256  
±2.5  
Resolution  
Update time  
All ADC input channels disabled  
ADC UPDATE TIME  
Internal oscillator frequency  
4
4.3  
MHz  
µs  
All 21 ADC inputs enabled, temperature sensor  
disabled.  
609.5  
ADC update time  
All 21 ADC inputs enabled, temperature sensor  
enabled.  
865.5  
µs  
INTERNAL REFERENCE (INTERNAL REFERENCE NOT ACCESSIBLE)  
Initial accuracy  
TA = 25°C  
2.4925  
2.5  
12  
2.5075  
35  
V
Reference temperature coefficient  
INTERNAL ADC REFERENCE BUFFER  
Reference buffer offset  
ppm/°C  
TA = 25°C  
±5  
mV  
(1) Internal reference contribution not included.  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
6.7 Electrical Characteristics: General  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. AVDD = DVDD = 4.7 to 5.5 V, AVCC = 12 V, IOVVDD = 1.8 to 5.5 V, AGND = DGND = 0 V, AVEE  
=
AVSSB = AVSSC = AVSSD = –12 V (for DAC groups in negative range) or 0 V (for DAC groups in positive ranges), DAC output  
range = 0 to 10 V for all groups, no load on the DACs, TA = –40°C to 105°C  
PARAMETER  
AVSS DETECTOR  
AVSS threshold detector (AVSSTH  
DIGITAL LOGIC: GPIO  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
)
–3.5  
–1.5  
V
High-level input voltage  
IOVDD = 1.8 to 5.5 V  
0.7 × IOVDD  
V
V
IOVDD = 1.8 V  
0.45  
0.3 × IOVDD  
0.4  
Low-level input voltage  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 V, I(LOAD) = –2 mA  
IOVDD = 5.5 V, I(LOAD) = –5 mA  
To IOVDD  
Low-level output voltage  
V
0.4  
Input impedance  
DIGITAL LOGIC: ALL EXCEPT GPIO  
High-level input voltage  
48  
kΩ  
IOVDD = 1.8 to 5.5 V  
IOVDD = 1.8 V  
0.7 × IOVDD  
IOVDD – 0.4  
V
V
0.45  
Low-level input voltage  
IOVDD = 2.7 to 5.5 V  
I(LOAD) = –1 mA  
0.3 × IOVDD  
V
High-level output voltage  
Low-level output voltage  
High impedance leakage  
V
I(LOAD) = 1 mA  
0.4  
±5  
V
µA  
High impedance output  
capacitance  
10  
pF  
POWER REQUIREMENTS  
IAVDD  
IAVCC  
IAVSS  
IAVEE  
IDVDD  
IIOVDD  
AVDD supply current  
AVCC supply current  
AVSS supply current  
AVEE supply current  
DVDD supply current  
IOVDD supply current  
Power consumption  
AVDD supply current  
AVCC supply current  
AVSS supply current  
AVEE supply current  
DVDD supply current  
IOVDD supply current  
Power consumption  
6
7.5  
–5  
13.5  
13.5  
–13.5  
–3.5  
mA  
No DAC load, all DACs at 800h code and ADC at  
the fastest auto conversion rate  
–1.75  
1
3
1.5  
215  
2.5  
1
15  
µA  
mW  
IAVDD  
IAVCC  
IAVSS  
IAVEE  
IDVDD  
IIOVDD  
5
2.5  
–5  
–3  
-3  
mA  
Power-down mode  
–1.75  
0.75  
1.5  
90  
1.5  
15  
µA  
mW  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.8 Timing Requirements  
AVDD = DVDD = 4.7 to 5.5 V, AVCC = 12 V, AVEE = –12 V, AGND = DGND = AVSSB = AVSSC = AVSSD = 0 V, DAC output range  
= 0 to 10 V for all groups, no load on the DACs, TA = –40°C to 105°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SERIAL INTERFACE(1)  
ƒ(SCLK) SCLK frequency  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
IOVDD = 1.8 to 2.7 V  
IOVDD = 2.7 to 5.5 V  
15  
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
66.67  
50  
30  
23  
30  
23  
10  
10  
10  
10  
0
tp  
SCLK period(2)  
tPH  
SCLK pulse width high(2)  
SCLK pulse width low(2)  
SDI setup(2)  
tPL  
tsu  
th  
SDI hold(2)  
15  
9
SDO driven to tri-  
state(3)(4)  
t(ODZ)  
t(OZD)  
t(OD)  
tsu(CS)  
th(CS)  
t(IAG)  
0
0
23  
15  
23  
15  
SDO tri-state to  
driven(3)(4)  
0
0
SDO output delay(3)(4)  
CS setup(2)  
0
5
5
20  
20  
10  
10  
CS hold(2)  
Inter-access gap(2)  
DIGITAL LOGIC  
Reset delay; delay-to-normal operation from reset  
Power-down recovery time  
Clamp shutdown delay  
100  
100  
250  
70  
µs  
µs  
µs  
ns  
ns  
Convert pulse width  
20  
20  
Reset pulse width  
ADC WAIT state(5); the wait time from when the ADC enters the IDLE state  
to when the ADC is ready for trigger  
2
µs  
(1) Specified by design and characterization. Not tested during production.  
(2) See Figure 1 and Figure 2.  
(3) SDO loaded with 10 pF load capacitance for SDO timing specifications.  
(4) See Figure 2.  
(5) Specified by design; not subject to production testing. See the ADC Sequencing section for more details.  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
t(IAG)  
th(CS)  
tsu(CS)  
CS  
tp  
tPL  
SCLK  
SDI  
tPH  
Bit 23  
Bit 1  
Bit 0  
th  
tsu  
Figure 1. Serial Interface Write Timing Diagram  
t(ODZ)  
t(IAG)  
th(CS)  
tsu(CS)  
CS  
tp  
tPL  
SCLK  
SDI  
tPH  
Bit 23  
Bit 8  
th  
tsu  
SDO  
Bit 7  
Bit 0  
t(OZD)  
t(OD)  
Figure 2. Serial Interface Read Timing Diagram  
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.9 Typical Characteristics: DAC  
At TA = 25°C (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
A0  
B4  
C8  
D12  
A1  
B5  
C9  
D13  
A2  
B6  
C10  
D14  
A3  
B7  
C11  
D15  
A0  
A1  
A2  
A3  
-0.6  
-0.8  
-1  
B4  
B5  
B6  
B7  
C8  
D12  
C9  
D13  
C10  
D14  
C11  
D15  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C001  
Figure 3. DAC Linearity Error vs Code  
DAC Range: 0 to 10 V  
Figure 4. DAC Differential Linearity Error vs Code  
DAC Range: 0 to 10 V  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
A0  
A1  
A2  
A3  
A0  
A1  
A2  
A3  
B4  
B5  
B6  
B7  
B4  
B5  
B6  
B7  
C8  
D12  
C9  
D13  
C10  
D14  
C11  
D15  
C8  
D12  
C9  
D13  
C10  
D14  
C11  
D15  
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C001  
Figure 5. DAC Linearity Error vs Code  
DAC Range: –10 to 0 V  
Figure 6. DAC Differential Linearity Error vs Code  
DAC Range: –10 to 0 V  
1
0.8  
0.6  
0.4  
0.2  
0
1
A0  
A1  
A2  
A3  
B4  
B5  
B6  
B7  
0.8  
0.6  
0.4  
0.2  
0
C8  
D12  
C9  
D13  
C10  
D14  
C11  
D15  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
A0  
A1  
A2  
A3  
B4  
B5  
B6  
B7  
C8  
D12  
C9  
D13  
C10  
D14  
C11  
D15  
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C001  
Figure 7. DAC Linearity Error vs Code  
DAC Range: 0 to 5 V  
Figure 8. DAC Differential Linearity Error vs Code  
DAC Range: 0 to 5 V  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Typical Characteristics: DAC (continued)  
At TA = 25°C (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
A0  
B4  
C8  
D12  
A1  
B5  
C9  
D13  
A2  
B6  
C10  
D14  
A3  
B7  
C11  
D15  
A0  
A1  
A2  
A3  
-0.6  
-0.8  
-1  
B4  
B5  
B6  
B7  
C8  
D12  
C9  
D13  
C10  
D14  
C11  
D15  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C001  
Figure 9. DAC Linearity Error vs Code  
DAC Range: –5 to 0 V  
Figure 10. DAC Differential Linearity Error vs Code  
DAC Range: –5 to 0 V  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 11. DAC Linearity Error vs Temperature  
DAC Range: 0 to 10 V  
Figure 12. DAC Differential Linearity Error vs Temperature  
DAC Range: 0 to 10 V  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.2  
œ0.4  
œ0.6  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
œ0.8  
œ1.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 13. DAC Linearity Error vs Temperature  
DAC Range: –10 to 0 V  
Figure 14. DAC Differential Linearity Error vs Temperature  
DAC Range: –10 to 0 V  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Typical Characteristics: DAC (continued)  
At TA = 25°C (unless otherwise noted)  
1.5  
1.0  
0.8  
1.2  
0.9  
0.6  
0.6  
0.4  
0.3  
0.2  
0.0  
0.0  
œ0.3  
œ0.6  
œ0.9  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
INL MAX  
DNL MAX  
DNL MIN  
œ1.2  
œ1.5  
INL MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 15. DAC Linearity Error vs Temperature  
DAC Range: 0 to 5 V  
Figure 16. DAC Differential Linearity Error vs Temperature  
DAC Range: 0 to 5 V  
1.5  
1.2  
1.0  
0.8  
0.9  
0.6  
0.6  
0.4  
0.3  
0.2  
0.0  
0.0  
œ0.3  
œ0.6  
œ0.9  
œ1.2  
œ1.5  
œ0.2  
œ0.4  
œ0.6  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
œ0.8  
œ1.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 17. DAC Linearity Error vs Temperature  
DAC Range: –5 to 0 V  
Figure 18. DAC Differential Linearity Error vs Temperature  
DAC Range: –5 to 0 V  
5
4
25  
20  
15  
10  
5
3
2
1
0
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ5  
œ10  
œ15  
0V to 10V Range  
0V to 5V Range  
-10V to 0V Range  
œ20  
-5V to 0V Range  
œ25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 19. DAC Offset Error vs Temperature  
Figure 20. DAC Zero Code Error vs Temperature  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Typical Characteristics: DAC (continued)  
At TA = 25°C (unless otherwise noted)  
10  
9
8
7
6
5
4
3
2
1
0
0.20  
0.15  
0.10  
0.05  
0.00  
œ0.05  
0V to 10V Range  
œ0.10  
0V to 5V Range  
-10V to 0V Range  
-5V to 0V Range  
œ0.15  
œ0.20  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
ILOAD (mA)  
TA (°C)  
C001  
C001  
Code 0x800, DAC range: 0 to 10 V  
Figure 22. DAC Output Voltage vs Load Current  
Figure 21. DAC Gain Error vs Temperature  
10  
9.95  
9.9  
0.25  
0.2  
0.15  
0.1  
0.05  
0
9.85  
9.8  
9.75  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1  
ILOAD (mA)  
0
ILOAD (mA)  
C001  
C001  
Code 0xFFF, DAC range: 0 to 10 V, AVCC = 10 V, AVEE = 0 V  
Code 0x000, DAC range: 0 to 10 V, AVCC = 10 V, AVEE = 0 V  
Figure 23. DAC Source Current  
Figure 24. DAC Sink Current  
15  
15  
10nF, Rising Edge  
10nF, Falling Edge  
200pF, Rising Edge  
200pF, Falling Edge  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-10  
-15  
0
5
10  
15  
Time (µs)  
20  
25  
0
5
10  
15  
Time (µs)  
20  
25  
C001  
C001  
Code 0x400 to 0xC00 to within ½ LSB  
Code 0xC00 to 0x400 to within ½ LSB  
Figure 26. DAC Settling Time vs Load Capacitance  
Figure 25. DAC Settling Time vs Load Capacitance  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Typical Characteristics: DAC (continued)  
At TA = 25°C (unless otherwise noted)  
5000  
10  
5
15  
12  
9
4000  
3000  
2000  
1000  
0
6
3
0
0
œ3  
œ6  
œ9  
œ5  
œ10  
DAC OUTPUT  
AVCC  
œ12  
œ15  
-2  
-1  
0
1
2
3
4
5
10  
100  
1k  
10k  
100k  
1M  
10M  
Time (ms)  
C002  
Frequency (Hz)  
C001  
AVSS = AVEE = AGND, AVCC = 0 to 12 V, 2-ms ramp  
Code 0x800  
Figure 28. DAC Power On Overshoot, Single Supply  
Figure 27. DAC Output Noise vs Frequency  
15  
10  
5
0
-2  
-4  
-6  
-8  
0
-5  
AVCC  
AVSS  
-10  
-15  
-10  
DVDD/AVDD  
DAC output  
-12  
-12.5  
0
1
2
3
œ1  
-10  
-7.5  
AVSS (V)  
-5  
-2.5  
0
Time (ms)  
C001  
C020  
AVSS = AVEE = –12 V, AVCC = 0 to 12 V, 2-ms ramp  
No load  
Figure 30. DAC Clamp Output vs AVSS  
Figure 29. DAC Power On Overshoot, Dual Supply  
5
0
5.0  
15  
10  
5
DVDD/AVDD  
AVCC  
AVSS  
IOVDD  
DAC OUT  
2.5  
0.0  
œ5  
0
-5  
œ10  
œ15  
œ2.5  
DAC Output  
-10  
DAC Output Small Signal  
œ5.0  
-15  
-5  
0
5
10  
15  
20  
25  
30  
35  
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
Time (µs)  
C031  
Time (ms)  
C001  
Code 0xFFF, DAC range: –10 to 0 V, no load  
Code 0xFFF, DAC range: –10 to 0 V, no load  
Figure 32. DAC Output With AVDD and DVDD Supply  
Collapse  
Figure 31. DAC Clamp Recovery  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Typical Characteristics: DAC (continued)  
At TA = 25°C (unless otherwise noted)  
15  
15  
10  
5
DVDD/AVDD  
AVCC  
AVSS  
IOVDD  
DAC OUT  
DVDD/AVDD  
AVCC  
AVSS  
IOVDD  
DAC OUT  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-15  
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
Time (ms)  
Time (ms)  
C001  
C001  
Code 0xFFF, DAC range: –10 to 0 V, no load  
Code 0xC00, DAC range: –10 to 0 V, no load  
Figure 33. DAC Output With IOVDD Supply Collapse  
Figure 34. DAC Output With AVSS Supply Collapse  
15  
DVDD/AVDD  
AVCC  
AVSS  
IOVDD  
DAC OUT  
10  
5
0
-5  
-10  
-15  
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
Time (ms)  
C001  
Code 0xFFF, DAC range: –10 to 0 V, no load  
Figure 35. DAC Output With AVCC Supply Collapse  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.10 Typical Characteristics: ADC  
At TA = 25°C (unless otherwise noted)  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C001  
Figure 36. ADC Linearity Error vs Code  
Unipolar Input  
Figure 37. ADC Differential Linearity Error vs Code  
Unipolar Input  
1.0  
1.5  
1.2  
0.8  
0.6  
0.9  
0.4  
0.6  
0.2  
0.3  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.3  
œ0.6  
œ0.9  
œ1.2  
œ1.5  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Code  
Code  
C001  
C001  
Figure 39. ADC Differential Linearity Error vs Code  
Bipolar Input  
Figure 38. ADC Linearity Error vs Code  
Bipolar Input  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
INL MAX  
INL MIN  
DNL MAX  
DNL MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 40. ADC Linearity Error vs Temperature  
Unipolar Input  
Figure 41. ADC Differential Linearity Error vs Temperature  
Unipolar Input  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Typical Characteristics: ADC (continued)  
At TA = 25°C (unless otherwise noted)  
1.5  
1.0  
0.8  
1.2  
0.9  
0.6  
0.6  
0.4  
0.3  
0.2  
0.0  
0.0  
œ0.3  
œ0.6  
œ0.9  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
INL MAX  
DNL MAX  
DNL MIN  
œ1.2  
œ1.5  
INL MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 42. ADC Linearity Error vs Temperature  
Bipolar Input  
Figure 43. ADC Differential Linearity Error vs Temperature  
Bipolar Input  
10  
8
5
4
6
3
4
2
2
1
0
0
œ2  
œ4  
œ6  
œ8  
œ10  
œ1  
œ2  
œ3  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
œ4  
œ5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA (°C)  
TA (°C)  
C001  
C001  
Figure 44. ADC Gain Error vs Temperature  
Figure 45. ADC Offset Error vs Temperature  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.11 Typical Characteristics: Reference  
At TA = 25°C (unless otherwise noted)  
2.505  
2.504  
2.503  
2.502  
2.501  
2.5  
2.499  
2.498  
2.497  
2.496  
2.495  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
C001  
10 units, measured at REF_CMP  
Figure 46. Reference Voltage vs Temperature  
6.12 Typical Characteristics: Temperature Sensor  
At TA = 25°C (unless otherwise noted)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
TA (°C)  
C001  
10 units  
Figure 47. Temperature Sensor Error vs Temperature  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7 Detailed Description  
7.1 Overview  
The AMC7836 device is a highly-integrated analog-monitoring and control solution capable of voltage and  
temperature supervision. The AMC7836 device includes the following features:  
Sixteen 12-bit digital-to-analog converters (DACs) with adjustable output ranges  
Output ranges: –10 to 0 V, –5 to 0 V, 0 to 5 V, and 0 to 10 V  
Auto-range detector on device power-up and reset events  
The DACs power-on and clamp voltages can be pin-selected between AGND and a negative voltage  
The DACs can be configured to clamp automatically upon detection of an alarm event  
A multi-channel, 12-bit analog-to-digital converter (ADC) for voltage and temperature sensing  
Sixteen bipolar inputs: –12.5 to 12.5 V input range  
Five precision inputs with programmable threshold detectors: 0 to 5 V input range  
Internal temperature sensor  
Internal 2.5 V precision reference  
Eight general purpose I/O (GPIO) ports  
Communication with the device occurs through a 4-wire SPI-compatible interface supporting 1.8 to 5.5 V  
operation  
The AMC7836 device is characterized for operation over the temperature range of –40ºC to 125ºC which makes  
the device suitable for harsh-condition applications. The device is available in a 10-mm × 10-mm 64-pin HTQFP  
PowerPAD IC package.  
The very high-integration of the AMC7836 device makes it an ideal all-in-one, low-cost, bias-control circuit for the  
power amplifiers (PAs) found in multi-channel RF-communication systems. The flexible DAC output ranges allow  
the device to be used as a biasing solution for a large variety of transistor technologies such as LDMOS, GaAs,  
and GaN. The AMC7836 feature set is similarly beneficial in general-purpose monitor and control systems.  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
REF_CMP  
AMC7836  
Reference  
(2.5 V)  
ADC_0  
ADC_1  
ADC_2  
ADC_3  
ADC_4  
ADC_5  
ADC  
Trigger  
DAC  
Trigger  
DAC-0  
12-b  
DAC_A12  
DAC_A13  
DAC_A14  
DAC_A15  
ADC_6  
Bipolar  
ADC_7  
Inputs  
ADC_8  
Scaling  
ADC_9  
ADC_10  
ADC_11  
ADC_12  
ADC_13  
ADC_14  
ADC_15  
DAC-3  
12-b  
ADC  
12-b  
DAC-4  
12-b  
LV_ADC16  
LV_ADC17  
LV_ADC18  
LV_ADC19  
LV_ADC20  
DAC_B8  
DAC_B9  
DAC_B10  
DAC_B11  
Local  
Temperature  
Sensor  
DAC-7  
12-b  
GPIO0/ALARMIN  
GPIO1/ALARMOUT  
GPIO2/ADCTRIG  
DAC-8  
12-b  
DAC_C0  
DAC_C1  
DAC_C2  
DAC_C3  
GPIO  
Controller  
GPIO3/DAV  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
DAC-11  
12-b  
DAC-12  
12-b  
DAC_D4  
DAC_D5  
DAC_D6  
DAC_D7  
Control, Limits, and  
Status Registers  
DAC-15  
12-b  
DAC  
Range  
and  
Clamp  
Setup  
Synchronization  
Logic  
Serial Interface Register  
and Control  
DV  
DD  
DD  
IOV  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.3 Feature Description  
7.3.1 Digital-to-Analog Converters (DACs)  
The AMC7836 device features an analog-control system centered on sixteen 12-bit DACs that operate from the  
internal reference of the device. Each DAC core consists of a string DAC and output-voltage buffer.  
The resistor-string structure consists of a series of resistors, each with a value of R. The code loaded to the DAC  
determines at which node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string to the amplifier (see Figure 48). This architecture  
has inherent monotonicity, voltage output, and low glitch. This architecture is also linear because all the resistors  
are of equal value.  
R
R
To Output  
Amplifier  
R
R
R
Figure 48. DAC Resistor String  
7.3.1.1 DAC Output Range and Clamp Configuration  
The 16 DACs are split into four groups, each with four DACs. All of the DACs in a given group share the same  
output range and clamp voltage value, however, these settings can be set independently for each DAC group.  
After power-on or a reset event the following actions take place: the DAC outputs are directed automatically to  
the corresponding clamp value; the DAC groups output ranges are set by the auto-range detector and; all DAC  
data registers and data latches are set to the default values. Figure 49 shows a high level block diagram of each  
DAC in the AMC7836 device.  
Copyright © 2014–2018, Texas Instruments Incorporated  
25  
 
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
AVCC  
Serial Interface DAC Data Register  
WRITE  
READ  
READBACK bit  
1
0
DAC  
Buffer  
Register  
DAC  
Active  
Register  
0
DAC  
Output Range  
Configuration  
Resistor String  
VO  
DAC output  
0x000  
1
UPDATE  
command  
Clear State  
Clamp State  
(register or alarm-  
generated)  
(reset event or  
DAC power down)  
Clamp  
Offset  
5Ÿ 6 × AVSS  
AVSS  
Figure 49. DAC Block Diagram  
7.3.1.1.1 Auto-Range Detection  
After power-on or a reset event the output range for each DAC group is set automatically by the voltage present  
in the corresponding AVSS pin (AVEE, AVSSB, AVSSC or AVSSD). When the AVSS voltage of a DAC group is lower  
than the threshold value, AVSSTH, the output for that DAC group is automatically configured to the –10 to 0 V  
range. Conversely, if the DAC group AVSS voltage is higher than AVSSTH, the DAC-group output is automatically  
set to the 0 to 5 V range. The auto-range detector results for each DAC group are stored in the general status  
register (address 0x72).  
In addition to a power-on or reset event, the auto-range detector is also enabled by a register write to the DAC  
power down registers (address 0xB2 through 0xB3) or the device configuration register (address 0x02).  
Although the initial output-range setting is determined by the auto-range detector, the output range for each  
DAC-group can be afterwards configured to any of the available output ranges (–10 to 0 V, –5 to 0 V, 0 to 5 V, or  
0 to 10 V) through the DAC range registers (address 0x1E through 0x1F).  
NOTE  
The power-on-reset and clamp-voltage value of each DAC group is set by the  
corresponding AVSS pin and is independent of the DAC output range. In some  
applications, matching the clamp-voltage setting to the operating voltage range is  
imperative. For those applications, the recommended connections for the AVSS pin are:  
AGND for the positive output ranges, in which case the clamp voltage is 0 V; a negative  
supply voltage with a lower value than the minimum DAC output voltage (–5 V or –10 V)  
for the selected negative output range, in which case the unloaded clamp voltage is  
determined by the value of the negative supply voltage (see Figure 50).  
Although not a recommended operating condition, the device allows a DAC group to  
operate in a positive output range even if its clamp voltage is negative (AVSS connected to  
a negative supply voltage).  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Feature Description (continued)  
0
-2  
-4  
-6  
-8  
-10  
-12  
-12.5  
-10  
-7.5  
AVSS (V)  
-5  
-2.5  
0
C020  
Figure 50. DAC Clamp Output vs AVSS  
A special distinction must be made for DAC group A as the AVSS pin of this group is the dual-function AVEE pin.  
Aside from setting the clamp voltage and default output range for the DAC group A, the AVEE pin is also the  
lowest potential in the device. As a consequence the AVEE voltage is dependent on the other AVSS pin  
connections. The AVEE pin can only be connected to the analog ground if all the other AVSS pins are also  
connected to the analog ground. If any of the AVSS pins is connected to a negative voltage, the AVEE pin must  
also be connected to that voltage (see Table 1).  
The full-scale output range for each DAC group is limited by the corresponding AVCC and AVSS values. The  
maximum and minimum outputs cannot exceed the AVCC voltage or be lower than the AVSS voltage, respectively.  
Table 1. Recommended DAC Group Configuration  
AUTO-RANGE  
AND CLAMP  
VOLTAGE  
AVEE = AGND  
AVEE = VNEG  
DAC  
GROUP  
DAC  
CLAMP VOLTAGE  
CLAMP VOLTAGE  
OUTPUT RANGE  
OUTPUT RANGE  
SELECTION  
CONNECTION  
CONNECTION  
(AVSS  
)
DAC_A0  
DAC_A1  
DAC_A2  
DAC_A3  
DAC_B4  
DAC_B5  
DAC_B6  
DAC_B7  
DAC_C8  
DAC_C9  
DAC_C10  
DAC_C11  
DAC_D12  
DAC_D13  
DAC_D14  
DAC_D15  
A
B
C
D
AVEE  
0 to 5 V or 0 to 10 V  
AGND  
–5 to 0 V or –10 to 0 V  
VNEG  
–5 to 0 V or –10 to 0 V  
0 to 5 V or 0 to 10 V  
–5 to 0 V or –10 to 0 V  
0 to 5 V or 0 to 10 V  
–5 to 0 V or –10 to 0 V  
0 to 5 V or 0 to 10 V  
VNEG AVSSB –5 V  
AGND  
AVSSB  
AVSSC  
AVSSD  
0 to 5 V or 0 to 10 V  
0 to 5 V or 0 to 10 V  
0 to 5 V or 0 to 10 V  
AGND  
AGND  
AGND  
VNEG AVSSC –5 V  
AGND  
VNEG AVSSD –5 V  
AGND  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.1.2 DAC Register Structure  
The input data of the DACs is written to the individual DAC data registers (address 0x50 through 0x6F) in straight  
binary format for all output ranges (see Table 2).  
Table 2. DAC Data Format  
DAC OUTPUT VOLTAGE (V)  
DIGITAL CODE  
0 to 5 V RANGE  
0 to 10 V RANGE  
–5 to 0 V RANGE  
–5  
–10 to 0 V RANGE  
–10  
0000 0000 0000  
0000 0000 0001  
1000 0000 0000  
1111 1111 1110  
1111 1111 1111  
0
0
0.00122  
2.5  
0.00244  
5
–4.99878  
–2.5  
–9.99756  
–5  
4.99756  
4.99878  
9.99512  
9.99756  
–0.00244  
–0.00122  
–0.00488  
–0.00244  
Data written to the DAC data registers is initially stored in the DAC buffer registers. The transfer of data from the  
DAC buffer registers to the active registers is initiated by an update command in the register update register  
(address 0x0F). When the active registers are updated, the DAC outputs change to the new values.  
The host has the option to read from either the buffer registers or the active registers when accessing the DAC  
data registers. The DAC read back option is configured by the READBACK bit in the interface configuration 1  
register (address 0x01).  
7.3.1.3 DAC Clear Operation  
Each DAC can be set to a CLEAR state using either hardware or software. When a DAC goes to CLEAR state, it  
is loaded with a zero-code input and the output voltage is set according to the auto-range detector output range.  
The DAC buffer or active registers do not change when the DACs enter the CLEAR state which makes it  
possible to return to the same voltage output before the clear event was issued. Even though the contents of the  
active register do not change while a DAC is in CLEAR state, a data-register read operation from the active  
registers while in this state returns zero-code. This functionality enables the ability to determine the DAC output  
voltage regardless of the operating state (CLEAR or NORMAL).  
NOTE  
The DAC buffer and active registers can be updated while the DACs are in CLEAR state  
allowing the DACs to output new values upon return to normal operation. When the DACs  
exit the CLEAR state, the DACs are immediately loaded with the data in the DAC active  
registers and the output is set back to the corresponding level to restore operation.  
The DAC clear registers (address 0xB0 through 0xB1) enable independent control of each DAC CLEAR state  
through software. The DACs can also be forced to enter a CLEAR state through hardware using the ALARMIN  
pin. See the Programmable Out-of-Range Alarms section for a detailed description of this method.  
The ALARMIN-controlled clear mechanism is just a special case of the device capability to force the DACs into  
the CLEAR state as a response to an alarm event. To enable this function, the alarm events must first be  
enabled as DAC-clear alarm sources in the DAC clear source registers (address 0x1A through 0x1B). The DAC  
outputs to be cleared by the selected alarm events must also be specified in the DAC clear enable registers  
(address 0x18 through 0x19).  
An alarm event sets the corresponding alarm bit in the alarm status registers. In addition all the DACs set to  
clear in response to the alarm event in the DAC clear enable registers enter a CLEAR state. Once the alarm bit  
is cleared, as long as no other CLEAR-state controlling alarm events have been triggered, the DACs are  
reloaded with the contents of the DAC active registers and the outputs update accordingly.  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.3.2 Analog-to-Digital Converter (ADC)  
The AMC7836 features a monitoring system centered on a 12-bit SAR (successive approximation register) ADC  
fronted by a 22-channel multiplexer and an on-chip track-and-hold circuit. The monitoring systems is capable of  
sensing up to 16 external bipolar inputs (–12.5 to 12.5 V range), five external unipolar inputs (0 to 5 V range),  
and an internal analog temperature sensor.  
The ADC operates from an internal 2.5 V reference (Vref, measured at the REF_CMP pin) and the input range is  
0 V to 2 × Vref. The external bipolar inputs to the ADC are internally mapped to this range. The ADC timing  
signals are derived from an on-chip temperature-compensated oscillator. The conversion results can be  
accessed through the device serial interface.  
7.3.2.1 Analog Inputs  
The AMC7836 has 21 analog inputs for external voltage sensing. Sixteen of these inputs (ADC_0 through  
ADC_15) are bipolar and the other five (LV_ADC16 through LV_ADC20) are unipolar. Figure 51 shows the  
equivalent circuit for the external analog-input pins. All switches are open while the ADC is in the IDLE state.  
Scaling Network  
3.125 V  
C(SAMPLE)  
S(W)  
RS  
R(MUX)  
ADC_0  
3.125 V  
S(W) is closed during acquisition.  
S(W) is open during conversion.  
ADC_15  
AVDD  
LV_ADC16  
LV_ADC20  
AGND  
AVDD  
Figure 51. ADC External Inputs Equivalent Circuit  
To achieve the specified performance, especially at higher input frequencies, driving each analog input pin with a  
low impedance source is recommended. An external amplifier can also be used to drive the input pins.  
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
 
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.2.1.1 Bipolar Analog Inputs  
The AMC7836 can support up to 16 bipolar analog inputs. The analog input range for these channels is –12.5 to  
12.5 V. The bipolar signal is scaled internally through a resistor divider so that it maps to the native input range  
of the ADC (0 V to 2 × Vref). The input resistance of the scaling network is 175 k.  
The bipolar analog input conversion values are stored in straight binary format in the ADC data registers  
(address 0x20 through 0x49). The LSB (least-significant bit) size for these channels is 25 × Vref / 4096. With the  
internal reference equal to 2.5 V, the input voltage is calculated by Equation 1.  
CODE ì 5  
Voltage = 5  
- 2.5  
«
÷
4096  
(1)  
A typical application for the bipolar channels is monitoring of the 16 DAC outputs in the device. In this application  
the bipolar inputs can be driven directly. However, in applications where the signal source has high impedance,  
buffering the analog input is recommended. When driven from a low impedance source such as the AMC7836  
DAC outputs, the network is designed to settle before the start of conversion. Additional impedance can affect  
the settling and divider accuracy of this network.  
7.3.2.1.2 Unipolar Analog Inputs  
In addition to the bipolar input channels, the AMC7836 device includes five unipolar analog inputs. The analog  
input range for these channels is 0 V to 2 × Vref and the LSB size for these channels is 2 × Vref / 4096.  
The unipolar analog input conversion values are stored in straight binary format in the ADC-Data registers  
(address 0x40 through 0x49). With the internal reference equal to 2.5 V, the input voltage is calculated by  
Equation 2.  
CODE ì 5  
Voltage =  
4096  
(2)  
In applications where the signal source has high impedance, externally buffering the unipolar analog input is  
recommended.  
7.3.2.2 ADC Sequencing  
The AMC7836 ADC conversion sequence is shown in Figure 52. The ADC supports direct mode and auto mode  
conversion. The conversion method is selected in the ADC configuration register (address 0x10). The default  
conversion method is direct mode.  
In both methods, the single channel or sequence of channels to be converted by the ADC must be first  
configured in the ADC MUX configuration registers (address 0x13 through 0x15). The input channels to the ADC  
include 16 external bipolar inputs, five external unipolar inputs, and the internal temperature sensor.  
In direct-mode conversion, the selected ADC input channels are converted on demand by issuing an ADC trigger  
signal. After the last enabled channel is converted, the ADC enters IDLE state and waits for a new trigger.  
In auto-mode conversion, the selected ADC input channels are converted continuously. The conversion cycle is  
initiated by issuing an ADC trigger. Upon completion of the first conversion sequence another sequence is  
automatically started. Conversion of the selected channels occurs repeatedly until the auto-mode conversion is  
stopped by issuing a second trigger signal.  
30  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Start  
(Reset)  
ADC IDLE state  
Yes  
ADC-register  
changes?  
ADC WAIT state  
(2 µs)  
No  
No  
ADC trigger?  
Yes  
First conversion  
Update registers  
and issue data  
available indicator  
Yes  
Yes  
Yes  
Is this the last  
conversion?  
Direct mode?  
No  
No  
Convert next  
channel  
ADC trigger?  
No  
Figure 52. ADC Conversion Sequence  
Regardless of the selected conversion method, the following ADC registers should only be updated while the  
ADC is in IDLE state:  
ADC configuration register (address 0x10)  
False alarm configuration register (address 0x11)  
ADC MUX configuration registers (address 0x13 through 0x15)  
Threshold registers (0x80 through 0x97)  
Hysteresis register (0xA0 through 0xA5)  
NOTE  
After updating any of the ADC registers listed above, a minimum 2 µs wait time should be  
implemented before issuing an ADC trigger.  
Copyright © 2014–2018, Texas Instruments Incorporated  
31  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.2.3 ADC Synchronization  
A trigger signal must occur for the ADC to enter and exit the IDLE state. The ADC trigger can be generated  
either through software (ICONV bit in the ADC trigger register, 0xC0) or hardware (GPIO2/ADCTRIG, pin 9). To  
use the GPIO2/ADCTRIG pin as an ADC trigger, the pin must be configured accordingly in the GPIO  
configuration register (address 0x12). When the pin is configured as a trigger, a falling edge on it begins the  
sampling and conversion of the ADC.  
In auto mode the ADC and temperature data registers (0x20 through 0x4B) are accessed by first issuing an ADC  
UPDATE command in the register update register (address 0x0F). The ADC UPDATE command ensures the  
latest available data for each input channel can be accessed without the need for complex synchronization  
schemes between the AMC7836 device and the host controller. A single ADC UPDATE command updates all  
ADC and temperature data registers. Therefore issuing multiple UPDATE commands is not necessary when  
reading more than one ADC data register.  
NOTE  
The ADC UPDATE command and accessing of the ADC and Temperature data registers  
does not interfere with the conversion process which ensures continuous ADC operation.  
In direct mode the ADC and temperature data registers (0x20 through 0x4B) should only be accessed while the  
ADC is in the IDLE state (see Figure 53). Although the total update time can be easily calculated, the device  
provides a data-available indicator signal to track the ADC status. Failure to satisfy the synchronization  
requirements could lead to erroneous data reads.  
The data-available indicator signal is output through the GPIO3/DAV pin and as a data-available flag that is  
accessible through the serial interface (DAVF bit in the general status register, 0x72). The GPIO3/DAV pin must  
be configured in the GPIO configuration register (address 0x12) as an interrupt. After a direct-mode conversion is  
complete and the ADC returns to the IDLE state, the DAVF bit is immediately set to 1 and the DAV pin is active  
(low) which indicates that new data is available. The pin and flag are cleared automatically when a new  
conversion begins or one of the ADC data or temperature data registers is accessed.  
a) Direct Mode, Software Trigger  
Trigger  
Command  
Read  
Command  
Trigger  
Command  
Read  
Command  
CS  
1st internal  
trigger  
2nd internal  
trigger  
> 2 µs  
DAV  
First CONVERSION of the channels  
specified in the ADC MUX Registers  
Second CONVERSION of the channels  
specified in the ADC MUX Registers  
b) Direct Mode, Hardware Trigger  
ADCTRIG  
CS  
1st trigger  
2nd trigger  
3rd trigger  
> 2 µs  
Read  
Command  
Read  
Command  
DAV  
First CONVERSION of the channels  
specified in the ADC MUX Registers  
Second CONVERSION of the channels  
specified in the ADC MUX Registers  
Third CONVERSION of the channels  
specified in the ADC MUX Registers  
Figure 53. ADC Direct-Mode Trigger Synchronization  
32  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.3.2.4 Programmable Out-of-Range Alarms  
The AMC7836 device is capable of continuously analyzing the five external unipolar inputs and internal  
temperature sensor conversion results for normal operation.  
Normal operation is established through the lower and upper threshold registers (address 0x80 through 0x97).  
When any of the monitored inputs is out of the specified range, an alarm event is issued and the global alarm bit,  
GALR in the general status register (0x72), is set (see Figure 54). Use the alarm status registers (0x70 through  
0x71) to determine the source of the alarm event.  
RESERVED  
RESERVED  
7
6
5
4
3
2
1
0
RESERVED  
LV_ADC20 Alarm  
LV_ADC19 Alarm  
LV_ADC18 Alarm  
LV_ADC17 Alarm  
LV_ADC16 Alarm  
ALARM STATUS 0  
0x70  
GALR  
RESERVED  
RESERVED  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
ALARM STATUS 1  
0x71  
ALARMIN Alarm  
Die Temperature Alarm  
Temperature Sensor High Alarm  
Temperature Sensor Low Alarm  
Figure 54. Alarm Status Register  
The ALARM-LATCH-DIS bit in the ALARMOUT source 1 register (address 0x1D) sets the latching behavior for  
all alarms (except for the ALARMIN alarm which is always unlatched). When the ALARM-LATCH-DIS bit is  
cleared to 0 the alarm bits in the alarm status registers are latched. The alarm bits are referred to as being  
latched because they remain set until read by software. This design ensures that out-of-limit events cannot be  
missed if the software is polling the device periodically. All bits are cleared when reading the alarm status  
registers, and all bits are reasserted if the out-of limit condition still exists on the next monitoring cycle, unless  
otherwise noted. When the ALARM-LATCH-DIS bit is set to 1, the alarm bits are not latched. The alarm bits in  
the alarm status registers are set to 0 when the error condition subsides, regardless of whether the bit is read or  
not.  
All of the alarms can be set to activate the ALARMOUT pin. To enable this functionality, the GPIO1/ALARMOUT  
pin must be configured accordingly in the GPIO configuration register (address 0x12). The ALARMOUT pin  
works as an interrupt to the host so that it can query the alarm status registers to determine the alarm source.  
Any alarm event can activate the pin as long as the alarm is not masked in the ALARMOUT source registers  
(address 0x1C through 0x1D). When an alarm event is masked, the occurrence of the event sets the  
corresponding status bit in the alarm status registers, but does not activate the ALARMOUT pin.  
Copyright © 2014–2018, Texas Instruments Incorporated  
33  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.2.4.1 Unipolar Inputs Out-of-Range Alarms  
The AMC7836 device provides out-of-range detection for the five external unipolar ADC inputs (LV_ADC16  
through LV_ADC20, pins 35 through 39). Figure 55 shows the out-of-range detection block. When the  
measurement is out-of-range, the corresponding alarm bit in the alarm status 0 register (address 0x70) is set to 1  
to flag the out-of-range condition. The values in the ADC upper and lower Threshold registers (address 0x80  
through 0x93) define the upper and lower bound thresholds for all five inputs.  
ADCn-Upper-  
Threshold Value  
(upper bound)  
œ
+
LV_ADCn  
Conversion Value  
(n = 16 to 20)  
ADCn-ALR  
Bit  
œ
ADCn-Lower-  
Threshold Value  
(lower bound)  
+
Figure 55. Unipolar Inputs Out-of-Range Alarms  
7.3.2.4.2 Unipolar Inputs Out-of-Range Alarms  
The AMC7836 includes high-limit and low-limit detection for the internal temperature sensor. Figure 56 shows the  
temperature detection block. The values in the LT upper and lower threshold registers (address 0x94 through  
0x97) set the limits for the temperature sensor. The temperature sensor detector can issue either a high-alarm  
(LT-HIGH-ALR bit) or a low-alarm (LT-LOW-ALR bit) in the alarm status 1 register (address 0x71) depending on  
whether the high or low thresholds were exceeded. To implement single, upper-bound threshold detection for the  
temperature sensor, the host processor can set the upper-bound threshold to the desired value and the lower-  
bound threshold to the default value. For lower-bound threshold detection, the host processor can set the lower-  
bound threshold to the desired value and the upper-bound threshold to the default value.  
In addition to the programmable threshold alarms the temperature sensor detection circuit also includes a die  
thermal-alarm flag which continuously monitors the die temperature. When the die temperatures exceeds 150˚C  
the die thermal alarm flag (THERM-ALR bit) in the alarm status 1 register (address 0x71) is set. The internal  
temperature sensor must be enabled for this alarm to be functional.  
Temperature  
High Threshold  
(upper bound)  
œ
LT-HIGH-ALR Bit  
THERM-ALR Bit  
+
150°C  
œ
Temperature  
Data  
+
œ
LT-LOW-ALR Bit  
Temperature  
Low Threshold  
(lower bound)  
+
Figure 56. Internal Temperature Out-of-Range Alarms  
34  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.3.2.4.3 ALARMIN Alarm  
The AMC7836 device offers the option of using an external interrupt signal, such as the output of a comparator  
as an alarm event. The GPIO0/ALARMIN pin is used as the alarm input and must be configured accordingly in  
the GPIO configuration register (address 0x12). The pin is active low when configured as an alarm input.  
A typical application for ALARMIN pin is to use it as a hardware interrupt that is responsible for forcing one or  
more DACs to a CLEAR state. The DAC is loaded with a zero-code input and the output voltage is set according  
to the operating output range, however the DAC buffer or active registers do not change (see the Digital-to-  
Analog Converters (DACs) section for more details). To enable this functionality the ALARMIN pin must be  
enabled as a DAC clear-alarm source in the DAC clear source 1 register (address 0x1B). Additionally the DAC  
outputs to be cleared by the ALARMIN pin must be specified in the DAC clear enable registers (address 0x18  
through 0x19).  
In this application when the ALARMIN pin goes low, all the DACs that are set to clear in response to the  
ALARMIN alarm in the DAC-clear enable registers enter a CLEAR state. When the ALARMIN pin goes back high  
the DACs are reloaded with the contents of the DAC active registers which allows the DAC outputs to return to  
the previous operating point without any additional commands.  
7.3.2.4.4 Hysteresis  
If a monitored signal is out of range and the alarm is enabled, the corresponding alarm bit is set to 1. However,  
the alarm condition is cleared only when the conversion result returns either a value lower than the high  
threshold register setting or higher than the low threshold register setting by the number of codes specified in the  
hysteresis setting (see Figure 57). The ADC and LT hysteresis registers (address 0xA0 through 0xA4) store the  
hysteresis value for the external unipolar inputs and internal temperature sensor programmable alarms. The  
hysteresis is a programmable value between 0 LSB to 127 LSB for the unipolar inputs alarms and 0°C to 31°C  
for the internal temperature-sensor alarms. The die thermal alarm hysteresis is fixed at 8°C.  
High Threshold  
Hysteresis  
Hysteresis  
Low Threshold  
Over High Alarm  
Below Low Alarm  
Figure 57. Device Hysteresis  
7.3.2.4.5 False-Alarm Protection  
To prevent false alarms, an alarm event is only registered when the monitored signal is out of range for an N  
number of consecutive conversions. If the monitored signal returns to the normal range before N consecutive  
conversions, an alarm event is not issued. The false alarm factor, N, for the unipolar input and local temperature  
sensor out-of-range alarms can be configured in the false alarm configuration register (address 0x11).  
Copyright © 2014–2018, Texas Instruments Incorporated  
35  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.3 Internal Temperature Sensor  
The AMC7836 device has an on-chip temperature sensor that measures the device die temperature. The normal  
operating temperature range for the internal temperature sensor is limited by the operating temperature range of  
the device (–40°C to 125°C).  
The temperature sensor results are converted by the device ADC at a lower speed than the analog input  
channels. The temperature can be monitored either continuously or as a single-time conversion depending on  
whether the ADC is configured in auto mode or direct mode (see the Analog-to-Digital Converter (ADC) section  
for more details). If the temperature sensor is not needed, it can be disabled in the ADC MUX configuration 2  
register (address 0x15). When disabled, the temperature sensor output is not converted by the ADC.  
The temperature sensor provides 0.25°C resolution over the operating temperature range. The temperature  
value is stored in 12-bit two’s complement format in the temperature data registers (address 0x78 through 0x79).  
Table 3. Temperature Sensor Data Format  
TEMPERATURE (°C)  
DIGITAL CODE  
1111 0110 0000  
1111 1001 1100  
1111 1101 1000  
1111 1111 1111  
0000 0000 0000  
0000 0000 0001  
0000 0010 1000  
0000 0110 0100  
0000 1100 1000  
0001 0010 1100  
0001 1001 0000  
0001 1010 0100  
0001 1111 0100  
–40  
–25  
–10  
–0.25  
0
0.25  
10  
25  
50  
75  
100  
105  
125  
Use Equation 3 and Equation 4 to calculate the positive or negative temperature according to the polarity of the  
temperature data MSB (0 - positive, 1 - negative).  
ADC _Code  
Positive Temperature (èC) =  
4
(3)  
(4)  
4096 - ADC_Code  
Negative Temperature (èC) =  
4
36  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.3.4 Internal Reference  
The AMC7836 device includes a high-performance internal reference for the on-chip ADC and 16 DACs (see  
Figure 58). The internal reference is a 2.5 V, bipolar transistor-based, precision bandgap reference. A  
compensation capacitor (4.7 μF, typical) should be connected between the REF_CMP pin and the AGND2 pin.  
The AMC7836 device includes a buffer to drive the ADC and should not be used to drive any external circuitry.  
The ADC reference buffer is powered down by default and should be enabled in the ADC configuration register  
(address 0x10) during device initialization.  
Internal  
Reference  
(2.5 V)  
C > 4.7 µF  
(Minimize  
inductance to pin)  
REF_CMP  
AGND2  
DAC-0  
12-b  
DAC-1  
12-b  
ADC  
12-b  
Local  
Temperatu  
re Sensor  
DAC-15  
12-b  
Figure 58. AMC7836 Internal Reference  
The internal reference is typically established after power-up in less than 5 ms at TA = 25°C however the  
reference settling time is highly dependent on temperature. Figure 59 shows typical reference settling time as a  
function of temperature.  
160  
140  
120  
100  
80  
60  
40  
20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D001  
Figure 59. Internal Reference Settling Time vs Temperature  
Copyright © 2014–2018, Texas Instruments Incorporated  
37  
 
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.5 General Purpose I/Os  
The AMC7836 device includes eight GPIO pins, each with an internal 48-kΩ pullup resistor to the IOVDD pin. The  
GPIO[0:3] pins have dual functionality and can be programmed as either bidirectional digital I/O pins or interrupt  
signals in the GPIO configuration register (address 0x12). The GPIO[4:7] pins are dedicated GPIOs. Table 4 lists  
the dual function of the GPIO[0:3] pins.  
Table 4. Dual Functionality GPIO Pins  
ALTERNATIVE  
PIN  
DEFAULT PIN NAME  
ALTERNATIVE PIN NAME  
FUNCTIONALITY  
DAC clear control signal.  
Global alarm output.  
7
8
GPIO0  
GPIO1  
GPIO2  
GPIO3  
ALARMIN  
ALARMOUT  
ADCTRIG  
DAV  
9
External ADC conversion trigger.  
ADC data available indicator.  
10  
The GPIOs can receive an input or produce an output. When the GPIOn pin acts as an output, the status of the  
pin is determined by the corresponding GPIO bit in the GPIO register (address 0x7A).  
To use a GPIOn pin as an input, the corresponding GPIO bit in the GPIO register must be set to 1. When a  
GPIOn pin acts as input, the digital value on the pin is acquired by reading the corresponding GPIO bit. After a  
power-on reset (POR) or any forced reset, all GPIO bits are set to 1, and the GPIOn pins have a 48-kinput  
impedance to the IOVDD pin (see Figure 60). The unused GPIO pins can be left floating.  
IOVDD  
48 k  
GPIOn  
ENABLE  
GPIOn Bit  
(when writing)  
GPIOn Bit  
(when reading)  
Figure 60. AMC7836 GPIO Pin  
38  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.4 Device Functional Modes  
The sixteen DACs in the AMC7836 device are split into four groups, each with four DACs. The output range and  
clamp voltage for each DAC group is set independently which enables the device to operate in one of the  
following modes:  
All-positive DAC range mode  
All-negative DAC range mode  
Mixed DAC range mode  
7.4.1 All-Positive DAC Range Mode  
In the AMC7836 all-positive DAC range mode, each of the four DAC groups is set to a positive voltage output  
range (0 to 5 V or 0 to 10 V).  
Because the maximum DAC output for each group cannot exceed the common AVCC voltage for the device  
(AVCC = AVCC_AB = AVCC_CD), a DAC group in the 0 to 10 V output range forces the AVCC voltage to a value  
greater or equal to 10 V even if the remaining DAC groups are set in the 0 to 5 V range. If all DAC groups are  
set in the 0 to 5 V range the AVCC voltage can be set to a value as low as 5 V.  
The minimum DAC output for each group cannot be lower than the AVSS voltage but because the minimum DAC  
output is 0 V in the all-positive DAC range mode, all of the AVSS pins (AVEE, AVSSB, AVSSC, and AVSSD) as well  
as the device thermal pad can be tied to AGND thus simplifying the board design. Table 5 lists the typical  
configurations for this mode.  
Table 5. All-positive DAC Range Mode Typical Configuration  
PIN  
NOTES  
TYPICAL CONNECTION  
AVDD  
DVDD  
IOVDD  
5 V  
DVDD must be equal to AVDD  
.
5 V  
IOVDD must be equal to or less than DVDD  
.
1.8 V to 5 V  
The AVCC_AB and AVCC_CD pins must be tied  
to the same potential (AVCC).  
AVCC must be greater or equal than the  
maximum possible output voltage for any of  
the sixteen DACs.  
AVCC 5 V  
AVCC 10 V  
AVCC_AB, AVCC_CD  
AVEE  
AGND  
AGND  
AGND  
AVSSB, AVSSC, AVSSD  
Thermal Pad  
After power-on or a reset event the output range for each DAC group is set automatically by the voltage present  
on the corresponding AVSS pin. In the all-positive DAC range mode all AVSS pins are connected to AGND and  
consequently all four DAC groups will initialize by default to the 0 to 5 V range. The output for any of the DAC  
groups can be modified to the 0 to 10 V range after initialization by setting the corresponding DAC range register  
(address 0x1E to 0x1F) to 110b.  
In addition to setting the default output range, the AVSS pins also set the clamp voltage for each DAC group.  
Because the clamp voltage is only dependent on the voltage in the AVSS pin, changes to the DAC range  
registers do not affect the clamp setting. With the AVSS pins connected to AGND, the clamp voltage for all  
sixteen DACs is 0 V.  
Copyright © 2014–2018, Texas Instruments Incorporated  
39  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.4.2 All-Negative DAC Range Mode  
In the AMC7836 all-negative DAC range mode, each of the four DAC groups is set to a negative voltage output  
range (–5 to 0 V or –10 to 0 V).  
Although the maximum DAC output does not exceed 0 V, the common AVCC voltage (AVCC = AVCC_AB  
=
AVCC_CD) must still satisfy a minimum voltage of 4.7 V to comply with the device operating conditions. In this  
case a recommended approach is to tie the AVCC, AVDD, and DVDD supply pins to a common potential.  
The minimum DAC output for each group cannot be lower than the voltage on the corresponding AVSS pins  
(AVEE, AVSSB, AVSSC, and AVSSD). The AVSS pins are not required to be tied to the same potential and typically  
the negative voltage at each AVSS pin is dictated by the desired operating DAC negative output range. One  
exception is the AVEE pin which must be the lowest potential in the device. The thermal pad should be either tied  
to the same potential as the AVEE pin or left disconnected. Table 6 lists the typical configurations for this mode.  
Table 6. All-Negative DAC Range Mode Typical Configuration  
PIN  
NOTES  
TYPICAL CONNECTION  
AVDD  
DVDD  
IOVDD  
5 V  
DVDD must be equal to AVDD  
.
5 V  
IOVDD must be equal to or less than DVDD  
.
1.8 V to 5 V  
The AVCC_AB and AVCC_CD pins must be tied  
to the same potential (AVCC).  
AVCC_AB, AVCC_CD  
5 V  
AVEE must be the lowest potential in the  
device.  
AVEE must be less than or equal to the  
minimum possible output voltage for DAC  
group A.  
AVEE –5 V  
AVEE –10 V  
AVEE  
AVSSn must be less than or equal to the  
minimum possible output voltage for DAC  
group n (n = B, C, D).  
AVEE AVSSn –5 V  
AVEE AVSSn –10 V  
AVSSB, AVSSC, AVSSD  
Thermal Pad  
AVEE or,  
Floating  
After power-on or a reset event the output range for each DAC group is set automatically by the voltage present  
in the corresponding AVSS pin. In the all-negative DAC range mode all AVSS pins should be connected to a  
voltage lower than AVSSTH. If this condition is satisfied, all four DAC groups will initialize by default to the –10- to  
0-V range. Because the negative clamp voltage is only dependent on the voltage in the AVSS pin, the default  
–10- to 0-V output range presents no risk even when the AVSS voltage is greater than –10 V. In this case the  
DAC group output should be modified to the –5 to 0 V range after initialization by setting the corresponding DAC  
range register (address 0x1E to 0x1F) to 101b.  
40  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.4.3 Mixed DAC Range Mode  
In the AMC7836 mixed DAC range mode, a combination of DAC groups is set to a negative voltage output range  
(–5 to 0 V or –10 to 0 V) and a positive voltage output range (0 to 5 V or 0 to 10 V).  
Because the maximum DAC output for each group cannot exceed the common AVCC voltage for the device  
(AVCC = AVCC_AB = AVCC_CD), a DAC group in the 0 to 10 V output range forces the AVCC voltage to a value  
greater or equal to 10 V. If all positive DAC groups are in the 0 to 5 V range the AVCC voltage can be set to a  
value as low as 5 V.  
The minimum DAC output for each group cannot be lower than the voltage on the corresponding AVSS pins  
(AVEE, AVSSB, AVSSC and AVSSD). The AVSS pins are not required to be tied to the same potential and typically  
the negative voltage at each AVSS pin is dictated by the desired operating DAC negative output range. One  
exception is the AVEE pin which must be the lowest potential in the device. The implication of this requirement is  
that if either DAC group B, C or D is set to a negative output range, DAC group A must also be set to a negative  
range. The thermal pad should be either tied to the same potential as the AVEE pin or left disconnected. Table 7  
lists the typical configurations for this mode.  
Table 7. Mixed DAC Range Mode Typical Configuration  
PIN  
NOTES  
TYPICAL CONNECTION  
AVDD  
DVDD  
IOVDD  
5 V  
DVDD must be equal to AVDD  
.
5 V  
IOVDD must be equal to or less than DVDD  
.
1.8 V to 5 V  
The AVCC_AB and AVCC_CD pins must be tied to the  
same potential (AVCC).  
AVCC must be greater or equal to the maximum  
possible output voltage for any of the positive  
output range DACs.  
AVCC 5 V  
AVCC 10 V  
AVCC_AB, AVCC_CD  
AVEE must be the lowest potential in the device.  
AVEE must be less than or equal to the minimum  
possible output voltage for DAC group A.  
AVEE –5 V  
AVEE –10 V  
AVEE  
AVEE AVSSn –5 V  
AVEE AVSSn –10 V  
AVSSn must be less than or equal than the minimum  
possible output voltage for DAC group n (n = B, C,  
D).  
Negative Range  
Positive Range  
AVSSB, AVSSC, AVSSD  
Thermal Pad  
AGND  
AVEE or,  
Floating  
After power-on or a reset event the output range for each DAC group is set automatically by the voltage present  
in the corresponding AVSS pin. When the AVSS voltage of a DAC group is lower than the threshold value, AVSSTH  
,
the output for that DAC group is automatically configured to the –10 to 0 V range. Conversely, if the AVSS voltage  
of the DAC group is higher than AVSSTH, the DAC-group output is automatically set to the 0 to 5 V range. The  
output for any of the DAC groups can be modified after initialization by setting the corresponding DAC range  
register (address 0x1E to 0x1F).  
In addition to setting the default output range, the AVSS pins also set the clamp voltage for each DAC group.  
Because the clamp voltage is only dependent on the voltage in the AVSS pin, changes to the DAC range  
registers do not affect the clamp setting.  
NOTE  
Although not a recommended operating condition, the device allows a DAC group to  
operate in a positive output range even if the clamp voltage is negative (AVSS connected  
to a negative supply voltage).  
Copyright © 2014–2018, Texas Instruments Incorporated  
41  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5 Programming  
The AMC7836 device is controlled through a flexible four-wire serial interface that is compatible with SPI-type  
interfaces used on many microcontrollers and DSP controllers. The interface provides read and write (R/W)  
access to all registers of the AMC7836 device.  
Each serial-interface access cycle is exactly (N + 2) bytes long, where N is the number of data bytes. Asserting  
the CS pin low initiates a frame. The frame ends when the CS pin is deasserted high. In MSB-first mode, the first  
bit transferred is the R/W bit. The next 15 bits are the register address (32768 addressable registers), and the  
remaining bits are data. For all writes, data is committed in bytes as the eight data bit of a data field that is  
clocked in on the rising edge of SCLK. If the write access is not an even multiple of 8 clocks, the trailing data bits  
are not committed. On a read access, data is clocked out on the falling edge of the serial interface clock, SCLK,  
on the SDO pin.  
Figure 61 and Figure 62 show the access protocol used by the interface.  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCLK  
SDI  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
Figure 61. Serial Interface Write Bus Cycle  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCLK  
SDI  
R/W  
A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 62. Serial Interface Read Bus Cycle  
Streaming mode is supported for operations that require large amounts of data to be passed to or from the  
AMC7836. In streaming mode multiple bytes of data can be written to or read from the AMC7836 without  
specifically providing instructions for each byte. Streaming mode is implemented by continually holding the CS  
pin active and continuing to shift new data in or old data out of the device.  
The instruction phase includes the starting address. The AMC7836 device begins reading or writing data to this  
address and continues as long as the CS pin is asserted and single byte writes have not been enabled in the  
interface configuration 1 register (address 0x01). The AMC7836 device automatically increments or decrements  
the address depending on the setting of the address ascension bit in the interface configuration 0 register  
(address 0x00).  
If the address is decrementing and address 0x0000 is reached, the next address used is 0x7FFF. If the address  
is incrementing and address 0x7FFF is reached, the next address used is 0x0000. Care should be taken when  
writing to address 0x0000 and 0x0001 as writing to these addresses may change the configuration of the serial  
interface. Therefore address 0x0010 should be the first (ascending) or last (descending) address accessed in  
streaming mode.  
Figure 63 and Figure 64 show the access protocol used in streaming mode.  
42  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Programming (continued)  
CS  
1
2
3
4
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SCLK  
SDI  
Addr N+1 (ascending)  
Addr N-1 (descending)  
Address N  
R/W A14 A13 A12  
A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
Figure 63. Serial Interface Streaming Write Example  
CS  
1
2
3
4
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SCLK  
SDI  
Addr N+1 (ascending)  
Addr N-1 (descending)  
Address N  
A2 A1 A0  
R/W A14 A13 A12  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 64. Serial Interface Streaming Read Example  
Copyright © 2014–2018, Texas Instruments Incorporated  
43  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6 Register Maps  
Table 8. Register Map  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07 – 0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
TYPE  
R/W  
R/W  
R/W  
R
DEFAULT  
30  
00  
03  
08  
36  
0C  
00  
REGISTER NAME  
Interface Configuration 0  
Interface Configuration 1  
Device Configuration  
Chip Type  
R
Chip ID (Low Byte)  
Chip ID (High Byte)  
Chip Version  
R
R
Reserved  
R
51  
04  
Manufacturer ID (Low Byte)  
Manufacturer ID (High Byte)  
Reserved  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00  
00  
70  
00  
00  
00  
00  
Register Update  
ADC Configuration  
False Alarm Configuration  
GPIO Configuration  
ADC MUX Configuration 0  
ADC MUX Configuration 1  
ADC MUX Configuration 2  
Reserved  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
DAC Clear Enable 0  
DAC Clear Enable 1  
DAC Clear Source 0  
DAC Clear Source 1  
ALARMOUT Source0  
ALARMOUT Source1  
DAC Range 0  
DAC Range 1  
ADC0-Data (Low Byte)  
ADC0-Data (High Byte)  
ADC1-Data (Low Byte)  
ADC1-Data (High Byte)  
ADC2-Data (Low Byte)  
ADC2-Data (High Byte)  
ADC3-Data (Low Byte)  
ADC3-Data (High Byte)  
ADC4-Data (Low Byte)  
ADC4-Data (High Byte)  
ADC5-Data (Low Byte)  
ADC5-Data (High Byte)  
ADC6-Data (Low Byte)  
ADC6-Data (High Byte)  
ADC7-Data (Low Byte)  
ADC7-Data (High Byte)  
ADC8-Data (Low Byte)  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
44  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Table 8. Register Map (continued)  
ADDRESS  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C - 0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
TYPE  
R
DEFAULT  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
REGISTER NAME  
ADC8-Data (High Byte)  
ADC9-Data (Low Byte)  
ADC9-Data (High Byte)  
ADC10-Data (Low Byte)  
ADC10-Data (High Byte)  
ADC11-Data (Low Byte)  
ADC11-Data (High Byte)  
ADC12-Data (Low Byte)  
ADC12-Data (High Byte)  
ADC13-Data (Low Byte)  
ADC13-Data (High Byte)  
ADC14-Data (Low Byte)  
ADC14-Data (High Byte)  
ADC15-Data (Low Byte)  
ADC15-Data (High Byte)  
ADC16-Data (Low Byte)  
ADC16-Data (High Byte)  
ADC17-Data (Low Byte)  
ADC17-Data (High Byte)  
ADC18-Data (Low Byte)  
ADC18-Data (High Byte)  
ADC19-Data (Low Byte)  
ADC19-Data (High Byte)  
ADC20-Data (Low Byte)  
ADC20-Data (High Byte)  
Temperature Data (Low Byte)  
Temperature Data (High Byte)  
Reserved  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
DACA0-Data (Low Byte)  
DACA0-Data (High Byte)  
DACA1-Data (Low Byte)  
DACA1-Data (High Byte)  
DACA2-Data (Low Byte)  
DACA2-Data (High Byte)  
DACA3-Data (Low Byte)  
DACA3-Data (High Byte)  
DACB4-Data (Low Byte)  
DACB4-Data (High Byte)  
DACB5-Data (Low Byte)  
DACB5-Data (High Byte)  
DACB6-Data (Low Byte)  
DACB6-Data (High Byte)  
DACB7-Data (Low Byte)  
DACB7-Data (High Byte)  
DACC8-Data (Low Byte)  
DACC8-Data (High Byte)  
DACC9-Data (Low Byte)  
Copyright © 2014–2018, Texas Instruments Incorporated  
45  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Table 8. Register Map (continued)  
ADDRESS  
0x63  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DEFAULT  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0C  
REGISTER NAME  
DACC9-Data (High Byte)  
DACC10-Data (Low Byte)  
DACC10-Data (High Byte)  
DACC11-Data (Low Byte)  
DACC11-Data (High Byte)  
DACD12-Data (Low Byte)  
DACD12-Data (High Byte)  
DACD13-Data (Low Byte)  
DACD13-Data (High Byte)  
DACD14-Data (Low Byte)  
DACD14-Data (High Byte)  
DACD15-Data (Low Byte)  
DACD15-Data (High Byte)  
Alarm Status 0  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
R
Alarm Status 1  
0x72  
R
General Status  
0x73 - 0x79  
0x7A  
0x7B - 0x7F  
0x80  
Reserved  
R/W  
FF  
GPIO  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF  
0F  
00  
00  
FF  
0F  
00  
00  
FF  
0F  
00  
00  
FF  
0F  
00  
00  
FF  
0F  
00  
00  
FF  
07  
00  
08  
ADC16-Upper-Thresh (Low Byte)  
ADC16-Upper-Thresh (High Byte)  
ADC16-Lower-Thresh (Low Byte)  
ADC16-Lower-Thresh (High Byte)  
ADC17-Upper-Thresh (Low Byte)  
ADC17-Upper-Thresh (High Byte)  
ADC17-Lower-Thresh (Low Byte)  
ADC17-Lower-Thresh (High Byte)  
ADC18-Upper-Thresh (Low Byte)  
ADC18-Upper-Thresh (High Byte)  
ADC18-Lower-Thresh (Low Byte)  
ADC18-Lower-Thresh (High Byte)  
ADC19-Upper-Thresh (Low Byte)  
ADC19-Upper-Thresh (High Byte)  
ADC19-Lower-Thresh (Low Byte)  
ADC19-Lower-Thresh (High Byte)  
ADC20-Upper-Thresh (Low Byte)  
ADC20-Upper-Thresh (High Byte)  
ADC20-Lower-Thresh (Low Byte)  
ADC20-Lower-Thresh (High Byte)  
LT-Upper-Thresh (Low Byte)  
LT-Upper-Thresh (High Byte)  
LT-Lower-Thresh (Low Byte)  
LT-Lower-Thresh (High Byte)  
Reserved  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98 - 0x9F  
0xA0  
0xA1  
0xA2  
R/W  
R/W  
R/W  
08  
08  
08  
ADC16-Hysteresis  
ADC17-Hysteresis  
ADC18-Hysteresis  
46  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Table 8. Register Map (continued)  
ADDRESS  
0xA3  
TYPE  
R/W  
R/W  
R/W  
DEFAULT  
REGISTER NAME  
ADC19-Hysteresis  
ADC20-Hysteresis  
LT-Hysteresis  
Reserved  
08  
08  
08  
00  
00  
00  
00  
00  
00  
0xA4  
0xA5  
0xA6 - 0xAF  
0xB0  
R/W  
R/W  
R/W  
R/W  
R/W  
DAC Clear 0  
0xB1  
DAC Clear 1  
0xB2  
Power-Down 0  
Power-Down 1  
Power-Down 2  
Reserved  
0xB3  
0xB4  
0xB5 - 0xBF  
0xC0  
R/W  
ADC Trigger  
Copyright © 2014–2018, Texas Instruments Incorporated  
47  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.1 Interface Configuration: Address 0x00 – 0x02  
7.6.1.1 Interface Configuration 0 Register (address = 0x00) [reset = 0x30]  
Figure 65. Interface Configuration 0 (Interface Config 0) Register (R/W)  
7
6
5
4
3
2
1
0
SOFT-RESET  
Reserved  
ADDR-  
Reserved  
Reserved  
ASCEND  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-All zeros  
Table 9. Interface Config 0 Register Field Descriptions (R/W)  
Bit  
Field  
Type  
Reset  
Description  
7
SOFT-RESET  
R/W  
0
Soft reset (self-clearing)  
0: no action  
1: reset – resets everything except address 0x00, 0x01  
Reserved for factory use  
6
5
Reserved  
R/W  
R/W  
0
1
ADDR-ASCEND  
Address Ascend  
0: Descend  
– decrements address while streaming  
(address wrap from 0x0000 to 0x7FFF)  
1: Ascend – increments address while streaming (address  
wrap from 0x7FFF to 0x0000)  
4
Reserved  
Reserved  
R/W  
R/W  
1
Reserved for factory use  
Reserved for factory use  
3-0  
All zeros  
48  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.1.2 Interface Configuration 1 Register (address = 0x01) [reset = 0x00]  
Figure 66. Interface Configuration 1 (Interface Config 1) Register (R/W)  
7
6
5
4
3
2
1
0
SINGLE-INSTR  
R/W-0  
Reserved  
R/W-0  
READBACK  
R/W-0  
Reserved  
R/W-All zeros  
Table 10. Interface Config 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SINGLE-INSTR  
R/W  
0
Single instruction enable  
0: streaming mode (default)  
1: single instruction  
6
5
Reserved  
R/W  
R/W  
0
0
Reserved for factory use  
Read back  
READBACK  
0: DAC read back from active registers (default)  
1: DAC read back from buffer registers  
4-0  
Reserved  
R/W  
All zeros  
Reserved for factory use  
7.6.1.3 Device Configuration Register (address = 0x02) [reset = 0x03]  
Figure 67. Device Configuration (Device Config) Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
POWER-MODE  
R/W-11  
R/W-All Zeros  
Table 11. Device Config Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
All zeros  
Reserved for factory use  
Mode:  
1-0  
POWER-MODE  
R/W  
11  
00: Normal operation – full power and full performance  
11: Power Down – lowest power, non-operational except  
SPI  
One time overwrite of the power-down registers (0xB2 and  
0xB3)  
7.6.2 Device Identification: Address 0x03 – 0x0D  
7.6.2.1 Chip Type Register (address = 0x03) [reset = 0x08]  
Figure 68. Chip Type Register (R)  
7
6
5
4
3
2
1
0
Reserved  
R-0x0  
CHIP-TYPE  
R-0x8  
Table 12. Chip Type Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R
0x0  
Reserved for factory use  
3-0  
CHIP-TYPE  
R
0x8  
Identifies the device as a precision analog monitor and control  
Copyright © 2014–2018, Texas Instruments Incorporated  
49  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.2.2 Chip ID Low Byte Register (address = 0x04) [reset = 0x36]  
Figure 69. Chip ID Low Byte Register (R)  
7
6
5
4
3
2
1
0
CHIPID-LOW  
R-0x36  
Table 13. Chip ID Low Byte Register Field Descriptions  
Bit  
Field  
CHIPID-LOW  
Type  
Reset  
Description  
7-0  
R
0x36  
Chip ID. Low byte  
7.6.2.3 Chip ID High Byte Register (address = 0x05) [reset = 0x0C]  
Figure 70. Chip ID High Byte Register (R)  
7
6
5
4
3
2
1
0
0
0
CHIPID-HIGH  
R-0x0C  
Table 14. Chip ID High Byte Register Field Descriptions  
Bit  
Field  
CHIPID-HIGH  
Type  
Reset  
Description  
7-0  
R
0x0C  
Chip ID. High byte  
7.6.2.4 Version ID Register (address = 0x06) [reset = 0x00]  
Figure 71. Version ID Register (R)  
7
6
5
4
3
2
1
VERSIONID  
R-0x00  
Table 15. Version ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
AMC7836 version ID. Subject to change  
7-0  
VERSIONID  
R
0x00  
7.6.2.5 Manufacturer ID Low Byte Register (address = 0x0C) [reset = 0x51]  
Figure 72. Manufacturer ID Low Byte Register (R)  
7
6
5
4
3
2
1
VENDORID-LOW  
R-0x51  
Table 16. Manufacturer ID Low Byte Register Field Descriptions  
Bit  
Field  
VENDORID-LOW  
Type  
Reset  
Description  
7-0  
R
0x51  
Manufacturer ID. Low byte  
50  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.2.6 Manufacturer ID High Byte Register (address = 0x0D) [reset = 0x04]  
Figure 73. Manufacturer ID High Byte Register  
7
6
5
4
3
2
1
0
VENDORID-HIGH  
R-0x04  
Table 17. Manufacturer ID High Byte Register Field Descriptions  
Bit  
Field  
VENDORID-HIGH  
Type  
Reset  
Description  
7-0  
R
0x04  
Manufacturer ID. High byte  
7.6.3 Register Update (Buffered Registers): Address 0x0F  
7.6.3.1 Register Update Register (address = 0x0F) [reset = 0x00]  
Figure 74. Register Update Register (Self Clearing) [R/W]  
7
6
5
4
3
2
1
0
Reserved  
R/W-All Zeros  
ADC-UPDATE  
R/W-0  
Reserved  
R/W-All Zeros  
UPDATE  
R/W-0  
Table 18. Register Update Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
All zeros  
Reserved for factory use  
4
ADC-UPDATE  
R/W  
0
When set transfers the latest ADC and temperature conversion  
data to the ADC and Temperature Data registers. This function  
is needed when operating the ADC in auto-cycle mode  
3-1  
0
Reserved  
R/W  
R/W  
All zeros  
0
Reserved for factory use  
DAC-UPDATE  
DAC update (self clearing)  
0: disabled  
1: enabled – transfers data from buffers to active registers  
(DAC registers only)  
Copyright © 2014–2018, Texas Instruments Incorporated  
51  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.4 General Device Configuration: Address 0x10 through 0x17  
7.6.4.1 ADC Configuration Register (address = 0x10) [reset = 0x00]  
Figure 75. ADC Configuration Register (R/W)  
7
6
5
4
3
2
1
0
CMODE  
CONV-RATE[1:0]  
ADC-REF-  
BUFF  
Reserved  
R/W-0  
R/W-00  
R/W-0  
R/W-All zeros  
Table 19. ADC Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CMODE  
R/W  
0
ADC Conversion Mode Bit. This bit selects the ADC conversion  
mode.  
0: Direct mode. The analog inputs specified in the ADC  
channel registers are converted sequentially one time.  
When one set of conversions is complete, the ADC is idle  
and waits for a new trigger.  
1: Auto mode. The analog inputs specified in the AMC  
channel registers are converted sequentially and  
repeatedly. When one set of conversions is complete, the  
ADC multiplexer returns to the first channel and repeats the  
process. The ADC-UPDATE bit in register 0x0F must be  
used to initiate the transfer of the latest conversion data to  
the ADC Data registers.  
6-5  
4
CONV-RATE[1:0]  
ADC-REF-BUFF  
R/W  
R/W  
00  
0
ADC Conversion rate. See Table 20 to configure this setting.  
ADC Reference Buffer bit. This bit must be set to 1 after device  
power-up to enable the internal reference buffer driving the  
ADC.  
0: ADC reference buffer is disabled.  
1: ADC reference buffer is enabled.  
3-0  
Reserved  
R/W  
All zeros  
Reserved for factory use  
Table 20. CONV-RATE[1:0] Bit Configuration  
Bipolar Channel Sample  
CONV-RATE[1:0]  
Unipolar Channel Sample Time (µs)  
Time (µs)  
00  
01  
10  
11  
11.5  
23  
34.5  
34.5  
34.5  
69  
34.5  
69  
52  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.4.2 False Alarm Configuration Register (address = 0x11) [reset = 0x70]  
Figure 76. False Alarm Configuration Register (R/W)  
7
6
5
4
3
2
1
0
CH-FALR-CT[2:0]  
R/W-011  
TEMP-FALR-CT[1:0]  
R/W–10  
Reserved  
R/W-All zeros  
Table 21. False Alarm Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
CH-FALR-CT[2:0]  
R/W  
011  
False alarm protection for ADC channels. See Table 22 to  
configure this bit.  
4-3  
2-0  
TEMP-FALR-CT[1:0]  
Reserved  
R/W  
R/W  
10  
False alarm protection for temperature sensor. See Table 23 to  
configure this bit.  
All zeros  
Reserved for factory use  
Table 22. CH-FALR-CT Bit Configuration  
N Consecutive Samples Before  
CH-FALR-CT  
Alarm is Set  
000  
001  
010  
011  
100  
101  
110  
111  
1
4
8
16  
32  
64  
128  
256  
Table 23. TEMP-FALR-CT Bit Configuration  
N Consecutive Samples Before  
TEMP-FALR-CT  
Alarm is Set  
00  
01  
10  
11  
1
2
4
8
Copyright © 2014–2018, Texas Instruments Incorporated  
53  
 
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.4.3 GPIO Configuration Register (address = 0x12) [reset = 0x00]  
Figure 77. GPIO Configuration Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
EN-DAV  
EN-ADCTRIG  
EN-  
EN-ALARMIN  
ALARMOUT  
R/W-All zeros  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 24. GPIO Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
All zeros  
Reserved for factory use  
Reserved for factory use  
4
3
Reserved  
EN-DAV  
R/W  
R/W  
0
0
DAV pin enable  
0: GPIO3 operation (default)  
1: DAV operation  
2
1
0
EN-ADCTRIG  
EN-ALARMOUT  
EN-ALARMIN  
R/W  
R/W  
R/W  
0
0
0
ADCTRIG pin enable  
0: GPIO2 operation (default)  
1: ADCTRIG operation  
ALARMOUT pin enable  
0: GPIO1 operation (default)  
1: ALARMOUT operation  
ALARMIN pin enable  
0: GPIO0 operation (default)  
1: ALARMIN operation  
7.6.4.4 ADC MUX Configuration 0 Register (address = 0x13) [reset = 0x00]  
Figure 78. ADC MUX Configuration 0 Register (R/W)  
7
6
5
4
3
2
1
0
CH7  
R/W-0  
CH6  
R/W-0  
CH5  
R/W-0  
CH4  
R/W-0  
CH3  
R/W-0  
CH2  
R/W-0  
CH1  
R/W-0  
CH0  
R/W-0  
Table 25. ADC MUX Configuration 0 Register Field Descriptions  
Bit  
Field  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
When set to 1 the corresponding analog input channel ADC_n is  
accessed during an ADC conversion cycle.  
When cleared to 0 the corresponding input channel ADC_n is  
ignored during an ADC conversion cycle.  
54  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.4.5 ADC MUX Configuration 1 Register (address = 0x14) [reset = 0x00]  
Figure 79. ADC MUX Configuration 1 Register (R/W)  
7
6
5
4
3
2
1
0
CH15  
R/W-0  
CH14  
R/W-0  
CH13  
R/W-0  
CH12  
R/W-0  
CH11  
R/W-0  
CH10  
R/W-0  
CH9  
R/W-0  
CH8  
R/W-0  
Table 26. ADC MUX Configuration 1 Register Field Descriptions  
Bit  
Field  
CH15  
CH14  
CH13  
CH12  
CH11  
CH10  
CH9  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
When set to 1 the corresponding analog input channel ADC_n is  
accessed during an ADC conversion cycle.  
When cleared to 0 the corresponding input channel ADC_n is  
ignored during an ADC conversion cycle.  
CH8  
7.6.4.6 ADC MUX Configuration 2 Register (address = 0x15) [reset = 0x00]  
Figure 80. ADC MUX Configuration 2 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
TEMP-CH  
R/W-0  
CH20  
R/W-0  
CH19  
R/W-0  
CH18  
R/W-0  
CH17  
R/W-0  
CH16  
R/W-0  
R/W-All Zeros  
Table 27. ADC MUX Configuration 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R/W  
All Zeros  
Reserved for factory use  
5
TEMP-CH  
R/W  
0
When set to 1 the local temperature sensor is enabled for ADC  
conversion.  
When cleared to 0 the local temperature sensor is ignored.  
4
3
2
1
0
CH20  
CH19  
CH18  
CH17  
CH16  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
When set to 1 the corresponding analog input channel ADC_n is  
accessed during an ADC conversion cycle.  
When cleared to 0 the corresponding input channel ADC_n is  
ignored during an ADC conversion cycle.  
Copyright © 2014–2018, Texas Instruments Incorporated  
55  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.4.7 DAC Clear Enable 0 Register (address = 0x18) [reset = 0x00]  
Figure 81. DAC Clear Enable 0 Register (R/W)  
7
6
5
4
3
2
1
0
CLREN-B7  
R/W-0  
CLREN-B6  
R/W-0  
CLREN-B5  
R/W-0  
CLREN-B4  
R/W-0  
CLREN-A3  
R/W-0  
CLREN-A2  
R/W-0  
CLREN-A1  
R/W-0  
CLREN-A0  
R/W-0  
Table 28. DAC Clear Enable 0 Register Field Descriptions  
Bit  
7
Field  
CLREN-B7  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
0
0
0
0
This register determines which DACs go into clear state when a  
clear event is detected as configured in the DAC-CLEAR-  
SOURCE registers.  
6
CLREN-B6  
CLREN-B5  
CLREN-B4  
CLREN-A3  
CLREN-A2  
CLREN-A1  
CLREN-A0  
5
If CLRENn = 1, DAC_n is forced into a clear state with a  
clear event.  
4
3
If CLRENn = 0, a clear event does not affect the state of  
DAC_n.  
2
1
0
7.6.4.8 DAC Clear Enable 1 Register (address = 0x19) [reset = 0x00]  
Figure 82. DAC Clear Enable 1 Register (R/W)  
7
6
5
4
3
2
1
0
CLREN-D15  
R/W-0  
CLREN-D14  
R/W-0  
CLREN-D13  
R/W-0  
CLREN-D12  
R/W-0  
CLREN-C11  
R/W-0  
CLREN-C10  
R/W-0  
CLREN-C9  
R/W-0  
CLREN-C8  
R/W-0  
Table 29. DAC Clear Enable 1 Register Field Descriptions  
Bit  
7
Field  
CLREN-D15  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
0
0
0
0
This register determines which DACs go into clear state when a  
clear event is detected as configured in the DAC-CLEAR-  
SOURCE registers.  
6
CLREN-D14  
CLREN-D13  
CLREN-D12  
CLREN-C11  
CLREN-C10  
CLREN-C9  
CLREN-C8  
5
If CLRENn = 1, DAC_n is forced into a clear state with a  
clear event.  
4
3
If CLRENn = 0, a clear event does not affect the state of  
DAC_n.  
2
1
0
56  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.5 DAC Clear and ALARMOUT Source Select: Address 0x1A through 0x1D  
7.6.5.1 DAC Clear Source 0 Register (address = 0x1A) [reset = 0x00]  
Figure 83. DAC Clear Source 0 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
ADC20-ALR-  
CLR  
ADC19-ALR-  
CLR  
ADC18-ALR-  
CLR  
ADC17-ALR-  
CLR  
ADC16-ALR-  
CLR  
R/W-All zeros  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 30. DAC Clear Source 0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
All zeros  
Reserved for factory use  
4
3
2
1
0
ADC20-ALR-CLR  
ADC19-ALR-CLR  
ADC18-ALR-CLR  
ADC17-ALR-CLR  
ADC16-ALR-CLR  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
This register selects which alarm forces DACs into a clear state,  
regardless of which DAC operation mode is active, auto or  
manual. In order for DAC_n to go into clear mode, it must be  
enabled in the DAC Clear Enable registers.  
7.6.5.2 DAC Clear Source 1 Register (address = 0x1B) [reset = 0x00]  
Figure 84. DAC Clear Source 1 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
ALARMIN-ALR  
R/W-0  
THERM-ALR  
R/W-0  
LT-HIGH-ALR  
R/W-0  
LT-LOW-ALR  
R/W-0  
R/W-All zeros  
Table 31. DAC Clear Source 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
All zeros  
Reserved for factory use  
3
2
1
0
ALARMIN-ALR  
THERM-ALR  
LT-HIGH-ALR  
LT-LOW-ALR  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
This register selects which alarm forces DACs into a clear state,  
regardless of which DAC operation mode is active, auto or  
manual. In order for DAC_n to go into clear mode, it must be  
enabled in the DAC Clear Enable registers.  
7.6.5.3 ALARMOUT Source 0 Register (address = 0x1c) [reset = 0x00]  
Figure 85. ALARMOUT Source 0 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
ADC20-ALR-  
OUT  
ADC19-ALR-  
OUT  
ADC18-ALR-  
OUT  
ADC17-ALR-  
OUT  
ADC16-ALR-  
OUT  
R/W-All zeros  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 32. ALARMOUT Source 0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
All zeros  
Reserved for factory use  
4
3
2
1
0
ADC20-ALR-OUT  
ADC19-ALR-OUT  
ADC18-ALR-OUT  
ADC17-ALR-OUT  
ADC16-ALR-OUT  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
This register selects which alarms can activate the ALARMOUT  
pin. The ALARMOUT must be enabled for this function to take  
effect.  
Copyright © 2014–2018, Texas Instruments Incorporated  
57  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.5.4 ALARMOUT Source 1 Register (address = 0x1D) [reset = 0x00]  
Figure 86. ALARMOUT Source 1 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
ALARM-  
LATCH-DIS  
ALRIN-ALR-  
OUT  
THERM-ALR- LT-HIGH-ALR- LT-LOW-ALR-  
OUT  
OUT  
OUT  
R/W-All zeros  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 33. ALARMOUT Source 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
All zeros  
Reserved for factory use  
Alarm latch disable bit.  
4
ALARM-LATCH-DIS  
R/W  
0
When cleared to 0 the alarm bits are latched. When an alarm  
occurs, the corresponding alarm bit is set to “1”. The alarm bit  
remains until the error condition subsides and the alarm register  
is read. Before reading, the alarm bit is not cleared even if the  
alarm condition disappears. When set to 1 the alarm bits are not  
latched. When the alarm condition subsides, the alarm bits are  
cleared regardless of whether the alarm bits have been read or  
not.  
3
2
1
0
ALRIN-ALR-OUT  
THERM-ALR-OUT  
LT-HIGH-ALR-OUT  
LT-LOW-ALR-OUT  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
This register selects which alarms can activate the ALARMOUT  
pin. The ALARMOUT must be enabled for this function to take  
effect.  
7.6.6 DAC Range: Address 0x1E  
7.6.6.1 DAC Range Register (address = 0x1E) [reset = 0x00]  
Figure 87. DAC Range Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
R/W-0  
DAC-RANGEB[2:0]  
R/W-All zeros  
Reserved  
R/W-0  
DAC-RANGEA[2:0]  
R/W-All zeros  
Table 34. DAC Range Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R/W  
0
Reserved for factory use  
6-4  
DAC-RANGEB[2:0]  
R/W  
All zeros  
DAC group B output voltage selection. Overrides output range  
set by the auto-range detection circuit. See Table 35 to  
configure this setting.  
3
2
Reserved  
R/W  
R/W  
0
Reserved for factory use  
DAC-RANGEA[2:0]  
All zeros  
DAC group A output voltage selection. Overrides output range  
set by the auto-range detection circuit. See Table 35 to  
configure this setting.  
Table 35. DAC-RANGEx Bit Configuration  
DAC-RANGEx[2:0]  
DAC Group x Output Voltage Range  
0xx  
100  
101  
110  
111  
Range set by auto-range detection circuit  
–10 to 0 V  
-5 to 0 V  
0 to 10 V  
0 to 5 V  
58  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.6.2 DAC Range 1 Register (address = 0x1F) [reset = 0x00]  
Figure 88. DAC Range 1 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
R/W-0  
DAC-RANGED[2:0]  
R/W-All zeros  
Reserved  
R/W-0  
DAC-RANGEC[2:0]  
R/W-All zeros  
Table 36. DAC Range 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R/W  
0
Reserved for factory use  
6-4  
DAC-RANGED[2:0]  
R/W  
All zeros  
DAC group D output voltage selection. Overrides output range  
set by the auto-range detection circuit. See Table 35 to  
configure this setting.  
3
2
Reserved  
R/W  
R/W  
0
Reserved for factory use  
DAC-RANGEC[2:0]  
All zeros  
DAC group C output voltage selection. Overrides output range  
set by the auto-range detection circuit. See Table 35 to  
configure this setting.  
7.6.7 ADC and Temperature Data: Address 0x20 through 0x4B  
7.6.7.1 ADCn-Data (Low Byte) Register (address = 0x20 through 0x49) [reset = 0x00]  
Figure 89. ADCn-Data (Low Byte) Register (R)  
7
6
5
4
3
2
1
0
ADCn-DATA(7:0)  
R-All zeros  
Table 37. ADCn-Data (Low Byte) Register Field Descriptions  
Bit  
Field  
ADCn-DATA(7:0)  
Type  
Reset  
Description  
7-0  
R
All zeros  
Stores the 12-bit ADC_n conversion results in straight binary  
format for both types of inputs channels (unipolar and bipolar)  
7.6.7.2 ADCn-Data (High Byte) Register (address = 0x20 through 0x49) [reset = 0x00]  
Figure 90. ADCn-Data (High Byte) Register (R)  
7
6
5
4
3
2
1
0
Reserved  
ADCn-DATA (11:8)  
R-All zeros  
R-All zeros  
Table 38. ADCn-Data (High Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R
All zeros  
Reserved for factory use  
3-0  
ADCn-DATA (11:8)  
R
All zeros  
Stores the 12-bit ADC_n conversion results in straight binary  
format for both types of inputs channels (unipolar and bipolar).  
Copyright © 2014–2018, Texas Instruments Incorporated  
59  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.7.3 Temperature Data (Low Byte) Register (address = 0x4A) [reset = 0x00]  
Figure 91. Temperature Data (Low Byte) Register (R)  
7
6
5
4
3
2
1
0
TEMP-DATA(7:0)  
R-All zeros  
Table 39. Temperature Data (Low Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TEMP-DATA(7:0)  
R
All zeros  
Stores the temperature sensor reading in twos complement  
format.  
7.6.7.4 Temperature Data (High Byte) Register (address = 0x4B) [reset = 0x00]  
Figure 92. Temperature Data (High Byte) Register (R)  
7
6
5
4
3
2
1
0
Reserved  
TEMP-DATA(11:8)  
R-All zeros  
R-All zeros  
Table 40. Temperature Data (High Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R
All zeros  
Reserved for factory use.  
3-0  
TEMP-DATA(11:8)  
R
All zeros  
Stores the temperature sensor reading in twos complement  
format.  
7.6.8 DAC Data: Address 0x50 through 0x6F  
7.6.8.1 DACn-Data (Low Byte) Register (address = 0x50 through 0x6F) [reset = 0x00]  
Figure 93. DACn-Data (Low Byte) Register (R/W)  
7
6
5
4
3
2
1
0
DACn-DATA (7:0)  
R/W-All zeros  
Table 41. DACn-Data (Low Byte) Register Field Descriptions  
Bit  
Field  
DACn-DATA (7:0)  
Type  
Reset  
Description  
7-0  
R/W  
All zeros  
Stores the 12-bit data to be loaded to the DAC_n latches in  
straight binary format. The straight binary format is used for all  
DAC ranges.  
60  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.8.2 DACn Data (High Byte) Register (address = 0x50 through 0x6F) [reset = 0x00]  
Figure 94. DACn Data (High Byte) Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
DACn-DATA (11:8)  
R/W-All zeros  
R/W-All zeros  
Table 42. DACn Data (High Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
All zeros  
Reserved for factory use  
3-0  
DACn-DATA (11:8)  
R/W  
All zeros  
Stores the 12-bit data to be loaded to the DAC_n latches in  
straight binary format. The straight binary format is used for all  
DAC ranges.  
7.6.9 Status Registers: Address 0x70 through 0x72  
The AMC7836 device continuously monitors all general purpose analog inputs and local temperature sensor  
during normal operation. When any input is out of the specified range N consecutive times, the corresponding  
alarm bit is set (1). If the input returns to the normal range before N consecutive times, the corresponding alarm  
bit remains clear (0). This configuration avoids any false alarms. When an alarm status occurs, the  
corresponding alarm bit is set (1). When the corresponding bit in the ALARMOUT Source Registers is cleared  
(0), the ALARMOUT pin is latched.  
Whenever an alarm status bit is set, it remains set until the event that caused it is resolved and its status register  
is read. Reading the Alarm Status Registers clears the alarm status bits. The alarm bit can only be cleared by  
reading its Alarm Status register after the event is resolved, or by hardware reset, software reset, or power-on  
reset. All alarm status bits are cleared when reading the Alarm Status registers, and all these bits are reasserted  
if the out-of-limit condition still exists after the next conversion cycle, unless otherwise noted.  
Copyright © 2014–2018, Texas Instruments Incorporated  
61  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.9.1 Alarm Status 0 Register (address = 0x70) [reset = 0x00]  
Figure 95. Alarm Status 0 Register (R)  
7
6
5
4
3
2
1
0
Reserved  
R-All zeros  
ADC20-ALR  
R-0  
ADC19-ALR  
R-0  
ADC18-ALR  
R-0  
ADC17-ALR  
R-0  
ADC16-ALR  
R-0  
Table 43. Alarm Status 0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R
All zeros  
Reserved for factory use  
4
3
2
1
0
ADC20-ALR  
R
R
R
R
R
0
0
0
0
0
ADC20-ALR = 1 when ADC20 is out of the range defined by the  
corresponding threshold registers.  
ADC20-ALR = 0 when the analog input is not out of the  
specified range.  
ADC19-ALR  
ADC18-ALR  
ADC17-ALR  
ADC16-ALR  
ADC19-ALR = 1 when ADC19 is out of the range defined by the  
corresponding threshold registers.  
ADC19-ALR = 0 when the analog input is not out of the  
specified range.  
ADC18-ALR = 1 when ADC18 is out of the range defined by the  
corresponding threshold registers.  
ADC18-ALR = 0 when the analog input is not out of the  
specified range.  
ADC17-ALR = 1 when ADC17 is out of the range defined by the  
corresponding threshold registers.  
ADC17-ALR = 0 when the analog input is not out of the  
specified range.  
ADC16-ALR = 1 when ADC16 is out of the range defined by the  
corresponding threshold registers.  
ADC16-ALR = 0 when the analog input is not out of the  
specified range.  
7.6.9.2 Alarm Status 1 Register (address = 0x71) [reset = 0x00]  
Figure 96. Alarm Status 1 Register (R)  
7
6
5
4
3
ALARMIN-ALR  
R-0  
2
1
0
Reserved  
THERM-ALR  
R-0  
LT-HIGH-ALR  
R-0  
LT-LOW-ALR  
R-0  
R-All zeros  
Table 44. Alarm Status 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R
All zeros  
Reserved for factory use  
3
ALARMIN-ALR  
R
0
The ALARMIN-ALR is set to 1 if the ALARMIN pin is enabled  
and set high.  
2
THERM-ALR  
R
0
Thermal alarm flag. When the die temperature is equal to or  
greater than +150°C, the bit is set (1) and the THERM-ALR flag  
activates. The on-chip temperature sensor (LT) monitors the die  
temperature. If LT is disabled, the THERM-ALR bit is always 0.  
The hysteresis of this alarm is 8°C.  
1
0
LT-HIGH-ALR  
LT-LOW-ALR  
R
R
0
0
LT-HIGH-ALR = 1 when the temperature sensor is out of the  
range defined by the upper threshold.  
LT-LOW-ALR = 1 when the temperature sensor is out of the  
range defined by the lower threshold.  
62  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.9.3 General Status Register (address = 0x72) [reset = 0x0C]  
Figure 97. General Status Register (R)  
7
AVSSD  
6
AVSSC  
5
AVSSB  
4
AVSSA  
3
2
1
0
ADC_IDLE  
R-1  
Reserved  
R-1  
GALR  
R-0  
DAVF  
R-0  
Table 45. General Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AVSSD  
This bit is the auto-range detection output for DAC group D. This  
bit is set to 1 when AVSSD < AVSSTH (–10- to 0-V output range),  
and 0 when AVSSD > AVSSTH (0- to 5-V output range).  
6
5
4
3
AVSSC  
AVSSB  
AVSSA  
1
This bit is the auto-range detection output for DAC group C. This  
bit is set to 1 when AVSSC < AVSSTH (–10- to 0-V output range),  
and 0 when AVSSC > AVSSTH (0- to 5-V output range).  
This bit is the auto-range detection output for DAC group B. This  
bit is set to 1 when AVSSB < AVSSTH (–10- to 0-V output range),  
and 0 when AVSSB > AVSSTH (0- to 5-V output range).  
This bit is the auto-range detection output for DAC group A. This  
bit is set to 1 when AVEE < AVSSTH (–10- to 0-V output range),  
and 0 when AVEE > AVSSTH (0- to 5-V output range).  
ADC_IDLE  
R
ADC Idle indicator.  
Auto mode: 1 by default; goes to 0 once the ADC is  
triggered and is running. Remains 0 until ADC is stopped,  
then ADC_IDLE returns to 1.  
Direct mode: 1 by default; goes to 0 once the ADC is  
triggered and direct conversions are running and returns to  
1 when direct mode conversions are completed.  
2
1
Reserved  
GALR  
R
R
1
0
Reserved for factory use  
Global alarm bit.  
This bit is the OR function or all individual alarm bits of the  
status register. This bit is set to 1 when any alarm condition  
occurs and remains set until the status register is read. This bit  
is cleared after reading the Status Register.  
0
DAVF  
R
0
ADC Data available flag bit. Direct mode only. Always cleared in  
Auto mode.  
0: ADC conversion is in progress or ADC is in Auto mode  
1: ADC conversions are complete and new data is available  
Copyright © 2014–2018, Texas Instruments Incorporated  
63  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.10 GPIO: Address 0x7A  
7.6.10.1 GPIO Register (address = 0x7A) [reset = 0xFF]  
Figure 98. GPIO Register (R/W)  
7
6
5
4
3
2
1
0
GPIO-7  
R/W-1  
GPIO-6  
R/W-1  
GPIO-5  
R/W-1  
GPIO-4  
R/W-1  
GPIO-3  
R/W-1  
GPIO-2  
R/W-1  
GPIO-1  
R/W-1  
GPIO-0  
R/W-1  
Table 46. GPIO Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
GPIO-7  
GPIO-6  
GPIO-5  
GPIO-4  
GPIO-3  
GPIO-2  
GPIO-1  
GPIO-0  
1
1
1
1
1
1
1
1
For write operation the GPIO pin operates as an output. Writing  
a 1 to the GPIO-n bit sets the GPIO-N pin to high impedance.  
Writing a 0 sets the GPIO-n pin to logic low.  
6
5
For read operations the GPIO pin operates as an input. Read  
the GPIO-n bit to receive the status of the GPIO-n pin.  
4
3
The GPIO-n pin has 48-kinput impedance to IOVDD  
.
2
1
0
7.6.11 Out-Of-Range ADC Thresholds: Address 0x80 through 0x93  
The unipolar analog inputs (LV_ADC16 to LV_ADC20) and the local temperature sensor implement an out-of-  
range alarm function. The Upper-Thresh and Lower-Thresh registers define the upper bound and lower bounds  
for these inputs. This window determines whether the analog input or temperature is out-of-range. When the  
input is outside the window, the corresponding CH-ALR-n bit in the Status Register is set to 1. For normal  
operation, the value of the upper threshold must be greater than the value of lower threshold; otherwise, an  
alarm is always indicated. The analog input threshold values are specified in straight binary format while the local  
temperature ones are specified in two’s complement format.  
7.6.11.1 ADCn-Upper-Thresh (Low Byte) Register (address = 0x80 through 0x93) [reset = 0xFF]  
Figure 99. ADCn-Upper-Thresh (Low Byte) Register (R/W)  
7
6
5
4
3
2
1
0
THRUn(7:0)  
R/W-All ones  
Table 47. ADCn-Upper-Thresh (Low Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
THRUn(7:0)  
R/W  
All ones  
Sets 12-bit upper threshold value for the ADC_n channel in  
straight binary format.  
64  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.11.2 ADCn-Upper-Thresh (High Byte) Register (address = 0x80 through 0x93) [reset = 0x0F]  
Figure 100. ADCn-Upper-Thresh (High Byte) Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
THRUn(11:8)  
R/W-0xF  
R/W-All zeros  
Table 48. ADCn-Upper-Thresh (High Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
3-0  
THRUn(11:8)  
R/W  
0xF  
Sets 12-bit upper threshold value for the ADC_n channel in  
straight binary format.  
7.6.11.3 ADCn-Lower-Thresh (Low Byte) Register (address = 0x80 through 0x93) [reset = 0x00]  
Figure 101. ADCn-Lower-Thresh (Low Byte) Register (R/W)  
7
6
5
4
3
2
1
0
THRLn(7:0)  
R/W-All zeros  
Table 49. ADCn-Lower-Thresh (Low Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
THRLn(7:0)  
R/W  
All zeros  
Sets 12-bit lower threshold value for the ADC_n channel in  
straight binary format.  
7.6.11.4 ADCn-Lower-Thresh (High Byte) Register (address = 0x80 through 0x93) [reset = 0x00]  
Figure 102. ADCn-Lower-Thresh (High Byte) Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
THRLn(11:8)  
R/W-All zeros  
R/W-All zeros  
Table 50. ADCn-Lower-Thresh (High Byte) Register Field Descriptions Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
3-0  
THRLn(11:8)  
R/W  
All zeros  
Sets 12-bit lower threshold value for ADC_n channel in straight  
binary format.  
7.6.11.5 LT-Upper-Thresh (Low Byte) Register (address = 0x94) [reset = 0xFF]  
Figure 103. LT-Upper-Thresh (Low Byte) Register (R/W)  
7
6
5
4
3
2
1
0
THRU-LT(7:0)  
R/W-All ones  
Table 51. LT-Upper-Thresh (Low Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
THRU-LT(7:0)  
R/W  
All ones  
Sets 12-bit upper threshold value for the local temperature  
sensor in two’s complement format.  
Copyright © 2014–2018, Texas Instruments Incorporated  
65  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.11.6 LT-Upper-Thresh (High Byte) Register (address = 0x95) [reset = 0x07]  
Figure 104. LT-Upper-Thresh (High Byte) Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
THRU-LT(11:8)  
R/W-0x7  
R/W-All zeros  
Table 52. LT-Upper-Thresh (High Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
3-0  
THRU-LT(11:8)  
R/W  
0x7  
Sets 12-bit upper threshold value for the local temperature  
sensor in two’s complement format.  
7.6.11.7 LT-Lower-Thresh (Low Byte) Register (address = 0x96) [reset = 0x00]  
Figure 105. LT-Lower-Thresh (Low Byte) Register (R/W  
7
6
5
4
3
2
1
0
THRL-LT(7:0)  
R/W-All zeros  
Table 53. LT-Lower-Thresh (Low Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
THRL-LT(7:0)  
R/W  
All zeros  
Sets 12-bit lower threshold value for the local temperature  
sensor in two’s complement format.  
7.6.11.8 LT-Lower-Thresh (High Byte) Register (address = 0x97) [reset = 0x08]  
Figure 106. LT-Lower-Thresh (High Byte) Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
THRL-LT(11:8)  
R/W-0x8  
R/W-All zeros  
Table 54. LT-Lower-Thresh (High Byte) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
3-0  
THRL-LT(11:8)  
R/W  
0x8  
Sets 12-bit lower threshold value for the local temperature  
sensor in two’s complement format.  
66  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.12 Alarm Hysteresis Configuration: Address 0xA0 and 0xA5  
The hysteresis registers define the hysteresis in the out-of-range alarms.  
7.6.12.1 ADCn-Hysteresis Register (address = 0xA0 through 0xA4) [reset = 0x08]  
Figure 107. ADCn-Hysteresis Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
R/W-0  
HYSTn(6:0)  
R/W-0x08  
Table 55. ADCn-Hysteresis Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R/W  
0
Reserved for factory use.  
6-0  
HYSTn(6:0)  
R/W  
0x08  
Hysteresis of general purpose ADC_n, 1 LSB per step  
7.6.12.2 LT-Hysteresis Register (address = 0xA5) [reset = 0x08]  
Figure 108. LT-Hysteresis Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
R/W-All zeros  
HYST-LT(4:0)  
R/W-0x08  
Table 56. LT-Hysteresis Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
4-0  
HYST-LT(4:0)  
R/W  
0x08  
Hysteresis of local temperature sensor, 1°C per step. The range  
is 0°C to 31°C.  
7.6.13 Clear and Power-Down Registers: Address 0xB0 through 0XB4  
7.6.13.1 DAC Clear 0 Register (address = 0xB0) [reset = 0x00]  
Figure 109. DAC Clear 0 Register (R/W)  
7
6
5
4
3
2
1
0
CLR-B7  
R/W-0  
CLR-B6  
R/W-0  
CLR-B5  
R/W-0  
CLR-B4  
R/W-0  
CLR-A3  
R/W-0  
CLR-A2  
R/W-0  
CLR-A1  
R/W-0  
CLR-A0  
R/W-0  
Table 57. DAC Clear 0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
CLR-B7  
CLR-B6  
CLR-B5  
CLR-B4  
CLR-A3  
CLR-A2  
CLR-A1  
CLR-A0  
0
0
0
0
0
0
0
0
This register uses software to force the DAC into a clear state.  
If CLRn = 1, DAC_n is forced into a clear state.  
6
5
If CLRn = 0, DAC_n is restored to normal operation.  
4
3
2
1
0
Copyright © 2014–2018, Texas Instruments Incorporated  
67  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.13.2 DAC Clear 1 Register (address = 0xB1) [reset = 0x00]  
Figure 110. DAC Clear 1 Register (R/W)  
7
6
5
4
3
2
1
0
CLR-D15  
R/W-0  
CLR-D14  
R/W-0  
CLR-D13  
R/W-0  
CLR-D12  
R/W-0  
CLR-C11  
R/W-0  
CLR-C10  
R/W-0  
CLR-C9  
R/W-0  
CLR-C8  
R/W-0  
Table 58. DAC Clear 1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
CLR-D15  
CLR-D14  
CLR-D13  
CLR-D12  
CLR-C11  
CLR-C10  
CLR-C9  
0
0
0
0
0
0
0
0
This register uses software to force the DAC into a clear state.  
If CLRn = 1, DAC_n is forced into a clear state.  
6
5
If CLRn = 0, DAC_n is restored to normal operation.  
4
3
2
1
0
CLR-C8  
7.6.13.3 Power-Down 0 Register (address = 0xB2) [reset = 0x00]  
Figure 111. Power-Down 0 Register (R/W)  
7
6
5
4
3
2
1
0
PDAC-B7  
R/W-0  
PDAC-B6  
R/W-0  
PDAC-B5  
R/W-0  
PDAC-B4  
R/W-0  
PDAC-A3  
R/W-0  
PDAC-A2  
R/W-0  
PDAC-A1  
R/W-0  
PDAC-A0  
R/W-0  
Table 59. Power-Down 0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
PDAC-B7  
PDAC-B6  
PDAC-B5  
PDAC-B4  
PDAC-A3  
PDAC-A2  
PDAC-A1  
PDAC-A0  
0
0
0
0
0
0
0
0
After power-on or reset, all bits in the power-down register are  
cleared to 0, and all the components controlled by this register  
are either powered-down or off. The power-down register allows  
the host to manage the AMC7836 power dissipation. When not  
required, any of the DACs can be put into clamp mode and the  
ADC and internal reference into an inactive low-power mode to  
reduce current drain from the supply. The bits in the power-down  
register control this power-down function. Set the respective bit  
to 1 to activate the corresponding function.  
6
5
4
3
2
1
0
68  
Copyright © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
7.6.13.4 Power-Down 1 Register (address = 0xB3) [reset = 0x00]  
Figure 112. Power-Down 1 Register (R/W)  
7
6
5
4
3
2
1
0
PDAC-D15  
R/W-0  
PDAC-D14  
R/W-0  
PDAC-D13  
R/W-0  
PDAC-D12  
R/W-0  
PDAC-C11  
R/W-0  
PDAC-C10  
R/W-0  
PDAC-C9  
R/W-0  
PDAC-C8  
R/W-0  
Table 60. Power-Down 1 Register Field Descriptions  
Bit  
7
Field  
PDAC-D15  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
0
0
0
0
After power-on or reset, all bits in the power-down register are  
cleared to 0, and all the components controlled by this register  
are either powered-down or off. The power-down register allows  
the host to manage the AMC7836 power dissipation. When not  
required, any of the DACs can be put into clamp mode and the  
ADC and internal reference into an inactive low-power mode to  
reduce current drain from the supply. The bits in the power-down  
register control this power-down function. Set the respective bit  
to 1 to activate the corresponding function.  
6
PDAC-D14  
PDAC-D13  
PDAC-D12  
PDAC-C11  
PDAC-C10  
PDAC-C9  
PDAC-C8  
5
4
3
2
1
0
7.6.13.5 Power-Down 2 Register (address = 0xB4) [reset = 0x00]  
Figure 113. Power-Down 2 Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
PREF  
R/W-0  
PADC  
R/W-0  
R/W-All zeros  
Table 61. Power-Down 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
All zeros  
Reserved for factory use.  
1
0
PREF  
PADC  
R/W  
R/W  
0
0
After power-on or reset, all bits in the power-down register are  
cleared to 0, and all the components controlled by this register  
are either powered-down or off. The power-down register allows  
the host to manage the AMC7836 power dissipation. When not  
required, any of the DACs can be put into clamp mode and the  
ADC and internal reference into an inactive low-power mode to  
reduce current drain from the supply. The bits in the power-down  
register control this power-down function. Set the respective bit  
to 1 to activate the corresponding function.  
Copyright © 2014–2018, Texas Instruments Incorporated  
69  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.6.14 ADC Trigger: Address 0xC0  
7.6.14.1 ADC Trigger Register (address = 0xC0) [reset = 0x00]  
Figure 114. ADC Trigger Register (R/W)  
7
6
5
4
3
2
1
0
Reserved  
ICONV  
R/W-0  
R/W-All zeros  
Table 62. ADC Trigger Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
All zeros  
Reserved for factory use  
Internal ADC conversion bit.  
0
ICONV  
R/W  
0
Set this bit to 1 to start the ADC conversion internally. The bit is  
automatically cleared to 0 after the ADC conversion starts.  
70  
版权 © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The AMC7836 device is a highly integrated, low-power, analog monitoring and control solution that includes a  
21-channel (12-bit) ADC, 16-channel (12-bit) DACs, eight GPIO, and a local temperature sensor. Although the  
device can be used in many different closed-loop systems, including industrial control and test and  
measurement, the device is largely used as a power amplifier controller in multi-channel RF communication  
applications.  
Power amplifiers (PAs) include transistor technologies that are extremely temperature sensitive, and require DC  
biasing circuits to optimize RF performance, power efficiency, and stability. The AMC7836 device provides 16  
DAC channels which can be used to adjust the power amplifier bias points in response to temperature changes.  
The device also includes an internal local temperature sensor, and 21 ADC channels for general-purpose  
monitoring.  
Current and temperature sensing are typically implemented in power amplifier controller applications. PA drain  
current sensing is implemented by measuring the differential voltage drop across a shunt resistor. Temperature  
variations during PA operation can be detected either through the AMC7836 internal temperature sensor or  
through remote temperature ICs or thermistors configured to interface with the ADC analog inputs available in  
the device. 115 shows the block diagram for these different systems.  
AMC7836  
GPIO  
MUX  
ADC  
Local  
Temperature  
Sensor  
DAC  
Current  
Sense  
Amplifier  
Power  
Power  
∆V  
R(shunt)  
Power  
Amplifier  
Power  
Amplifier  
RF IN  
RF IN  
Temperature  
Sensor  
Heat Sink  
Heat Sink  
Current Sensing  
Temperature Sensing  
115. AMC7836 Example Control and Monitor System  
版权 © 2014–2018, Texas Instruments Incorporated  
71  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Application Information (接下页)  
8.1.1 Temperature Sensing Applications  
The AMC7836 device contains one local temperature and five unipolar analog inputs that are easily configurable  
to interface with remote temperature-sensor circuits. The integrated temperature sensor and analog input  
registers automatically update with every conversion. 116 shows an example of a remote temperature sensor  
connection.  
The selected temperature sensor is the LM50 device, a high precision integrated-circuit temperature sensor that  
operates in the –40°C to 125°C temperature range using a single positive supply. The full-scale output of the  
temperature sensor ranges from 100 mV to 1.75 V for the operational temperature range. In an extremely noisy  
environment, additional filtering is recommended. A typical value for the bypass capacitor is 0.1 µF from the V+  
pin to GND. A high-quality ceramic type NP0 or X7R is recommended because of optimal performance across  
temperature and very low dissipation factor.  
LM50  
DV  
DD  
4
3
1
V+  
LV_ADC15  
VO  
NC  
0.1 µF  
GND  
5
2
116. Temperature Sensing Application With LM50  
72  
版权 © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Application Information (接下页)  
8.1.2 Current Sensing Applications  
In applications that require current sensing of the power amplifier, an external high-side current sense amplifier  
can be added and configured to the unipolar ADC inputs. 117 shows this design.  
The LMP8480 device is a precision current sense device that amplifies the small differential voltage developed  
across a current-sense resistor in the presence of high input common-mode voltages. The LMP8480 device  
accepts input signals with a common-mode voltage range from 4 V to 76 V with a bandwidth of 270 kHz. The  
LMP8480 device offers different fixed gain settings. The optimal gain setting is dependent on the accuracy  
requirement of the application. To maintain precision over temperature, the output of the LMP8480 device should  
be directly connected to the AMC7836 unipolar ADC inputs. If the output range of the LMP8480 device is scaled  
by a voltage divider, as shown in 117, an output amplifier may be required to drive the ADC unipolar input to  
ensure a low impedance source. If the series resistance, in this case R4, is low enough then the buffer may not  
be required because the LMP8480 device is capable of driving the input of the AMC7836 unipolar ADC channel.  
The external resistors will cause some small error because of temperature drift and the  
input bias current of the operation amplifier.  
117 also shows a simple method to ensure proper power sequencing of the power amplifier by adding a  
series PMOS transistor to the PA drain terminal. The activation of the PMOS transistor connects the PAVDD  
voltage supply to the drain pin of the power amplifier. The PMOS transistor is driven with a voltage divider that  
swings from the PAVDD voltage to PAVDD × (R2 / (R1 + R2)). The NMOS shown in 117 is connected to a  
microcontroller output that controls the state of the PMOS transistor.  
PAV  
DD  
+
R4  
ADC Input  
VOUT  
NC  
V
CC  
R3  
RSP  
RSN  
R1  
R
(SENSE)  
GND  
LMP8480  
R2  
Drain  
Gate  
PA  
DAC Voltage  
mC GPIO  
Source  
117. Current-Sense Application With PMOS ON and OFF  
版权 © 2014–2018, Texas Instruments Incorporated  
73  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
8.2 Typical Application  
118 shows an example schematic incorporating the AMC7836 device.  
DAC OUTPUTS connect to the gate (VG) of the PA modules  
0.1 µF  
AVEE  
AVEE  
AVCC  
AVDD  
0.1 µF  
DVDD  
0.1 µF  
IOVDD  
VDD  
IOVDD  
0.1 µF  
0.1 µF  
64  
63  
62  
61 60  
59 58 57  
56 55 54 53  
52 51  
50 49  
4.7 µF  
48  
AGND2  
1
IOVDD  
2
RESET  
MISO  
RESET  
SDO  
3
4
5
MOSI  
SDI  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
ADC_0  
ADC_1  
ADC_2  
ADC_3  
SCLK  
CS  
SCLK  
CS  
6
7
GPIO0 (ALARMIN)  
8
9
GPIO1 (ALARMOUT)  
ADC_4  
ADC_5  
GPIO2 (ADCTRIG)  
GPIO3 (DAV)  
GPIO4  
10  
AMC7836  
GPIO  
11  
12  
ADC_6  
ADC_7  
GPIO5  
GPIO6  
GPIO7  
13  
14  
LV_ADC16  
LV_ADC17  
Unipolar  
Monitor Connection  
LV_ADC16 œ  
LV_ADC18  
LV_ADC19  
LV_ADC20  
LV_ADC20  
ADC_8  
GND  
33  
ADC_9  
15  
16  
DAC_A0  
DAC_A1  
Bipolar ADC inputs  
connected to  
PA module gate for  
voltage monitoring  
0  
AVEE  
22 23  
25  
26  
17  
18 19 20  
21  
24  
29  
27 28  
30 31 32  
AVEE  
0.1 µF  
Analog  
GND  
Digital  
GND  
AVCC  
DAC OUTPUTS connect to the gate (VG) of the PA modules  
118. AMC7836 Example Schematic  
74  
版权 © 2014–2018, Texas Instruments Incorporated  
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
Typical Application (接下页)  
8.2.1 Design Requirements  
The AMC7836 example schematic uses the majority of the design parameters listed in 63.  
63. Design Parameters  
DESIGN PARAMETER  
AVCC  
EXAMPLE VALUE  
5 V  
AVEE  
–12 V  
IOVDD  
3.3 V  
DVDD  
5 V  
AVDD  
5 V  
AVSS banks  
ADC bipolar inputs  
ADC unipolar inputs  
DAC outputs  
AVEE  
ADC[0-15]: –12.5 to 12.5 V input range  
LV_ADC[16-20]: 0 to 5 V range  
Sixteen Monotonic 12-bit DACs  
Selectable ranges: 0 to 5 V, 0 to 10 V, –10 to 0 V or –5 to 0 V  
Remote temperature sensing  
IC temperature sensor (LM50) or thermistor  
8.2.2 Detailed Design Procedure  
Use the following parameters to facilitate the design process:  
AVCC and AVEE voltage values  
ADC input voltage range  
DAC Output voltage Ranges  
8.2.2.1 ADC Input Conditioning  
The AMC7836 device has an ADC with 21 analog inputs for external voltage sensing. Sixteen of these inputs are  
bipolar and the other five are unipolar. The bipolar inputs (ADC_0 through ADC_15) range is –12.5 to 12.5 V,  
and the unipolar analog inputs (LV_ADC16 through LV_ADC20) range is 0 to 2 × Vref. The ADC operates from  
an internal 2.5 V reference (Vref, measured at the REF_CMP pin). For additional noise filtering, a 4.7-µF  
capacitor should be connected between the REF_CMP and AGND2 pins. A high-quality ceramic type NP0 or  
X7R is recommended because of the optimal performance of the capacitor across temperature and very-low  
dissipation factor.  
The ADC timing signals are driven from an on-chip temperature compensated 4-MHz oscillator. The on-chip  
oscillator is primarily responsible for the sampling frequency of the ADC. The sampling frequency of the ADC is  
dynamic and dependent on the acquisition and conversion time of each channel. 64 lists the relationship  
between the total update time and the internal oscillator frequency.  
版权 © 2014–2018, Texas Instruments Incorporated  
75  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
64. ADC Conversion Rate and Total Update Number of Clocks  
tS (ACQUISITION +  
CONVERSION)  
NUMBER OF CLOCKS  
ADC CONVERSION  
RATE  
ADC INPUT CHANNEL  
ACQUISITION CLOCKS CONVERSION CLOCKS  
Bipolar  
124.5  
32.5  
13.5  
13.5  
138  
46  
Unipolar  
00  
01  
10  
11  
Internal Temperature  
Sensor  
1025  
Bipolar  
124.5  
78.5  
13.5  
13.5  
138  
92  
Unipolar  
Internal Temperature  
Sensor  
1025  
Bipolar  
124.5  
124.5  
13.5  
13.5  
138  
138  
Unipolar  
Internal Temperature  
Sensor  
1025  
Bipolar  
262.5  
262.5  
13.5  
13.5  
276  
276  
Unipolar  
Internal Temperature  
Sensor  
1025  
The minimum and maximum oscillator frequency specifications in conjunction with the number of clocks required  
for the unipolar, bipolar and temperature sensor inputs should be applied to 公式 5 to calculate the total update  
time range.  
(BCLK ì #BCH + UCLK ì #UCH + TCLK ì #TCH  
)
TS =  
ƒOSC  
where  
TS is the total update time  
BCLK is the total bipolar clocks  
#BCH is the number of active bipolar inputs  
UCLK is the total unipolar clocks  
#UCH is the number of active unipolar inputs  
TCKL is the total internal temperature-sensor clocks  
#TCH is the number of active internal temperature sensor channels; either 1 or 0  
ƒOSC is the internal oscillator frequency  
(5)  
The following is an example of a complete calculation of the total update time range. In this example, the ADC  
conversion rate is set to 00 and the following ADC input channels are used:  
Bipolar channels: ADC_1 through ADC_5 (5 active bipolar channels)  
Unipolar channels: LV_ADC16 through LV_ADC18 (3 active unipolar channels)  
Internal temperature sensor (1 active temperature channel)  
64 gives the total number of clocks required for each ADC input under the example conditions.  
For the minimum specified oscillator frequency of 3.7 MHz, and with the ADC conversion rate set to 00, use 公式  
6 to calculate the total maximum update time for this example.  
(138 ì 5 + 46 ì 3 +1025 ì 1)  
TS =  
=500.811µs  
3.7 MHz  
(6)  
For the maximum specified oscillator frequency of 4.3 MHz, use 公式 7 to calculate the total minimum update  
time for this example.  
(138 ì 5 + 46 ì 3 +1025 ì 1)  
TS =  
=430.93 µs  
4.3 MHz  
(7)  
Therefore, the total update time range is 430.93 µs to 500.811 µs.  
76  
版权 © 2014–2018, Texas Instruments Incorporated  
 
 
 
 
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
During the conversion, the input current per channel varies with the total update time which is determined by the  
number and type of channels (NCH) and the conversion rate setting of the CONV-RATE bit in the ADC  
configuration register (address 0x10).  
The source of the analog input voltage must be able to charge the input capacitance to a  
12-bit settling level within the acquisition time.  
8.2.2.2 DAC Output Range Selection  
The AMC7836 device includes 16 DACs split into four groups, each with four DACs. All of the DACs in a given  
group share the same output voltage range. The output range for each DAC group is independent and is  
programmable to either –10 to 0 V, –5 to 0 V, 0 to 10 V or 0 to 5 V. The DAC output ranges are configured by  
following the configuration settings listed in Table 1.  
Each DAC includes an output buffer is capable of generating rail-to rail voltages. The Electrical Characteristics:  
DAC table lists the maximum source and sink capability of this internal amplifier. The graphs in the Application  
Curves section show the relationship of both stability and settling time with different capacitive loading structures.  
8.2.3 Application Curves  
15  
10  
5
15  
10  
5
10nF, Rising Edge  
200pF, Rising Edge  
10nF, Falling Edge  
200pF, Falling Edge  
0
0
-5  
-5  
-10  
-15  
-10  
-15  
0
5
10  
15  
Time (µs)  
20  
25  
0
5
10  
15  
Time (µs)  
20  
25  
C001  
C001  
Code 0x400 to 0xC00 to within ½ LSB  
Code 0xC00 to 0x400 to within ½ LSB  
119. DAC Settling Time vs Load Capacitance  
120. DAC Settling Time vs Load Capacitance  
9 Power Supply Recommendations  
The preferred (not required) pin order for applying power is IOVDD, DVDD and AVDD, AVCC and lastly AVEE  
,
AVSSB, AVSSC, and AVSSD.When power sequencing, ensure that all digital pins are not powered or in an active  
state while the IOVDD pin ramps. Proper sequencing of the digital pins can be accomplished by attaching 10-kΩ  
pullup resistors to the IOVDD pin, or pulldown resistors to the DGND pin. See the supply voltage ranges in the  
Recommended Operating Conditions table.  
In applications where a negative voltage is applied to AVEE, AVSSB, AVSSC, and AVSSD first, the user may notice  
some small negative voltages at other supply pins, such as the AVDD, DVDD, and AVCC pins. The negative  
voltages at the supply pins may exceed the values listed in the Absolute Maximum Ratings table, but because  
these voltages are created from intrinsic circuitry, the voltage levels are safe for operation.  
In the case where all DAC outputs are in clamp state with AVEE = AVSSB = AVSSC = AVSSD = –12 V, the  
negative voltage observed on the other supply pins can be as low as –620 mV.  
Although these negative voltages are observed on the pins, the user must still adhere to the guidelines specified  
in the Absolute Maximum Ratings table and verify that the inputs are driven within the range specified in the  
table. The user should also ensure that current is only applied when operating with voltages between the ranges  
listed in the Absolute Maximum Ratings table.  
版权 © 2014–2018, Texas Instruments Incorporated  
77  
 
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
In applications where the DAC channels are driving a large capacitive load and the output changes significantly  
(a full scale transition, for instance), the output current of the affected channels may drive to the short circuit  
current value as described in the specification table (see 64) while the capacitive load is being charged. This  
temporary increase in output current may inadvertently cause the AVCC or AVSS to collapse, potentially  
resulting in a POR event. It is recommended that the power supply solution for AVCC and AVSS be capable of  
supplying short circuit current for all DAC channels with capacitive loads simultaneously to ensure proper device  
performance.  
9.1 Device Reset Options  
9.1.1 Power-on-Reset (POR)  
The AMC7836 device includes a power-on reset (POR) function. After all supplies have been established, a POR  
event is issued. The POR causes all registers to initialize to the default values, and communication with the  
device is valid only after a 250 µs power-on reset delay.  
The default operation is power-down mode (register 0x02) in which the device is non-operational except for the  
communication interface as determined by the power-down registers. Before enabling normal operation, a  
hardware reset should be issued.  
A power failure on DVDD, AVDD, AVCC or IOVDD has the potential to initiate a power-on-reset event. As long as  
DVDD, AVDD, AVCC, and IOVDD remain above the minimum recommended operating conditions a power failure  
event will not occur. When any of these supplies drops below the minimum recommended operating condition  
the device may or may not imitate a POR. In this case, issuing a hardware reset or proper POR is recommended  
to resume proper operation. To ensure a proper POR event, the DVDD supply must fall below 750 mV. If the  
DVDD supply falls below 2.7 V a hardware reset or proper POR must be issued.  
9.1.2 Hardware Reset  
A device hardware reset event is initiated by a minimum 20-ns logic low on the RESET pin. A hardware reset  
causes all registers to initialize to the default values and communication with the device is valid only after a 250-  
µs reset delay.  
9.1.2.1 Software Reset  
A software reset event is initiated by setting the SOFT-RESET bit in the interface configuration 0 register (0x00).  
A software reset causes all registers, except 0x00 and 0x01, to initialize to the default values and communication  
with the device is valid only after a 100-ns delay.  
10 Layout  
10.1 Layout Guidelines  
All power supply pins should be bypassed to ground with a low-ESR ceramic bypass capacitor. The typical  
recommended bypass capacitor has a value of 10-µF and is ceramic with a X7R or NP0 dielectric.  
To minimize interaction between the analog and digital return currents, the digital and analog sections should  
have separate ground planes that eventually connect at some point.  
To reduce noise on the internal reference, a 4.7-µF capacitor is recommended between the REF_CMP pin  
and ground.  
A high-quality ceramic type NP0 or X7R capacitor is recommended because of the optimal performance  
across temperature very-low dissipation factor of the capacitor.  
The digital and analog sections should have proper placement with respect to the digital pins and analog pins  
of the AMC7836 device (see 122). The separation of analog and digital blocks allows for better design and  
practice as it ensures less coupling into neighboring blocks and minimizes the interaction between analog and  
digital return currents.  
78  
版权 © 2014–2018, Texas Instruments Incorporated  
AMC7836  
www.ti.com.cn  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
10.2 Layout Example  
Bypass Capacitor  
close to supply pins: DV  
Bypass Capacitor  
,
DD  
close to AV  
0.1 µF  
CC  
AV , AV and AV  
SS  
SS  
DD  
0.1 µF  
4.7 µF  
Compensation Capacitor  
close to REF_CMP pin and  
connect to AGND2  
0.1 µF  
AGND2  
IOV  
DD  
1
48  
RESET  
ADC_0  
ADC_1  
ADC_2  
ADC_3  
ADC_4  
2
3
47  
46  
SDO  
SDI  
4
5
45  
44  
SCLK  
CS  
6
7
43  
42  
ADC_5  
GPIO0/ALARMIN  
ADC_6  
8
9
41  
40  
GPIO1/ALARMOUT  
GPIO2/ADCTRIG  
GPIO3/DAV  
GPIO4  
ADC_7  
LV_ADC16  
10  
11  
39  
38  
LV_ADC17  
LV_ADC18  
GPIO5  
12  
13  
37  
36  
GPIO6  
LV_ADC19  
LV_ADC20  
GPIO7  
14  
15  
35  
34  
DAC_A0  
ADC_8  
ADC_9  
DAC_A1  
16  
33  
0.1 µF  
Bypass Capacitor  
close to AV , AV  
,
EE  
CC  
and AV  
SS  
121. AMC7836 Example Board Layout  
1
48  
2
3
47  
46  
4
5
45  
44  
6
7
43  
42  
8
9
41  
40  
10  
11  
39  
38  
12  
13  
37  
36  
14  
15  
35  
34  
16  
33  
122. AMC7836 Example Board Layout — Component Placement  
版权 © 2014–2018, Texas Instruments Incorporated  
79  
AMC7836  
ZHCSDC6D NOVEMBER 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
如需相关文档,请参阅:  
LMP8480/LMP8481 具有电压输出的高精度 76V 高侧电流感测放大器》SNVS829  
LM50/LM50-Q1 SOT-23 单电源摄氏温度传感器》SNIS118  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 Ti.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
80  
版权 © 2014–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC7836IPAP  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PAP  
PAP  
64  
64  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AMC7836  
AMC7836  
AMC7836IPAPR  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC7836IPAPR  
HTQFP  
PAP  
64  
1000  
330.0  
24.4  
13.0  
13.0  
1.5  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PAP 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
AMC7836IPAPR  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AMC7836IPAP  
PAP  
HTQFP  
64  
160  
8 X 20  
150  
322.6 135.9 7620 15.2  
13.1  
13  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PAP 64  
10 x 10, 0.5 mm pitch  
HTQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226442/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PAP0064G  
PowerPAD TQFP - 1.2 mm max height  
SCALE 1.300  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
16  
33  
17  
32  
A
0.27  
64X  
60X 0.5  
0.17  
0.08  
C A B  
4X 7.5  
C
SEATING PLANE  
1.2 MAX  
(0.127)  
TYP  
SEE DETAIL A  
17  
32  
0.25  
GAGE PLANE  
(1)  
33  
16  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
65  
7.00  
5.99  
DETAIL A  
A
17  
TYPICAL  
1
48  
49  
64  
4218924/A 01/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PAP0064G  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8)  
NOTE 8  
(
7)  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
(R0.05)  
TYP  
1
48  
64X (0.3)  
65  
(11.4)  
SYMM  
(1.3 TYP)  
60X (0.5)  
33  
16  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
17  
32  
SEE DETAILS  
(1.3 TYP)  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218924/A 01/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PAP0064G  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
7)  
BASED ON 0.125  
THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
(R0.05) TYP  
SYMM  
65  
(11.4)  
60X (0.5)  
33  
16  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
7.83 X 7.83  
7.0 X 7.0 (SHOWN)  
6.39 X 6.39  
0.125  
0.15  
0.175  
5.92 X 5.92  
4218924/A 01/2022  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC7836IPAP

高密度、12 位模拟监视和控制解决方案,双极 DAC | PAP | 64 | -40 to 125
TI

AMC7836IPAPR

高密度、12 位模拟监视和控制解决方案,双极 DAC | PAP | 64 | -40 to 125
TI

AMC7891

模拟监视和控制电路带10位8通道AD转换和4路DA转换,温度传感器和12个通用数字输入输出端口
TI

AMC7891SRHH

暂无描述
TI

AMC7891SRHHR

Analog Monitor and Control Circuit with 10-Bit, Multi-Channel ADC and Four DACs, Temperature Sensor, and 12 GPIOs
TI

AMC7891SRHHT

Analog Monitor and Control Circuit with 10-Bit, Multi-Channel ADC and Four DACs, Temperature Sensor, and 12 GPIOs
TI

AMC7891_14

Analog Monitor and Control Circuit with 10-Bit, Multi-Channel ADC and Four DACs, Temperature Sensor, and 12 GPIOs
TI

AMC78L05

100mA / 3-TERMINAL 5V REGULATOR
ADDTEK

AMC78L05DM

100mA / 3-TERMINAL 5V REGULATOR
ADDTEK

AMC78L05DMF

100mA / 3-TERMINAL 5V REGULATOR
ADDTEK

AMC78L05LP

100mA / 3-TERMINAL 5V REGULATOR
ADDTEK

AMC78L05LPF

100mA / 3-TERMINAL 5V REGULATOR
ADDTEK